Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin.
Mohanty, Chandana; Das, Manasi; Sahoo, Sanjeeb K
2012-11-01
Curcumin is a safe, affordable and natural bioactive molecule of turmeric (Curcuma longa). It has gained considerable attention in recent years for its multiple pharmacological activities. However, its optimum pharmaceutical potential has been limited by its lack of aqueous solubility and poor bioavailability. To mitigate the above limitations, recently various nanostructured water-soluble delivery systems were developed to increase the solubility and bioavailability of curcumin. Major reasons contributing to the low bioavailability of curcumin appear to be owing to its poor solubility, low absorption, rapid metabolism and rapid systemic elimination. The present review summarizes the strategies using curcumin in various nanocarrier delivery systems to overcome poor solubility and inconsistent bioavailability of curcumin and describes the current status and challenges for the future. The development of various drug delivery systems to deliver curcumin will certainly provide a step up towards augmenting the therapeutic activity of curcumin thereby increasing the solubility and bioavailability of curcumin. However, the future of such delivery technology will be highly dependent on the development of safe, non-toxic and non-immunogenic nanocarriers.
Supercritical fluid particle design for poorly water-soluble drugs (review).
Sun, Yongda
2014-01-01
Supercritical fluid particle design (SCF PD) offers a number of routes to improve solubility and dissolution rate for enhancing the bioavailability of poorly water-soluble drugs, which can be adopted through an in-depth knowledge of SCF PD processes and the molecular properties of active pharmaceutical ingredients (API) and drug delivery system (DDS). Combining with research experiences in our laboratory, this review focuses on the most recent development of different routes (nano-micron particles, polymorphic particles, composite particles and bio-drug particles) to improve solubility and dissolution rate of poorly water-soluble drugs, covering the fundamental concept of SCF and the principle of SCF PD processes which are typically used to control particle size, shape, morphology and particle form and hence enable notable improvement in the dissolution rate of the poorly water-soluble drugs. The progress of the industrialization of SCF PD processes in pharmaceutical manufacturing environment with scaled-up plant under current good manufacturing process (GMP) specification is also considered in this review.
Rojas-Oviedo, I.; Retchkiman-Corona, B.; Quirino-Barreda, C. T.; Cárdenas, J.; Schabes-Retchkiman, P. S.
2012-01-01
Mechanochemical activation is a practical cogrinding operation used to obtain a solid dispersion of a poorly water soluble drug through changes in the solid state molecular aggregation of drug-carrier mixtures and the formation of noncovalent interactions (hydrogen bonds) between two crystalline solids such as a soluble carrier, lactose, and a poorly soluble drug, indomethacin, in order to improve its solubility and dissolution rate. Samples of indomethacin and a physical mixture with a weight ratio of 1:1 of indomethacin and lactose were ground using a high speed vibrating ball mill. Particle size was determined by electron microscopy, the reduction of crystallinity was determined by calorimetry and transmission electron microscopy, infrared spectroscopy was used to find evidence of any interactions between the drug and the carrier and the determination of apparent solubility allowed for the corroboration of changes in solubility. Before grinding, scanning electron microscopy showed the drug and lactose to have an average particle size of around 50 and 30 μm, respectively. After high speed grinding, indomethacin and the mixture had a reduced average particle size of around 5 and 2 μm, respectively, showing a morphological change. The ground mixture produced a solid dispersion that had a loss of crystallinity that reached 81% after 30 min of grinding while the drug solubility of indomethacin within the solid dispersion increased by 2.76 fold as compared to the pure drug. Drug activation due to hydrogen bonds between the carboxylic group of the drug and the hydroxyl group of lactose as well as the decrease in crystallinity of the solid dispersion and the reduction of the particle size led to a better water solubility of indomethacin. PMID:23798775
Drug-like properties and the causes of poor solubility and poor permeability.
Lipinski, C A
2000-01-01
There are currently about 10000 drug-like compounds. These are sparsely, rather than uniformly, distributed through chemistry space. True diversity does not exist in experimental combinatorial chemistry screening libraries. Absorption, distribution, metabolism, and excretion (ADME) and chemical reactivity-related toxicity is low, while biological receptor activity is higher dimensional in chemistry space, and this is partly explainable by evolutionary pressures on ADME to deal with endobiotics and exobiotics. ADME is hard to predict for large data sets because current ADME experimental screens are multi-mechanisms, and predictions get worse as more data accumulates. Currently, screening for biological receptor activity precedes or is concurrent with screening for properties related to "drugability." In the future, "drugability" screening may precede biological receptor activity screening. The level of permeability or solubility needed for oral absorption is related to potency. The relative importance of poor solubility and poor permeability towards the problem of poor oral absorption depends on the research approach used for lead generation. A "rational drug design" approach as exemplified by Merck advanced clinical candidates leads to time-dependent higher molecular weight, higher H-bonding properties, unchanged lipophilicity, and, hence, poorer permeability. A high throughput screening (HTS)-based approach as exemplified by unpublished data on Pfizer (Groton, CT) early candidates leads to higher molecular weight, unchanged H-bonding properties, higher lipophilicity, and, hence, poorer aqueous solubility.
Stimulating CTL Towards HER2/neu Overexpressing Breast Cancer
2000-10-01
cytotoxicity possibly due to the peptides poor solubility and poor binding affinity. To gain further insight into the factors that govern CTL activity, we...662 peptide. Objective: Complete by 12/96. Methods: A soluble recombinant form of HLA-A2 is folded in vitro in the presence of j2m and HN654-662. The...decided to substitute the first position from isoleucine to lysine to improve solubility of the peptide library. The library was used in our in vitro
Brough, Chris; Miller, Dave A; Keen, Justin M; Kucera, Shawn A; Lubda, Dieter; Williams, Robert O
2016-02-01
Polyvinyl alcohol (PVAL) has not been investigated in a binary formulation as a concentration-enhancing polymer owing to its high melting point/high viscosity and poor organic solubility. Due to the unique attributes of the KinetiSol® dispersing (KSD) technology, PVAL has been enabled for this application and it is the aim of this paper to investigate various grades for improvement of the solubility and bioavailability of poorly water soluble active pharmaceutical ingredients. Solid amorphous dispersions were created with the model drug, itraconazole (ITZ), at a selected drug loading of 20%. Polymer grades were chosen with variation in molecular weight and degree of hydroxylation to determine the effects on performance. Differential scanning calorimetry, powder X-ray diffraction, polarized light microscopy, size exclusion chromatography, and dissolution testing were used to characterize the amorphous dispersions. An in vivo pharmacokinetic study in rats was also conducted to compare the selected formulation to current market formulations of ITZ. The 4-88 grade of PVAL was determined to be effective at enhancing solubility and bioavailability of itraconazole.
Gill, Kanwaldeep K; Kaddoumi, Amal; Nazzal, Sami
2015-04-01
PEG-lipid micelles, primarily conjugates of polyethylene glycol (PEG) and distearyl phosphatidylethanolamine (DSPE) or PEG-DSPE, have emerged as promising drug-delivery carriers to address the shortcomings associated with new molecular entities with suboptimal biopharmaceutical attributes. The flexibility in PEG-DSPE design coupled with the simplicity of physical drug entrapment have distinguished PEG-lipid micelles as versatile and effective drug carriers for cancer therapy. They were shown to overcome several limitations of poorly soluble drugs such as non-specific biodistribution and targeting, lack of water solubility and poor oral bioavailability. Therefore, considerable efforts have been made to exploit the full potential of these delivery systems; to entrap poorly soluble drugs and target pathological sites both passively through the enhanced permeability and retention (EPR) effect and actively by linking the terminal PEG groups with targeting ligands, which were shown to increase delivery efficiency and tissue specificity. This article reviews the current state of PEG-lipid micelles as delivery carriers for poorly soluble drugs, their biological implications and recent developments in exploring their active targeting potential. In addition, this review sheds light on the physical properties of PEG-lipid micelles and their relevance to the inherent advantages and applications of PEG-lipid micelles for drug delivery.
Oral formulation strategies to improve solubility of poorly water-soluble drugs.
Singh, Abhishek; Worku, Zelalem Ayenew; Van den Mooter, Guy
2011-10-01
In the past two decades, there has been a spiraling increase in the complexity and specificity of drug-receptor targets. It is possible to design drugs for these diverse targets with advances in combinatorial chemistry and high throughput screening. Unfortunately, but not entirely unexpectedly, these advances have been accompanied by an increase in the structural complexity and a decrease in the solubility of the active pharmaceutical ingredient. Therefore, the importance of formulation strategies to improve the solubility of poorly water-soluble drugs is inevitable, thus making it crucial to understand and explore the recent trends. Drug delivery systems (DDS), such as solid dispersions, soluble complexes, self-emulsifying drug delivery systems (SEDDS), nanocrystals and mesoporous inorganic carriers, are discussed briefly in this review, along with examples of marketed products. This article provides the reader with a concise overview of currently relevant formulation strategies and proposes anticipated future trends. Today, the pharmaceutical industry has at its disposal a series of reliable and scalable formulation strategies for poorly soluble drugs. However, due to a lack of understanding of the basic physical chemistry behind these strategies, formulation development is still driven by trial and error.
Novel strategies for the formulation and processing of poorly water-soluble drugs.
Göke, Katrin; Lorenz, Thomas; Repanas, Alexandros; Schneider, Frederic; Steiner, Denise; Baumann, Knut; Bunjes, Heike; Dietzel, Andreas; Finke, Jan H; Glasmacher, Birgit; Kwade, Arno
2018-05-01
Low aqueous solubility of active pharmaceutical ingredients presents a serious challenge in the development process of new drug products. This article provides an overview on some of the current approaches for the formulation of poorly water-soluble drugs with a special focus on strategies pursued at the Center of Pharmaceutical Engineering of the TU Braunschweig. These comprise formulation in lipid-based colloidal drug delivery systems and experimental as well as computational approaches towards the efficient identification of the most suitable carrier systems. For less lipophilic substances the preparation of drug nanoparticles by milling and precipitation is investigated for instance by means of microsystem-based manufacturing techniques and with special regard to the preparation of individualized dosage forms. Another option to overcome issues with poor drug solubility is the incorporation into nanospun fibers. Copyright © 2017 Elsevier B.V. All rights reserved.
Particular Film Formation of Phenytoin at Silica Surfaces
2014-01-01
Given the increasing number of poorly soluble and thus poorly bioavailable active pharmaceutical materials, there is a demand for innovative formulation platforms for such molecules. Thus a focus on enhancing dissolution properties of poorly soluble drugs exists. Within this study, the spin coating of acetone solutions containing 5,5-diphenyl-2,4-imidazolidinedione (phenytoin) in various concentrations is evaluated. The results reveal strong variations of the morphology of deposited phenytoin crystals at silica surfaces. Individual separated particles are obtained on low phenytoin concentrations, and closely packed particular films form when the concentration is increased. As the material is isomorphic, these various morphologies have the same crystalline structure. Dissolution experiments reveal that both the apparent maximum solubility and as the dissolution rate are strongly enhanced compared to bulk powder, suggesting that formulation based on this preparative technique will allow overcoming the low solubility problematic for a variety of drugs. PMID:24417472
Impact of Dendrimers on Solubility of Hydrophobic Drug Molecules
Choudhary, Sonam; Gupta, Lokesh; Rani, Sarita; Dave, Kaushalkumar; Gupta, Umesh
2017-01-01
Adequate aqueous solubility has been one of the desired properties while selecting drug molecules and other bio-actives for product development. Often solubility of a drug determines its pharmaceutical and therapeutic performance. Majority of newly synthesized drug molecules fail or are rejected during the early phases of drug discovery and development due to their limited solubility. Sufficient permeability, aqueous solubility and physicochemical stability of the drug are important for achieving adequate bioavailability and therapeutic outcome. A number of different approaches including co-solvency, micellar solubilization, micronization, pH adjustment, chemical modification, and solid dispersion have been explored toward improving the solubility of various poorly aqueous-soluble drugs. Dendrimers, a new class of polymers, possess great potential for drug solubility improvement, by virtue of their unique properties. These hyper-branched, mono-dispersed molecules have the distinct ability to bind the drug molecules on periphery as well as to encapsulate these molecules within the dendritic structure. There are numerous reported studies which have successfully used dendrimers to enhance the solubilization of poorly soluble drugs. These promising outcomes have encouraged the researchers to design, synthesize, and evaluate various dendritic polymers for their use in drug delivery and product development. This review will discuss the aspects and role of dendrimers in the solubility enhancement of poorly soluble drugs. The review will also highlight the important and relevant properties of dendrimers which contribute toward drug solubilization. Finally, hydrophobic drugs which have been explored for dendrimer assisted solubilization, and the current marketing status of dendrimers will be discussed. PMID:28559844
Penkina, Anna; Semjonov, Kristian; Hakola, Maija; Vuorinen, Sirpa; Repo, Timo; Yliruusi, Jouko; Aruväli, Jaan; Kogermann, Karin; Veski, Peep; Heinämäki, Jyrki
2016-01-01
Amorphous solid dispersions (SDs) open up exciting opportunities in formulating poorly water-soluble active pharmaceutical ingredients (APIs). In the present study, novel catalytic pretreated softwood cellulose (CPSC) and polyvinylpyrrolidone (PVP) were investigated as carrier polymers for preparing and stabilizing cryogenic co-ground SDs of poorly water-soluble piroxicam (PRX). CPSC was isolated from pine wood (Pinus sylvestris). Raman and Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) were used for characterizing the solid-state changes and drug-polymer interactions. High-resolution scanning electron microscope (SEM) was used to analyze the particle size and surface morphology of starting materials and final cryogenic co-ground SDs. In addition, the molecular aspects of drug-polymer interactions and stabilization mechanisms are presented. The results showed that the carrier polymer influenced both the degree of amorphization of PRX and stabilization against crystallization. The cryogenic co-ground SDs prepared from PVP showed an enhanced dissolution rate of PRX, while the corresponding SDs prepared from CPSC exhibited a clear sustained release behavior. In conclusion, cryogenic co-grinding provides a versatile method for preparing amorphous SDs of poorly water-soluble APIs. The solid-state stability and dissolution behavior of such co-ground SDs are to a great extent dependent on the carrier polymer used.
Nesamony, Jerry; Kalra, Ashish; Majrad, Mohamed S; Boddu, Sai Hanuman Sagar; Jung, Rose; Williams, Frederick E; Schnapp, Alaina M; Nauli, Surya M; Kalinoski, Andrea L
2013-10-01
To formulate nanoemulsions (NE) with potential for delivering poorly water-soluble drugs to the lungs. A self nanoemulsifying composition consisting of cremophor RH 40, PEG 400 and labrafil M 2125 CS was selected after screening potential excipients. The solubility of carbamazepine, a poorly water-soluble drug, was tested in the formulation components. Oil-in-water (o/w) NEs were characterized using dynamic light scattering, electrophoretic light scattering, transmission electron microscopy (TEM) and differential scanning calorimetry. NEs were nebulized into a mist using a commercial nebulizer and characterized using laser diffraction and TEM. An aseptic method was developed for preparing sterile NEs. Biocompatibility of the formulation was evaluated on NIH3T3 cells using MTT assay. In vitro permeability of the formulation was tested in zebra fish eggs, HeLa cells, and porcine lung tissue. NEs had neutrally charged droplets of less than 20 nm size. Nebulized NEs demonstrated an o/w nanostructure. The mist droplets were of size less than 5 μm. Sterility testing and cytotoxicity results validated that the NE was biocompatible and sterile. In vitro tests indicated oil nanodroplets penetrating intracellularly through biological membranes. The nanoemulsion mist has the potential for use as a pulmonary delivery system for poorly water-soluble drugs.
Perrut, M; Jung, J; Leboeuf, F
2005-01-06
In this first of two articles, we discuss some issues surrounding the dissolution rate enhancement of poorly-soluble active ingredients micronized into nano-particles using several supercritical fluid particle design processes including rapid expansion of supercritical solutions (RESS), supercritical anti-solvent (SAS) and particles from gas-saturated solutions/suspensions (PGSS). Experimental results confirm that dissolution rates do not only depend on the surface area and particle size of the processed powder, but are greatly affected by other physico-chemical characteristics such as crystal morphology and wettability that may reduce the benefit of micronization.
Yan, Shenglei; Liu, Yuying; Feng, Jianfang; Zhao, Hua; Yu, Zhongshu; Zhao, Jing; Li, Yao; Zhang, Jingqing
2018-05-01
Drug metabolism plays vital roles in the absorption and pharmacological activity of poorly soluble natural medicines. It is important to choose suitable delivery systems to increase the bioavailability and bioactivity of natural medicines with low solubility by regulating their metabolism and pharmacokinetics. This review investigates recent developments about the metabolic and pharmacokinetic behavior of poorly soluble natural medicines and their delivery systems. Delivery systems, dosage, administration route and drug-drug interactions alter the metabolic pathway, and bioavailability of low-solubility natural medicines to different degrees. Influencing factors such as formulation, dosage, and administration route are discussed. The metabolic reactions, metabolic enzymes, metabolites and pharmacokinetic behaviors of low-solubility natural medicines, and their delivery systems are systematically reviewed. There are various metabolic situations in the case of low-solubility natural medicines. CYP3A4 and CYP2C are the most common metabolic enzymes, and hydroxylation is the most common metabolic reaction of low solubility natural medicines. The stereo isomeric configuration can have a large influence on metabolism. This review will be useful for physicians and pharmacists to guide more accurate treatment with low-solubility natural medicines by increasing drug efficacies and protecting patients from toxic side effects.
Chuang, Er-Yuan; Lin, Kun-Ju; Huang, Tring-Yo; Chen, Hsin-Lung; Miao, Yang-Bao; Lin, Po-Yen; Chen, Chiung-Tong; Juang, Jyuhn-Huarng; Sung, Hsing-Wen
2018-06-06
Increasing the intestinal dissolution of orally administered poorly water-soluble drugs that have poor oral bioavailability to a therapeutically effective level has long been an elusive goal. In this work, an approach that can greatly enhance the oral bioavailability of a poorly water-soluble drug such as curcumin (CUR) is developed, using a "Transformers"-like nanocarrier system (TLNS) that can self-emulsify the drug molecules in the intestinal lumen to form nanoemulsions. Owing to its known anti-inflammation activity, the use of CUR in treating pancreatitis is evaluated herein. Structural changes of the TLNS in the intestinal environment to form the CUR-laden nanoemulsions are confirmed in vitro. The therapeutic efficacy of this TLNS is evaluated in rats with experimentally induced acute pancreatitis (AP). Notably, the CUR-laden nanoemulsions that are obtained using the proposed TLNS can passively target intestinal M cells, in which they are transcytosed and then transported into the pancreatic tissues via the intestinal lymphatic system. The pancreases in rats that are treated with the TLNS yield approximately 12 times stronger CUR signals than their counterparts receiving free CUR, potentially improving the recovery of AP. These findings demonstrate that the proposed TLNS can markedly increase the intestinal drug dissolution, making oral delivery a favorable noninvasive means of administering poorly water-soluble drugs.
Zhang, Xingwang; Xing, Huijie; Zhao, Yue; Ma, Zhiguo
2018-06-23
Over the past decades, a large number of drugs as well as drug candidates with poor dissolution characteristics have been witnessed, which invokes great interest in enabling formulation of these active ingredients. Poorly water-soluble drugs, especially biopharmaceutical classification system (BCS) II ones, are preferably designed as oral dosage forms if the dissolution limit can be broken through. Minimizing a drug’s size is an effective means to increase its dissolution and hence the bioavailability, which can be achieved by specialized dispersion techniques. This article reviews the most commonly used dispersion techniques for pharmaceutical processing that can practically enhance the dissolution and bioavailability of poorly water-soluble drugs. Major interests focus on solid dispersion, lipid-based dispersion (nanoencapsulation), and liquisolid dispersion (drug solubilized in a non-volatile solvent and dispersed in suitable solid excipients for tableting or capsulizing), covering the formulation development, preparative technique and potential applications for oral drug delivery. Otherwise, some other techniques that can increase the dispersibility of a drug such as co-precipitation, concomitant crystallization and inclusion complexation are also discussed. Various dispersion techniques provide a productive platform for addressing the formulation challenge of poorly water-soluble drugs. Solid dispersion and liquisolid dispersion are most likely to be successful in developing oral dosage forms. Lipid-based dispersion represents a promising approach to surmounting the bioavailability of low-permeable drugs, though the technique needs to traverse the obstacle from liquid to solid transformation. Novel dispersion techniques are highly encouraged to develop for formulation of poorly water-soluble drugs.
NASA Astrophysics Data System (ADS)
Bala, I.; Bhardwaj, V.; Hariharan, S.; Sitterberg, J.; Bakowsky, U.; Kumar, M. N. V. Ravi
2005-12-01
Nanosizing of poorly water soluble drugs or incorporating them into nanoparticles to increase their solubility and thereby the bioavailability has become a favoured approach today. This work describes a novel method for encapsulating poorly water soluble phytochemical ellagic acid that is also sparingly soluble/insoluble in routine solvents used to prepare nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hailong; Li, Ji; Shi, Ke
The micelle structure of octenyl succinic anhydride modified {var_epsilon}-polylysine (M-EPL), an anti-microbial surfactant prepared from natural peptide {var_epsilon}-polylysine in aqueous solution has been studied using synchrotron small-angle X-ray scattering (SAXS). Our results revealed that M-EPLs formed spherical micelles with individual size of 24-26 {angstrom} in aqueous solution which could further aggregate to form a larger dimension with averaged radius of 268-308 {angstrom}. Furthermore, M-EPL micelle was able to encapsulate curcuminoids, a group of poorly-soluble bioactive compounds from turmeric with poor oral bioavailability, and improve their water solubility. Three loading methods, including solvent evaporation, dialysis, and high-speed homogenization were compared. Themore » results indicated that the dialysis method generated the highest loading capacity and curcuminoids water solubility. The micelle encapsulation was confirmed as there were no free curcuminoid crystals detected in the differential scanning calorimetry analysis. It was also demonstrated that M-EPL encapsulation stabilized curcuminoids against hydrolysis at pH 7.4 and the encapsulated curcuminoids showed elevated cellular antioxidant activity compared with free curcuminoids. This work suggested that M-EPL could be used as new biopolymer micelles for delivering poorly soluble drugs/phytochemicals and improving their bioactivities.« less
Kawabata, Yohei; Wada, Koichi; Nakatani, Manabu; Yamada, Shizuo; Onoue, Satomi
2011-11-25
The poor oral bioavailability arising from poor aqueous solubility should make drug research and development more difficult. Various approaches have been developed with a focus on enhancement of the solubility, dissolution rate, and oral bioavailability of poorly water-soluble drugs. To complete development works within a limited amount of time, the establishment of a suitable formulation strategy should be a key consideration for the pharmaceutical development of poorly water-soluble drugs. In this article, viable formulation options are reviewed on the basis of the biopharmaceutics classification system of drug substances. The article describes the basic approaches for poorly water-soluble drugs, such as crystal modification, micronization, amorphization, self-emulsification, cyclodextrin complexation, and pH modification. Literature-based examples of the formulation options for poorly water-soluble compounds and their practical application to marketed products are also provided. Classification of drug candidates based on their biopharmaceutical properties can provide an indication of the difficulty of drug development works. A better understanding of the physicochemical and biopharmaceutical properties of drug substances and the limitations of each delivery option should lead to efficient formulation development for poorly water-soluble drugs. Copyright © 2011 Elsevier B.V. All rights reserved.
Cyclodextrin based nanosponges for pharmaceutical use: a review.
Tejashri, Gursalkar; Amrita, Bajaj; Darshana, Jain
2013-09-01
Nanosponges are a novel class of hyper-crosslinked polymer based colloidal structures consisting of solid nanoparticles with colloidal sizes and nanosized cavities. These nano-sized colloidal carriers have been recently developed and proposed for drug delivery, since their use can solubilize poorly water-soluble drugs and provide prolonged release as well as improve a drug's bioavailability by modifying the pharmacokinetic parameters of actives. Development of nanosponges as drug delivery systems, with special reference to cyclodextrin based nanosponges, is presented in this article. In the current review, attempts have been made to illustrate the features of cyclodextrin based nanosponges and their applications in pharmaceutical formulations. Special emphasis has been placed on discussing the methods of preparation, characterization techniques and applications of these novel drug delivery carriers for therapeutic purposes. Nanosponges can be referred to as solid porous particles having a capacity to load drugs and other actives into their nanocavity; they can be formulated as oral, parenteral, topical or inhalation dosage forms. Nanosponges offer high drug loading compared to other nanocarriers and are thus suitable for solving issues related to stability, solubility and delayed release of actives. Controlled release of the loaded actives and solubility enhancement of poorly water-soluble drugs are major advantages of nanosponge drug delivery systems.
Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs.
Vo, Chau Le-Ngoc; Park, Chulhun; Lee, Beom-Jin
2013-11-01
Over 40% of active pharmaceutical ingredients (API) in development pipelines are poorly water-soluble drugs which limit formulation approaches, clinical application and marketability because of their low dissolution and bioavailability. Solid dispersion has been considered one of the major advancements in overcoming these issues with several successfully marketed products. A number of key references that describe state-of-the-art technologies have been collected in this review, which addresses various pharmaceutical strategies and future visions for the solubilization of poorly water-soluble drugs according to the four generations of solid dispersions. This article reviews critical aspects and recent advances in formulation, preparation and characterization of solid dispersions as well as in-depth pharmaceutical solutions to overcome some problems and issues that limit the development and marketability of solid dispersion products. Copyright © 2013 Elsevier B.V. All rights reserved.
Synthesis, characterization and biological activity of Rhein-cyclodextrin conjugate
NASA Astrophysics Data System (ADS)
Liu, Manshuo; Lv, Pin; Liao, Rongqiang; Zhao, Yulin; Yang, Bo
2017-01-01
Cyclodextrin conjugate complexation is a useful method to enhance the solubility and absorption of poorly soluble drugs. A series of new Rhein-β-cyclodextrin conjugates (Rh-CD conjugates) have been synthesized and examined. Rhein is covalently linked with the β-CD by amido linkage in a 1:1 molar ratio. The conjugates were characterized by 1H NMR, 13C NMR, HRMS, powder X-ray diffraction (powder XRD) as well as thermogravimetric analysis (TGA). The results reveal that incorporation of β-CD could improve the aqueous solubility of Rhein and the cytotoxicity against hepatocellular carcinoma (HepG2) cell line as well as antibacterial activity against three organisms. The improved biological activity and the satisfactory water solubility of the conjugates will be potentially useful for developing novel drug-cyclodextrin conjugates, such as herbal medicine.
Haneef, Jamshed; Chadha, Renu
2017-08-01
The present study deals with the application of mechanochemical approach for the preparation of drug-drug multicomponent solid forms of three poorly soluble antihypertensive drugs (telmisartan, irbesartan and hydrochlorothiazide) using atenolol as a coformer. The resultant solid forms comprise of cocrystal (telmisartan-atenolol), coamorphous (irbesartan-atenolol) and eutectic (hydrochlorothiazide-atenolol). The study emphasizes that solid-state transformation of drug molecules into new forms is a result of the change in structural patterns, diminishing of dimers and creating new facile hydrogen bonding network based on structural resemblance. The propensity for heteromeric or homomeric interaction between two different drugs resulted into diverse solid forms (cocrystal/coamorphous/eutectics) and become one of the interesting aspects of this research work. Evaluation of these solid forms revealed an increase in solubility and dissolution leading to better antihypertensive activity in deoxycorticosterone acetate (DOCA) salt-induced animal model. Thus, development of these drug-drug multicomponent solid forms is a promising and viable approach to addressing the issue of poor solubility and could be of considerable interest in dual drug therapy for the treatment of hypertension.
Insoluble drug delivery strategies: review of recent advances and business prospects
Kalepu, Sandeep; Nekkanti, Vijaykumar
2015-01-01
The emerging trends in the combinatorial chemistry and drug design have led to the development of drug candidates with greater lipophilicity, high molecular weight and poor water solubility. Majority of the failures in new drug development have been attributed to poor water solubility of the drug. Issues associated with poor solubility can lead to low bioavailability resulting in suboptimal drug delivery. About 40% of drugs with market approval and nearly 90% of molecules in the discovery pipeline are poorly water-soluble. With the advent of various insoluble drug delivery technologies, the challenge to formulate poorly water soluble drugs could be achieved. Numerous drugs associated with poor solubility and low bioavailabilities have been formulated into successful drug products. Several marketed drugs were reformulated to improve efficacy, safety and patient compliance. In order to gain marketing exclusivity and patent protection for such products, revitalization of poorly soluble drugs using insoluble drug delivery technologies have been successfully adopted by many pharmaceutical companies. This review covers the recent advances in the field of insoluble drug delivery and business prospects. PMID:26579474
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, S E; Hopkins, R C; Blanchette, C
Hydrogenases constitute a promising class of enzymes for ex vivo hydrogen production. Implementation of such applications is currently hindered by oxygen sensitivity and, in the case of membrane-bound hydrogenases (MBH), poor water solubility. Nanolipoprotein particles (NLPs), formed from apolipoproteins and phospholipids, offer a novel means to incorporate MBH into in a well-defined water-soluble matrix that maintains the enzymatic activity and is amenable to incorporation into more complex architectures. We report the synthesis, hydrogen-evolving activity and physical characterization of the first MBH-NLP assembly. This may ultimately lead to the development of biomimetic hydrogen production devices.
Polymeric Micelles and Alternative Nanonized Delivery Vehicles for Poorly Soluble Drugs
Lu, Ying; Park, Kinam
2013-01-01
Poorly soluble drugs often encounter low bioavailability and erratic absorption patterns in the clinical setting. Due to the rising number of compounds having solubility issues, finding ways to enhance the solubility of drugs is one of the major challenges in the pharmaceutical industry today. Polymeric micelles, which form upon self-assembly of amphiphilic macromolecules, can act as solubilizing agents for delivery of poorly soluble drugs. This manuscript examines the fundamentals of polymeric micelles through reviews of representative literature and demonstrates possible applications through recent examples of clinical trial developments. In particular, the potential of polymeric micelles for delivery of poorly water-soluble drugs, especially in the areas of oral delivery and in cancer therapy, is discussed. Key considerations in utilizing polymeric micelles’ advantages and overcoming potential disadvantages have been highlighted. Lastly, other possible strategies related to particle size reduction for enhancing solubilization of poorly water-soluble drugs are introduced. PMID:22944304
Pujara, Naisarg; Jambhrunkar, Siddharth; Wong, Kuan Yau; McGuckin, Michael; Popat, Amirali
2017-02-15
The polyphenolic compound resveratrol has received significant attention due to its many pharmacological actions such as anti-cancer, anti-inflammatory, antioxidant and antimicrobial activities. However, poor solubility and stability are major impediments for resveratrol's clinical effectiveness. In this work we have encapsulated resveratrol into soy protein isolate nanoparticles using a simple rotary evaporation technique. Resveratrol-loaded nanoparticles were around 100nm in diameter and negatively charged. Nano-encapsulated resveratrol was found to be in amorphous form and showed more than two times higher solubility with significantly increased dissolution when compared to free resveratrol. Finally, an in-vitro NF-κB inhibition assay revealed that encapsulated resveratrol was stable and retained bioactivity. This new formulation of resveratrol has the potential to boost the clinical effectiveness of this drug and could be utilised for other poorly soluble hydrophobic drugs. Copyright © 2016 Elsevier Inc. All rights reserved.
Nallamsetty, Sreedevi; Waugh, David S.
2007-01-01
Certain highly soluble proteins, such as Escherichia coli maltose-binding protein (MBP), have the ability to enhance the solubility of their fusion partners, making them attractive vehicles for the production of recombinant proteins, yet the mechanism of solubility enhancement remains poorly understood. Here, we report that the solubility-enhancing properties of MBP are dramatically affected by amino acid substitutions that alter the equilibrium between its “open” and “closed” conformations. Our findings indicate that the solubility-enhancing activity of MBP is mediated by its open conformation and point to a likely role for the ligand-binding cleft in the mechanism of solubility enhancement. PMID:17964542
Lu, Yan; Li, Mingzhong
2016-01-01
The solubility and diffusion coefficient are two of the most important physicochemical properties of a drug compound. In practice, both have been measured separately, which is time consuming. This work utilizes a novel technique of UV imaging to determine the solubility and diffusion coefficients of poorly water-soluble drugs simultaneously. A 2-step optimal method is proposed to determine the solubility and diffusion coefficients of a poorly water-soluble pharmaceutical substance based on the Fick's second law of diffusion and UV imaging measurements. Experimental results demonstrate that the proposed method can be used to determine the solubility and diffusion coefficients of a drug with reasonable accuracy, indicating that UV imaging may provide a new opportunity to accurately measure the solubility and diffusion coefficients of a poorly water-soluble drug simultaneously and rapidly. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Lee, Yung-Chi; Dalton, Chad; Regler, Brian; Harris, David
2018-06-06
Lipid-based drug delivery systems have been intensively investigated as a means of delivering poorly water-soluble drugs. Upon ingestion, the lipases in the gastrointestinal tract digest lipid ingredients, mainly triglycerides, within the formulation into monoglycerides and fatty acids. While numerous studies have addressed the solubility of drugs in triglycerides, comparatively few publications have addressed the solubility of drugs in fatty acids, which are the end product of digestion and responsible for the solubility of drug within mixed micelles. The objective of this investigation was to explore the solubility of a poorly water-soluble drug in fatty acids and raise the awareness of the importance of drug solubility in fatty acids. The model API (active pharmaceutical ingredient), a weak acid, is considered a BCS II compound with an aqueous solubility of 0.02 μg/mL and predicted partition coefficient >7. The solubility of API ranged from 120 mg/mL to over 1 g/mL in fatty acids with chain lengths across the range C18 to C6. Hydrogen bonding was found to be the main driver of the solubilization of API in fatty acids. The solubility of API was significantly reduced by water uptake in caprylic acid but not in oleic acid. This report demonstrates that solubility data generated in fatty acids can provide an indication of the solubility of the drug after lipid digestion. This report also highlights the importance of measuring the solubility of drugs in fatty acids in the course of lipid formulation development.
Frank, Kerstin J; Westedt, Ulrich; Rosenblatt, Karin M; Hölig, Peter; Rosenberg, Jörg; Mägerlein, Markus; Fricker, Gert; Brandl, Martin
2012-01-01
Amorphous solid dispersions (ASDs) are a promising formulation approach for poorly soluble active pharmaceutical ingredients (APIs), because they ideally enhance both dissolution rate and solubility. However, the mechanism behind this is not understood in detail. In the present study, we investigated the supramolecular and the nano/microparticulate structures that emerge spontaneously upon dispersion of an ASD in aqueous medium and elucidated their influence on solubility. The ASD, prepared by hot melt extrusion, contained the poorly soluble ABT-102 (solubility in buffer, 0.05 μg/mL), a hydrophilic polymer, and three surfactants. The apparent solubility of ABT-102 from the ASD-formulation was enhanced up to 200 times in comparison to crystalline ABT-102. At the same time, the molecular solubility, as assessed by inverse equilibrium dialysis, was enhanced two times. Asymmetrical flow field-flow fractionation in combination with a multiangle light-scattering detector, an ultraviolet detector, and a refractometer enabled us to separate and identify the various supramolecular assemblies that were present in the aqueous dispersions of the API-free ASD (placebo) and of binary/ternary blends of the ingredients. Thus, the supramolecular assemblies with a molar mass between 20,000 and 90,000 could be assigned to the polyvinylpyrrolidone/vinyl acetate 64, while two other kinds of assemblies were assigned to different surfactant assemblies (micelles). The amount of ABT-102 remaining associated with each of the assemblies upon fractionation was quantified offline with high-performance liquid chromatography-ultraviolet-visible. The polymeric and the micellar fraction contributed to the substantial increase in apparent solubility of ABT-102. Furthermore, a microparticulate fraction was isolated by centrifugation and analyzed by scanning electron microscopy, X-ray scattering, and infrared spectroscopy. The microparticles were found to be amorphous and to contain two of the surfactants besides ABT-102 as the main component. The amorphous microparticles are assumed to be the origin of the observed increase in molecular solubility ("true" supersaturation).
Development of an insecticidal nanoemulsion with Manilkara subsericea (Sapotaceae) extract
2014-01-01
Background Plants have been recognized as a good source of insecticidal agents, since they are able to produce their own defensives to insect attack. Moreover, there is a growing concern worldwide to develop pesticides with low impact to environment and non-target organisms. Hexane-soluble fraction from ethanolic crude extract from fruits of Manilkara subsericea and its triterpenes were considered active against a cotton pest (Dysdercus peruvianus). Several natural products with insecticidal activity have poor water solubility, including triterpenes, and nanotechnology has emerged as a good alternative to solve this main problem. On this context, the aim of the present study was to develop an insecticidal nanoemulsion containing apolar fraction from fruits of Manilkara subsericea. Results It was obtained a formulation constituted by 5% of oil (octyldodecyl myristate), 5% of surfactants (sorbitan monooleate/polysorbate 80), 5% of apolar fraction from M. subsericea and 85% of water. Analysis of mean droplet diameter (155.2 ± 3.8 nm) confirmed this formulation as a nanoemulsion. It was able to induce mortality in D. peruvianus. It was observed no effect against acetylcholinesterase or mortality in mice induced by the formulation, suggesting the safety of this nanoemulsion for non-target organisms. Conclusions The present study suggests that the obtained O/A nanoemulsion may be useful to enhance water solubility of poor water soluble natural products with insecticidal activity, including the hexane-soluble fraction from ethanolic crude extract from fruits of Manilkara subsericea. PMID:24886215
Targeted polymeric micelles for delivery of poorly soluble drugs.
Torchilin, V P
2004-10-01
Polymeric micelles (micelles formed by amphiphilic block copolymers) demonstrate a series of attractive properties as drug carriers, such as high stability both in vitro and in vivo and good biocompatibility, and can be successfully used for the solubilization of various poorly soluble pharmaceuticals. These micelles can also be used as targeted drug delivery systems. The targeting can be achieved via the enhanced permeability and retention effect (into the areas with the compromised vasculature), by making micelles of stimuli-responsive amphiphilic block copolymers, or by attaching specific targeting ligand molecules to the micelle surface. Immunomicelles prepared by coupling monoclonal antibody molecules to p-nitrophenylcarbonyl groups on the water-exposed termini of the micelle corona-forming blocks demonstrate high binding specificity and targetability. Immunomicelles prepared with cancer-specific monoclonal antibody 2C5 specifically bind to different cancer cells in vitro and demonstrate increased therapeutic activity in vivo. This new family of pharmaceutical carriers can be used for the solubilization and targeted delivery of poorly soluble drugs to various pathological sites in the body.
Complexation of phytochemicals with cyclodextrin derivatives - An insight.
Suvarna, Vasanti; Gujar, Parul; Murahari, Manikanta
2017-04-01
Natural compounds have been attracting huge attention because of their broad therapeutic properties with specificity in their action in human health care as functional foods, pharmaceuticals and nutraceuticals. However poor bioavailability and reduced bioactivity attributed to poor solubility and instability is the major drawback hindering the incorporation of these therapeutically potential molecules in novel drug delivery systems. Based on the findings of reported research investigations; complexation of poorly water soluble phytochemicals with cyclodextrins has emerged to be a promising approach to improve their aqueous solubility, stability, rate of dissolution and bioavailability. The present article summarizes the encapsulation of natural compounds ranging from various flavonoids, phenolic derivatives, coumestans to triterpenes, with cyclodextrin and their derivatives. Also the article highlights the method of complexation, complexation ability, drug solubility, stability, bioavailability and safety aspects of reported natural compounds. Additionally we present the glimpses of patents published in recent 10-15 years to highlight the significance of inclusion of phytochemicals in cyclodextrins. In patents narrated, improvement in stability and solubility of curcumin by complexation with alkyl ether derivative of gamma-cyclodextrin is claimed. Another patent mentioned, complexation of artemisinins with β-cyclodextrin, improved the stability and integrity of peroxide part of artemisinins for long period. On the other hand the complex of dihydromyricetin with γ-CD has shown improved solubility, stability and bioavailability. Thus it can be concluded that phytochemicals have multiple biological activities with broader safety index and improvement of their solubility will be truly beneficial to aid their effective delivery in healthcare. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Bioinspired co-crystals of Imatinib providing enhanced kinetic solubility.
Reggane, Maude; Wiest, Johannes; Saedtler, Marco; Harlacher, Cornelius; Gutmann, Marcus; Zottnick, Sven H; Piechon, Philippe; Dix, Ina; Müller-Buschbaum, Klaus; Holzgrabe, Ulrike; Meinel, Lorenz; Galli, Bruno
2018-05-04
Realizing the full potential of co-crystals enhanced kinetic solubility demands a comprehensive understanding of the mechanisms of dissolution, phase conversion, nucleation and crystal growth, and of the complex interplay between the active pharmaceutical ingredient (API), the coformer and co-existing forms in aqueous media. One blueprint provided by nature to keep poorly water-soluble bases in solution is the complexation with phenolic acids. Consequently, we followed a bioinspired strategy for the engineering of co-crystals of a poorly water-soluble molecule - Imatinib - with a phenolic acid, syringic acid (SYA). The dynamics of dissolution and solution-mediated phase transformations were monitored by Nuclear Magnetic Resonance (NMR) spectroscopy, providing mechanistic insights into the 60 fold-increased long lasting concentrations achieved by the syringate co-crystals as compared to Imatinib base and Imatinib mesylate. This lasting effect was linked to SYA's ability to delay the formation and nucleation of Imatinib hydrate - the thermodynamically stable form in aqueous media - through a metastable association of SYA with Imatinib in solution. Results from permeability studies evidenced that SYA did not impact Imatinib's permeability across membranes while suggesting improved bioavailability through higher kinetic solubility at the biological barriers. These results reflect that some degree of hydrophobicity of the coformer might be key to extend the kinetic solubility of co-crystals with hydrophobic APIs. Understanding how kinetic supersaturation can be shaped by the selection of an interactive coformer may help achieving the needed performance of new forms of poorly water-soluble, slowly dissolving APIs. Copyright © 2018. Published by Elsevier B.V.
Tolls, Johannes; Müller, Martin; Willing, Andreas; Steber, Josef
2009-07-01
Many consumer products contain lipophilic, poorly soluble ingredients representing large-volume substances whose aquatic toxicity cannot be adequately determined with standard methods for a number of reasons. In such cases, a recently developed approach can be used to define an aquatic exposure threshold of no concern (ETNCaq; i.e., a concentration below which no adverse affects on the environment are to be expected). A risk assessment can be performed by comparing the ETNCaq value with the aquatic exposure levels of poorly soluble substances. Accordingly, the aquatic exposure levels of substances with water solubility below the ETNCaq will not exceed the ecotoxicological no-effect concentration; therefore, their risk can be assessed as being negligible. The ETNCaq value relevant for substances with a narcotic mode of action is 1.9 microg/L. To apply the above risk assessment strategy, the solubility in water needs to be known. Most frequently, this parameter is estimated by means of quantitative structure/activity relationships based on the log octanol-water partition coefficient (log Kow). The predictive value of several calculation models for water solubility has been investigated by this method with the use of more recent experimental solubility data for lipophilic compounds. A linear regression model was shown to be the most suitable for providing correct predictions without underestimation of real water solubility. To define a log Kow threshold suitable for reliably predicting a water solubility of less than 1.9 microg/L, a confidence limit was established by statistical comparison of the experimental solubility data with their log Kow. It was found that a threshold of log Kow = 7 generally allows discrimination between substances with solubility greater than and less than 1.9 microg/L. Accordingly, organic substances with a baseline toxicity and log Kow > 7 do not require further testing to prove that they have low environmental risk. In applying this concept, the uncertainty of the prediction of water solubility can be accounted for. If the predicted solubility in water is to be below ETNCaq with a probability of 95%, the corresponding log Kow value is 8.
Tatavarti, Aditya; Kesisoglou, Filippos
2015-11-01
Vitamin E tocopherol polyethylene glycol succinate (TPGS) is a non-ionic surface active agent, known to enhance the bioavailability of lipophilic compounds via wettability, solubility, and in some cases permeability enhancement. MK-0536 is an anti-retroviral drug with poor wettability and solubility and a high dose. Based on pharmacokinetic studies in dogs and humans, use of vitamin E TPGS in oral solid formulations of MK-0536 provides desired PK characteristics. The use of vitamin E TPGS, however, in solid dosage forms is limited because of the processing challenges resulting from its waxy nature and low melting temperature (∼37°C). The current study, for the first time, demonstrates the use of an alternative low pressure extrusion and spheronization approach to enable high loadings of the poorly soluble, poorly compactable drug and relatively high levels of vitamin E TPGS. This approach not only aided in mitigating processing challenges arising from most high energy process steps such as milling, compression, and coating, but also enabled a higher drug load formulation that provided superior bioperformance relative to a conventional high shear wet granulated formulation. An encapsulated dosage form consisting of pellets prepared by extrusion spheronization with 75% (w/w) MK-0536 and 10% (w/w) vitamin E TPGS was developed. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Nano-aggregates: emerging delivery tools for tumor therapy.
Sharma, Vinod Kumar; Jain, Ankit; Soni, Vandana
2013-01-01
A plethora of formulation techniques have been reported in the literature for site-specific targeting of water-soluble and -insoluble anticancer drugs. Along with other vesicular and particulate carrier systems, nano-aggregates have recently emerged as a novel supramolecular colloidal carrier with promise for using poorly water-soluble drugs in molecular targeted therapies. Nano-aggregates possess some inherent properties such as size in the nanometers, high loading efficiency, and in vivo stability. Nano-aggregates can provide site-specific drug delivery via either a passive or active targeting mechanism. Nano-aggregates are formed from a polymer-drug conjugated amphiphilic block copolymer. They are suitable for encapsulation of poorly water-soluble drugs by covalent conjugation as well as physical encapsulation. Because of physical encapsulation, a maximum amount of drug can be loaded in nano-aggregates, which helps to achieve a sufficiently high drug concentration at the target site. Active transport can be achieved by conjugating a drug with vectors or ligands that bind specifically to receptors being overexpressed in the tumor cells. In this review, we explore synthesis and tumor targeting potential of nano-aggregates with active and passive mechanisms, and we discuss various characterization parameters, ex vivo studies, biodistribution studies, clinical trials, and patents.
Molecular imprinting of enzymes with water-insoluble ligands for nonaqueous biocatalysis.
Rich, Joseph O; Mozhaev, Vadim V; Dordick, Jonathan S; Clark, Douglas S; Khmelnitsky, Yuri L
2002-05-15
Attaining higher levels of catalytic activity of enzymes in organic solvents is one of the major challenges in nonaqueous enzymology. One of the most successful strategies for enhancing enzyme activity in organic solvents involves tuning the enzyme active site by molecular imprinting with substrates or their analogues. Unfortunately, numerous imprinters of potential importance are poorly soluble in water, which significantly limits the utility of this method. In the present study, we have developed strategies that overcome this limitation of the molecular-imprinting technique and that thus expand its applicability beyond water-soluble ligands. The solubility problem can be addressed either by converting the ligands into a water-soluble form or by adding relatively high concentrations of organic cosolvents, such as tert-butyl alcohol and 1,4-dioxane, to increase their solubility in the lyophilization medium. We have succeeded in applying both of these strategies to produce imprinted thermolysin, subtilisin, and lipase TL possessing up to 26-fold higher catalytic activity in the acylation of paclitaxel and 17beta-estradiol compared to nonimprinted enzymes. Furthermore, we have demonstrated for the first time that molecular imprinting and salt activation, applied in combination, produce a strong additive activation effect (up to 110-fold), suggesting different mechanisms of action involved in these enzyme activation techniques.
Shah, Devang; Paruchury, Sundeep; Matta, Muralikrishna; Chowan, Gajendra; Subramanian, Murali; Saxena, Ajay; Soars, Matthew G; Herbst, John; Haskell, Roy; Marathe, Punit; Mandlekar, Sandhya
2014-01-01
The study presented here identified and utilized a panel of solubility enhancing excipients to enable the generation of flux data in the Human colon carcinoma (Caco-2) system for compounds with poor solubility. Solubility enhancing excipients Dimethyl acetamide (DMA) 1 % v/v, polyethylene glycol (PEG) 400 1% v/v, povidone 1% w/v, poloxamer 188 2.5% w/v and bovine serum albumin (BSA) 4% w/v did not compromise Caco-2 monolayer integrity as assessed by trans-epithelial resistance measurement (TEER) and Lucifer yellow (LY) permeation. Further, these excipients did not affect P-glycoprotein (P-gp) mediated bidirectional transport of digoxin, permeabilities of high (propranolol) or low permeability (atenolol) compounds, and were found to be inert to Breast cancer resistant protein (BCRP) mediated transport of cladribine. This approach was validated further using poorly soluble tool compounds, atazanavir (poloxamer 188 2.5% w/v) and cyclosporine A (BSA 4% w/v) and also applied to new chemical entity (NCE) BMS-A in BSA 4% w/v, for which Caco-2 data could not be generated using the traditional methodology due to poor solubility (<1 µM) in conventional Hanks balanced salt solution (HBSS). Poloxamer 188 2.5% w/v increased solubility of atazanavir by >8 fold whereas BSA 4% w/v increased the solubility of cyclosporine A and BMS-A by >2-4 fold thereby enabling permeability as well as efflux liability estimation in the Caco-2 model with reasonable recovery values. To conclude, addition of excipients such as poloxamer 188 2.5% w/v and BSA 4% w/v to HBSS leads to a significant improvement in the solubility of the poorly soluble compounds resulting in enhanced recoveries without modulating transporter-mediated efflux, expanding the applicability of Caco-2 assays to poorly soluble compounds.
Cho, Eunae; Jung, Seunho
2015-10-27
In this review, a comprehensive overview of advances in the supramolecular complexes of carbohydrates and poorly soluble drugs is presented. Through the complexation process, poorly soluble drugs could be efficiently delivered to their desired destinations. Carbohydrates, the most abundant biomolecules, have diverse physicochemical properties owing to their inherent three-dimensional structures, hydrogen bonding, and molecular recognition abilities. In this regard, oligosaccharides and their derivatives have been utilized for the bioavailability enhancement of hydrophobic drugs via increasing the solubility or stability. By extension, polysaccharides and their derivatives can form self-assembled architectures with poorly soluble drugs and have shown increased bioavailability in terms of the sustained or controlled drug release. These supramolecular systems using carbohydrate will be developed consistently in the field of pharmaceutical and medical application.
Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells.
Celia, Christian; Trapasso, Elena; Locatelli, Marcello; Navarra, Michele; Ventura, Cinzia Anna; Wolfram, Joy; Carafa, Maria; Morittu, Valeria Maria; Britti, Domenico; Di Marzio, Luisa; Paolino, Donatella
2013-12-01
Citrus extracts, particularly bergamot essential oil (BEO) and its fractions, have been found to exhibit anticancer efficacy. However, the poor water solubility, low stability and limited bioavailability have prevented the use of BEO in cancer therapy. To overcome such drawbacks, we formulated BEO liposomes that improved the water solubility of the phytocomponents and increased their anticancer activity in vitro against human SH-SY5Y neuroblastoma cells. The results warrant further investigation of BEO liposomes for in vivo applications. Copyright © 2013. Published by Elsevier B.V.
Design and evaluation of self-nanoemulsifying pellets of repaglinide.
Desai, N S; Nagarsenker, M S
2013-09-01
The aim of study was to develop self-nanoemulsifying pellets (SNEP) for oral delivery of poorly water soluble drug, repaglinide (RPG). Solubility of RPG in oily phases and surfactants was determined to identify components of self-nanoemulsifying drug delivery system (SNEDDS). The surfactants and cosurfactants were screened for their ability to emulsify oily phase. Ternary phase diagrams were constructed to identify nanoemulsification area for the selected systems. SNEDDS formulations with globule size less than 100 nm were evaluated for in vivo anti-hyperglycemic activity in neonatal streptozotocin rat model. A significant reduction in glucose levels was produced by optimized SNEDDS formulation in comparison to the control group. The optimized SNEDDS formulations were pelletized via extrusion/spheronization technique using microcrystalline cellulose and lactose. SNEP were characterized by X-ray powder diffraction and scanning electron microscopy. X-ray diffraction study indicated loss of crystallinity of RPG in SNEP. The SNEP exhibited good flow properties, mechanical strength and formed nanoemulsion with globule size less than 200 nm. SNEP showed in vitro release of more than 80% RPG in 10 min which was significantly higher than RPG containing reference pellets. In conclusion, our studies illustrated that RPG, a poorly water soluble drug can be successfully formulated into SNEP which can serve as a promising system for the delivery of poorly water soluble drugs.
Lipid nanoparticles for administration of poorly water soluble neuroactive drugs.
Esposito, Elisabetta; Drechsler, Markus; Mariani, Paolo; Carducci, Federica; Servadio, Michela; Melancia, Francesca; Ratano, Patrizia; Campolongo, Patrizia; Trezza, Viviana; Cortesi, Rita; Nastruzzi, Claudio
2017-09-01
This study describes the potential of solid lipid nanoparticles and nanostructured lipid carriers as nano-formulations to administer to the central nervous system poorly water soluble drugs. Different neuroactive drugs, i.e. dimethylfumarate, retinyl palmitate, progesterone and the endocannabinoid hydrolysis inhibitor URB597 have been studied. Lipid nanoparticles constituted of tristearin or tristearin in association with gliceryl monoolein were produced. The nanoencapsulation strategy allowed to obtain biocompatible and non-toxic vehicles, able to increase the solubility of the considered neuroactive drugs. To improve URB597 targeting to the brain, stealth nanoparticles were produced modifying the SLN surface with polysorbate 80. A behavioural study was conducted in rats to test the ability of SLN containing URB597 given by intranasal administration to alter behaviours relevant to psychiatric disorders. URB597 maintained its activity after nanoencapsulation, suggesting the possibility to propose this kind of vehicle as alternative to unphysiological mixtures usually employed for animal and clinical studies.
Gillespie, Cheska; Kennedy, Alan R; Edwards, Darren; Dowden, Lee; Daublain, Pierre; Halling, Peter
2013-09-01
Storage of pharmaceutical discovery compounds dissolved in dimethylsulfoxide (DMSO) is commonplace within industry. Often, the DMSO stock solution is added to an aqueous system (e.g. in bioassay or kinetic solubility testing)- since most test compounds are hydrophobic, precipitation could occur. Little is known about the factors affecting this precipitation process at the low (µM) concentrations used in screening analyses. Here, a poorly water soluble test compound (tolnaftate) was used to compare manual and automated pipetting, and explore the effect of mixing variables on precipitation. The amount of drug present in the supernatant after precipitation and centrifugation of the samples was quantified. An unusual result was obtained in three different laboratories: results of experiments performed initially were statistically significantly higher than those performed after a few days in the same lab. No significant differences were found between automated and manual pipetting, including in variability. Vortex mixing was found to give significantly lower supernatant amounts compared to milder mixing types. The mixing employed affects the particle growth of the precipitate. These findings are of relevance to discovery stage bioassay and kinetic solubility analyses.
Drug delivery strategies for poorly water-soluble drugs.
Fahr, Alfred; Liu, Xiangli
2007-07-01
The drug candidates coming from combinatorial chemistry research and/or the drugs selected from biologically based high-throughput screening are quite often very lipophilic, as these drug candidates exert their pharmacological action at or in biological membranes or membrane-associated proteins. This challenges drug delivery institutions in industry or academia to develop carrier systems for the optimal oral and parenteral administration of these drugs. To mention only a few of the challenges for this class of drugs: their oral bioavailability is poor and highly variable, and carrier development for parenteral administration is faced with problems, including the massive use of surface-active excipients for solubilisation. Formulation specialists are confronted with an even higher level of difficulties when these drugs have to be delivered site specifically. This article addresses the emerging formulation designs for delivering of poorly water-soluble drugs.
Salunke, Deepak B.; Connelly, Seth W.; Shukla, Nikunj M.; Hermanson, Alec R.; Fox, Lauren M.; David, Sunil A.
2013-01-01
Antigens in modern subunit vaccines are largely soluble and poorly immunogenic proteins inducing relatively short-lived immune responses. Appropriate adjuvants initiate early innate immune responses, amplifying subsequent adaptive immune responses. Agonists of TLR2 are devoid of significant pro-inflammatory activity in ex vivo human blood models, and yet potently adjuvantic, suggesting that this chemotype may be a safe and effective adjuvant. Our earlier work on the monoacyl lipopeptide class of TLR2 agonists led to the design of a highly potent lead, but with negligible aqueous solubility, necessitating the reintroduction of aqueous solubility. We explored several strategies of introducing ionizable groups on the lipopeptide, as well as the systematic evaluation of chemically stable bioisosteres of the ester-linked palmitoyl group. These studies have led to a fully optimized, chemically stable, and highly water-soluble, human TLR2-specific agonist, which was found to have an excellent safety profile and displayed prominent adjuvantic activities in rabbit models. PMID:23795818
Patel, Dimendra; Patel, Dipti; Prajapati, Jatin; Patel, Umang; Patel, Vijay
2012-03-01
The aim of the present work is to formulate and evaluate in situ oral topical gels of poorly water soluble drug Bifonazole based on temperature induced systems for the treatment of oral candidiasis. Bifonazole is poorly water soluble and low permeable drug means it's belongs to BCS Class IV. Due to its poor water solubility, it necessary to enhance solubility in water by make complex with Beta- Cyclodextrin (Drug to βCyclo Dextrine ratio is 1:1). After in situ gel preparation done by using Poloxamer (10% and 15%w/w) along with carbopol 934 (0.2 to 1.0% w/w) and Bifonazole - β CD complex (1%w/w). The formulations were evaluated for physiochemical parameter, gelation Temperature, viscosity, gel strength, content uniformity mucoadhesive force, Diffusion Study.
Patel, Dimendra; Patel, Dipti; Prajapati, Jatin; Patel, Umang; Patel, Vijay
2012-01-01
The aim of the present work is to formulate and evaluate in situ oral topical gels of poorly water soluble drug Bifonazole based on temperature induced systems for the treatment of oral candidiasis. Bifonazole is poorly water soluble and low permeable drug means it's belongs to BCS Class IV. Due to its poor water solubility, it necessary to enhance solubility in water by make complex with Beta- Cyclodextrin (Drug to βCyclo Dextrine ratio is 1:1). After in situ gel preparation done by using Poloxamer (10% and 15%w/w) along with carbopol 934 (0.2 to 1.0% w/w) and Bifonazole – β CD complex (1%w/w). The formulations were evaluated for physiochemical parameter, gelation Temperature, viscosity, gel strength, content uniformity mucoadhesive force, Diffusion Study. PMID:23066185
Santos, Helder A; Peltonen, Leena; Limnell, Tarja; Hirvonen, Jouni
2013-01-01
Advanced drug delivery formulations are presently recognized as promising tools for overcoming the adverse physicochemical properties of conventional drug molecules, such as poor water solubility, which often leads to poor drug bioavailability. Oral drug delivery is considered as the easiest and most convenient route of drug administration. However, via the current trends utilizing combinatorial chemistry and high throughput screening in drug development, new drug molecules are moving towards lipophilic and poorly water-soluble large molecules, and the oral delivery route is becoming increasingly challenging. In this context, formulation of poorly soluble and/or permeable drugs using mesoporous materials and nanocrystals technology have proven to be highly successful due to the greater surface/volume ratio of these systems, resulting in improvements in dissolution and bioavailability, as well as enhanced drug permeability. This review addresses the issues of poorly water-soluble drugs with a major focus on recent developments in the application of the mesoporous materials (e.g., porous silicon and silica) and nanocrystals in drug delivery applications. In addition, we present several recent examples of the significant potential of these materials for the pharmaceutical field.
Yuminoki, Kayo; Seko, Fuko; Horii, Shota; Takeuchi, Haruka; Teramoto, Katsuya; Nakada, Yuichiro; Hashimoto, Naofumi
2014-11-01
In this study, we reported the application of Povacoat®, a hydrophilic polyvinylalcohol copolymer, as a dispersion stabilizer of nanoparticles of poorly water-soluble compounds. In addition, the influence of aggregation of the nanoparticles on their solubility and oral absorption was studied. Griseofulvin (GF) was used as a model compound with poor water solubility and was milled to nanoparticles by wet bead milling. The dispersion stability of GF milled with Povacoat® or the generally used polymers (polyvinylalcohol, hydroxypropylcellulose SSL, and polyvinylpyrrolidone K30) was compared. Milled GF suspended in Povacoat® aqueous solution with D-mannitol, added to improve the disintegration rate of freeze-dried GF, exhibited high dispersion stability without aggregation (D90 = ca. 0.220 μm), whereas milled GF suspended in aqueous solutions of the other polymers aggregated (D90 > 5 μm). Milled GF with Povacoat® showed improved aqueous solubility and bioavailability compared with the other polymers. The aggregation of nanoparticles had significant impact on the solubility and bioavailability of GF. Povacoat® also prevented the aggregation of the various milled poorly water-soluble compounds (hydrochlorothiazide and tolbutamide, etc.) more effectively than the other polymers. These results showed that Povacoat® could have wide applicability to the development of nanoformulations of poorly water-soluble compounds. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Zhang, Haisong; Yu, Meng; Zhang, Hailei; Bai, Libin; Wu, Yonggang; Wang, Sujuan; Ba, Xinwu
2016-08-01
Curcumin is a potential natural anticancer drug with low oral bioavailability because of poor water solubility. The aqueous solubility of curcumin is enhanced by means of modification with the carbohydrate units. Polymerization of the curcumin-containing monomer with carbohydrate-containing monomer gives the water-soluble glycopolymer bearing curcumin pendant residues. The obtained copolymers (P1 and P2) having desirable water solubility were well-characterized by infrared spectroscopy (IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), UV-Vis absorption spectroscopy, and photoluminescence spectroscopy. The copolymer P2 with a molar ratio of 1:6 (curcumin/carbohydrate) calculated from the proton NMR results exhibits a similar anticancer activity compared to original curcumin, which may serve as a potential chemotherapeutic agent in the field of anticancer medicine.
A novel oral vehicle for poorly soluble HSV-helicase inhibitors: PK/PD validations.
Duan, Jianmin; Liard, Francine; Paris, William; Lambert, Michelle
2004-11-01
The current study describes the design and validation of a novel oral vehicle for delivering poorly water-soluble herpes simplex virus (HSV)-helicase inhibitors in preclinical pharmacokinetic (PK) and pharmacodynamic (PD) evaluations. Poorly water-soluble compounds were used in solubility and drinking compliance tests in mice. A preferred vehicle containing 0.1% bovine serum albumin (BSA), 3% dextrose, 5% polyethylene glycol (PEG) 400, and 2% peanut oil, pH 2.8 with HCL (BDPP) was selected. This vehicle was further validated with oral PK and in vivo antiviral PD studies using BILS 45 BS. Solubility screen and drinking compliance tests revealed that the BDPP vehicle could solubilize BILS compounds at 0.5-3 mg/ml concentration range and could be administered to mice without reducing water consumption. Comparative oral PK of BILS 45 BS in HCL or BDPP by gavage at 40 mg/kg showed overlapping PK profiles. In vivo antiviral efficacy and potency of BILS 45 BS in BDPP by oral gavages or in drinking water were confirmed to be comparable as that achieved by gavage in HCL solution. These results provide a protein-enriched novel oral vehicle for delivering poorly water-soluble antiviral compounds in a continuous administration mode. Similar approaches may be applicable to other poorly soluble compounds by gavage or in drinking solution.
Synthesis of novel di- and tricationic carbapenems with potent anti-MRSA activity.
Maruyama, Takahisa; Yamamoto, Yasuo; Kano, Yuko; Kurazono, Mizuyo; Shitara, Eiki; Iwamatsu, Katsuyoshi; Atsumi, Kunio
2009-01-15
A new series of 1beta-methyl carbapenems possessing a 6,7-disubstituted imidazo[5,1-b]thiazol-2-yl group directly attached to the C-2 position of the carbapenem nucleus was prepared, and their activities against methicillin-resistant Staphylococcus aureus (MRSA) were evaluated. First, a benzyl moiety was introduced at the C-6 position of imidazo[5,1-b]thiazole attached to the carbapenem. These benzylated molecules showed potent anti-MRSA activity, but poor water solubility. In order to overcome this drawback, we designed and synthesized di- and tricationic carbapenems and finally discovered a novel carbapenem (15i), which exhibited excellent anti-MRSA activity and good water solubility.
Priotti, Josefina; Codina, Ana V; Leonardi, Darío; Vasconi, María D; Hinrichsen, Lucila I; Lamas, María C
2017-05-01
The oral route has notable advantages to administering dosage forms. One of the most important questions to solve is the poor solubility of most drugs which produces low bioavailability and delivery problems, a major challenge for the pharmaceutical industry. Albendazole is a benzimidazole carbamate extensively used in oral chemotherapy against intestinal parasites, due to its extended spectrum activity and low cost. Nevertheless, the main disadvantage is the poor bioavailability due to its very low solubility in water. The main objective of this study was to prepare microcrystal formulations by the bottom-up technology to increase albendazole dissolution rate, in order to enhance its antiparasitic activity. Thus, 20 novel microstructures based on chitosan, cellulose derivatives, and poloxamer as a surfactant were produced and characterized by their physicochemical properties and in vitro biological activity. To determine the significance of type and concentration of polymer, and presence or absence of surfactant in the crystals, the variables area under the curve, albendazole microcrystal solubility, and drug released (%) at 30 min were analyzed with a three-way ANOVA. This analysis indicated that the microcrystals made with hydroxyethylcellulose or chitosan appear to be the best options to optimize oral absorption of the active pharmaceutical ingredient. The in vitro evaluation of anthelmintic activity on adult forms of Trichinella spiralis identified system S10A as the most effective, of choice for testing therapeutic efficacy in vivo.
Hatsenko, M V; Volkohon, V V
2010-01-01
Active strains of microorganisms capable to mobilize phosphorus from poorly soluble compounds were isolated from the vermicompost. Representatives of Pseudomonas genus dominate in assemblages of phosphate-mobilizing humus microbiota. The strains Pseudomonas sp. 17 and Pseudomonas sp. 22, which promote liberation of the greatest quantity of water-soluble phosphorus were selected under vermicomposting of organics enriched with phosphorites with participation of active phosphate-mobilizing microorganisms. The use of compost derived with participation of Pseudomonas sp. 17 in cucumbers growth technologies makes the plants development better and raises the cultures productivity.
Modi, Sweta; Xiang, Tian-Xiang; Anderson, Bradley D
2012-09-10
Nanoparticulate drug carriers such as liposomal drug delivery systems are of considerable interest in cancer therapy because of their ability to passively accumulate in solid tumors. For liposomes to have practical utility for antitumor therapy in patients, however, optimization of drug loading, retention, and release kinetics are necessary. Active loading is the preferred method for optimizing loading of ionizable drugs in liposomes as measured by drug-to-lipid ratios, but the extremely low aqueous solubilities of many anticancer drug candidates may limit the external driving force, thus slowing liposomal uptake during active loading. This report demonstrates the advantages of maintaining drug supersaturation during active loading. A novel method was developed for creating and maintaining supersaturation of a poorly soluble camptothecin analogue, AR-67 (7-t-butyldimethylsilyl-10-hydroxycamptothecin), using a low concentration of a cyclodextrin (sulfobutylether-β-cyclodextrin) to inhibit crystallization over a 48 h period. Active loading into liposomes containing high concentrations of entrapped sodium or calcium acetate was monitored using drug solutions at varying degrees of supersaturation. Liposomal uptake rates increased linearly with the degree of supersaturation of drug in the external loading solution. A mathematical model was developed to predict the rate and extent of drug loading versus time, taking into account the chemical equilibria inside and outside of the vesicles and the transport kinetics of various permeable species across the lipid bilayer and the dialysis membrane. Intraliposomal sink conditions were maintained by the high internal pH caused by the efflux of acetic acid and exchange with AR-67, which undergoes lactone ring-opening, ionization, and membrane binding in the interior of the vesicles. The highest drug to lipid ratio achieved was 0.17 from a supersaturated solution at a total drug concentration of 0.6 mg/ml. The rate and extent of loading was similar when a different intraliposomal metal cation (sodium) was used instead of calcium. The proposed method may have general application in overcoming the formulation challenges associated with the liposomal delivery of poorly soluble, ionizable anticancer agents. Copyright © 2012 Elsevier B.V. All rights reserved.
Crespo, N; Sánchez-Murcia, P A; Gago, F; Cejudo-Sanches, J; Galmes, M A; Fernández-Lucas, Jesús; Mancheño, José Miguel
2017-10-01
Processes catalyzed by enzymes offer numerous advantages over chemical methods although in many occasions the stability of the biocatalysts becomes a serious concern. Traditionally, synthesis of nucleosides using poorly water-soluble purine bases, such as guanine, xanthine, or hypoxanthine, requires alkaline pH and/or high temperatures in order to solubilize the substrate. In this work, we demonstrate that the 2'-deoxyribosyltransferase from Leishmania mexicana (LmPDT) exhibits an unusually high activity and stability under alkaline conditions (pH 8-10) across a broad range of temperatures (30-70 °C) and ionic strengths (0-500 mM NaCl). Conversely, analysis of the crystal structure of LmPDT together with comparisons with hexameric, bacterial homologues revealed the importance of the relationships between the oligomeric state and the active site architecture within this family of enzymes. Moreover, molecular dynamics and docking approaches provided structural insights into the substrate-binding mode. Biochemical characterization of LmPDT identifies the enzyme as a type I NDT (PDT), exhibiting excellent activity, with specific activity values 100- and 4000-fold higher than the ones reported for other PDTs. Interestingly, LmPDT remained stable during 36 h at different pH values at 40 °C. In order to explore the potential of LmPDT as an industrial biocatalyst, enzymatic production of several natural and non-natural therapeutic nucleosides, such as vidarabine (ara A), didanosine (ddI), ddG, or 2'-fluoro-2'-deoxyguanosine, was carried out using poorly water-soluble purines. Noteworthy, this is the first time that the enzymatic synthesis of 2'-fluoro-2'-deoxyguanosine, ara G, and ara H by a 2'-deoxyribosyltransferase is reported.
Dissolution enhancement of efavirenz by solid dispersion and PEGylation techniques
Madhavi, B. Bindu; Kusum, B.; Chatanya, CH. Krishna; Madhu, M. Naga; Harsha, V. Sri; Banji, David
2011-01-01
Background: Efavirenz is the preferred nonnucleotide reverse transcriptase inhibitor for first-line antiretroviral treatment in many countries. It is orally active and is specific for human immunodeficiency virus type 1. Its effectiveness can be attributed to its long half-life, which is 52–76 h after multiple doses. The drug is having poor water solubility. The formulation of poorly soluble drug for oral delivery will be one of the biggest challenges for formulation scientists in the research field. Among the available approaches, the solid dispersion technique has often proved to be the most commonly used method in improving dissolution and bioavailability of the drugs because of its simplicity and economy in preparation and evaluation. Materials and Methods: Solid dispersions were prepared by solvent evaporation and physical mixture methods by using polyethylene glycol as the hydrophilic carrier and PEGylated product was also prepared. The prepared products were evaluated for various parameters, such as polymer interaction, saturation solubility study, and drug release studies. The drug release data were analyzed by fitting it into various kinetic models. Results: There is an improvement in the dissolution from 16% to 70% with solid dispersion technology. Higuchi model was found to be the best fit model. Conclusion: Solid dispersion is the simple, efficient, and economic method to improve the dissolution of the poorly water-soluble drugs. PMID:23071917
Joshi, Hemant N; Tejwani, Ravindra W; Davidovich, Martha; Sahasrabudhe, Vaishali P; Jemal, Mohammed; Bathala, Mohinder S; Varia, Sailesh A; Serajuddin, Abu T M
2004-01-09
Oral bioavailability of a poorly water-soluble drug was greatly enhanced by using its solid dispersion in a surface-active carrier. The weakly basic drug (pK(a) approximately 5.5) had the highest solubility of 0.1mg/ml at pH 1.5, < 1 microg/ml aqueous solubility between pH 3.5 and 5.5 at 24+/-1 degrees C, and no detectable solubility (< 0.02 microg/ml) at pH greater than 5.5. Two solid dispersion formulations of the drug, one in Gelucire 44/14 and another one in a mixture of polyethylene glycol 3350 (PEG 3350) with polysorbate 80, were prepared by dissolving the drug in the molten carrier (65 degrees C) and filling the melt in hard gelatin capsules. From the two solid dispersion formulations, the PEG 3350-polysorbate 80 was selected for further development. The oral bioavailability of this formulation in dogs was compared with that of a capsule containing micronized drug blended with lactose and microcrystalline cellulose and a liquid solution in a mixture of PEG 400, polysorbate 80 and water. For intravenous administration, a solution in a mixture of propylene glycol, polysorbate 80 and water was used. Absolute oral bioavailability values from the capsule containing micronized drug, the capsule containing solid dispersion and the oral liquid were 1.7+/-1.0%, 35.8+/-5.2% and 59.6+/-21.4%, respectively. Thus, the solid dispersion provided a 21-fold increase in bioavailability of the drug as compared to the capsule containing micronized drug. A capsule formulation containing 25 mg of drug with a total fill weight of 600 mg was subsequently selected for further development. The selected solid dispersion formulation was physically and chemically stable under accelerated storage conditions for at least 6 months. It is hypothesized that polysorbate 80 ensures complete release of drug in a metastable finely dispersed state having a large surface area, which facilitates further solubilization by bile acids in the GI tract and the absorption into the enterocytes. Thus, the bioavailability of this poorly water-soluble drug was greatly enhanced by formulation as a solid dispersion in a surface-active carrier.
'Pro et contra' ionic liquid drugs - Challenges and opportunities for pharmaceutical translation.
Balk, Anja; Holzgrabe, Ulrike; Meinel, Lorenz
2015-08-01
Ionic liquids (ILs) are organic salts with a melting point below 100°C. Active pharmaceutical ingredients (APIs) are transformed into ILs by combining them with typically large yet charged counterions. ILs hold promise to build a large design space for relevant pharmaceutical parameters, particularly for poorly water soluble drugs. It is for this wide design space that ILs may be the entry into the fascinating vision of modifying physico-chemical properties without the need to structurally modify the active pharmaceutical ingredient itself. This extremely intriguing pharmaceutical option is critically discussed including its potential and limitations. The review is starting off with an introduction to the metathesis and characterization of ILs, and leads over to examples for pharmaceutical application, including enhancement of dissolution rate and kinetic solubility and hygroscopicity adaptation, respectively. Tuning biopharmaceutics and toxicology by proper IL design is another focus. The review connects the interrelated chemical, physical, pharmaceutical, and toxicological outcome of API-ILs, serving as guidance for the formulation scientist who aims at expanding ones armamentarium for poorly water soluble APIs while avoiding structural modification, thereof. Copyright © 2015 Elsevier B.V. All rights reserved.
Development of Self Emulsifying Formulations of Poorly Soluble Naproxen for Enhanced Drug Delivery.
Penjuri, Subhash C B; Saritha, Damineni; Ravouru, Nagaraju; Poreddy, Srikanth R
2016-01-01
The objective of this investigation was to develop a self emulsifying drug delivery system (SEDDS) of naproxen, a poorly water soluble drug, which could improve its solubility and oral bioavailability. The recent patents on SEDDS of abiraterone acetate (WO2014/009434 A1) and tamoxifen (WO2013/0080083) helped in selecting the naproxen and excipients. Phase diagrams were constructed and the formulations were taken from the micro emulsion region. Formulations were subjected to thermodynamic stability, dispersibility and precipitation tests for optimization. Physico chemical characterization was carried out by FTIR and DSC studies. The selected SEDDS consisted of IPM+labrafac lipophile WL 1349, tween 80, PEG 400 and naproxen. The optimized formulation has globule size- 187.6 nm, zeta potential- -9.81 mv, viscosity- 1.772 cps and infinite dilution ability. In vitro drug release was 98.21% and was found to be significantly different from the marketed product and plain drug. After oral administration in rats the SEDDS of naproxen showed anti inflammatory activity (69.82%) which was much improved as compared to the marketed formulation. The Cmax, AUC0t of naproxen was boosted with SEDDS to 133.63 g/ml and 698.29 hr. g/ml respectively. The optimized formulation was found to be stable for 6 months during stability studies conducted according to the ICH Q1A (R2) guidelines. Thus this developed self emulsifying drug delivery system may be a useful tool to enhance the solubility of oral poorly water soluble drug naproxen. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Kakran, Mitali; Sahoo, Nanda Gopal; Tan, I.-Lin; Li, Lin
2012-03-01
The objective of this study was to enhance the solubility and dissolution rate of a poorly water-soluble antioxidant, curcumin, by fabricating its nanoparticles with two methods: antisolvent precipitation with a syringe pump (APSP) and evaporative precipitation of nanosuspension (EPN). For APSP, process parameters like flow rate, stirring speed, solvent to antisolvent (SAS) ratio, and drug concentration were investigated to obtain the smallest particle size. For EPN, factors like drug concentration and the SAS ratio were examined. The effects of these process parameters on the supersaturation, nucleation, and growth rate were studied and optimized to obtain the smallest particle size of curcumin by both the methods. The average particle size of the original drug was about 10-12 μm and it was decreased to a mean diameter of 330 nm for the APSP method and to 150 nm for the EPN method. Overall, decreasing the drug concentration or increasing the flow rate, stirring rate, and antisolvent amount resulted in smaller particle sizes. Differential scanning calorimetry studies suggested lower crystallinity of curcumin particles fabricated. The solubility and dissolution rates of the prepared curcumin particles were significantly higher than those the original curcumin. The antioxidant activity, studied by the DPPH free radical-scavenging assay, was greater for the curcumin nanoparticles than the original curcumin. This study demonstrated that both the methods can successfully prepare curcumin into submicro to nanoparticles. However, drug particles prepared by EPN were smaller than those by APSP and hence, showed the slightly better solubility, dissolution rate, and antioxidant activity than the latter.
Abuzar, Sharif Md; Hyun, Sang-Min; Kim, Jun-Hee; Park, Hee Jun; Kim, Min-Soo; Park, Jeong-Sook; Hwang, Sung-Joo
2018-03-01
Poor water solubility and poor bioavailability are problems with many pharmaceuticals. Increasing surface area by micronization is an effective strategy to overcome these problems, but conventional techniques often utilize solvents and harsh processing, which restricts their use. Newer, green technologies, such as supercritical fluid (SCF)-assisted particle formation, can produce solvent-free products under relatively mild conditions, offering many advantages over conventional methods. The antisolvent properties of the SCFs used for microparticle and nanoparticle formation have generated great interest in recent years, because the kinetics of the precipitation process and morphologies of the particles can be accurately controlled. The characteristics of the supercritical antisolvent (SAS) technique make it an ideal tool for enhancing the solubility and bioavailability of poorly water-soluble drugs. This review article focuses on SCFs and their properties, as well as the fundamentals of overcoming poorly water-soluble drug properties by micronization, crystal morphology control, and formation of composite solid dispersion nanoparticles with polymers and/or surfactants. This article also presents an overview of the main aspects of the SAS-assisted particle precipitation process, its mechanism, and parameters, as well as our own experiences, recent advances, and trends in development. Copyright © 2017 Elsevier B.V. All rights reserved.
Nanonization strategies for poorly water-soluble drugs.
Chen, Huabing; Khemtong, Chalermchai; Yang, Xiangliang; Chang, Xueling; Gao, Jinming
2011-04-01
Poor water solubility for many drugs and drug candidates remains a major obstacle to their development and clinical application. Conventional formulations to improve solubility suffer from low bioavailability and poor pharmacokinetics, with some carriers rendering systemic toxicities (e.g. Cremophor(®) EL). In this review, several major nanonization techniques that seek to overcome these limitations for drug solubilization are presented. Strategies including drug nanocrystals, nanoemulsions and polymeric micelles are reviewed. Finally, perspectives on existing challenges and future opportunities are highlighted. Published by Elsevier Ltd.
2013-01-01
In the arena of solubility enhancement, several problems are encountered. A novel approach based on lipid drug delivery system has evolved, pharmacosomes. Pharmacosomes are colloidal, nanometric size micelles, vesicles or may be in the form of hexagonal assembly of colloidal drug dispersions attached covalently to the phospholipid. They act as befitting carrier for delivery of drugs quite precisely owing to their unique properties like small size, amphiphilicity, active drug loading, high entrapment efficiency, and stability. They help in controlled release of drug at the site of action as well as in reduction in cost of therapy, drug leakage and toxicity, increased bioavailability of poorly soluble drugs, and restorative effects. There has been advancement in the scope of this delivery system for a number of drugs used for inflammation, heart diseases, cancer, and protein delivery along with a large number of herbal drugs. Hence, pharmacosomes open new challenges and opportunities for improved novel vesicular drug delivery system. PMID:24106615
Bukara, Katarina; Schueller, Laurent; Rosier, Jan; Martens, Mark A; Daems, Tinne; Verheyden, Loes; Eelen, Siemon; Van Speybroeck, Michiel; Libanati, Cristian; Martens, Johan A; Van Den Mooter, Guy; Frérart, Françoise; Jolling, Koen; De Gieter, Marjan; Bugarski, Branko; Kiekens, Filip
2016-11-01
Formulating poorly water soluble drugs using ordered mesoporous silica materials is an emerging approach to tackle solubility-related bioavailability problems. The current study was conducted to assess the bioavailability-enhancing potential of ordered mesoporous silica in man. In this open-label, randomized, two-way cross-over study, 12 overnight fasted healthy volunteers received a single dose of fenofibrate formulated with ordered mesoporous silica or a marketed product based on micronized fenofibrate. Plasma concentrations of fenofibric acid, the pharmacologically active metabolite of fenofibrate, were monitored up to 96h post-dose. The rate (C max /dose increased by 77%; t max reduced by 0.75h) and extent of absorption (AUC 0-24h /dose increased by 54%) of fenofibrate were significantly enhanced following administration of the ordered mesoporous silica based formulation. The results of this study serve as a proof of concept in man for this novel formulation approach. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Shuo; Wang, Hua; Liang, Wenquan; Huang, Yongzhuo
2012-04-01
Poor drugability problems are commonly seen in a class of chemical entities with poor solubility in water and oil, and moreover, physicochemical instability of these compounds poses extra challenges in design of dosage forms. Such problems contribute a significant high failure rate in new drug development. A hybrid nanoparicle-in-oil-in-water (N/O/W) submicron emulsion was proposed for improved delivery of poorly soluble and unstable drugs (e.g., dihydroartemisinin (DHA)). DHA is known for its potent antimalarial effect and antitumor activity. However, its insolubility and instability impose big challenges for formulations, and so far, no injectable dosage forms are clinically available yet. Therefore, an injectable DHA N/O/W system was developed. Unlike other widely-explored systems (e.g., liposomes, micelles, and emulsions), in which low drug load and only short-term storage are often found, the hybrid submicron emulsion possesses three-fold higher drug-loading capacity than the conventional O/W emulsion. Of note, it can be manufactured into a freeze-drying form and can render its storage up to 6 months even in room temperature. The in vivo studies demonstrated that the PK profiles were significantly improved, and this injectable system was effective in suppressing tumor growth. The strategy provides a useful solution to effective delivery of such a class of drugs.
Nishino, Yukiko; Kubota, Aya; Kanazawa, Takanori; Takashima, Yuuki; Ozeki, Tetsuya; Okada, Hiroaki
2012-11-01
A nozzle for a spray dryer that can prepare microparticles of water-soluble carriers containing various nanoparticles in a single step was previously developed in our laboratory. To enhance the solubility and intestinal absorption of poorly water-soluble drugs, we used probucol (PBL) as a poorly water-soluble drug, mannitol (MAN) as a water-soluble carrier for the microparticles, and EUDRAGIT (EUD) as a polymer vehicle for the solid dispersion. PBL-EUD-acetone-methanol and aqueous MAN solutions were simultaneously supplied through different liquid passages of the spray nozzle and dried together. PBL-EUD solid dispersion was nanoprecipitated in the MAN solution using an antisolvent mechanism and rapidly dried by surrounding it with MAN. PBL in the dispersion vehicle was amorphous and had higher physical stability according to powder X-ray diffraction and differential scanning calorimetry analysis. The bioavailability of PBL in PBL-EUD S-100-MAN microparticles after oral administration in rats was markedly higher (14- and 6.2-fold, respectively) than that of the original PBL powder and PBL-MAN microparticles. These results demonstrate that the composite microparticles containing a nanosized solid dispersion of a poorly water-soluble drug prepared using the spray nozzle developed by us should be useful to increase the solubility and bioavailability of drugs after oral administration. Copyright © 2012 Wiley Periodicals, Inc.
Abouelatta, Samar M; Aboelwafa, Ahmed A; Khalil, Rawia M; ElGazayerly, Omaima N
2015-01-01
The challenge in developing oral drug delivery systems of poorly soluble basic drugs is primarily due to their pH dependent solubility. Cinnarizine (CNZ), a model for a poorly soluble basic drug, has pH dependent solubility; where it dissolves readily at low pH in the stomach and exhibits a very low solubility at pH values greater than 4. It is also characterized by a short half life of 3-6h, which requires frequent daily administration resulting in poor patient compliance. In an attempt to solve these problems, extended release floating lipid beads were formulated. A 2(4) full factorial design was utilized for optimization of the effects of various independent variables; lipid:drug ratio, % Pluronic F-127, % Sterotex, and Gelucire 43/01:Gelucire 50/13 ratio, on the loading efficiency and release of CNZ from the lipid beads. In-vivo pharmacokinetic study of the optimized CNZ-lipid beads compared to Stugeron® (reference standard) was performed in healthy human volunteers. A promising approach for enhancing the bioavailability of the poorly soluble basic drug, CNZ, utilizing novel and simple floating lipid beads was successfully developed. Zero order release profile of CNZ was achieved for 12h. Mean AUC0-24 and AUC0-∞ of the optimized CNZ-loaded lipid beads were 4.23 and 6.04 times that of Stugeron® tablets respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
Nanoparticulate strategies for effective delivery of poorly soluble therapeutics.
Gokce, Evren H; Ozyazici, Mine; Souto, Eliana B
2010-07-01
The pharmacological activity of a drug molecule depends on its ability to dissolve and interact with its biological target, either through dissolution and absorption, or through dissolution and receptor interaction. The low bioavailability that characterizes poorly water-soluble drugs is usually attributed to the dissolution kinetic profile. Novel strategies to effectively deliver these drugs include nanoparticulate approaches that either increase the surface area of the drug or improve the solubility characteristics of the drug. Nanosizing approaches are based on the production of drug nanocrytals dispersed in an aqueous surfactant solution, whereas other possibilities include drug loading in nanoparticles. Promising nanoparticulate approaches include the development of lipid-based nanocarriers to increase drug solubility followed by enhanced bioavailability. To select the best approach there are, however, some critical considerations to take into account, for example the physicochemical properties of the drug, the possibility to scale-up the production process, the toxicological considerations of the use of solvents and cosolvents, the selection of an environmentally sustainable methodology and the development of a more patient-friendly dosage form. This article addresses these relevant questions and provides feasible examples of novel strategies with respect to relevant administration routes.
Srivalli, Kale Mohana Raghava; Mishra, Brahmeshwar
2016-04-01
The purpose of this study was to improve the aqueous solubility, dissolution, and pharmacodynamic properties of a BCS class II drug, ezetimibe (Eze) by preparing ternary cyclodextrin complex systems. We investigated the potential synergistic effect of two novel hydrophilic auxiliary substances, D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and L-ascorbic acid-2-glucoside (AA2G) on hydroxypropyl-β-cyclodextrin (HPBCD) solubilization of poorly water-soluble hypocholesterolemic drug, Eze. In solution state, the binary and ternary systems were analyzed by phase solubility studies and Job's plot. The solid complexes prepared by freeze-drying were characterized by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and scanning electron microscopy (SEM). The log P values, aqueous solubility, dissolution, and antihypercholesterolemic activity of all systems were studied. The analytical techniques confirmed the formation of inclusion complexes in the binary and ternary systems. HPBCD complexation significantly (p < 0.05) reduced the log P and improved the solubility, dissolution, and hypocholesterolemic properties of Eze, and the addition of ternary component produced further significant improvement (p < 0.05) even compared to binary system. The remarkable reduction in log P and enhancement in solubility, dissolution, and antihypercholesterolemic activity due to the addition of TPGS or AA2G may be attributed to enhanced wetting, dispersibility, and complete amorphization. The use of TPGS or AA2G as ternary hydrophilic auxiliary substances improved the HPBCD solubilization and antihypercholesterolemic activity of Eze.
Nacsa, A; Ambrus, R; Berkesi, O; Szabó-Révész, P; Aigner, Z
2008-11-04
The majority of active pharmaceutical ingredients are poorly soluble in water. The rate-determining step of absorption is the dissolution of these drugs. Inclusion complexation with cyclodextrin derivatives can lead to improved aqueous solubility and bioavailability of pharmacons due to the formation of co-crystals through hydrogen-bonding between the components. Inclusion complexes of loratadine were prepared by a convenient new method involving microwave irradiation and the products were compared with those of a conventional preparation method. Dissolution studies demonstrated that the solubility and rate of dissolution of loratadine increased in both of the methods used. The interactions between the components were investigated by thermal analysis and Fourier Transform Infrared studies. The microwave treatment did not cause any chemical changes in the loratadine molecule.
NASA Astrophysics Data System (ADS)
Yao, Junwei; Cui, Bo; Zhao, Xiang; Wang, Yan; Zeng, Zhanghua; Sun, Changjiao; Yang, Dongsheng; Liu, Guoqiang; Gao, Jinming; Cui, Haixin
2018-04-01
To improve the bioavailability of the poorly water-soluble fungicide, an azoxystrobin nanosuspension was prepared by the wet media milling method. Due to their reduced mean particle size and polydispersity index, 1-Dodecanesulfonic acid sodium salt and polyvinylpyrrolidone K30 were selected from six conventional surfactants, the content only accounting for 15% of the active compound. The mean particle size, polydispersity index, and ζ potential of the nanosuspension were determined to be 238.1 ± 1.5 nm, 0.17 ± 0.02 and - 31.8 ± 0.3 mV, respectively. The lyophilized nanosuspension mainly retained crystalline state, with only a little amorphous content as determined by powder X-ray diffraction. Compared to conventional fungicide formulations, the nanosuspension presented an increased retention volume and a reduced contact angle, indicating enhanced wettability and adhesion. In addition, the azoxystrobin nanosuspension showed the highest antifungal activity, with a medial lethal concentration of 1.4243 μg/mL against Fusarium oxysporum. In optical micrographs, hyphal deformations of thinner and intertwined hyphae were detected in the exposed group. Compared to the control group, the total soluble protein content, superoxide dismutase, and catalase activities were initially increased and then decreased with prolonged exposure time. The azoxystrobin nanosuspension reduced the defensive antioxidant capability of Fusarium oxysporum and resulted in the generation of excessive reactive oxygen species. This study provides a novel method for preparing nanosuspension formulation of poorly soluble antifungal agents to enhance the biological activity and decrease the negative environmental impact.
Zhai, Xuezhen; Lademann, Jürgen; Keck, Cornelia M; Müller, Rainer H
2014-08-15
After use in oral pharmaceutical products, nanocrystals are meanwhile applied to improve the dermal penetration of cosmetic actives (e.g. rutin, hesperidin) and of drugs. By now, nanocrystals are only dermally applied made from poorly soluble actives. The novel concept is to formulate nanocrystals also from medium soluble actives, and to apply a dermal formulation containing additionally nanocrystals. The nanocrystals should act as fast dissolving depot, increase saturation solubility and especially accumulate in the hair follicles, to further increase skin penetration. Caffeine was used as model compound with relevance to market products, and a particular process was developed for the production of caffeine nanocrystals to overcome the supersaturation related effect of crystal growth and fiber formation - typical with medium soluble compounds. It is based on low energy milling (pearl milling) in combination with low dielectric constant dispersion media (water-ethanol or ethanol-propylene glycol mixtures) and optimal stabilizers. Most successful was Carbopol(®) 981 (e.g. 20% caffeine in ethanol-propylene glycol 3:7 with 2% Carbopol, w/w). Nanocrystals with varied sizes can now be produced in a controlled process e.g. 660 nm (optimal for hair follicle accumulation) to 250 nm (optimal for fast dissolution). The short term test proved stability over 2 months of the present formulation being sufficient to perform in vivo testing of the novel concept. Copyright © 2014 Elsevier B.V. All rights reserved.
Bennett, Ryan C; Brough, Chris; Miller, Dave A; O'Donnell, Kevin P; Keen, Justin M; Hughey, Justin R; Williams, Robert O; McGinity, James W
2015-03-01
Acetyl-11-keto-β-boswellic acid (AKBA), a gum resin extract, possesses poor water-solubility that limits bioavailability and a high melting point making it difficult to successfully process into solid dispersions by fusion methods. The purpose of this study was to investigate solvent and thermal processing techniques for the preparation of amorphous solid dispersions (ASDs) exhibiting enhanced solubility, dissolution rates and bioavailability. Solid dispersions were successfully produced by rotary evaporation (RE) and KinetiSol® Dispersing (KSD). Solid state and chemical characterization revealed that ASD with good potency and purity were produced by both RE and KSD. Results of the RE studies demonstrated that AQOAT®-LF, AQOAT®-MF, Eudragit® L100-55 and Soluplus with the incorporation of dioctyl sulfosuccinate sodium provided substantial solubility enhancement. Non-sink dissolution analysis showed enhanced dissolution properties for KSD-processed solid dispersions in comparison to RE-processed solid dispersions. Variances in release performance were identified when different particle size fractions of KSD samples were analyzed. Selected RE samples varying in particle surface morphologies were placed under storage and exhibited crystalline growth following solid-state stability analysis at 12 months in comparison to stored KSD samples confirming amorphous instability for RE products. In vivo analysis of KSD-processed solid dispersions revealed significantly enhanced AKBA absorption in comparison to the neat, active substance.
Drug carrier systems for solubility enhancement of BCS class II drugs: a critical review.
Kumar, Sumit; Bhargava, Deepak; Thakkar, Arti; Arora, Saahil
2013-01-01
Poor aqueous solubility impedes a drug's bioavailability and challenges its pharmaceutical development. Pharmaceutical development of drugs with poor water solubility requires the establishment of a suitable formulation layout among various techniques. Various approaches have been investigated extensively to improve the aqueous solubility and poor dissolution rate of BCS class II and IV drugs. In this literature review, novel formulation options, particularly for class II drugs designed for applications such as micronization, self-emulsification, cyclodextrin complexation, co-crystallisation, super critical fluid technology, solubilisation by change in pH, salt formation, co-solvents, melt granulation, and solid dispersion, liposomal/niosomal formulations, are discussed in detail to introduce biopharmaceutical challenges and recent approaches to facilitate more efficient drug formulation and development.
Lukyanov, Anatoly N; Torchilin, Vladimir P
2004-05-07
Polymeric micelles have a whole set of unique characteristics, which make them very promising drug carriers, in particular, for poorly soluble drugs. Our review article focuses on micelles prepared from conjugates of water-soluble polymers, such as polyethylene glycol (PEG) or polyvinyl pyrrolidone (PVP), with phospholipids or long-chain fatty acids. The preparation of micelles from certain polymer-lipid conjugates and the loading of these micelles with various poorly soluble anticancer agents are discussed. The data on the characterization of micellar preparations in terms of their morphology, stability, longevity in circulation, and ability to spontaneously accumulate in experimental tumors via the enhanced permeability and retention (EPR) effect are presented. The review also considers the preparation of targeted immunomicelles with specific antibodies attached to their surface. Available in vivo results on the efficiency of anticancer drugs incorporated into plain micelles and immunomicelles in animal models are also discussed.
Monoglyceride-based self-assembling copolymers as carriers for poorly water-soluble drugs.
Rouxhet, L; Dinguizli, M; Latere Dwan'isa, J P; Ould-Ouali, L; Twaddle, P; Nathan, A; Brewster, M E; Rosenblatt, J; Ariën, A; Préat, V
2009-12-01
To develop self-assembling polymers forming polymeric micelles and increasing the solubility of poorly soluble drugs, amphiphilic polymers containing a hydrophilic PEG moiety and a hydrophobic moiety derived from monoglycerides and polyethers were designed. The biodegradable copolymers were obtained via a polycondensation reaction of polyethylene glycol (PEG), monooleylglyceride (MOG) and succinic anhydride (SA). Polymers with molecular weight below 10,000 g/mol containing a minimum of 40 mol% PEG and a maximum of 10 mol% MOG self-assembled spontaneously in aqueous media upon gentle mixing. They formed particles with a diameter of 10 nm although some aggregation was evident. The critical micellar concentration varied between 3x10(-4) and 4x10(-3) g/ml, depending on the polymer. The cloud point (> or = 66 degrees C) and flocculation point (> or = 0.89 M) increased with the PEG chain length. At a 1% concentration, the polymers increased the solubility of poorly water-soluble drug candidates up to 500-fold. Drug solubility increased as a function of the polymer concentration. HPMC capsules filled with these polymers disintegrated and released model drugs rapidly. Polymer with long PEG chains had a lower cytotoxicity (MTT test) on Caco-2 cells. All of these data suggest that the object polymers, in particular PEG1000/MOG/SA (45/5/50) might be potential candidates for improving the oral biopharmaceutical performance of poorly soluble drugs.
Aristoforin, a novel stable derivative of hyperforin, is a potent anticancer agent.
Gartner, Michael; Müller, Thomas; Simon, Jan C; Giannis, Athanassios; Sleeman, Jonathan P
2005-01-01
Hyperforin, a natural product of St. John's wort (Hypericum perforatum L.), has a number of pharmacological activities, including antidepressive and antibacterial properties. Furthermore, hyperforin has pronounced antitumor properties against different tumor cell lines, both in vitro and in vivo. Despite being a promising novel anticancer agent, the poor solubility and stability of hyperforin in aqueous solution limits its potential clinical application. In this study, we present the synthesis of hyperforin derivatives with improved pharmacological activity. The synthesized compounds were tested for their solubility and stability properties. They were also investigated for their antitumor properties, both in vitro and in vivo. One of these hyperforin derivatives, Aristoforin, is more soluble in aqueous solution than hyperforin and is additionally highly stable. Importantly, it retains the antitumor properties of the parental compound without inducing toxicity in experimental animals. These data strongly suggest that Aristoforin has potential as an anticancer drug.
NASA Technical Reports Server (NTRS)
Cao, T.; Nakamura-Messenger, K.; Berger, E. L.; Burton, A. S.; Messenger, S.; Clemett, S. J.
2016-01-01
Primitive carbonaceous chondrites contain a wide variety of organic material, ranging from soluble discrete molecules to insoluble unstructured kerogen-like component as well as structured nano-globules of macromolecular carbon. The relationship between the soluble organic molecules, macromolecular organic material, and host minerals are poorly understood. Due to the differences in extractability of soluble and insoluble organic materials, the analysis methods for each differ and are often performed independently. The combination of soluble and insoluble analyses, when performed concurrently, can provide a wider understanding on spatial distribution, and elemental, structural and isotopic composition of organic material in primitive meteorites. Furthermore, they can provide broader perspective on how extraterrestrial organic ma-terials potentially contributed to the synthesis of life's essential compounds such as amino acids, sugar acids, activated phosphates and nucleobases.
Cueva Vargas, Jorge L; Osswald, Ingrid K; Unsain, Nicolas; Aurousseau, Mark R; Barker, Philip A; Bowie, Derek; Di Polo, Adriana
2015-09-02
Loss of vision in glaucoma results from the selective death of retinal ganglion cells (RGCs). Tumor necrosis factor α (TNFα) signaling has been linked to RGC damage, however, the mechanism by which TNFα promotes neuronal death remains poorly defined. Using an in vivo rat glaucoma model, we show that TNFα is upregulated by Müller cells and microglia/macrophages soon after induction of ocular hypertension. Administration of XPro1595, a selective inhibitor of soluble TNFα, effectively protects RGC soma and axons. Using cobalt permeability assays, we further demonstrate that endogenous soluble TNFα triggers the upregulation of Ca(2+)-permeable AMPA receptor (CP-AMPAR) expression in RGCs of glaucomatous eyes. CP-AMPAR activation is not caused by defects in GluA2 subunit mRNA editing, but rather reflects selective downregulation of GluA2 in neurons exposed to elevated eye pressure. Intraocular administration of selective CP-AMPAR blockers promotes robust RGC survival supporting a critical role for non-NMDA glutamate receptors in neuronal death. Our study identifies glia-derived soluble TNFα as a major inducer of RGC death through activation of CP-AMPARs, thereby establishing a novel link between neuroinflammation and cell loss in glaucoma. Tumor necrosis factor α (TNFα) has been implicated in retinal ganglion cell (RGC) death, but how TNFα exerts this effect is poorly understood. We report that ocular hypertension, a major risk factor in glaucoma, upregulates TNFα production by Müller cells and microglia. Inhibition of soluble TNFα using a dominant-negative strategy effectively promotes RGC survival. We find that TNFα stimulates the expression of calcium-permeable AMPA receptors (CP-AMPAR) in RGCs, a response that does not depend on abnormal GluA2 mRNA editing but on selective downregulation of the GluA2 subunit by these neurons. Consistent with this, CP-AMPAR blockers promote robust RGC survival supporting a critical role for non-NMDA glutamate receptors in glaucomatous damage. This study identifies a novel mechanism by which glia-derived soluble TNFα modulates neuronal death in glaucoma. Copyright © 2015 the authors 0270-6474/15/3512088-15$15.00/0.
Strain-level genomic and physiological variation in four Microbacterium spp.chromate reducers
Hexavalent chromium [Cr(VI)], a soluble carcinogen, has caused widespread contamination of soil and water in many industrial nations. Bacteria have been shown to be an active component in the geochemical cycling of chromium, but the mechanisms governing Cr(VI) reduction are poor...
Syntheses, structure characterization and dissolution of two novel cocrystals of febuxostat
NASA Astrophysics Data System (ADS)
Kang, Yanlei; Gu, Jianming; Hu, Xiurong
2017-02-01
Febuxostat was investigated due to its significant effect in the treatment of gout. However, its poor water solubility hinder its potential applications. In recent years, cocrystals have increasingly being applied to enhance the drug solubility. To improve the solubility, two cocrystals of Febuxostat were synthesized through the method of cooling crystallization. The prepared cocrystals febuxostat-isonicotinamide(FEB-INA) and febuxostat-arginine(FEB-Arg) were studied by microscopical observation, Powder X-Ray Diffraction(PXRD), Single Crystal X-ray Diffraction, Differential Scanning Calorimetry(DSC), and infrared spectrometry. At the same time, the cocrystals' solubility and dissolution rate were explored. Both the cocrystals showed higher solubility compared to the pure drug. The FEB-Arg cocrystal enhanced about 900 times of solubility compared to the pure drug. The current study proved that cocrystallization can be a better way to enhance the solubility of the poorly water-soluble drug.
Mu, Mingwei; Konno, Tomohiro; Inoue, Yuuki; Ishihara, Kazuhiko
2017-10-01
To achieve stable and effective solubilization of poorly water-soluble bioactive compounds, water-soluble and amphiphilic polymers composed of hydrophilic 2-methacryloyloxyethyl phosphorylcholine (MPC) units and hydrophobic n-butyl methacrylate (BMA) units were prepared. MPC polymers having different molecular architectures, such as random-type monomer unit sequences and block-type sequences, formed polymer aggregates when they were dissolved in aqueous media. The structure of the random-type polymer aggregate was loose and flexible. On the other hand, the block-type polymer formed polymeric micelles, which were composed of very stable hydrophobic poly(BMA) cores and hydrophilic poly(MPC) shells. The solubilization of a poorly water-soluble bioactive compound, paclitaxel (PTX), in the polymer aggregates was observed, however, solubilizing efficiency and stability were strongly depended on the polymer architecture; in other words, PTX stayed in the poly(BMA) core of the polymer micelle formed by the block-type polymer even when plasma protein was present in the aqueous medium. On the other hand, when the random-type polymer was used, PTX was transferred from the polymer aggregate to the protein. We conclude that water-soluble and amphiphilic MPC polymers are good candidates as solubilizers for poorly water-soluble bioactive compounds. Copyright © 2017 Elsevier B.V. All rights reserved.
Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Lee, Kyoung-Ho; Kim, Dong-Jin; Lee, Beom-Jin
2010-05-01
Although the solid dispersion method has been known to increase the dissolution rate of poorly water-soluble drugs by dispersing them in hydrophilic carriers, one obstacle of the solid dispersion method is its limited solubilization capacity, especially for pH-dependent soluble drugs. pH-modified solid dispersion, in which pH modifiers are incorporated, may be a useful method for increasing the dissolution rate of weakly acidic or basic drugs. Sufficient research, including the most recent reports, was undertaken in this review. How could the inclusion of the pH the pH modifiers in the solid dispersion system change drug structural behaviors, molecular interactions, microenvironmental pH, and/or release rate of pH modifiers, relating with the enhanced dissolution of weakly acidic or weakly basic drugs with poor water solubility? These questions have been investigated to determine the dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs. It is believed that step-by-step mechanistic approaches could provide the ultimate solution for solubilizing several poorly water-soluble drugs with pH-dependent solubility from a solid dispersion system, as well as provide ideas for developing future dosage systems.
NASA Astrophysics Data System (ADS)
Vadlamudi, Manoj Kumar; Dhanaraj, Sangeetha
2017-11-01
Nowadays most of the drug substances are coming into the innovation pipeline with poor water solubility. Here, the influence of excipients will play a significant role to improve the dissolution of poorly aqueous soluble compounds. The drug substance needs to be dissolved in gastric fluids to get the better absorption and bioavailability of an orally administered drug. Dissolution is the rate-controlling stage for drugs which controls the rate and degree of absorption. Usually, poorly soluble oral administrated drugs show a slower dissolution rate, inconsistent and incomplete absorption which can lead to lower bioavailability. The low aqueous solubility of BCS class II and IV drugs is a major challenge in the drug development and delivery process. Several technologies have been used in an attempt to progress the bioavailability of poorly water-soluble drug compounds which include solid dispersions, lipid-based formulations, micronization, solvent evaporation, co-precipitation, ordered mixing, liquid-solid compacts, solvent deposition inclusion complexation, and steam aided granulation. In fact, most of the technologies require excipient as a carrier which plays a significant role in improving the bioavailability using Hypromellose acetate succinate, Cyclodextrin, Povidone, Copovidone, Hydroxypropyl cellulose, Hydroxypropyl methylcellulose, Crospovidone, Starch, Dimethylacetamide, Polyethylene glycol, Sodium lauryl sulfate, Polysorbate, Poloxamer. Mesoporous silica and so on. This review deliberates about the excipients significance on bioavailability enhancement of drug products in a single platform along with pragmatically proved applications so that user can able to select the right excipients as per the molecule.
Nguyen, Thi Thanh Hanh; Si, Jinbeom; Kang, Choongil; Chung, Byoungsang; Chung, Donghwa; Kim, Doman
2017-01-01
Curcuminoids from rhizomes of Curcuma longa possess various biological activities. However, low aqueous solubility and consequent poor bioavailability of curcuminoids are major limitations to their use. In this study, curcuminoids extracted from turmeric powder using stevioside (Ste), rebaudioside A (RebA), or steviol glucosides (SG) were solubilized in water. The optimum extraction condition by Ste, RebA, or SG resulted in 11.3, 9.7, or 6.7mg/ml water soluble curcuminoids. Curcuminoids solubilized in water showed 80% stability at pH from 6.0 to 10.0 after 1week of storage at 25°C. The particle sizes of curcuminoids prepared with Ste, RebA, and SG were 110.8, 95.7, and 32.7nm, respectively. The water soluble turmeric extracts prepared with Ste, RebA, and SG showed the 2,2-diphenyl-1-picrylhydrazyl radical scavenging (SC50) activities of 127.6, 105.4, and 109.8μg/ml, and the inhibition activities (IC50) against NS2B-NS3(pro) from dengue virus type IV of 14.1, 24.0 and 15.3μg/ml, respectively. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Can pharmaceutical co-crystals provide an opportunity to modify the biological properties of drugs?
Dalpiaz, Alessandro; Pavan, Barbara; Ferretti, Valeria
2017-08-01
Poorly soluble and/or permeable molecules jeopardize the discovery and development of innovative medicines. Pharmaceutical co-crystals, formed by an active pharmaceutical substance (API) and a co-crystal former, can show enhanced dissolution and permeation values compared with those of the parent crystalline pure phases. It is currently assumed that co-crystallization with pharmaceutical excipients does not affect the pharmacological activity of an API or, indeed, might even improve physical properties such as solubility and permeability. However, as we highlight here, the biological behavior of co-crystals can differ drastically with respect to that of their parent physical mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Santos de Almeida, Tânia; Júlio, Ana; Saraiva, Nuno; Fernandes, Ana Sofia; Araújo, Maria Eduarda M; Baby, André Rolim; Rosado, Catarina; Mota, Joana Portugal
2017-11-01
Poor drug solubility represents a problem for the development of topical formulations. Since ionic liquids (ILs) can be placed in either lipophilic or hydrophilic solutions, they may be advantageous vehicles in such delivery systems. Nonetheless, it is vital to determine their usefulness when used at concentrations were cell viability is maintained, which was considered herein. Five different ILs were prepared-three imidazole-based ILs: [C2mim][Br], [C4mim][Br], and [C6mim][Br]; and two choline-based ILs: [Cho][Phe] and [Cho][Glu]. Their cytotoxicity in human keratinocytes (HaCat cells), their influence in drug solubility and in percutaneous permeation, using pig skin membranes, was evaluated. Caffeine and salicylic acid were used as model actives. Choline-based ILs proved to be more suitable as functional ingredients, since they showed higher impact on drug solubility and a lower cytotoxicity. The major solubility enhancement was observed for caffeine and further solubility studies were carried out with this active in several concentrations of the choline-based ILs (0.1; 0.2; 0.5; 1.0; 3.0 and 5.0%, w/w) at 25 °C and 32 °C. Solubility was greatly influenced by concentrations up to 0.5%. The choline-based ILs showed no significant impact on the skin permeation, for both actives. The size of the imidazole-based ILs alkyl chain enhances the caffeine solubility and permeation, but also the ILs cytotoxicity. Stable O/W emulsions and gels were prepared containing the less toxic choline-based ILs and caffeine. Our results indicate that the choline-based ILs were effective functional ingredients, since, when used at nontoxic concentrations, they allowed a higher drug loading, while maintaining the stability of the formulations.
Sun, Dajun D; Lee, Ping I
2014-02-01
Water-insoluble materials containing amorphous solid dispersions (ASD) are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate) (PHEMA) can maintain a high level of supersaturation over a prolonged period of time via a feedback-controlled diffusion mechanism thus avoiding the initial surge of supersaturation followed by a sharp decline in drug concentration typically encountered with ASDs based on water-soluble polymers. The creation of both immediate- and controlled-release ASD dosage forms is also achievable with the PHEMA based hydrogels. So far, ASD systems based on glassy PHEMA have been shown to be very effective in retarding precipitation of amorphous drugs in the solid state to achieve a robust physical stability. This review summarizes recent research efforts in investigating the potential of developing crosslinked PHEMA hydrogels as a promising alternative to conventional water-soluble ASD carriers, and a related finding that the rate of supersaturation generation does affect the kinetic solubility profiles implications to hydrogel based ASDs.
Sun, Dajun D.; Lee, Ping I.
2014-01-01
Water-insoluble materials containing amorphous solid dispersions (ASD) are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate) (PHEMA) can maintain a high level of supersaturation over a prolonged period of time via a feedback-controlled diffusion mechanism thus avoiding the initial surge of supersaturation followed by a sharp decline in drug concentration typically encountered with ASDs based on water-soluble polymers. The creation of both immediate- and controlled-release ASD dosage forms is also achievable with the PHEMA based hydrogels. So far, ASD systems based on glassy PHEMA have been shown to be very effective in retarding precipitation of amorphous drugs in the solid state to achieve a robust physical stability. This review summarizes recent research efforts in investigating the potential of developing crosslinked PHEMA hydrogels as a promising alternative to conventional water-soluble ASD carriers, and a related finding that the rate of supersaturation generation does affect the kinetic solubility profiles implications to hydrogel based ASDs. PMID:26579361
Feng, Kun; Wang, Shuzhen; Ma, Hairong; Chen, Yijun
2013-01-01
Although drug solubilization by block copolymer micelles has been extensively studied, the rationale behind the choice of appropriate block copolymer micelles for various poorly water-soluble drugs has been of relatively less concern. The objective of this study was to use methoxy-poly(ethylene glycol)-polylactate micelles (MPEG-PLA) to solubilize glycosylated antibiotic nocathiacin I and to compare the effects of chirality on the enhancement of aqueous solubility. Nocathiacin I-loaded MPEG-PLA micelles with opposite optical property in PLA were synthesized and characterized. The drug release profile, micelle stability and preliminary safety properties of MPEG-PLA micelles were evaluated. Meanwhile, three other poorly water-soluble chiral compound-loaded micelles were also prepared and compared. The aqueous solubility of nocathiacin I was greatly enhanced by both L- and D-copolymers, with the degree of enhancement appearing to depend on the chirality of the copolymers. Comparison of different chiral compounds confirmed the trend that aqueous solubility of chiral compounds can be more effectively enhanced by block copolymer micelles with specific stereochemical configuration. The present study introduced chiral concept on the selection and preparation of block copolymer micelles for the enhancement of aqueous solubility of poorly water-soluble drugs. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.
In Situ Activation of Microcapsules
NASA Technical Reports Server (NTRS)
Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)
2000-01-01
Disclosed are microcapsules comprising a polymer shell enclosing two or more immiscible liquid phases in which a drug, or a prodrug and a drug activator are partitioned into separate phases. or prevented from diffusing out of the microcapsule by a liquid phase in which the drug is poorly soluble. Also disclosed are methods of using the microcapsules for in situ activation of drugs where upon exposure to an appropriate energy source the internal phases mix and the drug is activated in situ.
Moribe, Kunikazu; Tozuka, Yuichi; Yamamoto, Keiji
2008-02-14
Supercritical fluid technique have been exploited in extraction, separation and crystallization processes. In the field of pharmaceutics, supercritical carbon dioxide (scCO(2)) has been used for the purpose of micronization, polymorphic control, and preparation of solid dispersion and complexes. Particle design of active pharmaceutical ingredients is important to make the solid dosage forms with suitable physicochemical properties. Control of the characteristic properties of particles, such as size, shape, crystal structure and morphology is required to optimize the formulation. For solubility enhancement of poorly water-soluble drugs, preparation of the solid dispersion or the complexation with proper drugs or excipients should be a promising approach. This review focuses on aspects of polymorphic control and complexation behavior of active pharmaceutical ingredients by scCO(2) processing.
Controlled release systems containing solid dispersions: strategies and mechanisms.
Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Park, Jun Bom; Lee, Beom-Jin
2011-10-01
In addition to a number of highly soluble drugs, most new chemical entities under development are poorly water-soluble drugs generally characterized by an insufficient dissolution rate and a small absorption window, leading to the low bioavailability. Controlled-release (CR) formulations have several potential advantages over conventional dosage forms, such as providing a uniform and prolonged therapeutic effect to improve patient compliance, reducing the frequency of dosing, minimizing the number of side effects, and reducing the strength of the required dose while increasing the effectiveness of the drug. Solid dispersions (SD) can be used to enhance the dissolution rate of poorly water-soluble drugs and to sustain the drug release by choosing an appropriate carrier. Thus, a CR-SD comprises both functions of SD and CR for poorly water-soluble drugs. Such CR dosage forms containing SD provide an immediately available dose for an immediate action followed by a gradual and continuous release of subsequent doses to maintain the plasma concentration of poorly water-soluble drugs over an extended period of time. This review aims to summarize all currently known aspects of controlled release systems containing solid dispersions, focusing on the preparation methods, mechanisms of action and characterization of physicochemical properties of the system.
Rahman, Shafiur; Cao, Siyu; Steadman, Kathryn J; Wei, Ming; Parekh, Harendra S
2012-01-01
With a view to improving the solubility and delivery characteristics of poorly water-soluble drugs, we prepared β-cyclodextrin-curcumin (βCD-C) inclusion complexes (hydrophilic curcumin) and entrapped both native curcumin (hydrophobic) and the complexes separately into liposomes; these were then assessed for in vitro cytotoxicity in lung and colon cancer cell lines. Optimization of curcumin entrapment within βCD was achieved, with the resultant βCD-C complexes prepared by methanol reflux. Inclusion complexes were confirmed using UV spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction. The water solubility of βCD-C complexes improved markedly (c.f. native curcumin) and successful entrapment of complexes into liposomes, prepared using a thin-film hydration approach, was also achieved. All the liposomal formulations were characterized for curcumin and βCD-C complex entrapment efficiency, particle size, polydispersity and stability at 2-8°C. Curcumin, βCD-C complex and their optimized liposomal formulations were evaluated for anticancer activity in lung (A-459) and colon (SW-620) cancer cell lines. All curcumin-containing formulations tested were effective in inhibiting cell proliferation, as determined via an MTT assay. The median effective dose (EC(50)) for all curcumin formulations was found to be in the low µM range for both lung and colon cancer cell lines tested. Our results confirm that βCD inclusion complexes of poorly water soluble drugs, such as curcumin can be entrapped within biocompatible vesicles such as liposomes, and this does not preclude their anticancer activity.
Choi, Kyeong-Ok; Choe, Jaehyeog; Suh, Seokjin; Ko, Sanghoon
2016-05-20
The objective of this study is to develop suitable formulations to improve the dissolution rate of poorly water soluble drugs. We selected lipid-based formulation as a drug carrier and modified the surface using positively charged chitosan derivative (HTCC) to increase its water solubility and bioavailability. Chitosan and HTCC-coated lipid particles had higher zeta-potential values than uncoated one over the whole pH ranges and improved encapsulation efficiency. In vitro drug release showed that all NLC formulations showed higher in vitro release efficiency than drug particle at pH 7.4. Furthermore, NLC formulation prepared with chitosan or HTCC represented good sustained release property. The results indicate that chitosan and HTCC can be excellent formulating excipients of lipid-based delivery carrier for improving poorly water soluble drug delivery.
Saindane, Nilesh; Vavia, Pradeep
2012-09-01
The aim of the present investigation was to develop controlled porosity osmotic system for poorly water-soluble drug based on drug in polymer-surfactant layer technology. A poorly water-soluble drug, glipizide (GZ), was selected as the model drug. The technology involved core of the pellets containing osmotic agent coated with drug dispersed in polymer and surfactant layer, finally coated with release-retardant layer with pore former. The optimized drug-layer-coated pellets were evaluated for solubility of GZ at different pH conditions and characterized for amorphous nature of the drug by differential scanning calorimetry and X-ray powder diffractometry. The optimized release-retardant layer pellets were evaluated for in vitro drug release at different pH, hydrodynamic, and osmolality conditions. The optimized drug layer showed improvement in solubility (10 times in pH 1.2, 11 times in pH 4.5, and 21 times in pH 6.8), whereas pellets coated with cellulose acetate (15.0%, w/w, weight gain) with pore former triethyl citrate (10.0%, w/w, of polymer) demonstrated zero-order drug release for 24 h at different pH conditions; moreover, retardation of drug release was observed with increment of osmolality. This system could be a platform technology for controlled delivery of poorly water-soluble drugs. Copyright © 2012 Wiley Periodicals, Inc.
Enhanced solubility of piperine using hydrophilic carrier-based potent solid dispersion systems.
Thenmozhi, Kathavarayan; Yoo, Young Je
2017-09-01
Piperine alkaloid, an important constituent of black pepper, exhibits numerous therapeutic properties, whereas its usage as a drug is limited due to its poor solubility in aqueous medium, which leads to poor bioavailability. Herein, a new method has been developed to improve the solubility of this drug based on the development of solid dispersions with improved dissolution rate using hydrophilic carriers such as sorbitol (Sor), polyethylene glycol (PEG) and polyvinyl pyrrolidone K30 (PVP) by solvent method. Physical mixtures of piperine and carriers were also prepared for comparison. The physicochemical properties of the prepared solid dispersions were examined using SEM, TEM, DSC, XRD and FT-IR. In vitro dissolution profile of the solid dispersions was recorded and compared with that of the pure piperine and physical mixtures. The effect of these carriers on the aqueous solubility of piperine has been investigated. The solid dispersions of piperine with Sor, PEG and PVP exhibited superior performance for the dissolution of piperine with a drug release of 70%, 76% and 89%, respectively after 2 h compared to physical mixtures and pure piperine, which could be due to its transformation from crystalline to amorphous form as well as the attachment of hydrophilic carriers to the surface of poorly water-soluble piperine. Results suggest that the piperine solid dispersions prepared with improved in vitro release exhibit potential advantage in delivering poorly water-soluble piperine as an oral supplement.
Löbmann, Korbinian; Grohganz, Holger; Laitinen, Riikka; Strachan, Clare; Rades, Thomas
2013-11-01
Poor aqueous solubility of an active pharmaceutical ingredient (API) is one of the most pressing problems in pharmaceutical research and development because up to 90% of new API candidates under development are poorly water soluble. These drugs usually have a low and variable oral bioavailability, and therefore an unsatisfactory therapeutic effect. One of the most promising approaches to increase dissolution rate and solubility of these drugs is the conversion of a crystalline form of the drug into its respective amorphous form, usually by incorporation into hydrophilic polymers, forming glass solutions. However, this strategy only led to a small number of marketed products usually because of inadequate physical stability of the drug (crystallization). In this study, we investigated a fundamentally different approach to stabilize the amorphous form of drugs, namely the use of amino acids as small molecular weight excipients that form specific molecular interactions with the drug resulting in co-amorphous forms. The two poorly water soluble drugs carbamazepine and indomethacin were combined with amino acids from the binding sites of the biological receptors of these drugs. Mixtures of drug and the amino acids arginine, phenylalanine, tryptophan and tyrosine were prepared by vibrational ball milling. Solid-state characterization with X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) revealed that the various blends could be prepared as homogeneous, single phase co-amorphous formulations indicated by the appearance of an amorphous halo in the XRPD diffractograms and a single glass transition temperature (Tg) in the DSC measurements. In addition, the Tgs of the co-amorphous mixtures were significantly increased over those of the individual drugs. The drugs remained chemically stable during the milling process and the co-amorphous formulations were generally physically stable over at least 6 months at 40 °C under dry conditions. The dissolution rate of all co-amorphous drug-amino acid mixtures was significantly increased over that of the respective crystalline and amorphous pure drugs. Amino acids thus appear as promising excipients to solve challenges connected with the stability and dissolution of amorphous drugs. Copyright © 2013 Elsevier B.V. All rights reserved.
Asada, Takumi; Yoshihara, Naoki; Ochiai, Yasushi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru
2018-04-25
Water-soluble polymers with high viscosity are frequently used in the design of sustained-release formulations of poorly water-soluble drugs to enable complete release of the drug in the gastrointestinal tract. Tablets containing matrix granules with a water-soluble polymer are preferred because tablets are easier to handle and the multiple drug-release units of the matrix granules decreases the influences of the physiological environment on the drug. However, matrix granules with a particle size of over 800 μm sometimes cause a content uniformity problem in the tableting process because of the large particle size. An effective method of manufacturing controlled-release matrix granules with a smaller particle size is desired. The aim of this study was to develop tablets containing matrix granules with a smaller size and good controlled-release properties, using phenytoin as a model poorly water-soluble drug. We adapted the recently developed hollow spherical granule granulation technology, using water-soluble polymers with different viscosities. The prepared granules had an average particle size of 300 μm and sharp particle size distribution (relative width: 0.52-0.64). The values for the particle strength of the granules were 1.86-1.97 N/mm 2 , and the dissolution profiles of the granules were not affected by the tableting process. The dissolution profiles and the blood concentration levels of drug released from the granules depended on the viscosity of the polymer contained in the granules. We succeeded in developing the desired controlled-release granules, and this study should be valuable in the development of sustained-release formulations of poorly water-soluble drugs. Copyright © 2018 Elsevier B.V. All rights reserved.
Serum soluble CD163 levels in patients with influenza-associated encephalopathy.
Hasegawa, Shunji; Matsushige, Takeshi; Inoue, Hirofumi; Takahara, Midori; Kajimoto, Madoka; Momonaka, Hiroshi; Ishida, Chiemi; Tanaka, Saya; Morishima, Tsuneo; Ichiyama, Takashi
2013-08-01
Influenza-associated encephalopathy (IE) is a serious complication during influenza viral infection. Common clinical symptoms of IE include seizures and progressive coma with high-grade fever. We previously reported that hypercytokinemia and monocyte/macrophage activation may play an important role in the pathogenesis of IE. CD163 is a scavenger receptor for hemoglobin-haptoglobin complexes and is expressed by monocytes/macrophages. Proteolytic cleavage of monocyte-bound CD163 by matrix metalloproteinases releases soluble CD163 (sCD163). However, there have been no reports regarding serum sCD163 levels in IE patients. We measured serum levels of sCD163 as a marker of monocyte/macrophage activation in IE patients with poor outcomes, those without neurological sequelae, influenza patients without IE, and control subjects. Serum sCD163 levels were significantly higher in IE patients with poor outcomes than in those without neurological sequelae. In particular, sCD163 levels in cases of death were significantly higher than those in other cases. Our results suggest that monocyte/macrophage activation is related to the pathogenesis of severe IE. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Effect of hydrotalcite-like compounds on the aqueous solubility of some poorly water-soluble drugs.
Ambrogi, Valeria; Fardella, Giuseppe; Grandolini, Giuliano; Nocchetti, Morena; Perioli, Luana
2003-07-01
A new approach of improving drug dissolution properties is described. This method exploits the property of a carrier owing to the hydrotalcite-type anionic clays (HTlc). HTlc is an inorganic layered solid that lodges anionic compounds among its layers. As HTlc dissolves at acidic pH values (pH < 4), the anions intercalated among the layers are promptly released in the medium. In this article some nonsteroidal antiinflammatory drugs were chosen as models of poorly water-soluble drugs. They were intercalated in HTlc and solubility measurements in acidic medium were performed. A remarkable improvement of drug solubility was observed especially in the case of indomethacin. Copyright 2003 Wiley-Liss, Inc. and the American Pharmacists Association
Serajuddin, A T
1999-10-01
Although there was a great interest in solid dispersion systems during the past four decades to increase dissolution rate and bioavailability of poorly water-soluble drugs, their commercial use has been very limited, primarily because of manufacturing difficulties and stability problems. Solid dispersions of drugs were generally produced by melt or solvent evaporation methods. The materials, which were usually semisolid and waxy in nature, were hardened by cooling to very low temperatures. They were then pulverized, sieved, mixed with relatively large amounts of excipients, and encapsulated into hard gelatin capsules or compressed into tablets. These operations were difficult to scale up for the manufacture of dosage forms. The situation has, however, been changing in recent years because of the availability of surface-active and self-emulsifying carriers and the development of technologies to encapsulate solid dispersions directly into hard gelatin capsules as melts. Solid plugs are formed inside the capsules when the melts are cooled to room temperature. Because of surface activity of carriers used, complete dissolution of drug from such solid dispersions can be obtained without the need for pulverization, sieving, mixing with excipients, etc. Equipment is available for large-scale manufacturing of such capsules. Some practical limitations of dosage form development might be the inadequate solubility of drugs in carriers and the instability of drugs and carriers at elevated temperatures necessary to manufacture capsules.
Bikiaris, Dimitrios N
2011-11-01
In recent years, the number of active pharmaceutical ingredients with high therapeutic impact, but very low water solubility, has increased significantly. Thus, a great challenge for pharmaceutical technology is to create new formulations and efficient drug-delivery systems to overcome these dissolution problems. Drug formulation in solid dispersions (SDs) is one of the most commonly used techniques for the dissolution rate enhancement of poorly water-soluble drugs. Generally, SDs can be defined as a dispersion of active ingredients in molecular, amorphous and/or microcrystalline forms into an inert carrier. This review covers literature which states that the dissolution enhancement of SDs is based on the fact that drugs in the nanoscale range, or in amorphous phase, dissolve faster and to a greater extent than micronized drug particles. This is in accordance to the Noyes-Whitney equation, while the wetting properties of the used polymer may also play an important role. The main factors why SD-based pharmaceutical products on the market are steadily increasing over the last few years are: the recent progress in various methods used for the preparation of SDs, the effect of evolved interactions in physical state of the drug and formulation stability during storage, the characterization of the physical state of the drug and the mechanism of dissolution rate enhancement.
Ginzinger, Werner; Egger, Alexander; Mühlgassner, Gerhard; Arion, Vladimir B; Jakupec, Michael A; Galanski, Markus; Berger, Walter; Keppler, Bernhard K
2012-10-01
To overcome the problem of poor aqueous solubility and bioavailability of indirubin-3-oximes, the compounds were modified by attaching a quaternary ammonium group at the oxime moiety. Exploring the prodrug concept, an oxime ester with acetyl-l-carnitine was prepared, and the rate of its hydrolysis was investigated to assess its suitability for clinical administration. In addition, the cytotoxic potency of new stable oxime ethers with a choline moiety and their influence on the cell cycle were tested in human cancer cell lines. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.
Early process development of API applied to poorly water-soluble TBID.
Meise, Marius; Niggemann, Matthias; Dunens, Alexandra; Schoenitz, Martin; Kuschnerow, Jan C; Kunick, Conrad; Scholl, Stephan
2018-05-01
Finding and optimising of synthesis processes for active pharmaceutical ingredients (API) is time consuming. In the finding phase, established methods for synthesis, purification and formulation are used to achieve a high purity API for biological studies. For promising API candidates, this is followed by pre-clinical and clinical studies requiring sufficient quantities of the active component. Ideally, these should be produced with a process representative for a later production process and suitable for scaling to production capacity. This work presents an overview of different approaches for process synthesis based on an existing lab protocol. This is demonstrated for the production of the model drug 4,5,6,7-tetrabromo-2-(1H-imidazol-2-yl) isoindolin-1,3-dione (TBID). Early batch synthesis and purification procedures typically suffer from low and fluctuating yields and purities due to poor process control. In a first step the literature synthesis and purification procedure was modified and optimized using solubility measurements, targeting easier and safer processing for consecutive studies. Copyright © 2018 Elsevier B.V. All rights reserved.
Dahan, Arik; Hoffman, Amnon
2008-07-02
As a consequence of modern drug discovery techniques, there has been a consistent increase in the number of new pharmacologically active lipophilic compounds that are poorly water soluble. A great challenge facing the pharmaceutical scientist is making these molecules into orally administered medications with sufficient bioavailability. One of the most popular approaches to improve the oral bioavailability of these molecules is the utilization of a lipid based drug delivery system. Unfortunately, current development strategies in the area of lipid based delivery systems are mostly empirical. Hence, there is a need for a simplified in vitro method to guide the selection of a suitable lipidic vehicle composition and to rationalize the delivery system design. To address this need, a dynamic in vitro lipolysis model, which provides a very good simulation of the in vivo lipid digestion process, has been developed over the past few years. This model has been extensively used for in vitro assessment of different lipid based delivery systems, leading to enhanced understanding of the suitability of different lipids and surfactants as a delivery system for a given poorly water soluble drug candidate. A key goal in the development of the dynamic in vitro lipolysis model has been correlating the in vitro data of various drug-lipidic delivery system combinations to the resultant in vivo drug profile. In this paper, we discuss and review the need for this model, its underlying theory, practice and limitations, and the available data accumulated in the literature. Overall, the dynamic in vitro lipolysis model seems to provide highly useful initial guidelines in the development process of oral lipid based drug delivery systems for poorly water soluble drugs, and it predicts phenomena that occur in the pre-enterocyte stages of the intestinal absorption cascade.
Meng, Da-Li; Shang, Lei; Feng, Xiao-He; Huang, Xing-Fei; Che, Xin
2016-06-15
In order to increase the solubility of poorly water-soluble natural product, xanthoceraside, an effective anti-AD compound from Xanthoceras sorbifolia Bunge, and maintain its natural property, the xanthoceraside hollow gold nanoparticles were successively prepared by green ultrasonic method with silica spheres as templates and HF solution as selective etching solvent. Hollow gold nanoparticles and drug-loaded hollow gold nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The solubilities of xanthoceraside loaded on hollow gold nanoparticles were increased obviously from 3.0μg/ml and 2.5μg/ml to 12.7μg/ml and 10.7μg/ml at 25°C and 37°C, respectively. The results of XRD and DSC indicated that the reason for this increase was mainly due to the amorphous state of xanthoceraside loaded on the hollow gold nanoparticles. In summary, the method of loading xanthoceraside onto hollow gold nanoparticles was a green and useful strategy to improve the solubility and dissolution of poorly water-soluble natural products and worth to applying to other natural products. Copyright © 2016 Elsevier B.V. All rights reserved.
Solubilization of poorly water-soluble drugs using solid dispersions.
Tran, Thao T-D; Tran, Phuong H-L; Khanh, Tran N; Van, Toi V; Lee, Beom-Jin
2013-08-01
Many new drugs have been discovered in pharmaceutical industry and exposed their surprised potential therapeutic effects. Unfortunately, these drugs possess low absorption and bioavailability since their solubility limitation in water. Solid dispersion (SD) is the current technique gaining so many attractions from scientists due to its effect on improving solubility and dissolution rate of poorly water-soluble drugs. A number of patents including the most recent inventions have been undertaken in this review to address various respects of this strategy in solubilization of poorly watersoluble drugs including type of carriers, preparation methods and view of technologies used to detect SD properties and mechanisms with the aim to accomplish a SD not only effective on enhanced bioavailability but also overcome difficulties associated with stability and production. Future prospects are as well discussed with an only hope that many developments and researches in this field will be successfully reached and contributed to commercial use for treatment as much as possible.
Rao, Shasha; Song, Yunmei; Peddie, Frank; Evans, Allan M
2011-01-01
Poorly water-soluble drugs, such as phenylephrine, offer challenging problems for buccal drug delivery. In order to overcome these problems, particle size reduction (to the nanometer range) and cyclodextrin complexation were investigated for permeability enhancement. The apparent solubility in water and the buccal permeation of the original phenylephrine coarse powder, a phenylephrine–cyclodextrin complex and phenylephrine nanosuspensions were characterized. The particle size and particle surface properties of phenylephrine nanosuspensions were used to optimize the size reduction process. The optimized phenylephrine nanosuspension was then freeze dried and incorporated into a multi-layered buccal patch, consisting of a small tablet adhered to a mucoadhesive film, yielding a phenylephrine buccal product with good dosage accuracy and improved mucosal permeability. The design of the buccal patch allows for drug incorporation without the need to change the mucoadhesive component, and is potentially suited to a range of poorly water-soluble compounds. PMID:21753876
Rao, Shasha; Song, Yunmei; Peddie, Frank; Evans, Allan M
2011-01-01
Poorly water-soluble drugs, such as phenylephrine, offer challenging problems for buccal drug delivery. In order to overcome these problems, particle size reduction (to the nanometer range) and cyclodextrin complexation were investigated for permeability enhancement. The apparent solubility in water and the buccal permeation of the original phenylephrine coarse powder, a phenylephrine-cyclodextrin complex and phenylephrine nanosuspensions were characterized. The particle size and particle surface properties of phenylephrine nanosuspensions were used to optimize the size reduction process. The optimized phenylephrine nanosuspension was then freeze dried and incorporated into a multi-layered buccal patch, consisting of a small tablet adhered to a mucoadhesive film, yielding a phenylephrine buccal product with good dosage accuracy and improved mucosal permeability. The design of the buccal patch allows for drug incorporation without the need to change the mucoadhesive component, and is potentially suited to a range of poorly water-soluble compounds.
Synthesis and antioxidant activity of curcumin analogs.
Zheng, Qu-Tong; Yang, Ze-Hua; Yu, Liu-Ying; Ren, Yu-Yan; Huang, Qiu-Xia; Liu, Qiu; Ma, Xiang-Yu; Chen, Zi-Kang; Wang, Zong-Bao; Zheng, Xing
2017-05-01
Numerous biological activities including antioxidant, antitumor, anti-inflammation, and antivirus of the natural product curcumin were reported. However, the clinical application of it was significantly limited by its instability, poor solubility, less body absorbing, and low bioavailability. This review focuses on the structure modification and antioxidant activity evaluation of curcumin. To study the structure-activity relationship (SAR), five series of curcumin analogs were synthesized and their antioxidant activity were evaluated in vitro. The results showed that electron-donating groups, especially the phenolic hydroxyl group are an essential component to improve the antioxidant activity.
Yadav, Vivek R; Suresh, Sarasija; Devi, Kshama; Yadav, Seema
2009-01-01
The purpose of the study was to prepare and evaluate the anti-inflammatory activity of cyclodextrin (CD) complex of curcumin for the treatment of inflammatory bowel disease (IBD) in colitis-induced rat model. Inclusion complexes of curcumin were prepared by common solvent and kneading methods. These complexes were further evaluated for increase in solubility of poorly soluble curcumin. The inclusion complexes were characterized for enhancement in solubility, in vitro dissolution, surface morphology, infrared, differential scanning calorimetry, and X-ray studies. Solubility, phase solubility, and in vitro dissolution studies showed that curcumin has higher affinity for hydroxypropyl-beta-CD (HPbetaCD) than other CDs. HPbetaCD complex of curcumin was further investigated for its antiangiogenic and anti-inflammatory activity using chick embryo and rat colitis model. HPbetaCD complex of curcumin proved to be a potent angioinhibitory compound, as demonstrated by inhibition of angiogenesis in chorioallantoic membrane assay. Curcumin- and HPbetaCD-treated rats showed a faster weight gain compared to dextran sulfate solution (DSS) controls. Whole colon length appeared to be significantly longer in HPbetaCD-treated rats than pure curcumin and DSS controls. An additional finding in the DSS-treated rats was the predominance of eosinophils in the chronic cell infiltrate. Decreased mast cell numbers in the mucosa of the colon of CD of curcumin- and pure-curcumin-treated rats was observed. This study concluded that the degree of colitis caused by administration of DSS was significantly attenuated by CD of curcumin. Being a nontoxic natural dietary product, curcumin could be useful in the therapeutic strategy for IBD patients.
Faidah, Hani S; Khurram, Muhammad; Amin, Muhammad Usman; Haseeb, Abdul; Kakar, Maria
2018-01-01
Background Berberine is an isoquinoline alkaloid widely used in Ayurveda and traditional Chinese medicine to treat illnesses such as hypertension and inflammatory conditions, and as an anticancer and hepato-protective agent. Berberine has low oral bioavailability due to poor aqueous solubility and insufficient dissolution rate, which can reduce the efficacy of drugs taken orally. In this study, evaporative precipitation of nanosuspension (EPN) and anti-solvent precipitation with a syringe pump (APSP) were used to address the problems of solubility, dissolution rate and bioavailability of berberine. Methods Semi-crystalline nanoparticles (NPs) of 90–110 nm diameter for APSP and 65–75 nm diameter for EPN were prepared and then characterized using differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRD). Thereafter, drug content solubility and dissolution studies were undertaken. Berberine and its NPs were evaluated for their antibacterial activity. Results The results indicate that the NPs have significantly increased solubility and dissolution rate due to conversion of the crystalline structure to a semi-crystalline form. Conclusion Berberine NPs produced by both APSP and EPN methods have shown promising activities against Gram-positive and Gram-negative bacteria, and yeasts, with NPs prepared through the EPN method showing superior results compared to those made with the APSP method and the unprocessed drug. PMID:29491706
Sahibzada, Muhammad Umar Khayam; Sadiq, Abdul; Faidah, Hani S; Khurram, Muhammad; Amin, Muhammad Usman; Haseeb, Abdul; Kakar, Maria
2018-01-01
Berberine is an isoquinoline alkaloid widely used in Ayurveda and traditional Chinese medicine to treat illnesses such as hypertension and inflammatory conditions, and as an anticancer and hepato-protective agent. Berberine has low oral bioavailability due to poor aqueous solubility and insufficient dissolution rate, which can reduce the efficacy of drugs taken orally. In this study, evaporative precipitation of nanosuspension (EPN) and anti-solvent precipitation with a syringe pump (APSP) were used to address the problems of solubility, dissolution rate and bioavailability of berberine. Semi-crystalline nanoparticles (NPs) of 90-110 nm diameter for APSP and 65-75 nm diameter for EPN were prepared and then characterized using differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRD). Thereafter, drug content solubility and dissolution studies were undertaken. Berberine and its NPs were evaluated for their antibacterial activity. The results indicate that the NPs have significantly increased solubility and dissolution rate due to conversion of the crystalline structure to a semi-crystalline form. Berberine NPs produced by both APSP and EPN methods have shown promising activities against Gram-positive and Gram-negative bacteria, and yeasts, with NPs prepared through the EPN method showing superior results compared to those made with the APSP method and the unprocessed drug.
Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs.
Kotta, Sabna; Khan, Abdul Wadood; Pramod, Kannissery; Ansari, Shahid H; Sharma, Rakesh Kumar; Ali, Javed
2012-05-01
More than 40% of new chemical entities discovered are poorly water soluble and suffer from low oral bioavailability. In recent years, nanoemulsions are receiving increasing attention as a tool of delivering these low-bioavailable moieties in an efficient manner. This review gives a brief description about how oral nanoemulsions act as a tool to improve the bioavailability of poorly water-soluble drugs. The recurrent confusion found in the literature regarding the theory behind the formation of nanoemulsions is clarified, along with the difference between nanoemulsion and lyotropic 'microemulsion' phase. This paper gives a clear-cut idea about all possible methods for the preparation of nanoemulsions and the advantages and disadvantages of each method are described. A description of the stability problems of nanoemulsions and their prevention methods is also provided, in addition to a comprehensive update on the patents and research works done in the arena of oral nanoemulsions. Low-energy emulsification techniques can also produce stable nanoemulsions. It is guaranteed that oral nanoemulsions can act as a potential tool for the delivery of poorly water-soluble therapeutic moieties in a very efficient manner.
Teixeira, M C; Carbone, C; Souto, E B
2017-10-01
Solid lipid nanoparticle (SLN), nanostructured lipid carriers (NLC) and hybrid nanoparticles, have gained increasing interest as drug delivery systems because of their potential to load and release drugs from the Biopharmaceutical classification system (BCS) of class II (low solubility and high permeability) and of class IV (low solubility and low permeability). Lipid properties (e.g. high solubilizing potential, biocompatibility, biotolerability, biodegradability and distinct route of absorption) contribute for the improvement of the bioavailability of these drugs for a set of administration routes. Their interest continues to grow, as translated by the number of patents being field worldwide. This paper discusses the recent advances on the use of SLN, NLC and lipid-polymer hybrid nanoparticles for the loading of lipophilic, poorly water-soluble and poorly permeable drugs, being developed for oral, topical, parenteral and ocular administration, also discussing the industrial applications of these systems. A review of the patents filled between 2014 and 2017, concerning the original inventions of lipid nanocarriers, is also provided. Copyright © 2017 Elsevier Ltd. All rights reserved.
Novel Polyanions Inhibiting Replication of Influenza Viruses
Ciejka, Justyna; Milewska, Aleksandra; Wytrwal, Magdalena; Wojarski, Jacek; Golda, Anna; Ochman, Marek; Nowakowska, Maria
2016-01-01
Novel sulfonated derivatives of poly(allylamine hydrochloride) (NSPAHs) and N-sulfonated chitosan (NSCH) have been synthesized, and their activity against influenza A and B viruses has been studied and compared with that of a series of carrageenans, marine polysaccharides of well-documented anti-influenza activity. NSPAHs were found to be nontoxic and very soluble in water, in contrast to gel-forming and thus generally poorly soluble carrageenans. In vitro and ex vivo studies using susceptible cells (Madin-Darby canine kidney epithelial cells and fully differentiated human airway epithelial cultures) demonstrated the antiviral effectiveness of NSPAHs. The activity of NSPAHs was proportional to the molecular mass of the chain and the degree of substitution of amino groups with sulfonate groups. Mechanistic studies showed that the NSPAHs and carrageenans inhibit influenza A and B virus assembly in the cell. PMID:26729490
Shergill, Mandip; Patel, Mina; Khan, Siraj; Bashir, Ayesha; McConville, Christopher
2016-01-30
Administration of drugs via the oral route is the most common and preferred route due to its ease of administration, cost-effectiveness and flexibility in design. However, if the drug being administered has limited aqueous solubility it can result in poor bioavailability. Furthermore, the low pH of the stomach as well as enzymatic activity can result in drugs delivered via the oral route being rapidly metabolised and degraded. Here we demonstrate the development and characterisation of sustained release solid dispersion oral tablets, containing the poorly water-soluble drug disulfiram (DSF). The tablets, which are manufactured from two different polymers (Kolliphor(®) P 188 and P 237) specifically designed for the manufacture of solid dispersions and two different polymers (Kollidon(®) SR and HPMC) specifically designed to provide sustained release, can enhance the solubility of DSF, sustain its release, while protecting it from degradation in simulated gastric fluid (SGF). The paper demonstrates that when using the hot melt method at 80°C the DSF loading capacity of the Kolliphor(®) P 188 and P 237 polymers is approximately 43 and 46% respectively, with the DSF completely in an amorphous state. The addition of 80% Kollidon(®) SR to the formulation completely protected the DSF in SGF for up to 70 min with 16% degradation after 120 min, while 75% degradation occurred after 120 min with the addition of 80% HPMC. The release rate of DSF can be manipulated by both the loading and type of sustained release polymer used, with HPMC providing for a much faster release rate compared to Kollidon(®) SR. Copyright © 2015 Elsevier B.V. All rights reserved.
Jeong, Daham; Joo, Sang-Woo; Shinde, Vijay Vilas; Cho, Eunae; Jung, Seunho
2017-08-08
Host-guest complexation with various hydrophobic drugs has been used to enhance the solubility, permeability, and stability of guest drugs. Physical changes in hydrophobic drugs by complexation have been related to corresponding increases in the bioavailability of these drugs. Carbohydrates, including various derivatives of cyclodextrins, cyclosophoraoses, and some linear oligosaccharides, are generally used as host complexation agents in drug delivery systems. Many antibiotics with low bioavailability have some limitations to their clinical use due to their intrinsically poor aqueous solubility. Bioavailability enhancement is therefore an important step to achieve the desired concentration of antibiotics in the treatment of bacterial infections. Antibiotics encapsulated in a complexation-based drug delivery system will display improved antibacterial activity making it possible to reduce dosages and overcome the serious global problem of antibiotic resistance. Here, we review the present research trends in carbohydrate-based host-guest complexation of various hydrophobic antibiotics as an efficient delivery system to improve solubility, permeability, stability, and controlled release.
Synthesis, screening, and nanocrystals preparation of rhein amide derivatives.
Chen, Lijiang; Zhang, Jinfeng; Rong, Jinghong; Liu, Yu; Zhao, Jinhua; Cui, Qingguo; Wang, Xin; Liang, Xiao; Pan, Hao; Liu, Hongsheng
2018-04-23
Rhein (RH) have many bioactivities, but the application was limited of its poor solubility. The present study aimed to establish an efficient method for the synthesis of rhein amide derivatives (RAD) to increase the solubility and anti-tumor activity. RAD exhibited stronger anti-tumor activity than RH in MTT assay. The solubility and oil/water partition coefficient results indicated that rhein-phenylalanine and rhein-isoleucine have better absorption effect, which was consolidated in pharmacokinetic study. Then, rhein-phenylalanine and rhein-isoleucine were prepared into nanocrystals via the precipitation-high pressure homogenization method. Additionally, the nanocrystals both displayed much higher dissolution profiles than the bulk drugs. Pharmacokinetics study indicated that the AUC 0-∞ and C max of nanocrystals increased markedly (p < 0.01). However, the concentration of RH-Phe-NC was far less than RH-Ile-NC in plasma. Consequently, RH-Ile-NC was validated to be an applicable way to improve the bioavailability of RH, which owns a promising future in clinical application.
Kawakami, Kohsaku
2012-05-01
New chemical entities are required to possess physicochemical characteristics that result in acceptable oral absorption. However, many promising candidates need physicochemical modification or application of special formulation technology. This review discusses strategies for overcoming physicochemical problems during the development at the preformulation and formulation stages with emphasis on overcoming the most typical problem, low solubility. Solubility of active pharmaceutical ingredients can be improved by employing metastable states, salt forms, or cocrystals. Since the usefulness of salt forms is well recognized, it is the normal strategy to select the most suitable salt form through extensive screening in the current developmental study. Promising formulation technologies used to overcome the low solubility problem include liquid-filled capsules, self-emulsifying formulations, solid dispersions, and nanosuspensions. Current knowledge for each formulation is discussed from both theoretical and practical viewpoints, and their advantages and disadvantages are presented. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McElroy, William T.; Tan, Zheng; Ho, Ginny
IRAK4 is a critical upstream kinase in the IL-1R/TLR signaling pathway. Inhibition of IRAK4 is hypothesized to be beneficial in the treatment of autoimmune related disorders. A screening campaign identified a pyrazole class of IRAK4 inhibitors that were determined by X-ray crystallography to exhibit an unusual binding mode. SAR efforts focused on the identification of a potent and selective inhibitor with good aqueous solubility and rodent pharmacokinetics. Pyrazole C-3 piperidines were well tolerated, with N-sulfonyl analogues generally having good rodent oral exposure but poor solubility. N-Alkyl piperidines exhibited excellent solubility and reduced exposure. Pyrazoles possessing N-1 pyridine and fluorophenyl substituentsmore » were among the most active. Piperazine 32 was a potent enzyme inhibitor with good cellular activity. Compound 32 reduced the in vivo production of proinflammatory cytokines and was orally efficacious in a mouse antibody induced arthritis disease model of inflammation.« less
Sweetlove, Cyril; Chenèble, Jean-Charles; Barthel, Yves; Boualam, Marc; L'Haridon, Jacques; Thouand, Gérald
2016-09-01
Difficulties encountered in estimating the biodegradation of poorly water-soluble substances are often linked to their limited bioavailability to microorganisms. Many original bioavailability improvement methods (BIMs) have been described, but no global approach was proposed for a standardized comparison of these. The latter would be a valuable tool as part of a wider strategy for evaluating poorly water-soluble substances. The purpose of this study was to define an evaluation strategy following the assessment of different BIMs adapted to poorly water-soluble substances with ready biodegradability tests. The study was performed with two poorly water-soluble chemicals-a solid, anthraquinone, and a liquid, isodecyl neopentanoate-and five BIMs were compared to the direct addition method (reference method), i.e., (i) ultrasonic dispersion, (ii) adsorption onto silica gel, (iii) dispersion using an emulsifier, (iv) dispersion with silicone oil, and (v) dispersion with emulsifier and silicone oil. A two-phase evaluation strategy of solid and liquid chemicals was developed involving the selection of the most relevant BIMs for enhancing the biodegradability of tested substances. A description is given of a BIM classification ratio (R BIM), which enables a comparison to be made between the different test chemical sample preparation methods used in the various tests. Thereby, using this comparison, the BIMs giving rise to the greatest biodegradability were ultrasonic dispersion and dispersion with silicone oil or with silicone oil and emulsifier for the tested solid chemical, adsorption onto silica gel, and ultrasonic dispersion for the liquid one.
Nanocarrier for poorly water-soluble anticancer drugs--barriers of translation and solutions.
Narvekar, Mayuri; Xue, Hui Yi; Eoh, June Young; Wong, Ho Lun
2014-08-01
Many existing chemotherapeutic drugs, repurposed drugs and newly developed small-molecule anticancer compounds have high lipophilicity and low water-solubility. Currently, these poorly water-soluble anticancer drugs (PWSAD) are generally solubilized using high concentrations of surfactants and co-solvents, which frequently lead to adverse side effects. In recent years, researchers have been actively exploring the use of nanotechnology as an alternative to the solvent-based drug solubilization approach. Several classes of nanocarrier systems (lipid-based, polymer-based and albumin-based) are widely studied for encapsulation and delivery of the existing and new PWSAD. These nanocarriers were also shown to offer several additional advantages such as enhanced tumour accumulation, reduced systemic toxicity and improved therapeutic effectiveness. In this article, the recent nanotechnological advances in PWSAD delivery will be reviewed. The barriers commonly encountered in the development of PWSAD nanoformulations (e.g. formulation issues and nanotoxicity issues) and the strategies to overcome these barriers will also be discussed. It is our goal to provide the pharmaceutical scientists and clinicians with more in-depth information about the nanodelivery approach, thus, more efficacious and safe PWSAD nanoformulations can be developed with improved translational success.
Horstman, Elizabeth M; Kafle, Prapti; Zhang, Fengjiao; Zhang, Yifu; Kenis, Paul J A; Diao, Ying
2018-03-28
Nanosizing is rapidly emerging as an alternative approach to enhance solubility and thus the bioavailability of poorly aqueous soluble active pharmaceutical ingredients (APIs). Although numerous techniques have been developed to perform nanosizing of API crystals, precise control and modulation of their size in an energy and material efficient manner remains challenging. In this study, we present meniscus-guided solution coating as a new technique to produce pharmaceutical thin films of nanoscale thickness with controlled morphology. We demonstrate control of aspirin film thickness over more than 2 orders of magnitude, from 30 nm to 1.5 μm. By varying simple process parameters such as the coating speed and the solution concentration, the aspirin film morphology can also be modulated by accessing different coating regimes, namely the evaporation regime and the Landau-Levich regime. Using ellipticine-a poorly water-soluble anticancer drug-as another model compound, we discovered a new polymorph kinetically trapped during solution coating. Furthermore, the polymorphic outcome can be controlled by varying coating conditions. We further performed layer-by-layer coating of multilayer nanocomposites, with alternating thin films of ellipticine and a biocompatible polymer, which demonstrate the potential of additive manufacturing of multidrug-personalized dosage forms using this approach.
Ban, Eunmi; Park, Mijung; Jeong, Seonghee; Kwon, Taekhyun; Kim, Eun-Hee; Jung, Kiwon; Kim, Aeri
2017-02-07
Emodin is a component in a Chinese herb, Rheum officinale Baill, traditionally used for diabetes and anticancer. Its poor solubility is one of the major challenges to pharmaceutical scientists. We previously reported on thermoreversible gel formulations based on poloxamer for the topical delivery of emodin. The present study was to understand the effect of poloxamer type on emodin solubility and its application in cellular activity screening. Various gel formulations composed of poloxamer 407 (P407), poloxamer 188 (P188) and PEG400 were prepared and evaluated. Major evaluation parameters were the gelation temperature (Tgel) and solubility of emodin. The emodin solubility increased with increasing poloxamer concentration and the Tgel was modulated by the proper combination of P407. In particular, this study showed that the amount of P407 in thermoreversible poloxamer gel (PG) was the dominant factor in enhancing solubility and P188 was effective at fixing gelation temperature in the desired range. A thermoreversible emodin PG was selected as the proper composition with the liquid state at room temperature and gel state at body temperature. The gel showed the solubility enhancement of emodin at least 100-fold compared to 10% ethanol or water. The thermoreversible formulation was applied for in vitro cellular activity screening in the human dermal fibroblast cell line and DLD-1 colon cancer cell line after dilution with cell culture media. The thermoreversible gel formulation remained as a clear solution in the microplate, which allowed reliable cellular activity screening. In contrast, emodin solution in ethanol or DMSO showed precipitation at the corresponding emodin concentration, complicating data interpretation. In conclusion, the gel formulation is proposed as a useful prototype topical formulation for testing emodin in vivo as well as in vitro.
Yousaf, Abid Mehmood; Mustapha, Omer; Kim, Dong Wuk; Kim, Dong Shik; Kim, Kyeong Soo; Jin, Sung Giu; Yong, Chul Soon; Youn, Yu Seok; Oh, Yu-Kyoung; Kim, Jong Oh; Choi, Han-Gon
2016-01-01
Purpose The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate. Methods Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP) and Labrafil® M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion. Results All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1:4:0.5 resulted in a particle size of <200 nm with the drug present in the amorphous state. It demonstrated the highest solubility (32.51±2.41 μg/mL), an excellent dissolution (~85% in 10 minutes), and an oral bioavailability ~2.5-fold better than that of the free drug. It showed similar oral bioavailability compared to the conventional solid dispersion. Conclusion Electrosprayed nanospherules, which provide improved solubility and bioavailability, are promising drug delivery tools for oral administration of poorly water-soluble fenofibrate. PMID:26834471
Yousaf, Abid Mehmood; Mustapha, Omer; Kim, Dong Wuk; Kim, Dong Shik; Kim, Kyeong Soo; Jin, Sung Giu; Yong, Chul Soon; Youn, Yu Seok; Oh, Yu-Kyoung; Kim, Jong Oh; Choi, Han-Gon
2016-01-01
The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate. Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP) and Labrafil(®) M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion. All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1:4:0.5 resulted in a particle size of <200 nm with the drug present in the amorphous state. It demonstrated the highest solubility (32.51±2.41 μg/mL), an excellent dissolution (~85% in 10 minutes), and an oral bioavailability ~2.5-fold better than that of the free drug. It showed similar oral bioavailability compared to the conventional solid dispersion. Electrosprayed nanospherules, which provide improved solubility and bioavailability, are promising drug delivery tools for oral administration of poorly water-soluble fenofibrate.
Blaser, Adrian; Palmer, Brian D; Sutherland, Hamish S; Kmentova, Iveta; Franzblau, Scott G; Wan, Baojie; Wang, Yuehong; Ma, Zhenkun; Thompson, Andrew M; Denny, William A
2012-01-12
Analogues of clinical tuberculosis drug (6S)-2-nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824), in which the OCH(2) linkage was replaced with amide, carbamate, and urea functionality, were investigated as an alternative approach to address oxidative metabolism, reduce lipophilicity, and improve aqueous solubility. Several soluble monoaryl examples displayed moderately improved (∼2- to 4-fold) potencies against replicating Mycobacterium tuberculosis but were generally inferior inhibitors under anaerobic (nonreplicating) conditions. More lipophilic biaryl derivatives mostly displayed similar or reduced potencies to these in contrast to the parent biaryl series. The leading biaryl carbamate demonstrated exceptional metabolic stability and a 5-fold better efficacy than the parent drug in a mouse model of acute M. tuberculosis infection but was poorly soluble. Bioisosteric replacement of this biaryl moiety by arylpiperazine resulted in a soluble, orally bioavailable carbamate analogue providing identical activity in the acute model, comparable efficacy to OPC-67683 in a chronic infection model, favorable pharmacokinetic profiles across several species, and enhanced safety.
Solubility and dissolution improvement of ketoprofen by emulsification ionic gelation
NASA Astrophysics Data System (ADS)
Rachmaniar, Revika; Tristiyanti, Deby; Hamdani, Syarif; Afifah
2018-02-01
Ketoprofen or [2-(3-benzoylphenyl) propionic acid] is non-steroidal anti-inflammatory (NSAID) and an analgesic which has high permeability and low solubility. The purpose of this work was to improve the solubility and dissolution of poorly water-soluble ketoprofen prepared by emulsification ionic gelation method and utilizing polymer (chitosan) and cross linker (tripolyphosphate, TPP) for particles formulation. The results show that increasing pH value of TPP, higher solubility and dissolution of as-prepared ketoprofen-chitosan was obtained. The solubility in water of ketoprofen-chitosan with pH 6 for TPP increased 2.71-fold compared to untreated ketoprofen. While the dissolution of ketoprofen-chitosan with pH 6 of TPP in simulated gastric fluid without enzyme (0.1 N HCl), pH 4.5 buffer and simulated intestinal fluid without enzyme (phosphate buffer pH 6.8) was increased 1.9-fold, 1.6-fold and 1.2-fold compared to untreated ketoprofen for dissolution time of 30 minutes, respectively. It could be concluded that chitosan and TPP in the emulsification ionic gelation method for ketoprofen preparation effectively increases solubility and dissolution of poorly water-soluble ketoprofen.
Sun, Ye; Tao, Jing; Zhang, Geoff G Z; Yu, Lian
2010-09-01
A previous method for measuring solubilities of crystalline drugs in polymers has been improved to enable longer equilibration and used to survey the solubilities of indomethacin (IMC) and nifedipine (NIF) in two homo-polymers [polyvinyl pyrrolidone (PVP) and polyvinyl acetate (PVAc)] and their co-polymer (PVP/VA). These data are important for understanding the stability of amorphous drug-polymer dispersions, a strategy actively explored for delivering poorly soluble drugs. Measuring solubilities in polymers is difficult because their high viscosities impede the attainment of solubility equilibrium. In this method, a drug-polymer mixture prepared by cryo-milling is annealed at different temperatures and analyzed by differential scanning calorimetry to determine whether undissolved crystals remain and thus the upper and lower bounds of the equilibrium solution temperature. The new annealing method yielded results consistent with those obtained with the previous scanning method at relatively high temperatures, but revised slightly the previous results at lower temperatures. It also lowered the temperature of measurement closer to the glass transition temperature. For D-mannitol and IMC dissolving in PVP, the polymer's molecular weight has little effect on the weight-based solubility. For IMC and NIF, the dissolving powers of the polymers follow the order PVP > PVP/VA > PVAc. In each polymer studied, NIF is less soluble than IMC. The activities of IMC and NIF dissolved in various polymers are reasonably well fitted to the Flory-Huggins model, yielding the relevant drug-polymer interaction parameters. The new annealing method yields more accurate data than the previous scanning method when solubility equilibrium is slow to achieve. In practice, these two methods can be combined for efficiency. The measured solubilities are not readily anticipated, which underscores the importance of accurate experimental data for developing predictive models.
Trasi, Niraj S; Taylor, Lynne S
2015-08-01
There is increasing interest in formulating combination products that contain two or more drugs. Furthermore, it is also common for different drug products to be taken simultaneously. This raises the possibility of interactions between different drugs that may impact formulation performance. For poorly water-soluble compounds, the supersaturation behavior may be a critical factor in determining the extent of oral absorption. The goal of the current study was to evaluate the maximum achievable supersaturation for several poorly water-soluble compounds alone, and in combination. Model compounds included ritonavir, lopinavir, paclitaxel, felodipine, and diclofenac. The "amorphous solubility" for the pure drugs was determined using different techniques and the change in this solubility was then measured in the presence of differing amounts of a second drug. The results showed that "amorphous solubility" of each component in aqueous solution is substantially decreased by the second component, as long as the two drugs are miscible in the amorphous state. A simple thermodynamic model could be used to predict the changes in solubility as a function of composition. This information is of great value when developing co-amorphous or other supersaturating formulations and should contribute to a broader understanding of drug-drug physicochemical interactions in in vitro assays as well as in the gastrointestinal tract. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
An expeditious synthesis of imatinib and analogues utilising flow chemistry methods.
Hopkin, Mark D; Baxendale, Ian R; Ley, Steven V
2013-03-21
A flow-based route to imatinib, the API of Gleevec, was developed and the general procedure then used to generate a number of analogues which were screened for biological activity against Abl1. The flow synthesis required minimal manual intervention and was achieved despite the poor solubility of many of the reaction components.
Steinmetz, Eric J; Auldridge, Michele E
2017-11-01
The simplicity, speed, and low cost of bacterial culture make E. coli the system of choice for most initial trials of recombinant protein expression. However, many heterologous proteins are either poorly expressed in bacteria, or are produced as incorrectly folded, insoluble aggregates that lack the activity of the native protein. In many cases, fusion to a partner protein can allow for improved expression and/or solubility of a difficult target protein. Although several different fusion partners have gained favor, none are universally effective, and identifying the one that best improves soluble expression of a given target protein is an empirical process. This unit presents a strategy for parallel screening of fusion partners for enhanced expression or solubility. The Expresso® Solubility and Expression Screening System includes a panel of seven distinct fusion partners and utilizes an extremely simple cloning strategy to enable rapid screening and identification of the most effective fusion partner. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Mitra, Amitava; Li, Li; Marsac, Patrick; Marks, Brian; Liu, Zhen; Brown, Chad
2016-05-30
Amorphous solid dispersion formulations have been widely used to enhance bioavailability of poorly soluble drugs. In these formulations, polymer is included to physically stabilize the amorphous drug by dispersing it in the polymeric carrier and thus forming a solid solution. The polymer can also maintain supersaturation and promote speciation during dissolution, thus enabling better absorption as compared to crystalline drug substance. In this paper, we report the use of hot melt extrusion (HME) to develop amorphous formulations of a poorly soluble compound (FaSSIF solubility=1μg/mL). The poor solubility of the compound and high dose (300mg) necessitated the use of amorphous formulation to achieve adequate bioperformance. The effect of using three different polymers (HPMCAS-HF, HPMCAS-LF and copovidone), on the dissolution, physical stability, and bioperformance of the formulations was demonstrated. In this particular case, HPMCAS-HF containing HME provided the highest bioavailability and also had better physical stability as compared to extrudates using HPMCAS-LF and copovidone. The data demonstrated that the polymer type can have significant impact on the formulation bioperformance and physical stability. Thus a thorough understanding of the polymer choice is imperative when designing an amorphous solid dispersion formulation, such that the formulation provides robust bioperformance and has adequate shelf life. Copyright © 2016 Elsevier B.V. All rights reserved.
NKG2D and its ligands in cancer.
Dhar, Payal; Wu, Jennifer D
2018-04-01
NKG2D is an activating immune receptor expressed by NK and effector T cells. Induced expression of NKG2D ligand on tumor cell surface during oncogenic insults renders cancer cells susceptible to immune destruction. In advanced human cancers, tumor cells shed NKG2D ligand to produce an immune soluble form as a means of immune evasion. Soluble NKG2D ligands have been associated with poor clinical prognosis in cancer patients. Harnessing NKG2D pathway is considered a viable avenue in cancer immunotherapy over recent years. In this review, we will discuss the progress and perspectives. Copyright © 2018. Published by Elsevier Ltd.
Novel dipeptide nanoparticles for effective curcumin delivery
Alam, Shadab; Panda, Jiban J; Chauhan, Virander S
2012-01-01
Background: Curcumin, the principal curcuminoid of the popular Indian spice turmeric, has a wide spectrum of pharmaceutical properties such as antitumor, antioxidant, antiamyloid, and anti-inflammatory activity. However, poor aqueous solubility and low bioavailability of curcumin is a major challenge in its development as a useful drug. To enhance the aqueous solubility and bioavailability of curcumin, attempts have been made to encapsulate it in liposomes, polymeric nanoparticles (NPs), lipid-based NPs, biodegradable microspheres, cyclodextrin, and hydrogels. Methods: In this work, we attempted to entrap curcumin in novel self-assembled dipeptide NPs containing a nonprotein amino acid, α, β-dehydrophenylalanine, and investigated the biological activity of dipeptide-curcumin NPs in cancer models both in vitro and in vivo. Results: Of the several dehydrodipeptides tested, methionine-dehydrophenylalanine was the most suitable one for loading and release of curcumin. Loading of curcumin in the dipeptide NPs increased its solubility, improved cellular availability, enhanced its toxicity towards different cancerous cell lines, and enhanced curcumin’s efficacy towards inhibiting tumor growth in Balb/c mice bearing a B6F10 melanoma tumor. Conclusion: These novel, highly biocompatible, and easy to construct dipeptide NPs with a capacity to load and release curcumin in a sustained manner significantly improved curcumin’s cellular uptake without altering its anticancer or other therapeutic properties. Curcumin-dipeptide NPs also showed improved in vitro and in vivo chemotherapeutic efficacy compared to curcumin alone. Such dipeptide-NPs may also improve the delivery of other potent hydrophobic drug molecules that show poor cellular uptake, bioavailability, and efficacy. PMID:22915849
Cai, Enbo; Guo, Shijie; Yang, Limin; Han, Mei; Xia, Jing; Zhao, Yan; Gao, Xiaorui; Wang, Yu
2018-02-01
Arctigenin (ARG) is famous in its abundant pharmacological activity. However, many researches in it entered the bottleneck period because of its poor water solubility. The derivatives of ARG have been synthesised with five amino acids which have t-Butyloxy carbonyl (BOC) as a protective group. We examined the effects of removing BOC. The results showed that the amino acid derivatives without protective group have better water solubility and nitrite-clearing ability than ARG. Based on these results, ARG6' and ARG9' were selected at a dosage of 40 mg/kg to evaluate their antitumour activity. The percentage inhibition rate of ARG6' and ARG9' were 55.87 and 51.40, respectively, which was twice as much as ARG. Furthermore, they could increase liver and kidney indexes and produce less damage in these organs. In brief, this study provides a basis for new drug development.
Polymorph Impact on the Bioavailability and Stability of Poorly Soluble Drugs.
Censi, Roberta; Di Martino, Piera
2015-10-15
Drugs with low water solubility are predisposed to poor and variable oral bioavailability and, therefore, to variability in clinical response, that might be overcome through an appropriate formulation of the drug. Polymorphs (anhydrous and solvate/hydrate forms) may resolve these bioavailability problems, but they can be a challenge to ensure physicochemical stability for the entire shelf life of the drug product. Since clinical failures of polymorph drugs have not been uncommon, and some of them have been entirely unexpected, the Food and Drug Administration (FDA) and the International Conference on Harmonization (ICH) has required preliminary and exhaustive screening studies to identify and characterize all the polymorph crystal forms for each drug. In the past, the polymorphism of many drugs was detected fortuitously or through manual time consuming methods; today, drug crystal engineering, in particular, combinatorial chemistry and high-throughput screening, makes it possible to easily and exhaustively identify stable polymorphic and/or hydrate/dehydrate forms of poorly soluble drugs, in order to overcome bioavailability related problems or clinical failures. This review describes the concepts involved, provides examples of drugs characterized by poor solubility for which polymorphism has proven important, outlines the state-of-the-art technologies and discusses the pertinent regulations.
Formulation of poorly water-soluble Gemfibrozil applying power ultrasound.
Ambrus, R; Naghipour Amirzadi, N; Aigner, Z; Szabó-Révész, P
2012-03-01
The dissolution properties of a drug and its release from the dosage form have a basic impact on its bioavailability. Solubility problems are a major challenge for the pharmaceutical industry as concerns the development of new pharmaceutical products. Formulation problems may possibly be overcome by modification of particle size and morphology. The application of power ultrasound is a novel possibility in drug formulation. This article reports on solvent diffusion and melt emulsification, as new methods supplemented with drying in the field of sonocrystallization of poorly water-soluble Gemfibrozil. During thermoanalytical characterization, a modified structure was detected. The specific surface area of the drug was increased following particle size reduction and the poor wettability properties could also be improved. The dissolution rate was therefore significantly increased. Copyright © 2011 Elsevier B.V. All rights reserved.
Ozaki, Shunsuke; Minamisono, Takuma; Yamashita, Taro; Kato, Takashi; Kushida, Ikuo
2012-01-01
In order to better understand the oral absorption behavior of poorly water-soluble drugs, their supersaturation-nucleation behavior was characterized in fasted state simulated intestinal fluid. The induction time (t(ind)) for nucleation was measured for four model drugs: itraconazole, erlotinib, troglitazone, and PLX4032. Supersaturated solutions were prepared by solvent shift method, and nucleation initiation was monitored by ultraviolet detection. The relationship between t(ind) and degree of supersaturation was analyzed in terms of classical nucleation theory. The defined supersaturation stability proved to be compound specific. Clinical data on oral absorption were investigated for drugs in thermodynamically high-energy forms such as amorphous forms and salts and was compared with in vitro supersaturation-nucleation characteristics. Solubility-limited maximum absorbable dose was proportionate to intestinal effective drug concentrations, which are related to supersaturation stability and thermodynamic solubility. Supersaturation stability was shown to be an important factor in determining the effect of high-energy forms. The characterization of supersaturation-nucleation behavior by the presented method is, therefore, valuable for assessing the potential absorbability of poorly water-soluble drugs. Copyright © 2011 Wiley-Liss, Inc.
Nanosizing of drugs: Effect on dissolution rate
Dizaj, S. Maleki; Vazifehasl, Zh.; Salatin, S.; Adibkia, Kh.; Javadzadeh, Y.
2015-01-01
The solubility, bioavailability and dissolution rate of drugs are important parameters for achieving in vivo efficiency. The bioavailability of orally administered drugs depends on their ability to be absorbed via gastrointestinal tract. For drugs belonging to Class II of pharmaceutical classification, the absorption process is limited by drug dissolution rate in gastrointestinal media. Therefore, enhancement of the dissolution rate of these drugs will present improved bioavailability. So far several techniques such as physical and chemical modifications, changing in crystal habits, solid dispersion, complexation, solubilization and liquisolid method have been used to enhance the dissolution rate of poorly water soluble drugs. It seems that improvement of the solubility properties ofpoorly water soluble drugscan translate to an increase in their bioavailability. Nowadays nanotechnology offers various approaches in the area of dissolution enhancement of low aqueous soluble drugs. Nanosizing of drugs in the form of nanoparticles, nanocrystals or nanosuspensions not requiring expensive facilities and equipment or complicated processes may be applied as simple methods to increase the dissolution rate of poorly water soluble drugs. In this article, we attempted to review the effects of nanosizing on improving the dissolution rate of poorly aqueous soluble drugs. According to the reviewed literature, by reduction of drug particle size into nanometer size the total effective surface area is increased and thereby dissolution rate would be enhanced. Additionally, reduction of particle size leads to reduction of the diffusion layer thickness surrounding the drug particles resulting in the increment of the concentration gradient. Each of these process leads to improved bioavailability. PMID:26487886
Paris, D H; Jenjaroen, K; Blacksell, S D; Phetsouvanh, R; Wuthiekanun, V; Newton, P N; Day, N P J; Turner, G D H
2008-01-01
Scrub typhus is responsible for a large proportion of undifferentiated fevers in south-east Asia. The cellular tropism and pathophysiology of the causative agent, Orientia tsutsugamushi, remain poorly understood. We measured endothelial and leucocyte activation by soluble cell adhesion molecule enzyme-linked immunosorbent assays in 242 Lao and Thai patients with scrub or murine typhus, leptospirosis, dengue, typhoid and uncomplicated falciparum malaria on admission to hospital. Soluble E-selectin (sE-selectin) levels were lowest in dengue, sL-selectin highest in scrub typhus with a high sE-selectin to sL-selectin ratio in leptospirosis patients. In scrub typhus patients elevated sL-selectin levels correlated with the duration of skin rash (P = 0·03) and the presence of eschar (P = 0·03), elevated white blood cell (WBC) count (P = 0·007), elevated lymphocyte (P = 0·007) and neutrophil counts (P = 0·015) and elevated levels of sE-selectin correlated with the duration of illness before admission (P = 0·03), the presence of lymphadenopathy (P = 0·033) and eschar (P = 0·03), elevated WBC (P = 0·005) and neutrophil counts (P = 0·0003). In comparison, soluble selectin levels in murine typhus patients correlated only with elevated WBC counts (P = 0·03 for sE-selectin and sL-selectin). Soluble intercellular adhesion molecule-1 and soluble vascular adhesion molecule-1 levels were not associated significantly with any clinical parameters in scrub or murine typhus patients. The data presented suggest mononuclear cell activation in scrub typhus. As adhesion molecules direct leucocyte migration and induce inflammatory and immune responses, this may represent O. tsutsugamushi tropism during early dissemination, or local immune activation within the eschar. PMID:18505434
Paris, D H; Jenjaroen, K; Blacksell, S D; Phetsouvanh, R; Wuthiekanun, V; Newton, P N; Day, N P J; Turner, G D H
2008-07-01
Scrub typhus is responsible for a large proportion of undifferentiated fevers in south-east Asia. The cellular tropism and pathophysiology of the causative agent, Orientia tsutsugamushi, remain poorly understood. We measured endothelial and leucocyte activation by soluble cell adhesion molecule enzyme-linked immunosorbent assays in 242 Lao and Thai patients with scrub or murine typhus, leptospirosis, dengue, typhoid and uncomplicated falciparum malaria on admission to hospital. Soluble E-selectin (sE-selectin) levels were lowest in dengue, sL-selectin highest in scrub typhus with a high sE-selectin to sL-selectin ratio in leptospirosis patients. In scrub typhus patients elevated sL-selectin levels correlated with the duration of skin rash (P = 0.03) and the presence of eschar (P = 0.03), elevated white blood cell (WBC) count (P = 0.007), elevated lymphocyte (P = 0.007) and neutrophil counts (P = 0.015) and elevated levels of sE-selectin correlated with the duration of illness before admission (P = 0.03), the presence of lymphadenopathy (P = 0.033) and eschar (P = 0.03), elevated WBC (P = 0.005) and neutrophil counts (P = 0.0003). In comparison, soluble selectin levels in murine typhus patients correlated only with elevated WBC counts (P = 0.03 for sE-selectin and sL-selectin). Soluble intercellular adhesion molecule-1 and soluble vascular adhesion molecule-1 levels were not associated significantly with any clinical parameters in scrub or murine typhus patients. The data presented suggest mononuclear cell activation in scrub typhus. As adhesion molecules direct leucocyte migration and induce inflammatory and immune responses, this may represent O. tsutsugamushi tropism during early dissemination, or local immune activation within the eschar.
Maheshwari, R K; Rathore, Amit; Agrawal, Archana; Gupta, Megha A
2011-07-01
Hydrotropic solubilization process involves cooperative intermolecular interaction with several balancing molecular forces, rather than either a specific complexation event or a process dominated by a medium effect, such as co-solvency or salting-in. In the present investigation, hydrotropic solution of 2 M niacinamide was employed as the solubilizing agent to solubilize the poorly water-soluble drug, indomethacin, from the capsule dosage form for spectrophotometric determination in ultraviolet region. Hydrotropic agent used did not interfere in the spectrophotometric analysis. In preliminary solubility studies, it was found that there was more than fivefold enhancement in the aqueous solubility of indomethacin (poorly water-soluble drug) in 2 M niacinamide solution as compared to its aqueous solubility at 28 ± 1°C. The proposed method is new, simple, safe, environmentally friendly, economic, accurate and cost-effective and can be successfully employed in routine analysis.
Remote Exosites of the Catalytic Domain of Matrix Metalloproteinase-12 Enhance Elastin Degradation┼
Fulcher, Yan G.; Van Doren, Steven R.
2011-01-01
How does matrix metalloproteinase-12 (MMP-12 or metalloelastase) degrade elastin with high specific activity? NMR suggested soluble elastin to cover surfaces of MMP-12 far from its active site. Two of these surfaces have been found, by mutagenesis guided by the BINDSIght approach, to affect degradation and affinity for elastin substrates but not a small peptide substrate. Main exosite 1 has been extended out to Asp124 that binds calcium. Novel exosite 2 comprises residues from the II–III loop and β-strand I near the back of the catalytic domain. The high exposure of these distal exosites may make them accessible to elastin made more flexible by partial hydrolysis. Importantly, combination of a lesion at each of exosites 1 and 2 and active site decreased catalytic competence towards soluble elastin by 13- to 18-fold to the level of MMP-3, homologue and poor elastase. Double mutant cycle analysis of conservative mutations of Met156 (exosite 2) and either Asp124 (exosite 1) or Ile180 (active site) had additive effects. Compared to polar substitutions observed in other MMPs, Met156 enhanced affinity and Ile180 kcat for soluble elastin. Both residues detracted from the higher folding stability with polar mutations. This resembles the trend in enzymes of an inverse relationship between folding stability and activity. Restoring Asp124 from combination mutants enhanced kcat for soluble elastin. In elastin degradation, exosites 1 and 2 contributed independently of each other and Ile180 at the active site, but with partial coupling to Ala182 near the active site. The concept of weak, separated interactions coalescing somewhat independently can be extended to this proteolytic digestion of a protein from fibrils. PMID:21967233
Wang, Chunxin; Zhao, Xiang; Yao, Junwei; Zeng, Zhanghua; Wang, Yan; Sun, Changjiao; Liu, Guoqiang; Cui, Haixin
2018-01-01
Poorly water-soluble and photosensitive pesticide compounds are difficult to formulate as solvent-free nanoformulations with high efficacy. A avermectin solid nanodispersion with a mean particle size of 188 nm was developed by microprecipitation and lyophilisation techniques. The suspensibility and wetting time of the solid nanodispersion in water were 99.8% and 13 s, respectively, superior to those of conventional water dispersible granules and wettable powders. The anti-photolysis performance of the nanoformulation was twice that of the technical material, and the biological activity against diamondback moths was more than 1.5 times that of the conventional solid formulations while taking LC 50 as the evaluation index. Moreover, the formulation composition substantially decreased the surfactant content and avoided organic solvents. Microprecipitation combined with lyophilisation is an easy and promising method to construct solid nanoformulations for pesticides with poor water solubility and environmental sensitivity. The application of the highly effective solid nanodispersion in crop production will have a great potential in reducing chemical residues and environmental pollution. PMID:29360866
Madsen, Cecilie Maria; Feng, Kung-I; Leithead, Andrew; Canfield, Nicole; Jørgensen, Søren Astrup; Müllertz, Anette; Rades, Thomas
2018-01-01
The composition of the human intestinal fluids varies both intra- and inter-individually. This will influence the solubility of orally administered drug compounds, and hence, the absorption and efficacy of compounds displaying solubility limited absorption. The purpose of this study was to assess the influence of simulated intestinal fluid (SIF) composition on the solubility of poorly soluble compounds. Using a Design of Experiments (DoE) approach, a set of 24 SIF was defined within the known compositions of human fasted state intestinal fluid. The SIF were composed of phospholipid, bile salt, and different pH, buffer capacities and osmolarities. On a small scale semi-robotic system, the solubility of 6 compounds (aprepitant, carvedilol, felodipine, fenofibrate, probucol, and zafirlukast) was determined in the 24 SIF. Compound specific models, describing key factors influencing the solubility of each compound, were identified. Although all models were different, the level of phospholipid and bile salt, the pH, and the interactions between these, had the biggest influences on solubility overall. Thus, a reduction of the DoE from five to three factors was possible (11-13 media), making DoE solubility studies feasible compared to single SIF solubility studies. Applying this DoE approach will lead to a better understanding of the impact of intestinal fluid composition on the solubility of a given drug compound. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Juan; Wang, Fengshan; Sun, Deqing; Wang, Rongmei
2016-08-01
It has been 30 years since the discovery of the anti-tumour property of paclitaxel (PTX), which has been successfully applied in clinic for the treatment of carcinomas of the lungs, breast and ovarian. However, PTX is poorly soluble in water and has no targeting and selectivity to tumour tissue. Recent advances in active tumour targeting of PTX delivery vehicles have addressed some of the issues related to lack of solubility in water and non-specific toxicities associated with PTX. These PTX delivery vehicles are designed for active targeting to specific cancer cells by the addition of ligands for recognition by specific receptors/antigens on cancer cells. This article will focus on various ligands and related targeting strategies serving as potential tools for active targeting of PTX to tumour tissues, illustrating their use in different tumour models. This review also highlights the need of further studies on the discovery of receptors in different cells of specific organ and ligands with binding efficiency to these specific receptors.
Tran, Thao T D; Tran, Phuong H L
2017-01-01
Poorly water-soluble drugs, which commonly face the issue of poor absorption and low bioavailability, have been under ongoing research of many formulation scientists for the past few decades. Solid dispersion is one of the most effective strategies in concerns for improving bioavailability of poorly water-soluble drugs. Either application of solid dispersions in dissolution enhancement of poorly water-soluble drugs or the use of swellable polymers in controlled drug release has been reported in pharmaceutical designs widely. However, a review of strategies of using swellable polymers in solid dispersion to take a full advantage of these polymers as a current perspective in facilitating drug bioavailability enhancement is still missing. In this review, we aim to provide a summary of techniques used to formulate a swellable polymer in solid dispersion especially a description of a suitable fabrication method in design of a controlled release solid dispersion. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Physicochemical properties and interfacial adaptation of root canal sealers.
Cañadas, Piedad S; Berástegui, Ester; Gaton-Hernández, Patrícia; Silva, Léa A B; Leite, Giselle A; Silva, Roberto S
2014-01-01
This study compared the physicochemical properties and interfacial adaptation to canal walls of Endo-CPM-Sealer, Sealapex and Activ GP with the well-established AH Plus sealer. The following analyses were performed: radiopacity, pH variation and solubility using samples of each material and scanning electron microscopy of root-filled bovine incisors to evaluate the interfacial adaptation. Data were analyzed by the parametric and no-parametric tests (α=0.05). All materials were in accordance with the ANSI/ADA requirements for radiopacity. Endo-CPM-Sealer presented the lowest radiopacity values and AH Plus was the most radiopaque sealer (p=0.0001). Except for ActiV GP, which was acidic, all other sealers had basic chemical nature and released hydroxyl ions. Regarding solubility, all materials met the ANSI/ADA recommendations, with no statistically significant difference between the sealers (p=0.0834). AH Plus presented the best adaptation to canal walls in the middle (p=0.0023) and apical (p=0.0012) thirds, while the sealers Activ GP and Endo-CPM-Sealer had poor adaptation to the canal walls. All sealers, except for ActiV GP, were alkaline and all of them fulfilled the ANSI/ADA requirements for radiopacity and solubility. Regarding the interfacial adaptation, AH Plus was superior to the others considering the adaptation to the bovine root canal walls.
Porous Silica-Supported Solid Lipid Particles for Enhanced Solubilization of Poorly Soluble Drugs.
Yasmin, Rokhsana; Rao, Shasha; Bremmell, Kristen E; Prestidge, Clive A
2016-07-01
Low dissolution of drugs in the intestinal fluid can limit their effectiveness in oral therapies. Here, a novel porous silica-supported solid lipid system was developed to optimize the oral delivery of drugs with limited aqueous solubility. Using lovastatin (LOV) as the model poorly water-soluble drug, two porous silica-supported solid lipid systems (SSL-A and SSL-S) were fabricated from solid lipid (glyceryl monostearate, GMS) and nanoporous silica particles Aerosil 380 (silica-A) and Syloid 244FP (silica-S) via immersion/solvent evaporation. SSL particles demonstrated significantly higher rate and extent of lipolysis in comparison with the pure solid lipid, depending on the lipid loading levels and the morphology. The highest lipid digestion was observed when silica-S was loaded with 34% (w/w) solid lipid, and differential scanning calorimeter (DSC) analysis confirmed the encapsulation of up to 2% (w/w) non-crystalline LOV in this optimal SSL-S formulation. Drug dissolution under non-digesting intestinal conditions revealed a three- to sixfold increase in dissolution efficiencies when compared to the unformulated drug and a LOV-lipid suspension. Furthermore, the SSL-S provided superior drug solubilization under simulated intestinal digesting condition in comparison with the drug-lipid suspension and drug-loaded silica. Therefore, solid lipid and nanoporous silica provides a synergistic effect on optimizing the solubilization of poorly water-soluble compound and the solid lipid-based porous carrier system provides a promising delivery approach to overcome the oral delivery challenges of poorly water-soluble drugs.
Gurunath, S; Nanjwade, Baswaraj K; Patila, P A
2014-07-01
Candesartan cilexetil (CAN) is a poor aqueous soluble compound and a P-glycoprotein (P-gp) efflux pump substrate. These key factors are responsible for its incomplete intestinal absorption. In this study, we investigated to enhance the absorption of CAN by improving its solubility and inhibiting intestinal P-gp activity. A phase solubility method was used to evaluate the aqueous solubility of CAN in PVP K30 (0.2-2%). Gibbs free energy [Formula: see text] values were all negative. Solubility was enhanced by the freeze drying technique. The in vitro dissolution was evaluated using the USP paddle method. The interaction between drug and carrier was evaluated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) studies. Naringin was selected as P-gp inhibitor. Absorption studies were performed using the everted gut sac model from rat jejunum. The drug analysis was performed by HPLC. FTIR spectra revealed no interaction between drug and PVP K30. From XRD and DSC data, CAN was in the amorphous form, which explains the cumulative release of drug from its prepared systems. We noticed an enhancement of CAN absorption by improving its solubility and inhibiting the P-gp activity. The significant results (p < 0.05) were obtained for freeze dried solid dispersions in the presence of P-gp inhibitor than without naringin (15 mg/kg) with an absorption enhancement of 8-fold. Naringin, a natural flavonoid, has no undesirable side effects. Therefore, it could be employed as an excipient in the form of solid dispersions to increase CAN intestinal absorption and its oral bioavailability.
Gurunath, S.; Nanjwade, Baswaraj K.; Patila, P.A.
2013-01-01
Objective Candesartan cilexetil (CAN) is a poor aqueous soluble compound and a P-glycoprotein (P-gp) efflux pump substrate. These key factors are responsible for its incomplete intestinal absorption. Methods In this study, we investigated to enhance the absorption of CAN by improving its solubility and inhibiting intestinal P-gp activity. A phase solubility method was used to evaluate the aqueous solubility of CAN in PVP K30 (0.2–2%). Gibbs free energy (ΔGtro) values were all negative. Solubility was enhanced by the freeze drying technique. The in vitro dissolution was evaluated using the USP paddle method. The interaction between drug and carrier was evaluated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) studies. Naringin was selected as P-gp inhibitor. Absorption studies were performed using the everted gut sac model from rat jejunum. The drug analysis was performed by HPLC. Results FTIR spectra revealed no interaction between drug and PVP K30. From XRD and DSC data, CAN was in the amorphous form, which explains the cumulative release of drug from its prepared systems. We noticed an enhancement of CAN absorption by improving its solubility and inhibiting the P-gp activity. The significant results (p < 0.05) were obtained for freeze dried solid dispersions in the presence of P-gp inhibitor than without naringin (15 mg/kg) with an absorption enhancement of 8-fold. Conclusion Naringin, a natural flavonoid, has no undesirable side effects. Therefore, it could be employed as an excipient in the form of solid dispersions to increase CAN intestinal absorption and its oral bioavailability. PMID:25067902
Raina, Shweta A; Zhang, Geoff G Z; Alonzo, David E; Wu, Jianwei; Zhu, Donghua; Catron, Nathaniel D; Gao, Yi; Taylor, Lynne S
2014-09-01
Amorphous solid dispersions (ASDs) give rise to supersaturated solutions (solution concentration greater than equilibrium crystalline solubility). We have recently found that supersaturating dosage forms can exhibit the phenomenon of liquid-liquid phase separation (LLPS). Thus, the high supersaturation generated by dissolving ASDs can lead to a two-phase system wherein one phase is an initially nanodimensioned and drug-rich phase and the other is a drug-lean continuous aqueous phase. Herein, the membrane transport of supersaturated solutions, at concentrations above and below the LLPS concentration has been evaluated using a side-by-side diffusion cell. Measurements of solution concentration with time in the receiver cell yield the flux, which reflects the solute thermodynamic activity in the donor cell. As the nominal concentration of solute in the donor cell increases, a linear increase in flux was observed up to the concentration where LLPS occurred. Thereafter, the flux remained essentially constant. Both nifedipine and felodipine solutions exhibit such behavior as long as crystallization is absent. This suggests that there is an upper limit in passive membrane transport that is dictated by the LLPS concentration. These results have several important implications for drug delivery, especially for poorly soluble compounds requiring enabling formulation technologies. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Busato, Jader G; Zandonadi, Daniel B; Mól, Alan R; Souza, Rafaela S; Aguiar, Kamilla P; Júnior, Fábio B Reis; Olivares, Fábio L
2017-02-01
Phosphorus-containing fertilizers play an important role in tropical agriculture owing to the well documented shortage of plant-available P in soils. Traditional P fertilizer production is based on chemical processing of insoluble rock phosphate (RP), which includes an acid treatment at high temperature. Processing the RP increases fertilizer costs, making it unavailable for undercapitalized and typically family-based farmers. Biotechnological methods have been proposed as an alternative to increase phosphate availability in RP. In this study, Burkholderia silvatlantica and Herbaspirillum seropedicae were co-inoculated into an RP-enriched compost with the aim of determining the effects of this technology on the levels of phosphatase activities and release of plant-available P. Inoculation of both microorganisms resulted in higher organic matter decomposition and higher humic acid formation in composting. Herbaspirillum seropedicae was the most promising microorganism for the production of acid and alkaline phosphatase enzymes. Both microorganisms presented potential to increase the supply of P from poorly soluble sources owing to increased levels of water-soluble P and citric acid P. Burkholderia silvatlantica and H. seropedicae in RP-enriched compost may represent an important biotechnological tool to reduce the overall time required for composting and increase the supply of P from poorly soluble sources. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Zhao, Chun-Fang; Lei, Dou Jian; Song, Guang Hao; Zhang, Hua; Xu, Hang; Yu, Long-Jiang
2015-02-15
Proanthocyanidins (PCs) with poor bioavailability were argued for their health benefits. In this study, water-soluble polymeric polyphenolic PCs fractions from Pyracanthafortuneana fruit were used to investigate whether the presence of PCs is correlated with the increased cell antioxidant activities (CAA) of quercetin (Q). The results indicated that the most decrement in the values of EC50, which Q inhibited peroxyl radical-induced DCFH oxidation effective in the HepG2 cells, was observed to be 2.91 (vs. control 5.97) in the present of the fraction with 15.8 of the average degree of polymerisation of PCs (ADP). Also, the order of efficacy was the same with the ADP of PCs. Further, this effect is associated with the improvement of the solubility and stability of Q after the addition of the PCs. Our current study suggests that the additive effects of PCs on small molecular polyphenols may be responsible for their antioxidant benefits in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.
Solubility enhancement and delivery systems of curcumin a herbal medicine: a review.
Hani, Umme; Shivakumar, H G
2014-01-01
Curcumin diferuloylmethane is a main yellow bioactive component of turmeric, possess wide spectrum of biological actions. It was found to have anti-inflammatory, antioxidant, anticarcinogenic, antimutagenic, anticoagulant, antifertility, antidiabetic, antibacterial, antifungal, antiprotozoal, antiviral, antifibrotic, antivenom, antiulcer, hypotensive and hypocholesteremic activities. However, the benefits are curtailed by its extremely poor aqueous solubility, which subsequently limits the bioavailability and therapeutic effects of curcumin. Nanotechnology is the available approach in solving these issues. Therapeutic efficacy of curcumin can be utilized effectively by doing improvement in formulation properties or delivery systems. Numerous attempts have been made to design a delivery system of curcumin. Currently, nanosuspensions, micelles, nanoparticles, nano-emulsions, etc. are used to improve the in vitro dissolution velocity and in vivo efficiency of curcumin. This review focuses on the methods to increase solubility of curcumin and various nanotechnologies based delivery systems and other delivery systems of curcumin.
Ndungu, J Maina; Krumm, Stefanie A; Yan, Dan; Arrendale, Richard F; Reddy, G Prabhakar; Evers, Taylor; Howard, Randy; Natchus, Michael G; Saindane, Manohar T; Liotta, Dennis C; Plemper, Richard K; Snyder, James P; Sun, Aiming
2012-05-10
The measles virus (MeV), a member of the paramyxovirus family, is an important cause of pediatric morbidity and mortality worldwide. In an effort to provide therapeutic treatments for improved measles management, we previously identified a small, non-nucleoside organic inhibitor of the viral RNA-dependent RNA polymerase by means of high-throughput screening. Subsequent structure-activity relationship (SAR) studies around the corresponding pyrazole carboxamide scaffold led to the discovery of 2 (AS-136a), a first generation lead with low nanomolar potency against life MeV and attractive physical properties suitable for development. However, its poor water solubility and low oral bioavailability (F) in rat suggested that the lead could benefit from further SAR studies to improve the biophysical characteristics of the compound. Optimization of in vitro potency and aqueous solubility led to the discovery of 2o (ERDRP-00519), a potent inhibitor of MeV (EC(50) = 60 nM) with an aqueous solubility of approximately 60 μg/mL. The agent shows a 10-fold exposure (AUC/C(max)) increase in the rat model relative to 2, displays near dose proportionality in the range of 10-50 mg/kg, and exhibits good oral bioavailability (F = 39%). The significant solubility increase appears linked to the improved oral bioavailability.
Felipe-Sotelo, M; Hinchliff, J; Field, L P; Milodowski, A E; Preedy, O; Read, D
2017-07-01
The solubility of uranium and thorium has been measured under the conditions anticipated in a cementitious, geological disposal facility for low and intermediate level radioactive waste. Similar solubilities were obtained for thorium in all media, comprising NaOH, Ca(OH) 2 and water equilibrated with a cement designed as repository backfill (NRVB, Nirex Reference Vault Backfill). In contrast, the solubility of U(VI) was one order of magnitude higher in NaOH than in the remaining solutions. The presence of cellulose degradation products (CDP) results in a comparable solubility increase for both elements. Extended X-ray Absorption Fine Structure (EXAFS) data suggest that the solubility-limiting phase for uranium corresponds to a becquerelite-type solid whereas thermodynamic modelling predicts a poorly crystalline, hydrated calcium uranate phase. The solubility-limiting phase for thorium was ThO 2 of intermediate crystallinity. No breakthrough of either uranium or thorium was observed in diffusion experiments involving NRVB after three years. Nevertheless, backscattering electron microscopy and microfocus X-ray fluorescence confirmed that uranium had penetrated about 40 μm into the cement, implying active diffusion governed by slow dissolution-precipitation kinetics. Precise identification of the uranium solid proved difficult, displaying characteristics of both calcium uranate and becquerelite. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yasmin, Rokhsana; Tan, Angel; Bremmell, Kristen E; Prestidge, Clive A
2014-09-01
Lyophilization was investigated to produce a powdery silica-lipid hybrid (SLH) carrier for oral delivery of poorly water-soluble drugs. The silica to lipid ratio, incorporation of cryoprotectant, and lipid loading level were investigated as performance indicators for lyophilized SLH carriers. Celecoxib, a nonsteroidal anti-inflammatory drug, was used as the model poorly soluble moiety to attain desirable physicochemical and in vitro drug solubilization properties. Scanning electron microscopy and confocal fluorescence imaging verified a nanoporous, homogenous internal matrix structures of the lyophilized SLH particles, prepared from submicron triglyceride emulsions and stabilized by porous silica nanoparticles (Aerosil 380), similar to spray-dried SLH. 20-50 wt % of silica in the formulation have shown to produce nonoily SLH agglomerates with complete lipid encapsulation. The incorporation of a cryoprotectant prevented irreversible aggregation of the silica-stabilized droplets during lyophilization, thereby readily redispersing in water to form micrometre-sized particles (<5 μm). The lyophilized SLH produced approximately 1.5-fold and fivefold increased drug solubilization than the pure drug under nondigesting and digesting conditions, respectively. The feasibility of lyophilization for producing nanostructured SLH formulations with desirable lipid loading and drug solubilization properties for enhanced oral delivery of poorly water-soluble therapeutics is confirmed. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pepinsky, R. Blake; Silvian, Laura; Berkowitz, Steven A.
2010-11-15
Monoclonal antibodies (Mabs) are a favorite drug platform of the biopharmaceutical industry. Currently, over 20 Mabs have been approved and several hundred others are in clinical trials. The anti-LINGO-1 Mab Li33 was selected from a large panel of antibodies by Fab phage display technology based on its extraordinary biological activity in promoting oligodendrocyte differentiation and myelination in vitro and in animal models of remyelination. However, the Li33 Fab had poor solubility when converted into a full antibody in an immunoglobulin G1 framework. A detailed analysis of the biochemical and structural features of the antibody revealed several possible reasons for itsmore » propensity to aggregate. Here, we successfully applied three molecular approaches (isotype switching, targeted mutagenesis of complementarity determining region residues, and glycosylation site insertion mutagenesis) to address the solubility problem. Through these efforts we were able to improve the solubility of the Li33 Mab from 0.3 mg/mL to >50 mg/mL and reduce aggregation to an acceptable level. These strategies can be readily applied to other proteins with solubility issues.« less
Dai, Meiling; Guo, Hongbo; Dortmans, Jos C. F. M.; Dekkers, Jojanneke; Nordholm, Johan; Daniels, Robert; van Kuppeveld, Frank J. M.; de Vries, Erik
2016-01-01
ABSTRACT Influenza A virus (IAV) attachment to and release from sialoside receptors is determined by the balance between hemagglutinin (HA) and neuraminidase (NA). The molecular determinants that mediate the specificity and activity of NA are still poorly understood. In this study, we aimed to design the optimal recombinant soluble NA protein to identify residues that affect NA enzymatic activity. To this end, recombinant soluble versions of four different NA proteins from H5N1 viruses were compared with their full-length counterparts. The soluble NA ectodomains were fused to three commonly used tetramerization domains. Our results indicate that the particular oligomerization domain used does not affect the Km value but may affect the specific enzymatic activity. This particularly holds true when the stalk domain is included and for NA ectodomains that display a low intrinsic ability to oligomerize. NA ectodomains extended with a Tetrabrachion domain, which forms a nearly parallel four-helix bundle, better mimicked the enzymatic properties of full-length proteins than when other coiled-coil tetramerization domains were used, which probably distort the stalk domain. Comparison of different NA proteins and mutagenic analysis of recombinant soluble versions thereof resulted in the identification of several residues that affected oligomerization of the NA head domain (position 95) and therefore the specific activity or sialic acid binding affinity (Km value; positions 252 and 347). This study demonstrates the potential of using recombinant soluble NA proteins to reveal determinants of NA assembly and enzymatic activity. IMPORTANCE The IAV HA and NA glycoproteins are important determinants of host tropism and pathogenicity. However, NA is relatively understudied compared to HA. Analysis of soluble versions of these glycoproteins is an attractive way to study their activities, as they are easily purified from cell culture media and applied in downstream assays. In the present study, we analyzed the enzymatic activity of different NA ectodomains with three commonly used tetramerization domains and compared them with full-length NA proteins. By performing a mutagenic analysis, we identified several residues that affected NA assembly, activity, and/or substrate binding. In addition, our results indicate that the design of the recombinant soluble NA protein, including the particular tetramerization domain, is an important determinant for maintaining the enzymatic properties within the head domain. NA ectodomains extended with a Tetrabrachion domain better mimicked the full-length proteins than when the other tetramerization domains were used. PMID:27512075
Hettiarachchi, Gaya; Samanta, Soumen K; Falcinelli, Shane; Zhang, Ben; Moncelet, Damien; Isaacs, Lyle; Briken, Volker
2016-03-07
Approximately, 40-70% of active pharmaceutical ingredients (API) are severely limited by their extremely poor aqueous solubility, and consequently, there is a high demand for excipients that can be used to formulate clinically relevant doses of these drug candidates. Here, proof-of-concept studies demonstrate the potential of our recently discovered acyclic cucurbit[n]uril-type molecular container Motor1 (M1) as a solubilizing agent for insoluble drugs. M1 did not induce significant rates of mutations in various Salmonella typhimurium test strains during the Ames test, suggesting low genotoxicity. M1 also has low risk of causing cardiac toxicity in humans since it did not inhibit the human Ether-à-go-go-Related Gene channel as tested on transfected CHO cell lines via patch clamp analysis. Albendazole (ABZ) is a widely used antihelminthic agent but that has also shown promising efficacy against cancerous cells in vitro. However, due to its low aqueous solubility (2.7 μM) and poor pharmacokinetics, ABZ is clinically limited as an anticancer agent. Here we investigated the potential of M1 as a solubilizing excipient for ABZ formulation. A pharmacokinetic study indicated that ABZ escapes the peritoneal cavity resulting in 78% absolute bioavailability, while its active intermediate metabolite, albendazole sulfoxide, achieved 43% absolute bioavailability. The daily dosing of 681 mg/kg M1 complexed with 3.2 mg/kg of ABZ for 14 days did not result in significant weight loss or pathology in Swiss Webster mice. In vivo efficacy studies using this M1·ABZ inclusion complex showed significant decreases in tumor growth rates and increases in survival of mice bearing SK-OV-3 xenograft tumors. In conclusion, we provide substantial new evidence demonstrating that M1 is a safe and efficient excipient that enables in vivo parenteral delivery of poorly water-soluble APIs.
NASA Astrophysics Data System (ADS)
Hilty, Florentine M.; Arnold, Myrtha; Hilbe, Monika; Teleki, Alexandra; Knijnenburg, Jesper T. N.; Ehrensperger, Felix; Hurrell, Richard F.; Pratsinis, Sotiris E.; Langhans, Wolfgang; Zimmermann, Michael B.
2010-05-01
Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO4), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe/Zn compounds (specific surface area ~190 m2 g-1) made by scalable flame aerosol technology have in vivo iron bioavailability in rats comparable to FeSO4 and cause less colour change in reactive food matrices than conventional iron fortificants. The addition of Zn to FePO4 and Mg to Fe/Zn oxide increases Fe absorption from the compounds, and doping with Mg also improves their colour. After feeding rats with nanostructured iron-containing compounds, no stainable Fe was detected in their gut wall, gut-associated lymphatics or other tissues, suggesting no adverse effects. Nanosizing of poorly water-soluble Fe compounds sharply increases their absorption and nutritional value.
Letchmanan, Kumaran; Shen, Shou-Cang; Ng, Wai Kiong; Tan, Reginald B H
2018-01-01
Biopharmaceutical properties of poorly water-soluble antimalarial drug, Artemisinin (ART), were improved by formulating amorphous solid dispersions with transglycosylated food additives (Hsp-G and Stevia-G) via co-spray drying. Both the formulated ART/Hsp-G and ART/Stevia-G showed superior dissolution properties with a burst release of more than 95% of drug within 5 min, whereas untreated ART dissolved only 4% in 5min. The supersaturation solubility of the formulated ART was enhanced by 2-fold as compared with untreated counterpart. The storage stability tests indicated that these formulations chemically stable at room temperature and under low humidity (<18% RH) conditions. However, high humidity (75% RH) induced re-crystallization and caused changes in the physical appearance of the solid dispersions. In addition, both the food additives and ART formulated samples showed low cytotoxicity to Caco-2 cell line suggesting their good biocompatibility. Thus, the formation of solid dispersions of ART with transglycosylated food additives is a potentially safe and effective approach to enhance the bioavailability of poorly water-soluble ART. Copyright © 2017 Elsevier B.V. All rights reserved.
Bikiaris, Dimitrios N
2011-12-01
The absorption of poorly water-soluble drugs, when presented in the crystalline state to the gastrointestinal tract, is typically dissolution rate-limited, and according to BCS these drugs belong mainly to class II. Both dissolution kinetics and solubility are particle size dependent. Nowadays, various techniques are available to the pharmaceutical industry for dissolution rate enhancement of such drugs. Among such techniques, nanosuspensions and drug formulation in solid dispersions are those with the highest interest. This review discusses strategies undertaken over the last 10 years, which have been applied for the dissolution enhancement of poorly water-soluble drugs; such processes include melt mixing, electrospinning, microwave irradiation and the use of inorganic nanoparticles. Many problems in this field still need to be solved, mainly the use of toxic solvents, and for this reason the use of innovative new procedures and materials will increase over the coming years. Melt mixing remains extremely promising for the preparation of SDs and will probably become the most used method in the future for the preparation of solid drug dispersions.
Hilty, Florentine M; Arnold, Myrtha; Hilbe, Monika; Teleki, Alexandra; Knijnenburg, Jesper T N; Ehrensperger, Felix; Hurrell, Richard F; Pratsinis, Sotiris E; Langhans, Wolfgang; Zimmermann, Michael B
2010-05-01
Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO(4)), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe/Zn compounds (specific surface area approximately 190 m(2) g(-1)) made by scalable flame aerosol technology have in vivo iron bioavailability in rats comparable to FeSO(4) and cause less colour change in reactive food matrices than conventional iron fortificants. The addition of Zn to FePO(4) and Mg to Fe/Zn oxide increases Fe absorption from the compounds, and doping with Mg also improves their colour. After feeding rats with nanostructured iron-containing compounds, no stainable Fe was detected in their gut wall, gut-associated lymphatics or other tissues, suggesting no adverse effects. Nanosizing of poorly water-soluble Fe compounds sharply increases their absorption and nutritional value.
Raina, Shweta A; Alonzo, David E; Zhang, Geoff G Z; Gao, Yi; Taylor, Lynne S
2015-11-01
Highly supersaturated aqueous solutions of poorly soluble compounds can undergo liquid-liquid phase separation (LLPS) when the concentration exceeds the "amorphous solubility". This phenomenon has been widely observed during high throughput screening of new molecular entities as well as during the dissolution of amorphous solid dispersions. In this study, we have evaluated the use of environment-sensitive fluorescence probes to investigate the formation and properties of the non-crystalline drug-rich aggregates formed in aqueous solutions as a result of LLPS. Six different environment-sensitive fluorophores were employed to study LLPS in highly supersaturated solutions of several model compounds, all dihydropyridine derivatives. Each fluoroprobe exhibited a large hypsochromic shift with decreasing environment polarity. Upon drug aggregate formation, the probes partitioned into the drug-rich phase and exhibited changes in emission wavelength and intensity consistent with sensing a lower polarity environment. The LLPS onset concentrations determined using the fluorescence measurements were in good agreement with light scattering measurements as well as theoretically estimated amorphous solubility values. Environment-sensitive fluorescence probes are useful to help understand the phase behavior of highly supersaturated aqueous solutions, which in turn is important in the context of developing enabling formulations for poorly soluble compounds.
Nie, Shufang; Zhang, Shu; Pan, Weisan; Liu, Yanli
2011-05-01
The purpose of this study was to evaluate the potential of a newly modified cyclodextrin derivative, water-soluble β-cyclodextrin-epichlorohydrin polymer (β-CDP), as an effective drug carrier to enhance the dissolution rate and oral bioavailability of glipizide as a poorly water-soluble model drug. Inclusion complexes of glipizide with β-CDP were prepared by the co-evaporation method and characterized by phase solubility, dissolution, and differential scanning calorimetry. The solubility curve was classified as type A(L), which indicated the formation of 1:1 complex between glipizide and β-CDP. β-CDP had better properties of increasing the aqueous solubility of glipizide compared with HP-β-CD. The dissolution rate of drug from the β-CDP complexes was significantly greater than that of the corresponding physical mixtures indicating that the formation of amorphous complex increased the solubility of glipizide. Moreover, the increment in drug dissolution rate from the glipizide/β-CDP systems was higher than that from the corresponding ones with HP-β-CD, which indicated that β-CDP could provide greater capability of solubilization for poorly soluble drugs. Furthermore, in vivo study revealed that the bioavailability of glipizide was significantly improved by glipizide /β-CDP inclusion complex after oral administration to beagle dogs.
Three new hydrochlorothiazide cocrystals: Structural analyses and solubility studies
NASA Astrophysics Data System (ADS)
Ranjan, Subham; Devarapalli, Ramesh; Kundu, Sudeshna; Vangala, Venu R.; Ghosh, Animesh; Reddy, C. Malla
2017-04-01
Hydrochlorothiazide (HCT) is a diuretic BCS class IV drug with poor aqueous solubility and low permeability leading to poor oral absorption. The present work explores the cocrystallization technique to enhance the aqueous solubility of HCT. Three new cocrystals of HCT with water soluble coformers phenazine (PHEN), 4-dimethylaminopyridine (DMAP) and picolinamide (PICA) were prepared successfully by solution crystallization method and characterized by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), fourier transform -infraredspectroscopy (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Structural characterization revealed that the cocrystals with PHEN, DMAP and PICA exists in P21/n, P21/c and P21/n space groups, respectively. The improved solubility of HCT-DMAP (4 fold) and HCT-PHEN (1.4 fold) cocrystals whereas decreased solubility of HCT-PICA (0.5 fold) as compared to the free drug were determined after 4 h in phosphate buffer, pH 7.4, at 25 °C by using shaking flask method. HCT-DMAP showed a significant increase in solubility than all previously reported cocrystals of HCT suggest the role of a coformer. The study demonstrates that the selection of coformer could have pronounced impact on the physicochemical properties of HCT and cocrystallization can be a promising approach to improve aqueous solubility of drugs.
Newby, Danielle; Freitas, Alex A; Ghafourian, Taravat
2015-01-27
Oral absorption of compounds depends on many physiological, physiochemical and formulation factors. Two important properties that govern oral absorption are in vitro permeability and solubility, which are commonly used as indicators of human intestinal absorption. Despite this, the nature and exact characteristics of the relationship between these parameters are not well understood. In this study a large dataset of human intestinal absorption was collated along with in vitro permeability, aqueous solubility, melting point, and maximum dose for the same compounds. The dataset allowed a permeability threshold to be established objectively to predict high or low intestinal absorption. Using this permeability threshold, classification decision trees incorporating a solubility-related parameter such as experimental or predicted solubility, or the melting point based absorption potential (MPbAP), along with structural molecular descriptors were developed and validated to predict oral absorption class. The decision trees were able to determine the individual roles of permeability and solubility in oral absorption process. Poorly permeable compounds with high solubility show low intestinal absorption, whereas poorly water soluble compounds with high or low permeability may have high intestinal absorption provided that they have certain molecular characteristics such as a small polar surface or specific topology. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Sanphui, Palash; Devi, V Kusum; Clara, Deepa; Malviya, Nidhi; Ganguly, Somnath; Desiraju, Gautam R
2015-05-04
Hydrochlorothiazide (HCT) is a diuretic and a BCS class IV drug with low solubility and low permeability, exhibiting poor oral absorption. The present study attempts to improve the physicochemical properties of the drug using a crystal engineering approach with cocrystals. Such multicomponent crystals of HCT with nicotinic acid (NIC), nicotinamide (NCT), 4-aminobenzoic acid (PABA), succinamide (SAM), and resorcinol (RES) were prepared using liquid-assisted grinding, and their solubilities in pH 7.4 buffer were evaluated. Diffusion and membrane permeability were studied using a Franz diffusion cell. Except for the SAM and NIC cocrystals, all other binary systems exhibited improved solubility. All of the cocrystals showed improved diffusion/membrane permeability compared to that of HCT with the exception of the SAM cocrystal. When the solubility was high, as in the case of PABA, NCT, and RES cocrystals, the flux/permeability dropped slightly. This is in agreement with the expected interplay between solubility and permeability. Improved solubility/permeability is attributed to new drug-coformer interactions. Cocrystals of SAM, however, showed poor solubility and flux. This cocrystal contains a primary sulfonamide dimer synthon similar to that of HCT polymorphs, which may be a reason for its unusual behavior. Hirshfeld surface analysis was carried out in all cases to determine whether a correlation exists between cocrystal permeability and drug-coformer interactions.
Taupitz, Thomas; Dressman, Jennifer B; Buchanan, Charles M; Klein, Sandra
2013-04-01
The aim of the present series of experiments was to improve the solubility and dissolution/precipitation behaviour of a poorly soluble, weakly basic drug, using itraconazole as a case example. Binary inclusion complexes of itraconazole with two commonly used cyclodextrin derivatives and a recently introduced cyclodextrin derivative were prepared. Their solubility and dissolution behaviour was compared with that of the pure drug and the marketed formulation Sporanox®. Ternary complexes were prepared by addition of Soluplus®, a new highly water soluble polymer, during the formation of the itraconazole/cyclodextrin complex. A solid dispersion made of itraconazole and Soluplus® was also studied as a control. Solid state analysis was performed for all formulations and for pure itraconazole using powder X-ray diffraction (pX-RD) and differential scanning calorimetry (DSC). Solubility tests indicated that with all formulation approaches, the aqueous solubility of itraconazole formed with hydroxypropyl-β-cyclodextrin (HP-β-CD) or hydroxybutenyl-β-cyclodextrin (HBen-β-CD) and Soluplus® proved to be the most favourable formulation approaches. Whereas the marketed formulation and the pure drug showed very poor dissolution, both of these ternary inclusion complexes resulted in fast and extensive release of itraconazole in all test media. Using the results of the dissolution experiments, a newly developed physiologically based pharmacokinetic (PBPK) in silico model was applied to compare the in vivo behaviour of Sporanox® with the predicted performance of the most promising ternary complexes from the in vitro studies. The PBPK modelling predicted that the bioavailability of itraconazole is likely to be increased after oral administration of ternary complex formulations, especially when itraconazole is formulated as a ternary complex comprising HP-β-CD or HBen-β-CD and Soluplus®. Copyright © 2012 Elsevier B.V. All rights reserved.
Sherje, A P; Desai, K J
2011-09-01
In the present investigation, hydrotropic solution of urea was employed as a solubilizing agent for spectrophotometric determination of poorly water-soluble drug rosiglitazone maleate. In solubility determination study, it was found that there was more than 14-folds enhancement in solubility of rosiglitazone maleate in a 6M solution of urea. Rosiglitazone maleate obeys Beer's law in concentration range of 5-300 μg/ml. Linearity of rosiglitazone maleate was found in the range of 80-120% of the label claim. The proposed method has been applied successfully to the analysis of the cited drug in pharmaceutical formulations with good accuracy and precision. The method herein described is new, simple, eco-friendly, economic, and accurate and can be utilized in routine analysis of rosiglitazone maleate in bulk drug and tablet dosage form.
Sherje, A. P.; Desai, K. J.
2011-01-01
In the present investigation, hydrotropic solution of urea was employed as a solubilizing agent for spectrophotometric determination of poorly water-soluble drug rosiglitazone maleate. In solubility determination study, it was found that there was more than 14-folds enhancement in solubility of rosiglitazone maleate in a 6M solution of urea. Rosiglitazone maleate obeys Beer's law in concentration range of 5-300 μg/ml. Linearity of rosiglitazone maleate was found in the range of 80-120% of the label claim. The proposed method has been applied successfully to the analysis of the cited drug in pharmaceutical formulations with good accuracy and precision. The method herein described is new, simple, eco-friendly, economic, and accurate and can be utilized in routine analysis of rosiglitazone maleate in bulk drug and tablet dosage form. PMID:22923874
Mohammed, Noorullah Naqvi; Majumdar, Soumyajit; Singh, Abhilasha; Deng, Weibin; Murthy, Narasimha S; Pinto, Elanor; Tewari, Divya; Durig, Thomas; Repka, Michael A
2012-12-01
The objective of this research work was to evaluate Klucel™ hydroxypropylcellulose (HPC) EF and ELF polymers, for solubility enhancement as well as to address some of the disadvantages associated with solid dispersions. Ketoprofen (KPR), a Biopharmaceutics Classification System class II drug with poor solubility, was utilized as a model compound. Preliminary thermal studies were performed to confirm formation of a solid solution/dispersion of KPR in HPC matrix and also to establish processing conditions for hot-melt extrusion. Extrudates pelletized and filled into capsules exhibited a carrier-dependent release with ELF polymer exhibiting a faster release. Tablets compressed from milled extrudates exhibited rapid release owing to the increased surface area of the milled extrudate. Addition of mannitol (MNT) further enhanced the release by forming micro-pores and increasing the porosity of the extrudates. An optimized tablet formulation constituting KPR, MNT, and ELF in a 1:1:1 ratio exhibited 90% release in 15 min similar to a commercial capsule formulation. HPC polymers are non-ionic hydrophilic polymers that undergo polymer-chain-length-dependent solubilization and can be used to enhance solubility or dissolution rate of poorly soluble drugs. Dissolution/release rate could be tailored for rapid-release applications by selecting a suitable HPC polymer and altering the final dosage form. The release obtained from pellets was carrier-dependent and not drug-dependent, and hence, such a system can be effectively utilized to address solubility or precipitation issues with poorly soluble drugs in the gastrointestinal environment.
Synthesis and Characterization of a Phosphate Prodrug of Isoliquiritigenin.
Boyapelly, Kumaraswamy; Bonin, Marc-André; Traboulsi, Hussein; Cloutier, Alexandre; Phaneuf, Samuel C; Fortin, Daniel; Cantin, André M; Richter, Martin V; Marsault, Eric
2017-04-28
Isoliquiritigenin (1) possesses a variety of biological activities in vitro. However, its poor aqueous solubility limits its use for subsequent in vivo experimentation. In order to enable the use of 1 for in vivo studies without the use of toxic carriers or cosolvents, a phosphate prodrug strategy was implemented relying on the availability of phenol groups in the molecule. In this study, a phosphate group was added to position C-4 of 1, leading to the more water-soluble prodrug 2 and its ammonium salt 3, which possesses increased stability compared to 2. Herein are reported the synthesis, characterization, solubility, and stability of phosphate prodrug 3 in biological medium in comparison to 1, as well as new results on its anti-inflammatory properties in vivo. As designed, the solubility of prodrug 3 was superior to that of the parent natural product 1 (9.6 mg/mL as opposed to 3.9 μg/mL). Prodrug 3 as an ammonium salt was also found to possess excellent stability as a solid and in aqueous solution, as opposed to its phosphoric acid precursor 2.
Thermodynamic phase behavior of API/polymer solid dispersions.
Prudic, Anke; Ji, Yuanhui; Sadowski, Gabriele
2014-07-07
To improve the bioavailability of poorly soluble active pharmaceutical ingredients (APIs), these materials are often integrated into a polymer matrix that acts as a carrier. The resulting mixture is called a solid dispersion. In this work, the phase behaviors of solid dispersions were investigated as a function of the API as well as of the type and molecular weight of the carrier polymer. Specifically, the solubility of artemisinin and indomethacin was measured in different poly(ethylene glycol)s (PEG 400, PEG 6000, and PEG 35000). The measured solubility data and the solubility of sulfonamides in poly(vinylpyrrolidone) (PVP) K10 and PEG 35000 were modeled using the perturbed-chain statistical associating fluid theory (PC-SAFT). The results show that PC-SAFT predictions are in a good accordance with the experimental data, and PC-SAFT can be used to predict the whole phase diagram of an API/polymer solid dispersion as a function of the kind of API and polymer and of the polymer's molecular weight. This remarkably simplifies the screening process for suitable API/polymer combinations.
García, Agustina; Leonardi, Darío; Vasconi, María D.; Hinrichsen, Lucila I.; Lamas, María C.
2014-01-01
Albendazole is a benzimidazole carbamate extensively used in oral chemotherapy against intestinal parasites, due to its broad spectrum activity, good tolerance and low cost. However, the drug has the disadvantage of poor bioavailability due to its very low solubility in water; as a consequence, a very active area of research focuses on the development of new pharmaceutical formulations to increase its solubility, dissolution rate, and bioavailability. The primary objective of this study was to prepare randomly methylated β-cyclodextrins inclusion complexes to increase albendazole dissolution rate, in order to enhance its antiparasitic activity. This formulation therapeutic efficacy was contrasted with that of the pure drug by treating Trichinella spiralis infected mice during the intestinal phase of the parasite cycle, on days five and six post-infection. This protocol significantly decreased muscle larval burden measured in the parenteral stage on day 30 post-infection, when compared with the untreated control. Thus, it could be demonstrated that the inclusion complexes improve the in vivo therapeutic activity of albendazole. PMID:25406084
Fetoni, Anna Rita; Piacentini, Roberto; Fiorita, Antonella; Paludetti, Gaetano; Troiani, Diana
2009-02-27
The mitochondrial respiratory chain is a powerful source of reactive oxygen species (ROS) also in noise induced hearing loss (NIHL) and anti-oxidants and free-radicals scavengers have been shown to attenuate the damage. Coenzyme Q(10) (CoQ(10)) or ubiquinone has a bioenergetic role as a component of the mithocondrial respiratory chain, it inhibits mitochondrial lipid peroxidation, inducing ATP production and it is involved in ROS removal and prevention of oxidative stress-induced apoptosis. However the therapeutic application of CoQ(10) is limited by the lack of solubility and poor bio- availability, therefore it is a challenge to improve its water solubility in order to ameliorate the efficacy in tissues and fluids. This study was conducted in a model of acoustic trauma in the guinea pig where the effectiveness of CoQ(10) was compared with a soluble formulation of CoQ(10) (multicomposite CoQ(10) Terclatrate, Q-ter) given intraperitoneally 1 h before and once daily for 3 days after pure tone noise exposure (6 kHz for 1 h at 120 dB SPL). Functional and morphological studies were carried out by measuring auditory brainstem responses, scanning electron microscopy for hair cell loss count, active caspase 3 staining and terminal deoxynucleotidyl transferase-mediated dUTP labelling assay in order to identify initial signs of apoptosis. Treatments decreased active caspase 3 expression and the number of apoptotic cells, but animals injected with Q-ter showed a greater degree of activity in preventing apoptosis and thus in improving hearing. These data confirm that solubility of Coenzyme Q(10) improves the ability of CoQ(10) in preventing oxidative injuries that result from mitochondrial dysfunction.
Liu, Xinyuan; Smith, Ashley; McNeil, Kevin; Weston, Paula; Zhitkovich, Anatoly; Hurt, Robert; Kane, Agnes B.
2011-01-01
Micron-sized particles of poorly soluble nickel compounds, but not metallic nickel, are established human and rodent carcinogens. In contrast, little is known about the toxic effects of a growing number of Ni-containing materials in the nano-sized range. Here, we performed physicochemical characterization of NiO and metallic Ni nanoparticles and examined their metal ion bioavailability and toxicological properties in human lung epithelial cells. Cellular uptake of metallic Ni and NiO nanoparticles, but not metallic Ni microparticles, was associated with the release of Ni(II) ions after 24–48 h as determined by Newport Green fluorescence. Similar to soluble NiCl2, NiO nanoparticles induced stabilization and nuclear translocation of hypoxia-inducible factor 1α (HIF-1α) transcription factor followed by upregulation of its target NRDG1 (Cap43). In contrast to no response to metallic Ni microparticles, nickel nanoparticles caused a rapid and prolonged activation of the HIF-1α pathway that was stronger than that induced by soluble Ni (II). Soluble NiCl2 and NiO nanoparticles were equally toxic to H460 human lung epithelial cells and primary human bronchial epithelial cells; metallic Ni nanoparticles showed lower toxicity and Ni microparticles were nontoxic. Cytotoxicity induced by all forms of Ni occurred concomitant with activation of an apoptotic response, as determined by dose- and time-dependent cleavage of caspases and poly (ADP-ribose) polymerase. Our results show that metallic Ni nanoparticles, in contrast to micron-sized Ni particles, activate a toxicity pathway characteristic of carcinogenic Ni compounds. Moderate cytotoxicity and sustained activation of the HIF-1α pathway by metallic Ni nanoparticles could promote cell transformation and tumor progression. PMID:21828359
Tang, L; Khan, S U; Muhammad, N A
2001-11-01
The purpose of this work is to develop a bio-relevant dissolution method for formulation screening in order to select an enhanced bioavailable formulation for a poorly water-soluble drug. The methods used included a modified rotating disk apparatus for measuring intrinsic dissolution rate of the new chemical entity (NCE) and the USP dissolution method II for evaluating dissolution profiles of the drug in three different dosage forms. The in vitro dissolution results were compared with the in vivo bioavailability for selecting a bio-relevant medium. The results showed that the solubility of the NCE was proportional to the concentration of sodium lauryl sulfate (SLS) in the media. The apparent intrinsic dissolution rate of the NCE was linear to the rotational speed of the disk, which indicated that the dissolution of the drug is a diffusion-controlled mechanism. The apparent intrinsic dissolution rate was also linear to the surfactant concentration in the media, which was interpreted using the Noyes and Whitney Empirical Theory. Three formulations were studied in three different SLS media using the bulk drug as a reference. The dissolution results were compared with the corresponding bioavailability results in dogs. In the 1% SLS--sink conditions--the drug release from all the formulations was complete and the dissolution results were discriminative for the difference in particle size of the drug in the formulations. However, the data showed poor IVIV correlation. In the 0.5% SLS medium--non-sink conditions--the dissolution results showed the same rank order among the tested formulations as the bioavailability. The best IVIV correlation was obtained from the dissolution in 0.25% SLS medium, an over-saturated condition. The conclusions are: a surfactant medium increases the apparent intrinsic dissolution rate of the NCE linearly due to an increase in solubility. A low concentration of surfactant in the medium (0.25%) is more bio-relevant than higher concentrations of surfactant in the media for the poorly water-soluble drug. Creating sink conditions (based on bulk drug solubilities) by using a high concentration of a surfactant in the dissolution medium may not be a proper approach in developing a bio-relevant dissolution method for a poorly water-soluble drug.
Biocatalytic synthesis of the Green Note trans-2-hexenal in a continuous-flow microreactor.
van Schie, Morten M C H; Pedroso de Almeida, Tiago; Laudadio, Gabriele; Tieves, Florian; Fernández-Fueyo, Elena; Noël, Timothy; Arends, Isabel W C E; Hollmann, Frank
2018-01-01
The biocatalytic preparation of trans -hex-2-enal from trans -hex-2-enol using a novel aryl alcohol oxidase from Pleurotus eryngii ( Pe AAOx) is reported. As O 2 -dependent enzyme Pe AAOx-dependent reactions are generally plagued by the poor solubility of O 2 in aqueous media and mass transfer limitations resulting in poor reaction rates. These limitations were efficiently overcome by conducting the reaction in a flow-reactor setup reaching unpreceded catalytic activities for the enzyme in terms of turnover frequency (up to 38 s -1 ) and turnover numbers (more than 300000) pointing towards preparative usefulness of the proposed reaction scheme.
Biocatalytic synthesis of the Green Note trans-2-hexenal in a continuous-flow microreactor
van Schie, Morten M C H; Pedroso de Almeida, Tiago; Laudadio, Gabriele; Tieves, Florian; Fernández-Fueyo, Elena; Arends, Isabel W C E
2018-01-01
The biocatalytic preparation of trans-hex-2-enal from trans-hex-2-enol using a novel aryl alcohol oxidase from Pleurotus eryngii (PeAAOx) is reported. As O2-dependent enzyme PeAAOx-dependent reactions are generally plagued by the poor solubility of O2 in aqueous media and mass transfer limitations resulting in poor reaction rates. These limitations were efficiently overcome by conducting the reaction in a flow-reactor setup reaching unpreceded catalytic activities for the enzyme in terms of turnover frequency (up to 38 s−1) and turnover numbers (more than 300000) pointing towards preparative usefulness of the proposed reaction scheme. PMID:29719567
Bioavailability enhancement of atovaquone using hot melt extrusion technology.
Kate, Laxman; Gokarna, Vinod; Borhade, Vivek; Prabhu, Priyanka; Deshpande, Vinita; Pathak, Sulabha; Sharma, Shobhona; Patravale, Vandana
2016-04-30
Emerging parasite resistance and poor oral bioavailability of anti-malarials are the two cardinal issues which hinder the clinical success of malaria chemotherapy. Atovaquone-Proguanil is a WHO approved fixed dose combination used to tackle the problem of emerging resistance. However, Atovaquone is a highly lipophilic drug having poor aqueous solubility (less than 0.2 μg/ml) thus reducing its oral bioavailability. The aim of the present investigation was to explore hot melt extrusion (HME) as a solvent-free technique to enhance solubility and oral bioavailability of Atovaquone and to develop an oral dosage form for Atovaquone-Proguanil combination. Solid dispersion of Atovaquone was successfully developed using HME. The solid dispersion was characterized for DSC, FTIR, XRD, SEM, and flow properties. It was filled in size 2 hard gelatin capsules. The formulation showed better release as compared to Malarone® tablets, and 3.2-fold and 4.6-fold higher bioavailability as compared to Malarone® tablets and Atovaquone respectively. The enhanced bioavailability also resulted in 100% anti-malarial activity in murine infection model at 1/8(th) therapeutic dose. Thus the developed methodology shows promising potential to solve the problems associated with Atovaquone therapy, namely its high cost and poor oral bioavailability, resulting in increased therapeutic efficacy of Atovaquone. Copyright © 2016 Elsevier B.V. All rights reserved.
Allahham, Ayman; Stewart, Peter J; Das, Shyamal C
2013-11-30
Influence of ternary, poorly water-soluble components on the agglomerate strength of cohesive indomethacin mixtures during dissolution was studied to explore the relationship between agglomerate strength and extent of de-agglomeration and dissolution of indomethacin (Ind). Dissolution profiles of Ind from 20% Ind-lactose binary mixtures, and ternary mixtures containing additional dibasic calcium phosphate (1% or 10%; DCP), calcium sulphate (10%) and talc (10%) were determined. Agglomerate strength distributions were estimated by Monte Carlo simulation of particle size, work of cohesion and packing fraction distributions. The agglomerate strength of Ind decreased from 1.19 MPa for the binary Ind mixture to 0.84 MPa for 1DCP:20Ind mixture and to 0.42 MPa for 1DCP:2Ind mixture. Both extent of de-agglomeration, demonstrated by the concentration of the dispersed indomethacin distribution, and extent of dispersion, demonstrated by the particle size of the dispersed indomethacin, were in descending order of 1DCP:2Ind>1DCP:20Ind>binary Ind. The addition of calcium sulphate dihydrate and talc also reduced the agglomerate strength and improved de-agglomeration and dispersion of indomethacin. While not definitively causal, the improved de-agglomeration and dispersion of a poorly water soluble drug by poorly water soluble components was related to the agglomerate strength of the cohesive matrix during dissolution. Copyright © 2013 Elsevier B.V. All rights reserved.
Raffin, Renata P; Lima, Amanda; Lorenzoni, Ricardo; Antonow, Michelli B; Turra, Cláudia; Alves, Marta P; Fagan, Solange B
2012-04-01
Lipid nanoparticles are drug delivery systems able to increase bioavailability of poorly soluble drugs. They can be prepared with different lipid materials, especially natural lipids. Shea butter is a natural lipid obtained from the Butyrospermum parkii seed and rich in oleic and stearic acids. Nimesulide is a COX 2 selective anti-inflammatory that is poorly soluble in water. The purpose of this study was to develop and characterize shea butter lipid nanoparticles using a new technique and evaluate the in vivo activity of these nanoparticles. Lipid nanoparticles were prepared by melting shea butter and mixing with an aqueous phase using a high shear mixer. The nanoparticles presented pH of 6.9 +/- 0.1, mean particle size of 90 nm and a narrow polydispersity (0.21). Zeta potential was around -20 mV and the encapsulation efficiency was 97.5%. Drug release was evaluated using dialysis bags and presented monoexponential profile with t50% of 4.80 h (free drug t50% was only 2.86 h). Antinociceptive activity was performed by the acetic acid model. Both nimesulide and nimesulide-loaded nanoparticles presented significant activity compared to the control. The in vivo anti-inflammatory activity was evaluated by paw edema and was statistically different for the nanoparticles containing nimesulide compared to free nimesulide, blank nanoparticles and saline. In conclusion, the use of shea butter as encapsulating lipid was very successful and allowed nanoparticles to be prepared with a very simple technique. The nanoparticles presented significant pharmacological effects that were not seen for free drug administration.
Lin, Zih-Chan; Lee, Chiang-Wen; Tsai, Ming-Horng; Ko, Horng-Huey; Fang, Jia-You; Chiang, Yao-Chang; Liang, Chan-Jung; Hsu, Lee-Fen; Hu, Stephen Chu-Sung; Yen, Feng-Lin
2016-01-01
Exposure to particulate matter (PM), a major form of air pollution, can induce oxidative stress and inflammation and may lead to many diseases in various organ systems including the skin. Eupafolin, a flavonoid compound derived from Phyla nodiflora, has been previously shown to exhibit various pharmacological activities, including antioxidant and anti-inflammatory effects. Unfortunately, eupafolin is characterized by poor water solubility and skin penetration, which limits its clinical applications. To address these issues, we successfully synthesized a eupafolin nanoparticle delivery system (ENDS). Our findings showed that ENDS could overcome the physicochemical drawbacks of raw eupafolin with respect to water solubility and skin penetration, through reduction of particle size and formation of an amorphous state with hydrogen bonding. Moreover, ENDS was superior to raw eupafolin in attenuating PM-induced oxidative stress and inflammation in HaCaT keratinocytes, by mediating the antioxidant pathway (decreased reactive oxygen species production and nicotinamide adenine dinucleotide phosphate oxidase activity) and anti-inflammation pathway (decreased cyclooxygenase-2 expression and prostaglandin E2 production through downregulation of mitogen-activated protein kinase and nuclear factor-κB signaling). In summary, ENDS shows better antioxidant and anti-inflammatory activities than raw eupafolin through improvement of water solubility and skin penetration. Therefore, ENDS may potentially be used as a medicinal drug and/or cosmeceutical product to prevent PM-induced skin inflammation. PMID:27570454
Transport of water and solutes in reverse osmosis and nanofiltration membranes
NASA Astrophysics Data System (ADS)
Cahill, David
2009-03-01
The polyamide active layers of reverse osmosis and nanofiltration membranes used for water purification are real-world examples of nanoscale functional materials: the active layer is only ˜100 nm thick. Because the active layer is formed by a process of interfacial polymerization, the structure and composition of the membrane is highly inhomogeneous and even such basic physical and chemical properties as the atomic density, swelling in water, the distribution of charged species between water and membrane, and the mobility of water and ions, are poorly understood. We are using Rutherford backscattering spectrometry (RBS) to determine the composition, roughness, and thickness of the membrane; reveal the surprisingly high solubility of salt ions in the polymer active layer; analyze the acid-base chemistry of charged functional groups; and determine the degree of polymer cross-linking. Measurements of mass-uptake and adsorption-induced mechanical stress of membranes in humid air enable us to determine the water solubility, specific volume of water, and the mechanical strength of the membrane. Comparisons between these equilibrium data and the permeability of the membrane to water and salts show that the mobility of water molecules in the membrane approaches the mobility of bulk water, and that the rejection of salt ions is accomplished by low mobility, not low solubility. My collaborators in this work are Xijing Zhang, Orlando Coronell, and Prof. Benito Mariñas.
Cui, Bo; Feng, Lei; Wang, Chunxin; Yang, Dongsheng; Yu, Manli; Zeng, Zhanghua; Wang, Yan; Sun, Changjiao; Zhao, Xiang; Cui, Haixin
2016-01-01
Poorly water-soluble compounds are difficult to develop as pesticide products and face great challenges in water-based and environmentally friendly formulation development. In this study, high pressure homogenization combined with lyophilization was adopted to prepare the solid nanodispersions of chlorantraniliprole with poor solubility and high melting point. The mean particle sizes of the solid nanodispersions with different pesticide contents were all less than 75 nm, even when the content was up to 91.5%. For the 2.5% chlorantraniliprole solid nanodispersion with the mean particle size of 29 nm, the suspensibility and wetting time in water were 97.32% and 13 s, respectively. The re-dispersibility and wettability were superior to those of conventional water dispersible granules. The retention on the rice leaf of 18.7 mg/cm2 was 1.5 and 3 times that of commercial aqueous suspension concentrate and pure water. The bioassay result to diamondback moths indicated that the toxicity of the solid nanodispersion was 3.3 and 2.8 times that of technical and aqueous suspension concentrate, respectively. Moreover, the solid nanodispersion has the advantages of total avoidance of organic solvents, significant reduction of surfactants and feasibility of obtaining high concentration nanoformulations. The solid nanodispersion is an attractive candidate for improving pesticide solubility and efficacy, and its application in crop production will reduce both residues in food and environmental pollution of pesticide. PMID:27500828
Sun, Yi-Wei; Wang, Li-Hong; Meng, Da-Li; Che, Xin
2017-12-01
This study described a valuable drug delivery system for poorly water-soluble anticancer naturalproduct, licochalcone A, isolated from Glycyrrhiza inflata , loaded on hollow gold nanoparticles by green method to improve solubility and dissolution and maintain its natural pharmacological property. Briefly, the formation of hollow gold nanoparticles involves three steps: preparing of silica nanospheres by Stober method, forming of a thick gold shell around the silica templates and etching of silica particles by HF solution. Hollow gold nanoparticles (HGNPs) and drug loaded hollow gold nanoparticles (L-HGNPs) displayed spherical structure and approximately 200nm in size observed by SEM, XRD, EDS and DSC analysis showed that HGNPs were gold hollow structure and crystalline form. The solubility in aqueous solution of licochalcone A was increased obviously to 488.9 μg/ml, compared with free drugs of 136.1 μg/ml. Another interesting finding is that near-infrared (NIR) irradiation increased the speed of solubility of licochalcone A in aqueous solutions, rather than quantity. In short, the method of nano-delivery system combined with poorly water-soluble drug to improve its solubility and dissolution is worth applying to other natural products in order to increase their opportunities in clinical applications.
Zhao, Guoying; Duan, Jingze; Xie, Yan; Lin, Guobei; Luo, Huilin; Li, Guowen; Yuan, Xiurong
2013-07-01
The aim of this study was to investigate the effects of solid dispersions (SD) and self-emulsifying (SE) formulations on the solubility and absorption properties of active components in total flavones of Hippophae rhamnoides L. (TFH). The solubility, dissolution rate, permeability and pharmacokinetics of isorhamnetin, quercetin and kaempferol in TFH SD/SE formulations and TFH were compared. The results showed that the solubility and dissolution rate of isorhamnetin, quercetin and kaempferol in SD/SE formulations were significantly enhanced compared to those in TFH, however, their intestinal permeability was comparable. The bioavailability of isorhamnetin, quercetin and kaempferol in rats remarkably increased after oral administration of TFH SD formulations compared to TFH, but there was no significant increase after oral administration of TFH SE formulations. The results of this study indicated the SD formulations on the improvement of pharmacokinetic properties of isorhamnetin, quercetin and kaempferol in TFH were much better than those of SE formulations. The improvement of pharmacokinetic properties of isorhamnetin, quercetin and kaempferol in TFH by SD formulations was probably ascribed to the enhancement of the solubility and dissolution of the three components, but was not relevant to the intestinal permeability. Therefore, as for herb extracts containing multiple components, especially for their major components with poor water solubility, solid dispersion formulations might have the better potential to enhance their bioavailability.
Ghai, Damanjeet; Sinha, Vivek Ranjan
2012-07-01
To enhance the bioavailability of the poorly water-soluble drug talinolol, a self-nanoemulsifying drug delivery system (SNEDDS) comprising 5% (w/v) Brij-721 ethanolic solution (Smix), triacetin, and water, in the ratio of 40:20:40 (% w/w) was developed by constructing pseudo-ternary phase diagrams and evaluated for droplet size, polydispersity index, and surface morphology of nanoemulsions. The effect of nanodrug carriers on drug release and permeability was assessed using stripped porcine jejunum and everted rat gut sac method and compared with hydroalcoholic drug solution, oily solution, and conventional emulsion and suspension. The SNEDDS showed a significant (P < 0.001) increase in drug release, permeability, and in vivo bioavailability as compared to drug suspension. This may be attributed to increased solubility and enhanced permeability of the drug from nanosized emulsion. In this study, a self-nanoemulsifying drug delivery system was utilized to enhance the bioavailability of the poorly water-soluble beta-blocker talinolol. Significant increase in drug release, permeability, and in vivo bioavailability were demonstrated as compared to standard drug suspension. Copyright © 2012 Elsevier Inc. All rights reserved.
Sasaki, Shigeo; Okabe, Satoshi
2011-11-10
The effects of NaCl, NaOH, and HCl on the solubility transition and the phase-separation of N-isopropylacrylamide (NIPA) were investigated for the purpose of clarifying the physicochemical mechanism of salting-out and salting-in phenomena. The discrete change in the solubility of NIPA in the salt-free water at the solubility transition (reported in J. Phys. Chem. B 2010, 114, 14995-15002) decreased with the addition of HCl and disappeared in the HCl solutions at concentrations higher than 2 M, while it increased with additions of NaOH and NaCl. A difference in NIPA concentration between the phase-separated solutions decreases with the addition of HCl and increases with additions of NaOH and NaCl. Partition coefficients of HCl in the phase-separated NIPA-rich solutions are higher than those in the NIPA poor solutions, while partition coefficients of NaCl and NaOH between the NIPA-rich and -poor solutions have trends opposite to those of HCl. The present results clearly indicate that the HCl favors the dehydrated NIPA and stabilizes the H(2)O-poor state of the NIPA molecule more than NaCl.
Rehman, Fiza Ur; Shah, Kifayat Ullah; Shah, Shefaat Ullah; Khan, Ikram Ullah; Khan, Gul Majid; Khan, Amjad
2017-11-01
Lipid-based drug delivery systems (LBDDS) are the most promising technique to formulate the poorly water soluble drugs. Nanotechnology strongly influences the therapeutic performance of hydrophobic drugs and has become an essential approach in drug delivery research. Self-nanoemulsifying drug delivery systems (SNEDDS) are a vital strategy that combines benefits of LBDDS and nanotechnology. SNEDDS are now preferred to improve the formulation of drugs with poor aqueous solubility. Areas covered: The review in its first part shortly describes the LBDDS, nanoemulsions and clarifies the ambiguity between nanoemulsions and microemulsions. In the second part, the review discusses SNEDDS and elaborates on the current developments and modifications in this area without discussing their associated preparation techniques and excipient properties. Expert opinion: SNEDDS have exhibit the potential to increase the bioavailability of poorly water soluble drugs. The stability of SNEDDS is further increased by solidification. Controlled release and supersaturation can be achieved, and are associated with increased patient compliance and improved drug loads, respectively. Presence of biodegradable ingredients and ease of large-scale manufacturing combined with a lot of 'drug-targeting opportunities' give SNEDDS a clear distinction and prominence over other solubility enhancement techniques.
Absorption enhancement studies of clopidogrel hydrogen sulphate in rat everted gut sacs.
Lassoued, Mohamed Ali; Sfar, Souad; Bouraoui, Abderrahman; Khemiss, Fathia
2012-04-01
Clopidogrel, a thienopyridine antiplatelet agent, is a poor aqueous soluble compound and a P-glycoprotein (P-gp) efflux pump substrate. These two factors are responsible for its incomplete intestinal absorption. In this study, we have attempted to enhance the absorption of clopidogrel by improving its solubility and by inhibiting intestinal P-gp activity. Solubility enhancement was achieved by preparing solid dispersions. Quinidine and naringin were selected as P-gp inhibitors, whilst tartaric acid was selected as the intestinal absorption enhancer. Absorption studies were performed using the everted gut sac model prepared from rat jejunum. The determination of clopidogrel was performed by high performance liquid chromatography. We noticed an enhancement of clopidogrel absorption by improving its solubility or by inhibiting the P-gp activity. The greatest results were obtained for solid dispersions in the presence of P-gp inhibitors at their highest concentrations, with an absorption improvement of 3.41- and 3.91-fold for naringin (15mg/kg) and quinidine (200µm), respectively. However, no clopidogrel absorption enhancement occurred in the presence of tartaric acid. Naringin, a natural compound which has no undesirable side effects as compared with quinidine, could be used as a pharmaceutical excipient in the presence of clopidogrel solid dispersions to increase clopidogrel intestinal absorption and therefore its oral bioavailability. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.
Ahuja, Naveen; Katare, Om Prakash; Singh, Bhupinder
2007-01-01
Role of various water-soluble carriers was studied for dissolution enhancement of a poorly soluble model drug, rofecoxib, using solid dispersion approach. Diverse carriers viz. polyethylene glycols (PEG 4000 and 6000), polyglycolized fatty acid ester (Gelucire 44/14), polyvinylpyrollidone K25 (PVP), poloxamers (Lutrol F127 and F68), polyols (mannitol, sorbitol), organic acid (citric acid) and hydrotropes (urea, nicotinamide) were investigated for the purpose. Phase-solubility studies revealed AL type of curves for each carrier, indicating linear increase in drug solubility with carrier concentration. The sign and magnitude of the thermodynamic parameter, Gibbs free energy of transfer, indicated spontaneity of solubilization process. All the solid dispersions showed dissolution improvement vis-à-vis pure drug to varying degrees, with citric acid, PVP and poloxamers as the most promising carriers. Mathematical modeling of in vitro dissolution data indicated the best fitting with Korsemeyer-Peppas model and the drug release kinetics primarily as Fickian diffusion. Solid state characterization of the drug-poloxamer binary system using XRD, FTIR, DSC and SEM techniques revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement in dissolution rate.
Curcumin Quantum Dots Mediated Degradation of Bacterial Biofilms.
Singh, Ashish K; Prakash, Pradyot; Singh, Ranjana; Nandy, Nabarun; Firdaus, Zeba; Bansal, Monika; Singh, Ranjan K; Srivastava, Anchal; Roy, Jagat K; Mishra, Brahmeshwar; Singh, Rakesh K
2017-01-01
Bacterial biofilm has been reported to be associated with more than 80% of bacterial infections. Curcumin, a hydrophobic polyphenol compound, has anti-quorum sensing activity apart from having antimicrobial action. However, its use is limited by its poor aqueous solubility and rapid degradation. In this study, we attempted to prepare quantum dots of the drug curcumin in order to achieve enhanced solubility and stability and investigated for its antimicrobial and antibiofilm activity. We utilized a newer two-step bottom up wet milling approach to prepare Curcumin Quantum Dots (CurQDs) using acetone as a primary solvent. Minimum inhibitory concentration against select Gram-positive and Gram-negative bacteria was performed. The antibiofilm assay was performed at first using 96-well tissue culture plate and subsequently validated by Confocal Laser Scanning Microscopy. Further, biofilm matrix protein was isolated using formaldehyde sludge and TCA/Acetone precipitation method. Protein extracted was incubated with varying concentration of CurQDs for 4 h and was subjected to SDS-PAGE. Molecular docking study was performed to observe interaction between curcumin and phenol soluble modulins as well as curli proteins. The biophysical evidences obtained from TEM, SEM, UV-VIS, fluorescence, Raman spectroscopy, and zeta potential analysis confirmed the formation of curcumin quantum dots with increased stability and solubility. The MICs of curcumin quantum dots, as observed against both select gram positive and negative bacterial isolates, was observed to be significantly lower than native curcumin particles. On TCP assay, Curcumin observed to be having antibiofilm as well as biofilm degrading activity. Results of SDS-PAGE and molecular docking have shown interaction between biofilm matrix proteins and curcumin. The results indicate that aqueous solubility and stability of Curcumin can be achieved by preparing its quantum dots. The study also demonstrates that by sizing down the particle size has not only enhanced its antimicrobial properties but it has also shown its antibiofilm activities. Further, study is needed to elucidate the exact nature of interaction between curcumin and biofilm matrix proteins.
Gonzalez-Estrella, Jorge; Gallagher, Sara; Sierra-Alvarez, Reyes; Field, Jim A.
2016-01-01
Elemental copper (Cu0) and zinc oxide (ZnO) nanoparticle (NP) toxicity to methanogens has been attributed to the release of soluble metal ions. Iron sulfide (FeS) partially controls the soluble concentration of heavy metals and their toxicity in aquatic environments. Heavy metals displace the Fe from FeS forming poorly soluble metal sulfides in the FeS matrix. Therefore, FeS may be expected to attenuate the NP toxicity. This work assessed FeS as an attenuator of the methanogenic toxicity of Cu0 and ZnO NPs and their soluble salt analogs. The toxicity attenuation capacity of fine (25–75 µm) and coarse (500 to 1200 µm) preparations of FeS (FeS-f and FeS-c respectively) was tested in the presence of highly inhibitory concentrations of CuCl2, ZnCl2 Cu0 and ZnO NPs. FeS-f attenuated methanogenic toxicity better than FeS-c. The results revealed that 2.5× less FeS-f than FeS-c was required to recover the methanogenic activity to 50% (activity normalized to uninhibited controls). The results also indicated that a molar FeS-f/Cu0 NP, FeS-f/ZnO NP, FeS-f/ZnCl2, and FeS-f/CuCl2 ratio of 2.14, 2.14, 4.28, and 8.56 respectively, was necessary to recover the methanogenic activity to >75%. Displacement experiments demonstrated that CuCl2 and ZnCl2 partially displaced Fe from FeS. As a whole, the results indicate that not all the sulfide in FeS was readily available to react with the soluble Cu and Zn ions which may explain the need for a large stoichiometric excesses of FeS to highly attenuate Cu and Zn toxicity. Overall, this study provides evidence that FeS attenuates the toxicity caused by Cu0 and ZnO NPs and their soluble ion analogs to methanogens. PMID:26803736
Shukla, Mahendra; Jaiswal, Swati; Sharma, Abhisheak; Srivastava, Pradeep Kumar; Arya, Abhishek; Dwivedi, Anil Kumar; Lal, Jawahar
2017-05-01
Curcumin, the golden spice from Indian saffron, has shown chemoprotective action against many types of cancer including breast cancer. However, poor oral bioavailability is the major hurdle in its clinical application. In the recent years, self-nanoemulsifying drug delivery system (SNEDDS) has emerged as a promising tool to improve the oral absorption and enhancing the bioavailability of poorly water-soluble drugs. In this context, complexation with lipid carriers like phospholipid has also shown the tremendous potential to improve the solubility and therapeutic efficacy of certain drugs with poor oral bioavailability. In the present investigation, a systematic combination of both the approaches is utilized to prepare the phospholipid complex of curcumin and facilitate its incorporation into SNEDDS. The combined use of both the approaches has been explored for the first time to enhance the oral bioavailability and in turn increase the anticancer activity of curcumin. As evident from the pharmacokinetic studies and in situ single pass intestinal perfusion studies in Sprague-Dawley rats, the optimized SNEDDS of curcumin-phospholipid complex has shown enhanced oral absorption and bioavailability of curcumin. The cytotoxicity study in metastatic breast carcinoma cell line has shown the enhancement of cytotoxic action by 38.7%. The primary tumor growth reduction by 58.9% as compared with the control group in 4T1 tumor-bearing BALB/c mice further supported the theory of enhancement of anticancer activity of curcumin in SNEDDS. The developed formulation can be a potential and safe carrier for the oral delivery of curcumin.
Hatahet, T; Morille, M; Shamseddin, A; Aubert-Pouëssel, A; Devoisselle, J M; Bégu, S
2017-02-25
Quercetin is a plant flavonoid with strong antioxidant and antiinflammatory properties interesting for skin protection. However, its poor water solubility limits its penetration and so its efficiency on skin. For this purpose, quercetin lipid nanocapsules were formulated implementing phase inversion technique wherein several modifications were introduced to enhance quercetin loading. Quercetin lipid nanocapsules were formulated with two particle size range, (50nm and 20nm) allowing a drug loading of 18.6 and 32mM respectively. The successful encapsulation of quercetin within lipid nanocapsules increased its apparent water solubility by more than 5000 fold (from 0.5μg/ml to about 5mg/ml). The physicochemical properties of these formulations such as surface charge, stability and morphology were characterized. Lipid nanocapsules had spherical shape and were stable for 28days at 25°C. Quercetin release from lipid nanocapsules was studied and revealed a prolonged release kinetics during 24h. Using DPPH assay, we demonstrated that the formulation process of lipid nanocapsules did not modify the antioxidant activity of quercetin in vitro (92.3%). With the goal of a future dermal application, quercetin lipid nanocapsules were applied to THP-1 monocytes and proved the cellular safety of the formulation up to 2μg/ml of quercetin. Finally, formulated quercetin was as efficient as the crude form in the protection of THP-1 cells from oxidative stress by exogenous hydrogen peroxide. With its lipophilic nature and occlusive effect on skin, lipid nanocapsules present a promising strategy to deliver quercetin to skin tissue and can be of value for other poorly water soluble drug candidates. Copyright © 2016 Elsevier B.V. All rights reserved.
Potential of ordered mesoporous silica for oral delivery of poorly soluble drugs.
Vialpando, Monica; Martens, Johan A; Van den Mooter, Guy
2011-08-01
The use of ordered mesoporous silica is one of the more recent and rapidly developing formulation techniques for enhancing the solubility of poorly water-soluble drugs. Their large surface area and pore volume make ordered mesoporous silica materials excellent candidates for efficient drug loading and rapid release. While this new approach offers many promising advantages, further research is still necessary to elucidate the molecular mechanisms and to improve our scientific insight into the behavior of this system. In this review, the significant developments to date are presented and research challenges highlighted. Aspects of downstream processability are discussed in view of their special bulk powder properties and unique pore architecture. Lastly, perspectives for successful oral dosage form development are presented.
Kadam, Yogesh; Yerramilli, Usha; Bahadur, Anita
2009-08-01
The solubilization of a poorly water-soluble antiepileptic drug, carbamazepine (CBZ), in a series of micelle-forming PEO-PPO-PEO block copolymers with combinations of blocks having different molecular weight was studied. The drug solubility and micelle-water partition coefficient (P) were determined using UV-vis spectroscopy. Dynamic light scattering on copolymer solutions was used to measure size and polydispersity of nanoaggregates. Solubilization of carbamezapine increased with the rise in temperature and concentration of block copolymers, but no significant increase was observed with added salt (NaCl). The solubilization is also discussed from a thermodynamics viewpoint, by considering the standard free energy of solubilization (DeltaG degrees ).
Conjugation of curcumin onto alginate enhances aqueous solubility and stability of curcumin.
Dey, Soma; Sreenivasan, K
2014-01-01
Curcumin is a potential drug for various diseases including cancer. Prime limitations associated with curcumin are low water solubility, rapid hydrolytic degradation and poor bioavailability. In order to redress these issues we developed Alginate-Curcumin (Alg-Ccm) conjugate which was characterized by FTIR and (1)H NMR spectroscopy. The conjugate self-assembled in aqueous solution forming micelles with an average hydrodynamic diameter of 459 ± 0.32 nm and negative zeta potential. The spherical micelles were visualized by TEM. The critical micelle concentration (CMC) of Alg-Ccm conjugate was determined. A significant enhancement in the aqueous solubility of curcumin was observed upon conjugation with alginate. Formation of micelles improved the stability of curcumin in water at physiological pH. The cytotoxic activity of Alg-Ccm was quantified by MTT assay using L-929 fibroblast cells and it was found to be potentially cytotoxic. Hence, Alg-Ccm could be a promising drug conjugate as well as a nanosized delivery vehicle. Copyright © 2013 Elsevier Ltd. All rights reserved.
[Determination of solubility parameters of high density polyethylene by inverse gas chromatography].
Wang, Qiang; Chen, Yali; Liu, Ruiting; Shi, Yuge; Zhang, Zhengfang; Tang, Jun
2011-11-01
Inverse gas chromatographic (IGC) technology was used to determine the solubility parameters of high density polyethylene (HDPE) at the absolute temperatures from 303.15 to 343.15 K. Six solvents were applied as test probes including hexane (n-C6), heptane (n-C7), octane (n-C8), nonane (n-C9), chloroform (CHCl3) and ethyl acetate (EtAc). Some thermodynamic parameters were obtained by IGC data analysis such as the specific retention volumes of the solvents (V(0)(g)), the molar enthalpy of sorption (delta H(S)(1)), the partial molar enthalpy of mixing at infinite dilution (delta H(1)(infinity)), the molar enthalpy of vaporization (delta H(v)), the activity coefficients at infinite dilution (omega (1)(infinity)), and Flow-Huggins interaction parameters (X(1,2)(infinity)) between HDPE and probe solvents. The results showed that the above six probes are poor solvents for HDPE. The solubility parameter of HDPE at room temperature (298.15 K) was also derived as 19.00 (J/cm3)(0.5).
Ghosh, Pooja; Singha Roy, Atanu; Chaudhury, Susmitnarayan; Jana, Saikat Kumar; Chaudhury, Koel; Dasgupta, Swagata
2016-05-01
Fisetin is a well known flavonoid that shows several properties such as antioxidant, antiviral and anticancer activities. Its use in the pharmaceutical field is limited due to its poor aqueous solubility which results in poor bioavailability and poor permeability. The aim of our present study is to prepare fisetin loaded human serum albumin nanoparticles to improve its bioavailability. The nanoparticles were prepared by a desolvation method and characterized by spectroscopic and microscopic techniques. The particles were smooth and spherical in nature with an average size of 220 ± 8 nm. The encapsulation efficiency was found to be 84%. The in vitro release profile showed a biphasic pattern and the release rate increases with increase in ionic strength of solution. We have also confirmed the antioxidant activity of the prepared nanoparticles by a DPPH (2,2-diphenyl-1-picrylhydrazyl) assay. Further its anticancer activity was evaluated using MCF-7 breast cancer cell lines. Our findings suggest that fisetin loaded HSA nanoparticles could be used to transfer fisetin to target areas under specific conditions and thus may find use as a delivery vehicle for the flavonoid. Copyright © 2016 Elsevier B.V. All rights reserved.
Formulation of poorly water-soluble drugs via coacervation--a pilot study using febantel.
De Jaeghere, W; De Geest, B G; Van Bocxlaer, J; Remon, J P; Vervaet, C; Antunes da Fonseca, A
2013-11-01
In this study, febantel was dissolved under increased temperature in a nonionic surfactant Lutrol L44® and subsequently mixed into an aqueous maltodextrin solution. After 8h under static conditions, coacervation or phase separation took place. (1)H NMR spectra and HPLC analysis showed that the upper phase contained mainly all febantel, while no febantel was detected in the lower phase. Fluorescent microscopy showed that maltodextrin is distributed in the lower phase. Coacervation proved to be a promising formulation technology for certain poorly water-soluble drugs, such as febantel. The coacervate phase showed an increase in in vitro dissolution kinetics, compared to Rintal® granules. These results were confirmed in an in vivo study performed on dogs. Febantel and fenbendazole showed a significant increase in plasma concentration compared to Rintal® granules. Further studies have to be performed to transform coacervates into a solid dosage form and to prove broad applicability to other poorly soluble drugs. Copyright © 2013 Elsevier B.V. All rights reserved.
Oscarsson, Jan; Karched, Maribasappa; Thay, Bernard; Chen, Casey; Asikainen, Sirkka
2008-11-27
Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressive forms of periodontitis. Increasing evidence points to a link between periodontitis and cardiovascular diseases, however, the underlying mechanisms are poorly understood. This study investigated the pathogenic potential of free-soluble surface material, released from live planktonic and biofilm A. actinomycetemcomitans cells. By employing an ex vivo insert model (filter pore size 20 nm) we demonstrated that the A. actinomycetemcomitans strain D7S and its derivatives, in both planktonic and in biofilm life-form, released free-soluble surface material independent of outer membrane vesicles. This material clearly enhanced the production of several proinflammatory cytokines (IL-1 beta, TNF-alpha, IL-6, IL-8, MIP-1 beta) in human whole blood, as evidenced by using a cytokine antibody array and dissociation-enhanced-lanthanide-fluorescent-immunoassay. In agreement with this, quantitative real-time PCR indicated a concomitant increase in transcription of each of these cytokine genes. Experiments in which the LPS activity was blocked with polymyxin B showed that the stimulatory effect was only partly LPS-dependent, suggesting the involvement of additional free-soluble factors. Consistent with this, MALDI-TOF-MS and immunoblotting revealed release of GroEL-like protein in free-soluble form. Conversely, the immunomodulatory toxins, cytolethal distending toxin and leukotoxin, and peptidoglycan-associated lipoprotein, appeared to be less important, as evidenced by studying strain D7S cdt/ltx double, and pal single mutants. In addition to A. actinomycetemcomitans a non-oral species, Escherichia coli strain IHE3034, tested in the same ex vivo model also released free-soluble surface material with proinflammatory activity. A. actinomycetemcomitans, grown in biofilm and planktonic form, releases free-soluble surface material independent of outer membrane vesicles, which induces proinflammatory responses in human whole blood. Our findings therefore suggest that release of surface components from live bacterial cells could constitute a mechanism for systemic stimulation and be of particular importance in chronic localized infections, such as periodontitis.
Oscarsson, Jan; Karched, Maribasappa; Thay, Bernard; Chen, Casey; Asikainen, Sirkka
2008-01-01
Background Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressive forms of periodontitis. Increasing evidence points to a link between periodontitis and cardiovascular diseases, however, the underlying mechanisms are poorly understood. This study investigated the pathogenic potential of free-soluble surface material, released from live planktonic and biofilm A. actinomycetemcomitans cells. Results By employing an ex vivo insert model (filter pore size 20 nm) we demonstrated that the A. actinomycetemcomitans strain D7S and its derivatives, in both planktonic and in biofilm life-form, released free-soluble surface material independent of outer membrane vesicles. This material clearly enhanced the production of several proinflammatory cytokines (IL-1β, TNF-α, IL-6, IL-8, MIP-1β) in human whole blood, as evidenced by using a cytokine antibody array and dissociation-enhanced-lanthanide-fluorescent-immunoassay. In agreement with this, quantitative real-time PCR indicated a concomitant increase in transcription of each of these cytokine genes. Experiments in which the LPS activity was blocked with polymyxin B showed that the stimulatory effect was only partly LPS-dependent, suggesting the involvement of additional free-soluble factors. Consistent with this, MALDI-TOF-MS and immunoblotting revealed release of GroEL-like protein in free-soluble form. Conversely, the immunomodulatory toxins, cytolethal distending toxin and leukotoxin, and peptidoglycan-associated lipoprotein, appeared to be less important, as evidenced by studying strain D7S cdt/ltx double, and pal single mutants. In addition to A. actinomycetemcomitans a non-oral species, Escherichia coli strain IHE3034, tested in the same ex vivo model also released free-soluble surface material with proinflammatory activity. Conclusion A. actinomycetemcomitans, grown in biofilm and planktonic form, releases free-soluble surface material independent of outer membrane vesicles, which induces proinflammatory responses in human whole blood. Our findings therefore suggest that release of surface components from live bacterial cells could constitute a mechanism for systemic stimulation and be of particular importance in chronic localized infections, such as periodontitis. PMID:19038023
Pham, Anna C; Hong, Linda; Montagnat, Oliver; Nowell, Cameron J; Nguyen, Tri-Hung; Boyd, Ben J
2016-01-04
Lipid-based liquid crystalline systems based on the combination of digestible and nondigestible lipids have been proposed as potential sustained release delivery systems for oral delivery of poorly water-soluble drugs. The potential for cubic phase liquid crystal formation to induce dramatically extended gastric retention in vivo has been shown previously to strongly influence the resulting pharmacokinetics of incorporated drug. In vitro studies showing the in situ formation of cubic phase from a disordered precursor comprising a mixture of digestible and nondigestible lipids under enzymatic digestion have also recently been reported. Combining both concepts, here we show the potential for such systems to form in vivo, increasing gastric retention, and providing a sustained release effect for a model poorly water-soluble drug cinnarizine. A mixture of phytantriol and tributyrin at an 85:15 mass ratio, shown previously to form cubic phase under the influence of digestion, induced a similar pharmacokinetic profile to that in the absence of tributyrin, but completely different from tributyrin alone. The gastric retention of the formulation, assessed using micro-X-ray CT imaging, was also consistent with the pharmacokinetic behavior, where phytantriol alone and with 15% tributyrin was greater than that of tributyrin in the absence of phytantriol. Thus, the concept of precursor lipid systems that form cubic phase in situ during digestion in vivo has been demonstrated and opens new opportunities for sustained release of poorly water-soluble drugs.
Rao, Venkatramana M; Zannou, Erika A; Stella, Valentino J
2011-04-01
The challenge of designing a delayed-release oral dosage form is significantly increased when the drug substance is poorly water soluble. This manuscript describes the design and characterization of a novel controlled-release film-coated tablet for the pH-triggered delayed and complete release of poorly water-soluble weak base drugs. Delivery of weak bases is specifically highlighted with the use of dipyridamole and prazosin as model compounds. Tailored delayed release is achieved with a combination of an insoluble but semipermeable polymer and an enteric polymer, such as cellulose acetate and hydroxypropyl cellulose phthalate, respectively, as coatings. The extent of the time lag prior to complete release depends on the film-coating composition and thickness. Complete release is achieved by the addition of a cyclodextrin, namely SBE7M-β-CD with or without a pH modifier added to the tablet core to ensure complete solubilization and release of the drug substance. The film-coating properties allow the complex formation/solubilization to occur in situ. Additionally, the drug release rate can be modulated on the basis of the cyclodextrin to drug molar ratio. This approach offers a platform technology for delayed release of potent but poorly soluble drugs and the release can be modulated by adjusting the film-coating composition and thickness and/or the cyclodextrin and pH modifier, if necessary. Copyright © 2010 Wiley-Liss, Inc.
Gyanani, Vijay; Siddalingappa, Basavaraj; Betageri, Guru V
2015-01-01
Insoluble drugs often formulated with various excipients to enhance the dissolution. Cyclodextrins (CDs) are widely used excipients to improve dissolution profile of poorly soluble drugs. Drug-CD complexation process is complex and often requires multiple processes to produce solid dosage form. Hence, this study explored commonly used granulation processes for simultaneous complexation and granulation. Poorly soluble drugs ibuprofen and glyburide were selected as experimental drugs. Co-evaporation of drug:CD mixture from a solvent followed by wet granulation with water was considered as standard process for comparison. Spray granulation and fluid bed processing (FBP) using drug:CD solution in ethanol were evaluated as an alternative processes. The dissolution data of glyburide tablets indicated that tablets produced by spray granulation, FBP and co-evaporation-granulation have almost identical dissolution profile in water and 0.1% SLS (>70% in water and >60% in SLS versus 30 and 34%, respectively for plain tablet, in 120 min). Similarly, ibuprofen:CD tablets produced by co-evaporation-granulation and FBP displayed similar dissolution profile in 0.01 M HCl (pH 2.0) and buffer pH 5.5 (>90 and 100% versus 44 and 80% respectively for plain tablets, 120 min). Results of this study demonstrated that spray granulation is simple and cost effective process for low dose poorly soluble drugs to incorporate drug:CD complex into solid dosage form, whereas FBP is suitable for poorly soluble drugs with moderate dose.
Indulkar, Anura S; Box, Karl J; Taylor, Robert; Ruiz, Rebeca; Taylor, Lynne S
2015-07-06
Supersaturated solutions of poorly aqueous soluble drugs can be formed both in vivo and in vitro. For example, increases in pH during gastrointestinal transit can decrease the aqueous solubility of weakly basic drugs resulting in supersaturation, in particular when exiting the acidic stomach environment. Recently, it has been observed that highly supersaturated solutions of drugs with low aqueous solubility can undergo liquid-liquid phase separation (LLPS) prior to crystallization, forming a turbid solution such that the concentration of the drug in the continuous solution phase corresponds to the amorphous solubility while the colloidal phase is composed of a disordered drug-rich phase. Although it is well established that the equilibrium solubility of crystalline weakly basic drugs follows the Henderson-Hasselbalch relationship, the impact of pH on the LLPS phenomenon or the amorphous solubility has not been explored. In this work, the LLPS concentration of three weakly basic compounds-clotrimazole, nicardipine, and atazanavir-was determined as a function of pH using three different methods and was compared to the predicted amorphous solubility, which was calculated from the pH-dependent crystalline solubility and by estimating the free energy difference between the amorphous and crystalline forms. It was observed that, similar to crystalline solubility, the experimental amorphous solubility at any pH follows the Henderson-Hasselbalch relation and can be predicted if the amorphous solubility of the free base is known. Excellent agreement between the LLPS concentration and the predicted amorphous solubility was observed. Dissolution studies of amorphous drugs showed that the solution concentration can reach the corresponding LLPS concentration at that pH. Solid-state analysis of the precipitated material confirmed the amorphous nature. This work provides insight into the pH-dependent precipitation behavior of poorly water-soluble compounds and provides a fundamental basis with which to understand the performance of supersaturating dosage forms.
2017-01-01
The absorption of poorly water-soluble drugs is influenced by the luminal gastrointestinal fluid content and composition, which control solubility. Simulated intestinal fluids have been introduced into dissolution testing including endogenous amphiphiles and digested lipids at physiological levels; however, in vivo individual variation exists in the concentrations of these components, which will alter drug absorption through an effect on solubility. The use of a factorial design of experiment and varying media by introducing different levels of bile, lecithin, and digested lipids has been previously reported, but here we investigate the solubility variation of poorly soluble drugs through more complex biorelevant amphiphile interactions. A four-component mixture design was conducted to understand the solubilization capacity and interactions of bile salt, lecithin, oleate, and monoglyceride with a constant total concentration (11.7 mM) but varying molar ratios. The equilibrium solubility of seven low solubility acidic (zafirlukast), basic (aprepitant, carvedilol), and neutral (fenofibrate, felodipine, griseofulvin, and spironolactone) drugs was investigated. Solubility results are comparable with literature values and also our own previously published design of experiment studies. Results indicate that solubilization is not a sum accumulation of individual amphiphile concentrations, but a drug specific effect through interactions of mixed amphiphile compositions with the drug. This is probably due to a combined interaction of drug characteristics; for example, lipophilicity, molecular shape, and ionization with amphiphile components, which can generate specific drug–micelle affinities. The proportion of each component can have a remarkable influence on solubility with, in some cases, the highest and lowest points close to each other. A single-point solubility measurement in a fixed composition simulated media or human intestinal fluid sample will therefore provide a value without knowledge of the surrounding solubility topography meaning that variability may be overlooked. This study has demonstrated how the amphiphile ratios influence drug solubility and highlights the importance of the envelope of physiological variation when simulating in vivo drug behavior. PMID:28749696
USDA-ARS?s Scientific Manuscript database
Albendazole (ABZ), a benzimidazole widely used to control gastrointestinal parasites is poorly soluble in water, resulting in variable and incomplete bioavailability, which has favored the appearance of parasite resistance and, consequently, clinical ineffectiveness. Among the pharmaceutical techniq...
Yamashita, Hiroyuki; Sun, Changquan Calvin
2017-12-29
The use of soluble cocrystals is a promising strategy for delivering poorly soluble drugs. However, precipitation of poorly soluble crystal form during dissolution hinders the successful tablet development of cocrystals. This work was aimed to understand the mechanisms for improving dissolution performance of a soluble cocrystals by using excess coformer. A highly soluble carbamazepine (CBZ) cocrystal with- glutaric acid (GLA) was studied. Impact of excess GLA on solubility and intrinsic dissolution rate (IDR) was assessed. Viscosity of GLA solutions was also measured. Solid form of powders and pellets was examined using powder X-ray diffractometry. IDRs of cocrystal and GLA mixtures in different ratios were measured to identify a suitable formulation for maintaining high dissolution rate of CBZ-GLA in an aqueous environment. IDR of CBZ-GLA in a pH 1.2 HCl solution was improved when GLA was present in the solution. Precipitation of CBZ·2H 2 O was eliminated when GLA concentration was ≥100 mg/mL. The improved IDR was accompanied by higher solubility of CBZ in GLA solution and increased solution viscosity. The trend in IDR profile matched well with the solubility profile normalized by solution viscosity. Mixture of cocrystal and GLA led to improved IDR in simulated intestinal fluid. The excess GLA increased the aqueous solubility of CBZ·2H 2 O and, thereby, reduced the propensity to precipitation of CBZ·2H 2 O during dissolution by lowering the degree of supersaturation. This strategy allowed development of a CBZ-GLA formulation with a significantly enhanced dissolution rate than CBZ-GLA.
β-Cyclodextrin-dextran polymers for the solubilization of poorly soluble drugs.
di Cagno, Massimiliano; Terndrup Nielsen, Thorbjørn; Lambertsen Larsen, Kim; Kuntsche, Judith; Bauer-Brandl, Annette
2014-07-01
The aim of this study was to assess the potential of novel β-cyclodextrin (βCD)-dextran polymers for drug delivery. The size distribution of βCD-dextrans (for eventual parenteral administration), the influence of the dextran backbones on the stability of the βCD/drug complex, the solubilization efficiency of poorly soluble drugs and drug release properties were investigated. Size analysis of different βCD-dextrans was measured by size exclusion chromatography (SEC) and asymmetrical flow field-flow fractionation (AF4). Stability of drug/βCD-dextrans was assessed by isothermal titration calorimetry (ITC) and molar enthalpies of complexation and equilibrium constants compared to some commercially available βCD derivatives. For evaluation of the solubilization efficiency, phase-solubility diagrams were made employing hydrocortisone (HC) as a model of poorly soluble drugs, whereas reverse dialysis was used to detect potential drug supersaturation (increased molecularly dissolved drug concentration) as well as controlled release effects. Results indicate that all investigated βCD-polymers are of appropriate sizes for parenteral administration. Thermodynamic results demonstrate that the presence of the dextran backbone structure does not affect the stability of the βCD/drug complex, compared to native βCD and commercially available derivatives. Solubility studies evidence higher solubilizing abilities of these new polymers in comparison to commercially available βCDs, but no supersaturation states were induced. Moreover, drug release studies evidenced that diffusion of HC was influenced by the solubilization induced by the βCD-derivatives. Copyright © 2014 Elsevier B.V. All rights reserved.
The Link between low H2O Activity and Chloride Brines in High-Grade Metamorphism - A Status Report
NASA Astrophysics Data System (ADS)
Manning, C. E.; Newton, R. C.
2006-12-01
High-grade metamorphic mineral assemblages typically record low activity of H2O (aH2O) at peak conditions. Substantial debate has centered on whether low aH2O requires the presence of a hydrous melt or of a fluid phase. Lowering aH2O in a fluid phase by CO2 is problematic because (1) at requisite compositions and observed fO2, graphite should be stable but is not observed; and (2) H2O-CO2 fluids are poor solvents for many of the components observed to be mobile at the amphibolite-granulite transition. In contrast, chloride brines are more likely to be responsible for reduced aH2O where a fluid phase is present (e.g., Newton et al., 1998, Precambrian Res., 91, 41). However, the properties of such brines are poorly understood at high P and T. We are addressing this problem through a program of experimental measurement of mineral solubilities in NaCl-H2O solutions at high P and T. Results indicate that, at 800°C and 10 kbar, solubilities of volatile-bearing, congruently soluble Ca minerals increase strongly with NaCl to halite saturation. At XNaCl = 0.3 (assuming full dissociation), Ca mole fractions in solutions increase as follows: 0.0012 (apatite), 0.0075 (fluorite), 0.0107 (calcite), 0.0513 (anhydrite). Because solubilities of F, CO2, and SO4 will increase correspondingly, H2O-NaCl brines will promote significant volatile transfer. By contrast, oxides exhibit variable behavior. At the same P and T, quartz solubility decreases monotonically with increasing NaCl, whereas corundum, hematite, wollastonite, diopside, and grossular mole fractions all increase to maxima at low to moderate XNaCl, and then decline to halite saturation. These results indicate that SiO2 does not ineract with NaCl, whereas the dissolution of the other minerals involves consumption of NaCl by solutes to a greater extent than H2O. Notably, solubility of Al is strongly enhanced in NaCl-H2O with SiO2 ± CaO. It is unlikely that all instances of low aH2O in high-grade metamorphic rocks are explained by a single mechanism; however, our results clearly demonstrate that, where present, a low- aH2O chloride brine can act as a powerful solvent in the lower crust, even at very low water-rock ratios.
Fong, Sophia Yui Kau; Ibisogly, Asiye; Bauer-Brandl, Annette
2015-12-30
The poor aqueous solubility of BCS Class II drugs represents a major challenge for oral dosage form development. Using celecoxib (CXB) as model drug, the current study adopted a novel solid phospholipid nanoparticle (SPLN) approach and compared the effect of two commonly used industrial manufacturing methods, spray- and freeze-drying, on the solubility and dissolution enhancement of CXB. CXB was formulated with Phospholipoid E80 (PL) and trehalose at different CXB:PL:trehalose ratios, of which 1:10:16 was the optimal formulation. Spherical amorphous SPLNs with average diameters <1μm were produced by spray-drying; while amorphous 'matrix'-like structures of solid PL dispersion with larger particle sizes were prepared by freeze-drying. Formulations from both methods significantly enhanced the dissolution rates, apparent solubility, and molecularly dissolved concentration of CXB in phosphate buffer (PBS, pH 6.5) and in biorelevant fasted state simulated intestinal fluid (FaSSIF, pH 6.5) (p<0.05). While similar dissolution rates were found, the spray-dried SPLNs had a larger enhancement in apparent solubility (29- to 132-fold) as well as molecular solubility (18-fold) of CXB at equilibrium (p<0.05). The strong capability of the spray-dried SPLNs to attain 'true' supersaturation state makes them a promising approach for bioavailability enhancement of poorly soluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.
Amino acids as promoieties in prodrug design and development.
Vig, Balvinder S; Huttunen, Kristiina M; Laine, Krista; Rautio, Jarkko
2013-10-01
Prodrugs are biologically inactive agents that upon biotransformation in vivo result in active drug molecules. Since prodrugs might alter the tissue distribution, efficacy and the toxicity of the parent drug, prodrug design should be considered at the early stages of preclinical development. In this regard, natural and synthetic amino acids offer wide structural diversity and physicochemical properties. This review covers the use of amino acid prodrugs to improve poor solubility, poor permeability, sustained release, intravenous delivery, drug targeting, and metabolic stability of the parent drug. In addition, practical considerations and challenges associated with the development of amino acid prodrugs are also covered. Copyright © 2012 Elsevier B.V. All rights reserved.
Loret, Thomas; Peyret, Emmanuel; Dubreuil, Marielle; Aguerre-Chariol, Olivier; Bressot, Christophe; le Bihan, Olivier; Amodeo, Tanguy; Trouiller, Bénédicte; Braun, Anne; Egles, Christophe; Lacroix, Ghislaine
2016-11-03
Recently, much progress has been made to develop more physiologic in vitro models of the respiratory system and improve in vitro simulation of particle exposure through inhalation. Nevertheless, the field of nanotoxicology still suffers from a lack of relevant in vitro models and exposure methods to predict accurately the effects observed in vivo, especially after respiratory exposure. In this context, the aim of our study was to evaluate if exposing pulmonary cells at the air-liquid interface to aerosols of inhalable and poorly soluble nanomaterials generates different toxicity patterns and/or biological activation levels compared to classic submerged exposures to suspensions. Three nano-TiO 2 and one nano-CeO 2 were used. An exposure system was set up using VitroCell® devices to expose pulmonary cells at the air-liquid interface to aerosols. A549 alveolar cells in monocultures or in co-cultures with THP-1 macrophages were exposed to aerosols in inserts or to suspensions in inserts and in plates. Submerged exposures in inserts were performed, using similar culture conditions and exposure kinetics to the air-liquid interface, to provide accurate comparisons between the methods. Exposure in plates using classical culture and exposure conditions was performed to provide comparable results with classical submerged exposure studies. The biological activity of the cells (inflammation, cell viability, oxidative stress) was assessed at 24 h and comparisons of the nanomaterial toxicities between exposure methods were performed. Deposited doses of nanomaterials achieved using our aerosol exposure system were sufficient to observe adverse effects. Co-cultures were more sensitive than monocultures and biological responses were usually observed at lower doses at the air-liquid interface than in submerged conditions. Nevertheless, the general ranking of the nanomaterials according to their toxicity was similar across the different exposure methods used. We showed that exposure of cells at the air-liquid interface represents a valid and sensitive method to assess the toxicity of several poorly soluble nanomaterials. We underlined the importance of the cellular model used and offer the possibility to deal with low deposition doses by using more sensitive and physiologic cellular models. This brings perspectives towards the use of relevant in vitro methods of exposure to assess nanomaterial toxicity.
Solaiman, Amanda; Tatari, Adam Keenan; Elkordy, Amal Ali
2017-07-01
Poor drug solubility and dissolution rate remain to be one of the major problems facing pharmaceutical scientists, with approximately 40% of drugs in the industry categorised as practically insoluble or poorly water soluble. This in turn can lead to serious delivery challenges and poor bioavailability. The aim of this research was to investigate the effects of the surfactants, poloxamer 407 (P407) and caprol® PGE 860 (CAP), at various concentrations (0.1, 0.5, 1 and 3% w/v) on the enhancement of the dissolution properties of poorly water-soluble drug, naproxen, using in situ micronisation by solvent change method and freeze-drying. The extent at which freeze-drying influences the dissolution rate of naproxen microcrystals is investigated in this study by comparison with desiccant-drying. All formulations were evaluated and characterised using particle size analysis and morphology, in vitro dissolution studies, differential scanning calorimetry (DSC), and Fourier transform infra-red (FT-IR) spectroscopy. An increase in poloxamer 407 concentration in freeze-dried formulations led to enhancement of drug dissolution compared to desiccator-dried formulations, naproxen/caprol® PGE 860 formulations and untreated drug. DSC and FT-IR results show no significant chemical interactions between drug and poloxamer 407, with only very small changes to drug crystallinity. On the other hand, caprol® PGE 860 showed some interactions with drug components, alterations to the crystal lattice of naproxen, and poor dissolution profiles using both drying methods, making it a poor choice of excipient.
Yi, Tao; Wan, Jiangling; Xu, Huibi; Yang, Xiangliang
2008-08-07
The objective of this work was the development of a controlled release system based on self-microemulsifying mixture aimed for oral delivery of poorly water-soluble drugs. HPMC-based particle formulations were prepared by spray drying containing a model drug (nimodipine) of low water solubility and hydroxypropylmethylcellulose (HPMC) of high viscosity. One type of formulations contained nimodipine mixed with HPMC and the other type of formulations contained HPMC and nimodipine dissolved in a self-microemulsifying system (SMES) consisting of ethyl oleate, Cremophor RH 40 and Labrasol. Based on investigation by transmission electron microscopy (TEM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray powder diffraction, differences were found in the particle structure between both types of formulations. In vitro release was performed and characterized by the power law. Nimodipine release from both types of formulations showed a controlled release profile and the two power law parameters, n and K, correlated to the viscosity of HPMC. The parameters were also influenced by the presence of SMES. For the controlled release solid SMES, oil droplets containing dissolved nimodipine diffused out of HPMC matrices following exposure to aqueous media. Thus, it is possible to control the in vitro release of poorly soluble drugs from solid oral dosage forms containing SMES.
NASA Astrophysics Data System (ADS)
de Azevedo Jacqueline, Resende; Fabienne, Espitalier; Jean-Jacques, Letourneau; Inês, Ré Maria
2017-08-01
LASSBio-294 (3,4-methylenedioxybenzoyl-2-thienylhydrazon) is a poorly soluble drug which has been proposed to have major advantages over other cardiotonic drugs. Poorly water soluble drugs present limited bioavailability due to their low solubility and dissolution rate. An antisolvent crystallization processing can improve the dissolution rate by decreasing the crystals particle size. However, LASSBio-294 is also poorly soluble in organic solvents and this operation is limited. In order to open new perspectives to improve dissolution rate, this work has investigated LASSBio-294 in terms of its antisolvent crystallization in 1-ethyl-3-methylimidazolium methyl phosphonate [emim][CH3O(H)PO2] as solvent and water as antisolvent. Two modes of mixing are tested in stirred vessel with different pre-mixers (Roughton or T-mixers) in order to investigate the mixing effect on the crystal properties (crystalline structure, particle size distribution, residual solvent and in vitro dissolution rate). Smaller drug particles with unchanged crystalline structure were obtained. Despite the decrease of the elementary particles size, the recrystallized particles did not achieve a better dissolution profile. However, this study was able to highlight a certain number of findings such as the impact of the hydrodynamic conditions on the crystals formation and the presence of a gel phase limiting the dissolution rate.
Jagannathan, Ramya; Abraham, Priya Mary; Poddar, Pankaj
2012-12-20
In curcumin, keto-enol-enolate equilibrium of the heptadiene-dione moiety determines its physiochemical and antioxidant properties. However, its poor solubility in water at neutral pH and room temperature decreases its bioavailability. Potential therapeutic applications have triggered an interest in manipulating the solubility of curcumin in water as its stability and solubility in water remains poorly understood. Here, the mechanism behind its solubility at various temperatures and the influence of interplay of temperature, intramolecular H-bonding, and intermolecular forces is reported, which leads to aggregation-disaggregation at various temperatures. Remarkable change is observed in temperature-dependent electronic transition behavior of curcumin, however, the absorption spectra after cooling and heating cycles remain unchanged, hinting much better thermal stability of curcumin in water than previously thought. This study indicates that it is perhaps the breaking of intramolecular hydrogen bonding which leads to exposure of polar groups and hence responsible for the dissolution of curcumin at higher temperature. The formation of intermolecular aggregates might be responsible behind a better room temperature stability of the molecules after cooling its aqueous suspension from 90 to 25 °C. These curcumin solubility studies have great application in biological research with reference to bioavailability and to understand target oriented mode of action of curcumin.
Polymeric Micelles as Novel Carriers for Poorly Soluble Drugs--A Review.
Reddy, B Pavan Kumar; Yadav, Hemant K S; Nagesha, Dattatri K; Raizaday, Abhay; Karim, Abdul
2015-06-01
Polymeric micelles are used as 'smart drug carriers' for targeting certain areas of the body by making them stimuli-sensitive or by attachment of a specific ligand molecule onto their surface. The main aim of using polymeric micelles is to deliver the poorly water soluble drugs. Now-a-days they are used especially in the areas of cancer therapy also. In this article we have reviewed several aspects of polymeric micelles concerning their mechanism of formation, chemical nature, preparation and characterization techniques, and their applications in the areas of drug delivery.
Lu, Ming; Guo, Zhefei; Li, Yongcheng; Pang, Huishi; Lin, Ling; Liu, Xu; Pan, Xin; Wu, Chuanbin
2014-01-01
Hot melt extrusion (HME) is a powerful technology to enhance the solubility and bioavailability of poorly water-soluble drugs by producing amorphous solid dispersions. Although the number of articles and patents about HME increased dramatically in the past twenty years, there are very few commercial products by far. The three main obstacles limiting the commercial application of HME are summarized as thermal degradation of heat-sensitive drugs at high process temperature, recrystallization of amorphous drugs during storage and dissolving process, and difficulty to obtain products with reproducible physicochemical properties. Many efforts have been taken in recent years to understand the basic mechanism underlying these obstacles and then to overcome them. This article reviewed and summarized the limitations, recent advances, and future prospects of HME.
Shakeel, Faiyaz; Haq, Nazrul; Alanazi, Fars K; Alsarra, Ibrahim A
2017-05-15
The solubility data of recently launched poorly soluble antipsoriatic drug apremilast (APM) in any mono solvent or cosolvent mixtures with respect to temperature are not available in literature. Hence, in this research work, the solubility of APM in twelve different mono solvents namely "water, methanol, ethanol, isopropanol (IPA), ethylene glycol (EG), propylene glycol (PG), 1-butanol, 2-butanol, ethyl acetate (EA), dimethyl sulfoxide (DMSO), polyethylene glycol-400 (PEG-400) and Transcutol ® " was determined at temperatures "T=298.2K to 318.2K" and pressure "p=0.1 MPa". Eexperimental solubilities of APM in mole fraction were determined by a static equilibrium method using high performance liquid chromatography at 254nm. Experimental solubilities of APM in mole fraction were correlated well with "Van't Hoff and Apelblat models". The solubilities of APM in mole fraction were recorded highest in DMSO (9.91×10 -2 ), followed by EA (2.54×10 -2 ), Transcutol (2.51×10 -2 ), PEG-400 (2.16×10 -2 ),PG (4.01×10 -3 ), EG (1.61×10 -3 ), IPA (4.96×10 -4 ), 1-butanol (4.18×10 -4 ), 2-butanol (3.91×10 -4 ), methanol (2.25×10 -4 ), ethanol (2.20×10 -4 ) and water (1.29×10 -6 ) at "T=318.2K" and similar results were also obtained at each temperature evaluated. The molecular interactions between solute and solvent molecules were evaluated by the determination of activity coefficients. Based on activity coefficients, the higher solute-solvents molecular interactions were recorded in APM-DMSO, APM-EA, APM-Transcutol and APM-PEG-400 in comparison with other combination of solute and solvents. "Apparent standard thermodynamic parameters" of APM indicated an "endothermic and entropy-driven dissolution" of APM in all mono solvents evaluated. Based on these results, APM was proposed as freely soluble in DMSO, EA and Transcutol, sparingly soluble in PEG0-400, slightly soluble in methanol, ethanol, IPA, EG, PG, 1-butanol and 2-butanol and practically insoluble in water. Hence, DMSO, EA and Transcutol were selected as the best solvents and water and ethanol were selected as the anti-solvents for APM. Copyright © 2017 Elsevier B.V. All rights reserved.
Mun, Jiyoung; Jabbar, Adnan Abdul; Devi, Narra Sarojini; Yin, Shaoman; Wang, Yingzhe; Tan, Chalet; Culver, Deborah; Snyder, James P.; Van Meir, Erwin G.; Goodman, Mark M.
2013-01-01
The Hypoxia Inducible Factor (HIF) pathway is an attractive target for cancer as it controls tumor adaptation to growth under hypoxia and mediates chemo- and radiation resistance. We previously discovered 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide, as a novel small molecule HIF-1 pathway inhibitor in a high-throughput cell-based assay, but its in vivo delivery is hampered by poor aqueous solubility (0.009 μM in water; logP7.4: 3.7). Here we describe the synthesis of twelve N-alkyl-N-[(8-R-2,2-dimethyl-2H-chromen-6-yl)methyl]heteroarylsulfonamides, which were designed to possess optimal lipophilicities and aqueous solubilities by in silico calculations. Experimental logP7.4 values of 8 of the 12 new analogs ranged from 1.2 ∼ 3.1. Aqueous solubilities of 3 analogs were measured, among which the most soluble N-[(8-methoxy-2,2-dimethyl-2H-chromen-6-yl)methyl]-N-(propan-2-yl)pyridine-2-sulfonamide had an aqueous solubility of 80 μM, e.g. a solubility improvement of ∼9,000-fold. The pharmacological optimization had minimal impact on drug efficacy as the compounds retained IC50 values at or below 5 μM in our HIF-dependent reporter assay. PMID:22746274
Muhammad Sarfraz, Rai; Bashir, Sajid; Mahmood, Asif; Ahsan, Haseeb; Riaz, Humayun; Raza, Hina; Rashid, Zermina; Atif Raza, Syed; Asad Abrar, Muhammad; Abbas, Khawar; Yasmeen, Tahira
2017-03-01
Solubility is concerned with solute and solvent to form a homogenous mixture. If solubility of a drug is low, then usually it is difficult to achieve desired therapeutic level of drug. Most of the newly developed entities have solubility problems and encounter difficulty in dissolution. Basic aim of solubility enhancement is to achieve desired therapeutic'level of drug to produce required pharmacological response. Different techniques are being used to enhance the solubility of water insoluble drugs. These techniques include particle size reduction, spray drying, kneading method, solvent evaporation method, salt formation, microemulsions, co-solven- cy, hydrosols, prodrug approach, supercritical fluid process, hydrogel micro particles etc. Selection of solubility improving method depends on drug properties, site of absorption, and required dosage form characteristics. Variety of polymers are also used to enhance solubility of these drugs like polyethylene glycol 300, polyvinyl pyrrolidone, chitosan, β-cyclodextrins etc.
Prodrug Strategies for Paclitaxel.
Meng, Ziyuan; Lv, Quanxia; Lu, Jun; Yao, Houzong; Lv, Xiaoqing; Jiang, Feng; Lu, Aiping; Zhang, Ge
2016-05-23
Paclitaxel is an anti-tumor agent with remarkable anti-tumor activity and wide clinical uses. However, it is also faced with various challenges especially for its poor water solubility and low selectivity for the target. To overcome these disadvantages of paclitaxel, approaches using small molecule modifications and macromolecule modifications have been developed by many research groups from all over the world. In this review, we discuss the different strategies especially prodrug strategies that are currently used to make paclitaxel more effective.
Krull, Scott M; Moreno, Jacqueline; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N
2017-05-15
Polymer strip films have emerged as a robust platform for poorly water-soluble drug delivery. However, the common conception is that films cannot exceed low drug loadings, mainly due to poor drug stability, slow release, and film brittleness. This study explores the ability to achieve high loadings of poorly water-soluble drug nanoparticles in strip films while retaining good mechanical properties and enhanced dissolution rate. Aqueous suspensions containing up to 30wt% griseofulvin nanoparticles were prepared via wet stirred media milling and incorporated into hydroxypropyl methylcellulose (HPMC) films. Griseofulvin loading in films was adjusted to be between 9 and 49wt% in HPMC-E15 films and 30 and 73wt% in HPMC-E4M films by varying the mixing ratio of HPMC solution-to-griseofulvin suspension. All films exhibited good content uniformity and nanoparticle redispersibility up to 50wt% griseofulvin, while E4M films above 50wt% griseofulvin had slightly worse content uniformity and poor nanoparticle redispersibility. Increasing drug loading in films generally required more time to achieve 100% release during dissolution, although polymer-drug clusters dispersed from E4M films above 50wt% griseofulvin, resulting in similar dissolution profiles. While all films exhibited good tensile strength, a significant decrease in percent elongation was observed above 40-50wt% GF, resulting in brittle films. Copyright © 2017 Elsevier B.V. All rights reserved.
Lakshman, Jay P; Cao, Yu; Kowalski, James; Serajuddin, Abu T M
2008-01-01
Formulation of active pharmaceutical ingredients (API) in high-energy amorphous forms is a common strategy to enhance solubility, dissolution rate and, consequently, oral bioavailability of poorly water-soluble drugs. Amorphous APIs are, however, susceptible to recrystallization and, therefore, there is a need to physically stabilize them as solid dispersions in polymeric carriers. Hot melt extrusion has in recent years gained wide acceptance as a method of choice for the preparation of solid dispersions. There is a potential that the API, the polymer or both may degrade if excessively high temperature is needed in the melt extrusion process, especially when the melting point of the API is high. This report details a novel method where the API was first converted to an amorphous form by solvent evaporation and then melt-extruded with a suitable polymer at a drug load of at least 20% w/w. By this means, melt extrusion could be performed much below the melting temperature of the drug substance. Since the glass transition temperature of the amorphous drug was lower than that of the polymer used, the drug substance itself served as the plasticizer for the polymer. The addition of surfactants in the matrix enhanced dispersion and subsequent dissolution of the drug in aqueous media. The amorphous melt extrusion formulations showed higher bioavailability than formulations containing the crystalline API. There was no conversion of amorphous solid to its crystalline form during accelerated stability testing of dosage forms.
Chuan, Li; Jia, Zhang; Yu-Jiao, Zu; Shu-Fang, Nie; Jun, Cao; Qian, Wang; Shao-Ping, Nie; Ze-Yuan, Deng; Ming-Yong, Xie; Shu, Wang
2017-01-01
Many phytochemicals show promise in cancer prevention and treatment, but their low aqueous solubility, poor stability, unfavorable bioavailability, and low target specificity make administering them at therapeutic doses unrealistic. This is particularly true for (–)-epigallocatechin gallate, curcumin, quercetin, resveratrol, and genistein. There is an increasing interest in developing novel delivery strategies for these natural products. Liposomes, micelles, nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers and poly (lactide-co-glycolide) nanoparticles are biocompatible and biodegradable nanoparticles. Those nanoparticles can increase the stability and solubility of phytochemicals, exhibit a sustained release property, enhance their absorption and bioavailability, protect them from premature enzymatic degradation or metabolism, prolong their circulation time, improve their target specificity to cancer cells or tumors via passive or targeted delivery, lower toxicity or side-effects to normal cells or tissues through preventing them from prematurely interacting with the biological environment, and enhance anti-cancer activities. Nanotechnology opens a door for developing phytochemical-loaded nanoparticles for prevention and treatment of cancer. PMID:26412423
Miwa, Yasushi; Hamamoto, Hidetoshi; Ishida, Tatsuhiro
2016-05-01
Poor transdermal penetration of active pharmaceutical ingredients (APIs) impairs both bioavailability and therapeutic benefits and is a major challenge in the development of transdermal drug delivery systems. Here, we transformed a poorly water-soluble drug, etodolac, into an ionic liquid in order to improve its hydrophobicity, hydrophilicity and skin permeability. The ionic liquid was prepared by mixing etodolac with lidocaine (1:1, mol/mol). Both the free drug and the transformed ionic liquid were characterized by differential scanning colorimetry (DSC), infrared spectroscopy (IR), and saturation concentration measurements. In addition, in vitro skin-permeation testing was carried out via an ionic liquid-containing patch (Etoreat patch). The lidocaine and etodolac in ionic liquid form led to a relatively lower melting point than either lidocaine or etodolac alone, and this improved the lipophilicity/hydrophilicity of etodolac. In vitro skin-permeation testing demonstrated that the Etoreat patch significantly increased the skin permeation of etodolac (9.3-fold) compared with an etodolac alone patch, although an Etoreat patch did not increase the skin permeation of lidocaine, which was consistent with the results when using a lidocaine alone patch. Lidocaine appeared to self-sacrificially improve the skin permeation of etodolac via its transformation into an ionic liquid. The data suggest that ionic liquids composed of approved drugs may substantially expand the formulation preparation method to meet the challenges of drugs which are characterized by poor rates of transdermal absorption. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Improving permeability and oral absorption of mangiferin by phospholipid complexation.
Ma, Hequn; Chen, Hongming; Sun, Le; Tong, Lijin; Zhang, Tianhong
2014-03-01
Mangiferin is an active ingredient of medicinal plant with poor hydrophilicity and lipophilicity. Many reports focused on improving aqueous solubility, but oral bioavailability of mangiferin was still limited. In this study, we intended to increase not only solubility, but also membrane permeability of mangiferin by a phospholipid complexation technique. The new complex's physicochemical properties were characterized in terms of scanning electron microscopy (SEM), differential scanning calorimetry (DSC), infrared absorption spectroscopy (IR), aqueous solubility, oil-water partition coefficient and in vitro dissolution. The intestinal absorption of the complex was studied by the rat in situ intestinal perfusion model. After oral administration of mangiferin-phospholipid complex and crude mangiferin in rats, the concentrations of mangiferin were determined by a validated RP-HPLC method. Results showed that the solubility of the complex in water and in n-octanol was enhanced and the oil-water partition coefficient was improved by 6.2 times and the intestinal permeability in rats was enhanced significantly. Peak plasma concentration and AUC of mangiferin from the complex (Cmax: 377.66 μg/L, AUC: 1039.94 μg/L*h) were higher than crude mangiferin (Cmax: 180 μg/L, AUC: 2355.63 μg/L*h). In view of improved solubility and enhanced permeability, phospholipid complexation technique can increase bioavailability of mangiferin by 2.3 times in comparison to the crude mangiferin. Copyright © 2013 Elsevier B.V. All rights reserved.
Caliph, Suzanne M; Faassen, W A Fried; Vogel, Gerard M; Porter, Christopher J H
2009-08-01
Org 45697 (MW 600.7, clogP 7.92, soybean oil solubility 50 mg/g) and Org 46035 (MW 601.6, clog P 8.46, soybean oil solubility 40 mg/g) are two poorly water soluble (<0.1 microg/ml), highly lipophilic drug candidates with immunomodulator activity and highly analogous chemical structures. After oral administration to conscious ambulatory rats in an aqueous-based methylcellulose/Tween 80 suspension, the bioavailability of both compounds was low (< 2% of administered dose). However, bioavailability was significantly increased (> 5 fold) after oral administration in a long chain triglyceride lipid (olive oil) formulation. Subsequent studies have explored the potential for solubilising formulations, including lipid-based formulations, to enhance the oral bioavailability of Org 45697 and Org 46035 and secondly to explore the potential contribution of intestinal lymphatic transport to intestinal absorption. The experimental data show that solubilising formulations may provide for significant increases in oral bioavailability for Org 45697 and Org 46035 and that after co-administration with lipid, 35-50% of the absorbed dose may be transported to the systemic circulation via the intestinal lymph. Interestingly, the lymphatic transport of the less lipid soluble analogue, Org 46035 was approximately 40% lower than that of Org 45697 suggesting that relatively subtle differences in lipid solubility can have significant impact on the extent of lymphatic transport.
Thakkar, Vaishali Tejas; Deshmukh, Amol; Hingorani, Lal; Juneja, Payal; Baldaniya, Lalji; Patel, Asha; Pandya, Tosha; Gohel, Mukesh
2017-01-01
The Bacopa monnieri is traditional Ayurvedic medicine, and reported for memory-enhancing effects. The Bacoside is poorly soluble, bitter in taste and responsible for the memory enhancement action. Memory enhancer is commonly prescribed for children or elder people. Poor solubility, patient compliance and bitterness were a major driving force to develop taste masked β-cyclodextrin complex and dispersible tablets. The inclusion complex of Bacopa monnieri and β-cyclodextrin was prepared in different molar ratios of Bacopa monnieri by Co-precipitation method. Phase solubility study was conducted to evaluate the effect of β-cyclodextrin on aqueous solubility of Bacoside A. The characterization was determined by Fourier transformation infrared spectroscopy (FTIR),Differential scanning calorimetry (DSC) and X-ray diffraction study (XRD).Crospovidone and croscarmallose sodium were used as super disintigrant. The 3 2 full factorial design was adopted to investigate the influence of two superdisintegrants on the wetting time and disntegration time of the tablets. The result revels that molar ratio (1:4) of inclusion complex enhance 3-fold solubility. Full factorial design was successfully employed for the optimization of dispersible tablet of B. monnieri . The short-term accelerated stability study confirmed that high stability of B. monnieri in inclusion complex.
Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A
2017-06-30
Lipid-based formulations (LBFs) are a popular strategy for enhancing the gastrointestinal solubilization and absorption of poorly water-soluble drugs. In light of this, montmorillonite-lipid hybrid (MLH) particles, composed of medium-chain triglycerides, lecithin and montmorillonite clay platelets, have been developed as a novel solid-state LBF. Owing to the unique charge properties of montmorillonite, whereby the clay platelet surfaces carry a permanent negative charge and the platelet edges carry a pH-dependent charge, three model poorly water-soluble drugs with different charge properties; blonanserin (weak base, pKa 7.7), ibuprofen (weak acid, pKa 4.5) and fenofibrate (neutral), were formulated as MLH particles and their performance during biorelevant in vitro lipolysis at pH 7.5 was investigated. For blonanserin, drug solubilization during in vitro lipolysis was significantly reduced 3.4-fold and 3.2-fold for MLH particles in comparison to a control lipid solution and silica-lipid hybrid (SLH) particles, respectively. It was hypothesized that strong electrostatic interactions between the anionic montmorillonite platelet surfaces and cationic blonanserin molecules were responsible for the inferior performance of MLH particles. In contrast, no significant influence on drug solubilization was observed for ibuprofen- and fenofibrate-loaded MLH particles. The results of the current study indicate that whilst MLH particles are a promising novel formulation strategy for poorly water-soluble drugs, drug ionization tendency and the potential for drug-clay interactions must be taken into consideration to ensure an appropriate performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Drug solubility in lipid nanocarriers: Influence of lipid matrix and available interfacial area.
Göke, Katrin; Bunjes, Heike
2017-08-30
Amongst other strategies for the formulation of poorly water-soluble drugs, solubilization of these drugs in lipid-based formulations is a promising option. Most screening methods for the identification of a suitable lipid-based formulation fail to elucidate the role interfacial effects play for drug solubility in disperse systems. In a novel screening approach called passive drug loading, different preformed lipid nanocarrier dispersions are incubated with drug powder. Afterwards, undissolved drug is filtered off and the amount of solubilized drug is determined. The aim of this study was to identify parameters for drug solubility in pure lipids as well as for drug loading to the lipid-water interface of lipid nanoparticles. Using passive loading, the solubility of eight poorly water-soluble drugs in seven lipid nanocarriers varying in particle size or lipid matrix was investigated. Drug solubility in the nanocarriers did not follow any apparent trend and different drugs dissolved best in different carriers. Drugs with a melting point below approximately 150°C displayed distinctly better solubility than higher melting drugs. Additionally, relating the specific lipid nanocarrier surface area to the drug solubility allowed drawing conclusions on the drug localization. Fenofibrate, dibucaine and, less distinctly also clotrimazole, which all melt below 150°C, were predominantly located in the lipid droplet core of the nanoparticles. In contrast, the five remaining drugs (betamethasone valerate, flufenamic acid, itraconazole, ketoconazole, mefenamic acid) were also located at the lipid-water interface to different, but substantial degrees. The ability to account for drug loading to the lipid-water interface is thus a major advantage of passive loading. Copyright © 2017 Elsevier B.V. All rights reserved.
Design and Evaluation of Microemulsion Gel System of Nadifloxacin
Shinde, Ujwala; Pokharkar, Sharda; Modani, Sheela
2012-01-01
Topical microemulsion systems for the antiacne agent, nadifloxacin were designed and developed to overcome the problems associated with the cutaneous delivery due to poor water solubility. The solubility of nadifloxacin in oils, surfactants and cosurfactants was evaluated to screen the components of the microemulsion. Various surfactants and cosurfactants were screened for their ability to emulsify the selected oily phase. The pseudoternary diagrams were constructed to identify the area of microemulsion existence. The influence of km (surfactant/cosurfactant) ratio on the microemulsion existence region was determined and optimum systems were designed. The systems were assessed for drug-loading efficiency and characterised for optical birefringence, pH and refractive index, robustness to dilution, globule size, drug content and thermodynamic stability. Optimised microemulsion systems were formulated into gel form and evaluated for viscosity, spreadability, drug content, ex vivo skin permeation and antibacterial activity. The maximum solubility of nadifloxacin in the microemulsion system was found to be 0.25%. The nadifloxacin microemulsions had a small and uniform globule size (67.3-121.23 nm). The stability results revealed that all formulations showed a stable globule size and the polydispersity index under stress conditions. Incorporation of nadifloxacin in microemulsion gel increased the ex vivo skin permeation and antibacterial activity when compared to marketed cream. PMID:23439454
Improving Biopharmaceutical Properties of Vinpocetine Through Cocrystallization.
Golob, Samuel; Perry, Miranda; Lusi, Matteo; Chierotti, Michele R; Grabnar, Iztok; Lassiani, Lucia; Voinovich, Dario; Zaworotko, Michael J
2016-12-01
Vinpocetine is a poorly water soluble weakly basic drug (pK a = 7.1) used for the treatment of several cerebrovascular and cognitive disorders. Because existing formulations exhibit poor bioavailability and scarce absorption, a dosage form with improved pharmacokinetic properties is highly desirable. Cocrystallization represents a promising approach to generate diverse novel crystal forms and to improve the aqueous solubility and in turn the oral bioavailability. In this article, a novel ionic cocrystal of vinpocetine is described, using boric acid as a coformer, and fully characterized (by means of differential scanning calorimetry, solid-state nuclear magnetic resonance, powder and single-crystal X-ray diffraction, and powder dissolution test). Pharmacokinetic performance was also tested in a human pilot study. This pharmaceutical ionic cocrystal exhibits superior solubilization kinetics and modulates important pharmacokinetic values such as maximum concentration in plasma (C max ), time to maximum concentration (t max ), and area under the plasma concentration-time curve (AUC) of the poorly soluble vinpocetine and it therefore offers an innovative approach to improve its bioavailability. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Lapatinib nano-delivery systems: a promising future for breast cancer treatment.
Bonde, Gunjan Vasant; Yadav, Sarita Kumari; Chauhan, Sheetal; Mittal, Pooja; Ajmal, Gufran; Thokala, Sathish; Mishra, Brahmeshwar
2018-05-01
Breast cancer stands the second prominent cause of death among women. For its efficient treatment, Lapatinib (LAPA) was developed as a selective tyrosine kinase inhibitor of receptors, overexpressed by breast cancer cells. Various explored delivery strategies for LAPA indicated its controlled release with enhanced aqueous solubility, improved bioavailability, decreased plasma protein binding, reduced dose and toxicity to the other organs with maximized clinical efficacy, compared to its marketed tablet formulation. Areas covered: This comprehensive review deals with the survey, performed through different electronic databases, regarding various challenges and their solutions attained by fabricating delivery systems like nanoparticles, micelle, nanocapsules, nanochannels, and liposomes. It also covers the synthesis of novel LAPA-conjugates for diagnostic purpose. Expert opinion: Unfortunately, clinical use of LAPA is restricted because of its extensive albumin binding capacity, poor oral bioavailability, and poor aqueous solubility. LAPA is marketed as the oral tablet only. Therefore, it becomes imperative to formulate alternate efficient multiparticulate or nano-delivery systems for administration through non-oral routes, for active/passive targeting, and to scale-up by pharmaceutical scientists followed by their clinical trials by clinical experts. LAPA combinations with capecitabine and letrozole should also be tried for breast cancer treatment.
Assembling nanoparticle coatings to improve the drug delivery performance of lipid based colloids
NASA Astrophysics Data System (ADS)
Simovic, Spomenka; Barnes, Timothy J.; Tan, Angel; Prestidge, Clive A.
2012-02-01
Lipid based colloids (e.g. emulsions and liposomes) are widely used as drug delivery systems, but often suffer from physical instabilities and non-ideal drug encapsulation and delivery performance. We review the application of engineered nanoparticle layers at the interface of lipid colloids to improve their performance as drug delivery systems. In addition we focus on the creation of novel hybrid nanomaterials from nanoparticle-lipid colloid assemblies and their drug delivery applications. Specifically, nanoparticle layers can be engineered to enhance the physical stability of submicron lipid emulsions and liposomes, satbilise encapsulated active ingredients against chemical degradation, control molecular transport and improve the dermal and oral delivery characteristics, i.e. increase absorption, bioavailability and facilitate targeted delivery. It is feasible that hybrid nanomaterials composed of nanoparticles and colloidal lipids are effective encapsulation and delivery systems for both poorly soluble drugs and biological drugs and may form the basis for the next generation of medicines. Additional pre-clinical research including specific animal model studies are required to advance the peptide/protein delivery systems, whereas the silica lipid hybrid systems have now entered human clinical trials for poorly soluble drugs.
PHEA-PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions.
Cavallaro, Gennara; Craparo, Emanuela Fabiola; Sardo, Carla; Lamberti, Gaetano; Barba, Anna Angela; Dalmoro, Annalisa
2015-11-30
Nanocarriers of amphiphilic polymeric materials represent versatile delivery systems for poorly water soluble drugs. In this work the technique of solvent evaporation from multiple emulsions was applied to produce nanovectors based on new amphiphilic copolymer, the α,β-poly(N-2-hydroxyethyl)-DL-aspartamide-polylactic acid (PHEA-PLA), purposely synthesized to be used in the controlled release of active molecules poorly soluble in water. To this aim an amphiphilic derivative of PHEA, a hydrophilic polymer, was synthesized by derivatization of the polymeric backbone with hydrophobic grafts of polylactic acid (PLA). The achieved copolymer was thus used to produce nanoparticles loaded with α tocopherol (vitamin E) adopted as lipophilic model molecule. Applying a protocol based on solvent evaporation from multiple emulsions assisted by ultrasonic energy and optimizing the emulsification process (solvent selection/separation stages), PHEA-PLA nanostructured particles with total α tocopherol entrapment efficiency (100%), were obtained. The drug release is expected to take place in lower times with respect to PLA due to the presence of the hydrophilic PHEA, therefore the produced nanoparticles can be used for semi-long term release drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Elder, Edmund J; Evans, Jonathan C; Scherzer, Brian D; Hitt, James E; Kupperblatt, Gary B; Saghir, Shakil A; Markham, Dan A
2007-07-01
Many new molecular entities targeted for pharmaceutical applications face serious development challenges because of poor water solubility. Although particle engineering technologies such as controlled precipitation have been shown to enhance aqueous dissolution and bioavailability of poorly water soluble active pharmaceutical ingredients, the data available are the results of laboratory-scale experiments. These technologies must be evaluated at larger scale to ensure that the property enhancement is scalable and that the modified drugs can be processed on conventional equipment. In experiments using ketoconazole as the model drug, the controlled precipitation process was shown to produce kg-scale modified drug powder with enhanced dissolution comparable to that of lab-scale powder. Ketoconazole was demonstrated to be stable throughout the controlled precipitation process, with a residual methanol level below the ICH limit. The modified crystalline powder can be formulated, and then compressed using conventional high-speed tableting equipment, and the resulting tablets showed bioavailability more than double that of commercial tablets. When appropriately protected from moisture, both the modified powder and tablets prepared from the modified powder showed no change in dissolution performance for at least 6 months following storage at accelerated conditions and for at least 18 months following storage at room temperature.
Raina, Shweta A; Van Eerdenbrugh, Bernard; Alonzo, David E; Mo, Huaping; Zhang, Geoff G Z; Gao, Yi; Taylor, Lynne S
2015-06-01
Amorphous materials are high-energy solids that can potentially enhance the bioavailability of poorly soluble compounds. A major impediment to their widespread use as a formulation platform is the tendency of amorphous materials to crystallize. The aim of this study was to evaluate the relative crystallization tendency of six structural analogues belonging to the dihydropyridine class, in an aqueous environment in the absence and presence of polymers, using wide-angle X-ray scattering synchrotron radiation and polarized light microscopy. The crystallization behavior of precipitates generated from supersaturated solutions of the active pharmaceutical ingredients was found to be highly variable ranging from immediate to several hours in the absence of polymers. Polymers with intermediate hydrophilicity/hydrophobicity were found to substantially delay crystallization, whereas strongly hydrophilic or hydrophobic polymers were largely ineffective. Nuclear magnetic resonance spectroscopy experiments supported the supposition that polymers need to have affinity for both the drug-rich precipitate and the aqueous phase in order to be effective crystallization inhibitors. This study highlights the variability in the crystallization tendency of different compounds and provides insight into the mechanism of inhibition by polymeric additives. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Chrysin cocrystals: Characterization and evaluation.
Chadha, Renu; Bhalla, Yashika; Nandan, Avdesh; Chadha, Kunal; Karan, Maninder
2017-02-05
Solvent free mechanochemical approach is utilized to synthesise new cocrystals of chrysin using supramolecular chemistry based upon reliable synthons. Chrysin, a flavone nutraceutical with wide range of beneficial effects has critically low bioavailability on account of its poor aqueous solubility and consequently poor absorption from the gastrointestinal tract. The present study focuses on this critical aspect and has exploited non covalent interactions to prepare its cocrystals with cytosine and thiamine hydrochloride. Various techniques were used for characterization including Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FT-IR), Solid State NMR Spectroscopy (SSNMR) and Powder X-Ray Diffraction (PXRD). The molecules in the cocrystals crystallized in neutral forms and assembled in a molecular layer by means of hydrogen bonding which was confirmed by structural characterization. The cocrystals share a common supramolecular motif being the OH⋯N arom interaction, involving phenolic moiety of C7 functionality of the parent molecule. Approximately 3-4 fold increase in solubility and dissolution profile of cocrystals was observed which was further corroborated by improved in vitro and in vivo activities including antioxidant, antihaemolytic and anti-inflammatory thus, opening a new viable technique for the exploitation of useful phytonutrients. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Yanzhuo; Wang, Hong; Li, Chuanjun; Sun, Baoxiang; Wang, Yu; Wang, Siling; Gao, Cunqiang
2014-04-01
A novel mesocellular carbon foam (MSU-FC) with a large pore size and a three-dimensional porous structure for the oral delivery of poorly water-soluble drugs was prepared. The goal of this study was to improve in vitro dissolution and in vivo absorption of celecoxib (CEB), a model drug, by means of novel carbon-based nanoparticles prepared from the MSU-FC matrix. The MSU-FC matrix was synthesized by an inverse replica templating method using mesocellular silica template. A solvent immersion/evaporation method was used to load the drug molecules. The drug-loaded nanoparticles were characterized for morphology, surface area, particle size, mesoporous structure, crystallinity, solubility and dissolution. The effect of MSU-FC on cell viability was measured using the MTT conversion assay. Furthermore, the oral bioavailability of CEB-loaded MSU-FC in fasted rats was compared with that of the marketed product. Our results demonstrate that CEB incorporation into the prepared MSU-FC resulted in an approximately 9-fold increase in aqueous solubility in comparison with crystalline CEB. MSU-FC produced accelerated immediate release of CEB in comparison with crystalline CEB (pure CEB powder or marketed formulation) and the drug-loaded conventional mesoporous carbon particles. The relative bioavailability of CEB for CEB-loaded MSU-FC was 172%. In addition, MSU-FC nanoparticles exhibited very low toxicity. The MSU-FC nanomatrix has been shown to be a promising drug delivery vehicle for improving the dissolution and biopharmaceutical characteristics of poorly water-soluble drugs.
da Silva, Francilene Vieira; de Barros Fernandes, Hélio; Oliveira, Irisdalva Sousa; Viana, Ana Flávia Seraine Custódio; da Costa, Douglas Soares; Lopes, Miriam Teresa Paz; de Lira, Kamila Lopes; Quintans-Júnior, Lucindo José; de Sousa, Adriano Antunes; de Cássia Meneses Oliveira, Rita
2016-11-01
(-)-Linalool is a monoterpene constituent of many essential oils. This particular monoterpene has both anti-inflammatory and antimicrobial activity. Moreover, this compound has been shown to be antinociceptive. However, the poor chemical stability and short half-life prevents the clinical application of (-)-linalool and many other essential oils. Important to the topic of this study, β-cyclodextrin (β-CD) has been used to increase the solubility, stability, and pharmacological effects of numerous lipophilic compounds in vivo. In this study, the gastroprotective activities of (-)-linalool (LIN) and linalool incorporated into inclusion complex containing β-cyclodextrin (LIN-βCD) were evaluated using models of acute and chronic gastric ulcers in rodents. LIN and LIN-βCD showed strong gastroprotective activity (p < 0.001). The LIN-βCD complex revealed that the gastroprotective effect was significantly improved compared with LIN uncomplexed, suggesting that this improvement is related to increased solubility and stability. Taking together the potentiation of the antioxidant profile of this monoterpene, our results suggest that β-CD may represent an important tool for improved gastroprotective activity of (-)-linalool and other water-insoluble compounds.
Polymeric micelles for multi-drug delivery in cancer.
Cho, Hyunah; Lai, Tsz Chung; Tomoda, Keishiro; Kwon, Glen S
2015-02-01
Drug combinations are common in cancer treatment and are rapidly evolving, moving beyond chemotherapy combinations to combinations of signal transduction inhibitors. For the delivery of drug combinations, i.e., multi-drug delivery, major considerations are synergy, dose regimen (concurrent versus sequential), pharmacokinetics, toxicity, and safety. In this contribution, we review recent research on polymeric micelles for multi-drug delivery in cancer. In concurrent drug delivery, polymeric micelles deliver multi-poorly water-soluble anticancer agents, satisfying strict requirements in solubility, stability, and safety. In sequential drug delivery, polymeric micelles participate in pretreatment strategies that "prime" solid tumors and enhance the penetration of secondarily administered anticancer agent or nanocarrier. The improved delivery of multiple poorly water-soluble anticancer agents by polymeric micelles via concurrent or sequential regimens offers novel and interesting strategies for drug combinations in cancer treatment.
Nanostructured lipid carriers: versatile oral delivery vehicle
Poonia, Neelam; Kharb, Rajeev; Lather, Viney; Pandita, Deepti
2016-01-01
Oral delivery is the most accepted and economical route for drug administration and leads to substantial reduction in dosing frequency. However, this route still remains a challenge for the pharmaceutical industry due to poorly soluble and permeable drugs leading to poor oral bioavailability. Incorporating bioactives into nanostructured lipid carriers (NLCs) has helped in boosting their therapeutic functionality and prolonged release from these carrier systems thus providing improved pharmacokinetic parameters. The present review provides an overview of noteworthy studies reporting impending benefits of NLCs in oral delivery and highlights recent advancements for developing engineered NLCs either by conjugating polymers over their surface or modifying their charge to overcome the mucosal barrier of GI tract for active transport across intestinal membrane. PMID:28031979
Zhang, Yanzhuo; Zhi, Zhizhuang; Li, Xue; Gao, Jian; Song, Yaling
2013-09-15
The main objective of this study was to develop carboxylated ordered mesoporous carbon microparticles (c-MCMs) loaded with a poorly water-soluble drug, intended to be orally administered, able to enhance the drug loading capacity and improve the oral bioavailability. A model drug, carvedilol (CAR), was loaded onto c-MCMs via a procedure involving a combination of adsorption equilibrium and solvent evaporation. The physicochemical properties of the drug-loaded composites were systematically studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and HPLC. It was found that c-MCM has a high drug loading level up to 41.6%, and higher than that of the mesoporous silica template. Incorporation of CAR in both drug carriers enhanced the solubility and dissolution rate of the drug, compared to the pure crystalline drug. After loading CAR into c-MCMs, its oral bioavailability was compared with the marketed product in dogs. The results showed that the bioavailability of CAR was improved 179.3% compared with that of the commercial product when c-MCM was used as the drug carrier. We believe that the present study will help in the design of oral drug delivery systems for enhanced oral bioavailability of poorly water-soluble drugs. Copyright © 2013 Elsevier B.V. All rights reserved.
A step toward development of printable dosage forms for poorly soluble drugs.
Raijada, Dhara; Genina, Natalja; Fors, Daniela; Wisaeus, Erik; Peltonen, Jouko; Rantanen, Jukka; Sandler, Niklas
2013-10-01
The purpose of this study was to formulate printable dosage forms for a poorly soluble drug (piroxicam; PRX) and to gain understanding of critical parameters to be considered during development of such dosage forms. Liquid formulations of PRX were printed on edible paper using piezoelectric inkjet printing (PIJ) and impression printing (flexography). The printed dosage forms were characterized using scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and the amount of drug was determined using high-performance liquid chromatography. Solutions of PRX in polyethylene glycol 400 (PEG-400):ethanol (40:60) and in PEG-400 were found to be optimal formulations for PIJ and flexography, respectively. SEM-EDX analysis revealed no visible solid particles on the printed dosage forms indicating the drug most likely remained in solution after printing. More accurate drug deposition was obtained by PIJ as compared with flexography. More than 90% drug release was achieved within 5 min regardless of printing method used. The solubility of drug in solvents/cosolvents, rheological properties of formulations, properties of substrate, feasibility and accuracy of the printing methods, and detection limit of analytical techniques for characterization of printed dosage forms are some of the concerns that need to be addressed for development of printable dosage forms of poorly soluble drugs. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Anyalebechi, P. N.
Reported experimentally determined values of hydrogen solubility in liquid and solid Al-H and Al-H-X (where X = Cu, Si, Zn, Mg, Li, Fe or Ti) systems have been critically reviewed and analyzed in terms of Wagner's interaction parameter. An attempt has been made to use Wagner's interaction parameter and statistic linear regression models derived from reported hydrogen solubility limits for binary aluminum alloys to predict the hydrogen solubility limits in liquid and solid (commercial) multicomponent aluminum alloys. Reasons for the observed poor agreement between the predicted and experimentally determined hydrogen solubility limits are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beddows, C.G.; Gil, M.H.; Guthrie, J.T.
1986-01-01
Poly(maleic anhydride styrene) graft copolymers of cellulose, pectin polygalacturonic acid salt, calcium polygalacturonate, and starch were prepared and used to immobilize proteins. The cellulose grafts coupled quite appreciable quantities of acid phosphatase, glucose oxidase, and trypsin. However, the general retention of activity was somewhat disappointing. Further investigation with acid phosphatase showed that the amount of enzyme immobilized increased as the amount of anhydride in the graft copolymer increased but no such relationship existed for the enzymic activity. The cellulose graft copolymers were hydrolyzed and it appeared that the carboxyl group aided adsorption of the enzyme. Attempts to couple acid phosphatasemore » using CMC through the free carboxyl groups, created by hydrolysis, gave only a small increase in the extent of protein coupling. However, the unhydrolyzed system gave a useful degree of immobilization of cells of Bacillus stearothermophilus, as did a poly(maleic anhydride/styrene)-cocellulose system. Attempts to improve the activity by using grafts based on other polysaccharide supports met with mixed success. Pectin products were soluble. Polygalacturonic acid products were partially soluble and extremely high levels of enzymic activity were obtained. This was probably due in part to the hydrophilic nature of the system, which also encouraged absorption of the enzyme. Attempts were made to reduce the solubility by using the calcium pectinate salt. Immobilization of acid phosphatase and trypsin resulted in increased protein coupling but relatively poor activities were attained. Calcium polygalacturonate was used to prepare an insoluble graft copolymeric system containing acrylonitrile-comaleic anhydride. The resulting gels gave excellent coupling with acid phosphatase which had a very good retention of activity.« less
Ma, Xiaohong; Wang, Qiang; Li, Xiaoping; Tang, Jun; Zhang, Zhengfang
2015-11-01
Thermodynamic properties of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM] BF4) were determined via inverse gas chromatography (IGC). Two groups of solvents with different chemical natures and polarities were used to obtain information about [BMIM] BF4-solvent interactions. The specific retention volume, molar heat of sorption, weight fraction activity coefficient, Flory-Huggins interaction parameter as well as solubility parameter were also determined in a temperature range of 333 - 373 K. The results showed that the selected solvents n-C10 to n-C12, carbon tetrachloride, cyclohexane and toluene were poor solvents for [BMIM] BF4, while dichloromethane, acetone, chloroform, methyl acetate, ethanol and methanol were favorite solvents for [BMIM] BF4. In addition, the solubility parameter of [ BMIM] BF4 was determined as 23.39 (J/cm3)0.5 by the extrapolation at 298 K. The experiment proved that IGC was a simple and accurate method to obtain the thermodynamic properties of ionic liquids. This study could be used as a reference to the application and research of the ionic liquids.
Ganesh, Mani; Jeon, Ung Jin; Ubaidulla, Udhumansha; Hemalatha, Pushparaj; Saravanakumar, Arthanari; Peng, Mei Mei; Jang, Hyun Tae
2015-03-01
Enhanced oral bioavailability of aceclofenac has been achieved using chitosan cocrystals of aceclofenac and its entrapment into alginate matrix a super saturated drug delivery system (SDDS). Prepared SDDS were evaluated by various physiochemical and pharmacological methods. The result revealed that the primary cocrystals enhanced the solubility of the drug and the thick gelled polymer matrix that formed from swelling of calcium alginate beads makes it to release the drug in continuous and sustained manner by supersaturated drug diffusion. The Cmax, Tmax and relative bioavailability for aceclofenac cocrystal and aceclofenac SDDS were 2.06±0.42 μg/ml, 1 h, 159.72±10.84 and 2.01 μg/ml, 1 h, 352.76±12.91, respectively. Anti-inflammatory activity of aceclofenac was significantly improved with the SDDS. With respect to the results, it revealed that the SDDS described herein might be a promising tool for the oral sustained release of aceclofenac and likely for that of various other poorly soluble drugs. Copyright © 2014 Elsevier B.V. All rights reserved.
[Determination of the solubility parameter of organosolv lignin by inverse gas chromatography].
Yu, Yachen; Li, Kunlan; Ma, Yingchong; Wei, Ligang
2013-02-01
An inverse gas chromatographic (IGC) method has been used to measure the solubility parameters (delta2) of organosolv lignin at the absolute temperatures from 333.15 K to 373.15 K. The test probe solvents were n-octane (n-C8), n-decane (n-C10), n-dodecane (n-C12), and n-tetradecane (n-C14). The specific retention volumes of the solvents (Vg0), the molar enthalpy of sorption (deltaH1S), the partial molar enthalpy of mixing at infinite dilution (deltaH1infinity), the molar enthalpy of vaporization (deltaHv), the activity coefficients at infinite dilution (Omega1- infinity), and Flory-Huggins inter action parameters (chi12infinity) between organosolv lignin and probe solvents were obtained. The results showed that the above four probes are poor solvents for organosolv lignin; at the same temperature, the chi12infinity reduced with the increase of the carbon number of probe solvents. The average solubility parameter of organosolv lignin was determined as 19.03 (J x cm(-3))1/2.
Improving the anticancer activity of curcumin using nanocurcumin dispersion in water.
Basniwal, Rupesh Kumar; Khosla, Ritu; Jain, Nidhi
2014-01-01
Curcumin is a highly potent, nontoxic bioactive agent found in turmeric and is known to have significant anticancer properties against different types of cancer cells. The major disadvantage associated with the use of curcumin, however, is its low systemic bioavailability due to its poor aqueous solubility. The focus of the present study was to generate nanoparticles of curcumin with improved aqueous phase solubility, and to investigate their efficacy in treating cancer cells. Curcumin nanoparticles having particle size in the range 2-40 nm and aqueous solubility of up to a maximum of 3 mg/mL were prepared. Evaluation of anticancer properties of curcumin nanodispersion was carried out in 3 different cancer cell lines: lung (A549), liver (HepG2), and skin (A431). The results demonstrated that under aqueous conditions curcumin nanoparticles exhibited similar or a much stronger antiproliferative effect on the cancer cells compared to normal curcumin in DMSO. Our results lead way toward unharnessed potential of curcumin in the form of its nanoparticles as an adjuvant therapy for clinical application in treating various cancers.
Meng, Jian; Zheng, Liangyuan
2007-09-01
Self-microemulsifying drug delivery systems (SMEDDS) are useful to improve the bioavailability of poorly water-soluble drugs by increasing their apparent solubility through solubilization. However, very few studies, to date, have systematically examined the level of drug apparent solubility in o/w microemulsion formed by self-microemulsifying. In this study, a mixture experimental design was used to simulate the influence of the compositions on simvastatin apparent solubility quantitatively through an empirical model. The reduced cubic polynomial equation successfully modeled the evolution of simvastatin apparent solubility. The results were presented using an analysis of response surface showing a scale of possible simvastatin apparent solubility between 0.0024 ~ 29.0 mg/mL. Moreover, this technique showed that simvastatin apparent solubility was mainly influenced by microemulsion concentration and, suggested that the drug would precipitate in the gastrointestinal tract due to dilution by gastrointestinal fluids. Furthermore, the model would help us design the formulation to maximize the drug apparent solubility and avoid precipitation of the drug.
Vynckier, An-Katrien; Voorspoels, Jody; Remon, Jean Paul; Vervaet, Chris
2016-05-01
This study aimed to design a fixed-dose combination dosage form which provides a sustained release profile for both the freely water-soluble metformin HCl and the poorly soluble gliclazide, two antidiabetic compounds used to treat diabetes mellitus. Hot-melt co-extrusion was used as an innovative manufacturing technique for a pharmaceutical fixed-dose combination product. In this way, a matrix formulation that sustained metformin release could be developed, despite the high drug load in the formulation and the freely soluble nature of the drug. It was clear that co-extrusion was perfectly suited to produce a fixed-dose combination product with adequate properties for each of the incorporated APIs. A coat layer, containing at least 30% CAPA(®) 6506 as a hydrophobic polymer, was necessary to adequately sustain the release of the highly dosed freely soluble drug from the 70% metformin HCl-loaded CAPA(®) 6506 core of the co-extrudate. To obtain a complete gliclazide release over 24-h solubilization in Kollidon(®) VA, added as a second polymer to the CAPA(®) 6506 in the coat, was needed. Both active pharmaceutical ingredients (APIs), which have different physicochemical characteristics, were formulated in a single dosage form, using co-extrusion. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.
A Trimethoprim Conjugate of Thiomaltose Has Enhanced Antibacterial Efficacy In Vivo.
Wang, Xiaojian; Borges, Clarissa A; Ning, Xinghai; Rafi, Mohammad; Zhang, Jingtuo; Park, Bora; Takemiya, Kiyoko; Lo Sterzo, Carlo; Taylor, W Robert; Riley, Lee; Murthy, Niren
2018-05-16
Trimethoprim is one of the most widely used antibiotics in the world. However, its efficacy is frequently limited by its poor water solubility and dose limiting toxicity. Prodrug strategies based on conjugation of oligosaccharides to trimethoprim have great potential for increasing the solubility of trimethoprim and lowering its toxicity, but they have been challenging to develop due to the sensitivity of trimethoprim to chemical modifications, and the rapid degradation of oligosaccharides in serum. In this report, we present a trimethoprim conjugate of maltodextrin termed TM-TMP, which increased the water solubility of trimethoprim by over 100 times, was stable to serum enzymes, and was active against urinary tract infections in mice. TM-TMP is composed of thiomaltose conjugated to trimethoprim, via a self-immolative disulfide linkage, and releases 4'-OH-trimethoprim (TMP-OH) after disulfide cleavage, which is a known metabolic product of trimethoprim and is as potent as trimethoprim. TM-TMP also contains a new maltodextrin targeting ligand composed of thiomaltose, which is stable to hydrolysis by serum amylases and therefore has the metabolic stability needed for in vivo use. TM-TMP has the potential to significantly improve the treatment of a wide number of infections given its high water solubility and the widespread use of trimethoprim.
Y-shaped Folic Acid-Conjugated PEG-PCL Copolymeric Micelles for Delivery of Curcumin.
Feng, Runliang; Zhu, Wenxia; Chu, Wei; Teng, Fangfang; Meng, Ning; Deng, Peizong; Song, Zhimei
2017-01-01
Curcumin is a natural hydrophobic product showing anticancer activity. Many studies show its potential use in the field of cancer treatment due to its safety and efficiency. However, its application is limited due to its low water-solubility and poor selective delivery to cancer. A Y-shaped folic acid-modified poly (ethylene glycol)-b-poly (ε-caprolactone)2 copolymer was prepared to improve curcumin solubility and realize its selective delivery to cancer. The copolymer was synthesized through selective acylation reaction of folic acid with α- monoamino poly(ethylene glycol)-b-poly(ε-caprolactone)2. Curcumin was encapsulated into the copolymeric micelles with 93.71% of encapsulation efficiency and 11.94 % of loading capacity. The results from confocal microscopy and cellular uptake tests showed that folic acid-modified copolymeric micelles could improve cellular uptake of curcumin in Hela and HepG2 cells compared with folic acid-unmodified micelles. In vitro cytotoxicity assay showed that folic acid-modified micelles improved anticancer activity against Hela and HepG2 cells in comparison to folic acidunmodified micelles. Meanwhile, both drug-loaded micelles demonstrated higher activity against Hela cell lines than HepG2. The research results suggested that the folic acid-modified Y-shaped copolymeric micelles should be used to enhance hydrophobic anticancer drugs' solubility and their specific delivery to folic acid receptors-overexpressed cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Dermal quercetin smartCrystals®: Formulation development, antioxidant activity and cellular safety.
Hatahet, T; Morille, M; Hommoss, A; Dorandeu, C; Müller, R H; Bégu, S
2016-05-01
Flavonoids are natural plant pigments, which possess high antioxidative and antiradical activities. However, their poor water solubility led to a limited bioavailability. To overcome this major hurdle, quercetin nanocrystals were produced implementing smartCrystals® technology. This process combines bead milling and subsequent high-pressure homogenization at relatively low pressure (300bar). To test the possibility to develop a dermal formulation from quercetin smartCrystals®, quercetin nanosuspensions were admixed to Lutrol® F127 and hydroxythylcellulose nonionic gels. The physicochemical properties (morphology, size and charge), saturation solubility, dissolution velocity and the antioxidant properties (DPPH assay) as well as the cellular interaction of the produced quercetin smartCrystals® were studied and compared to crude quercetin powder. Quercetin smartCrystals® showed a strong increase in the saturation solubility and the dissolution velocity (7.6 fold). SmartCrystals® loaded or not into gels proved to be physically stable over a period of three months at 25°C. Interestingly, in vitro DPPH assay confirmed the preservation of quercetin antioxidative properties after nanonization. In parallel, the nanocrystalline form did not display cellular toxicity, even at high concentration (50μg/ml), as assayed on an epithelial cell line (VERO cells). In addition, the nanocrystalline form confirmed a protective activity for VERO cells against hydrogen peroxide induced toxicity in vitro. This new formulation presents a promising approach to deliver quercetin efficiently to skin in well-tolerated formulations. Copyright © 2016 Elsevier B.V. All rights reserved.
Sun, Chaojie; Gui, Yun; Hu, Rongfeng; Chen, Jiayi; Wang, Bin; Guo, Yuxing; Lu, Wenjie; Nie, Xiangjiang; Shen, Qiang; Gao, Song; Fang, Wenyou
2018-05-29
The study was performed aiming to enhance the solubility and oral bioavailability of poorly water-soluble drug osthole by formulating solid self-microemulsifying drug delivery system (S-SMEDDS) via spherical crystallization technique. Firstly, the liquid self-microemulsifying drug delivery system (L-SMEDDS) of osthole was formulated with castor oil, Cremophor RH40, and 1,2-propylene glycol after screening various lipids and emulsifiers. The type and amount of polymeric materials, good solvents, bridging agents, and poor solvents in S-SMEDDS formulations were further determined by single-factor study. The optimal formulation contained 1:2 of ethyl cellulose (EC) and Eudragit S100, which served as matrix forming and enteric coating polymers respectively. Anhydrous ethanol and dichloromethane with a ratio of 5:3 are required to perform as good solvent and bridging agent, respectively, with the addition of 0.08% SDS aqueous solution as poor solvent. The optimized osthole S-SMEDDS had a high yield (83.91 ± 3.31%) and encapsulation efficiency (78.39 ± 2.25%). Secondly, osthole L-SMEDDS was solidified to osthole S-SMEDDS with no significant changes in terms of morphology, particle size, and zeta potential. In vitro release study demonstrated a sustained release of the drug from osthole S-SMEDDS. Moreover, in vivo pharmacokinetic study showed that the T max and mean residence time (MRT (0-t) ) of osthole were significantly prolonged and further confirmed that osthole S-SMEDDS exhibited sustained release effect in rabbits. Comparing with osthole aqueous suspension and L-SMEDDS, osthole S-SMEDDS increased bioavailability by 205 and 152%, respectively. The results suggested that S-SMEDDS was an effective oral solid dosage form, which can improve the solubility and oral bioavailability of poorly water-soluble drug osthole.
Cao, Jinxu; Yang, Baixue; Wang, Yumei; Wei, Chen; Wang, Hongyu; Li, Sanming
2017-11-01
The feasibility of polymer brush as drug delivery vehicle was demonstrated with the goal of improving the dissolution and physical stability of poorly water-soluble drugs. Polymer brush CTAB/ZB-1 was synthesized by electrostatic interaction using a physical modification method with anionic poly (propylene-g-styrene sulphonic acid) fiber (ZB-1) as the substrate and cationic hexadecyltrimethylammonium bromide (CTAB) as the modifier. The polymer brush structure of CTAB/ZB-1 was validated by atomic force microscopy (AFM) and the channels of brush provided the drug loading sites. Flurbiprofen (FP), a BCS class II representative drug, was selected as the model poorly water-soluble drug to be loaded into this polymer brush. Then the drug loading and release were systematically investigated. Besides, the transformation from crystalline FP to amorphous state was observed by differential scanning calorimeter (DSC). In vitro dissolution in pure water and pH1.2 HCl media with/without 0.1% sodium dodecyl sulfate (SDS) was tested. Moreover, the optimal formulations (namely carrier/drug ratios) were determined. The results demonstrated prominent improvement of dissolution when FP was released from CTAB/ZB-1. After a long time storage, FP remained amorphous in CTAB/ZB-1 according to DSC determinations and performed an approximately equivalent dissolution compared with fresh samples, suggesting the advantage of CTAB/ZB-1 as carrier in enhancing the physical stability of drugs. The study introduced the versatile easily formulated polymer brush CTAB/ZB-1 and demonstrated the potential of polymer brush as an alternative approach for improving the dissolution and physical stability of poorly water-soluble drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Lu; Alfano, Joy; Race, Doran; Davé, Rajesh N
2018-05-30
In spite of significant recent interest in polymeric films containing poorly water-soluble drugs, dissolution mechanism of thicker films has not been investigated. Consequently, release mechanisms of poorly water-soluble drugs from thicker hydroxypropyl methylcellulose (HPMC) films are investigated, including assessing thickness above which they exhibit zero-order drug release. Micronized, surface modified particles of griseofulvin, a model drug of BSC class II, were incorporated into aqueous slurry-cast films of different thicknesses (100, 500, 1000, 1500 and 2000 μm). Films 1000 μm and thicker were formed by either stacking two or more layers of ~500 μm, or forming a monolithic thick film. Compared to monolithic thick films, stacked films required simpler manufacturing process (easier casting, short drying time) and resulted in better critical quality attributes (appearance, uniformity of thickness and drug per unit area). Both the film forming approaches exhibited similar release profiles and followed the semi-empirical power law. As thickness increased from 100 μm to 2000 μm, the release mechanism changed from Fickian diffusion to zero-order release for films ≥1000 μm. The diffusional power law exponent, n, achieved value of 1, confirming zero-order release, whereas the percentage drug release varied linearly with sample surface area, and sample thickness due to fixed sample diameter. Thus, multi-layer hydrophilic polymer aqueous slurry-cast thick films containing poorly water-soluble drug particles provide a convenient dosage form capable of zero-order drug release with release time modulated through number of layers. Copyright © 2018 Elsevier B.V. All rights reserved.
Enhancement of ethene removal from waste gas by stimulating nitrification.
de heyder, B; van Elst, T; van Langenhove, H; Verstraete, W
1997-01-01
The treatment of poorly water soluble waste gas compounds, such as ethene, is associated with low substrate concentration levels in the liquid phase. This low concentration level might hamper the optimal development of a microbial population. In this respect, the possible benefit of introducing nitrifying activity in the heterotrophic removal of ethene at moderate concentrations (< 1000 ppm) from a waste gas was investigated. Nitrifying activity is known to be associated with (i) the production of soluble microbial products, which can act as (co-)substrates for heterotrophic micro-organisms and (ii) the co-oxidation of ethene. The used reactor configuration was a packed granular activated carbon biobed inoculated with the heterotrophic strain Mycobacterium E3. The nitrifying activity was introduced by regular submersion in a nitrifying medium prepared from (i) compost or (ii) activated sludge. In both cases a clear enhancement of the volumetric removal rate of ethene could be observed. When combined with a NH3 dosage on a daily basis, a gradual increase of the volumetric removal rate of ethene could be observed. For a volumetric loading rate of 3 kg ethene-COD.m-3.d-1, the volumetric removal rate could thus be increased with a factor 1.8, i.e. from 0.72 to a level of 1.26 kg ethene-COD.m-3.d-1.
Drug Solubility: Importance and Enhancement Techniques
Savjani, Ketan T.; Gajjar, Anuradha K.; Savjani, Jignasa K.
2012-01-01
Solubility, the phenomenon of dissolution of solute in solvent to give a homogenous system, is one of the important parameters to achieve desired concentration of drug in systemic circulation for desired (anticipated) pharmacological response. Low aqueous solubility is the major problem encountered with formulation development of new chemical entities as well as for the generic development. More than 40% NCEs (new chemical entities) developed in pharmaceutical industry are practically insoluble in water. Solubility is a major challenge for formulation scientist. Any drug to be absorbed must be present in the form of solution at the site of absorption. Various techniques are used for the enhancement of the solubility of poorly soluble drugs which include physical and chemical modifications of drug and other methods like particle size reduction, crystal engineering, salt formation, solid dispersion, use of surfactant, complexation, and so forth. Selection of solubility improving method depends on drug property, site of absorption, and required dosage form characteristics. PMID:22830056
Liposheres as a Novel Carrier for Lipid Based Drug Delivery: Current and Future Directions.
Swain, Suryakanta; Beg, Sarwar; Babu, Sitty M
2016-01-01
Researchers are facing challenges to develop robust formulation and to enhance the bioavailability of poorly water-soluble drugs towards clinical applications. The development of new drug molecule alone is not adequate to assure ample pharmacotherapy of various diseases. Considerable results obtained from in vitro studies are not supported by in vivo data due to inadequate plasma drug concentrations. This may occur due to limited drug solubility and absorption. To resolve these problems, development of new drug delivery systems will be a promising approach. One of the promising pharmaceutical strategies is the use of lipospheres drug delivery system to deliver the poorly water-soluble drugs. Therefore, the present review described the methodology for manufacturing of lipospheres and factors influencing the formulation to deliver the drugs to the targeted site. Apart from that, this review also enlisted briefly the various applications of liposphers in medical and biomedical fields and critically discussed the recent patent system.
State of the art of nanocrystals technology for delivery of poorly soluble drugs
NASA Astrophysics Data System (ADS)
Zhou, Yuqi; Du, Juan; Wang, Lulu; Wang, Yancai
2016-09-01
Formulation of nanocrystals is a distinctive approach which can effectively improve the delivery of poorly water-soluble drugs, thus enticing the development of the nanocrystals technology. The characteristics of nanocrystals resulted in an exceptional drug delivery conductance, including saturation solubility, dissolution velocity, adhesiveness, and affinity. Nanocrystals were treated as versatile pharmaceuticals that could be delivered through almost all routes of administration. In the current review, oral, pulmonary, and intravenous routes of administration were presented. Also, the targeting of drug nanocrystals, as well as issues of efficacy and safety, were also discussed. Several methods were applied for nanocrystals production including top-down production strategy (media milling, high-pressure homogenization), bottom-up production strategy (antisolvent precipitation, supercritical fluid process, and precipitation by removal of solvent), and the combination approaches. Moreover, this review also described the evaluation and characterization of the drug nanocrystals and summarized the current commercial pharmaceutical products utilizing nanocrystals technology.
Tale, Swapnil; Purchel, Anatolii A; Dalsin, Molly C; Reineke, Theresa M
2017-11-06
Synthetic polymers offer tunable platforms to create new oral drug delivery vehicles (excipients) to increase solubility, supersaturation maintenance, and bioavailability of poorly aqueous soluble pharmaceutical candidates. Five well-defined diblock terpolymers were synthesized via reversible addition-fragmentation chain transfer polymerization (RAFT) and consist of a first block of either poly(ethylene-alt-propylene) (PEP), poly(N-isopropylacrylamide) (PNIPAm), or poly(N,N-diethylaminoethyl methacrylate) (PDEAEMA) and a second hydrophilic block consisting of a gradient copolymer of N,N-dimethylacrylamide (DMA) and 2-methacrylamidotrehalose (MAT). This family of diblock terpolymers offers hydrophobic, hydrophilic, or H-bonding functionalities to serve as noncovalent sites of drug binding. Drug-polymer spray dried dispersions (SDDs) were created with a model drug, probucol, and characterized by differential scanning calorimetry (DSC). These studies revealed that probucol crystallinity decreased with increasing H-bonding sites available in the polymer. The PNIPAm-b-P(DMA-grad-MAT) systems revealed the best performance at pH 6.5, where immediate probucol release and effective maintenance of 100% supersaturation was found, which is important for facilitating drug solubility in more neutral conditions (intestinal environment). However, the PDEAEMA-b-P(DMA-grad-MAT) system revealed poor probucol dissolution at pH 6.5 and 5.1. Alternatively, at an acidic pH of 3.1, a rapid and high dissolution profile and effective supersaturation maintenance of up to 90% of the drug was found, which could be useful for triggering drug release in acidic environments (stomach). The PEP-b-P(DMA-grad-MAT) system showed poor performance (only ∼20% of drug solubility at pH 6.5), which was attributed to the low solubility of the polymers in the dissolution media. This work demonstrates the utility of diblock terpolymers as a potential new excipient platform to optimize design parameters for triggered release and solubilizing hydrophobic drug candidates for oral delivery.
Thakkar, Vaishali Tejas; Deshmukh, Amol; Hingorani, Lal; Juneja, Payal; Baldaniya, Lalji; Patel, Asha; Pandya, Tosha; Gohel, Mukesh
2017-01-01
Introduction: The Bacopa monnieri is traditional Ayurvedic medicine, and reported for memory-enhancing effects. The Bacoside is poorly soluble, bitter in taste and responsible for the memory enhancement action. Memory enhancer is commonly prescribed for children or elder people. Objective: Poor solubility, patient compliance and bitterness were a major driving force to develop taste masked β-cyclodextrin complex and dispersible tablets. Materials and Methods: The inclusion complex of Bacopa monnieri and β-cyclodextrin was prepared in different molar ratios of Bacopa monnieri by Co-precipitation method. Phase solubility study was conducted to evaluate the effect of β-cyclodextrin on aqueous solubility of Bacoside A. The characterization was determined by Fourier transformation infrared spectroscopy (FTIR),Differential scanning calorimetry (DSC) and X-ray diffraction study (XRD).Crospovidone and croscarmallose sodium were used as super disintigrant. The 32 full factorial design was adopted to investigate the influence of two superdisintegrants on the wetting time and disntegration time of the tablets. Conclusion: The result revels that molar ratio (1:4) of inclusion complex enhance 3-fold solubility. Full factorial design was successfully employed for the optimization of dispersible tablet of B. monnieri. The short-term accelerated stability study confirmed that high stability of B. monnieri in inclusion complex. PMID:28979076
Dissolution Failure of Solid Oral Drug Products in Field Alert Reports.
Sun, Dajun; Hu, Meng; Browning, Mark; Friedman, Rick L; Jiang, Wenlei; Zhao, Liang; Wen, Hong
2017-05-01
From 2005 to 2014, 370 data entries of dissolution failures of solid oral drug products were assessed with respect to the solubility of drug substances, dosage forms [immediate release (IR) vs. modified release (MR)], and manufacturers (brand name vs. generic). The study results show that the solubility of drug substances does not play a significant role in dissolution failures; however, MR drug products fail dissolution tests more frequently than IR drug products. When multiple variables were analyzed simultaneously, poorly water-soluble IR drug products failed the most dissolution tests, followed by poorly soluble MR drug products and very soluble MR drug products. Interestingly, the generic drug products fail dissolution tests at an earlier time point during a stability study than the brand name drug products. Whether the dissolution failure of these solid oral drug products has any in vivo implication will require further pharmacokinetic, pharmacodynamic, clinical, and drug safety evaluation. Food and Drug Administration is currently conducting risk-based assessment using in-house dissolution testing, physiologically based pharmacokinetic modeling and simulation, and post-market surveillance tools. At the meantime, this interim report will outline a general scheme of monitoring dissolution failures of solid oral dosage forms as a pharmaceutical quality indicator. Published by Elsevier Inc.
Wada, Takeshi; Jesmin, Subrina; Gando, Satoshi; Yanagida, Yuichiro; Mizugaki, Asumi; Sultana, Sayeeda N; Zaedi, Sohel; Yokota, Hiroyuki
2012-09-29
Post-cardiac arrest syndrome (PCAS) often leads to multiple organ dysfunction syndrome (MODS) with a poor prognosis. Endothelial and leukocyte activation after whole-body ischemia/reperfusion following resuscitation from cardiac arrest is a critical step in endothelial injury and related organ damage. Angiogenic factors, including vascular endothelial growth factor (VEGF) and angiopoietin (Ang), and their receptors play crucial roles in endothelial growth, survival signals, pathological angiogenesis and microvascular permeability. The aim of this study was to confirm the efficacy of angiogenic factors and their soluble receptors in predicting organ dysfunction and mortality in patients with PCAS. A total of 52 resuscitated patients were divided into two subgroups: 23 survivors and 29 non-survivors. The serum levels of VEGF, soluble VEGF receptor (sVEGFR)1, sVEGFR2, Ang1, Ang2 and soluble Tie2 (sTie2) were measured at the time of admission (Day 1) and on Day 3 and Day 5. The ratio of Ang2 to Ang1 (Ang2/Ang1) was also calculated. This study compared the levels of angiogenic factors and their soluble receptors between survivors and non-survivors, and evaluated the predictive value of these factors for organ dysfunction and 28-day mortality. The non-survivors demonstrated more severe degrees of organ dysfunction and a higher prevalence of MODS. Non-survivors showed significant increases in the Ang2 levels and the Ang2/Ang1 ratios compared to survivors. A stepwise logistic regression analysis demonstrated that the Ang2 levels or the Ang2/Ang1 ratios on Day 1 independently predicted the 28-day mortality. The receiver operating characteristic curves of the Ang2 levels, and the Ang2/Ang1 ratios on Day 1 were good predictors of 28-day mortality. The Ang2 levels also independently predicted increases in the Sequential Organ Failure Assessment (SOFA) scores. We observed a marked imbalance between Ang1 and Ang2 in favor of Ang2 in PCAS patients, and the effect was more prominent in non-survivors. Angiogenic factors and their soluble receptors, particularly Ang2 and Ang2/Ang1, are considered to be valuable predictive biomarkers in the development of organ dysfunction and poor outcomes in PCAS patients.
Anti-inflammation effects of Sophora flavescens nanoparticles.
Han, Chun-Chao; Wang, Yingzi
2012-08-01
The roots of Sophora flavescens was reported to possess many pharmacological activities including anti-inflammatory, antiashmatic, antithelmintic, free radical scavenging and antimicrobial activities. However, the low saturated solubility and dissolution velocity of S. flavescens lead to poor bioavailability. The S. flavescens nanoparticles (SFNP) were prepared by a combination of ultrasound and hydrolysis developed by the authors. The drug dissolution profiles of SFNP in both pH 6.8 and pH 2 media showed complete dissolution within 30 min. The seropharmacology study showed that oral S. flavescens absorption in the SFNP was significantly increased. Anti-inflammation assay revealed the therapeutic efficiency of S. flavescens significantly enhanced upon nanoparticle formation.
Li, Shujuan; Wang, Xiaoyu; Wang, Yingying; Zhao, Qianqian; Zhang, Lina; Yang, Xinggang; Liu, Dandan; Pan, Weisan
2015-01-01
In this study, a novel controlled release osmotic pump capsule consisting of pH-modulated solid dispersion for poorly soluble drug flurbiprofen (FP) was developed to improve the solubility and oral bioavailability of FP and to minimize the fluctuation of plasma concentration. The pH-modulated solid dispersion containing FP, Kollidon® 12 PF and Na2CO3 at a weight ratio of 1/4.5/0.02 was prepared using the solvent evaporation method. The osmotic pump capsule was assembled by semi-permeable capsule shell of cellulose acetate (CA) prepared by the perfusion method. Then, the solid dispersion, penetration enhancer, and suspending agents were tableted and filled into the capsule. Central composite design-response surface methodology was used to evaluate the influence of factors on the responses. A second-order polynomial model and a multiple linear model were fitted to correlation coefficient of drug release profile and ultimate cumulative release in 12 h, respectively. The actual response values were in good accordance with the predicted ones. The optimized formulation showed a complete drug delivery and zero-order release rate. Beagle dogs were used to be conducted in the pharmacokinetic study. The in vivo study indicated that the relative bioavailability of the novel osmotic pump system was 133.99% compared with the commercial preparation. The novel controlled delivery system with combination of pH-modulated solid dispersion and osmotic pump system is not only a promising strategy to improve the solubility and oral bioavailability of poorly soluble ionizable drugs but also an effective way to reduce dosing frequency and minimize the plasma fluctuation.
Alagdar, Gada Sulaiman A.; Oo, May Kyaw; Sengupta, Pinaki; Mandal, Uttam Kumar; Jaffri, Julian Md.; Chatterjee, Bappaditya
2017-01-01
Background and Objective: One of the established strategies to improve solubility and dissolution rate of poorly water-soluble drugs is solid dispersion (SD). Polyethylene glycol (PEG) is used as common carrier despite its stability problem which may be overcome by the addition of hydrophobic polymer. The present research aimed to develop an SD formulation with ibuprofen, a poor water-soluble BCS Class II drug as active pharmaceutical ingredient (API) and PEG 4000-ethyl cellulose (EC) as binary carrier. Methods: Melt mixing SD method was employed using a ratio of API: binary carrier (1:3.5 w/w) (SDPE). Another SD was prepared using only PEG (SDP) as a carrier for comparative study. The developed formulation was evaluated using optical microscopy, scanning electron microscopy (SEM), determination of moisture content, differential scanning calorimetry (DSC), in vitro dissolution test, attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and flow properties. Results: SEM and DSC indicated the conversion of crystalline ibuprofen to fine partly amorphous solid dispersion, which was responsible for the increase in dissolution rate of SD than a physical mixture. The release characteristics within 1 h from the higher to the lower value were the SDPE> SDP> physical mixture. Flow property evaluation using the angle of repose showed no difference between SD and PM. However, by Carr index and Hausner ratio, the flow properties of SDPE was excellent. Conclusion: The SD formulation with the PEG 4000-EC carrier can be effective to enhance in vitro dissolution of ibuprofen immediate release dosage form. PMID:29184827
Vadlamudi, Harini Chowdary; Raju, Y Prasanna; Asuntha, G; Nair, Rahul; Murthy, K V Ramana; Vulava, Jayasri
2014-01-01
There are no reports about the pharmaceutical applications of hupu gum (HG). Hence the present study was undertaken to test its suitability in the dissolution enhancement of poorly water soluble drug. Rofecoxib (RFB) was taken as model drug. For comparison solid mixtures were prepared with carriers such as poly vinyl pyrrolidone (PVP), sodium starch glycollate (SSG) and guar gum (GG). Physical mixing (PM), co-grinding (CG), kneading (KT) and solvent evaporation (SE) techniques were used to prepare the solid mixtures, using all the carriers in different carrier and drug ratios. The solid mixtures were characterized by powder X-ray diffraction (XRD) and Fourier-transformed infrared spectroscopy (FTIR). There was a significant improvement in the dissolution rate of solid mixtures of HG, when compared with the solid mixtures of other carriers. There was an increase in dissolution rate with increase in concentration of HG upto 1:1 ratio of carrier and drug. No drug-carrier interaction was found by FTIR studies. XRD studies indicated reduction in crystallinity of the drug with increase in HG concentration. Hence HG could be a useful carrier for the dissolution enhancement of poorly water soluble drugs.
Drug nanoparticles: formulating poorly water-soluble compounds.
Merisko-Liversidge, Elaine M; Liversidge, Gary G
2008-01-01
More than 40% of compounds identified through combinatorial screening programs are poorly soluble in water. These molecules are difficult to formulate using conventional approaches and are associated with innumerable formulation-related performance issues. Formulating these compounds as pure drug nanoparticles is one of the newer drug-delivery strategies applied to this class of molecules. Nanoparticle dispersions are stable and have a mean diameter of less than 1 micron. The formulations consist of water, drug, and one or more generally regarded as safe excipients. These liquid dispersions exhibit an acceptable shelf-life and can be postprocessed into various types of solid dosage forms. Drug nanoparticles have been shown to improve bioavailability and enhance drug exposure for oral and parenteral dosage forms. Suitable formulations for the most commonly used routes of administration can be identified with milligram quantities of drug substance, providing the discovery scientist with an alternate avenue for screening and identifying superior analogs. For the toxicologist, the approach provides a means for dose escalation using a formulation that is commercially viable. In the past few years, formulating poorly water-soluble compounds using a nanoparticulate approach has evolved from a conception to a realization whose versatility and applicability are just beginning to be realized.
Yamashita, Taro; Ozaki, Shunsuke; Kushida, Ikuo
2011-10-31
96-well plate based anti-precipitant screening using bio-relevant medium FaSSIF (fasted-state simulated small intestinal fluid) is a useful technique for discovering anti-precipitants that maintain supersaturation of poorly soluble drugs. In a previous report, two disadvantages of the solvent evaporation method (solvent casting method) were mentioned: precipitation during the evaporation process and the use of volatile solvents to dissolve compounds. In this report, we propose a solvent shift method using DMSO (dimethyl sulfoxide). Initially, the drug substance was dissolved in DMSO at a high concentration and diluted with FaSSIF that contained anti-precipitants. To evaluate the validity of the method, itraconazole (ITZ) was used as the poorly soluble model drug. The solvent shift method resolved the disadvantages of the evaporation method, and AQOAT (HPMC-AS) was found as the most appropriate anti-precipitant for ITZ in a facile and expeditious manner when compared with the solvent evaporation method. In the large scale JP paddle method, AQOAT-based solid dispersion maintained a higher concentration than Tc-5Ew (HPMC)-based formulation; this result corresponded well with the small scale of the solvent shift method. Copyright © 2011 Elsevier B.V. All rights reserved.
Soft gelatin capsules (softgels).
Gullapalli, Rampurna Prasad
2010-10-01
It is estimated that more than 40% of new chemical entities (NCEs) coming out of the current drug discovery process have poor biopharmaceutical properties, such as low aqueous solubility and/or permeability. These suboptimal properties pose significant challenges for the oral absorption of the compounds and for the development of orally bioavailable dosage forms. Development of soft gelatin capsule (softgel) dosage form is of growing interest for the oral delivery of poorly water soluble compounds (BCS class II or class IV). The softgel dosage form offers several advantages over other oral dosage forms, such as delivering a liquid matrix designed to solubilize and improve the oral bioavailability of a poorly soluble compound as a unit dose solid dosage form, delivering low and ultra-low doses of a compound, delivering a low melting compound, and minimizing potential generation of dust during manufacturing and thereby improving the safety of production personnel. However, due to the very dynamic nature of the softgel dosage form, its development and stability during its shelf-life are fraught with several challenges. The goal of the current review is to provide an in-depth discussion on the softgel dosage form to formulation scientists who are considering developing softgels for therapeutic compounds.
USDA-ARS?s Scientific Manuscript database
Aim: The microbial ecology of feedlot Escherichia coli is poorly understood. It is a minority component of feces and must interact with many other bacteria. Use of wet distiller’s grains with solubles (WDGS) in cattle feed creates a gastrointestinal environment where some bacterial species are enri...
Levis, A. G.; Majone, F.
1981-01-01
Cr(III) and Cr(VI) compounds of varying solubilities have been tested in vitro for their ability to inhibit cell growth and nucleic acid and protein syntheses in BHK cells, to induce alterations in the mitotic cycle in HEp cells, and to increase the frequency of chromosomal aberrations and sister chromatid exchanges (SCE) in CHO cells. All Cr(VI) compounds, and particularly those containing soluble Cr(VI), such as potassium dichromate and zinc yellow, differentially inhibit macromolecular syntheses in BKH cells, that of DNA being always the most affected. Among Cr(III) compounds, which generally have very low cytotoxicity, chromite is particularly active, and inhibits cell growth and DNA synthesis even more than the poorly soluble Cr(VI) compounds. Preincubation in growth medium, with or without metabolizing cell cultures, solubilizes considerable amounts of Cr(VI) from zinc yellow and chromite, but significant amounts are also obtained from the most insoluble Cr(VI) pigments. When BHK cells are treated with such preincubated solutions, reduction of soluble Cr(VI) to Cr(III) by cell metabolites is seen with all Cr(VI) compounds, accompanied by decreased cytotoxicity. The same differences between Cr(VI) and Cr(III) compounds apply to the cytotoxic effects on mitosis of HEp cells and the clastogenic effects on CHO cells. The activity of chromite, the only Cr(III) pigment capable of significantly increasing the frequency of SCE, is due to contamination with soluble Cr(VI). In contrast to the very low cytotoxicity of Cr(III), much higher chromium levels are detected in the cells incubated with soluble Cr(III) than with the same concentrations of soluble Cr(VI). 50% and 75% of chromium accumulated in the cells during treatments with Cr(VI) and Cr(III) respectively remains firmly bound to the cells, even when they are incubated for up to 48 h in normal growth medium. Chromium accumulated in the cells after treatment with Cr(III) is most probably bound to the cell membrane, whereas some of the Cr(VI) is transported through the cell membrane and reduced in the cell nucleus. The results of the present investigation are in agreement with those obtained with the same Cr(VI) and Cr(III) compounds in mutagenicity assays in bacteria and carcinogenicity tests in rodents. A re-evaluation of the mechanisms of chromium carcinogenisis is proposed. PMID:7272188
Formulation and delivery strategies of ibuprofen: challenges and opportunities.
Irvine, Jake; Afrose, Afrina; Islam, Nazrul
2018-02-01
Ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), is mostly administered orally and topically to relieve acute pain and fever. Due to its mode of action this drug may be useful in the treatment regimens of other, more chronic conditions, like cystic fibrosis. This drug is poorly soluble in aqueous media and thus the rate of dissolution from the currently available solid dosage forms is limited. This leads to poor bioavailability at high doses after oral administration, thereby increasing the risk of unwanted adverse effects. The poor solubility is a problem for developing injectable solution dosage forms. Because of its poor skin permeability, it is difficult to obtain an effective therapeutic concentration from topical preparations. This review aims to give a brief insight into the status of ibuprofen dosage forms and their limitations, particle/crystallization technologies for improving formulation strategies as well as suggesting its incorporation into the pulmonary drug delivery systems for achieving better therapeutic action at low dose.
Sambaraj, Swapna; Ammula, Divya; Nagabandi, Vijaykumar
2015-09-01
The main objective of the current research work was to formulate and evaluate furosemide loaded silica lipid hybrid microparticles for improved oral delivery. A novel silica-lipid hybrid microparticulate system is used for enhancing the oral absorption of low solubility and low permeability of (BCS Class IV) drugs. Silica-lipid hybrid microparticles include the drug solubilising effect of dispersed lipids and stabilizing effect of hydrophilic silica particles to increase drug solubilisation, which leads to enhanced oral bioavailability. The slica lipid hybrid (SLH) microparticles were composed of poorly soluble drug (furosemide), dispersion of oil phase (Soya bean oil and miglyol) in lecithin (Phospholipoid 90H), non-ionic surfactant (Polysorbate 80) and adsorbent (Aerosol 380). Saturation solubility studies were performed in different oils and surfactants with increased concentration of drug revealed increased solubility of furosemide. In vitro dissolution studies conducted under simulated gastric medium revealed 2-4 fold increase in dissolution efficiencies for SLH microparticles compared to that of pure drug (furosemide) and marketed formulation Lasix®. Ex vivo studies showed enhanced lipid digestibility, which improved drug permeability. Solid-state characterization of SLH microparticles by X-ray powder diffraction and Fourier transform infrared spectroscopic analysis confirmed non-crystalline nature and more compatibility of furosemide in silica-lipid hybrid microparticles. It can be concluded that the role of lipids and hydrophilic silica based carrier highlighted in enhancing solubility and permeability, and hence the oral bioavailability of poorly soluble drugs.
Sambaraj, Swapna; Ammula, Divya; Nagabandi, Vijaykumar
2015-01-01
Purpose: The main objective of the current research work was to formulate and evaluate furosemide loaded silica lipid hybrid microparticles for improved oral delivery. A novel silica-lipid hybrid microparticulate system is used for enhancing the oral absorption of low solubility and low permeability of (BCS Class IV) drugs. Silica-lipid hybrid microparticles include the drug solubilising effect of dispersed lipids and stabilizing effect of hydrophilic silica particles to increase drug solubilisation, which leads to enhanced oral bioavailability. Methods: The slica lipid hybrid (SLH) microparticles were composed of poorly soluble drug (furosemide), dispersion of oil phase (Soya bean oil and miglyol) in lecithin (Phospholipoid 90H), non-ionic surfactant (Polysorbate 80) and adsorbent (Aerosol 380). Saturation solubility studies were performed in different oils and surfactants with increased concentration of drug revealed increased solubility of furosemide. Results: In vitro dissolution studies conducted under simulated gastric medium revealed 2-4 fold increase in dissolution efficiencies for SLH microparticles compared to that of pure drug (furosemide) and marketed formulation Lasix®. Ex vivo studies showed enhanced lipid digestibility, which improved drug permeability. Solid-state characterization of SLH microparticles by X-ray powder diffraction and Fourier transform infrared spectroscopic analysis confirmed non-crystalline nature and more compatibility of furosemide in silica-lipid hybrid microparticles. Conclusion: It can be concluded that the role of lipids and hydrophilic silica based carrier highlighted in enhancing solubility and permeability, and hence the oral bioavailability of poorly soluble drugs. PMID:26504763
Wang, Xue-Qing; Zhang, Qiang
2012-10-01
pH-sensitive polymeric nanoparticles are promising for oral drug delivery, especially for peptide/protein drugs and poorly water-soluble medicines. This review describes current status of pH-sensitive polymeric nanoparticles for oral drug delivery and introduces the mechanisms of drug release from them as well as possible reasons for absorption improvement, with emphasis on our contribution to this field. pH-sensitive polymeric nanoparticles are prepared mainly with polyanions, polycations, their mixtures or cross-linked polymers. The mechanisms of drug release are the result of carriers' dissolution, swelling or both of them at specific pH. The possible reasons for improvement of oral bioavailability include the following: improve drug stability, enhance mucoadhesion, prolong resident time in GI tract, ameliorate intestinal permeability and increase saturation solubility and dissolution rate for poorly water-soluble drugs. As for the advantages of pH-sensitive nanoparticles over conventional nanoparticles, we conclude that (1) most carriers used are enteric-coating materials and their safety has been approved. (2) The rapid dissolution or swelling of carriers at specific pH results in quick drug release and high drug concentration gradient, which is helpful for absorption. (3) At the specific pH carriers dissolve or swell, and the bioadhesion of carriers to mucosa becomes high because nanoparticles turn from solid to gel, which can facilitate drug absorption. Copyright © 2012 Elsevier B.V. All rights reserved.
Mohammed, Noorullah Naqvi; Pandey, Pankaj; Khan, Nayaab S; Elokely, Khaled M; Liu, Haining; Doerksen, Robert J; Repka, Michael A
2016-08-01
Clotrimazole (CT) is a poorly soluble antifungal drug that is most commonly employed as a topical treatment in the management of vaginal candidiasis. The present work focuses on a formulation approach to enhance the solubility of CT using cyclodextrin (CD) complexation. A CT-CD complex was prepared by a co-precipitation method. Various characterization techniques such as differential scanning calorimetry, infrared (IR) and X-ray spectroscopy, scanning electron microscopy and nuclear magnetic resonance (NMR) spectroscopy were performed to evaluate the complex formation and to understand the interactions between CT and CD. Computational molecular modeling was performed using the Schrödinger suite and Gaussian 09 program to understand structural conformations of the complex. The phase solubility curve followed an AL-type curve, indicating formation of a 1:1 complex. Molecular docking studies supported the data obtained through NMR and IR studies. Enthalpy changes confirmed that complexation was an exothermic and enthalpically favorable phenomenon. The CT-CD complexes were formulated in a gel and evaluated for release and antifungal activity. The in vitro release studies performed using gels demonstrated a sustained release of CT from the CT-CD complex with the complex exhibiting improved release relative to the un-complexed CT. Complexed CT-CD exhibited better fungistatic activity toward different Candida species than un-complexed CT.
Capasso Palmiero, Umberto; Morosi, Lavinia; Bello, Ezia; Ponzo, Marianna; Frapolli, Roberta; Matteo, Cristina; Ferrari, Mariella; Zucchetti, Massimo; Minoli, Lucia; De Maglie, Marcella; Romanelli, Pierpaolo; Morbidelli, Massimo; D'Incalci, Maurizio; Moscatelli, Davide
2018-04-28
The improvement of the pharmacological profile of lipophilic drug formulations is one of the main successes achieved using nanoparticles (NPs) in medicine. However, the complex synthesis procedure and numerous post-processing steps hamper the cost-effective use of these formulations. In this work, an approach which requires only a syringe to produce self-assembling biodegradable and biocompatible poly(caprolactone)-based NPs is developed. The effective synthesis of monodisperse NPs has been made possible by the optimization of the block-copolymer synthesized via a combination of ring opening polymerization and reversible addition-fragmentation chain transfer polymerization. These NPs can be used to formulate lipophilic drugs that are barely soluble in water, such as trabectedin, a potent anticancer therapeutic. Its biodistribution and antitumor activity have been compared with the commercially available formulation Yondelis®. The results indicate that this trabectedin NP formulation performs with the same antitumor activity as Yondelis®, but does not have the drawback of severe local vascular toxicity in the injection site. Copyright © 2018 Elsevier B.V. All rights reserved.
Gavande, Navnath S; VanderVere-Carozza, Pamela; Mishra, Akaash K; Vernon, Tyler L; Pawelczak, Katherine S; Turchi, John J
2017-10-12
XPA is a unique and essential protein required for the nucleotide excision DNA repair pathway and represents a therapeutic target in oncology. Herein, we are the first to develop novel inhibitors of the XPA-DNA interaction through structure-guided drug design efforts. Ester derivatives of the compounds 1 (X80), 22, and 24 displayed excellent inhibitory activity (IC 50 of 0.82 ± 0.18 μM and 1.3 ± 0.22 μM, respectively) but poor solubility. We have synthesized novel amide derivatives that retain potency and have much improved solubility. Furthermore, compound 1 analogs exhibited good specificity for XPA over RPA (replication protein A), another DNA-binding protein that participates in the nucleotide excision repair (NER) pathway. Importantly, there were no significant interactions observed by the X80 class of compounds directly with DNA. Molecular docking studies revealed a mechanistic model for the interaction, and these studies could serve as the basis for continued analysis of structure-activity relationships and drug development efforts of this novel target.
Curcumin, a Compound from Natural Sources, a True Scientific Challenge - A Review.
Stanić, Zorka
2017-03-01
Curcumin, a plant-derived polyphenolic compound, naturally present in turmeric (Curcuma longa), has been the subject of intensive investigations on account of its various activities. The implementation of safe, beneficial and highly functional compounds from natural sources in human nutrition/prevention/therapy requires some modifications in order to achieve their multi-functionality, improve their bioavailability and delivery strategies, with the main aim to enhance their effectiveness. The low aqueous solubility of curcumin, its rapid metabolism and elimination from the body, and consequently, poor bioavailability, constitute major obstacles to its application. The main objectives of this review are related to reported strategies to overcome these limitations and, thereby, improve the solubility, stability and bioavailability of curcumin. The effectiveness of curcumin could be greatly improved by using nanoparticle-based carriers. The significance of the quality of a substance delivery system is reflected in the fact that carrying curcumin as a food additive/nutrition also means carrying the active biological product/drug. This review summarizes the state of the art, and highlights some examples and the most significant advances in the field of curcumin research.
Li, Chuan; Zhang, Jia; Zu, Yu-Jiao; Nie, Shu-Fang; Cao, Jun; Wang, Qian; Nie, Shao-Ping; Deng, Ze-Yuan; Xie, Ming-Yong; Wang, Shu
2015-09-01
Many phytochemicals show promise in cancer prevention and treatment, but their low aqueous solubility, poor stability, unfavorable bioavailability, and low target specificity make administering them at therapeutic doses unrealistic. This is particularly true for (-)-epigallocatechin gallate, curcumin, quercetin, resveratrol, and genistein. There is an increasing interest in developing novel delivery strategies for these natural products. Liposomes, micelles, nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers and poly (lactide-co-glycolide) nanoparticles are biocompatible and biodegradable nanoparticles. Those nanoparticles can increase the stability and solubility of phytochemicals, exhibit a sustained release property, enhance their absorption and bioavailability, protect them from premature enzymatic degradation or metabolism, prolong their circulation time, improve their target specificity to cancer cells or tumors via passive or targeted delivery, lower toxicity or side-effects to normal cells or tissues through preventing them from prematurely interacting with the biological environment, and enhance anti-cancer activities. Nanotechnology opens a door for developing phytochemical-loaded nanoparticles for prevention and treatment of cancer. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Kovácik, Jozef; Klejdus, Borivoj; Backor, Martin
2009-06-15
Owing to the abundance of phenolic metabolites in plant tissue, their accumulation represents an important tool for stress protection. However, the regulation of phenolic metabolism is still poorly known. The regulatory role of reactive oxygen species (ROS) in the activity of phenylalanine ammonia-lyase (PAL) in nitrogen (N)-deficient chamomile roots treated for 24 h was studied using three ROS scavengers [dithiothreitol (DTT), salicylhydroxamic acid, and sodium benzoate]. Scavengers decreased the level of hydrogen peroxide and/or superoxide (and up-regulated ascorbate/guaiacol peroxidase and glutathione reductase), but, surprisingly, stimulated PAL activity. This up-regulation was correlated with increases in nitric oxide (NO) content, total soluble phenols, selected phenolic acids, and, partially, lignin (being expressed the most in DTT-exposed roots). We therefore tested the hypothesis that NO may be involved in these changes. Application of 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) decreased PAL activity and the accumulation of soluble phenols in all treatments. Exogenous H(2)O(2) and NO also stimulated PAL activity and the accumulation of phenols. We conclude that NO, in addition to hydrogen peroxide, may regulate PAL activity during N deficiency. The anomalous effect of PTIO on NO content and possible mechanism of ROS scavenger-evoked NO increases in light of the current knowledge are also discussed.
Liu, Yu; Yu, Manli; Zhang, Le; Cao, Qingxin; Song, Ying; Liu, Yuxiu; Gong, Jianbin
2016-08-01
Vascular dysfunction including vascular remodeling and endothelial dysfunction in hypertension often results in poor clinical outcomes and increased risk of vascular accidents. We investigate the effect of treatment with soluble receptor for advanced glycation end products (sRAGE) on vascular dysfunction in spontaneously hypertensive rats (SHR). Firstly, the aortic AGE/RAGE pathway was investigated in SHR. Secondly, SHR received intraperitoneal injections of sRAGE daily for 4 weeks. Effect of sRAGE against vascular dysfunction in SHR and underlying mechanism was investigated. SHR aortas exhibited enhanced activity of aldose reductase, reduced activity of glyoxalase 1, accumulation of methylglyoxal and AGE, and upregulated expression of RAGE. Treatment of SHR with sRAGE had no significant effect on blood pressure, but alleviated aortic hypertrophy and endothelial dysfunction. In vitro, treatment with sRAGE reversed the effect of incubation with AGE on proliferation of smooth muscle cells and endothelial function. Treatment of SHR with sRAGE abated oxidative stress, suppressed inflammation and NF-κB activation, improved the balance between Ang II and Ang-(1-7) through reducing angiotensin-converting enzyme (ACE) activity and enhancing ACE2 expression, and upregulated peroxisome proliferator-activated receptor gamma (PPAR-γ) expression in aortas. In conclusion, treatment with sRAGE alleviated vascular adverse remodeling in SHR, possibly via suppression of oxidative stress and inflammation, improvement in RAS balance, and activation of PPAR-γ pathway.
Jaisamut, Patcharawalai; Wiwattanawongsa, Kamonthip; Wiwattanapatapee, Ruedeekorn
2017-03-01
The use of curcumin and resveratrol in combination has now become increasingly of interest because of their synergistic effects as therapeutic agents for various diseases, especially cancer. To overcome the poor oral bioavailability of both compounds and improve patient compliance, a novel self-microemulsifying formulation containing curcumin together with resveratrol was developed. Capryol 90, Cremophor EL, and Labrasol were selected as the oil, surfactant, and co-surfactant in the formulation, respectively, based on the solubility study of both compounds. More than 70 % and 80 % of curcumin and resveratrol, respectively, were released in 20 min. The formulation formed a fine oil in water microemulsion with droplet sizes in aqueous media of 15-20 nm. In addition, the formulation containing curcumin and resveratrol showed greater antioxidant activity than that of the formulations with individual compounds, while the cytotoxic activity against HT-29 of the co-formulation (IC 50 = 18.25 µM; curcumin and resveratrol in the ratio 1 : 1) was less than the formulation with only curcumin (IC 50 = 30.1 µM) and only resveratrol (IC 50 = 25.4 µM). After oral administration to rabbits, the self-microemulsifying formulation containing curcumin together with resveratrol increased the total plasma concentrations of curcumin and resveratrol by 10-fold and 6-fold, respectively, compared to the unformulated combination. This study clearly demonstrated the potential use of the self-microemulsifying formulation for co-delivery, and enhanced oral absorption of poorly water-soluble natural compounds. In addition, the combination was found to produce synergistic antioxidant activity and cytotoxicity against HT-29 cells. Georg Thieme Verlag KG Stuttgart · New York.
Tahara, Kohei; Nishikawa, Masahiro; Matsui, Ko; Hisazumi, Koji; Onodera, Risako; Tozuka, Yuichi; Takeuchi, Hirofumi
2016-09-01
The aim of this study was to enhance the dissolution and oral absorption of poorly water-soluble active pharmaceutical ingredients (APIs) using nanoparticle suspensions prepared with a PureNano™ continuous crystallizer (PCC). Nanoparticle suspensions were prepared with a PCC, which is based on microfluidics reaction technology and solvent-antisolvent crystallization. Phenytoin, bezafibrate, flurbiprofen, and miconazole were used as model APIs. These APIs were dissolved in ethanol and precipitated by the addition of water and polyvinyl alcohol. Batch crystallization (BC) using a beaker was also performed to prepare the suspensions. Both PCC and BC formulations were freeze-dried before being characterized in vitro and in vivo. The particle sizes of the nanoparticle suspensions prepared with the PCC were smaller than those prepared by BC. The dissolution rate of each API in vitro significantly increased after crystallization. Reducing the particle size of either the BC or PCC formulation led to increased API flux across Caco-2 cell monolayers. PCC preparations showed higher plasma concentrations after oral administration, demonstrating the advantages of a fast dissolution rate and increased interaction with the gastrointestinal tract owing to the smaller particle size. PCC can continuously produce nanoparticle APIs and is an efficient approach for improving their oral bioavailability.
Goindi, Shishu; Kaur, Ramanpreet; Kaur, Randeep
2015-11-30
In this paper, we report an ionic liquid-in-water (IL/w) microemulsion (ME) formulation which is able to solubilize etodolac (ETO), a poorly water soluble drug for topical delivery using BMIMPF6 (1-butyl-3-methylimidazolium hexafluorophosphate) as IL, Tween 80 as surfactant and ethanol as co-surfactant. The prepared ME was characterized for physicochemical parameters, subjected to ex-vivo permeation studies as well as in-vivo pharmacodynamic evaluation. The ex-vivo drug permeation studies through rat skin was performed using Franz-diffusion cell and the IL/w based ME showed maximum mean cumulative percent permeation of 99.030±0.921% in comparison to oil-in-water (o/w) ME (61.548±1.875%) and oily solution (48.830±2.488%) of ETO. In-vivo anti-arthritic and anti-inflammatory activities of the prepared formulations were evaluated using different rodent models and the results revealed that ETO loaded IL/w based ME was found to be more effective in controlling inflammation than oily solution, o/w ME and marketed formulation of ETO. Histopathological studies also demonstrated that IL/w based ME caused no anatomical and pathological changes in the skin. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, W P; Hul, J; Sui, H; Zhao, Y S; Feng, J; Liu, C
2016-05-01
Glabridin, a polyphenolic flavonoid from licorice, has inspired great interest for its antioxidant, anti-inflammatory and skin-lightening activities. However, low water solubility and poor stability of glabridin impedes its topical application in cosmetic products and therapies of dermal diseases. The purpose of this study was to develop a nanosuspension formulation of glabridin to improve its skin permeation. Glabridin nanosuspensions were prepared using anti-solvent precipitation-homogenization method, and Box-Behnken design was adopted to investigate the effects of crucial formulation variables on particle size and to optimize the nanosuspension formulation. The optimal formulation consisted of 0.25% glabridin, 0.47% Poloxamer 188 and 0.11% Polyvinylpyrrolidone K30, and the obtained nanosuspension showed an average particle size of 149.2 nm with a polydispersity index of 0.254. Furthermore, the nanosuspension exhibited significantly enhanced drug permeation flux of glabridin through rat skin with no lag phase both in vitro and in vivo, compared to the coarse suspension and physical mixture. The glabridin nanosuspension showed no significant particle aggregates and a drug loss of 5.46% after storage for 3 months at room temperature. With its enhanced skin penetration, the nanosuspension might be a more preferable formulation for topical administration of poorly soluble glabridin.
Impregnation of Fenofibrate on mesoporous silica using supercritical carbon dioxide.
Bouledjouidja, Abir; Masmoudi, Yasmine; Van Speybroeck, Michiel; Schueller, Laurent; Badens, Elisabeth
2016-02-29
Low oral bioavailability can be circumvented by the formulation of the poorly water soluble drug in ordered mesoporous silica (OMS-L-7). Fenofibrate is an orally administered, poorly water-soluble active pharmaceutical ingredient (API), used clinically to lower lipid levels. Fenofibrate was loaded into silica using two methods: incipient wetness and supercritical impregnation. This study investigates the impact of loading and the impact of varying supercritical carbon dioxide (scCO2) processing conditions. The objective is to enhance Fenofibrate loading into silica while reducing degree of the drug crystallinity, so as to increase the drug's dissolution rate and its bioavailability. The comparison of both impregnation processes was made in terms of impregnation yields and duration as well as physical characterization of the drug. While incipient wetness method led to a Fenofibrate loading up to 300 mgdrug/gsilica in 48 h of impregnation, the supercritical impregnation method yielded loading up to 485 mgdrug/gsilica in 120 min of impregnation duration, at 16 MPa and 308 K, with a low degree of crystallinity (about 1%) comparable to the crystallinity observed via the solvent method. In addition to the enhancement of impregnation efficiency, the supercritical route provides a solvent-free alternative for impregnation. Copyright © 2015 Elsevier B.V. All rights reserved.
Recent progress on nanoparticle-based drug delivery systems for cancer therapy
Xin, Yanru; Yin, Mingming; Zhao, Liyuan; Meng, Fanling; Luo, Liang
2017-01-01
The development of cancer nanotherapeutics has attracted great interest in the recent decade. Cancer nanotherapeutics have overcome several limitations of conventional therapies, such as nonspecific biodistribution, poor water solubility, and limited bioavailability. Nanoparticles with tuned size and surface characteristics are the key components of nanotherapeutics, and are designed to passively or actively deliver anti-cancer drugs to tumor cells. We provide an overview of nanoparticle-based drug delivery methods and cancer therapies based on tumor-targeting delivery strategies that have been developed in recent years. PMID:28884040
Taub, Mitchell E; Kristensen, Lisbeth; Frokjaer, Sven
2002-05-01
The solubility enhancing effects of various excipients, including their compatibility with in vitro permeability (P(app)) systems, was investigated using drugs representative of Biopharmaceutics Classification System (BCS) classes I-IV. Turbidimetric solubility determination using nephelometry and transport experiments using MDCK Strain I cell monolayers were employed. The highest usable concentration of each excipient [dimethyl sulfoxide (DMSO), ethanol, hydroxypropyl-beta-cyclodextrin (HPCD), and sodium taurocholate] was determined by monitoring apical (AP) to basolateral (BL) [14C]mannitol apparent permeability (P(app)) and the transepithelial electrical resistance (TEER) in transport experiments done at pH 6.0 and 7.4. The excipients were used in conjunction with compounds demonstrating relatively low aqueous solubility (amphotericin B, danazol, mefenamic acid, and phenytoin) in order to obtain a drug concentration >50 microM in the donor compartment. The addition of at least one of the selected excipients enhanced the solubility of the inherently poorly soluble compounds to >50 microM as determined via turbidimetric evaluation at pH 6.0 and 7.4. Ethanol and DMSO were found to be generally disruptive to the MDCK monolayer and were not nearly as useful as HPCD and sodium taurocholate. Sodium taurocholate (5 mM) was compatible with MDCK monolayers under all conditions investigated. Additionally, a novel in vitro system aimed at more accurately simulating in vivo conditions, i.e., a pH gradient (6.0 AP/7.4 BL), sodium taurocholate (5 mM, AP), and bovine serum albumin (0.25%, BL), was shown to generate more reliable P(app) values for compounds that are poorly soluble and/or highly protein bound.
Zhang, Yilan; Luo, Rui; Chen, Yi; Ke, Xue; Hu, Danrong; Han, Miaomiao
2014-06-01
The objective of this study was to develop a suitable formulation for baicalein (a poorly water-soluble drug exhibiting high melting point) to prepare solid dispersions using hot melt extrusion (HME). Proper carriers and plasticizers were selected by calculating the Hansen solubility parameters, evaluating melting processing condition, and measuring the solubility of obtained melts. The characteristic of solid dispersions prepared by HME was evaluated. The dissolution performance of the extrudates was compared to the pure drug and the physical mixtures. Physicochemical properties of the extrudates were characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR). Relative bioavailability after oral administration in beagle dogs was assessed. As a result, Kollidon VA64 and Eudragit EPO were selected as two carriers; Cremophor RH was used as the plasticizer. The dissolution of all the extrudates was significantly improved. DSC and PXRD results suggested that baicalein in the extrudates was amorphous. FTIR spectroscopy revealed the interaction between drug and polymers. After oral administration, the relative bioavailability of solid dispersions with VA64 and EPO was comparative, about 2.4- and 2.9-fold greater compared to the pure drug, respectively.
Solid dispersions: a strategy for poorly aqueous soluble drugs and technology updates.
Alam, Mohd Aftab; Ali, Raisuddin; Al-Jenoobi, Fahad Ibrahim; Al-Mohizea, Abdullah M
2012-11-01
Present article reviews solid dispersion (SD) technologies and other patented inventions in the area of pharmaceutical SDs, which provide stable amorphous SDs. The review briefly compiles different techniques for preparing SDs, their applications, characterization of SDs, types of SDs and also elaborates the carriers used to prepare SDs. The advantages of recently introduced SD technologies such as RightSize(™), closed-cycle spray drying (CSD), Lidose® are summarized. Stability-related issues like phase separation, re-crystallization and methods to curb these problems are also discussed. A patented carrier-screening tool for predicting physical stability of SDs on the basis of drug-carrier interaction is explained. Applications of SD technique in controlled drug delivery systems and cosmetics are explored. Review also summarizes the carriers such as Soluplus®, Neusilin®, Solumer(TM) used to prepare stable amorphous SD. Binary and ternary SDs are found to be more stable and provide better enhancement of solubility or dissolution of poorly water-soluble drugs. The use of surfactants in the carrier system of SD is a recent trend. Surfactants and polymers provide stability against re-crystallization of SDs, surfactants also improve solubility and dissolution of drug.
Development of solid dispersion systems of dapivirine to enhance its solubility.
Gorajana, Adinarayana; Ying, Chan Chiew; Shuang, Yeen; Fong, Pooi; Tan, Zhi; Gupta, Jyoti; Talekar, Meghna; Sharma, Manisha; Garg, Sanjay
2013-06-01
Dapivirine, formerly known as TMC 120, is a poorly-water soluble anti-HIV drug, currently being developed as a vaginal microbicide. The clinical use of this drug has been limited due to its poor solubility. The aim of this study was to design solid dispersion systems of Dapivirine to improve its solubility. Solid dispersions were prepared by solvent and fusion methods. Dapivirine release from the solid dispersion system was determined by conducting in-vitro dissolution studies. The physicochemical characteristics of the drug and its formulation were studied using Differential Scanning Calorimetry (DSC), powder X-ray Diffraction (XRD), Fourier-transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). A significant improvement in drug dissolution rate was observed with the solid dispersion systems. XRD, SEM and DSC results indicated the transformation of pure Dapivirine which exists in crystalline form into an amorphous form in selected solid dispersion formulations. FTIR and HPLC analysis confirmed the absence of drug-excipient interactions. Solid dispersion systems can be used to improve the dissolution rate of Dapivirine. This improvement could be attributed to the reduction or absence of drug crystallinity, existence of drug particles in an amorphous form and improved wettability of the drug.
Kadari, Amrita; Gudem, Sagarika; Kulhari, Hitesh; Bhandi, Murali Mohan; Borkar, Roshan M; Kolapalli, Venkata Ramana Murthy; Sistla, Ramakrishna
2017-11-01
Fisetin (FST), a potent anticancer phytoconstituent, exhibits poor aqueous solubility and hence poor bioavailability. The aim of the present study is to improve the oral bioavailability of FST by encapsulating into PLGA NPs (poly-lactide-co-glycolic acid nanoparticles) as a complex of HPβCD (hydroxyl propyl beta cyclodextrin) and to assess its anti-cancer activity against breast cancer cells. FST-HPβCD inclusion complex (FHIC) was prepared and the supramolecular complex formation was characterized by FTIR, DSC, PXRD and 1 H NMR. FHIC encapsulated PLGA nanoparticles (FHIC-PNP) were prepared and were studied for in vitro anticancer activity, cellular uptake, apoptosis and reactive oxygen species generation in MCF-7 human breast cancer cells. Comparative bioavailability of FST was determined after oral administration in C57BL6 mice as pure FST and FHIC-PNP. The results revealed that FHIC-PNP not only enhanced the anti-cancer activity and apoptosis of FST against MCF-7 cells but also improved its oral bioavailability, as demonstrated by increased peak plasma concentration and total drug absorbed.
Bisht, Savita; Khan, Mehtab A; Bekhit, Mena; Bai, Haibo; Cornish, Toby; Mizuma, Masamichi; Rudek, Michelle A; Zhao, Ming; Maitra, Amarnath; Ray, Balmiki; Lahiri, Debomoy; Maitra, Anirban; Anders, Robert A
2012-01-01
Plant-derived polyphenols such as curcumin hold promise as a therapeutic agent in the treatment of chronic liver diseases. However, its development is plagued by poor aqueous solubility resulting in poor bioavailability. To circumvent the suboptimal bioavailability of free curcumin, we have developed a polymeric nanoparticle formulation of curcumin (NanoCurc™) that overcomes this major pitfall of the free compound. In this study, we show that NanoCurc™ results in sustained intrahepatic curcumin levels that can be found in both hepatocytes and non-parenchymal cells. NanoCurc™ markedly inhibits carbon tetrachloride-induced liver injury, production of pro-inflammatory cytokines and fibrosis. It also enhances antioxidant levels in the liver and inhibits pro-fibrogenic transcripts associated with activated myofibroblasts. Finally, we show that NanoCurc™ directly induces stellate cell apoptosis in vitro. Our results suggest that NanoCurc™ might be an effective therapy for patients with chronic liver disease. PMID:21691262
Dahan, Arik; Beig, Avital; Lindley, David; Miller, Jonathan M
2016-06-01
Poor aqueous solubility is a major challenge in today's biopharmaceutics. While solubility-enabling formulations can significantly increase the apparent solubility of the drug, the concomitant effect on the drug's apparent permeability has been largely overlooked. The mathematical equation to describe the membrane permeability of a drug comprises the membrane/aqueous partition coefficient, which in turn is dependent on the drug's apparent solubility in the GI milieu, suggesting that the solubility and the permeability are closely related, exhibit a certain interplay between them, and treating the one irrespectively of the other may be insufficient. In this article, an overview of this solubility-permeability interplay is provided, and the available data is analyzed in the context of the effort to maximize the overall drug exposure. Overall, depending on the type of solubility-permeability interplay, the permeability may decrease, remain unchanged, and even increase, in a way that may critically affect the formulation capability to improve the overall absorption. Therefore, an intelligent design of solubility-enabling formulation needs to consider both the solubility afforded by the formulation and the permeability in the new luminal environment resulting from the formulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Rao, Xiao-Yong; Yin, Shan; Zhang, Guo-Song; Luo, Xiao-Jian; Jian, Hui; Feng, Yu-Lin; Yang, Shi-Lin
2014-05-01
To determine the equilibrium solubility of pulchinenosiden D in different solvents and its n-octanol/water partition coefficients. Combining shaking flask method and high performance liquid chromatography (HPLC) to detect the n-octanol/water partition coefficients of pulchinenosiden D, the equilibrium solubility of pulchinenosiden D in six organic solvents and different pH buffer solution were determined by HPLC analysis. n-Octanol/water partition coefficients of pulchinenosiden D in different pH were greater than zero, the equilibrium solubility of pulchinenosiden D was increased with increase the pH of the buffer solution. The maximum equilibrium solubility of pulchinenosiden D was 255.89 g x L(-1) in methanol, and minimum equilibrium solubility of pulchinenosiden D was 0.20 g x L(-1) in acetonitrile. Under gastrointestinal physiological conditions, pulchinenosiden D exists in molecular state and it has good absorption but poor water-solubility, so increasing the dissolution rate of pulchinenosiden D may enhance its bioavailability.
Impact of Solubilizing Additives on Supersaturation and Membrane Transport of Drugs.
Raina, Shweta A; Zhang, Geoff G Z; Alonzo, David E; Wu, Jianwei; Zhu, Donghua; Catron, Nathaniel D; Gao, Yi; Taylor, Lynne S
2015-10-01
Many enabling formulations give rise to supersaturated solutions wherein the solute possesses higher thermodynamic activity gradients than the solute in a saturated solution. Since flux across a membrane is driven by solute activity rather than concentration, understanding how solute thermodynamic activity varies with solution composition, particularly in the presence of solubilizing additives, is important in the context of passive absorption. In this study, a side-by-side diffusion cell was used to evaluate solute flux for solutions of nifedipine and felodipine in the absence and presence of different solubilizing additives at various solute concentrations. At a given solute concentration above the equilibrium solubility, it was observed that the solubilizing additives could reduce the membrane flux, indicating that the extent of supersaturation can be reduced. However, the flux could be increased back to the same maximum value (which was determined by the concentration where liquid-liquid phase separation (LLPS) occurred) by increasing the total solute concentration. Qualitatively, the shape of the curves of solute flux through membrane as a function of total solute concentration is the same in the absence and presence of solubilizing additives. Quantitatively, however, LLPS occurs at higher solute concentrations in the presence of solubilizing additives. Moreover, the ratios of the LLPS onset concentration and equilibrium solubility vary significantly in the absence and presence of additives. These findings clearly point out the flaws in using solute concentration in estimating solute activity or supersaturation, and reaffirm the use of flux measurements to understand supersaturated systems. Clear differentiation between solubilization and supersaturation, as well as thorough understanding of their respective impacts on membrane transport kinetics is important for the rational design of enabling formulations for poorly soluble compounds.
Ding, Xue-Qiang; Chen, Dan; Wang, An-Xun; Li, Su; Chen, Yu; Wang, Ji
2007-01-01
Therapeutic use of hydroxycamptothecin (HCPT), a promising antitumor agent, is limited by its poor solubility and rapid destruction. Amphiphilic block copolymer micelle carriers possess significant potential for improving drug solubility and stability. Poly[ethylene glycol]-poly[gamma-benzyl-L-glutamate] (PEG-PBLG) micelles were prepared and loaded with the active lactone form of HCPT using an uncomplicated dialysis method. HPLC and scanning electron microscopy studies revealed an encapsulation efficiency of 56.8% and a core-shell figure with a mean diameter of 200 nm. Encapsulated HCPT lactone was compared with the less active, open ring-carboxylated HCPT-Na+ soluble form generated in vivo from the free active lactone for activity against oral squamous cell carcinoma. Cytotoxicity in vitro was measured in cultured Tca8113 cells by the MTT assay and microscopy techniques. The golden hamster cheek pouch squamous cell carcinoma model was employed for in vivo studies; encapsulated lactone and open ring-carboxylated forms of HCPT were administered intraperitoneally, followed by determinations of tumor growth rate and inhibition ratio. PEG-PBLG micelles were not cytotoxic in vitro. At 48 h of treatment, open ring-carboxylated HCPT proved significantly more cytotoxic in vitro than encapsulated HCPT lactone. At 96 h, however, the open ring-carboxylated and encapsulated drugs displayed comparable in vitro cytotoxicities. In the in vivo squamous cell carcinoma model, encapsulated HCPT lactone produced greater and more prolonged tumor suppression compared to the open ring-carboxylated form. The antitumor effects of HCPT/PEG-PBLG micelles against oral squamous cell carcinoma in vivo are concluded to be superior to those exerted by open ring-carboxylated HCPT.
Introduction for Design of Nanoparticle Based Drug Delivery Systems.
Edgar, Jun Yan Chan; Wang, Hui
2017-01-01
Conventional drug delivery systems contain numerous limitations such as limited targeting, low therapeutic indices, poor water solubility, and the induction of drug resistances. In order to overcome the drawbacks of conventional pathway of drug delivery, nanoparticle delivery systems are therefore designed and used as the drug carriers. Nanoparticle based drug delivery systems have been rapidly growing and are being applied to various sections of biomedicine. Drug nanocarriers based on dendrimers, liposomes, self-assembling peptides, watersoluble polymers, and block copolymer micelles are the most extensively studied types of drug delivery systems and some of them are being used in clinical therapy. In particular for cancer therapy, antineoplastic drugs are taking advantage of nanoparticulate drug carriers to improve the cure efficacy. Nanoparticle based drug carriers are capable of improving the therapeutic effectiveness of the drugs by using active targeting for the site-specific delivery, passive targeting mechanisms such as enhanced permeability and retention (EPR), de novo synthesis and uptake of low density liposome in cancer cells or by being water-soluble to improve the suboptimal pharmacokinetics in limited water-soluble delivery methods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Mattos, Bruno D; Tardy, Blaise L; Magalhães, Washington L E; Rojas, Orlando J
2017-09-28
We review biocide delivery systems (BDS), which are designed to deter or control harmful organisms that damage agricultural crops, forests and forest products. This is a timely topic, given the growing socio-economical concerns that have motivated major developments in sustainable BDS. Associated designs aim at improving or replacing traditional systems, which often consist of biocides with extreme behavior as far as their solubility in water. This includes those that compromise or pollute soil and water (highly soluble or volatile biocides) or those that present low bioavailability (poorly soluble biocides). Major breakthroughs are sought to mitigate or eliminate consequential environmental and health impacts in agriculture and silviculture. Here, we consider the most important BDS vehicles or carriers, their synthesis, the environmental impact of their constituents and interactions with the active components together with the factors that affect their rates of release such as environmental factors and interaction of BDS with the crops or forest products. We put in perspective the state-of-the-art nanostructured carriers for controlled release, which need to address many of the challenges that exist in the application of BDS. Copyright © 2017 Elsevier B.V. All rights reserved.
Phosphate-Linked Silibinin Dimers (PLSd): New Promising Modified Metabolites.
Romanucci, Valeria; Gravante, Raffaele; Cimafonte, Martina; Marino, Cinzia Di; Mailhot, Gilles; Brigante, Marcello; Zarrelli, Armando; Fabio, Giovanni Di
2017-08-11
By exploiting the regioselective protection of the hydroxyl groups of silibinin along with the well-known phosphoramidite chemistry, we have developed an efficient strategy for the synthesis of new silibinin-modified species, which we have named Phosphate-Linked Silibinin Dimers (PLSd), in which the monomer units are linked by phosphodiester bonds. The antioxidant abilities of the new PLSd were estimated on HepG2 cells using DPPH free radical scavenging and xanthine/xanthine oxidase assays. The new phosphate-metabolites showed a higher anti-oxidant activity than the silibinin, as well as very low toxicity. The ability to scavenge reactive oxygen species (ROS) such as singlet oxygen () and hydroxyl radical () reveals that the two dimers are able to scavenge about two times more effectively than silibinin. Finally, solubility studies have shown that the PLSd present good water solubility (more than 20 mg·L -1 ) under circumneutral pH values, whereas the silibinin was found to be very poorly soluble (less than 0.4 mg·L -1 ) and not stable under alkaline conditions. Together, the above promising results warrant further investigation of the future potential of the PLSd as anti-oxidant metabolites within the large synthetic polyphenols field.
Visser, J Carolina; Woerdenbag, Herman J; Crediet, Stefan; Gerrits, Edwin; Lesschen, Marjan A; Hinrichs, Wouter L J; Breitkreutz, Jörg; Frijlink, Henderik W
2015-01-15
Orodispersible films (ODFs) are promising drug delivery systems for customized small scale pharmacy preparations. The aim of the present study was to develop a versatile casting solution suitable for the extemporaneous production of ODFs to which active pharmaceutical ingredients (APIs) can be added. Different combinations of film forming agents and other excipients and different casting heights were tested for their suitability for production of ODFs. The best suitable casting solution contained hypromellose, carbomer, glycerol, disodium EDTA and trometamol. This casting solution was used to prepare ODFs containing water-soluble APIs (enalapril maleate and prednisolone disodium phosphate) and a poorly water-soluble API (diazepam) for which ethanol 96% was used as co-solvent.The water-soluble APIs as well as ethanol influenced the viscosity of the casting solution, mechanical properties and disintegration time of the ODFs. All ODFs containing API met the requirements on uniformity of mass and uniformity of content set by the European Pharmacopoeia (2014) (Ph. Eur.) 8th edition. In conclusion, ODFs of good pharmaceutical quality can be prepared on small scale. Hereby opening the perspective of using ODFs for individualized pharmacotherapy. Copyright © 2014 Elsevier B.V. All rights reserved.
Hilty, Florentine M; Knijnenburg, Jesper T N; Teleki, Alexandra; Krumeich, Frank; Hurrell, Richard F; Pratsinis, Sotiris E; Zimmermann, Michael B
2011-01-01
Iron deficiency is one of the most common micronutrient deficiencies worldwide. Food fortification can be an effective and sustainable strategy to reduce Fe deficiency but selection of iron fortificants remains a challenge. Water-soluble compounds, for example, FeSO(4), usually demonstrate high bioavailability but they often cause unacceptable sensory changes in foods. On the other hand, poorly acid-soluble Fe compounds, for example FePO(4), may cause fewer adverse sensory changes in foods but are usually not well bioavailable since they need to be dissolved in the stomach prior to absorption. The solubility and the bioavailability of poorly acid-soluble Fe compounds can be improved by decreasing their primary particle size and thereby increasing their specific surface area. Here, Fe oxide-based nanostructured compounds with added Mg or Ca were produced by scalable flame aerosol technology. The compounds were characterized by nitrogen adsorption, X-ray diffraction, transmission electron microscopy, and Fe solubility in dilute acid. Sensory properties of the Fe-based compounds were tested in 2 highly reactive, polyphenol-rich food matrices: chocolate milk and fruit yoghurt. The Fe solubility of nanostructured Fe(2)O(3) doped with Mg or Ca was higher than that of pure Fe(2)O(3). Since good solubility in dilute acid was obtained despite the inhomogeneity of the powders, inexpensive precursors, for example Fe- and Ca-nitrates, can be used for their manufacture. Adding Mg or Ca lightened powder color, while sensory changes when added to foods were less pronounced than for FeSO(4). The combination of high Fe solubility and low reactivity in foods makes these flame-made nanostructured compounds promising for food fortification. Practical Application: The nanostructured iron-containing compounds presented here may prove useful for iron fortification of certain foods; they are highly soluble in dilute acid and likely to be well absorbed in the gut but cause less severe color changes than FeSO(4) when added to difficult-to-fortify foods.
Ozeki, Tetsuya; Tagami, Tatsuaki
2013-01-01
The development of drug nanoparticles has attracted substantial attention because of their potential to improve the dissolution rate and oral availability of poorly water-soluble drugs. This review summarizes the recent articles that discussed nanoparticle-based oral drug delivery systems. The preparation methods were categorized as top-down and bottom-up methods, which are common methods for preparing drug nanoparticles. In addition, methods of handling drug nanoparticles (e.g., one-step preparation of nanocomposites which are microparticles containing drug nanoparticles) were introduced for the effective preservation of drug nanoparticles. The carrier-based preparation of drug nanoparticles was also introduced as a potentially promising oral drug delivery system.
Nomura, Shosaku; Inami, Norihito; Shouzu, Akira; Urase, Fumiaki; Maeda, Yasuhiro
2009-09-01
Elevated platelet-derived mircoparticles (MP) (PDMP), endothelial cell-derived MP (EDMP), and monocyte-derived MP (MDMP) concentrations are documented in almost all thrombotic diseases. However, the intricate interactions between PDMP, MDMP and EDMP in hypertensive patients with or without type 2 diabetes remains poorly understood. Therefore, to clarify the correlation and association of MPs, we measured and analysed the levels of MPs in 359 hypertensive patients. We compared the results of chemokines, cell adhesion molecules, platelet activation markers and microparticles in hypertensive patients with and without type 2 diabetes mellitus. The levels of all markers were significantly higher in the hypertensive patients with diabetes than in the non-diabetic patients. For hypertensive patients with diabetes, univariate analysis showed that age, body mass index, systolic blood pressure, high density lipoprotein cholesterol (HDL-CHO), creatinine (CRTN), soluble P-selectin (sP-selectin), soluble E-selectin (sE-selectin), soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble CD40 ligand (sCD40L), regulated on activation normally T-cell expressed and secreted (RANTES), monocyte chemotactic peptide-1 (MCP-1), MDMP and EDMP were significantly associated with PDMP. In addition, systolic blood pressure, HDL cholesterol, sP-selectin, sE-selectin, sVCAM-1, sCD40L, RANTES, MDMP and EDMP were significant factors in the multivariate model with PDMP. Furthermore, a correlation between plasma PDMP and MDMP or EDMP in hypertensive patients were observed both with and without diabetes. These results suggest that the existence of diabetes mellitus affects PDMP generation in hypertensive patients and that enhanced plasma levels of PDMP and an association between the plasma levels of PDMP, MDMP and EDMP may result in the development of atherothrombotic complications in hypertensive patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane Dickson, Veronica
The purification and three-dimensional crystallization of membrane proteins are commonly affected by a cumulation of pathologies that are less prevalent in their soluble counterparts. This may include severe anisotropy, poor spot shape, poor to moderate-resolution diffraction, crystal twinning, translational pseudo-symmetry and poor uptake of heavy atoms for derivatization. Such challenges must be circumvented by adaptations in the approach to crystallization and/or phasing. Here, an example of a protein that exhibited all of the above-mentioned complications is presented. Bestrophin-1 is a eukaryotic calcium-activated chloride channel, the structure of which was recently determined in complex with monoclonal antibody fragments using SAD phasingmore » with tantalum bromide clusters (Ta 6Br 12·Br 2). Some of the obstacles to obtaining improved diffraction and phasing for this particular channel are discussed, as well as the approach and adaptations that were key to determining the structure.« less
Solubility Enhancement of Raloxifene Using Inclusion Complexes and Cogrinding Method
Patil, Payal H.; Belgamwar, Veena S.; Patil, Pratibha R.; Surana, Sanjay J.
2013-01-01
The objective of the present work was to enhance the solubility and dissolution of practically water-insoluble drug raloxifene HCl (RLX), for the same two approaches that were used. In the first approach, drug was kneaded with hydroxypropyl-β-cyclodextrin (HPβCD), and in the second one drug was cogrinded with modified guar gum (MGG). The drug-cyclodextrin complex and drug-MGG cogrind mixtures were characterized by differential scanning calorimetry, X-ray diffraction studies, scanning electron microscopy, and Fourier transform infrared spectroscopy. The solubility and dissolution study reveals that solubility and dissolution rate of RLX remarkably increased in both methods. It was concluded that the prepared inclusion complex showed a remarkable increase in solubility and dissolution of poorly water-soluble drug raloxifene. In the cogrinding mixture, a natural modified gum is used as a surfactant and enhances the solubility and dissolution of RLX without requiring addition of organic solvent or high temperature for its preparation; thus, process is less cumbersome and cost effective. But when both methods were compared; HPβCD complexation method showed significant enhancement of drug solubility. PMID:26555984
Caffeine: a potential complexing agent for solubility and dissolution enhancement of celecoxib.
Shakeel, Faiyaz; Faisal, Mohammed S
2010-01-01
Complexation of caffeine with the drug celecoxib was used to enhance its solubility as well as in vitro dissolution in the present investigation. Caffeine was extracted from tea leaves using the sublimation method. A molecular complex (1:1) of caffeine-celecoxib was prepared using the solubility method. The solubility of celecoxib in distilled water and the caffeine complex was determined using a HPLC method at a wavelength of 250 nm. Dissolution studies of pure celecoxib, a marketed capsule (Celebrex), and the complex were performed using USP dissolution apparatus I for pure celecoxib and the complex and apparatus II for the capsule in distilled water. The highest solubility (48.32 mg/mL) as well as percent dissolution (90.54%) of celecoxib was obtained with the caffeine-celecoxib complex. The results for solubility and dissolution were highly significant as compared to pure celecoxib and the marketed capsule (p < 0.01). These results suggest that caffeine is a promising complexing agent for solubility as well as dissolution enhancement of the poorly soluble drug celecoxib.
Silva, A C; Santos, D; Ferreira, D; Lopes, C M
2012-01-01
The hydrophobic character of most drug molecules and their potential for degradation under the hostile environment of the gastrointestinal tract (GIT) constitutes the main obstacle in the development of a successful oral drug delivery system, since these are related to limitations of bioavailability and absorption processes. However, according to the advantages of the oral route, alternative ways of drug administration in the oral cavity should be considered. In this context, it is essential to have a systematic knowledge of the GIT and the oral cavity components, for a better understanding of the processes taking place during the oral administration of drugs. This review gives an overview of those anatomical and physiological features and elucidates about the current approaches employed to enhance the bioavailability of oral poorly water-soluble drugs. Strategies including the uses of lipid-based nanocarriers, such as nanoemulsions, liposomes and lipid nanoparticles are discussed, considering their ability to improve solubility, dissolution kinetics, absorption and, consequently, biopharmaceutical properties. Some toxicological concerns are also highlighted.
Improvement of the dissolution rate of poorly soluble drugs by solid crystal suspensions.
Thommes, Markus; Ely, David R; Carvajal, M Teresa; Pinal, Rodolfo
2011-06-06
We present a novel extrusion based approach where the dissolution rate of poorly soluble drugs (griseofulvin, phenytoin and spironolactone) is significantly accelerated. The drug and highly soluble mannitol are coprocessed in a hot melt extrusion operation. The obtained product is an intimate mixture of the crystalline drug and crystalline excipient, with up to 50% (w/w) drug load. The in vitro drug release from the obtained solid crystalline suspensions is over 2 orders of magnitude faster than that of the pure drug. Since the resulting product is crystalline, the accelerated dissolution rate does not bear the physical stability concerns inherent to amorphous formulations. This approach is useful in situations where the drug is not a good glass former or in cases where it is difficult to stabilize the amorphous drug. Being thermodynamically stable, the dissolution profile and the solid state properties of the product are maintained after storage at 40 °C, 75% RH for at least 90 days.
Small Molecule Deubiquitinase Inhibitors Promote Macrophage Anti-Infective Capacity
Charbonneau, Marie-Eve; Gonzalez-Hernandez, Marta J.; Showalter, Hollis D.; Donato, Nicholas J.; Wobus, Christiane E.; O’Riordan, Mary X. D.
2014-01-01
The global spread of anti-microbial resistance requires urgent attention, and diverse alternative strategies have been suggested to address this public health concern. Host-directed immunomodulatory therapies represent one approach that could reduce selection for resistant bacterial strains. Recently, the small molecule deubiquitinase inhibitor WP1130 was reported as a potential anti-infective drug against important human food-borne pathogens, notably Listeria monocytogenes and noroviruses. Utilization of WP1130 itself is limited due to poor solubility, but given the potential of this new compound, we initiated an iterative rational design approach to synthesize new derivatives with increased solubility that retained anti-infective activity. Here, we test a small library of novel synthetic molecules based on the structure of the parent compound, WP1130, for anti-infective activity in vitro. Our studies identify a promising candidate, compound 9, which reduced intracellular growth of L. monocytogenes at concentrations that caused minimal cellular toxicity. Compound 9 itself had no bactericidal activity and only modestly slowed Listeria growth rate in liquid broth culture, suggesting that this drug acts as an anti-infective compound by modulating host-cell function. Moreover, this new compound also showed anti-infective activity against murine norovirus (MNV-1) and human norovirus, using the Norwalk virus replicon system. This small molecule inhibitor may provide a chemical platform for further development of therapeutic deubiquitinase inhibitors with broad-spectrum anti-infective activity. PMID:25093325
Surface-Bound Casein Modulates the Adsorption and Activity of Kinesin on SiO2 Surfaces
Ozeki, Tomomitsu; Verma, Vivek; Uppalapati, Maruti; Suzuki, Yukiko; Nakamura, Mikihiko; Catchmark, Jeffrey M.; Hancock, William O.
2009-01-01
Abstract Conventional kinesin is routinely adsorbed to hydrophilic surfaces such as SiO2. Pretreatment of surfaces with casein has become the standard protocol for achieving optimal kinesin activity, but the mechanism by which casein enhances kinesin surface adsorption and function is poorly understood. We used quartz crystal microbalance measurements and microtubule gliding assays to uncover the role that casein plays in enhancing the activity of surface-adsorbed kinesin. On SiO2 surfaces, casein adsorbs as both a tightly bound monolayer and a reversibly bound second layer that has a dissociation constant of 500 nM and can be desorbed by washing with casein-free buffer. Experiments using truncated kinesins demonstrate that in the presence of soluble casein, kinesin tails bind well to the surface, whereas kinesin head binding is blocked. Removing soluble casein reverses these binding profiles. Surprisingly, reversibly bound casein plays only a moderate role during kinesin adsorption, but it significantly enhances kinesin activity when surface-adsorbed motors are interacting with microtubules. These results point to a model in which a dynamic casein bilayer prevents reversible association of the heads with the surface and enhances association of the kinesin tail with the surface. Understanding protein-surface interactions in this model system should provide a framework for engineering surfaces for functional adsorption of other motor proteins and surface-active enzymes. PMID:19383474
Small molecule deubiquitinase inhibitors promote macrophage anti-infective capacity.
Charbonneau, Marie-Eve; Gonzalez-Hernandez, Marta J; Showalter, Hollis D; Donato, Nicholas J; Wobus, Christiane E; O'Riordan, Mary X D
2014-01-01
The global spread of anti-microbial resistance requires urgent attention, and diverse alternative strategies have been suggested to address this public health concern. Host-directed immunomodulatory therapies represent one approach that could reduce selection for resistant bacterial strains. Recently, the small molecule deubiquitinase inhibitor WP1130 was reported as a potential anti-infective drug against important human food-borne pathogens, notably Listeria monocytogenes and noroviruses. Utilization of WP1130 itself is limited due to poor solubility, but given the potential of this new compound, we initiated an iterative rational design approach to synthesize new derivatives with increased solubility that retained anti-infective activity. Here, we test a small library of novel synthetic molecules based on the structure of the parent compound, WP1130, for anti-infective activity in vitro. Our studies identify a promising candidate, compound 9, which reduced intracellular growth of L. monocytogenes at concentrations that caused minimal cellular toxicity. Compound 9 itself had no bactericidal activity and only modestly slowed Listeria growth rate in liquid broth culture, suggesting that this drug acts as an anti-infective compound by modulating host-cell function. Moreover, this new compound also showed anti-infective activity against murine norovirus (MNV-1) and human norovirus, using the Norwalk virus replicon system. This small molecule inhibitor may provide a chemical platform for further development of therapeutic deubiquitinase inhibitors with broad-spectrum anti-infective activity.
Kaushik, Deepak K; Yong, Heather Y F; Hahn, Jennifer N; Silva, Claudia; Casha, Steven; Hurlbert, R John; Jacques, Francois H; Lisak, Robert; Khan, Omar; Ionete, Carolina; Larochelle, Catherine; Prat, Alex; Bar-Or, Amit; Yong, V Wee
2016-01-01
Extracellular matrix metalloproteinase inducer (EMMPRIN, CD147) is an inducer of matrix metalloproteinases and has roles in leukocyte activation and migration. We reported previously that in MS and its animal model, experimental autoimmune encephalomyelitis, cell surface-associated EMMPRIN was significantly elevated in leukocytes around inflammatory perivascular cuffs in the CNS. In this study we report that activated T-cells can secrete soluble form of EMMPRIN (sEMMPRIN) upon activation. As sEMMPRIN is also present in biological fluids, we determined whether sEMMPRIN is altered in the CSF and sera of MS subjects. Sera from individuals without neurological conditions served as controls, while CSFs collected from subjects undergoing discectomy, and without evidence of CNS pathology, were used as a comparator group. We found that serum levels of sEMMPRIN from clinically stable MS patients or other inflammatory conditions did not differ from control subjects. Paired serum and CSF samples demonstrated poor correlation of sEMMPRIN. Interestingly, sEMMPRIN levels were approximately 60% higher in CSFs compared to sera. sEMMPRIN CSF levels were significantly higher in secondary progressive compared to primary progressive subjects. Thus we conclude that measurement of sEMMPRIN in serum is not informative for disease activity in MS. The differential expression of sEMMPRIN in the CSF of primary and secondary progressive MS invites hypotheses of the still undefined roles of EMMPRIN in the CNS.
Moshikur, Rahman Md; Chowdhury, Md Raihan; Wakabayashi, Rie; Tahara, Yoshiro; Moniruzzaman, Muhammad; Goto, Masahiro
2018-07-30
The technological utility of active pharmaceutical ingredients (APIs) is greatly enhanced when they are transformed into ionic liquids (ILs). API-ILs have better solubility, thermal stability, and the efficacy in topical delivery than solid or crystalline drugs. However, toxicological issue of API-ILs is the main challenge for their application in drug delivery. To address this issue, 11 amino acid esters (AAEs) were synthesized and investigated as biocompatible counter cations for the poorly water-soluble drug salicylic acid (Sal) to form Sal-ILs. The AAEs were characterized using 1 H and 13 C NMR, FTIR, elemental, and thermogravimetric analyses. The cytotoxicities of the AAE cations, Sal-ILs, and free Sal were investigated using mammalian cell lines (L929 and HeLa). The toxicities of the AAE cations greatly increased with inclusion of long alkyl chains, sulfur, and aromatic rings in the side groups of the cations. Ethyl esters of alanine, aspartic acid, and proline were selected as a low cytotoxic AAE. The cytotoxicities of the Sal-ILs drastically increased compared with the AAEs on incorporation of Sal into the cations, and were comparable to that of free Sal. Interestingly, the water miscibilities of the Sal-ILs were higher than that of free Sal, and the Sal-ILs were miscible with water at any ratio. A skin permeation study showed that the Sal-ILs penetrated through skin faster than the Sal sodium salt. These results suggest that AAEs could be used in biomedical applications to eliminate the use of traditional toxic solvents for transdermal delivery of poorly water-soluble drugs. Copyright © 2018 Elsevier B.V. All rights reserved.
Cloud condensation nuclei activation of limited solubility organic aerosol
NASA Astrophysics Data System (ADS)
Huff Hartz, Kara E.; Tischuk, Joshua E.; Chan, Man Nin; Chan, Chak K.; Donahue, Neil M.; Pandis, Spyros N.
The cloud condensation nuclei (CCN) activation of 19 organic species with water solubilities ( Csat) ranging from 10 -4 to 10 2 g solute 100 g -1 H 2O was measured. The organic particles were generated by nebulization of an aqueous or an alcohol solution. Use of alcohols as solvents enables the measurement of low solubility, non-volatile organic CCN activity and reduces the likelihood of residual water in the aerosol. The activation diameter of organic species with very low solubility in water ( Csat<0.3 g 100 g -1 H 2O) is in agreement with Köhler theory using the bulk solubility (limited solubility case) of the organic in water. Many species, including 2-acetylbenzoic acid, aspartic acid, azelaic acid, glutamic acid, homophthalic acid, phthalic acid, cis-pinonic acid, and salicylic acid are highly CCN active in spite of their low solubility (0.3 g 100 g -1 H 2O< Csat<1 g 100 g -1 H 2O), and activate almost as if completely water soluble. The CCN activity of most species is reduced, if the particles are produced using non-aqueous solvents. The existence of the particles in a metastable state at low RH can explain the observed enhancement in CCN activity beyond the levels suggested by their solubility.
Surov, Artem O; Volkova, Tatyana V; Churakov, Andrei V; Proshin, Alexey N; Terekhova, Irina V; Perlovich, German L
2017-11-15
The cocrystallization approach has been applied to modify the poor solubility profile of the biologically active 1,2,4-thiadiazole derivative (TDZ). Extensive cocrystal screening with a library of coformers resulted in formation of a new solid form of TDZ with vanillic acid in a 1:1 molar ratio. The cocrystalline phase was identified and characterized by thermal and diffraction analyses including single-crystal X-ray diffraction. The energies of intermolecular interactions in the crystal were calculated by solid-state DFT and PIXEL methods. Both calculation schemes show good consistency in terms of total energy of the intermolecular interactions and suggest that the cocrystal is mainly stabilized via hydrogen bonds, which provide ca. 44% of the lattice energy. Since the cocrystal contained the hydroxybenzoic acid derivative as a coformer, the solubility profile of the cocrystal was investigated at different pHs using eutectic concentrations of the components. Furthermore, the influence of the cocrystallization on the permeability performance of the 1,2,4-thiadiazole through an artificial regenerated cellulose membrane was also evaluated. In addition, the thermodynamic functions of the cocrystal formation were estimated from the solubility of the cocrystal and the corresponding solubility of the pure compounds at various temperatures. The cocrystal formation process was found to have a relatively small value of the driving force (-5.3kJ·mol -1 ). The most significant contribution to the Gibbs energy was provided by the exothermic enthalpy of formation. Copyright © 2017 Elsevier B.V. All rights reserved.
Pharmaceutical applications of cyclodextrins: basic science and product development.
Loftsson, Thorsteinn; Brewster, Marcus E
2010-11-01
Drug pipelines are becoming increasingly difficult to formulate. This is punctuated by both retrospective and prospective analyses that show that while 40% of currently marketed drugs are poorly soluble based on the definition of the biopharmaceutical classification system (BCS), about 90% of drugs in development can be characterized as poorly soluble. Although a number of techniques have been suggested for increasing oral bioavailability and for enabling parenteral formulations, cyclodextrins have emerged as a productive approach. This short review is intended to provide both some basic science information as well as data on the ability to develop drugs in cyclodextrin-containing formulations. There are currently a number of marketed products that make use of these functional solubilizing excipients and new product introduction continues to demonstrate their high added value. The ability to predict whether cyclodextrins will be of benefit in creating a dosage form for a particular drug candidate requires a good working knowledge of the properties of cyclodextrins, their mechanism of solubilization and factors that contribute to, or detract from, the biopharmaceutical characteristics of the formed complexes. We provide basic science information as well as data on the development of drugs in cyclodextrin-containing formulations. Cyclodextrins have emerged as an important tool in the formulator's armamentarium to improve apparent solubility and dissolution rate for poorly water-soluble drug candidates. The continued interest and productivity of these materials bode well for future application and their currency as excipients in research, development and drug product marketing. © 2010 The Authors. Journal compilation © 2010 Royal Pharmaceutical Society of Great Britain.
Chella, Naveen; Tadikonda, Ramarao
2015-06-01
Solid dispersion (SD) technique is a promising strategy to improve the solubility and dissolution of BCS class II drugs. However, only few products are marketed till today based on SD technology due to poor flow properties and stability. The present work was intended to solve these problems by using combination approach, melt dispersion and surface adsorption technologies. The main aim of the present work is to improve the absorption in the stomach (at lower pH) where the absorption window exists for the drug by improving the dissolution, resulting in the enhancement of oral bioavailability of poorly soluble, weakly acidic drug with pH dependant solubility, i.e. valsartan. Melt dispersion granules were prepared in different ratios using different carriers (Gelucire 50/13, PEG 8000 and Pluronic F-68) and lactose as an adsorbent. Similarly, physical mixtures were also prepared at corresponding ratios. The prepared dispersion granules and physical mixtures were characterized by FTIR, DSC and in vitro dissolution studies. DSC studies revealed reduction in the crystallinity with a possibility of presence of amorphous character of drug in the dispersion granules. From dissolution studies, valsartan Gelucire dispersion (GSD4; 1:4 ratio) showed complete drug release in 30 min against the plain drug which showed only 11.31% of drug release in 30 min. Pharmacokinetic studies of optimized formulation in male Wistar rats showed 2.65-fold higher bioavailability and 1.47-fold higher Cmax compared to pure drug. The melt dispersion technology has the potential to improve dissolution and the bioavailability of BCS class II drugs.
Li, Ping; Hynes, Sara R; Haefele, Thomas F; Pudipeddi, Madhu; Royce, Alan E; Serajuddin, Abu T M
2009-05-01
The solution of a poorly water-soluble drug in a liquid lipid-surfactant mixture, which served as a microemulsion preconcentrate, was converted into a solid form by incorporating it in a solid polyethylene glycol (PEG) matrix. The solid microemulsion preconcentrates thus formed consisted of Capmul PG8 (propylene glycol monocaprylate) as oil, Cremophor EL (polyoxyl 35 castor oil) as surfactant, and hydrophilic polymer PEG 3350 as solid matrix. The drug (aqueous solubility: 0.17 microg/mL at pH 1-8 and 25 degrees C) was dissolved in a melt of the mixture at 65-70 degrees C and then the hot solution was filled into hard gelatin capsules; the liquid gradually solidified upon cooling below 55 degrees C. The solid system was characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), confocal Raman microscopy (CRM), and the dispersion testing in water. It was confirmed that a solid microemulsion preconcentrate is a two-phase system, where clusters of crystalline PEG 3350 formed the solid structure (m.p. 55-60 degrees C) and the liquid microemulsion preconcentrate dispersed in between PEG 3350 crystals as a separate phase. The drug remained dissolved in the liquid phase. In vitro release testing showed that the preconcentrate dispersed readily in water forming a microemulsion with the drug dissolved in the oil particles (<150 nm) and the presence of PEG 3350 did not interfere with the process of self-microemulsification.
Novel high/low solubility classification methods for new molecular entities.
Dave, Rutwij A; Morris, Marilyn E
2016-09-10
This research describes a rapid solubility classification approach that could be used in the discovery and development of new molecular entities. Compounds (N=635) were divided into two groups based on information available in the literature: high solubility (BDDCS/BCS 1/3) and low solubility (BDDCS/BCS 2/4). We established decision rules for determining solubility classes using measured log solubility in molar units (MLogSM) or measured solubility (MSol) in mg/ml units. ROC curve analysis was applied to determine statistically significant threshold values of MSol and MLogSM. Results indicated that NMEs with MLogSM>-3.05 or MSol>0.30mg/mL will have ≥85% probability of being highly soluble and new molecular entities with MLogSM≤-3.05 or MSol≤0.30mg/mL will have ≥85% probability of being poorly soluble. When comparing solubility classification using the threshold values of MLogSM or MSol with BDDCS, we were able to correctly classify 85% of compounds. We also evaluated solubility classification of an independent set of 108 orally administered drugs using MSol (0.3mg/mL) and our method correctly classified 81% and 95% of compounds into high and low solubility classes, respectively. The high/low solubility classification using MLogSM or MSol is novel and independent of traditionally used dose number criteria. Copyright © 2016 Elsevier B.V. All rights reserved.
Aljaberi, Ahmad; Chatterji, Ashish; Dong, Zedong; Shah, Navnit H; Malick, Waseem; Singhal, Dharmendra; Sandhu, Harpreet K
2013-01-01
To evaluate and optimize sodium lauryl sulfate (SLS) and magnesium stearate (Mg.St) levels, with respect to dissolution and compaction, in a high dose, poorly soluble drug tablet formulation. A model poorly soluble drug was formulated using high shear aqueous granulation. A D-optimal design was used to evaluate and model the effect of granulation conditions, size of milling screen, SLS and Mg.St levels on tablet compaction and ejection. The compaction profiles were generated using a Presster(©) compaction simulator. Dissolution of the kernels was performed using a USP dissolution apparatus II and intrinsic dissolution was determined using a stationary disk system. Unlike kernels dissolution which failed to discriminate between tablets prepared with various SLS contents, the intrinsic dissolution rate showed that a SLS level of 0.57% was sufficient to achieve the required release profile while having minimal effect on compaction. The formulation factors that affect tablet compaction and ejection were identified and satisfactorily modeled. The design space of best factor setting to achieve optimal compaction and ejection properties was successfully constructed by RSM analysis. A systematic study design helped identify the critical factors and provided means to optimize the functionality of key excipient to design robust drug product.
Li, Jing; Xu, Lu; Yang, Baixue; Wang, Hongyu; Bao, Zhihong; Pan, Weisan; Li, Sanming
2015-08-15
The present paper reported amino group functionalized anionic surfactant templated mesoporous silica (Amino-AMS) for loading and release of poorly water-soluble drug indomethacin (IMC) and carboxyl group functionalized cationic surfactant templated mesoporous silica (Carboxyl-CMS) for loading and release of poorly water-soluble drug famotidine (FMT). Herein, Amino-AMS and Carboxyl-CMS were facilely synthesized using co-condensation method through two types of silane coupling agent. Amino-AMS was spherical nanoparticles, and Carboxyl-CMS was well-formed spherical nanosphere with a thin layer presented at the edge. Drug loading capacity was obviously enhanced when using Amino-AMS and Carboxyl-CMS as drug carriers due to the stronger hydrogen bonding force formed between surface modified carrier and drug. Amino-AMS and Carboxyl-CMS had the ability to transform crystalline state of loaded drug from crystalline phase to amorphous phase. Therefore, IMC loaded Amino-AMS presented obviously faster release than IMC because amorphous phase of IMC favored its dissolution. The application of asymmetric membrane capsule delayed FMT release significantly, and Carboxyl-CMS favored sustained release of FMT due to its long mesoporous channels and strong interaction formed between its carboxyl group and amino group of FMT. Copyright © 2015 Elsevier B.V. All rights reserved.
Maleki, Aziz; Hamidi, Mehrdad
2016-01-01
The purpose of this study was to develop mesoporous silica materials incorporated with poorly water-soluble drug atorvastatin calcium (AC) in order to improve drug dissolution, and intended to be orally administrated. A comparison between 2D-hexagonal silica nanostructured SBA-15 and mesocellular siliceous foam (MSF) with continuous 3D pore system on drug release rate was investigated. AC-loaded mesoporous silicas were characterized thorough N2 adsorption-desorption analysis, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and dynamic light scattering (DLS). Results demonstrated a successful incorporation of AC into the silica-based hosts. The results taken from the drug release tests were also analyzed using different parameters, namely similarity factor (f2), difference factor (f1), dissolution efficiency (DE%), mean dissolution rate (MDR) and dissolution time (tm%). It confirmed a significant enhancement in the release profile of atorvastatin calcium with SBA-15, and MSF as drug carrier. Moreover, in comparison with SBA-15, MSF showed faster release rate of AC in enzyme-free simulated gastric fluid (pH 1.2). We believed that our findings can help the use of mesoporous silica materials in improving bioavailability of poorly water-soluble drugs.
Mesoporous systems for poorly soluble drugs.
Xu, Wujun; Riikonen, Joakim; Lehto, Vesa-Pekka
2013-08-30
Utilization of inorganic mesoporous materials in formulations of poorly water-soluble drugs to enhance their dissolution and permeation behavior is a rapidly growing area in pharmaceutical materials research. The benefits of mesoporous materials in drug delivery applications stem from their large surface area and pore volume. These properties enable the materials to accommodate large amounts of payload molecules, protect them from premature degradation, and promote controlled and fast release. As carriers with various morphologies and chemical surface properties can be produced, these materials may even promote adsorption from the gastrointestinal tract to the systemic circulation. The main concern regarding their clinical applications is still the safety aspect even though most of them have been reported to be safely excreted, and a rather extensive toxicity screening has already been conducted with the most frequently studied mesoporous materials. In addition, the production of the materials on a large scale and at a reasonable cost may be a challenge when considering the utilization of the materials in industrial processes. However, if mesoporous materials could be employed in the industrial crystallization processes to produce hybrid materials with poorly soluble compounds, and hence to enhance their oral bioavailability, this might open new avenues for the pharmaceutical industry to employ nanotechnology in their processes. Copyright © 2012 Elsevier B.V. All rights reserved.
Ahern, Robert J; Crean, Abina M; Ryan, Katie B
2012-12-15
Poor water solubility of drugs can complicate their commercialisation because of reduced drug oral bioavailability. Formulation strategies such as increasing the drug surface area are frequently employed in an attempt to increase dissolution rate and hence, improve oral bioavailability. Maximising the drug surface area exposed to the dissolution medium can be achieved by loading drug onto a high surface area carrier like mesoporous silica (SBA-15). The aim of this work was to investigate the impact of altering supercritical carbon dioxide (SC-CO(2)) processing conditions, in an attempt to enhance drug loading onto SBA-15 and increase the drug's dissolution rate. Other formulation variables such as the mass ratio of drug to SBA-15 and the procedure for combining the drug and SBA-15 were also investigated. A model drug with poor water solubility, fenofibrate, was selected for this study. High drug loading efficiencies were obtained using SC-CO(2), which were influenced by the processing conditions employed. Fenofibrate release rate was enhanced greatly after loading onto mesoporous silica. The results highlighted the potential of this SC-CO(2) drug loading approach to improve the oral bioavailability of poorly water soluble drugs. Copyright © 2012 Elsevier B.V. All rights reserved.
Karashima, Masatoshi; Kimoto, Kouya; Yamamoto, Katsuhiko; Kojima, Takashi; Ikeda, Yukihiro
2016-10-01
The aim of the present study was to develop a novel solubilization technique consisting of a nano-cocrystal suspension by integrating cocrystal and nanocrystal formulation technologies to maximize solubilization over current solubilizing technologies. Monodisperse carbamazepine-saccharin, indomethacin-saccharin, and furosemide-caffeine nano-cocrystal suspensions, as well as a furosemide-cytosine nano-salt suspension, were successfully prepared with particle sizes of less than 300nm by wet milling with the stabilizers hydroxypropyl methylcellulose and sodium dodecyl sulfate. Interestingly, the properties of resultant nano-cocrystal suspensions were dramatically changed depending on the physicochemical and structural properties of the cocrystals. In the formulation optimization, the concentration and ratio of the stabilizers also influenced the zeta potentials and particles sizes of the resultant nano-cocrystal suspensions. Raman spectroscopic analysis revealed that the crystalline structures of the cocrystals were maintained in the nanosuspensions, and were physically stable for at least one month. Furthermore, their dissolution profiles were significantly improved over current solubilization-enabling technologies, nanocrystals, and cocrystals. In the present study, we demonstrated that nano-cocrystal formulations can be a new promising option for solubilization techniques to improve the absorption of poorly soluble drugs, and can expand the development potential of poorly soluble candidates in the pharmaceutical industry. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Qinfu; Wang, Tianyi; Wang, Jing; Zheng, Li; Jiang, Tongying; Cheng, Gang; Wang, Siling
2011-09-01
In order to improve the dissolution rate and increase the bioavailability of a poorly water-soluble drug, intended to be administered orally, the biocompatible and bioactive mesoporous hydroxyapatite (HA) was successfully synthesized. In the present study, mesoporous HA nanoparticles were produced using Pluronic block co-polymer F127 and cetyltrimethylammonium bromide (CTAB) as templates by the hydrothermal method. The obtained mesoporous HA was employed as a drug delivery carrier to investigate the drug storage/release properties using carvedilol (CAR) as a model drug. Characterizations of the raw CAR powder, mesoporous HA and CAR-loaded HA were carried out by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, N2 adsorption/desorption, thermogravimetric analysis (TGA), and UV-VIS spectrophotometry. The results demonstrated that CAR was successfully incorporated into the mesoporous HA host. In vitro drug release studies showed that mesoporous HA had a high drug load efficiency and provided immediate release of CAR compared with micronized raw drug in simulated gastric fluid (pH 1.2) and intestinal fluid (pH 6.8). Consequently, mesoporous HA is a good candidate as a drug carrier for the oral delivery of poorly water-soluble drugs.
In vitro and in vivo evaluation of capsaicin-loaded microemulsion for enhanced oral bioavailability.
Zhu, Yuan; Zhang, Jiajia; Zheng, Qianfeng; Wang, Miaomiao; Deng, Wenwen; Li, Qiang; Firempong, Caleb Kesse; Wang, Shengli; Tong, Shanshan; Xu, Ximing; Yu, Jiangnan
2015-10-01
Capsaicin, as a food additive, has attracted worldwide concern owing to its pungency and multiple pharmacological effects. However, poor water solubility and low bioavailability have limited its application. This study aims to develop a capsaicin-loaded microemulsion to enhance the oral bioavailability of the anti-neuropathic-pain component, capsaicin, which is poorly water soluble. In this study, the microemulsion consisting of Cremophor EL, ethanol, medium-chain triglycerides (oil phase) and water (external phase) was prepared and characterized (particle size, morphology, stability and encapsulation efficiency). The gastric mucosa irritation test of formulated capsaicin was performed in rats to evaluate its oral feasibility, followed by the pharmacokinetic study in vivo. Under these conditions, the encapsulated capsaicin revealed a faster capsaicin release in vitro coupled with a greater absorption in vivo when compared to the free capsaicin. The oral bioavailability of the formulated capsaicin-loaded microemulsions was 2.64-fold faster than that of free capsaicin. No significant irritation was observed on the mucosa from the pathological section of capsaicin-loaded microemulsion treated stomach. These results indicate that the developed microemulsion represents a safe and orally effective carrier for poorly soluble substances. The formulation could be used for clinical trials and expand the application of capsaicin. © 2014 Society of Chemical Industry.
Multicomponent amorphous nanofibers electrospun from hot aqueous solutions of a poorly soluble drug.
Yu, Deng-Guang; Gao, Li-Dong; White, Kenneth; Branford-White, Christopher; Lu, Wei-Yue; Zhu, Li-Min
2010-11-01
To design and fabricate multicomponent amorphous electrospun nanofibers for synergistically improving the dissolution rate and permeation profiles of poorly water-soluble drugs. Nanofibers were designed to be composed of a poorly water soluble drug, helicid, a hydrophilic polymer polyvinylpyrrolidone as filament-forming matrix, sodium dodecyl sulfate as transmembrane enhancer and mannitol as taste masking agent, and were prepared from hot aqueous co-dissolving solutions of them. An elevated temperature electrospinning process was developed to fabricate the composite nanofibers, which were characterized using FESEM, DSC, XRD, ATR-FTIR, in vitro dissolution and permeation tests. The composite nanofibers were homogeneous with smooth surfaces and uniform structure, and the components were combined together in an amorphous state because of the favorable interactions such as hydrogen bonding, electrostatic interaction and hydrophobic interactions among them. In vitro dissolution and permeation tests demonstrated that the composite nanofibers had a dissolution rate over 26-fold faster than that of crude helicid particles and a 10-fold higher permeation rate across sublingual mucosa. A new type of amorphous material in the form of nanofibers was prepared from hot aqueous solutions of multiple ingredients using an electrospinning process. The amorphous nanofibers were able to improve the dissolution rate and permeation rate of helicid.
Shakeel, Faiyaz; Baboota, Sanjula; Ahuja, Alka; Ali, Javed; Shafiq, Sheikh
2008-01-01
Background Celecoxib, a selective cyclo-oxygenase-2 inhibitor has been recommended orally for the treatment of arthritis and osteoarthritis. Long term oral administration of celecoxib produces serious gastrointestinal side effects. It is a highly lipophilic, poorly soluble drug with oral bioavailability of around 40% (Capsule). Therefore the aim of the present investigation was to assess the skin permeation mechanism and bioavailability of celecoxib by transdermally applied nanoemulsion formulation. Optimized oil-in-water nanoemulsion of celecoxib was prepared by the aqueous phase titration method. Skin permeation mechanism of celecoxib from nanoemulsion was evaluated by FTIR spectral analysis, DSC thermogram, activation energy measurement and histopathological examination. The optimized nanoemulsion was subjected to pharmacokinetic (bioavailability) studies on Wistar male rats. Results FTIR spectra and DSC thermogram of skin treated with nanoemulsion indicated that permeation occurred due to the disruption of lipid bilayers by nanoemulsion. The significant decrease in activation energy (2.373 kcal/mol) for celecoxib permeation across rat skin indicated that the stratum corneum lipid bilayers were significantly disrupted (p < 0.05). Photomicrograph of skin sample showed the disruption of lipid bilayers as distinct voids and empty spaces were visible in the epidermal region. The absorption of celecoxib through transdermally applied nanoemulsion and nanoemulsion gel resulted in 3.30 and 2.97 fold increase in bioavailability as compared to oral capsule formulation. Conclusion Results of skin permeation mechanism and pharmacokinetic studies indicated that the nanoemulsions can be successfully used as potential vehicles for enhancement of skin permeation and bioavailability of poorly soluble drugs. PMID:18613981
Biswas, Nikhil
2017-03-01
The aim was to improve the oral bioavailability and antihypertensive activity of poorly soluble drug valsartan (VAL) by modifying the design and delivery of mesoporous silica nanoparticles (MSNs). The synthesized MSNs were functionalized with aminopropyl groups (AP-MSN) through postsynthesis and coated with pH sensitive polymer Eudragit L100-55 (AP-MSN-L100-55) for pH dependant sustain release of anionic VAL. MSNs were characterized by Brauner-Emmett-Teller (BET) surface area analyzer, zeta sizer, Field Emission Scanning Electron Microscope (FESEM), Powder X-Ray Diffraction (PXRD) and Differential Scanning Calorimetry (DSC). Functionalized MSNs showed highest entrapment efficiency (59.77%) due to strong ionic interaction with VAL. In vitro dissolution of M-MSN [MSN-VAL and AP-MSN-VAL-L100-55 mixed equally] at physiological conditions demonstrated immediate release (MSN-VAL fraction) followed by sustained release (AP-MSN-VAL-L100-55 fraction) of 96% VAL in 960min. The dramatic improvement in dissolution was attributed to the amorphization of crystalline VAL by MSNs as evidenced by DSC and PXRD studies. No noticeable cytotoxicity was observed for MSN, AP-MSN and AP-MSN-L100-55 in MTT assay. Pharmacokinetic study of M-MSN confirmed 1.82 fold increases in bioavailability compared to commercial Diovan tablet in fasted male rabbits. Blood pressure monitoring in rats showed that the morning dosing of Diovan tablet efficiently controlled BP for just over 360min whereas the effect of M-MSN lasted for >840min. Copyright © 2016 Elsevier B.V. All rights reserved.
Pang, Jiayin; Yang, Jiyun; Lambers, Hans; Tibbett, Mark; Siddique, Kadambot H M; Ryan, Megan H
2015-08-01
The aim of this study was to investigate the capacity of three perennial legume species to access sources of varyingly soluble phosphorus (P) and their associated morphological and physiological adaptations. Two Australian native legumes with pasture potential (Cullen australasicum and Kennedia prostrata) and Medicago sativa cv. SARDI 10 were grown in sand under two P levels (6 and 40 µg P g(-1) ) supplied as Ca(H2 PO4 )2 ·H2 O (Ca-P, highly soluble, used in many fertilizers) or as one of three sparingly soluble forms: Ca10 (OH)2 (PO4 )6 (apatite-P, found in relatively young soils; major constituent of rock phosphate), C6 H6 O24 P6 Na12 (inositol-P, the most common form of organic P in soil) and FePO4 (Fe-P, a poorly-available inorganic source of P). All species grew well with soluble P. When 6 µg P g(-1) was supplied as sparingly soluble P, plant dry weight (DW) and P uptake were very low for C. australasicum and M. sativa (0.1-0.4 g DW) with the exception of M. sativa supplied with apatite-P (1.5 g). In contrast, K. prostrata grew well with inositol-P (1.0 g) and Fe-P (0.7 g), and even better with apatite-P (1.7 g), similar to that with Ca-P (1.9 g). Phosphorus uptake at 6 µg P g(-1) was highly correlated with total root length, total rhizosphere carboxylate content and total rhizosphere acid phosphatase (EC 3.1.3.2) activity. These findings provide strong indications that there are opportunities to utilize local Australian legumes in low P pasture systems to access sparingly soluble soil P and increase perennial legume productivity, diversity and sustainability. © 2014 Scandinavian Plant Physiology Society.
2017-01-01
The oral route is the preferred option for drug administration but contains the inherent issue of drug absorption from the gastro-intestinal tract (GIT) in order to elicit systemic activity. A prerequisite for absorption is drug dissolution, which is dependent upon drug solubility in the variable milieu of GIT fluid, with poorly soluble drugs presenting a formulation and biopharmaceutical challenge. Multiple factors within GIT fluid influence solubility ranging from pH to the concentration and ratio of amphiphilic substances, such as phospholipid, bile salt, monoglyceride, and cholesterol. To aid in vitro investigation simulated intestinal fluids (SIF) covering the fasted and fed state have been developed. SIF media is complex and statistical design of experiment (DoE) investigations have revealed the range of solubility values possible within each state due to physiological variability along with the media factors and factor interactions which influence solubility. However, these studies require large numbers of experiments (>60) and are not feasible or sensible within a drug development setting. In the current study a smaller dual level, reduced experimental number (20) DoE providing three arms covering the fasted and fed states along with a combined analysis has been investigated. The results indicate that this small scale investigation is feasible and provides solubility ranges that encompass published data in human and simulated fasted and fed fluids. The measured fasted and fed solubility ranges are in agreement with published large scale DoE results in around half of the cases, with the differences due to changes in media composition between studies. Indicating that drug specific behaviors are being determined and that careful media factor and concentration level selection is required in order to determine a physiologically relevant solubility range. The study also correctly identifies the major single factor or factors which influence solubility but it is evident that lower significance factors (for example bile salt) are not picked up due to the lower sample number employed. A similar issue is present with factor interactions with only a limited number available for study and generally not determined to have a significant solubility impact due to the lower statistical power of the study. The study indicates that a reduced experimental number DoE is feasible, will provide solubility range results with identification of major solubility factors however statistical limitations restrict the analysis. The approach therefore represents a useful initial screening tool that can guide further in depth analysis of a drug’s behavior in gastrointestinal fluids. PMID:29072917
Kataoka, Makoto; Fukahori, Miho; Ikemura, Atsumi; Kubota, Ayaka; Higashino, Haruki; Sakuma, Shinji; Yamashita, Shinji
2016-04-01
The aim of the present study was to evaluate the effects of gastric pH on the oral absorption of poorly water-soluble drugs using an in vitro system. A dissolution/permeation system (D/P system) equipped with a Caco-2 cell monolayer was used as the in vitro system to evaluate oral drug absorption, while a small vessel filled with simulated gastric fluid (SGF) was used to reflect the gastric dissolution phase. After applying drugs in their solid forms to SGF, SGF solution containing a 1/100 clinical dose of each drug was mixed with the apical solution of the D/P system, which was changed to fasted state-simulated intestinal fluid. Dissolved and permeated amounts on applied amount of drugs were then monitored for 2h. Similar experiments were performed using the same drugs, but without the gastric phase. Oral absorption with or without the gastric phase was predicted in humans based on the amount of the drug that permeated in the D/P system, assuming that the system without the gastric phase reflected human absorption with an elevated gastric pH. The dissolved amounts of basic drugs with poor water solubility, namely albendazole, dipyridamole, and ketoconazole, in the apical solution and their permeation across a Caco-2 cell monolayer were significantly enhanced when the gastric dissolution process was reflected due to the physicochemical properties of basic drugs. These amounts resulted in the prediction of higher oral absorption with normal gastric pH than with high gastric pH. On the other hand, when diclofenac sodium, the salt form of an acidic drug, was applied to the D/P system with the gastric phase, its dissolved and permeated amounts were significantly lower than those without the gastric phase. However, the oral absorption of diclofenac was predicted to be complete (96-98%) irrespective of gastric pH because the permeated amounts of diclofenac under both conditions were sufficiently high to achieve complete absorption. These estimations of the effects of gastric pH on the oral absorption of poorly water-soluble drugs were consistent with observations in humans. In conclusion, the D/P system with the gastric phase may be a useful tool for better predicting the oral absorption of poorly water-soluble basic drugs. In addition, the effects of gastric pH on the oral absorption of poorly water-soluble drugs may be evaluated by the D/P system with and without the gastric phase. Copyright © 2016 Elsevier B.V. All rights reserved.
Sprachman, Melissa M.
2012-01-01
Abstract An oxetane-substituted sulfoxide has demonstrated potential as a dimethylsulfoxide substitute for enhancing the dissolution of organic compounds with poor aqueous solubilities. This sulfoxide may find utility in applications of library storage and biological assays. For the model compounds studied, significant solubility enhancements were observed using the sulfoxide as a cosolvent in aqueous media. Brine shrimp, breast cancer (MDA-MB-231), and liver cell line (HepG2) toxicity data for the new additive are also presented, in addition to comparative IC50 values for a series of PKD1 inhibitors. PMID:22192308
Shahba, Ahmad Abdul-Wahhab; Ahmed, Abid Riaz; Alanazi, Fars Kaed; Mohsin, Kazi; Abdel-Rahman, Sayed Ibrahim
2018-04-25
Beside their solubility limitations, some poorly water-soluble drugs undergo extensive degradation in aqueous and/or lipid-based formulations. Multi-layer self-nanoemulsifying pellets (ML-SNEP) introduce an innovative delivery system based on isolating the drug from the self-nanoemulsifying layer to enhance drug aqueous solubility and minimize degradation. In the current study, various batches of cinnarizine (CN) ML-SNEP were prepared using fluid bed coating and involved a drug-free self-nanoemulsifying layer, protective layer, drug layer, moisture-sealing layer, and/or an anti-adherent layer. Each layer was optimized based on coating outcomes such as coating recovery and mono-pellets%. The optimized ML-SNEP were characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), in vitro dissolution, and stability studies. The optimized ML-SNEP were free-flowing, well separated with high coating recovery. SEM showed multiple well-defined coating layers. The acidic polyvinylpyrrolidone:CN (4:1) solution presented excellent drug-layering outcomes. DSC and XRD confirmed CN transformation into amorphous state within the drug layer. The isolation between CN and self-nanoemulsifying layer did not adversely affect drug dissolution. CN was able to spontaneously migrate into the micelles arising from the drug-free self-nanoemulsifying layer. ML-SNEP showed superior dissolution compared to Stugeron® tablets at pH 1.2 and 6.8. Particularly, on shifting to pH 6.8, ML-SNEP maintained > 84% CN in solution while Stugeron® tablets showed significant CN precipitation leaving only 7% CN in solution. Furthermore, ML-SNEP (comprising Kollicoat® Smartseal 30D) showed robust stability and maintained > 97% intact CN within the accelerated storage conditions. Accordingly, ML-SNEP offer a novel delivery system that combines both enhanced solubilization and stabilization of unstable poorly soluble drugs.
Takai, K; Soejima, T; Suzuki, T; Kawazu, K
2001-05-01
Water-soluble preparations have been investigated to develop a trunk injection agent based on the poorly water-soluble anti-nematode emamectin benzoate. Following tests on the phytotoxicity of some solvents and solubilizers and demonstration of the ability of some solubilizers to dissolve emamectin benzoate in water, acetone + methanol was selected as the solvent and Polysorbate 80 as the solubilizer. This water-soluble preparation of emamectin benzoate prevented the wilting of pot-grown 4-year-old trees of the Japanese black pine, Pinus thunbergii, artificially inoculated with the pine wood nematode, Bursaphelenchus xylophilus, at a dose of 20 g emamectin benzoate per cubic metre of pine tree.
"JCE" Classroom Activity #105. A Sticky Situation: Chewing Gum and Solubility
ERIC Educational Resources Information Center
Montes-Gonzalez, Ingrid; Cintron-Maldonado, Jose A.; Perez-Medina, Ilia E.; Montes-Berrios, Veronica; Roman-Lopez, Saurie N.
2010-01-01
In this Activity, students perform several solubility tests using common food items such as chocolate, chewing gum, water, sugar, and oil. From their observations during the Activity, students will initially classify the substances tested as soluble or insoluble. They will then use their understanding of the chemistry of solubility to classify the…
Determination of excipient based solubility increases using the CheqSol method.
Etherson, Kelly; Halbert, Gavin; Elliott, Moira
2014-04-25
Aqueous solubility is an essential characteristic assessed during drug development to determine a compound's drug-likeness since solubility plays an important pharmaceutical role. However, nearly half of the drug candidates discovered today display poor water solubility; therefore methods have to be applied to increase solubility. Solubility determination using the CheqSol method is a novel rapid solubility screening technique for ionisable compounds. The aim of this study is to determine if the CheqSol method can be employed to determine solubility increases of four test drugs (ibuprofen, gliclazide, atenolol and propranolol) induced by non-ionising excipients such as hydroxypropyl-β-cyclodextrin and poloxamers 407 and 188. CheqSol assays were performed for the drugs alone or in combination with varying solubiliser concentrations. The measured intrinsic solubility of all four drugs increased with all the excipients tested in an excipient concentration dependent manner providing results consistent with previous literature. The results demonstrate that it may be possible to use this method to determine the solubility increases induced by non-ionic solubilising excipients with results that are comparable to standard equilibrium based solubility techniques. Since the technique is automated and requires only small drug quantities it may serve as a useful solubility or formulation screening tool providing more detailed physicochemical information than multiwell plate or similar visual systems. Copyright © 2014. Published by Elsevier B.V.
Dahan, Arik; Miller, Jonathan M
2012-06-01
While each of the two key parameters of oral drug absorption, the solubility and the permeability, has been comprehensively studied separately, the relationship and interplay between the two have been largely ignored. For instance, when formulating a low-solubility drug using various solubilization techniques: what are we doing to the apparent permeability when we increase the solubility? Permeability is equal to the drug's diffusion coefficient through the membrane times the membrane/aqueous partition coefficient divided by the membrane thickness. The direct correlation between the intestinal permeability and the membrane/aqueous partitioning, which in turn is dependent on the drug's apparent solubility in the GI milieu, suggests that the solubility and the permeability are closely associated, exhibiting a certain interplay between them, and the current view of treating the one irrespectively of the other may not be sufficient. In this paper, we describe the research that has been done thus far, and present new data, to shed light on this solubility-permeability interplay. It has been shown that decreased apparent permeability accompanies the solubility increase when using different solubilization methods. Overall, the weight of the evidence indicates that the solubility-permeability interplay cannot be ignored when using solubility-enabling formulations; looking solely at the solubility enhancement that the formulation enables may be misleading with regards to predicting the resulting absorption, and hence, the solubility-permeability interplay must be taken into account to strike the optimal solubility-permeability balance, in order to maximize the overall absorption.
Cevher, Erdal; Açma, Ayşe; Sinani, Genada; Aksu, Buket; Zloh, Mire; Mülazımoğlu, Lütfiye
2014-08-01
Itraconazole (ITR) is commonly used in the treatment of Candida infections. It has a nephrotoxic effect and low bioavailability in patients who suffer from renal insufficiency, and its poor solubility in water makes ITR largely unavailable. Cyclodextrins (CyDs) are used to form inclusion complexes with drugs to improve their aqueous solubility and to reduce their side effects. In this study, ITR was complexed with γ-cyclodextrin (γ-CyD), hydroxypropyl-β-cyclodextrin (HP-β-CyD), methyl-β-cyclodextrin (Met-β-CyD) and sulphobutyl ether-β-cyclodextrin (SBE7-β-CyD) to increase its water solubility and to reduce the side effects of the drug without decreasing antifungal activity. Complex formation between ITR and CyDs was evaluated using SEM, (1)H NMR and XRD studies. The antifungal activity of the complexes was analyzed on Candida albicans strains, and the susceptibility of the strains was found to be higher for the ITR-SBE7-β-CyD complex than for the complexes that were prepared with other CyDs. Vaginal bioadhesive sustained release tablet formulations were developed using the ITR-SBE7-β-CyD inclusion complex to increase the residence time of ITR in the vagina, thereby boosting the efficacy of the treatment. The swelling, matrix erosion and bioadhesion properties of formulations and the drug release rate of these tablets were analyzed, and the most therapeutically effective vaginal formulation was determined. Copyright © 2014 Elsevier B.V. All rights reserved.
Riwaldt, Stefan; Bauer, Johann; Pietsch, Jessica; Braun, Markus; Segerer, Jürgen; Schwarzwälder, Achim; Corydon, Thomas J.; Infanger, Manfred; Grimm, Daniela
2015-01-01
We recently demonstrated that the CAV1 gene was down-regulated, when poorly differentiated thyroid FTC-133 cancer cells formed spheroids under simulated microgravity conditions. Here, we present evidence that the caveolin-1 protein is involved in the inhibition of spheroid formation, when confluent monolayers are exposed to microgravity. The evidence is based on proteins detected in cells and their supernatants of the recent spaceflight experiment: “NanoRacks-CellBox-Thyroid Cancer”. The culture supernatant had been collected in a special container adjacent to the flight hardware incubation chamber and stored at low temperature until it was analyzed by Multi-Analyte Profiling (MAP) technology, while the cells remaining in the incubation chamber were fixed by RNAlater and examined by mass spectrometry. The soluble proteins identified by MAP were investigated in regard to their mutual interactions and their influence on proteins, which were associated with the cells secreting the soluble proteins and had been identified in a preceding study. A Pathway Studio v.11 analysis of the soluble and cell-associated proteins together with protein kinase C alpha (PRKCA) suggests that caveolin-1 is involved, when plasminogen enriched in the extracellular space is not activated and the vascular cellular adhesion molecule (VCAM-1) mediated cell–cell adhesion is simultaneously strengthened and activated PRKCA is recruited in caveolae, while the thyroid cancer cells do not form spheroids. PMID:26633361
Cho, Jinhwan; Lim, Sung In; Yang, Byung Seop; Hahn, Young S; Kwon, Inchan
2017-12-21
Extension of the serum half-life is an important issue in developing new therapeutic proteins and expanding applications of existing therapeutic proteins. Conjugation of fatty acid, a natural human serum albumin ligand, to a therapeutic protein/peptide was developed as a technique to extend the serum half-life in vivo by taking advantages of unusually long serum half-life of human serum albumin (HSA). However, for broad applications of fatty acid-conjugation, several issues should be addressed, including a poor solubility of fatty acid and a substantial loss in the therapeutic activity. Therefore, herein we systematically investigate the conditions and components in conjugation of fatty acid to a therapeutic protein resulting in the HSA binding capacity without compromising therapeutic activities. By examining the crystal structure and performing dye conjugation assay, two sites (W160 and D112) of urate oxidase (Uox), a model therapeutic protein, were selected as sites for fatty acid-conjugation. Combination of site-specific incorporation of a clickable p-azido-L-phenylalanine to Uox and strain-promoted azide-alkyne cycloaddition allowed the conjugation of fatty acid (palmitic acid analog) to Uox with the HSA binding capacity and retained enzyme activity. Deoxycholic acid, a strong detergent, greatly enhanced the conjugation yield likely due to the enhanced solubility of palmitic acid analog.
Rzeczycki, Phillip; Yoon, Gi Sang; Keswani, Rahul K.; Sud, Sudha; Stringer, Kathleen A.; Rosania, Gus R.
2017-01-01
Following prolonged administration, certain orally bioavailable but poorly soluble small molecule drugs are prone to precipitate out and form crystal-like drug inclusions (CLDIs) within the cells of living organisms. In this research, we present a quantitative multi-parameter imaging platform for measuring the fluorescence and polarization diattenuation signals of cells harboring intracellular CLDIs. To validate the imaging system, the FDA-approved drug clofazimine (CFZ) was used as a model compound. Our results demonstrated that a quantitative multi-parameter microscopy image analysis platform can be used to study drug sequestering macrophages, and to detect the formation of ordered molecular aggregates formed by poorly soluble small molecule drugs in animals. PMID:28270989
Rzeczycki, Phillip; Yoon, Gi Sang; Keswani, Rahul K; Sud, Sudha; Stringer, Kathleen A; Rosania, Gus R
2017-02-01
Following prolonged administration, certain orally bioavailable but poorly soluble small molecule drugs are prone to precipitate out and form crystal-like drug inclusions (CLDIs) within the cells of living organisms. In this research, we present a quantitative multi-parameter imaging platform for measuring the fluorescence and polarization diattenuation signals of cells harboring intracellular CLDIs. To validate the imaging system, the FDA-approved drug clofazimine (CFZ) was used as a model compound. Our results demonstrated that a quantitative multi-parameter microscopy image analysis platform can be used to study drug sequestering macrophages, and to detect the formation of ordered molecular aggregates formed by poorly soluble small molecule drugs in animals.
Yoshida, Takatsune; Kurimoto, Ippei; Yoshihara, Keiichi; Umejima, Hiroyuki; Ito, Naoki; Watanabe, Shunsuke; Sako, Kazuhiro; Kikuchi, Akihiko
2013-11-01
This study aimed to investigate in vivo absorption of tacrolimus formulated as a solid dispersion using Eudragit E®/HCl (E-SD). E-SD is an aminoalkyl methacrylate copolymer that can be dissolved under neutral pH conditions. E-SD was used alone as a solid dispersion carrier and/or was mixed with tacrolimus primarily dispersed with hydroxypropylmethylcellulose (HPMC). Tacrolimus was formulated with E-SD at several different ratios. Formulations with tacrolimus/E-SD ratio of 1/3 showed higher in vivo absorption, compared to tacrolimus dispersed in the excipients (primarily HPMC) found in commercially available tacrolimus capsules, using a rat in situ closed loop method. Good correlation was observed between in vitro drug solubility and in vivo drug absorption. In vitro solubility tests and rat oral absorption studies of tacrolimus/HPMC solid dispersion formulations were also conducted after mixing the HPMC dispersion with several ratios of E-SD. E-SD/tacrolimus/HPMC formulations yielded high in vitro drug solubility but comparatively low in vivo absorption. Dog oral absorption studies were conducted using capsules containing a formulation of tacrolimus/E-SD at a ratio of 1/5. The E-SD formulation-containing capsule showed higher in vivo drug absorption than tacrolimus dispersed in the standard HPMC capsule. These studies report enhancement of the in vivo absorption of a poorly water-soluble drug following dispersion with E-SD when compared to formulation in HPMC.
Liu, Tingting; Han, Meihua; Tian, Fang; Cun, Dongmei; Rantanen, Jukka; Yang, Mingshi
2018-02-01
Most inhaled pharmaceutical formulations on the market are intended to exert immediate pharmacological action, even although inhaled sustained-release formulations can be needed to reduce the frequency of dosing. The purpose of this study was to investigate the pulmonary retention and pharmacokinetics of a poorly water-soluble drug after loading its nanocrystal form into inhalable mucoadhesive microparticles composed of hyaluronic acid. It was intended to prolong the pharmacological effect without compromising the dissolution rate of the poorly water-soluble drug. In this study, budesonide, a corticosteroid anti-inflammatory drug, was used as a model poorly water-soluble drug. Submicron budesonide particles were prepared by wet ball milling, and subsequently loaded into hyaluronic acid microparticles by the spray drying process. The ball-milled budesonide particles and the spray-dried microparticles were characterized using dynamic light scattering (DLS), laser diffraction, Scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC). Selected formulations were evaluated in terms of their dissolution/release rate, aerosol performance, muco-adhesion and pharmacokinetics in rats. As shown by XRD and DSC analysis, the nanonized budesonide particles in this study were mainly in crystalline form. The dissolution/release study showed that the in vitro release of budesonide from the microparticles was not significantly sustained compared with the dissolution rate of budesonide nanocrystals (BUD-NC). However, the budesonide in the microparticles exhibited prolonged retention on the surface of porcine tracheal tube owing to the muco-adhesion ability of hyaluronic acid. After intratracheal administration to rats, the BUD-NC exhibited a similar pharmacokinetic profile to that of budesonide solution via i.v. injection. In contrast, budesonide loaded in the mucoadhesive microparticles exhibited a significantly prolonged T max and increased bioavailability with the animal model. This study demonstrated that inhaled microparticles composed of hyaluronic acid could produce sustained budesonide pharmacological effects. This can be attributed to the mucoadhesion of the polymer that overcame the mucociliary clearance and, consequently, prolonged the retention of the active substance in the lung without necessarily reducing the in vitro dissolution rate. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhu, Hardip, E-mail: sandhu.hardip@gmail.co; Xu, Cang Bao; Edvinsson, Lars
2010-11-15
Cigarette smoke exposure increases the risk of stroke. However, the underlying molecular mechanisms are poorly understood. Endothelin system plays key roles in the pathogenesis of stroke. The present study was designed to examine if lipid-soluble (dimethyl sulfoxide-soluble) cigarette smoke particles (DSP) induces upregulation of contractile endothelin type B (ET{sub B}) receptors in rat cerebral arteries and if activation of mitogen activated protein kinase (MAPK) and nuclear factor-kappaB (NF-{kappa}B) mediate the upregulation of contractile endothelin receptors in the cerebral arteries. Rat middle cerebral arteries were isolated and organ cultured in serum free medium for 24 h in the presence of DSPmore » with or without specific inhibitors: MEK specific (U0126), p38 specific (SB202190), JNK specific (SP600125), NF-{kappa}B specific (BMS-345541) or (IMD-0354), transcription inhibitor (actinomycin D), or translation blocker (cycloheximide). Contractile responses to the ET{sub B} receptor agonist sarafotoxin 6c were investigated by a sensitive myograph. The expression of the ET{sub B} receptors were studied at mRNA and protein levels using quantitative real time PCR and immunohistochemistry, respectively. Results show that organ culture per se induced transcriptional upregulation of contractile ET{sub B} receptors in the cerebral vascular smooth muscle cells. This upregulation was further increased at the translational level by addition of DSP to the organ culture, but this increase was not seen by addition of nicotine or water-soluble cigarette smoke particles to the organ culture. The increased upregulation of contractile ET{sub B} receptors by DSP was abrogated by U0126, SP600125, actinomycin D, and cycloheximide, suggesting that the underlying molecular mechanisms involved in this process include activation of MEK and JNK MAPK-mediated transcription and translation of new contractile ET{sub B} receptors. Thus, the MAPK-mediated upregulation of contractile ET{sub B} receptors in cerebral arteries might be a pharmacological target for the treatment of smoke-associated cerebral vascular disease like stroke.« less
Conjugation of Inulin Improves Anti-Biofilm Activity of Chitosan.
Zhang, Guiqiang; Liu, Jing; Li, Ruilian; Jiao, Siming; Feng, Cui; Wang, Zhuo A; Du, Yuguang
2018-05-04
Bacteria biofilm helps bacteria prevent phagocytosis during infection and increase resistance to antibiotics. Staphylococcus aureus is a Gram-positive pathogenic bacterium and is tightly associated with biofilm-related infections, which have led to great threat to human health. Chitosan, the only cationic polysaccharide in nature, has been demonstrated to have antimicrobial and anti-biofilm activities, which, however, require a relative high dosage of chitosan. Moreover, poor water solubility further restricts its applications on anti-infection therapy. Inulins are a group of polysaccharides produced by many types of plants, and are widely used in processed foods. Compared to chitosan, inulin is very soluble in water and possesses a mild antibacterial activity against certain pathogenic bacteria. In order to develop an effective strategy to treat biofilm-related infections, we introduce a method by covalent conjugation of inulin to chitosan. The physicochemical characterization of the inulin⁻chitosan conjugate was assayed, and the anti-biofilm activity was evaluated against S. aureus biofilm. The results indicated that, as compared to chitosan, this novel polysaccharide⁻polysaccharide conjugate significantly enhanced activities against S. aureus either in a biofilm or planktonic state. Of note, the conjugate also showed a broad spectrum anti-biofilm activity on different bacteria strains and low cellular toxicity to mammalian cells. These results suggested that chitosan conjugation of inulin was a viable strategy for treatment against biofilm-related infections. This finding may further spread the application of natural polysaccharides on treatments of infectious disease.
Conjugation of Inulin Improves Anti-Biofilm Activity of Chitosan
Liu, Jing; Li, Ruilian; Jiao, Siming; Feng, Cui; Du, Yuguang
2018-01-01
Bacteria biofilm helps bacteria prevent phagocytosis during infection and increase resistance to antibiotics. Staphylococcus aureus is a Gram-positive pathogenic bacterium and is tightly associated with biofilm-related infections, which have led to great threat to human health. Chitosan, the only cationic polysaccharide in nature, has been demonstrated to have antimicrobial and anti-biofilm activities, which, however, require a relative high dosage of chitosan. Moreover, poor water solubility further restricts its applications on anti-infection therapy. Inulins are a group of polysaccharides produced by many types of plants, and are widely used in processed foods. Compared to chitosan, inulin is very soluble in water and possesses a mild antibacterial activity against certain pathogenic bacteria. In order to develop an effective strategy to treat biofilm-related infections, we introduce a method by covalent conjugation of inulin to chitosan. The physicochemical characterization of the inulin–chitosan conjugate was assayed, and the anti-biofilm activity was evaluated against S. aureus biofilm. The results indicated that, as compared to chitosan, this novel polysaccharide–polysaccharide conjugate significantly enhanced activities against S. aureus either in a biofilm or planktonic state. Of note, the conjugate also showed a broad spectrum anti-biofilm activity on different bacteria strains and low cellular toxicity to mammalian cells. These results suggested that chitosan conjugation of inulin was a viable strategy for treatment against biofilm-related infections. This finding may further spread the application of natural polysaccharides on treatments of infectious disease. PMID:29734657
Taniguchi, Chika; Kawabata, Yohei; Wada, Koichi; Yamada, Shizuo; Onoue, Satomi
2014-04-01
Drug release and oral absorption of drugs with pH-dependent solubility are influenced by the conditions in the gastrointestinal tract. In some cases, poor oral absorption has been observed for these drugs, causing insufficient drug efficacy. The pH-modification of a formulation could be a promising approach to overcome the poor oral absorption of drugs with pH-dependent solubility. The present review aims to summarize the pH-modifier approach and strategic analyses of microenvironmental pH for formulation design and development. We also provide literature- and patent-based examples of the application of pH-modification technology to solid dosage forms. For the pH-modification approach, the microenvironmental pH at the diffusion area can be altered by dissolving pH-modifying excipients in the formulation. The modulation of the microenvironmental pH could improve dissolution behavior of drugs with pH-dependent solubility, possibly leading to better oral absorption. According to this concept, the modulated level of microenvironmental pH and its duration can be key factors for improvement in drug dissolution. The measurement of microenvironmental pH and release of pH-modifier would provide theoretical insight for the selection of an appropriate pH-modifier and optimization of the formulation.
Sieger, P; Cui, Y; Scheuerer, S
2017-07-15
pH-dependent solubility - permeability profiles offer a simple way to predict bioavailability after oral application, if bioavailability is only solubility and permeability driven. Combining both pH-dependent solubility and pH-dependent permeability in one diagram provides a pH-window (=ΔpH sol-perm ) from which the conditions for optimal oral bioavailability can be taken. The size of this window is directly proportional to the observed oral bioavailability. A set of 21 compounds, with known absolute human oral bioavailability, was used to establish this correlation. Compounds with ΔpH sol-perm <2 exhibit poor oral bioavailability (<25%). An increase of ΔpH sol-perm by one pH-unit increases oral bioavailability typically by approximately 25%. For compounds where ΔpH sol-perm ≥3 but still showing poor bioavailability, most probably other pharmacokinetic aspects (e.g. high clearance), are limiting exposure. Interestingly, the location of this pH-window seems to have a negligible influence on the observed oral bioavailability. In scenarios, where the bioavailability is impaired by certain factors, like for example proton pump inhibitor co-medication or food intake, the exact position of this pH-window might be beneficial for understanding the root cause. Copyright © 2017 Elsevier B.V. All rights reserved.
Kirkland, David; Brock, Tom; Haddouk, Hasnaà; Hargeaves, Victoria; Lloyd, Melvyn; Mc Garry, Sarah; Proudlock, Raymond; Sarlang, Séverine; Sewald, Katherina; Sire, Guillaume; Sokolowski, Andrea; Ziemann, Christina
2015-10-01
The genotoxicity of cobalt metal and cobalt compounds has been widely studied. Several publications show induction of chromosomal aberrations, micronuclei or DNA damage in mammalian cells in vitro in the absence of S9. Mixed results were seen in gene mutation studies in bacteria and mammalian cells in vitro, and in chromosomal aberration or micronucleus assays in vivo. To resolve these inconsistencies, new studies were performed with soluble and poorly soluble cobalt compounds according to OECD-recommended protocols. Induction of chromosomal damage was confirmed in vitro, but data suggest this may be due to oxidative stress. No biologically significant mutagenic responses were obtained in bacteria, Tk(+/-) or Hprt mutation tests. Negative results were also obtained for chromosomal aberrations (in bone marrow and spermatogonia) and micronuclei at maximum tolerated doses in vivo. Poorly soluble cobalt compounds do not appear to be genotoxic. Soluble compounds do induce some DNA and chromosomal damage in vitro, probably due to reactive oxygen. The absence of chromosome damage in robust GLP studies in vivo suggests that effective protective processes are sufficient to prevent oxidative DNA damage in whole mammals. Overall, there is no evidence of genetic toxicity with relevance for humans of cobalt substances and cobalt metal. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Mozhaev, Vadim V; Mozhaeva, Lyudmila V; Michels, Peter C; Khmelnitsky, Yuri L
2008-10-01
A novel reaction system was developed for the production of metabolites of poorly water-soluble parent compounds using mammalian liver microsomes. The system includes the selection and use of an appropriate hydrophobic polymeric resin as a reservoir for the hydrophobic parent compounds and its metabolites. The utility of the extractive biotransformation approach was shown for the production of a low-yielding, synthetically challenging 32-hydroxylated metabolite of the antibiotic rifalazil using mouse liver microsomes. To address the low solubility and reactivity of rifalazil in the predominantly aqueous microsomal catalytic system, a variety of strategies were tested for the enhanced delivery of hydrophobic substrates, including the addition of mild detergents, polyvinylpyrrolidone, glycerol, bovine serum albumin, and hydrophobic polymeric resins. The latter strategy was identified as the most suitable for the production of 32-hydroxy-rifalazil, resulting in up to 13-fold enhancement of the volumetric productivity compared with the standard aqueous system operating at the solubility limit of rifalazil. The production process was optimized for a wide range of reaction parameters; the most important for improving volumetric productivity included the type and amount of the polymeric resin, cofactor recycling system, concentrations of the biocatalyst and rifalazil, reaction temperature, and agitation rate. The optimized extractive biotransformation system was used to synthesize 32-hydroxy-rifalazil on a multimilligram scale.
Constraints on soluble aerosol iron flux to the Southern Ocean at the Last Glacial Maximum
Conway, T.M.; Wolff, E.W.; Röthlisberger, R.; Mulvaney, R.; Elderfield, H.E.
2015-01-01
Relief of iron (Fe) limitation in the Southern Ocean during ice ages, with potentially increased carbon storage in the ocean, has been invoked as one driver of glacial–interglacial atmospheric CO2 cycles. Ice and marine sediment records demonstrate that atmospheric dust supply to the oceans increased by up to an order of magnitude during glacial intervals. However, poor constraints on soluble atmospheric Fe fluxes to the oceans limit assessment of the role of Fe in glacial–interglacial change. Here, using novel techniques, we present estimates of water- and seawater-soluble Fe solubility in Last Glacial Maximum (LGM) atmospheric dust from the European Project for Ice Coring in Antarctica (EPICA) Dome C and Berkner Island ice cores. Fe solubility was very variable (1–42%) during the interval, and frequently higher than typically assumed by models. Soluble aerosol Fe fluxes to Dome C at the LGM (0.01–0.84 mg m−2 per year) suggest that soluble Fe deposition to the Southern Ocean would have been ≥10 × modern deposition, rivalling upwelling supply. PMID:26204562
Molgaard, Simon; Demontis, Ditte; Nicholson, Alexandra M; Finch, Nicole A; Petersen, Ronald C; Petersen, Claus M; Rademakers, Rosa; Nykjaer, Anders; Glerup, Simon
2016-11-01
Mutations in progranulin are a major cause of frontotemporal lobe degeneration (FTLD). Hence, plasma progranulin is an attractive biomarker in FTLD but poorly reflects levels in cerebrospinal fluid (CSF), suggesting tissue-specific regulation of progranulin levels. Sortilin was recently identified as a progranulin scavenger receptor that destines it for lysosomal degradation. Proteolysis or alternative splicing generates soluble sortilin variants that retain progranulin binding and potentially functions as a decoy receptor. In the present study, we analyzed soluble sortilin and progranulin in plasma and CSF in 341 aging individuals. We found that soluble sortilin exists in CSF in ten-fold molar excess compared to progranulin and observed a highly significant positive correlation between soluble sortilin and progranulin levels in CSF but not in plasma. However, carriers of the minor allele of SNP rs646776 in SORT1 encoding sortilin displayed significantly increased soluble sortilin and reduced progranulin specifically in plasma but not in CSF. Taken together, our findings suggest that soluble sortilin may affect progranulin levels in both a tissue-specific and genotype-dependent manner. Copyright © 2016 Elsevier Inc. All rights reserved.
Shadrack, Daniel M; Swai, Hulda S; Munissi, Joan J E; Mubofu, Egid B; Nyandoro, Stephen S
2018-06-12
Clinical applications of many small molecules are limited due to poor solubility and lack of controlled release besides lack of other desirable properties. Experimental and computational studies have reported on the therapeutic potential of polyamidoamine (PAMAM) dendrimers as solubility enhancers in pre-clinical and clinical settings. Besides formulation strategies, factors such as pH, PAMAM dendrimer generation, PAMAM dendrimer concentration, nature of the PAMAM core, special ligand and surface modifications of PAMAM dendrimer have an influence on drug solubility and other recommendable pharmacological properties. This review, therefore, compiles the recently reported applications of PAMAM dendrimers in pre-clinical and clinical uses as enhancers of solubility and other desirable properties such as sustained and controlled release, bioavailability, bio-distribution, toxicity reduction or enhancement, and targeted delivery of small molecules with emphasis on cancer treatment.
Chung, Jeong Min; Lee, Sangmin; Jung, Hyun Suk
2017-05-01
Bacterial expression is commonly used to produce recombinant and truncated mutant eukaryotic proteins. However, heterologous protein expression may render synthesized proteins insoluble. The conventional method used to express a poorly soluble protein, which involves denaturation and refolding, is time-consuming and inefficient. There are several non-denaturing approaches that can increase the solubility of recombinant proteins that include using different bacterial cell strains, altering the time of induction, lowering the incubation temperature, and employing different detergents for purification. In this study, we compared several non-denaturing protocols to express and purify two insoluble 34 kDa actin-bundling protein mutants. The solubility of the mutant proteins was not affected by any of the approaches except for treatment with the detergent sarkosyl. These results indicate that sarkosyl can effectively improve the solubility of insoluble proteins during bacterial expression. Copyright © 2016. Published by Elsevier Inc.
Polymeric micelles: nanocarriers for cancer-targeted drug delivery.
Zhang, Yifei; Huang, Yixian; Li, Song
2014-08-01
Polymeric micelles represent an effective delivery system for poorly water-soluble anticancer drugs. With small size (10-100 nm) and hydrophilic shell of PEG, polymeric micelles exhibit prolonged circulation time in the blood and enhanced tumor accumulation. In this review, the importance of rational design was highlighted by summarizing the recent progress on the development of micellar formulations. Emphasis is placed on the new strategies to enhance the drug/carrier interaction for improved drug-loading capacity. In addition, the micelle-forming drug-polymer conjugates are also discussed which have both drug-loading function and antitumor activity.
NASA Astrophysics Data System (ADS)
Londhe, Vaishali Y.; Deshmane, Aishwarya B.; Singh, Sarita R.; Kulkarni, Yogesh A.
2018-04-01
Lurasidone hydrochloride (LHD) is an atypical antipsychotic drug has poor aqueous solubility and low bioavailability (9-19%). This study describes effect of different methods of complex formation with β-cyclodextrin (BCD) on enhancement of dissolution and on antidepressant, antipsychotic effects of LHD. Other purpose of this study is to compare pharmacodynamic effects of complexes with that of self microemulsifying drug delivery system of LHD (SMEDDS). Inclusion complexes (IC) of LHD and BCD were prepared by physical mixing (PM), kneading (KN) and spray drying (SD) in a 1:1 M ratio. These complexes were characterized by different techniques. KN and SD showing enhancement in dissolution, were compared with SMEDDS using Forced swim test (FST) and Tail suspension test (TST) for antidepressant action and Paw test for antipsychotic activity. Characterization of complexes confirmed interaction between LHD and BCD. Enhancement in dissolution is seen in following order SD > KN > PM > LHD. In all three animal models, SD, KN and SMEDDS showed statistically significant effect (p < .05) than drug alone showing enhancement in bioavailability. Complexation of LHD with BCD enhances dissolution which reflected in improvement of antidepressant and antipsychotic activity of drug. Solubility enhancement methods like complexation and self microemulsion improves pharmacodynamic activities of drug. Improvement of pharmacodynamic effect is seen in order, SD ≥ SMEDDS ≥ KN > LHD.
Lipid-lowering Activity of Natural and Semi-Synthetic Sterols and Stanols.
Taha, Dhiaa A; Wasan, Ellen K; Wasan, Kishor M; Gershkovich, Pavel
2015-01-01
Consumption of plant sterols/ stanols has long been demonstrated to reduce plasma cholesterol levels. The objective of this review is to demonstrate the lipid-lowering activity and anti-atherogenic effects of natural and semi-synthetic plant sterols/ stanols based on evidence from cell-culture studies, animal studies and clinical trials. Additionally, this review highlights certain molecular mechanisms by which plant sterols/ stanols lower plasma cholesterol levels with a special emphasis on factors that affect the cholesterol-lowering activity of plant sterols/stanols. The crystalline nature and the poor oil solubility of these natural products could be important factors that limit their cholesterol-lowering efficiency. Several attempts have been made to improve the cholesterol-lowering activity by enhancing the bioavailability of crystalline sterols and stanols. Approaches involved reduction of the crystal size and/or esterification with fatty acids from vegetable or fish oils. However, the most promising approach in this context is the chemical modification of plant sterols /stanols into water soluble disodium ascorbyl phytostanyl phosphates analogue by esterification with ascorbic acid. This novel semi-synthetic stanol derivative has improved efficacy over natural plant sterols/ stanols and can provide additional benefits by combining the cholesterol-lowering properties of plant stanols with the antioxidant potential of ascorbic acid. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.
Ali, Md Ashraf; Kataoka, Noriko; Ranneh, Abdul-Hackam; Iwao, Yasunori; Noguchi, Shuji; Oka, Toshihiko; Itai, Shigeru
2017-01-01
Monoolein cubosomes containing either spironolactone (SPI) or nifedipine (NI) were prepared using a high-pressure homogenization technique and characterized in terms of their solubility and oral bioavailability. The mean particle size, polydispersity index (PDI), zeta potential, solubility and encapsulation efficiency (EE) values of the SPI- and NI-loaded cubosomes were determined to be 90.4 nm, 0.187, -13.4 mV, 163 µg/mL and 90.2%, and 91.3 nm, 0.168, -12.8 mV, 189 µg/mL and 93.0%, respectively, which were almost identical to those of the blank cubosome. Small-angle X-ray scattering analyses confirmed that the SPI-loaded, NI-loaded and blank cubosomes existed in the cubic space group Im3̄m. The lattice parameters of the SPI- and NI-loaded cubosomes were 147.6 and 151.6 Å, respectively, making them almost identical to that of blank cubosome (151.0 Å). The in vitro release profiles of the SPI- and NI-loaded cubosomes showed that they released less than 5% of the drugs into various media over 12-48 h, indicating that most of the drug remained encapsulated within the cubic phase of their lipid bilayer. Furthermore, the in vivo pharmacokinetic results suggested that these cubosomes led to a considerable increase in the systemic oral bioavailability of the drugs compared with pure dispersions of the same materials. Notably, the stability results indicated that the mean particle size and PDI values of these cubosomes were stable for at least 4 weeks. Taken together, these results demonstrate that monoolein cubosomes represent promising drug carriers for enhancing the solubility and oral bioavailability of poorly water-soluble drugs.
Grossjohann, Christine; Eccles, Kevin S; Maguire, Anita R; Lawrence, Simon E; Tajber, Lidia; Corrigan, Owen I; Healy, Anne Marie
2012-01-17
This study examined the 1:1 cocrystal benzamide:dibenzyl sulfoxide, comprising the poorly water soluble dibenzyl sulfoxide (DBSO) and the more soluble benzamide (BA), to establish if this cocrystal shows advantages in terms of solubility and dissolution in comparison to its pure components and to a physical mixture. Solubility studies were performed by measuring DBSO solubility as a function of BA concentration, and a ternary phase diagram was constructed. Dissolution was examined through intrinsic dissolution studies. Solid-state characterisation was carried out by powder X-ray diffraction (PXRD), energy-dispersive X-ray diffraction (EDX), infra-red spectroscopy (ATR-FTIR) and thermal analysis. DBSO solubility was increased by means of complexation with BA. For the cocrystal, the solubility of both components was decreased in comparison to pure components. The cocrystal was identified as metastable and incongruently saturating. Dissolution studies revealed that dissolution of DBSO from the cocrystal was not enhanced in comparison to the pure compound or a physical mix, while BA release was retarded and followed square root of time kinetics. At the disk surface a layer of DBSO was found. The extent of complexation in solution can change the stability of the complex substantially. Incongruent solubility and dissolution behaviour of a cocrystal can result in no enhancement in the dissolution of the less soluble component and retardation of release of the more soluble component. Copyright © 2011 Elsevier B.V. All rights reserved.
Passively Targeted Curcumin-Loaded PEGylated PLGA Nanocapsules for Colon Cancer Therapy In Vivo
Klippstein, Rebecca; Wang, Julie Tzu-Wen; El-Gogary, Riham I; Bai, Jie; Mustafa, Falisa; Rubio, Noelia; Bansal, Sukhvinder; Al-Jamal, Wafa T; Al-Jamal, Khuloud T
2015-01-01
Clinical applications of curcumin for the treatment of cancer and other chronic diseases have been mainly hindered by its short biological half-life and poor water solubility. Nanotechnology-based drug delivery systems have the potential to enhance the efficacy of poorly soluble drugs for systemic delivery. This study proposes the use of poly(lactic-co-glycolic acid) (PLGA)-based polymeric oil-cored nanocapsules (NCs) for curcumin loading and delivery to colon cancer in mice after systemic injection. Formulations of different oil compositions are prepared and characterized for their curcumin loading, physico-chemical properties, and shelf-life stability. The results indicate that castor oil-cored PLGA-based NC achieves high drug loading efficiency (≈18% w(drug)/w(polymer)%) compared to previously reported NCs. Curcumin-loaded NCs internalize more efficiently in CT26 cells than the free drug, and exert therapeutic activity in vitro, leading to apoptosis and blocking the cell cycle. In addition, the formulated NC exhibits an extended blood circulation profile compared to the non-PEGylated NC, and accumulates in the subcutaneous CT26-tumors in mice, after systemic administration. The results are confirmed by optical and single photon emission computed tomography/computed tomography (SPECT/CT) imaging. In vivo growth delay studies are performed, and significantly smaller tumor volumes are achieved compared to empty NC injected animals. This study shows the great potential of the formulated NC for treating colon cancer. PMID:26140363
Li, Chong; Deng, Li; Zhang, Yan; Su, Ting-Ting; Jiang, Yin; Chen, Zhang-Bao
2012-11-01
The aim of this study is to investigate the feasibility of silica-coated ethosome as a novel oral delivery system for the poorly water-soluble curcumin (as a model drug). The silica-coated ethosomes loading curcumin (CU-SE) were prepared by alcohol injection method with homogenization, followed by the precipitation of silica by sol-gel process. The physical and chemical features of CU-SEs, and curcumin release were determined in vitro. The pharmacodynamics and bioavailability measurements were sequentially performed. The mean diameter of CU-SE was (478.5 +/- 80.3) nm and the polydispersity index was 0.285 +/- 0.042, while the mean value of apparent drug entrapment efficiency was 80.77%. In vitro assays demonstrated that CU-SEs were significantly stable with improved release properties when compared with curcumin-loaded ethosomes (CU-ETs) without silica-coatings. The bioavailability of CU-SEs and CU-ETs was 11.86- and 5.25-fold higher, respectively, than that of curcumin suspensions (CU-SUs) in in vivo assays. The silica coatings significantly promoted the stability of ethosomes and CU-SEs exhibited 2.26-fold increase in bioavailablity relative to CU-ETs, indicating that the silica-coated ethosomes might be a potential approach for oral delivery of poorly water-soluble drugs especially the active ingredients of traditional Chinese medicine with improved bioavailability.
Yen, Feng-Lin; Wu, Tzu-Hui; Lin, Liang-Tzung; Cham, Thau-Ming; Lin, Chun-Ching
2008-05-01
Cuscuta chinensis is a commonly used traditional Chinese medicine to nourish the liver and kidney. Due to the poor water solubility of its major constituents such as flavonoids and lignans, its absorption upon oral administration could be limited. The purpose of the present study was to use the nanosuspension method to prepare C. chinensis nanoparticles (CN), and to compare the hepatoprotective and antioxidant effects of C. chinensis ethanolic extract (CE) and CN on acetaminophen-induced hepatotoxicity in rats. An oral dose of CE at 125 and 250 mg/kg and CN at 25 and 50mg/kg showed a significant hepatoprotective effect relatively to the same extent (P<0.05) by reducing levels of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase. These biochemical assessments were supported by rat hepatic biopsy examinations. In addition, the antioxidant activities of CE and CN both significantly increased superoxide dismutase, catalase, glutathione peroxidase, and reduced malondialdehyde (P<0.05). Moreover, the results also indicated that the hepatoprotective and antioxidant effects of 50 mg/kg CN was effectively better than 125 mg/kg CE (P<0.05), and an oral dose of CN that is five times as less as CE could exhibit similar levels of outcomes. In conclusion, we suggest that the nanoparticles system can be applied to overcome other water poorly soluble herbal medicines and furthermore to decrease the treatment dosage.
Xia, Yuanzhi; Ma, Xuehua; Gao, Junhua; Chen, Guoxin; Li, Zihou; Wu, Xiaoxia; Yu, Zhangsen; Xing, Jie; Sun, Li; Ruan, Huimin; Luo, Lijia; Xiang, Lingchao; Dong, Chen; Ren, Wenzhi; Shen, Zheyu; Wu, Aiguo
2018-05-01
Gold nanoparticle (AuNP) assemblies (GNAs) have attracted attention since enhanced coupling plasmonic resonance (CPR) emerged in the nanogap between coupling AuNPs. For one dimensional GNAs (1D-GNAs), most CPR from the nanogaps could be easily activated by electromagnetic waves and generate drastically enhanced CPR because the nanogaps between coupling AuNPs are linearly distributed in the 1D-GNAs. The reported studies focus on the synthesis of 1D-GNAs and fundamental exploration of CPR. There are still problems which impede further applications in nanomedicine, such as big size (>500 nm), poor water solubility, and/or poor stability. In this study, a kind of 1D flexible caterpillar-like GNAs (CL-GNAs) with ultrasmall nanogaps, good water solubility, and good stability is developed. The CL-GNAs have a flexible structure that can randomly move to change their morphology, which is rarely reported. Numerous ultrasmall nanogaps (<1 nm) are linearly distributed along the structure of CL-GNAs and generate enhanced CPR. The toxicity assessments in vitro and vivo respectively demonstrate that CL-GNAs have a low cytotoxicity and good biocompatibility. The CL-GNAs can be used as an efficient photothermal agent for photothermal therapy, a probe for Raman imaging and photothermal imaging. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hagedorn, Martin; Bögershausen, Ansgar; Rischer, Matthias; Schubert, Rolf; Massing, Ulrich
2017-09-15
The development of nanosuspensions of poorly soluble APIs takes a lot of time and high amount of active material is needed. In this publication the use of dual centrifugation (DC) for an effective and rapid API-nanomilling is described for the first time. DC differs from normal centrifugation by an additional rotation of the samples during centrifugation, resulting in a very fast and powerful movement of the samples inside the vials, which - in combination with milling beads - result in effective milling. DC-nanomilling was compared to conventional wet ball milling and results in same or even smaller particle sizes. Also drug concentrations up to 40% can be processed. The process is fast (typical 90min) and the temperature can be controlled. DC-nanomilling appears to be very gentle, experiments showed no change of the crystal structure during milling. Since batch sizes are very small (100-1000mg) and since 40 sample vials can be processed in parallel, DC is ideal for the screening of suitable polymer/surfactant combinations. Fenofibrate was used to investigate DC-nanomilling for formulation screening by applying a DoE-approach. The presented data also show that the results of DC-nanomilling experiments are highly comparable to the results obtained by common agitator mills. Copyright © 2017 Elsevier B.V. All rights reserved.
Yan, Hong-Mei; Song, Jie; Zhang, Zhen-Hai; Jia, Xiao-Bin
2016-10-01
Baohuoside I, extracted from the Herba epimedii, is an effective but a poorly soluble antitumor drug. To improve its solubility, formulation of baohuoside I-loaded mixed micelles with lecithin and Solutol HS 15 (BLSM) has been performed in this study. We performed a systematic comparative evaluation of the antiproliferative effect, cellular uptake, antitumor efficacy, and in vivo tumor targeting of these micelles using non-small cell lung cancer (NSCLC) A549 cells. Results showed that the obtained micelles have a mean particle size of around 62.54 nm, and the size of micelles was narrowly distributed. With the improved cellular uptake, BLSM displayed a more potent antiproliferative action on A549 cell lines than baohuoside I; half-maximal inhibitory concentration (IC 50 ) was 6.31 versus 18.28 µg/mL, respectively. The antitumor efficacy test in nude mice showed that BLSM exhibited significantly higher antitumor activity against NSCLC with lesser toxic effects on normal tissues. The imaging study for in vivo targeting demonstrated that the mixed micelles formulation achieved effective and targeted drug delivery. Therefore, BLSM might be a potential antitumor formulation.
Gurung, Rit Bahadur; Gong, So Youn; Dhakal, Dipesh; Le, Tuoi Thi; Jung, Na Rae; Jung, Hye Jin; Oh, Tae Jin; Sohng, Jae Kyung
2017-09-28
Curcumin is a natural polyphenolic compound, widely acclaimed for its antioxidant, antiinflammatory, antibacterial, and anticancerous properties. However, its use has been limited due to its low-aqueous solubility and poor bioavailability, rapid clearance, and low cellular uptake. In order to assess the effect of glycosylation on the pharmacological properties of curcumin, one-pot multienzyme (OPME) chemoenzymatic glycosylation reactions with UDP- α-D-glucose or UDP-α-D-2-deoxyglucose as donor substrate were employed. The result indicated significant conversion of curcumin to its glycosylated derivatives: curcumin 4'- O -β- glucoside, curcumin 4',4''-di- O -β-glucoside, curcumin 4'- O -β-2-deoxyglucoside, and curcumin 4',4''-di- O -β-2-deoxyglucoside. The products were characterized by ultra-fast performance liquid chromatography, high-resolution quadruple-time-of-flight electrospray ionization-mass spectrometry, and NMR analyses. All the products showed improved water solubility and comparable antibacterial activities. Additionally, the curcumin 4'- O -β-glucoside and curcumin 4'- O -β-2-deoxyglucoside showed enhanced anticancer activities compared with the parent aglycone and diglycoside derivatives. This result indicates that glycosylation can be an effective approach for enhancing the pharmaceutical properties of different natural products, such as curcumin.
Martí Coma-Cros, Elisabet; Biosca, Arnau; Lantero, Elena; Manca, Maria Letizia; Caddeo, Carla; Gutiérrez, Lucía; Ramírez, Miriam; Borgheti-Cardoso, Livia Neves; Manconi, Maria; Fernàndez-Busquets, Xavier
2018-05-04
Curcumin is an antimalarial compound easy to obtain and inexpensive, having shown little toxicity across a diverse population. However, the clinical use of this interesting polyphenol has been hampered by its poor oral absorption, extremely low aqueous solubility and rapid metabolism. In this study, we have used the anionic copolymer Eudragit ® S100 to assemble liposomes incorporating curcumin and containing either hyaluronan (Eudragit-hyaluronan liposomes) or the water-soluble dextrin Nutriose ® FM06 (Eudragit-nutriosomes). Upon oral administration of the rehydrated freeze-dried nanosystems administered at 25/75 mg curcumin·kg −1 ·day −1 , only Eudragit-nutriosomes improved the in vivo antimalarial activity of curcumin in a dose-dependent manner, by enhancing the survival of all Plasmodium yoelii -infected mice up to 11/11 days, as compared to 6/7 days upon administration of an equal dose of the free compound. On the other hand, animals treated with curcumin incorporated in Eudragit-hyaluronan liposomes did not live longer than the controls, a result consistent with the lower stability of this formulation after reconstitution. Polymer-lipid nanovesicles hold promise for their development into systems for the oral delivery of curcumin-based antimalarial therapies.
Chen, Xiao-Wei; Wang, Jin-Mei; Yang, Xiao-Quan; Qi, Jun-Ru; Hou, Jun-Jie
2016-09-01
Rutin is a common dietary flavonoid with important antioxidant and pharmacological activities. However, its application in the food industry is limited mainly because of its poor water solubility. The subcritical water (SW) treatment provides an efficient technique to solubilize and achieve the enrichment of rutin in soy protein isolate (SPI) by inducing their complexation. The physicochemical, interfacial, and emulsifying properties of the complex were investigated and compared to the mixtures. SW treatment had much enhanced rutin-combined capacity of SPI than that of conventional method, ascribing to the well-contacted for higher water solubility of rutin with stronger collision-induced hydrophobic interactions. Compared to the mixtures of rutin with proteins, the complex exhibited an excellent surface activity and improved the physical and oxidative stability of its stabilized emulsions. This improving effect could be attributed to the targeted accumulation of rutin at the oil-water interface accompanied by the adsorption of SPI resulting in the thicker interfacial layer, as evidenced by higher interfacial protein and rutin concentrations. This study provides a novel strategy for the design and enrichment of nanovehicle providing water-insoluble hydrophobic polyphenols for interfacial delivery in food emulsified systems. © 2016 Institute of Food Technologists®
Pund, Swati; Thakur, Rohit; More, Umesh; Joshi, Amita
2014-08-01
Resveratrol, a dietary non-flavonoid polyphenolic phytoalexin, has gained attention in cancer chemoprevention. However, poor aqueous solubility and cellular bioavailability has limited its therapeutic application. We formulated a lipid based delivery system of resveratrol with self nanoemulsifying ability. Several edible and safe lipids, surfactants and cosolvents were screened for solubilization of resevratrol. Developed formulation comprised of Acrysol K 150 as a lipid and mixture of Labrasol and Transcutol HP as the surfactant system, as these components showed higher solubility. Pseudoternary phase diagram was constructed to identify the region of nanoemulsification. The formulations showed rapid emulsification with an average globule diameter; 85nm to 120nm and slight negative zeta potential. The nanocompositions exhibited cloud point above 55°C and were stable toward the gastrointestinal pH and thermodynamic stress testing. As compared to pristine resveratrol, the developed delivery system showed significant increase in vitro cytotoxicity in MCF-7 breast cancer cells. In vivo chick chorioallantoic membrane assay revealed enhanced antiangiogenic activity of composition with high lipid level. Briefly, lipid based nanoemulsifying resveratrol dramatically enhanced the anticancer and antiangiogenic activities, thus increasing its potential application in cancer chemotherapy. Copyright © 2014 Elsevier B.V. All rights reserved.
Melariri, Paula; Kalombo, Lonji; Nkuna, Patric; Dube, Admire; Hayeshi, Rose; Ogutu, Benhards; Gibhard, Liezl; deKock, Carmen; Smith, Peter; Wiesner, Lubbe; Swai, Hulda
2015-01-01
Tafenoquine (TQ), a new synthetic analog of primaquine, has relatively poor bioavailability and associated toxicity in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. A microemulsion formulation of TQ (MTQ) with sizes <20 nm improved the solubility of TQ and enhanced the oral bioavailability from 55% to 99% in healthy mice (area under the curve 0 to infinity: 11,368±1,232 and 23,842±872 min·μmol/L) for reference TQ and MTQ, respectively. Average parasitemia in Plasmodium berghei-infected mice was four- to tenfold lower in the MTQ-treated group. In vitro antiplasmodial activities against chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum indicated no change in half maximal inhibitory concentration, suggesting that the microemulsion did not affect the inherent activity of TQ. In a humanized mouse model of G6PD deficiency, we observed reduction in toxicity of TQ as delivered by MTQ at low but efficacious concentrations of TQ. We hereby report an enhancement in the solubility, bioavailibility, and efficacy of TQ against blood stages of Plasmodium parasites without a corresponding increase in toxicity.
Melariri, Paula; Kalombo, Lonji; Nkuna, Patric; Dube, Admire; Hayeshi, Rose; Ogutu, Benhards; Gibhard, Liezl; deKock, Carmen; Smith, Peter; Wiesner, Lubbe; Swai, Hulda
2015-01-01
Tafenoquine (TQ), a new synthetic analog of primaquine, has relatively poor bioavailability and associated toxicity in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. A microemulsion formulation of TQ (MTQ) with sizes <20 nm improved the solubility of TQ and enhanced the oral bioavailability from 55% to 99% in healthy mice (area under the curve 0 to infinity: 11,368±1,232 and 23,842±872 min·μmol/L) for reference TQ and MTQ, respectively. Average parasitemia in Plasmodium berghei-infected mice was four- to tenfold lower in the MTQ-treated group. In vitro antiplasmodial activities against chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum indicated no change in half maximal inhibitory concentration, suggesting that the microemulsion did not affect the inherent activity of TQ. In a humanized mouse model of G6PD deficiency, we observed reduction in toxicity of TQ as delivered by MTQ at low but efficacious concentrations of TQ. We hereby report an enhancement in the solubility, bioavailibility, and efficacy of TQ against blood stages of Plasmodium parasites without a corresponding increase in toxicity. PMID:25759576
Sarode, Ashish L; Malekar, Swapnil A; Cote, Catherine; Worthen, David R
2014-11-04
Overcoming the low oral bioavailability of many drugs due to their poor aqueous solubility is one of the major challenges in the pharmaceutical industry. The production of amorphous solid dispersions (ASDs) of these drugs using hydrophilic polymers may significantly improve their solubility. However, their storage stability and the stability of their supersaturated solutions in the gastrointestinal tract upon administration are unsolved problems. We have investigated the potential of a low viscosity grade of a cellulosic polymer, hydroxypropyl cellulose (HPC-SSL), and compared it with a commonly used vinyl polymer, polyvinylpyrrolidone vinyl acetate (PVP-VA), for stabilizing the ASDs of a poorly water soluble drug, felodipine. The ASDs were produced using hot melt mixing and stored under standard and accelerated stability conditions. The ASDs were characterized using differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. Drug dissolution and partitioning rates were evaluated using single- and biphasic dissolution studies. The ASDs displayed superior drug dissolution and partitioning as compared to the pure crystalline drug, which might be attributed to the formation of a drug-polymer molecular dispersion, amorphous conversion of the drug, and drug-polymer hydrogen bonding interactions. Late phase separation and early re-crystallization occurred at lower and higher storage temperatures, respectively, for HPC-SSL ASDs, whereas early phase separation, even at low storage temperatures, was noted for PVP-VA ASDs. Consequently, the partitioning rates for ASDs dispersed in HPC-SSL were greater than those of PVP-VA at lower and room temperature storage, whereas the performance of both of the ASDs was similar when stored at higher temperatures. Copyright © 2014. Published by Elsevier Ltd.
Chan, Siok-Yee; Toh, Seok-Ming; Khan, Nasir Hayat; Chung, Yin-Ying; Cheah, Xin-Zi
2016-11-01
Solution-mediated transformation has been cited as one of the main problems that deteriorate dissolution performances of solid dispersion (SD). This is mainly attributed by the recrystallization tendency of poorly soluble drug. Eventually, it will lead to extensive agglomeration which is a key process in reducing the dissolution performance of SD and offsets the true benefit of SD system. Here, a post-processing treatment is suggested in order to reduce the recrystallization tendency and hence bring forth the dissolution advantage of SD system. The current study investigates the effect of a post processing treatment on dissolution performance of SD in comparison to their performances upon production. Two poorly soluble drugs were spray dried into SD using polyvinyl alcohol (PVA) as hydrophilic carrier. The obtained samples were post processing treated by exposure to high humidity, i.e. 75% RH at room temperature. The physical properties and release rate of the SD system were characterized upon production and after the post-processing treatment. XRPD, Infrared and DSC results showed partial crystallinity of the fresh SD systems. Crystallinity of these products was further increased after the post-processing treatment at 75% RH. This may be attributed to the high moisture absorption of the SD system that promotes recrystallization process of the drug. However, dissolution efficiencies of the post-treated systems were higher and more consistent than the fresh SD. The unexpected dissolution trend was further supported by the results intrinsic dissolution and solubility studies. An increase of crystallinity in a post humidity treated SD did not exert detrimental effect to their dissolution profiles. A more stabilized system with a preferable enhanced dissolution rate was obtained by exposing the SD to a post processing humidity treatment.
Liu, Chengyu; Liu, Zhengsheng; Chen, Yuejie; Chen, Zhen; Chen, Huijun; Pui, Yipshu; Qian, Feng
2018-03-01
The aim of this paper was to compare the in vitro dissolution and in vivo bioavailability of three solubility enhancement technologies for β-lapachone (LPC), a poorly water soluble compound with extremely high crystallization propensity. LPC cocrystal was prepared by co-grinding LPC with resorcinol. LPC crystalline and amorphous solid dispersions (CSD and ASD) were obtained by spray drying with Poloxamer 188 and HPMC-AS, respectively. The cocrystal structure was solved by single crystal x-ray diffraction. All formulations were characterized by WAXRD, DSC, POM and SEM. USP II and intrinsic dissolution studies were used to compare the in vitro dissolution of these formulations, and a crossover dog pharmacokinetic study was used to compare their in vivo bioavailability. An 1:1 LPC-resorcinol cocrystal with higher solubility and faster dissolution rate was obtained, yet it converted to LPC crystal rapidly in solution. LPC/HPMC-AS ASD was confirmed to be amorphous and uniform, while the crystal and crystallite sizes of LPC in CSD were found to be ∼1-3 μm and around 40 nm, respectively. These formulations performed similarly during USP II dissolution, while demonstrated dramatically different oral bioavailability of ∼32%, ∼5%, and ∼1% in dogs, for CSD, co-crystal, and ASD, respectively. CSD showed the fastest intrinsic dissolution rate among the three. The three formulations showed poor IVIVC which could be due to rapid and unpredictable crystallization kinetics. Considering all the reasons, we conclude that for molecules with extremely high crystallization tendency that cannot be inhibited by any pharmaceutical excipients, size-reduction technologies such as CSD could be advantageous for oral bioavailability enhancement in vivo than technologies only generating transient but not sustained supersaturation. Copyright © 2018 Elsevier B.V. All rights reserved.
Paulino, A S; Rauber, G; Campos, C E M; Maurício, M H P; de Avillez, R R; Capobianco, G; Cardoso, S G; Cuffini, S L
2013-05-13
Deflazacort (DFZ), a derivate of prednisolone, is a poorly soluble drug which has been proposed to have major advantages over other corticosteroids. Poorly soluble drugs present limited bioavailability due to their low solubility and dissolution rate and several strategies have been developed in order to find ways to improve them. In general, pharmaceutical laboratories use a micronized process to reduce the particle size in order to increase the dissolution of the drugs. However, this process causes changes such as polymorphic transitions, particle agglomeration and a reduction in fluidity and wettability. These solid-state properties affect the dissolution behavior and stability performance of drugs. Crystallization techniques are widely used in the pharmaceutical industry and antisolvent crystallization has been used to obtain ultrafine particles. In this study, DFZ was investigated in terms of its antisolvent crystallization in different solvents and under various preparation conditions (methanol/water ratio, stirring and evaporation rate, etc.), in order to compare the physicochemical properties between crystallized samples and raw materials available on the Brazilian market with and without micronization. Crystalline structure, morphology, and particle size, and their correlation with the Intrinsic Dissolution Rate (IDR) and dissolution profile as relevant biopharmaceutical properties were studied. Crystallization conditions were achieved which provided crystalline samples of hollow-shaped crystals with internal channels, which increased the dissolution rate of DFZ. The antisolvent crystallization process allowed the formation of hollow crystals, which demonstrated a better dissolution profile than the raw material (crystalline and micronized), making this a promising technique as a crystallization strategy for improving the dissolution and thus the bioavailability of poorly soluble drugs. Copyright © 2013 Elsevier B.V. All rights reserved.
Dissolution enhancement of atorvastatin calcium by co-grinding technique.
Prabhu, Priyanka; Patravale, Vandana
2016-08-01
Atorvastatin calcium (AC) is a BCS class II drug which shows poor bioavailability due to inadequate dissolution. Solid dispersions present a promising option to enhance the solubility of poorly soluble drugs. Co-grinding with hydrophilic excipients is an easy and economical technique to improve the solubility of poorly soluble drugs and is free from usage of organic solvents. The aim of the present study was to explore novel carrier VBP-1 (organosulphur compound) for formulating a solid dispersion by using a simple, commercially viable co-grinding technique to enhance the dissolution of AC and to develop an oral formulation of the same. Composition of the solid dispersion was optimized based on the release profile in pH 1.2 buffer. The optimized solid dispersion was further characterized for flow properties, DSC, FTIR spectroscopy, XRD, contact angle, SEM studies and release profile in phosphate buffer pH 6.8. The developed solid dispersion gave similar release profile as the innovator formulation (Lipitor® tablets) in both pH 1.2 buffer and phosphate buffer pH 6.8. The developed solid dispersion was formulated into hard gelatin capsules (size 3). The developed capsules were found to give similar release as the innovator formulation in both pH 1.2 buffer and phosphate buffer pH 6.8. The developed capsules were found to be stable for a period of 6 months. Anti-hyperlipidemic efficacy studies in rats showed higher reduction in cholesterol and triglyceride levels by the developed capsules in comparison to pure AC. In conclusion, novel carrier VBP-1 was successfully employed to enhance the dissolution of AC using co-grinding technique.
NASA Astrophysics Data System (ADS)
Venuti, Valentina; Stancanelli, Rosanna; Acri, Giuseppe; Crupi, Vincenza; Paladini, Giuseppe; Testagrossa, Barbara; Tommasini, Silvana; Ventura, Cinzia Anna; Majolino, Domenico
2017-10-01
The ability of Captisol® (sulphobutylether-β-cyclodextrin, SBE-β-CD), to form inclusion complexes, both in solution and in the solid state, has been tested in order to improve some unfavorable chemical-physical characteristics, such as poor solubility in water, of a bioflavonoid, Coumestrol (Coum), well known for its anti-oxidant, anti-inflammatory, anti-fungal and anti-viral activity. In pure water, a phase-solubility study was carried out to evaluate the enhancement of the solubility of Coum and, therefore, the occurred complexation with the macrocycle. The stoichiometry and the stability constant of the SBE-β-CD/Coum complex were calculated with the phase solubility method and through the Job's plot. After that, the solid SBE-β-CD/Coum complex was prepared utilizing a kneading method. The spectral changes induced by complexation on characteristic vibrational band of Coum were complementary investigated by Fourier transform infrared spectroscopy in attenuated total reflectance geometry (FTIR-ATR) and Raman spectroscopy, putting into evidence the guest chemical groups involved in the "host-guest" interactions responsible of the formation and stabilization of the complex. Particular attention was paid to the Cdbnd O and Osbnd H stretching vibrations, whose temperature-evolution respectively furnished the enthalpy changes associated to the binding of host and guest in solid phase and to the reorganization of the hydrogen bond scheme upon complexation. From the whole set of results, an inclusion geometry is also proposed.
Gallego-Lleyda, Ana; De Miguel, Diego; Anel, Alberto; Martinez-Lostao, Luis
2018-05-13
Sarcomas are rare and heterogeneous cancers classically associated with a poor outcome. Sarcomas are 1% of the cancer but recent estimations indicate that sarcomas account for 2% of the estimated cancer-related deaths. Traditional treatment with surgery, radiotherapy, and chemotherapy has improved the outcome for some types of sarcomas. However, novel therapeutic strategies to treat sarcomas are necessary. TNF-related apoptosis-inducing ligand (TRAIL) is a death ligand initially described as capable of inducing apoptosis on tumor cell while sparing normal cells. Only few clinical trials have used TRAIL-based treatments in sarcoma, but they show only low or moderate efficacy of TRAIL. Consequently, novel TRAIL formulations with an improved TRAIL bioactivity are necessary. Our group has developed a novel TRAIL formulation based on tethering this death ligand on a lipid nanoparticle surface (LUV-TRAIL) resembling the physiological secretion of TRAIL as a trasmembrane protein inserted into the membrane of exosomes. We have already demonstrated that LUV-TRAIL shows an improved cytotoxic activity when compared to soluble recombinant TRAIL both in hematological malignancies and epithelial-derived cancers. In the present study, we have tested LUV-TRAIL in several human sarcoma tumor cell lines with different sensitivity to soluble recombinant TRAIL, finding that LUV-TRAIL was more efficient than soluble recombinant TRAIL. Moreover, combined treatment of LUV-TRAIL with distinct drugs proved to be especially effective, sensitizing even more resistant cell lines to TRAIL.
Speer, Rachel M; Wise, Catherine F; Young, Jamie L; Aboueissa, AbouEl-Makarim; Martin Bras, Mark; Barandiaran, Mike; Bermúdez, Erick; Márquez-D'Acunti, Lirio; Wise, John Pierce
2018-05-01
Hexavalent chromium [Cr(VI)] is a marine pollution of concern as recent studies show it has a global distribution, with some regions showing high Cr concentrations in marine animal tissue, and it is extensively used. Leatherback sea turtles (Dermochelys coriacea) are an endangered marine species that may experience prolonged exposures to environmental contaminants including Cr(VI). Human activities have led to global Cr(VI) contamination of the marine environment. While Cr(VI) has been identified as a known human carcinogen, the health effects in marine species are poorly understood. In this study, we assessed the cytotoxic and genotoxic effects of particulate and soluble Cr(VI) in leatherback sea turtle lung cells. Both particulate and soluble Cr(VI) induced a concentration-dependent increase in cytotoxicity. Next, using a chromosome aberration assay, we assessed the genotoxic effects of Cr(VI) in leatherback sea turtle lung cells. Particulate and soluble Cr(VI) induced a concentration-dependent increase in clastogenicity in leatherback sea turtle lung cells. These data indicate that Cr(VI) may be a health concern for leatherback sea turtles and other long-lived marine species. Additionally, these data provide foundational support to use leatherback sea turtles as a valuable model species for monitoring the health effects of Cr(VI) in the environment and possibly as an indicator species to assess environmental human exposures and effects. Copyright © 2018 Elsevier B.V. All rights reserved.
Ni, Shuaishuai; Wei, Hanwen; Li, Baoli; Chen, Feifei; Liu, Yifu; Chen, Wenhua; Xu, Yixiang; Qiu, Xiaoxia; Li, Xiaokang; Lu, Yanli; Liu, Wenwen; Hu, Linhao; Lin, Dazheng; Wang, Manjiong; Zheng, Xinyu; Mao, Fei; Zhu, Jin; Lan, Lefu; Li, Jian
2017-10-12
Our previous work ( Wang et al. J. Med. Chem. 2016 , 59 , 4831 - 4848 ) revealed that effective benzocycloalkane-derived staphyloxanthin inhibitors against methicillin-resistant Staphylococcus aureus (S. aureus) infections were accompanied by poor water solubility and high hERG inhibition and dosages (preadministration). In this study, 92 chroman and coumaran derivatives as novel inhibitors have been addressed for overcoming deficiencies above. Derivatives 69 and 105 displayed excellent pigment inhibitory activities and low hERG inhibition, along with improvement of solubility by salt type selection. The broad and significantly potent antibacterial spectra of 69 and 105 were displayed first with normal administration in the livers and hearts in mice against pigmented S. aureus Newman, Mu50 (vancomycin-intermediate S. aureus), and NRS271 (linezolid-resistant S. aureus), compared with linezolid and vancomycin. In summary, both 69 and 105 have the potential to be developed as good antibacterial candidates targeting virulence factors.
Structure-Based Discovery of Nonpeptide Allatostatin Analogues for Pest Control.
Huang, Shan-Shan; Chen, Shan-Shan; Zhang, Hong-Ling; Yang, Han; Yang, Hui-Juan; Ren, Yu-Jie; Kai, Zhen-Peng
2018-04-11
FGLamide allatostatins (ASTs) are regarded as possible insecticide candidates, although their lack of in vivo effects, rapid degradation, poor water solubility, and high production costs preclude their practical use in pest control. In contrast to previous research, the C-terminal tripeptide (FGLa) was selected as the lead compound in this study. Five nonpeptide AST analogues (2-amino-1-[3-oxo-3-(substituted-anilino)propyl]pyridinium nitrate derivatives) were designed on the basis of the structure-activity relationship and docking results of FGLa. All of the nonpeptide analogues (S1-S5) were more potent against juvenile-hormone (JH) biosynthesis than the lead compound. They significantly inhibited the biosynthesis of JH in vivo following injection. A pest-control application demonstrated that S1 and S3 have larvicidal effects following oral administration (the IC 50 values were 0.020 and 0.0016 mg/g, respectively). The good oral toxicities and excellent water solubilities of S1 and S3 suggest that they have considerable potential as insecticides for pest management.
Shao, Jingwei; Dai, Yongchao; Zhao, Wenna; Xie, Jingjing; Xue, Jinping; Ye, Jianhui; Jia, Lee
2013-03-01
Zinc(II)-phthalocyanine (ZnPc) is a metal photosensitizer. In the present study, we formulated the poorly-soluble ZnPc in Cremophor EL solution to enhance its solubility and determined its intracellular distribution and mechanisms of action on human hepatocellular carcinoma HepG2 cells. ZnPc uptake by the cells reached a plateau by 8h. ZnPc primarily located in mitochondria, lysosome and endoplasmic reticulum. The concentration-growth inhibition curves of ZnPc on the cell lines were pharmacodynamically enhanced by 10-50 folds by irradiation. Once irradiated, ZnPc produced significant amount of reactive oxygen species (ROS), activated caspase-3 and caspase-9, arrested cell cycle mainly at G2/M stage, and decreased membrane potential (ΔΨm) of HepG2 cells. In conclusion, the present study first elucidated cellular and molecular mechanisms of ZnPc on HepG2 cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
He, Zhijian; Wan, Xiaomeng; Schulz, Anita; Bludau, Herdis; Dobrovolskaia, Marina A.; Stern, Stephan T.; Montgomery, Stephanie A.; Yuan, Hong; Li, Zibo; Alakhova, Daria; Sokolsky, Marina; Darr, David B.; Perou, Charles M.; Jordan, Rainer; Luxenhofer, Robert; Kabanov, Alexander V.
2016-01-01
The poor solubility of paclitaxel (PTX), the commercially most successful anticancer drug, has long been hampering the development of suitable formulations. Here, we present translational evaluation of a nanoformulation of PTX, which is characterized by a facile preparation, extraordinary high drug loading of 50 % wt. and PTX solubility of up to 45 g/L, excellent shelf stability and controllable, sub-100 nm size. We observe favorable in vitro and in vivo safety profiles and a higher maximum tolerated dose compared to clinically approved formulations. Pharmacokinetic analysis reveals that the higher dose administered leads to a higher exposure of the tumor to PTX. As a result, we observed improved therapeutic outcome in orthotopic tumor models including particularly faithful and aggressive “T11” mouse claudin-low breast cancer orthotopic, syngeneic transplants. The promising preclinical data on the presented PTX nanoformulation showcase the need to investigate new excipients and is a robust basis to translate into clinical trials. PMID:27315213
Defilippi, Bruno G; Ejsmentewicz, Troy; Covarrubias, María Paz; Gudenschwager, Orianne; Campos-Vargas, Reinaldo
2018-05-17
The avocado is a climacteric fruit and begins a softening process after harvest. During ripening, the mesocarp changes in texture, and this affects fruit quality and cold storage capacity. Softening is commonly associated with cell wall disassembly in climacteric fruits. However, changes in the cell wall structure and composition during avocado softening are poorly understood. To understand this process, cell wall pectins in "Hass" avocado fruit were studied during ripening at 20 °C after harvest and after cold storage. Additionally, avocados were treated with 1-MCP to evaluate the delay in softening. Biochemical analysis showed a decrease in galacturonic acid (GalA) in alcohol-insoluble residues (AIR) and water-soluble pectin concomitant to softening, paralleled by an increase in polygalacturonase (PG) activity. In the same way, the β-galactosidase activity increased in soft avocado fruit, along with a reduction in galactose in cell wall material and the Na 2 CO 3 -soluble fraction. The arabinose content in the cell wall material did not change during softening. However, there was a change in arabinose ratios between the different fractions of pectin, mainly in the fractions soluble in water and in Na 2 CO 3 . The cold storage of avocado fruit did not induce softening of the fruit, but the content of GalA showed a substantial decrease, accompanied by an increase in PG activity. Thus, our work supports the hypothesis that the solubilization of neutral sugars such as arabinose and rhamnose, as well as the loss of galactose content mediated by the enzyme β-galactosidase, were the main factors that began the coordinated action of cell wall remodeling enzymes that resulted in the loss of firmness of avocado fruit. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Askari, Ara A.; Thomson, Scott; Edin, Matthew L.
Highlights: • We examined epoxygenase product formation and regulation in endothelial cells. • The epoxygenase CYP2J2 is an LPS (TLR-4) inducible enzyme in endothelial cells. • The endothelial cell line EA.Hy926 synthesises epoxygenase products. • Inhibition of endothelial epoxygenases increases TNFα secretion. • Soluble epoxide hydrolase inhibitors reduce inflammation-induced TNFα and NFκB. - Abstract: The roles of CYP lipid-metabolizing pathways in endothelial cells are poorly understood. Human endothelial cells expressed CYP2J2 and soluble epoxide hydrolase (sEH) mRNA and protein. The TLR-4 agonist LPS (1 μg/ml; 24 h) induced CYP2J2 but not sEH mRNA and protein. LC–MS/MS analysis of the stablemore » commonly used human endothelial cell line EA.Hy926 showed active epoxygenase and epoxide hydrolase activity: with arachidonic acid (stable epoxide products 5,6-DHET, and 14,15-DHET), linoleic acid (9,10-EPOME and 12,13-EPOME and their stable epoxide hydrolase products 9,10-DHOME and 12,13-DHOME), docosahexaenoic acid (stable epoxide hydrolase product 19,20-DiHDPA) and eicosapentaenoic acid (stable epoxide hydrolase product 17,18-DHET) being formed. Inhibition of epoxygenases using either SKF525A or MS-PPOH induced TNFα release, but did not affect LPS, IL-1β, or phorbol-12-myristate-13-acetate (PMA)-induced TNFα release. In contrast, inhibition of soluble epoxide hydrolase by AUDA or TPPU inhibited basal, LPS, IL-1β and PMA induced TNFα release, and LPS-induced NFκB p65 nuclear translocation. In conclusion, human endothelial cells contain a TLR-4 regulated epoxygenase CYP2J2 and metabolize linoleic acid > eicosapentaenoic acid > arachidonic acid > docosahexaenoic acid to products with anti-inflammatory activity.« less
Rezaei-Sadabady, Rogaie; Eidi, Akram; Zarghami, Nosratollah; Barzegar, Abolfazl
2016-01-01
Quercetin (3,5,7,3',4'-pentahydroxyflavone) is a natural bio-flavonoid originating from fruits, vegetables, seeds, berries, and tea. The antioxidant activity of quercetin and its protective effects against cardiovascular disorders, anti-cancer, anti-inflammatory, and anti-viral activities have been extensively documented; however, the clinical request of quercetin in cancer treatment is significantly limited due to its very poor delivery features. In order to increase the hydrophilicity and drug delivery capability, we encapsulated quercetin into liposomes. Our data indicated that liposomal quercetin can significantly improve the solubility and bioavailability of quercetin and can be used as an effective antioxidant for ROS protection within the polar cytoplasm, and the nano-sized quercetin encapsulated by liposomes enhanced the cellular uptake (cancer cell human MCF_7). Quercetin has many pharmaceutical applications, many of which arise from its potent antioxidant properties. The present research examined the antioxidant activities of quercetin in polar solvents by a comparative study using reduction of ferric iron in aqueous medium, intracellular ROS/toxicity assays, and reducing DPPH assays. Cell viability and ROS assays demonstrated that quercetin was able to penetrate into the polar medium inside the cells and to protect them against the highly toxic and deadly belongings of cumene hydroperoxide. The purpose of this study was to determine whether a liposomal formulation of quercetin can suggestively improve its solubility and bioavailability and can be a possible request in the treatment of tumor. The authors encapsulated quercetin in a liposomal delivery system. They studied the in vitro effects of this compound on proliferation using human MCF-7 carcinoma cells. The activity of liposomal quercetin was equal to or better than that of free quercetin at equimolar concentrations. Our data indicated that liposomal quercetin can significantly improve the solubility and bioavailability of quercetin and can be a potential application in the treatment of tumor.
Preparation and characterization of solid lipid nanoparticles-a review.
Parhi, Rabinarayan; Suresh, Padilama
2012-03-01
In the present scenario, most of the developed and new discovered drugs are posing real challenge to the formulation scientists due to their poor aqueous solubility which in turn is responsible for poor bioavailability. One of the approach to overcome above problem is the packaging of the drug in to particulate carrier system. Among various carriers, lipid emerged as very attractive candidate because of its unique property of enhancing the bioavailability of poorly water soluble drugs. Solid lipid, one of the physical forms of lipid, is used to formulate nanoparticles, popularly known as Solid lipid nanoparticles (SLNs), as an alternative carrier system to emulsions, liposomes and polymeric micro- and nano-particles. SLNs combine advantages of the traditional systems but avoid some of their major disadvantages. This paper reviews numerous production techniques for SLNs along with their advantages and disadvantages. Special attention is paid to the characterization of the SLNs by using various analytical tools. It also emphasizes on physical state of lipid (supercooled melts, different lipid modifications).
Alves, Thais F R; das Neves Lopes, Franciely C C; Rebelo, Marcia A; Souza, Juliana F; da Silva Pontes, Katiusca; Santos, Carolina; Severino, Patricia; Junior, Jose M O; Komatsu, Daniel; Chaud, Marco V
2018-01-01
The design and development of an effective medicine are, however, often faced with a number of challenges. One of them is the close relationship of drug's bioavailability with solubility, dissolution rate and permeability. The use of curcumin's (CUR) therapeutic potential is limited by its poor water solubility and low chemical stability. The purpose was to evaluate the effect of polymer and solid dispersion (SD) preparation techniques to enhance the aqueous solubility, dissolution rate and stability of the CUR. The recent patents on curcumin SD were reported as (i) curcumin with polyvinylpyrrolidone (CN20071 32500 20071214, WO2006022012 and CN20151414227 20150715), (ii) curcumin-zinc/polyvinylpyrrolidone (CN20151414227 20150715), (iii) curcumin-poloxamer 188 (CN2008171177 20080605), (iv) curcumin SD prepared by melting method (CN20161626746-20160801). SD obtained by co-preciptation or microwave fusion and the physical mixture of CUR with Poloxamer-407 (P-407), Hydroxypropylmetylcellulose-K4M (HPMC K4M) and Polyvinylpyrrolidone-K30 (PVP-K30) were prepared at the ratios of 1:2; 1:1 and 2:1. The samples were evaluated by solubility, stability, dissolution rate and characterized by SEM, PXRD, DSC and FTIR. The solubility, stability (pH 7.0) and dissolution rate were significantly greater for SD (CUR:P-407 1:2). The PXRD,SEM and DSC indicated a change in the crystalline state of CUR. The enhancement of solubility was dependent on a combination of factors including the weight ratio, preparation techniques and carrier properties. The drug release data fitted well with the Weibull equation, indicating that the drug release was controlled by diffusion, polymer relaxation and erosion occurring simultaneously. Thus, these SDs, specifically CUR:P-407 1:2 w/w, can overcome the barriers of poor bioavailability to reap many beneficial properties. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Meng, Fan; Gala, Urvi; Chauhan, Harsh
2015-01-01
Solid dispersion has been a topic of interest in recent years for its potential in improving oral bioavailability, especially for poorly water soluble drugs where dissolution could be the rate-limiting step of oral absorption. Understanding the physical state of the drug and polymers in solid dispersions is essential as it influences both the stability and solubility of these systems. This review emphasizes on the classification of solid dispersions based on the physical states of drug and polymer. Based on this classification, stability aspects such as crystallization tendency, glass transition temperature (Tg), drug polymer miscibility, molecular mobility, etc. and solubility aspects have been discussed. In addition, preparation and characterization methods for binary solid dispersions based on the classification have also been discussed.
A Water-Soluble, Two-Photon Probe for Imaging Endogenous Hypochlorous Acid in Live Tissue.
Xing, Panfei; Feng, Yanxian; Niu, Yiming; Li, Qiu; Zhang, Zhe; Dong, Lei; Wang, Chunming
2018-04-17
Detection of hypochlorous acid (HClO) in the living system may help to uncover its essential biological functions. However, current imaging agents suffer from poor water solubility that limit their live-tissue applications. Here, a water-soluble probe (NNH) is devised through innovative hydrazone modification of 1,8-naphthalimide at 3' position. NNH was successfully applied to tracking endogenous HClO in both cultured macrophages and a liver injury model in mice. NNH demonstrated remarkably increased water solubility and multiple desirable features including two-photon absorbance, anti-bleaching capability, rapid cellular uptake, and low cytotoxicity. NNH is the first hydrazone-based probe for real-time imaging of HClO in live tissue. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Son, Ahyun; Choi, Seong Il; Han, Gyoonhee; Seong, Baik L
2015-01-01
It is one of the fundamental questions in biology how proteins efficiently fold into their native conformations despite off-pathway events such as misfolding and aggregation in living cells. Although molecular chaperones have been known to assist the de novo folding of certain types of proteins, the role of a binding partner (or a ligand) in the folding and in-cell solubility of its interacting protein still remains poorly defined. RNase P is responsible for the maturation of tRNAs as adaptor molecules of amino acids in ribosomal protein synthesis. The RNase P from Escherichia coli, composed of M1 RNA and C5 protein, is a prototypical ribozyme in which the RNA subunit contains the catalytic activity. Using E. coli RNase P, we demonstrate that M1 RNA plays a pivotal role in the in-cell solubility of C5 protein both in vitro and in vivo. Mutations in either the C5 protein or M1 RNA that affect their interactions significantly abolished the folding of C5 protein. Moreover, we find that M1 RNA provides quality insurance of interacting C5 protein, either by promoting the degradation of C5 mutants in the presence of functional proteolytic machinery, or by abolishing their solubility if the machinery is non-functional. Our results describe a crucial role of M1 RNA in the folding, in-cell solubility, and, consequently, the proteostasis of the client C5 protein, giving new insight into the biological role of RNAs as chaperones and mediators that ensure the quality of interacting proteins. PMID:26517763
Castaldi, Paola; Garau, Giovanni; Melis, Pietro
2008-01-01
In this work the dynamics of biochemical (enzymatic activities) and chemical (water-soluble fraction) parameters during 100 days of municipal solid wastes composting were studied to evaluate their suitability as tools for compost characterization. The hydrolase (protease, urease, cellulase, beta-glucosidase) and dehydrogenase activities were characterized by significant changes during the first 2 weeks of composting, because of the increase of easily decomposable organic compounds. After the 4th week a "maturation phase" was identified in which the enzymatic activities tended to gently decrease, suggesting the stabilisation of organic matter. Also the water-soluble fractions (water-soluble carbon, nitrogen, carbohydrates and phenols), which are involved in many degradation processes, showed major fluctuations during the first month of composting. The results obtained showed that the hydrolytic activities and the water-soluble fractions did not vary statistically during the last month of composting. Significant correlations between the enzymatic activities, as well as between enzyme activities and water-soluble fractions, were also highlighted. These results highlight the suitability of both enzymatic activities and water soluble fractions as suitable indicators of the state and evolution of the organic matter during composting. However, since in the literature the amount of each activity or fraction at the end of composting depends on the raw material used for composting, single point determinations appear inadequate for compost characterization. This emphasizes the importance of the characterization of the dynamics of enzymatic activities and water-soluble fractions during the process.
Zhang, Zhi-hong; Dong, Hong-ye; Peng, Bo; Liu, Hong-fei; Li, Chun-lei; Liang, Min; Pan, Wei-san
2011-05-30
The purpose of this article was to build an expert system for the development and formulation of push-pull osmotic pump tablets (PPOP). Hundreds of PPOP formulations were studied according to different poorly water-soluble drugs and pharmaceutical acceptable excipients. The knowledge base including database and rule base was built based on the reported results of hundreds of PPOP formulations containing different poorly water-soluble drugs and pharmaceutical excipients and the experiences available from other researchers. The prediction model of release behavior was built using back propagation (BP) neural network, which is good at nonlinear mapping and learning function. Formulation design model was established based on the prediction model of release behavior, which was the nucleus of the inference engine. Finally, the expert system program was constructed by VB.NET associating with SQL Server. Expert system is one of the most popular aspects in artificial intelligence. To date there is no expert system available for the formulation of controlled release dosage forms yet. Moreover, osmotic pump technology (OPT) is gradually getting consummate all over the world. It is meaningful to apply expert system on OPT. Famotidine, a water insoluble drug was chosen as the model drug to validate the applicability of the developed expert system. Copyright © 2011 Elsevier B.V. All rights reserved.
Gupta, Shweta; Kesarla, Rajesh
2013-01-01
Poorly water-soluble drug candidates are becoming more prevalent. It has been estimated that approximately 60–70% of the drug molecules are insufficiently soluble in aqueous media and/or have very low permeability to allow for their adequate and reproducible absorption from the gastrointestinal tract (GIT) following oral administration. Formulation scientists have to adopt various strategies to enhance their absorption. Lipidic formulations are found to be a promising approach to combat the challenges. In this review article, potential advantages and drawbacks of various conventional techniques and the newer approaches specifically the self-emulsifying systems are discussed. Various components of the self-emulsifying systems and their selection criteria are critically reviewed. The attempts of various scientists to transform the liquid self-emulsifying drug delivery systems (SEDDS) to solid-SEDDS by adsorption, spray drying, lyophilization, melt granulation, extrusion, and so forth to formulate various dosage forms like self emulsifying capsules, tablets, controlled release pellets, beads, microspheres, nanoparticles, suppositories, implants, and so forth have also been included. Formulation of SEDDS is a potential strategy to deliver new drug molecules with enhanced bioavailability mostly exhibiting poor aqueous solubility. The self-emulsifying system offers various advantages over other drug delivery systems having potential to solve various problems associated with drugs of all the classes of biopharmaceutical classification system (BCS). PMID:24459591
Zhang, Yanzhuo; Zhao, Qinfu; Zhu, Wufu; Zhang, Lihua; Han, Jin; Lin, Qisi; Ai, Fengwei
2015-07-01
A novel mesoporous carbon/lipid bilayer nanocomposite (MCLN) with a core-shell structure was synthesized and characterized as an oral drug delivery system for poorly water-soluble drugs. The objective of this study was to investigate the potential of MCLN-based formulation to modulate the in vitro release and in vivo absorption of a model drug, nimodipine (NIM). NIM-loaded MCLN was prepared by a procedure involving a combination of thin-film hydration and lyophilization. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), specific surface area analysis, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were employed to characterize the NIM-loaded MCLN formulation. The effect of MCLN on cell viability was assessed using the MTT assay. In addition, the oral bioavailability of NIM-loaded MCLN in beagle dogs was compared with that of the immediate-release formulation, Nimotop®. Our results demonstrate that the NIM-loaded MCLN formulation exhibited a typical sustained release pattern. The NIM-loaded MCLN formulation achieved a greater degree of absorption and longer lasting plasma drug levels compared with the commercial formulation. The relative bioavailability of NIM for NIM-loaded MCLN was 214%. MCLN exhibited negligible toxicity. The data reported herein suggest that the MCLN matrix is a promising carrier for controlling the drug release rate and improving the oral absorption of poorly water-soluble drugs.
Karashima, Masatoshi; Sano, Noriyasu; Yamamoto, Syunsuke; Arai, Yuta; Yamamoto, Katsuhiko; Amano, Nobuyuki; Ikeda, Yukihiro
2017-06-01
Micronized cocrystal powders and amorphous spray-dried formulations were prepared and evaluated in vivo and in vitro as pulmonary absorption enhancement formulations of poorly soluble itraconazole (ITZ). ITZ cocrystals with succinic acid (SA) or l-tartaric acid (TA) with a particle size diameter of <2μm were successfully micronized using the jet-milling system. The cocrystal crystalline morphologies observed using scanning electron microscopy (SEM) suggested particle shapes that differed from those of the crystalline or spray-dried amorphous ITZ. The micronized ITZ cocrystal powders showed better intrinsic dissolution rate (IDR) and pulmonary absorption profile in rats than that of the amorphous spray-dried formulation and crystalline ITZ with comparable particle sizes. Specifically, in rat pharmacokinetic studies following pulmonary administration, micronized ITZ-SA and ITZ-TA cocrystals showed area under the curve from 0 to 8h (AUC 0-8h ) values approximately 24- and 19-fold higher than those of the crystalline ITZ and 2.0- and 1.6-fold higher than the spray-dried ITZ amorphous values, respectively. The amorphous formulation appeared physically instable during the studies due to rapid crystallization of ITZ, which was its disadvantage compared to the crystalline formulations. Therefore, this study demonstrated that micronized cocrystals are promising formulations for enhancing the pulmonary absorption of poorly soluble compounds. Copyright © 2017 Elsevier B.V. All rights reserved.
Lu, Tianshu; Sun, Yinghua; Ding, Dawei; Zhang, Qi; Fan, Rui; He, Zhonggui; Wang, Jing
2017-02-01
The purpose of this study was to develop a combination method of wet milling and spray-drying technologies to prepare the solid dispersion and improve the dissolution rate of poorly water-soluble drug candidates. Azilsartan (AZL) was selected as the model drug for its poor water solubility. In the study, AZL-loaded solid dispersion was prepared with polyethylene glycol 6000 (PEG6000) and hydroxypropyl cellulose with super low viscosity (HPC-SL) as stabilizers by using combination of wet grinding and spray-drying methods. The high AZL loading solid dispersion was then characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR). Besides, dissolution test was carried out by the paddle method and stability investigation was also conducted. As a result, the dissolution rate of the solid dispersion tablets was found to be greater than conventional tablets, but in close agreement with market tablets. Furthermore, the formulation was shown to be stable at 40 ± 2°C and 75 ± 5% for at least 6 months, owing to its decreased particle size, morphology, and its crystal form. It was concluded that the combination of wet milling and spray-drying approaches to prepare solid dispersion would be a prospective method to improve the dissolution rate of poorly water-soluble drugs.
Lupaşcu, D; Profire, Lenuţa; Dănilă, Gh
2006-01-01
Fibrates are drugs with efficacy in reducing blood cholesterol levels and especially, triglyceride plasma levels. Unfortunately, fibrates have a poor water-solubility and showed some adverse reactions at long treatment. The objective of this study was to obtain some new clofibric acid derivatives with rutin; some of these compounds contain a guanidine moiety, known as effective at cardiovascular level. All the compounds are soluble in water.
Cyclodextrin controlled release of poorly water-soluble drugs from hydrogels.
Woldum, Henriette Sie; Larsen, Kim Lambertsen; Madsen, Flemming
2008-01-01
The effect of 2-hydroxypropyl-beta-cyclodextrin and gamma-cyclodextrin on the release of ibuprofen, ketoprofen and prednisolone was studied. Stability constants calculated for inclusion complexes show size dependence for complexes with both cyclodextrins. Hydrogels were prepared by ultraviolet irradiation and release of each model drug was studied. For drugs formulated using cyclodextrins an increase in the achievable concentration and in the release from hydrogels was obtained due to increased solubility, although the solubility of all gamma-cyclodextrin complexes was limited. The load also was increased by adjusting pH for the acidic drugs and this exceeds the increase obtained with gamma-cyclodextrin addition.
Preparation and evaluation of self-microemulsifying drug delivery system containing vinpocetine.
Cui, Shu-Xia; Nie, Shu-Fang; Li, Li; Wang, Chang-Guang; Pan, Wei-San; Sun, Jian-Ping
2009-05-01
The main purpose of current investigation is to prepare a self-microemulsifying drug delivery system (SMEDDS) to enhance the oral bioavailability of vinpocetine, a poorly water-soluble drug. Suitable vehicles were screened by determining the solubility of vinpocetine in them. Certain surfactants were selected according to their emulsifying ability with different oils. Ternary phase diagrams were used to identify the efficient self-microemulsifying region and to screen the effect of surfactant/cosurfactant ratio (K(m)). The optimized formulation for in vitro dissolution and bioavailability assessment was oil (ethyl oleate, 15%), surfactant (Solutol HS 15, 50%), and cosurfactant (Transcutol P, 35%). The release rate of vinpocetine from SMEDDS was significantly higher than that of the commercial tablet. Pharmacokinetics and bioavailability of SMEDDS were evaluated. It was found that the oral bioavailability of vinpocetine of SMEDDS was 1.72-fold higher as compared with that of the commercial tablet. These results obtained demonstrated that vinpocetine absorption was enhanced significantly by employing SMEDDS. Therefore, SMEDDS might provide an efficient way of improving oral bioavailability of poorly water-soluble drugs.
Jiang, Jie; Liu, Ying; Wu, Chao; Qiu, Yang; Xu, Xiaoyan; Lv, Huiling; Bai, Andi; Liu, Xuan
2017-08-01
In this study, biodegradable chitosan hollow nanospheres (CHN) were fabricated using polystyrene nanospheres (PS) as templates. CHN were applied to increase the solubility of poorly water-soluble drugs. The lung cancer drug paclitaxel (PTX), which is used as a model drug, was loaded into CHN by the adsorption equilibrium method. The drug-loaded sample (PTX-CHN) offered sustained PTX release and good bioavailability. The state characterization of PTX by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) showed that the PTX absorbed into CHN existed in an amorphous state. An in vitro toxicity experiment indicated that CHN were nontoxic as carriers of poorly water-soluble drugs. The PTX-CHN produced a marked inhibition of lung cancer A549 cells proliferation and encouraged apoptosis. A cell uptake experiment indicated that PTX-CHN was successfully taken up by lung cancer A549 cells. Furthermore, a degradation experiment revealed that CHN were readily biodegradable. These findings state clearly that CHN can be regarded as promising biomaterials for lung cancer treatment.
DNA polymerases in the rat pituitary gland. Effect of oestrogens and sulpiride.
Jahn, G A; Kalbermann, L E; Machiavelli, G; Szijan, I; Burdman, J A
1980-06-01
Changes in the activity of DNA polymerase and [3H]thymidine incorporation into the DNA of the anterior pituitary gland were studied in oestrogenized male and pregnant rats. The activities of DNA polymerases alpha and beta, extracted in Tris--HCl or in sodium phosphate buffer were characterized according to their optimum pH and sensitivity to N-ethyl-maleimide. In the Tris-soluble fraction DNA polymerase activity is almost exclusively alpha, while in the phosphate soluble fraction it is a mixture of alpha and beta. The administration of oestrogens to male rats increases [3H]thymidine incorporation and enhances the activity of DNA polymerases in the Tris-soluble fraction, while the activity of the phosphate-soluble enzyme does not change. Sulpiride administration results in a further increment of [3H]thymidine incorporation and of DNA polymerase activity in the Tris-soluble fraction. In pregnant rats sulpiride also produces an increment of DNA polymerase activity only in the Tris-soluble fraction. Thus, the activity of the Tris-soluble fraction from APG behaves as DNA polymerase alpha. This activity changes in parallel with [3H]thymidine incorporation into DNA which is an indication of cell proliferation in the gland. This is discussed with respect to a negative feedback mechanism between intracellular prolactin concentration and DNA synthesis in the APG.
Granata, Giuseppe; Paterniti, Irene; Geraci, Corrada; Cunsolo, Francesca; Esposito, Emanuela; Cordaro, Marika; Blanco, Anna Rita; Cuzzocrea, Salvatore; Consoli, Grazia M L
2017-05-01
Curcumin is an Indian spice with a wide spectrum of biological and pharmacological activities but poor aqueous solubility, rapid degradation, and low bioavailability that affect medical benefits. To overcome these limits in ophthalmic application, curcumin was entrapped in a polycationic calix[4]arene-based nanoaggregate by a simple and reproducible method. The calix[4]arene-curcumin supramolecular assembly (Calix-Cur) appeared as a clear colloidal solution consisting in micellar nanoaggregates with size, polydispersity index, surface potential, and drug loading percentage meeting the requirements for an ocular drug delivery system. The encapsulation in the calix[4]arene nanoassembly markedly enhanced the solubility, reduced the degradation, and improved the anti-inflammatory effects of curcumin compared to free curcumin in both in vitro and in vivo experiments. Calix-Cur did not compromise the viability of J774A.1 macrophages and suppressed pro-inflammatory marker expression in J774A.1 macrophages subjected to LPS-induced oxidative stress. Histological and immunohistochemical analyses showed that Calix-Cur reduced signs of inflammation in a rat model of LPS-induced uveitis when topically administrated in the eyes. Overall, the results supported the calix[4]arene nanoassembly as a promising nanocarrier for delivering curcumin to anterior ocular tissues.
Jiang, Jian; Li, Linpo; Xu, Maowen; Zhu, Jianhui; Li, Chang Ming
2016-02-17
Ferruginous materials have long attracted great interest in aqueous batteries since Fe is an earth-abundant and low toxic element. However, their practical application is severely hindered by their poor structural stability during deep cycling. To maximize their cyclability, we herein propose a simple and effective method, by in situ packaging Fe-based materials into carbon nanosacks via a facile CVD approach. To verify our strategy, we purposely choose water-soluble Fe2F5 as a study paradigm. The in situ formed Fe2F5@C nanosacks product exhibits prominent anodic performance with high electrochemical activity and capacity, obviously prolonged cyclic lifetime, and outstanding rate capabilities. Besides, by pairing with the cathode of α-Co(OH)2 nanowire arrays@carbon cloth, a full device of rechargeable aqueous batteries has been developed, capable to deliver both high specific energy and power densities (Max. values reaching up to ∼163 Wh kg(-1) and ∼14.2 kW kg(-1)), which shows great potential in practical usage. Our present work may not only demonstrate the feasibility of using soluble fluorides as anodes for aqueous batteries but also provide a smart way to upgrade cyclic behaviors of Fe-based anodes.
Defined Host–Guest Chemistry on Nanocarbon for Sustained Inhibition of Cancer
Ostadhossein, Fatemeh; Misra, Santosh K.; Mukherjee, Prabuddha; Ostadhossein, Alireza; Daza, Enrique; Tiwari, Saumya; Mittal, Shachi; Gryka, Mark C.; Bhargava, Rohit
2017-01-01
Signal transducer and activator of transcription factor 3 (STAT-3) is known to be overexpressed in cancer stem cells. Poor solubility and variable drug absorption are linked to low bioavailability and decreased efficacy. Many of the drugs regulating STAT-3 expression lack aqueous solubility; hence hindering efficient bioavailability. A theranostics nanoplatform based on luminescent carbon particles decorated with cucurbit[6]uril is introduced for enhancing the solubility of niclosamide, a STAT-3 inhibitor. The host–guest chemistry between cucurbit[6]uril and niclosamide makes the delivery of the hydrophobic drug feasible while carbon nanoparticles enhance cellular internalization. Extensive physicochemical characterizations confirm successful synthesis. Subsequently, the host–guest chemistry of niclosamide and cucurbit[6]uril is studied experimentally and computationally. In vitro assessments in human breast cancer cells indicate approximately twofold enhancement in IC50 of drug. Fourier transform infrared and fluorescence imaging demonstrate efficient cellular internalization. Furthermore, the catalytic biodegradation of the nanoplatforms occur upon exposure to human myeloperoxidase in short time. In vivo studies on athymic mice with MCF-7 xenograft indicate the size of tumor in the treatment group is half of the controls after 40 d. Immunohistochemistry corroborates the downregulation of STAT-3 phosphorylation. Overall, the host–guest chemistry on nanocarbon acts as a novel arsenal for STAT-3 inhibition. PMID:27545321
Accelerating proof of concept for small molecule drugs using solid-state chemistry.
Byrn, Stephen R; Zografi, George; Chen, Xiaoming Sean
2010-09-01
In this perspective we have shown that the process of "proof of concept" (POC) in the early part of drug development can be greatly accelerated by close attention to the underlying solid-state chemistry (SSC) of a new chemical entity. POC seeks data that provide confidence in the therapeutic activity and safety of a new chemical entity, which can rapidly lead to a key "GO/NO-GO" decision point for further development. Due to the high cost of the development of new chemical entities and the current low overall productivity of obtaining successful candidates, the pharmaceutical industry is being required to develop accelerated POC strategies. The success of accelerated approaches to POC depends on a full understanding of the SSC of drugs in relation to solubility and stability. Dissolution-limited absorption due to poor solubility of drug substances is particularly important because it can lead to low exposure in animals and undesired bioavailability in humans. Choosing a desirable solid form with sufficient solubility and acceptable stability is essential in developing formulations for POC with superior quality. In this perspective we present an approach that utilizes SSC as part of a novel 2-year development strategy for reaching the pivotal clinical trial stage of development.
Boyer, Laura; Roussel, Xavier; Courseaux, Adeline; Ndjindji, Ofilia M; Lancelon-Pin, Christine; Putaux, Jean-Luc; Tetlow, Ian J; Emes, Michael J; Pontoire, Bruno; D' Hulst, Christophe; Wattebled, Fabrice
2016-07-01
Starch synthesis requires several enzymatic activities including branching enzymes (BEs) responsible for the formation of α(1 → 6) linkages. Distribution and number of these linkages are further controlled by debranching enzymes that cleave some of them, rendering the polyglucan water-insoluble and semi-crystalline. Although the activity of BEs and debranching enzymes is mandatory to sustain normal starch synthesis, the relative importance of each in the establishment of the plant storage polyglucan (i.e. water insolubility, crystallinity and presence of amylose) is still debated. Here, we have substituted the activity of BEs in Arabidopsis with that of the Escherichia coli glycogen BE (GlgB). The latter is the BE counterpart in the metabolism of glycogen, a highly branched water-soluble and amorphous storage polyglucan. GlgB was expressed in the be2 be3 double mutant of Arabidopsis, which is devoid of BE activity and consequently free of starch. The synthesis of a water-insoluble, partly crystalline, amylose-containing starch-like polyglucan was restored in GlgB-expressing plants, suggesting that BEs' origin only has a limited impact on establishing essential characteristics of starch. Moreover, the balance between branching and debranching is crucial for the synthesis of starch, as an excess of branching activity results in the formation of highly branched, water-soluble, poorly crystalline polyglucan. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Broekhuizen, K.; Kumar, P. Pradeep; Abbatt, J. P. D.
2004-01-01
The ability of partially soluble organic species to act as cloud condensation nuclei (CCN) has been studied. A Köhler model incorporating solute solubility and droplet surface tension describes the behavior of solid adipic and succinic acid particles, whereas solid azelaic acid activates much more efficiently that predicted. In addition, it was shown that trace levels of either sulfate or surface active species have a dramatic effect on the activation of adipic acid, a moderately soluble organic, as predicted by the full Köhler model. For internally mixed particles in the atmosphere, these effects will greatly enhance the role of organic aerosols as CCN.
Li, Xiaoguang; Zhou, Yu; Liu, Yanling; Zhang, Xu; Chen, Tao; Chen, Kerong; Ba, Qian; Li, Jingquan; Liu, Hong; Wang, Hui
2016-12-01
Artemisinin (ARS) and its derivatives, which are clinically used antimalarial agents, have shown antitumor activities. Their therapeutic potencies, however, are limited by their low solubility and poor bioavailability. Here, through a pharmacophore hybridization strategy, we synthesized ARS-drug conjugates, in which the marketed chemotherapeutic agents chlorambucil, melphalan, flutamide, aminoglutethimide, and doxifluridine, were separately bonded to Dihydroartemisinin (DHA) through various linkages. Of these, the artemisinin-melphalan conjugate, ARS4, exhibited most toxicity to human ovarian cancer cells but had low cytotoxicity to normal cells. ARS4 inhibited the growth and proliferation of ovarian cancer cells and resulted in S-phase arrest, apoptosis, and inhibition of migration; these effects were stronger than those of its parent drugs, DHA and melphalan. Furthermore, ARS4 modulated the expression of proteins involved in cell cycle progression, apoptosis, and the epithelial-mesenchymal transition (EMT). Moreover, in mice, ARS4 inhibited growth and intraperitoneal dissemination and metastasis of ovarian cancer cells without observable toxic effects. Our results provide a basis for development of the compound as a chemotherapeutic agent. Artemisinin compounds have recently received attention as anticancer agents because of their clinical safety profiles and broad efficacy. However, their therapeutic potencies are limited by low solubility and poor bioavailability. Here, we report that ARS4, an artemisinin-melphalan conjugate, possesses marked in-vitro and in-vivo antitumor activity against ovarian cancer, the effects of which are stronger than those for its parent drugs, Dihydroartemisinin and melphalan. In mice, ARS4 inhibits localized growth of ovarian cancer cells and intraperitoneal dissemination and metastasis without appreciable host toxicity. Thus, for patients with ovarian cancer, ARS4 is a promising chemotherapeutic agent. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Waldo, Geoffrey S.
2007-09-18
The current invention provides methods of improving folding of polypeptides using a poorly folding domain as a component of a fusion protein comprising the poorly folding domain and a polypeptide of interest to be improved. The invention also provides novel green fluorescent proteins (GFPs) and red fluorescent proteins that have enhanced folding properties.
Wei, Qionghua; Keck, Cornelia M; Müller, Rainer H
2017-02-25
The oral bioavailability of poorly soluble drugs can be improved by amorphization generated by loading into the pores of mesoporous particles (pore size 2-50nm). The main mechanisms are increased kinetic saturation solubility and dissolution velocity due to the amorphous drug state and the nano-size of the drug (=increased dissolution pressure). In this study, the maximum achievable drug loading compared to the theoretical drug loading, and the effect of drug loading degree on the dissolution properties (solubility, dissolution velocity) were investigated. Hesperidin was used as the model active (having also practical relevance for e.g. nutraceutical products), loading was performed onto AEROPERL ® 300 Pharma. Degree of successful drug loading could be easily followed by simple light microscopy (=useful tool for formulation optimization), and was in agreement with scanning electron microscopy. Amorphous versus crystalline state was followed by X-ray diffraction and differential scanning calorimetry. Loadings prepared were 28.6wt.%, 54.5wt.% and 60.0wt.%, the maximum theoretical loading was 72.5wt.%. Obviously the maximum drug loading is not achievable, the 54.5wt.% drug loading was the practical maximum with already some minor crystalline hesperidin on the surface. Interestingly, the maximum kinetic saturation solubility was obtained for the 54.5wt.% drug loading (941.74μg/ml in pH 6.8 PBS), versus 408.80μg/ml for the 60.0wt.% drug loading (=overloaded system). The raw drug powder had a thermodynamic solubility of only 18.40μg/ml. The fastest in vitro release was obtained with the 28.6wt.% loaded system, followed by the 54.5wt.% and 60.0wt.% loadings. The dissolution properties (solubility, dissolution velocity) can obviously be influenced by a "controlled loading". This is a simple, cost-effective technological alternative to modulating this property by chemical modification of silica, requiring a new costly regulatory approval of these chemically modified materials. Copyright © 2016. Published by Elsevier B.V.
Solubility enhancement of a bisnaphthalimide tumoricidal agent, DMP 840, through complexation.
Raghavan, K S; Nemeth, G A; Gray, D B; Hussain, M A
1996-10-01
The purpose of this research was to enhance the aqueous solubility of DMP 840 by complexation with water-soluble and nontoxic agents, and to understand the nature of the interactions involved in complex formation using nuclear magnetic resonance (1H-NMR). The solubility of DMP 840 in water, saline, acetate buffers, and cosolvent mixtures was determined by high-performance liquid chromatography, and the effect of nicotinamide and pyridoxine concentrations on the solubility of DMP 840 was examined by the phase solubility method. 1H-NMR spectra were acquired in deuterated acetate buffer at 400 MHz on a Varian Unity-400 spectrometer. The aqueous solubility of DMP 840 was sensitive to the presence of chloride and acetate anions in solution, and did not improve in the presence of cosolvents. The use of the nontoxic and water-soluble complex-forming agents nicotinamide and pyridoxine, however, resulted in a linear increase in the aqueous solubility of DMP 840 with both ligands. The solubilization appears to be due to formation of 1:1 complexes between DMP 840 and the bioorganic ligands. The complexation constants were 15.57 M-1 for the DMP 840:nicotinamide complex and 13.36 M-1 for the DMP 840:pyridoxine complex. The NMR results indicate that the interaction is a result of vertical or plane-to-plane stacking and the complexation constants were in agreement with that obtained by phase solubility. The results suggest that the aqueous solubility of a poorly water soluble drug substance such as DMP 840 can be significantly enhanced by its complexation with water-soluble and nontoxic agents.
Dhumal, Ravindra S; Biradar, Shailesh V; Aher, Suyog; Paradkar, Anant R
2009-06-01
Cefuroxime axetil (CA), a poorly soluble, broad spectrum cephalosporin ester prodrug, is hydrolysed by intestinal esterase prior to absorption, leading to poor and variable bioavailability. The objective was therefore to formulate a stable amorphous solid dispersion of the drug with enhanced solubility and stability against enzymatic degradation. Spray drying was used to obtain a solid dispersion of CA with Gelucire 50/13 and Aerosil 200 (SDCAGA), and a solid dispersion of CA with polyvinyl pyrrolidone (SDCAP); amorphous CA (ACA) was obtained by spray drying CA alone. The formulations were characterized by differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy studies, and compared for solubility, dissolution and bioavailability in rats. SDCAP and SDCAGA showed improved solubility and dissolution profiles owing to amorphization and formation of solid dispersions with hydrophilic carriers. The improved stability of amorphous CA in solid dispersions compared to ACA alone was attributed to hydrogen bonding interactions involving the amide of CA with the carbonyl of polyvinyl pyrrolidone in SDCAP, whereas in SDCAGA the interactions were at multiple sites involving the amide and carbonyl of CA with the carbonyl and hydroxyl of Gelucire 50/13. However, SDCAGA showed superior bioavailability compared to SDCAP, ACA and CA. Improvement in physical stability of solid dispersions was attributed to hydrogen bonding, while improvement in bioavailability of SDCAGA compared to SDCAP, in spite of comparable solubility and dissolution profile, may be attributed to Gelucire, which utilizes intestinal esterase for lipolysis, protecting the prodrug from enzymatic degradation to its non-absorbable base form.
Enzymatic Processes to Unlock the Lignin Value
Hämäläinen, Veera; Grönroos, Toni; Suonpää, Anu; Heikkilä, Matti Wilhem; Romein, Bastiaan; Ihalainen, Petri; Malandra, Sara; Birikh, Klara R.
2018-01-01
Main hurdles of lignin valorization are its diverse chemical composition, recalcitrance, and poor solubility due to high-molecular weight and branched structure. Controlled fragmentation of lignin could lead to its use in higher value products such as binders, coatings, fillers, etc. Oxidative enzymes (i.e., laccases and peroxidases) have long been proposed as a potentially promising tool in lignin depolymerization. However, their application was limited to ambient pH, where lignin is poorly soluble in water. A Finnish biotechnology company, MetGen Oy, that designs and supplies industrial enzymes, has developed and brought to market several lignin oxidizing enzymes, including an extremely alkaline lignin oxidase MetZyme® LIGNO™, a genetically engineered laccase of bacterial origin. This enzyme can function at pH values as high as 10–11 and at elevated temperatures, addressing lignin at its soluble state. In this article, main characteristics of this enzyme as well as its action on bulk lignin coming from an industrial process are demonstrated. Lignin modification by MetZyme® LIGNO™ was characterized by size exclusion chromatography, UV spectroscopy, and dynamic light scattering for monitoring particle size of solubilized lignin. Under highly alkaline conditions, laccase treatment not only decreased molecular weight of lignin but also increased its solubility in water and altered its dispersion properties. Importantly, organic solvent-free soluble lignin fragmentation allowed for robust industrially relevant membrane separation technologies to be applicable for product fractionation. These enzyme-based solutions open new opportunities for biorefinery lignin valorization thus paving the way for economically viable biorefinery business. PMID:29623274
Li, Ji; Larregieu, Caroline A; Benet, Leslie Z
2016-12-01
Natural products (NPs) are compounds that are derived from natural sources such as plants, animals, and micro-organisms. Therapeutics has benefited from numerous drug classes derived from natural product sources. The Biopharmaceutics Drug Disposition Classification System (BDDCS) was proposed to serve as a basis for predicting the importance of transporters and enzymes in determining drug bioavailability and disposition. It categorizes drugs into one of four biopharmaceutical classes according to their water solubility and extent of metabolism. The present paper reviews 109 drugs from natural product sources: 29% belong to class 1 (high solubility, extensive metabolism), 22% to class 2 (low solubility, extensive metabolism), 40% to class 3 (high solubility, poor metabolism), and 9% to class 4 (low solubility, poor metabolism). Herein we evaluated the characteristics of NPs in terms of BDDCS class for all 109 drugs as wells as for subsets of NPs drugs derived from plant sources as antibiotics. In the 109 NPs drugs, we compiled 32 drugs from plants, 50% (16) of total in class 1, 22% (7) in class 2 and 28% (9) in class 3, none found in class 4; Meantime, the antibiotics were found 5 (16%) in class 2, 22 (71%) in class 3, and 4 (13%) in class 4; no drug was found in class 1. Based on this classification, we anticipate BDDCS to serve as a useful adjunct in evaluating the potential characteristics of new natural products. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Mahmoudi, Zahra N; Upadhye, Sampada B; Ferrizzi, David; Rajabi-Siahboomi, Ali R
2014-07-01
Preparation of amorphous solid dispersions using polymers is a commonly used formulation strategy for enhancing the solubility of poorly water-soluble drugs. However, often a single polymer may not bring about a significant enhancement in solubility or amorphous stability of a poorly water-soluble drug. This study describes application of a unique and novel binary polymeric blend in preparation of solid dispersions. The objective of this study was to investigate amorphous solid dispersions of glipizide, a BCS class II model drug, in a binary polymeric system of polyvinyl acetate phthalate (PVAP) and hypromellose (hydroxypropyl methylcellulose, HPMC). The solid dispersions were prepared using two different solvent methods: rotary evaporation (rotavap) and fluid bed drug layering on sugar spheres. The performance and physical stability of the dispersions were evaluated with non-sink dissolution testing, powder X-ray diffraction (PXRD), and modulated differential scanning calorimetry (mDSC). PXRD analysis demonstrated an amorphous state for glipizide, and mDSC showed no evidence of phase separation. Non-sink dissolution testing in pH 7.5 phosphate buffer indicated more than twofold increase in apparent solubility of the drug with PVAP-HPMC system. The glipizide solid dispersions demonstrated a high glass transition temperature (Tg) and acceptable chemical and physical stability during the stability period irrespective of the manufacturing process. In conclusion, the polymeric blend of PVAP-HPMC offers a unique formulation approach for developing amorphous solid dispersions with the flexibility towards the use of these polymers in different ratios and combined quantities depending on drug properties.
Trade-offs between enzyme fitness and solubility illuminated by deep mutational scanning
Bacik, John-Paul; Wrenbeck, Emily E.; Michalczyk, Ryszard; Whitehead, Timothy A.
2017-01-01
Proteins are marginally stable, and an understanding of the sequence determinants for improved protein solubility is highly desired. For enzymes, it is well known that many mutations that increase protein solubility decrease catalytic activity. These competing effects frustrate efforts to design and engineer stable, active enzymes without laborious high-throughput activity screens. To address the trade-off between enzyme solubility and activity, we performed deep mutational scanning using two different screens/selections that purport to gauge protein solubility for two full-length enzymes. We assayed a TEM-1 beta-lactamase variant and levoglucosan kinase (LGK) using yeast surface display (YSD) screening and a twin-arginine translocation pathway selection. We then compared these scans with published experimental fitness landscapes. Results from the YSD screen could explain 37% of the variance in the fitness landscapes for one enzyme. Five percent to 10% of all single missense mutations improve solubility, matching theoretical predictions of global protein stability. For a given solubility-enhancing mutation, the probability that it would retain wild-type fitness was correlated with evolutionary conservation and distance to active site, and anticorrelated with contact number. Hybrid classification models were developed that could predict solubility-enhancing mutations that maintain wild-type fitness with an accuracy of 90%. The downside of using such classification models is the removal of rare mutations that improve both fitness and solubility. To reveal the biophysical basis of enhanced protein solubility and function, we determined the crystallographic structure of one such LGK mutant. Beyond fundamental insights into trade-offs between stability and activity, these results have potential biotechnological applications. PMID:28196882
Wang, Yan; Tu, Sheng; Steffen, Dana; Xiong, May
2014-01-01
The formulation of histone deacetylase inhibitors (HDACi) is challenging due to poor water solubility and rapid elimination of drugs in vivo. This study investigated the effects of complexing iron (Fe3+) to the HDACi suberoylanilide hydroxamic acid (SAHA) and LAQ824 (LAQ) prior to their encapsulation into PEGylated liposomes, and investigated whether this technique could improve drug solubility, in vitro release and in vivo pharmacokinetic (PK) properties. METHODS. The reaction stoichiometry, binding constants and solubility were measured for Fe complexes of SAHA and LAQ. The complexes were passively encapsulated into PEGylated liposomes and characterized by size distribution, zeta-potential, encapsulation efficiency (EE), and in vitro drug release studies. PC-3 cells were used to verify the in vitro anticancer activity of the formulations. In vivo pharmacokinetic properties of liposomal LAQ-Fe (L-LAQ-Fe) was evaluated in rats. RESULTS. SAHA and LAQ form complexes with Fe at 1:1 stoichiometric ratio, with a binding constant on the order of 104 M-1. Fe complexation improved the aqueous solubility and the liposomal encapsulation efficiency of SAHA and LAQ (29-35% EE, final drug concentration > 1 mM). Liposomal encapsulated complexes (L-HDACi-Fe) exhibited sustained in vitro release properties compared to L-HDACi but cytotoxicity on PC-3 cells was comparable to free drugs. The PK of L-LAQ-Fe revealed 15-fold improvement in the plasma t1/2 (12.11 h)and 211-fold improvement in the AUC∞ (105.7 µg·h/ml) compared to free LAQ (0.79 h, 0.5 µg·h/ml). Similarly, the plasma t1/2 of Fe was determined to be 11.83 h in a separate experiment using radioactive Fe-59. The majority of Fe-59 activity was found in liver and spleen of rats and correlates with liposomal uptake by the mononuclear phagocyte system. CONCLUSIONS. We have demonstrated that encapsulation of Fe complexes of HDACi into PEGylated liposomes can improve overall drug aqueous solubility, in vitro release and in vivo pharmacokinetic properties.
Wang, Yan; Tu, Sheng; Steffen, Dana; Xiong, May P.
2015-01-01
PURPOSE The formulation of histone deacetylase inhibitors (HDACi) is challenging due to poor water solubility and rapid elimination of drugs in vivo. This study investigated the effects of complexing iron (Fe3+) to the HDACi suberoylanilide hydroxamic acid (SAHA) and LAQ824 (LAQ) prior to their encapsulation into PEGylated liposomes, and investigated whether this technique could improve drug solubility, in vitro release and in vivo pharmacokinetic (PK) properties. METHODS The reaction stoichiometry, binding constants and solubility were measured for Fe complexes of SAHA and LAQ. The complexes were passively encapsulated into PEGylated liposomes and characterized by size distribution, zeta-potential, encapsulation efficiency (EE), and in vitro drug release studies. PC-3 cells were used to verify the in vitro anticancer activity of the formulations. In vivo pharmacokinetic properties of liposomal LAQ-Fe (L-LAQ-Fe) was evaluated in rats. RESULTS SAHA and LAQ form complexes with Fe at 1:1 stoichiometric ratio, with a binding constant on the order of 104 M−1. Fe complexation improved the aqueous solubility and the liposomal encapsulation efficiency of SAHA and LAQ (29–35% EE, final drug concentration > 1 mM). Liposomal encapsulated complexes (L-HDACi-Fe) exhibited sustained in vitro release properties compared to L-HDACi but cytotoxicity on PC-3 cells was comparable to free drugs. The PK of L-LAQ-Fe revealed 15-fold improvement in the plasma t1/2 (12.11 h) and 211-fold improvement in the AUC∞ (105.7 μg·h/ml) compared to free LAQ (0.79 h, 0.5 μg·h/ml). Similarly, the plasma t1/2 of Fe was determined to be 11.83 h in a separate experiment using radioactive Fe-59. The majority of Fe-59 activity was found in liver and spleen of rats and correlates with liposomal uptake by the mononuclear phagocyte system. CONCLUSIONS We have demonstrated that encapsulation of Fe complexes of HDACi into PEGylated liposomes can improve overall drug aqueous solubility, in vitro release and in vivo pharmacokinetic properties. PMID:25579435
Patel, Dhaval D; Joguparthi, Vijay; Wang, Zeren; Anderson, Bradley D
2011-07-01
Formulations that produce supersaturated solutions after their oral administration have received increased attention as a means to improve bioavailability of poorly water-soluble drugs. Although it is widely recognized that excipients can prolong supersaturation, the mechanisms by which these beneficial effects are realized are generally unknown. Difficulties in separately measuring the kinetics of nucleation and crystal growth have limited progress in understanding the mechanisms by which excipients contribute to the supersaturation maintenance. This paper describes the crystal growth kinetic modeling of indomethacin, a poorly water-soluble drug, from supersaturated aqueous suspensions using a newly developed, online second-derivative ultraviolet spectroscopic method. The apparent indomethacin equilibrium solubility after crystal growth at a high degree of supersaturation (S=6) was approximately 55% higher than the indomethacin equilibrium solubility determined prior to growth, which was attributed to the deposition of a higher energy indomethacin form on the seed crystals. The indomethacin crystal growth kinetics (S=6) was of first order. By comparing the mass transfer coefficients from indomethacin dissolution and crystal growth, it was shown that the indomethacin crystal growth kinetics at S=6 was bulk diffusion controlled. The change in indomethacin seed crystal size distribution before and after crystal growth was determined and modeled using a mass-balance relationship. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association
Scheers, Johan; Pitawala, Jagath; Thebault, Frederic; Kim, Jae-Kwang; Ahn, Jou-Hyeon; Matic, Aleksandar; Johansson, Patrik; Jacobsson, Per
2011-09-07
The role of B(CN)(4)(-) (Bison) as a component of battery electrolytes is addressed by investigating the ionic conductivity and phase behaviour of ionic liquids (ILs), ion association mechanisms, and the electrochemical stability and cycling properties of LiBison based electrochemical cells. For C(4)mpyrBison and C(2)mimBison ILs, and mixtures thereof, high ionic conductivities (3.4 ≤σ(ion)≤ 18 mS cm(-1)) are measured, which together with the glass transition temperatures (-80 ≤T(g)≤-76 °C) are found to shift systematically for most compositions. Unfortunately, poor solubility of LiBison in these ILs hinders their use as solvents for lithium salts, although good NaBison solubility offers an alternative application in Na(+) conducting electrolytes. The poor IL solubility of LiBison is predicted to be a result of a preferred monodentate ion association, according to first principles modelling, supported by Raman spectroscopy. The solubility is much improved in strongly Li(+) coordinating oligomers, for example polyethylene glycol dimethyl ether (PEGDME), with the practical performance tested in electrochemical cells. The electrolyte is found to be stable in Li/LiFePO(4) coin cells up to 4 V vs. Li and shows promising cycling performance, with a capacity retention of 99% over 22 cycles. This journal is © the Owner Societies 2011
Kassem, Mohamed A A; ElMeshad, Aliaa N; Fares, Ahmed R
2017-05-01
Lacidipine (LCDP) is a highly lipophilic calcium channel blocker of poor aqueous solubility leading to poor oral absorption. This study aims to prepare and optimize LCDP nanosuspensions using antisolvent sonoprecipitation technique to enhance the solubility and dissolution of LCDP. A three-factor, three-level Box-Behnken design was employed to optimize the formulation variables to obtain LCDP nanosuspension of small and uniform particle size. Formulation variables were as follows: stabilizer to drug ratio (A), sodium deoxycholate percentage (B), and sonication time (C). LCDP nanosuspensions were assessed for particle size, zeta potential, and polydispersity index. The formula with the highest desirability (0.969) was chosen as the optimized formula. The values of the formulation variables (A, B, and C) in the optimized nanosuspension were 1.5, 100%, and 8 min, respectively. Optimal LCDP nanosuspension had particle size (PS) of 273.21 nm, zeta potential (ZP) of -32.68 mV and polydispersity index (PDI) of 0.098. LCDP nanosuspension was characterized using x-ray powder diffraction, differential scanning calorimetry, and transmission electron microscopy. LCDP nanosuspension showed saturation solubility 70 times that of raw LCDP in addition to significantly enhanced dissolution rate due to particle size reduction and decreased crystallinity. These results suggest that the optimized LCDP nanosuspension could be promising to improve oral absorption of LCDP.
Trevino, Saul R; Scholtz, J Martin; Pace, C Nick
2007-02-16
Poor protein solubility is a common problem in high-resolution structural studies, formulation of protein pharmaceuticals, and biochemical characterization of proteins. One popular strategy to improve protein solubility is to use site-directed mutagenesis to make hydrophobic to hydrophilic mutations on the protein surface. However, a systematic investigation of the relative contributions of all 20 amino acids to protein solubility has not been done. Here, 20 variants at the completely solvent-exposed position 76 of ribonuclease (RNase) Sa are made to compare the contributions of each amino acid. Stability measurements were also made for these variants, which occur at the i+1 position of a type II beta-turn. Solubility measurements in ammonium sulfate solutions were made at high positive net charge, low net charge, and high negative net charge. Surprisingly, there was a wide range of contributions to protein solubility even among the hydrophilic amino acids. The results suggest that aspartic acid, glutamic acid, and serine contribute significantly more favorably than the other hydrophilic amino acids especially at high net charge. Therefore, to increase protein solubility, asparagine, glutamine, or threonine should be replaced with aspartic acid, glutamic acid or serine.
Zu, Yujiao; Overby, Haley; Ren, Guofeng; Fan, Zhaoyang; Zhao, Ling; Wang, Shu
2018-01-01
Trans -resveratrol (R) has a potential to increase energy expenditure via inducing browning in white adipose tissue. However, its low levels of aqueous solubility, stability, and poor bioavailability limit its application. We have successfully synthesized biocompatible, and biodegradable R encapsulated lipid nanocarriers (R-nano), and R encapsulated liposomes (R-lipo). The mean particle size of R-nano and R-lipo were 140 nm and 110 nm, respectively, and their polydispersity index values were less than 0.2. Nanoen-capsulation significantly increased aqueous solubility and enhanced chemical stability of R, especially at 37 °C. R-lipo had higher physical and chemical stability than R-nano while R-nano had more prolonged release than R-lipo. Both R-nano and R-lipo increased cellular R content in 3T3-L1 cells. Both R-nano and R-lipo dose-dependently induced uncoupling protein 1 (UCP1) mRNA expression and decreased white specific marker insulin growth factor binding protein 3 expression under isoproterenol (ISO)-stimulated conditions. At the low dose (5 μM), nanoencapsulated compared to native R enhanced UCP1 and beige marker CD137 expression under ISO-stimulated conditions. Compared to R-nano, R-lipo had better biological activity, possibly due to its higher physical and chemical stability at the room and body temperature. Taken together, our study demonstrates that nanoencapsulation increased R’s aqueous solubility and stability, which led to enhanced browning of white adipocytes. Even though both R-lipo and R-nano increased R’s browning activities, their differential characteristics need to be considered in obesity treatment. PMID:29433059
NASA Astrophysics Data System (ADS)
Amin, Tawheed; Bhat, Suman Vikas
2012-08-01
The bioavailability and absorption of water soluble phytoconstituents is erratic due to poor solubility of these constituents in gastrointestinal tract. This can be overcome by a novel delivery system known as phytosome technology in which water soluble phytoconstituents are allowed to react with phospholipids. For better and improved bioavailability, natural phytoconstituents must have a good balance between hydrophilicity (helps in dissolution in gastro-intestinal fluids) and hydrophobicity (helps to cross lipid rich cell membranes). This is achieved through phytosome technology. Phospholipids have a dual solubility and acts as an emulsifier. Phytosome technology acts as a bridge between novel and conventional delivery systems. Many products are available in the market based on this phytosome technology which include popular herbal extracts such as Ginkgo biloba, Silybum marianum, grape seed, olive oil flavonoids etc.
Pacheco, Benny; Crombet, Lissete; Loppnau, Peter; Cossar, Doug
2012-01-01
Heterologous protein expression in Escherichia coli is commonly used to obtain recombinant proteins for a variety of downstream applications. However, many proteins are not, or are only poorly, expressed in soluble form. High level expression often leads to the formation of inclusion bodies and an inactive product that needs to be refolded. By screening the solubility pattern for a set of 71 target proteins in different host-strains and varying parameters such as location of purification tag, promoter and induction temperature we propose a protocol with a success rate of 77% of clones returning a soluble protein. This protocol is particularly suitable for high-throughput screening with the goal to obtain soluble protein product for e.g. structure determination. Copyright © 2011 Elsevier Inc. All rights reserved.
Yousaf, Abid Mehmood; Kim, Dong Wuk; Oh, Yu-Kyoung; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon
2015-01-01
Background The intention of this research was to prepare and compare various solubility-enhancing nanoparticulated systems in order to select a nanoparticulated formulation with the most improved oral bioavailability of poorly water-soluble fenofibrate. Methods The most appropriate excipients for different nanoparticulated preparations were selected by determining the drug solubility in 1% (w/v) aqueous solutions of each carrier. The polyvinylpyrrolidone (PVP) nanospheres, hydroxypropyl-β-cyclodextrin (HP-β-CD) nanocorpuscles, and gelatin nanocapsules were formulated as fenofibrate/PVP/sodium lauryl sulfate (SLS), fenofibrate/HP-β-CD, and fenofibrate/gelatin at the optimized weight ratios of 2.5:4.5:1, 1:4, and 1:8, respectively. The three solid-state products were achieved using the solvent-evaporation method through the spray-drying technique. The physicochemical characterization of these nanoparticles was accomplished by powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Their physicochemical properties, aqueous solubility, dissolution rate, and pharmacokinetics in rats were investigated in comparison with the drug powder. Results Among the tested carriers, PVP, HP-β-CD, gelatin, and SLS showed better solubility and were selected as the most appropriate constituents for various nanoparticulated systems. All of the formulations significantly improved the aqueous solubility, dissolution rate, and oral bioavailability of fenofibrate compared to the drug powder. The drug was present in the amorphous form in HP-β-CD nanocorpuscles; however, in other formulations, it existed in the crystalline state with a reduced intensity. The aqueous solubility and dissolution rates of the nanoparticles (after 30 minutes) were not significantly different from one another. Among the nanoparticulated systems tested in this study, the initial dissolution rates (up to 10 minutes) were higher with the PVP nanospheres and HP-β-CD nanocorpuscles; however, neither of them resulted in the highest oral bioavailability. Irrespective of relatively retarded dissolution rate, gelatin nanocapsules showed the highest apparent aqueous solubility and furnished the most improved oral bioavailability of the drug (~5.5-fold), owing to better wetting and diminution in crystallinity. Conclusion Fenofibrate-loaded gelatin nanocapsules prepared using the solvent-evaporation method through the spray-drying technique could be a potential oral pharmaceutical product for administering the poorly water-soluble fenofibrate with an enhanced bioavailability. PMID:25784807
Shah, Ankita V; Desai, Heta H; Thool, Prajwal; Dalrymple, Damon; Serajuddin, Abu T M
2018-06-01
The objective of the study was to develop a self-microemulsifying drug delivery system (SMEDDS), also known as microemulsion preconcentrate, for oral delivery of five poorly water-soluble nutraceuticals or bioactive agents, namely, vitamin A, vitamin K2, coenzyme Q 10 , quercetin and trans-resveratrol. The SMEDDS contained a 1:1 mixture (w/w) of Capmul MCM NF (a medium chain monoglyceride) and Captex 355 EP/NF (a medium chain triglyceride) as the hydrophobic lipid and Tween 80 (polysorbate 80) as the hydrophilic surfactant. The lipid and surfactant were mixed at 50:50 w/w ratio. All three of the SMEDDS components have GRAS or safe food additive status. The solubility of nutraceuticals was determined in Capmul MCM, Captex 355, Tween 80, and the SMEDDS (microemulsion preconcentrate mixture). The solubility values of vitamin A palmitate, vitamin K2, coenzyme Q 10 , quercetin, and trans-resveratrol per g of SMEDDS were, respectively, 500, 12, 8, 56, and 87 mg. Appropriate formulations of nutraceuticals were prepared and filled into hard gelatin capsules. They were then subjected to in vitro dispersion testing using 250 mL of 0.01 N HCl in USP dissolution apparatus II. The dispersion test showed that all SMEDDS containing nutraceuticals dispersed spontaneously to form microemulsions after disintegration of capsule shells with globule size in the range of 25 to 200 nm. From all formulations, except that of vitamin K2, >80-90% nutraceuticals dispersed in 5-10 min and there was no precipitation of compounds during the test period of 120 min. Some variation in dispersion of vitamin K2 was observed due to the nature of the material used (vitamin K2 pre-adsorbed onto calcium phosphate). The present report provides a simple and organic cosolvent-free lipid-based SMEDDS for the oral delivery of poorly water-soluble nutraceuticals. Although a 50:50 w/w mixture of lipid to surfactant was used, the lipid content may be increased to 70:30 without compromising the formation of microemulsion.
A phase I study of etoposide phosphate plus paclitaxel.
Brooks, D J; Alberts, D S
1996-12-01
Etoposide phosphate (Etopophos; Bristol-Myers Squibb Company, Princeton, NJ) is a water-soluble derivative of etoposide, a semisynthetic podophyllotoxin that is important in the treatment of a variety of malignancies, including lung cancer, germ cell tumors, non-Hodgkin's lymphoma, Hodgkin's lymphoma, acute leukemia, etc. Because etoposide is poorly water soluble, it must be dissolved in a polysorbate 80-based solvent mixture, which is moderately allergenic and requires a large volume of saline for administration. Etoposide phosphate is water soluble and is rapidly converted in vivo to etoposide by endogenous phosphatases. Because it is water soluble, etoposide phosphate can be administered in volumes much smaller than those required with etoposide therapy, permitting rapid intravenous administration in the outpatient setting. We recently reported the results of a phase I study using etoposide phosphate on a bolus, daily x 5 schedule. Like others, we demonstrated that etoposide phosphate has pharmacokinetic properties virtually identical to those of etoposide. Our dose-finding study indicated that etoposide phosphate can be used in doses up to 100 mg/m2/d x 5 every 3 weeks in patients who have not had extensive prior chemotherapy, and that a dose of 75 mg/m2 would be appropriate for patients who had undergone multiple prior therapies or who had prior radiotherapy. The dose-limiting toxicity was neutropenia. Paclitaxel, a microtubule-stabilizing agent, is active against a variety of solid and hematopoietic malignancies that overlap with those against which etoposide is active. Because the mechanisms of action of these two agents differ, it is logical to suppose that the combination of the two agents might produce some additive effect when used to treat cancers that respond to both individual agents. We therefore undertook a phase I study using paclitaxel as a 3-hour infusion in combination with a 5-minute infusion of etoposide phosphate daily x 3 every 21 days. We used the 3-hour paclitaxel schedule because it has been shown to be less myelotoxic than longer infusions at the same doses. Our goal in this ongoing study is to determine the maximum tolerated doses of the two drugs in combination, to determine the toxicities of the regimen, and to assess its anticancer activity.
Florenzano, Fulvio; Veronica, Corsetti; Ciasca, Gabriele; Ciotti, Maria Teresa; Pittaluga, Anna; Olivero, Gunedalina; Feligioni, Marco; Iannuzzi, Filomena; Latina, Valentina; Maria Sciacca, Michele Francesco; Sinopoli, Alessandro; Milardi, Danilo; Pappalardo, Giuseppe; Marco, De Spirito; Papi, Massimiliano; Atlante, Anna; Bobba, Antonella; Borreca, Antonella; Calissano, Pietro; Amadoro, Giuseppina
2017-01-01
The largest part of tau secreted from AD nerve terminals and released in cerebral spinal fluid (CSF) is C-terminally truncated, soluble and unaggregated supporting potential extracellular role(s) of NH2 -derived fragments of protein on synaptic dysfunction underlying neurodegenerative tauopathies, including Alzheimer’s disease (AD). Here we show that sub-toxic doses of extracellular-applied human NH2 tau 26-44 (aka NH 2 htau) -which is the minimal active moiety of neurotoxic 20-22kDa peptide accumulating in vivo at AD synapses and secreted into parenchyma- acutely provokes presynaptic deficit in K+ -evoked glutamate release on hippocampal synaptosomes along with alteration in local Ca2+ dynamics. Neuritic dystrophy, microtubules breakdown, deregulation in presynaptic proteins and loss of mitochondria located at nerve endings are detected in hippocampal cultures only after prolonged exposure to NH 2 htau. The specificity of these biological effects is supported by the lack of any significant change, either on neuronal activity or on cellular integrity, shown by administration of its reverse sequence counterpart which behaves as an inactive control, likely due to a poor conformational flexibility which makes it unable to dynamically perturb biomembrane-like environments. Our results demonstrate that one of the AD-relevant, soluble and secreted N-terminally truncated tau forms can early contribute to pathology outside of neurons causing alterations in synaptic activity at presynaptic level, independently of overt neurodegeneration. PMID:29029390
Xi, Jun-zuan; Qian, Da-wei; Duan, Jin-ao; Liu, Pei; Zhu, Yue; Zhu, Zhen-hua; Zhang, Li
2015-08-01
Although the essential oil of Xiangfu Siwu decoction (XFSWD) has strong pharmacological activity, its special physical and chemical properties restrict the clinical application and curative effect. In this paper, Xiangfu Siwu decoction essential oil (XFS-WO) was prepared by forming inclusion complex with β-cyclodextrin (β-CD). The present study is to investigate the effect of β-CD inclusion complex on the transport of major components of XFSWO using Caco-2 cell monolayer model, thus to research the effect of this formation on the absorption of drugs with low solubility and high permeability, which belong to class 2 in biopharmaceutics classification system. A sensitive and rapid UPLC-MS/MS method was developed for simultaneous quantification of senkyunolide A, 3-n-butylphthalide, Z-ligustilide, dehydrocostus lactone and α-cyperone, which are active compounds in XFSWO. The transport parameters were analyzed and compared in free oil and its β-CD inclusion complex. The result revealed that the formation of XFSWO/β-CD inclusion complex has significantly increased the transportation and absorption of major active ingredients than free oil. Accordingly, it can be speculated that cyclodextrin inclusion complex can improve bioavailability of poorly water-soluble drugs. Above all these mentioned researches, it provided foundation and basis for physiological disposition and pharmaceutical study of XFSWD.
Gadadare, Rahul; Mandpe, Leenata; Pokharkar, Varsha
2015-08-01
The present work was undertaken with the objectives of improving the dissolution velocity, related oral bioavailability, and minimizing the fasted/fed state variability of repaglinide, a poorly water-soluble anti-diabetic active by exploring the principles of nanotechnology. Nanocrystal formulations were prepared by both top-down and bottom-up approaches. These approaches were compared in light of their ability to provide the formulation stability in terms of particle size. Soluplus® was used as a stabilizer and Kolliphor™ E-TPGS was used as an oral absorption enhancer. In vitro dissolution profiles were investigated in distilled water, fasted and fed state simulated gastric fluid, and compared with the pure repaglinide. In vivo pharmacokinetics was performed in both the fasted and fed state using Wistar rats. Oral hypoglycemic activity was also assessed in streptozotocin-induced diabetic rats. Nanocrystals TD-A and TD-B showed 19.86 and 25.67-fold increase in saturation solubility, respectively, when compared with pure repaglinide. Almost 10 (TD-A) and 15 (TD-B)-fold enhancement in the oral bioavailability of nanocrystals was observed regardless of the fasted/fed state compared to pure repaglinide. Nanocrystal formulations also demonstrated significant (p < 0.001) hypoglycemic activity with faster onset (less than 30 min) and prolonged duration (up to 8 h) compared to pure repaglinide (after 60 min; up to 4 h, respectively).
Microemulsion-loaded hydrogel formulation of butenafine hydrochloride for improved topical delivery.
Pillai, Anilkumar B; Nair, Jyothilaksmi V; Gupta, Nishant Kumar; Gupta, Swati
2015-09-01
Topical microemulsion systems for the antifungal drug, butenafine hydrochloride (BTF) were designed and developed to overcome the problems associated with the cutaneous delivery due to poor water solubility. The solubility of BTF in oils, surfactants and co-surfactants was evaluated to screen the components of the microemulsion. Isopropyl palmitate was used as the oil phase, aerosol OT as the surfactant and sorbitan monooleate as co-surfactant. The pseudoternary diagrams were constructed to identify the area of microemulsion existence and optimum systems were designed. The systems were assessed for drug-loading efficiency and characterized for pH, robustness to dilution, globule size, drug content and stability. Viscosity analysis, spreadability, drug content assay, ex vivo skin permeation study and antifungal activity assay were performed for the optimized microemulsion-loaded hydrogel. The optimized BTF microemulsion had a small and uniform globule size. The incorporation of microemulsion system into Carbopol 940 gel was found to be better as compared to sodium alginate or hydroxyl propyl methyl cellulose (HPMC K4 M) gel. The developed gel has shown better ex vivo skin permeation and antifungal activity when compared to marketed BTF cream. Thus, the results provide a basis for the successful delivery of BTF from microemulsion-loaded hydrogel formulation, which resulted in improved penetration of drug and antifungal activity in comparison with commercial formulation of BTF.
Randino, Rosario; Moronese, Ilaria; Cini, Elena; Bizzarro, Valentina; Persico, Marco; Grimaldi, Manuela; Scrima, Mario; D'Ursi, Anna Maria; Novellino, Ettore; Sobarzo-Sanchez, Eduardo; Rastrelli, Luca; Fattorusso, Caterina; Petrella, Antonello; Rodriquez, Manuela; Taddei, Maurizio
2017-01-01
Synthesis, computational study and biological evaluation of peptidomimetic analogues of FR235222 (3), a natural immunosuppressant and HDAC inhibitor, have been reported. These new compounds, bearing α-hydroxyketone moiety, as more stable zinc binding group (ZBG), were evaluated in vitro as HDAC inhibitors against the human HDACs isoforms 1-9 and in cellular antiproliferative assays on U937 human leukemia cell line. The 1,4-benzodiazepin-2,5-dione (BDZ), capping group and the natural ZBG, (S,R)-2-amino-9-hydroxy-8-oxodecanoic acid (Ahoda), were evaluated in order to probe HDAC inhibition and/or paralogue selectivity. Some of the new derivatives showed an interesting activity against a number of HDAC isozymes. The observed activity profile was rationalized by a computational assisted SAR study, in order to understand how the BDZ classes interact with the enzyme into the catalytic pocket. Despite its poor solubility, compound 17b showed significant antiproliferative profile and HDAC inhibition activity. In order to assess how the solubility issue could have affected the biological outcome, bioassay conditions were reproduced and quantification of precipitated particulate material was evaluated by turbidimetric and NMR studies together with physicochemical descriptors prediction. Thus, BDZ 17b has been chosen to be promising lead compounds for further optimization, in order to elucidate molecule- enzyme surface recognition.
Strayer, R F; Finger, B W; Alazraki, M P; Cook, K; Garland, J L
2002-09-01
Bioreactor retention time is a key process variable that will influence costs that are relevant to long distance space travel or long duration space habitation. However. little is known about the effects of this parameter on the microbiological treatment options that are being proposed for Advanced Life Support (ALS) systems. Two bioreactor studies were designed to examine this variable. In the first one, six retention times ranging from 1.3 to 21.3 days--were run in duplicate, 81 working-volume continuous stirred tank reactors (CSTR) that were fed ALS wheat residues. Ash-free dry weight loss, carbon mineralization, soluble TOC reduction, changes in fiber content (cellulose, hemicellulose, and lignin), bacterial numbers, and mineral recoveries were monitored. At short retention times--1.33 days--biodegradation was poor (total: 16-20%, cellulose - 12%, hemicellulose - 28%) but soluble TOC was decreased by 75-80% and recovery of major crop inorganic nutrients was adequate, except for phosphorus. A high proportion of the total bacteria (ca. 83%) was actively respiring. At the longest retention time tested, 21.3 days, biodegradation was good (total: 55-60%, cellulose ca. 70%, hemicellulose - ca. 55%) and soluble TOC was decreased by 80%. Recovery of major nutrients, except phosphorus, remained adequate. A very low proportion of total bacteria was actively respiring (ca. 16%). The second bioreactor study used potato residue to determine if even shorter retention times could be used (range 0.25-2.0 days). Although overall biodegradation deteriorated, the degradation of soluble TOC continued to be ca. 75%. We conclude that if the goal of ALS bioprocessing is maximal degradation of crop residues, including cellulose, then retention times of 10 days or longer will be needed. If the goal is to provide inorganic nutrients with the smallest volume/weight bioreactor possible, then a retention time of 1 day (or less) is sufficient.
NASA Technical Reports Server (NTRS)
Strayer, R. F.; Finger, B. W.; Alazraki, M. P.; Cook, K.; Garland, J. L.
2002-01-01
Bioreactor retention time is a key process variable that will influence costs that are relevant to long distance space travel or long duration space habitation. However. little is known about the effects of this parameter on the microbiological treatment options that are being proposed for Advanced Life Support (ALS) systems. Two bioreactor studies were designed to examine this variable. In the first one, six retention times ranging from 1.3 to 21.3 days--were run in duplicate, 81 working-volume continuous stirred tank reactors (CSTR) that were fed ALS wheat residues. Ash-free dry weight loss, carbon mineralization, soluble TOC reduction, changes in fiber content (cellulose, hemicellulose, and lignin), bacterial numbers, and mineral recoveries were monitored. At short retention times--1.33 days--biodegradation was poor (total: 16-20%, cellulose - 12%, hemicellulose - 28%) but soluble TOC was decreased by 75-80% and recovery of major crop inorganic nutrients was adequate, except for phosphorus. A high proportion of the total bacteria (ca. 83%) was actively respiring. At the longest retention time tested, 21.3 days, biodegradation was good (total: 55-60%, cellulose ca. 70%, hemicellulose - ca. 55%) and soluble TOC was decreased by 80%. Recovery of major nutrients, except phosphorus, remained adequate. A very low proportion of total bacteria was actively respiring (ca. 16%). The second bioreactor study used potato residue to determine if even shorter retention times could be used (range 0.25-2.0 days). Although overall biodegradation deteriorated, the degradation of soluble TOC continued to be ca. 75%. We conclude that if the goal of ALS bioprocessing is maximal degradation of crop residues, including cellulose, then retention times of 10 days or longer will be needed. If the goal is to provide inorganic nutrients with the smallest volume/weight bioreactor possible, then a retention time of 1 day (or less) is sufficient.
NASA Astrophysics Data System (ADS)
Kuwata, M.; Shao, W.; Lebouteiller, R.; Martin, S. T.
2012-12-01
The governing highly soluble, slightly soluble, or insoluble activation regime of organic compounds as cloud condensation nuclei (CCN) was examined as a function of oxygen-to-carbon elemental ratio (O : C). New data were collected for adipic, pimelic, suberic, azelaic and pinonic acids. Secondary organic materials (SOMs) produced by α-pinene ozonolysis and isoprene photo-oxidation were also included in the analysis. The saturation concentrations C of the organic compounds in aqueous solutions served as the key parameter for delineating regimes of CCN activation, and the values of C were tightly correlated to the O : C ratios. The highly soluble, slightly soluble, and insoluble regimes of CCN activation were found to correspond to ranges of [O : C] > 0.6, 0.2 < [O : C] < 0.6, and [O : C] < 0.2, respectively. These classifications were evaluated against CCN activation data of isoprene-derived SOM (O : C = 0.69-0.72) and α-pinene-derived SOM (O : C = 0.38-0.48). Isoprene-derived SOM had highly soluble activation behavior, consistent with its high O : C ratio. For α-pinene-derived SOM, although CCN activation can be modeled as a highly soluble mechanism, this behavior was not predicted by the O : C ratio, for which a slightly soluble mechanism was anticipated. Complexity in chemical composition, resulting in continuous water uptake and the absence of a deliquescence transition that can thermodynamically limit CCN activation, might explain the differences of α-pinene-derived SOM compared to the behavior of pure organic compounds. The present results suggest that atmospheric particles dominated by hydrocarbon-like organic components do not activate (i.e. insoluble regime) whereas those dominated by oxygenated organic components activate (i.e. highly soluble regime).
NASA Astrophysics Data System (ADS)
Kuwata, M.; Shao, W.; Lebouteiller, R.; Martin, S. T.
2013-05-01
The governing highly soluble, slightly soluble, or insoluble activation regime of organic compounds as cloud condensation nuclei (CCN) was examined as a function of oxygen-to-carbon elemental ratio (O : C). New data were collected for adipic, pimelic, suberic, azelaic, and pinonic acids. Secondary organic materials (SOMs) produced by α-pinene ozonolysis and isoprene photo-oxidation were also included in the analysis. The saturation concentrations C of the organic compounds in aqueous solutions served as the key parameter for delineating regimes of CCN activation, and the values of C were tightly correlated to the O : C ratios. The highly soluble, slightly soluble, and insoluble regimes of CCN activation were found to correspond to ranges of [O : C] > 0.6, 0.2 < [O : C] < 0.6, and [O : C] < 0.2, respectively. These classifications were evaluated against CCN activation data of isoprene-derived SOM (O : C = 0.69-0.72) and α-pinene-derived SOM (O : C = 0.38-0.48). Isoprene-derived SOM had highly soluble activation behavior, consistent with its high O : C ratio. For α-pinene-derived SOM, although CCN activation can be modeled as a highly soluble mechanism, this behavior was not predicted by the O : C ratio, for which a slightly soluble mechanism was anticipated. Complexity in chemical composition, resulting in continuous water uptake and the absence of a deliquescence transition that can thermodynamically limit CCN activation, might explain the difference in the behavior of α-pinene-derived SOM compared to that of pure organic compounds. The present results suggest that atmospheric particles dominated by hydrocarbon-like organic components do not activate (i.e., insoluble regime) whereas those dominated by oxygenated organic components activate (i.e., highly soluble regime) for typical atmospheric cloud life cycles.
Microemulsion Formulation of Carbendazim and Its In Vitro Antifungal Activities Evaluation
Leng, Pengfei; Zhang, Zhiming; Li, Qian; Zhao, Maojun; Pan, Guangtang
2014-01-01
The fungus Rhizoctonia solani Kuhn is a widespread and destructive plant pathogen with a very broad host range. Although various pathogens, including R. solani, have been traditionally controlled using chemical pesticides, their use faces drawbacks such as environmental pollution, development of pesticide resistance, and other negative effects. Carbendazim is a well-known antifungal agent capable of controlling a broad range of plant diseases, but its use is hampered by its poor aqueous solubility. In this study, we describe an environmentally friendly pharmaceutical microemulsion system using carbendazim as the active ingredient, chloroform and acetic acid as solvents, and the surfactants HSH and 0204 as emulsifiers. This system increased the solubility of carbendazim to 30 g/L. The optimal microemulsion formulation was determined based on a pseudo-ternary phase diagram; its physicochemical characteristics were also tested. The cloud point was greater than 90°C and it was resistant to freezing down to −18°C, both of which are improvements over the temperature range in which pure carbendazim can be used. This microemulsion meets the standard for pesticide microemulsions and demonstrated better activity against R. solani AG1-IA, relative to an aqueous solution of pure carbendazim (0.2 g/L). The mechanism of activity was reflected in the inhibition of against R. solani AG1-IA including mycelium growth, and sclerotia formation and germination were significantly better than that of 0.2 g/L carbendazim water solution according to the results of t-test done by SPSS 19. PMID:25310219
Removal of anaerobic soluble microbial products in a biological activated carbon reactor.
Dong, Xiaojing; Zhou, Weili; He, Shengbing
2013-09-01
The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable. Focusing on the biodegradation of anaerobic SMP, the biological activated carbon (BAC) was introduced into the anaerobic system. The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors. The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2, i.e., BAC) functioned as a polishing step to remove SMP produced in UASB1. The results showed that 90% of the SMP could be removed before granular activated carbon was saturated. After the saturation, the SMP removal decreased to 60% on the average. Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation. A strain of SMP-degrading bacteria, which was found highly similar to Klebsiella sp., was isolated, enriched and inoculated back to the BAC reactor. When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3 x day), the effluent from the BAC reactor could meet the discharge standard without further treatment. Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective, cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L.
Microemulsion formulation of Carbendazim and its in vitro antifungal activities evaluation.
Leng, Pengfei; Zhang, Zhiming; Li, Qian; Zhao, Maojun; Pan, Guangtang
2014-01-01
The fungus Rhizoctonia solani Kuhn is a widespread and destructive plant pathogen with a very broad host range. Although various pathogens, including R. solani, have been traditionally controlled using chemical pesticides, their use faces drawbacks such as environmental pollution, development of pesticide resistance, and other negative effects. Carbendazim is a well-known antifungal agent capable of controlling a broad range of plant diseases, but its use is hampered by its poor aqueous solubility. In this study, we describe an environmentally friendly pharmaceutical microemulsion system using carbendazim as the active ingredient, chloroform and acetic acid as solvents, and the surfactants HSH and 0204 as emulsifiers. This system increased the solubility of carbendazim to 30 g/L. The optimal microemulsion formulation was determined based on a pseudo-ternary phase diagram; its physicochemical characteristics were also tested. The cloud point was greater than 90°C and it was resistant to freezing down to -18°C, both of which are improvements over the temperature range in which pure carbendazim can be used. This microemulsion meets the standard for pesticide microemulsions and demonstrated better activity against R. solani AG1-IA, relative to an aqueous solution of pure carbendazim (0.2 g/L). The mechanism of activity was reflected in the inhibition of against R. solani AG1-IA including mycelium growth, and sclerotia formation and germination were significantly better than that of 0.2 g/L carbendazim water solution according to the results of t-test done by SPSS 19.
Venkatesh, S; Li, J; Xu, Y; Vishnuvajjala, R; Anderson, B D
1996-10-01
The selection of cosalane (NSC 658586) by the National Cancer Institute for further development as a potential drug candidate for the treatment of AIDS led to the exploration of the solubility behavior of this extremely hydrophobic drug, which has an intrinsic solubility (S0 approaching 1 ng/ml. This study describes attempts to reliably measure the intrinsic solubility of cosalane and examine its pH-solubility behavior. S0 was estimated by 5 different strategies: (a) direct determination in an aqueous suspension: (b) facilitated dissolution; (c) estimation from the octanol/water partition coefficient and octanol solubility (d) application of an empirical equation based on melting point and partition coefficient; and (e) estimation from the hydrocarbon solubility and functional group contributions for transfer from hydrocarbon to water. S0 estimates using these five methods varied over a 5 x 107-fold range Method (a) yielded the highest values, two-orders of magnitude greater than those obtained by method (b) (facilitated dissolution. 1.4 +/- 0.5 ng/ml). Method (c) gave a value 20-fold higher while that from method (d) was in fair agreement with that from facilitated dissolution. Method (e) yielded a value several orders-of-magnitude lower than other methods. A molecular dynamics simulation suggests that folded conformations not accounted for by group contributions may reduce cosalane's effective hydrophobicity. Ionic equilibria calculations for this weak diprotic acid suggested a 100-fold increase in solubility per pH unit increase. The pH-solubility profile of cosalane at 25 degrees C agreed closely with theory. These studies highlight the difficulty in determining solubility of very poorly soluble compounds and the possible advantage of the facilitated dissolution method. The diprotic nature of cosalane enabled a solubility enhancement of > 107-fold by simple pH adjustment.
Lipid nanoparticles for the delivery of poorly water-soluble drugs.
Bunjes, Heike
2010-11-01
This review discusses important aspects of lipid nanoparticles such as colloidal lipid emulsions and, in particular, solid lipid nanoparticles as carrier systems for poorly water-soluble drugs, with a main focus on the parenteral and peroral use of these carriers. A short historical background of the development of colloidal lipid emulsions and solid lipid nanoparticles is provided and their similarities and differences are highlighted. With regard to drug incorporation, parameters such as the chemical nature of the particle matrix and the physicochemical nature of the drug, effects of drug partition and the role of the particle interface are discussed. Since, because of the crystalline nature of their lipid core, solid lipid nanoparticles display some additional important features compared to emulsions, their specificities are introduced in more detail. This mainly includes their solid state behaviour (crystallinity, polymorphism and thermal behaviour) and the consequences of their usually non-spherical particle shape. Since lipid nanoemulsions and -suspensions are also considered as potential means to alter the pharmacokinetics of incorporated drug substances, some underlying basic considerations, in particular concerning the drug-release behaviour of such lipid nanodispersions on dilution, are addressed as well. Colloidal lipid emulsions and solid lipid nanoparticles are interesting options for the delivery of poorly water-soluble drug substances. Their specific physicochemical properties need, however, to be carefully considered to provide a rational basis for their development into effective carrier systems for a given delivery task. © 2010 The Author. Journal compilation © 2010 Royal Pharmaceutical Society of Great Britain.
Li-Hong, Wang; Xin, Che; Hui, Xu; Li-Li, Zhou; Jing, Han; Mei-Juan, Zou; Jie, Liu; Yi, Liu; Jin-Wen, Liu; Wei, Zhang; Gang, Cheng
2013-09-15
The organic solvent solution immersion method was often used to achieve the loading of the drugs into mesoporous silica, but the drugs that have loaded into the pores of the mesoporous silica would inevitable migrate from the inside to the external surface or near the outside surface during the process of drying. Hence, it often leads to the pores of mesoporous materials not be fully utilized, and results in a low drug loading efficiency and a fast releasing rate. The purpose of this study was to develop a novel drug loading strategy to avoid soluble component migration during the process of drying, then, to prepare poorly water-soluble drug mesoporous silica microparticles with higher drug loading efficiency and longer sustained-release time. Ibuprofen was used as model drug. The microparticles were prepared by a novel method based on mesoporous silica and supercritical fluid (SCF) technique. The drug-loaded mesoporous silica microparticles prepared by SCF technique were analyzed by thermogravimetric analysis (TGA), N2 adsorption/desorption, scanning electron microscopy (SEM), powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC). In vitro releasing study was used to evaluate the sustained-release effect of the drug-loaded microparticles. By virtue of the high diffusibility and the high dissolving capacity of the supercritical carbon dioxide (SCF-CO2), the poorly water-soluble drugs, ibuprofen, entered the pores of the mesoporous silica. The amount and the depth of ibuprofen entered the pores of the mesoporous silica by SCF technique were both larger than those by the solution immersion method. It was found that ibuprofen loaded into the mesoporous silica by SCF technique was amorphous and the largest amount of the ibuprofen loaded into the mesoporous silica by SCF technique could reach 386 mg/g (w/w, ibuprofen/SiO2), it was more than that by the solution immersion method. In vitro releasing study showed that the sustained-release effect of ibuprofen in the samples prepared by SCF technique was 50% in 15 min and 90% in 60 min. It was longer than that prepared by the solution immersion method. Present study showed that sustained-release poorly water-soluble drug mesoporous silica microparticle based on SCF technique has twofold advantages. One is the larger drug loading amount in internal pores of the mesoporous silica, the other is the longer drug releasing time. Copyright © 2013 Elsevier B.V. All rights reserved.
Passively Targeted Curcumin-Loaded PEGylated PLGA Nanocapsules for Colon Cancer Therapy In Vivo.
Klippstein, Rebecca; Wang, Julie Tzu-Wen; El-Gogary, Riham I; Bai, Jie; Mustafa, Falisa; Rubio, Noelia; Bansal, Sukhvinder; Al-Jamal, Wafa T; Al-Jamal, Khuloud T
2015-09-01
Clinical applications of curcumin for the treatment of cancer and other chronic diseases have been mainly hindered by its short biological half-life and poor water solubility. Nanotechnology-based drug delivery systems have the potential to enhance the efficacy of poorly soluble drugs for systemic delivery. This study proposes the use of poly(lactic-co-glycolic acid) (PLGA)-based polymeric oil-cored nanocapsules (NCs) for curcumin loading and delivery to colon cancer in mice after systemic injection. Formulations of different oil compositions are prepared and characterized for their curcumin loading, physico-chemical properties, and shelf-life stability. The results indicate that castor oil-cored PLGA-based NC achieves high drug loading efficiency (≈18% w(drug)/w(polymer)%) compared to previously reported NCs. Curcumin-loaded NCs internalize more efficiently in CT26 cells than the free drug, and exert therapeutic activity in vitro, leading to apoptosis and blocking the cell cycle. In addition, the formulated NC exhibits an extended blood circulation profile compared to the non-PEGylated NC, and accumulates in the subcutaneous CT26-tumors in mice, after systemic administration. The results are confirmed by optical and single photon emission computed tomography/computed tomography (SPECT/CT) imaging. In vivo growth delay studies are performed, and significantly smaller tumor volumes are achieved compared to empty NC injected animals. This study shows the great potential of the formulated NC for treating colon cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Soluplus/TPGS mixed micelles for dioscin delivery in cancer therapy.
Zhao, Jing; Xu, Youwei; Wang, Changyuan; Ding, Yanfang; Chen, Manyu; Wang, Yifei; Peng, Jinyong; Li, Lei; Lv, Li
2017-07-01
Dioscin has shown cytotoxicity against cancer cells, but its poor solubility and stability have limited its clinical application. In this study, we designed mixed micelles composed of TPGS and Soluplus ® copolymers entrapping the poorly soluble anticancer drug dioscin. In order to improve the aqueous solubility and bioactivity of dioscin, TPGS/Soluplus ® mixed micelles with an optimal ratio were prepared using a thin-film hydration method, and their physicochemical properties were characterized. Cellular cytotoxicity and uptake of the dioscin-loaded TPGS/Soluplus ® mixed micelles were studied in MCF-7 breast cancer cells and A2780s ovarian cancer cells. The pharmacokinetics of free dioscin and dioscin-loaded TPGS/Soluplus ® mixed micelles was studied in vivo in male Sprague-Dawley rats via a single intravenous injection in the tail vein. The average size of the optimized mixed micelle was 67.15 nm, with 92.59% drug encapsulation efficiency and 4.63% drug loading efficiency. The in vitro release profile showed that the mixed micelles presented sustained release behavior compared to the anhydrous ethanol solution of dioscin. In vitro cytotoxicity assays were conducted on human cancer cell lines including A2780s ovarian cancer cells and MCF-7 breast cancer cells. The mixed micelles exhibited better antitumor activity compared to free dioscin against all cell lines, which may benefit from the significant increase in the cellular uptake of dioscin from mixed micelles compared to free dioscin. The pharmacokinetic study showed that the mixed micelle formulation achieved a 1.3 times longer mean residual time (MRT) in circulation and a 2.16 times larger area under the plasma concentration-time curve (AUC) than the free dioscin solution. Our results suggest that the dioscin-loaded mixed micelles developed in this study might be a potential nano drug-delivery system for cancer chemotherapy.
Epicotyl dormancy of tree peony as an oil plant broken by cyanamide
NASA Astrophysics Data System (ADS)
Xu, Jiajie; Gong, Mingfu; Liu, Fang; Wu, Sanlin; Liu, Xiaojie; Zhang, Ya; Xu, Gaoyu
2018-04-01
This test materials is `feng Dan', an oil peony, or tree peony as an oil plant, growing in Yangtze river basin. Impact of cyanamide on oil peony epicotyl dormancy was represented with germination rate of peony feeds, a-amylase activity, soluble sugar content, soluble protein content and peroxidase (POD) activity. Results showed that hypocotyls' dormancy of peony seeds was significant breaken by 0.3% cyanamide concentration. Alpha-amylase activity, soluble sugar content, soluble protein content and POD activity in 0.3% cyanamide concentration treatment was significantly higher than other treatments. There was no significant difference between the rest treatments.
Experimental determination of carbon solubility in Fe-Ni-S melts
NASA Astrophysics Data System (ADS)
Zhang, Zhou; Hastings, Patrick; Von der Handt, Anette; Hirschmann, Marc M.
2018-03-01
To investigate the effect of metal/sulfide and Ni/Fe ratio on the C storage capacity of sulfide melts, we determine carbon solubility in Fe-Ni-S melts with various (Fe + Ni)/S and Ni/Fe via graphite-saturated high-pressure experiments from 2-7 GPa and 1200-1600 °C. Consistent with previous results, C solubility is high (4-6 wt.%) in metal-rich sulfide melts and diminishes with increasing S content. Melts with near M/S = 1 (XS > 0.4) have <0.5 wt.% C in equilibrium with graphite. C solubility is diminished modestly with increased Ni/Fe ratio, but the effect is most pronounced for S-poor melts, and becomes negligible in near-monosulfide compositions. Immiscibility between S-rich and C-rich melts is observed in Ni-poor compositions, but above ∼18 wt.% Ni there is complete miscibility. Because mantle sulfide compositions are expected to have high Ni concentrations, sulfide-carbide immiscibility is unlikely in natural mantle melts. An empirical parameterization of C solubility in Ni-Fe-S melts as a function of S and Ni contents allows estimation of the C storage capacity of sulfide in the mantle. Importantly, as the metal/sulfide (M/S) ratio of the melt increases, C storage increases both because C solubility increases and because the mass fraction of melt is enhanced by addition of metal from surrounding silicates. Under comparatively oxidized conditions where melts are near M/S = 1, as prevails at <250 km depth, bulk C storage is <3 ppm. In the deeper, more reduced mantle where M/S increases, up to 200 ppm C in typical mantle with 200 ± 100 ppm S can be stored in Fe-Ni-S melts. Thus, metal-rich sulfide melts are the principal host of carbon in the deep upper mantle and below. Residual carbon is present either as diamond or, if conditions are highly reduced and total C concentrations are low, solid alloy.
Ofori-Kwakye, Kwabena; Mfoafo, Kwadwo Amanor; Kipo, Samuel Lugrie; Kuntworbe, Noble; Boakye-Gyasi, Mariam El
2016-01-01
The study was aimed at developing extended release matrix tablets of poorly water-soluble diclofenac sodium and highly water-soluble metformin hydrochloride by direct compression using cashew gum, xanthan gum and hydroxypropylmethylcellulose (HPMC) as release retardants. The suitability of light grade cashew gum as a direct compression excipient was studied using the SeDeM Diagram Expert System. Thirteen tablet formulations of diclofenac sodium (∼100 mg) and metformin hydrochloride (∼200 mg) were prepared with varying amounts of cashew gum, xanthan gum and HPMC by direct compression. The flow properties of blended powders and the uniformity of weight, crushing strength, friability, swelling index and drug content of compressed tablets were determined. In vitro drug release studies of the matrix tablets were conducted in phosphate buffer (diclofenac: pH 7.4; metformin: pH 6.8) and the kinetics of drug release was determined by fitting the release data to five kinetic models. Cashew gum was found to be suitable for direct compression, having a good compressibility index (ICG) value of 5.173. The diclofenac and metformin matrix tablets produced generally possessed fairly good physical properties. Tablet swelling and drug release in aqueous medium were dependent on the type and amount of release retarding polymer and the solubility of drug used. Extended release of diclofenac (∼24 h) and metformin (∼8-12 h) from the matrix tablets in aqueous medium was achieved using various blends of the polymers. Drug release from diclofenac tablets fitted zero order, first order or Higuchi model while release from metformin tablets followed Higuchi or Hixson-Crowell model. The mechanism of release of the two drugs was mostly through Fickian diffusion and anomalous non-Fickian diffusion. The study has demonstrated the potential of blended hydrophilic polymers in the design and optimization of extended release matrix tablets for soluble and poorly soluble drugs by direct compression.
Childs, Scott L; Kandi, Praveen; Lingireddy, Sreenivas Reddy
2013-08-05
Cocrystals have become an established and adopted approach for creating crystalline solids with improved physical properties, but incorporating cocrystals into enabling pre-clinical formulations suitable for animal dosing has received limited attention. The dominant approach to in vivo evaluation of cocrystals has focused on deliberately excluding additional formulation in favor of "neat" aqueous suspensions of cocrystals or loading neat cocrystal material into capsules. However, this study demonstrates that, in order to take advantage of the improved solubility of a 1:1 danazol:vanillin cocrystal, a suitable formulation was required. The neat aqueous suspension of the danazol:vanillin cocrystal had a modest in vivo improvement of 1.7 times higher area under the curve compared to the poorly soluble crystal form of danazol dosed under identical conditions, but the formulated aqueous suspension containing 1% vitamin E-TPGS (TPGS) and 2% Klucel LF Pharm hydroxypropylcellulose improved the bioavailability of the cocrystal by over 10 times compared to the poorly soluble danazol polymorph. In vitro powder dissolution data obtained under non-sink biorelevant conditions correlate with in vivo data in rats following 20 mg/kg doses of danazol. In the case of the danazol:vanillin cocrystal, using a combination of cocrystal, solubilizer, and precipitation inhibitor in a designed supersaturating drug delivery system resulted in a dramatic improvement in the bioavailability. When suspensions of neat cocrystal material fail to return the anticipated bioavailability increase, a supersaturating formulation may be able to create the conditions required for the increased cocrystal solubility to be translated into improved in vivo absorption at levels competitive with existing formulation approaches used to overcome solubility limited bioavailability.
Biopharmaceutics classification of puerarin and comparison of perfusion approaches in rats.
Li, Hewei; Dong, Ling; Liu, Yang; Wang, Guopeng; Wang, Gang; Qiao, Yanjiang
2014-05-15
The present study was conducted to characterize the biopharmaceutics classification system (BCS) category of puerarin in terms of intrinsic dissolution rate (IDR) and rat intestinal permeability and to investigate the poor intestinal absorption probably related to the drug metabolism in the gut wall of rats. Equilibrium solubility of puerarin was determined in various phosphate buffers and water, and IDR was estimated by measuring the dissolution of a non-disintegrating compact. Intestinal permeability (Peff and Pblood) of puerarin was determined using the technology of in situ single-pass intestinal perfusion (SPIP) and intestinal perfusion with venous sampling (IPVS) in fasted rats. Metabolism of puerarin in intestinal tissue was tested by S9 incubation in vitro. The aqueous solubility of puerarin in phosphate buffers and water was good with a maximum solubility of 7.56 mg/mL at pH 7.4. Obtained IDR values of puerarin were in the range of 0.360-1.088 mg/min/cm(2), with maximum and minimum IDR value of pH 7.4 and pH 4.0, respectively. The Peff was 1.252 × 10(-5)cm/s determined by SPIP and the Pblood was 0.068×10(-5)cm/s by IPVS in jejunum at puerarin 80 μg/mL. The metabolism rate of puerarin determined by the intestinal S9 fraction indicated that the gut wall metabolism of puerarin is one cause of poor absorption. According to the proposed classification of drugs and the results obtained from equilibrium solubility, IDR, Peff and Pblood, it is concluded that puerarin could be categorized IV drug of the BCS based on its low solubility and low intestinal permeability values. Copyright © 2014 Elsevier B.V. All rights reserved.
Solymosi, Tamás; Ötvös, Zsolt; Angi, Réka; Ordasi, Betti; Jordán, Tamás; Semsey, Sándor; Molnár, László; Ránky, Soma; Filipcsei, Genovéva; Heltovics, Gábor; Glavinas, Hristos
2017-10-30
Particle size reduction of drug crystals in the presence of surfactants (often called "top-down" production methods) is a standard approach used in the pharmaceutical industry to improve bioavailability of poorly soluble drugs. Based on the mathematical model used to predict the fraction dose absorbed this formulation approach is successful when dissolution rate is the main rate limiting factor of oral absorption. In case compound solubility is also a major factor this approach might not result in an adequate improvement in bioavailability. Abiraterone acetate is poorly water soluble which is believed to be responsible for its very low bioavailability in the fasted state and its significant positive food effect. In this work, we have successfully used in vitro dissolution, solubility and permeability measurements in biorelevant media to describe the dissolution characteristics of different abiraterone acetate formulations. Mathematical modeling of fraction dose absorbed indicated that reducing the particle size of the drug cannot be expected to result in significant improvement in bioavailability in the fasted state. In the fed state, the same formulation approach can result in a nearly complete absorption of the dose; thereby, further increasing the food effect. Using a "bottom-up" formulation method we improved both the dissolution rate and the apparent solubility of the compound. In beagle dog studies, this resulted in a ≫>10-fold increase in bioavailability in the fasted state when compared to the marketed drug and the elimination of the food effect. Calculated values of fraction dose absorbed were in agreement with the observed relative bioavailability values in beagle dogs. Copyright © 2017 Elsevier B.V. All rights reserved.
Kilor, Vaishali A; Sapkal, Nidhi P; Awari, Jasmine G; Shewale, Bharti D
2010-03-01
In the present study, an attempt was made to prepare immediate-release enteric-coated pellets of aceclofenac, a poorly soluble nonsteroidal anti-inflammatory drug that has a gastrointestinal intolerance as its serious side effect. Formulation of enteric-coated pellets with improved solubility of aceclofenac could address both of these problems. To achieve these goals, pellets were prepared by extrusion-spheronization method using pelletizing agents that can contribute to the faster disintegration and thereby improve the solubility of the drug. Different disintegrants like beta-cyclodextrin, kollidon CL, Ac-Di-Sol, and sodium starch glycolate were tried in order to further improve disintegration time. The pellets were characterized for drug content, particle size distribution, flow properties, infrared spectroscopy, surface morphology, disintegration rate, and dissolution profile. The formulations, which showed best disintegration and dissolution profiles, were coated with Eudragit L100-55, an enteric-coated polymer which does not dissolve at gastric pH but dissolves at intestinal pH, releasing the drug immediately in the dissolution medium. The optimized enteric-coated formulation containing 20% kappa-carrageenan, lactose, and sodium starch glycolate as a disintegrant did inhibit the release of the drug for 2 h in 0.1 N HCl, whereas 87% of the drug was released within 45 min. The improvement was substantial when it was compared with solubility of pure drug under the same conditions. Thus, dissolution profiles suggested that combination of kappa-carrageenan and sodium starch glycolate resulted into fast-disintegrating, immediate-release pellets, overcoming the bioavailability problem of the poorly soluble drug, aceclofenac, and enteric coating of these pellets avoids the exposure of aceclofenac to ulcer-prone areas of the gastrointestinal tract.
Jang, Dong-Jin; Kim, Sung Tae; Lee, Kooyeon; Oh, Euichaul
2014-01-01
The intestinal absorption and antiasthmatic efficacy of poorly water-soluble curcumin (CUR), which has low solubility and permeability, was increased by fabricating solid dispersion granules (SDGs). The SDG containing CUR (SDG-CUR) was prepared by dispersing CUR in excess Cremophor RH40 as a solubilizer and Ryoto sugar ester L-1695 as an absorption enhancer using fluid bed granulation. We evaluated the physicochemical properties such as crystallinity and dissolution, pharmacokinetics, and antiasthmatic efficacy of SDG-CUR. Our results showed that CUR was molecularly dispersed, and the dissolution of SDG-CUR was significantly higher than that of native CUR. In addition, the blood concentration of SDG-CUR in rats was much higher than that of native CUR. Compared to CUR, SDG-CUR showed a 9.1- and 13.1-fold increase in area under the plasma concentration-time curve (AUC) and maximum plasma concentration (Cmax), respectively. Further, SDG-CUR effectively alleviated airway hyperresponsiveness and levels of T-helper 2 cytokines (interleukin-4, interleukin-5, and interleukin-13) in a murine model of asthma. In conclusion, our results suggest that the SDGs could be considered as a potential oral formulation to enhance the absorption and efficacy of CUR.
Pathak, Kamla
2014-01-01
Low solubility causing low dissolution in gastrointestinal tract is the major problem for drugs meant for systemic action after oral administration, like cinnarizine. Pharmaceutical products of cinnarizine are commercialized globally as immediate release preparations presenting low absorption with low and erratic bioavailability. Approaches to enhance bioavailability are widely cited in the literature. An attempt has been made to review the bioavailability complications and clinical therapeutics of poorly water soluble drug: cinnarizine. The interest of writing this paper is to summarize the pharmacokinetic limitations of drug with special focus on strategies to improvise bioavailability along with effectiveness of novel dosage forms to circumvent the obstacle. The paper provides insight to the approaches to overcome low and erratic bioavailability of cinnarizine by cyclodextrin complexes and novel dosage forms: self-nanoemulsifying systems and buoyant microparticulates. Nanoformulations need to systematically explored in future, for their new clinical role in prophylaxis of migraine attacks in children. Clinical reports have affirmed the role of cinnarizine in migraine prophylaxis. Research needs to be dedicated to develop dosage forms for efficacious bioavailability and drug directly to brain. PMID:25478230
Bioavailability enhancement of curcumin by complexation with phosphatidyl choline.
Gupta, Nishant Kumar; Dixit, Vinod Kumar
2011-05-01
Curcumin is a major constituent of rhizomes of Curcuma longa. Pharmacokinetic studies of curcumin reveal its poor absorption through intestine. Objective of the present study was to enhance bioavailability of curcumin by its complexation with phosphatidyl choline (PC). Complex of curcumin was prepared with PC and characterized on the basis of solubility, melting point, differential scanning calorimetry, thin layer chromatography, and infrared spectroscopic analysis. Everted intestine sac technique was used to study ex vivo drug absorption of curcumin-PC (CU-PC) complex and plain curcumin. Pharmacokinetic studies were performed in rats, and hepatoprotective activity of CU-PC complex was also compared with curcumin and CU-PC physical mixture in isolated rat hepatocytes. Analytical reports along with spectroscopic data revealed the formation of complex. The results of ex vivo study show that CU-PC complex has significantly increased absorption compared with curcumin, when given in equimolar doses. Complex showed enhanced bioavailability, improved pharmacokinetics, and increased hepatoprotective activity as compared with curcumin or CU-PC physical mixture. Enhanced bioavailability of CU-PC complex may be due to the amphiphilic nature of the complex, which greatly enhance the water and lipid solubility of the curcumin. The present study clearly indicates the superiority of complex over curcumin, in terms of better absorption, enhanced bioavailability, and improved pharmacokinetics. Copyright © 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Chiang, Po-Chang; Gould, Stephen; Nannini, Michelle; Qin, Ann; Deng, Yuzhong; Arrazate, Alfonso; Kam, Kimberly R.; Ran, Yingqing; Wong, Harvey
2014-04-01
Paclitaxel is a common chemotherapeutic agent that is effective against various cancers. The poor aqueous solubility of paclitaxel necessitates a large percentage of Cremophor EL:ethanol (USP) in its commercial formulation which leads to hypersensitivity reactions in patients. We evaluate the use of a crystalline nanosuspension versus the USP formulation to deliver paclitaxel to tumor-bearing xenograft mice. Anti-tumor efficacy was assessed following intravenous administration of three 20 mg/kg doses of paclitaxel. Paclitaxel pharmacokinetics and tissue distribution were evaluated, and differences were observed between the two formulations. Plasma clearance and tissue to plasma ratio of mice that were dosed with the nanosuspension are approximately 33- and 11-fold higher compared to those of mice that were given the USP formulation. Despite a higher tumor to plasma ratio for the nanosuspension treatment group, absolute paclitaxel tumor exposure was higher for the USP group. Accordingly, a higher anti-tumor effect was observed in the xenograft mice that were dosed with the USP formulation (90% versus 42% tumor growth inhibition). This reduction in activity of nanoparticle formulation appeared to result from a slower than anticipated dissolution in vivo. This study illustrates a need for careful consideration of both dose and systemic solubility prior utilizing nanosuspension as a mode of intravenous delivery.
Schultze, Eduarda; Buss, Julieti; Coradini, Karine; Begnini, Karine Rech; Guterres, Silvia S; Collares, Tiago; Beck, Ruy Carlos Ruver; Pohlmann, Adriana R; Seixas, Fabiana Kömmling
2017-12-01
Nanostructured drug delivery systems have been extensively studied, mainly for applications in cancer therapy. The advantages of these materials include protection against drug degradation and improvement in both the relative solubility of poorly water soluble drugs as in targeting of therapy, due to the enhanced permeability and retention effect on tumor sites. In this work, we evaluate the antitumor activity of tretinoin-loaded lipid core nanocapsules (TT-LNC) in a tretinoin-resistant breast cancer cell-line, MDA-MB- 231, as well as the synergistic effect of combination of this treatment with 5-FU or DOXO. The inhibition of cell growth was assayed by MTT reduction. Live/Dead assay and DAPI staining evaluated cytotoxicity. Apoptosis was evaluated by Annexin V-PE/7AAD and the effect of chronic exposure was evaluated by colony formation assay. TT-LNC reduced the cell viability even at lower concentrations (1μM) and displayed synergistic effect with 5-FU or DOXO on cytotoxicity and colony formation inhibition. Our work shows a possibility of using nanocapsules to improve the antitumoral activity of TT for its use either alone or in combination with other chemotherapeutic drugs, especially considering the chronic effect. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Itoh, M; Kanamori, Y; Takao, M; Eguchi, M
1999-02-01
A cDNA coding for soluble type alkaline phosphatase (sALP) of Bombyx mori was isolated. Deduced amino acid sequence showed high identities to various ALPs and partial similarities to ATPase of Manduca sexta. Using this cDNA sequence as a probe, the molecular basis of electrophoretic polymorphism in sALP and membrane-bound type ALP (mALP) was studied. As for mALP, the result suggested that post-translational modification was important for the proteins to express activity and to represent their extensive polymorphic nature, whereas the magnitude of activities was mainly regulated by transcription. On the other hand, sALP zymogram showed poor polymorphism, but one exception was the null mutant, in which the sALP gene was largely lost. Interestingly, the sALP gene was shown to be transcribed into two mRNAs of different sizes, 2.0 and 2.4 Kb. In addition to the null mutant of sALP, we found a null mutant for mALP. Both of these mutants seem phenotypically silent, suggesting that the functional differentiation between these isozymes is not perfect, so that they can still work mutually and complement each other as an indispensable enzyme for B. mori.
NASA Technical Reports Server (NTRS)
Rheineck, A. E.; Heskin, R. A.; Hill, L. W.
1972-01-01
The solubility and/or swelling of cured epoxy resins was studied using the solubility parameter method. Determination of solubility parameters were found in order to select solvents for solvent-assisted degradation of cured epoxy polymers used in spacecraft. A method for improving recovery of seeded spores is suggested for assay of buried contaminants. Three commercial epoxy resins were cured using four different alkyl amines. For each resin-amine combination, three levels of amine were used, corresponding to 1/3, 2/3, and all of the amine required to react with the oxirane groups of the resin. The solubility parameters of the 36 resulting model compounds were determined in poorly and moderately hydrogen-bonded solvents. No strongly hydrogen-bonded solvents caused dissolution or swelling. The tolerance of cured resins is discussed in terms of polymer structure.
Anti-viral activity of galectin-1 from flounder Paralichthys olivaceus.
Liu, Shousheng; Hu, Guobin; Sun, Chen; Zhang, Shicui
2013-06-01
Galectins are a family of Ca(2+)-independent soluble lectins characterized by their affinity to β-galactosides. Mammalian galectins have been shown to play a defense role against certain bacteria, fungi and viruses. However, the immunological functions of galectins in fish is poorly characterized. Here we demonstrated that the expression of galectin-1 gene from the flounder Paralichthys olivaceus was decreased in the initial 8 h after challenge with poly I:C, then increased markedly from 24 h onwards, and the recombinant galectin-1 was able to neutralize the lymphocystis disease virus (LCDV), inhibiting the formation of cytopathic effects. In addition, the recombinant galectin had a potential anti-inflammatory activity against infection by LCDV, and was able to restrain the overexpression of the anti-viral protein gene mx against virus infection. These results indicate that flounder galectin-1 has an anti-viral activity, capable of reducing LCDV pathogenicity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Active intestinal drug absorption and the solubility-permeability interplay.
Porat, Daniel; Dahan, Arik
2018-02-15
The solubility-permeability interplay deals with the question: what is the concomitant effect on the drug's apparent permeability when increasing the apparent solubility with a solubility-enabling formulation? The solubility and the permeability are closely related, exhibit certain interplay between them, and ongoing research throughout the past decade shows that treating the one irrespectively of the other may be insufficient. The aim of this article is to provide an overview of the current knowledge on the solubility-permeability interplay when using solubility-enabling formulations for oral lipophilic drugs, highlighting active permeability aspects. A solubility-enabling formulation may affect the permeability in opposite directions; the passive permeability may decrease as a result of the apparent solubility increase, according to the solubility-permeability tradeoff, but at the same time, certain components of the formulation may inhibit/saturate efflux transporters (when relevant), resulting in significant apparent permeability increase. In these cases, excipients with both solubilizing and e.g. P-gp inhibitory properties may lead to concomitant increase of both the solubility and the permeability. Intelligent development of such formulation will account for the simultaneous effects of the excipients' nature/concentrations on the two arms composing the overall permeability: the passive and the active arms. Overall, thorough mechanistic understanding of the various factors involved in the solubility-permeability interplay may allow developing better solubility-enabling formulations, thereby exploiting the advantages analyzed in this article, offering oral delivery solution even for BCS class IV drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
Ge, Xia; Huang, Zheng; Tian, Shilong; Huang, Yulong; Zeng, Chaozhen
2012-06-05
The effect of hydroxypropyl-β-cyclodextrin (HPβCD) on the improvement of the solubility and fungicidal activity of carbendazim (MBC) has been investigated. The inclusion complexation of HPβCD with MBC has been prepared and characterized by phase solubility diagram, fluorescence, (1)H NMR, ROESY and FT-IR spectra. The stoichiometric ratio and stability constant were determined by Job's plot and phase solubility studies, respectively. The inclusion complex MBC·HPβCD has exhibited different properties from MBC. The obtained inclusion complex was found to significantly improve the water solubility of MBC. In addition, the biological activity indicated that the complex displayed the better fungicidal activity than MBC. The present study provided useful information for a more rational application of MBC. Copyright © 2012 Elsevier Ltd. All rights reserved.
Regulation of L-phenylalanine ammonia-lyase from Rhizoctonia solani.
Kalghatgi, K K; Subba Rao, P V
1976-01-01
Maximal levels of L-henylalanine ammonia-lyase activity were observed when the mycelial felts of Rhizoctonia solani were grown for 4.5 days on Byrde synthetic medium containing 3.5% glucose and 0.3% L-phenylalanine, Differential centrifugation studies have indicated that the enzyme is localized in the soluble fraction. The time course of induction of L-phenylalanine ammonia-lyase activity by L-phenylalanine showed a lag period of 1 to 1.5 h and reached a maximum around 4 to 6 h after the addition of the inducer to the medium. L-Phenylalanine, L-tyrosine, and L-tryptophan were nearly equally efficient inducers of the enzyme. D-Phenylalanine was as efficient as the L-isomer, whereas D-tyrosine was a poor inducer. Light, gibberellic acid, indole 3-acetic acid, and kinetin had no effect on the induction of L-phenylalanine ammonia-lyase activity. Cycloheximide did not inhibit the uptake of amino acids by the mycelia but completely blocked the incorporation of radioactive amino acids into soluble proteins and the development of L-phenylalanine ammonia-lyase activity. Actinomycin D inhibited both the incorporation of 32P into ribonucleic acid and the enzyme activity. Conclusive evidence for de novo synthesis of L-phenylalanine ammonia-lyase was obtained by the incorporation of radioactive amino acids into the enzyme. Electrophoretic analysis of the purified preparation showed a single protein band that coincided with radioactivity and L-phenylalanine ammonia-lyase activity. Glucose and intermediates of the tricarboxylic acid cycle, like citric acid, alpha-ketoglutaric acid, and succinic acid, and the metabolites of L-phenylalanine, like o-coumaric acid, o-hydroxyphenylacetic acid, and protocatechuic acid, significantly repressed L-phenylalanine ammonia-lyase activity. The observed repression was not relieved by cyclic adenosine 5'-triphosphate. Images PMID:1262311
Potential Role for a Carbohydrate Moiety in Anti-Candida Activity of Human Oral Epithelial Cells
Steele, Chad; Leigh, Janet; Swoboda, Rolf; Ozenci, Hatice; Fidel, Paul L.
2001-01-01
Candida albicans is both a commensal and a pathogen at the oral mucosa. Although an intricate network of host defense mechanisms are expected for protection against oropharyngeal candidiasis, anti-Candida host defense mechanisms at the oral mucosa are poorly understood. Our laboratory recently showed that primary epithelial cells from human oral mucosa, as well as an oral epithelial cell line, inhibit the growth of blastoconidia and/or hyphal phases of several Candida species in vitro with a requirement for cell contact and with no demonstrable role for soluble factors. In the present study, we show that oral epithelial cell-mediated anti-Candida activity is resistant to gamma-irradiation and is not mediated by phagocytosis, nitric oxide, hydrogen peroxide, and superoxide oxidative inhibitory pathways or by nonoxidative components such as soluble defensin and calprotectin peptides. In contrast, epithelial cell-mediated anti-Candida activity was sensitive to heat, paraformaldehyde fixation, and detergents, but these treatments were accompanied by a significant loss in epithelial cell viability. Treatments that removed existing membrane protein or lipid moieties in the presence or absence of protein synthesis inhibitors had no effect on epithelial cell inhibitory activity. In contrast, the epithelial cell-mediated anti-Candida activity was abrogated after treatment of the epithelial cells with periodic acid, suggesting a role for carbohydrates. Adherence of C. albicans to oral epithelial cells was unaffected, indicating that the carbohydrate moiety is exclusively associated with the growth inhibition activity. Subsequent studies that evaluated specific membrane carbohydrate moieties, however, showed no role for sulfated polysaccharides, sialic acid residues, or glucose- and mannose-containing carbohydrates. These results suggest that oral epithelial cell-mediated anti-Candida activity occurs exclusively with viable epithelial cells through contact with C. albicans by an as-yet-undefined carbohydrate moiety. PMID:11598085
Mandalapu, Dhanaraju; Saini, Karan S; Gupta, Sonal; Sharma, Vikas; Yaseen Malik, Mohd; Chaturvedi, Swati; Bala, Veenu; Hamidullah; Thakur, Subhadra; Maikhuri, Jagdamba P; Wahajuddin, Muhammad; Konwar, Rituraj; Gupta, Gopal; Sharma, Vishnu Lal
2016-09-01
The anti-cancer property of curcumin, an active component of turmeric, is limited due to its poor solubility, stability and bioavailability. To enhance its efficacy, we designed a novel series of twenty-four monocarbonyl curcumin analogue-1,2,3-triazole conjugates and evaluated their anti-cancer activity towards endocrine related cancers. The new compounds (17-40) were synthesized through CuAAC click reaction and SAR analysis carried out. Out of these all, compound 17 showed most significant anti-cancer activity against prostate cancer cells with IC50 values of 8.8μM and 9.5μM in PC-3 and DU-145 cells, respectively. Another compound 26 showed significant anti-cancer activity against breast cancer cells with IC50 of 6μM, 10μM and 6.4μM in MCF-7, MDA-MB-231 and 4T1 cells, respectively while maintaining low toxicity towards non-cancer originated cell line, HEK-293. Compounds 17 and 26 arrested cell cycle and induced mitochondria-mediated apoptosis in cancer cells. Further, both of these compounds significantly down-regulated cell proliferation marker (PCNA), inhibited activation of cell survival protein (Akt phosphorylation), upregulated pro-apoptotic protein (Bax) and down-regulated anti-apoptotic protein (Bcl-2) in their respective cell lines. In addition, in vitro stability, solubility and plasma binding studies of the compounds 17 and 26 showed them to be metabolically stable. Thus, this study identified two new curcumin monocarbonyl-1,2,3-triazole conjugate compounds with more potent activity than curcumin against breast and prostate cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.
The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes.
Whale, Thomas F; Holden, Mark A; Wilson, Theodore W; O'Sullivan, Daniel; Murray, Benjamin J
2018-05-07
Heterogeneous nucleation of ice from aqueous solutions is an important yet poorly understood process in multiple fields, not least the atmospheric sciences where it impacts the formation and properties of clouds. In the atmosphere ice-nucleating particles are usually, if not always, mixed with soluble material. However, the impact of this soluble material on ice nucleation is poorly understood. In the atmospheric community the current paradigm for freezing under mixed phase cloud conditions is that dilute solutions will not influence heterogeneous freezing. By testing combinations of nucleators and solute molecules we have demonstrated that 0.015 M solutions (predicted melting point depression <0.1 °C) of several ammonium salts can cause suspended particles of feldspars and quartz to nucleate ice up to around 3 °C warmer than they do in pure water. In contrast, dilute solutions of certain alkali metal halides can dramatically depress freezing points for the same nucleators. At 0.015 M, solutes can enhance or deactivate the ice-nucleating ability of a microcline feldspar across a range of more than 10 °C, which corresponds to a change in active site density of more than a factor of 10 5 . This concentration was chosen for a survey across multiple solutes-nucleant combinations since it had a minimal colligative impact on freezing and is relevant for activating cloud droplets. Other nucleators, for instance a silica gel, are unaffected by these 'solute effects', to within experimental uncertainty. This split in response to the presence of solutes indicates that different mechanisms of ice nucleation occur on the different nucleators or that surface modification of relevance to ice nucleation proceeds in different ways for different nucleators. These solute effects on immersion mode ice nucleation may be of importance in the atmosphere as sea salt and ammonium sulphate are common cloud condensation nuclei (CCN) for cloud droplets and are internally mixed with ice-nucleating particles in mixed-phase clouds. In addition, we propose a pathway dependence where activation of CCN at low temperatures might lead to enhanced ice formation relative to pathways where CCN activation occurs at higher temperatures prior to cooling to nucleation temperature.
The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes
Holden, Mark A.; Wilson, Theodore W.; O'Sullivan, Daniel; Murray, Benjamin J.
2018-01-01
Heterogeneous nucleation of ice from aqueous solutions is an important yet poorly understood process in multiple fields, not least the atmospheric sciences where it impacts the formation and properties of clouds. In the atmosphere ice-nucleating particles are usually, if not always, mixed with soluble material. However, the impact of this soluble material on ice nucleation is poorly understood. In the atmospheric community the current paradigm for freezing under mixed phase cloud conditions is that dilute solutions will not influence heterogeneous freezing. By testing combinations of nucleators and solute molecules we have demonstrated that 0.015 M solutions (predicted melting point depression <0.1 °C) of several ammonium salts can cause suspended particles of feldspars and quartz to nucleate ice up to around 3 °C warmer than they do in pure water. In contrast, dilute solutions of certain alkali metal halides can dramatically depress freezing points for the same nucleators. At 0.015 M, solutes can enhance or deactivate the ice-nucleating ability of a microcline feldspar across a range of more than 10 °C, which corresponds to a change in active site density of more than a factor of 105. This concentration was chosen for a survey across multiple solutes–nucleant combinations since it had a minimal colligative impact on freezing and is relevant for activating cloud droplets. Other nucleators, for instance a silica gel, are unaffected by these ‘solute effects’, to within experimental uncertainty. This split in response to the presence of solutes indicates that different mechanisms of ice nucleation occur on the different nucleators or that surface modification of relevance to ice nucleation proceeds in different ways for different nucleators. These solute effects on immersion mode ice nucleation may be of importance in the atmosphere as sea salt and ammonium sulphate are common cloud condensation nuclei (CCN) for cloud droplets and are internally mixed with ice-nucleating particles in mixed-phase clouds. In addition, we propose a pathway dependence where activation of CCN at low temperatures might lead to enhanced ice formation relative to pathways where CCN activation occurs at higher temperatures prior to cooling to nucleation temperature. PMID:29780544
Biomarkers of Endothelial Activation Are Associated with Poor Outcome in Critical Illness.
Mikacenic, Carmen; Hahn, William O; Price, Brenda L; Harju-Baker, Susanna; Katz, Ronit; Kain, Kevin C; Himmelfarb, Jonathan; Liles, W Conrad; Wurfel, Mark M
2015-01-01
Endothelial activation plays a role in organ dysfunction in the systemic inflammatory response syndrome (SIRS). Angiopoietin-1 (Ang-1) promotes vascular quiescence while angiopoietin-2 (Ang-2) mediates microvascular leak. Circulating levels of Ang-1 and Ang-2 in patients with SIRS could provide insight on risks for organ dysfunction and death distinct from inflammatory proteins. In this study, we determined if biomarkers of endothelial activation and inflammation exhibit independent associations with poor outcomes in SIRS. We studied 943 critically ill patients with SIRS admitted to an Intensive Care Unit (ICU) of an academic medical center. We measured plasma levels of endothelial markers (Ang-1, Ang-2, soluble vascular cell adhesion molecule-1 (sVCAM-1)) and inflammatory markers (interleukin-6 (IL-6), interleukin-8 (IL-8), granulocyte-colony stimulating factor (G-CSF), soluble tumor necrosis factor receptor-1 (sTNFR-1)) within 24 hours of enrollment. We tested for associations between each marker and 28 day mortality, shock, and day 3 sequential organ failure assessment (SOFA) score. For 28 day mortality, we performed sensitivity analysis for those subjects with sepsis and those with sterile inflammation. We used multivariate models to adjust for clinical covariates and determine if associations identified with endothelial activation markers were independent of those observed with inflammatory markers. Higher levels of all biomarkers were associated with increased 28 day mortality except levels of Ang-1 which were associated with lower mortality. After adjustment for comorbidities and sTNFR-1 concentration, a doubling of Ang-1 concentration was associated with lower 28 day mortality (Odds ratio (OR) = 0.81; p<0.01), shock (OR = 0.82; p<0.001), and SOFA score (β = -0.50; p<0.001), while Ang-2 concentration was associated with increased mortality (OR = 1.55; p<0.001), shock (OR = 1.51; p<0.001), and SOFA score (β = +0.63; p<0.001). sVCAM-1 was not independently associated with SIRS outcomes. In critically ill patients with SIRS, early measurements of Ang-1 and Ang-2 are associated with death and organ dysfunction independently of simultaneously-measured markers of inflammation.
Trevino, Saul R.; Scholtz, J. Martin; Pace, C. Nick
2009-01-01
SUMMARY Poor protein solubility is a common problem in high resolution structural studies, formulation of protein pharmaceuticals, and biochemical characterization of proteins. One popular strategy to improve protein solubility is to use site-directed mutagenesis to make hydrophobic to hydrophilic mutations on the protein surface. However, a systematic investigation of the relative contributions of all twenty amino acids to protein solubility has not been done. Here, twenty variants at the completely solvent-exposed position 76 of Ribonuclease (RNase) Sa are made to compare the contributions of each amino acid. Stability measurements were also made for these variants, which occur at the i+1 position of a type II β-turn. Solubility measurements in ammonium sulfate solutions were made at high positive net charge, low net charge, and high negative net charge. Surprisingly, there was a wide range of contributions to protein solubility even among the hydrophilic amino acids. The results suggest that aspartic acid, glutamic acid, and serine contribute significantly more favorably than the other hydrophilic amino acids especially at high net charge. Therefore, to increase protein solubility, asparagine, glutamine, or threonine should be replaced with aspartic acid, glutamic acid or serine. PMID:17174328
Experimental constraints on CO2 and H2O in the Martian mantle and primary magmas
NASA Technical Reports Server (NTRS)
Holloway, John R.; Domanik, Kenneth J.; Cocheo, Peter A.
1993-01-01
We present new data on the stability of hornblende in a Martian mantle composition, on CO2 solubility in iron-rich basaltic magmas, and on the solubility of H2O in an alkalic basaltic magma. These new data are combined with a summary of data from the literature to present a summary of the current state of our estimates of solubilities of H2O and CO2 in probable Martian magmas and the stability of hornblende in a slightly hydrous mantle. The new results suggest that hornblende stability is not sensitive to the Mg/(Mg+Fe) ratio (mg#) of the mantle, that is the results for terrestrial mantle compositions are similar to the more iron-rich Martian composition. Likewise, CO2 solubility in iron-rich tholeiitic basaltic magmas is similar to iron-poor terrestrial compositions. The solubility of H2O has been measured in an alkalic basaltic (basanite) composition for the first time, and it is significantly lower than predicted for models of water solubility in magmas. The lack of mg# dependence observed in hornblende stability and on CO2 solubility that in many cases terrestrial results can be applied to Martian compositions. This conclusion does not apply to other phenomena such as primary magma compositions and major mantle mineral mineralogy.
Hammond, Robert B; Pencheva, Klimentina; Roberts, Kevin J; Auffret, Tony
2007-08-01
The poor solubility of potential drug molecules is a significant problem in the design of pharmaceutical formulations. It is well known, however, that the solubility of crystalline materials is enhanced when the particle size is reduced to submicron levels and this factor can be expected to enhance drug product bioavailability. Direct estimation of solubility enhancement, as calculated via the Gibbs-Thompson relationship, demands reasonably accurate values for the particle/solution interfacial tension and, in particular, its anisotropy with respect to the crystal product's habit and morphology. In this article, an improved, more molecule-centered, approach is presented towards the calculation of solubility enhancement factors in which molecular modeling techniques are applied, and the effects associated with both crystal habit modification and solvent choice are examined. A case study for facetted, acetyl salicylic acid (aspirin) crystals in equilibrium with saturated aqueous ethanol solution reveals that their solubility will be enhanced in the range (7-58%) for a crystal size of 0.02 microm, with significantly higher enhancement for crystal morphologies in which the hydrophobic crystal faces are more predominant than the hydrophilic faces and for solvents in which the solubility is smaller. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.
Huang, Zongyun; Parikh, Shuchi; Fish, William P
2018-01-15
In the pharmaceutical industry, in vitro dissolution testing ofsolid oral dosage forms is a very important tool for drug development and quality control. However, ion-pairing interaction between the ionic drugand surfactants in dissolution medium often occurs, resulting in inconsistent and incomplete drug release. The aim of this study is toevaluate the effects ofsodium dodecyl sulfate (SDS) mediated medium onthe dissolution behaviors of a poorly soluble cationic drug (Drug B). The study was carried out by measuring solubility of Drug B substance and dissolution rate of Drug B product in media containing SDS.Desolubilization of Drug B substance was observed at pH 4.5 in the presence of SDS at concentrations below critical micelle concentration (CMC) which is attributed to the formation of an insoluble di-dodecyl sulfate salt between SDS and Drug B. This ion-pairing effect is less significant with increasing medium pH where Drug B is less ionized and CMC of SDS is lower. In medium at pH 4.5, dissolution of Drug B product was found incomplete with SDS concentration below CMC due to the desolubilization of Drug B substance. In media with SDS level above CMC, the dissolution rate is rather slower with higher inter-vessel variations compared to that obtained in pH 4.5 medium without SDS. The dissolution results demonstrate that the presence of SDS in medium generates unexpected irregular dissolution profiles for Drug B which are attributed to incompatible dissolution medium for this particular drug. Therefore, non-ionic surfactant was selected for Drug B product dissolution method and ion-pairing effect in SDS mediated medium should be evaluated when developing a dissolution method for any poorly soluble cationic drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth.
Naksuriya, Ornchuma; Shi, Yang; van Nostrum, Cornelus F; Anuchapreeda, Songyot; Hennink, Wim E; Okonogi, Siriporn
2015-08-01
Curcumin (CM) has been reported as a potential anticancer agent. However, its pharmaceutical applications as therapeutic agent are hampered because of its poor aqueous solubility. The present study explores the advantages of polymeric micelles composed of block copolymers of methoxypoly(ethylene glycol) (mPEG) and N-(2-hydroxypropyl) methacrylamide (HPMA) modified with monolactate, dilactate and benzoyl side groups to enhance CM solubility and inhibitory activity against cancer cells. Amphiphilic block copolymers, ω-methoxypoly(ethylene glycol)-b-(N-(2-benzoyloxypropyl) methacrylamide) (PEG-HPMA-Bz) were synthesized and characterized by (1)H NMR and GPC. One polymer with a molecular weight of 28,000Da was used to formulate CM and compared with other aromatic substituted polymers. CM was loaded by a fast heating method (PEG-HPMA-DL and PEG-HPMA-Bz-L) and a nanoprecipitation method (PEG-HPMA-Bz). Physicochemical characteristics and cytotoxicity/cytocompatibility of the CM loaded polymeric micelles were evaluated. It was found that HPMA-based polymeric micelles significantly enhanced the solubility of CM. The PEG-HPMA-Bz micelles showed the best solubilization properties. CM loaded polymeric micelles showed sustained release of the loading CM for more than 20days. All of CM loaded polymeric micelles formulations showed a significantly potent cytotoxic effect against three cancer cell lines. HPMA-based polymeric micelles are therefore promising nanodelivery systems of CM for cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Defined Host-Guest Chemistry on Nanocarbon for Sustained Inhibition of Cancer.
Ostadhossein, Fatemeh; Misra, Santosh K; Mukherjee, Prabuddha; Ostadhossein, Alireza; Daza, Enrique; Tiwari, Saumya; Mittal, Shachi; Gryka, Mark C; Bhargava, Rohit; Pan, Dipanjan
2016-08-22
Signal transducer and activator of transcription factor 3 (STAT-3) is known to be overexpressed in cancer stem cells. Poor solubility and variable drug absorption are linked to low bioavailability and decreased efficacy. Many of the drugs regulating STAT-3 expression lack aqueous solubility; hence hindering efficient bioavailability. A theranostics nanoplatform based on luminescent carbon particles decorated with cucurbit[6]uril is introduced for enhancing the solubility of niclosamide, a STAT-3 inhibitor. The host-guest chemistry between cucurbit[6]uril and niclosamide makes the delivery of the hydrophobic drug feasible while carbon nanoparticles enhance cellular internalization. Extensive physicochemical characterizations confirm successful synthesis. Subsequently, the host-guest chemistry of niclosamide and cucurbit[6]uril is studied experimentally and computationally. In vitro assessments in human breast cancer cells indicate approximately twofold enhancement in IC 50 of drug. Fourier transform infrared and fluorescence imaging demonstrate efficient cellular internalization. Furthermore, the catalytic biodegradation of the nanoplatforms occur upon exposure to human myeloperoxidase in short time. In vivo studies on athymic mice with MCF-7 xenograft indicate the size of tumor in the treatment group is half of the controls after 40 d. Immunohistochemistry corroborates the downregulation of STAT-3 phosphorylation. Overall, the host-guest chemistry on nanocarbon acts as a novel arsenal for STAT-3 inhibition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Martner, Anna; Östman, Sofia; Lundin, Samuel; Rask, Carola; Björnsson, Viktor; Telemo, Esbjörn; Collins, L. Vincent; Axelsson, Lars; Wold, Agnes E.
2013-01-01
This study aimed to clarify whether Gram-positive (G+) and Gram-negative (G−) bacteria affect antigen-presenting cells differently and thereby influence the immunogenicity of proteins they express. Lactobacilli, lactococci and Escherichia coli strains were transformed with plasmids conferring intracellular ovalbumin (OVA) production. Murine splenic antigen presenting cells (APCs) were pulsed with washed and UV-inactivated OVA-producing bacteria, control bacteria, or soluble OVA. The ability of the APCs to activate OVA-specific DO11.10 CD4+ T cells was assessed by measurments of T cell proliferation and cytokine (IFN-γ, IL-13, IL-17, IL-10) production. OVA expressed within E. coli was strongly immunogenic, since 500 times higher concentrations of soluble OVA were needed to achieve a similar level of OVA-specific T cell proliferation. Furthermore, T cells responding to soluble OVA produced mainly IL-13, while T cells responding to E. coli-expressed OVA produced high levels of both IFN-γ and IL-13. Compared to E. coli, G+ lactobacilli and lactococci were poor inducers of OVA-specific T cell proliferation and cytokine production, despite efficient intracellular expression and production of OVA and despite being efficiently phagocytosed. These results demonstrate a pronounced difference in immunogenicity of intracellular antigens in G+ and G− bacteria and may be relevant for the use of bacterial carriers in vaccine development. PMID:23741469