Sample records for poorly understood function

  1. Preschool Executive Functioning Abilities Predict Early Mathematics Achievement

    ERIC Educational Resources Information Center

    Clark, Caron A. C.; Pritchard, Verena E.; Woodward, Lianne J.

    2010-01-01

    Impairments in executive function have been documented in school-age children with mathematical learning difficulties. However, the utility and specificity of preschool executive function abilities in predicting later mathematical achievement are poorly understood. This study examined linkages between children's developing executive function…

  2. Biodiversity and ecosystem function in species-poor communities: community structure and leaf litter breakdown in a Pacific island stream

    Treesearch

    Jonathan P. Benstead; James G. March; Catherine M. Pringle; Katherine C. Ewel; John W. Short

    2009-01-01

    Pacific island stream communities are species-poor because of the effects of extreme geographic isolation on colonization rates of taxa common to continental regions. The effects of such low species richness on stream ecosystem function are not well understood. Here, we provide data on community structure and leaf litter breakdown rate in a virtually pristine stream on...

  3. Environmental exposure and altered menstrual function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keye, W.R. Jr.

    The impact of environmental agents and occupational factors on hypothalamic and pituitary function and menstruation are poorly understood. To date, most research related to environment, occupation, and reproduction has focused on pregnancy outcome, not menstrual function. It is imperative, however, that menstrual function be considered as an outcome variable in the study of reproduction and occupation.

  4. Glucose supplementation has minimal effects on blood neutrophil functionand gene expression in vitro

    USDA-ARS?s Scientific Manuscript database

    During early lactation, glucose availability is low and the effect of glucose supply on bovine polymorphonuclear leukocyte (PMNL) function is poorly understood. The objective of this study was to determine the effect of glucose supplementation on the function and transcriptomic inflammatory respons...

  5. Contribution of Theory of Mind, Executive Functioning, and Pragmatics to Socialization Behaviors of Children with High-Functioning Autism

    ERIC Educational Resources Information Center

    Berenguer, Carmen; Miranda, Ana; Colomer, Carla; Baixauli, Inmaculada; Roselló, Belén

    2018-01-01

    Social difficulties are a key aspect of autism, but the intervening factors are still poorly understood. This study had two objectives: to compare the profile of ToM skills, executive functioning (EF), and pragmatic competence (PC) of children with high-functioning autism (HFA) and children with typical development (TD), and analyze their mediator…

  6. PERCHLOROETHYLENE (PERC) INHIBITS FUNCTION OF VOLTAGE-GATED CALCIUM CHANNELS IN PHEOCHROMOCYTOMA CELLS.

    EPA Science Inventory

    The industrial solvent perchloroethylene (PERC) is listed as a hazardous air pollutant in the 1990 Ammendments to Clean Air Act and is a known neurotoxicant. However, the mechanisms by which PERC alters nervous system function are poorly understood. In recent years, it has been d...

  7. Developmental regulation of mitochondrial biogenesis and function in the mouse mammary gland during a prolonged lactation cycle

    USDA-ARS?s Scientific Manuscript database

    The regulation of mitochondrial biogenesis and function in the lactating mammary cell is poorly understood. The goal of this study was to use proteomics to relate temporal changes in mammary cell mitochondrial function during lactation to changes in the proteins that make up this organelle. The hypo...

  8. Executive Functions and Working Memory Behaviours in Children with a Poor Working Memory

    ERIC Educational Resources Information Center

    St. Clair-Thompson, Helen L.

    2011-01-01

    Previous research has suggested that working memory difficulties play an integral role in children's underachievement at school. However, working memory is just one of several executive functions. The extent to which problems in working memory extend to other executive functions is not well understood. In the current study 38 children with a poor…

  9. A Production Function Approach to Regional Environmental-Economic Assessments

    EPA Science Inventory

    Numerous difficulties await those creating regional-scale environmental assessments, from data having inconsistent spatial or temporal scales to poorly understood environmental processes and indicators. Including socioeconomic variables further complicates the situation. In place...

  10. Health-Related Quality of Life in Children with High-Functioning Autism

    ERIC Educational Resources Information Center

    Potvin, Marie-Christine; Snider, Laurie; Prelock, Patricia A.; Wood-Dauphinee, Sharon; Kehayia, Eva

    2015-01-01

    The health-related quality of life of school-aged children with high-functioning autism is poorly understood. The objectives of this study were to compare the health-related quality of life of children with high-functioning autism to that of typically developing peers and to compare child-self and parent-proxy reports of health-related quality of…

  11. Hyporesponsive Reward Anticipation in the Basal Ganglia following Severe Institutional Deprivation Early in Life

    ERIC Educational Resources Information Center

    Mehta, Mitul A.; Gore-Langton, Emma; Golembo, Nicole; Colvert, Emma; Williams, Steven C. R.; Sonuga-Barke, Edmund

    2010-01-01

    Severe deprivation in the first few years of life is associated with multiple difficulties in cognition and behavior. However, the brain basis for these difficulties is poorly understood. Structural and functional neuroimaging studies have implicated limbic system structures as dysfunctional, and one functional imaging study in a heterogeneous…

  12. A Production Function Approach to Regional Environmental Economic Assessments

    EPA Science Inventory

    Regional-scale environmental assessments require integrating many available types of data having inconsistent spatial or temporal scales. Moreover, the relationships among the environmental variables in the assessment tend to be poorly understood, a situation made even more compl...

  13. Bridging the knowledge gap: from microbiome composition to function.

    PubMed

    Faith, Jeremiah J

    2015-03-01

    Despite the wealth of metagenomic sequencing data, the functions of most bacterial genes from the mammalian microbiota have remained poorly understood. In their recent study (Yaung et al 2015), Wang, Gerber, and colleagues present a platform which allows functional mining of bacterial genomes for genes that contribute to fitness in vivo and holds great potential for forward engineering microbes with enhanced colonization abilities in the microbiota.

  14. The semenogelins: proteins with functions beyond reproduction?

    PubMed

    Jonsson, M; Lundwall, A; Malm, J

    2006-12-01

    The coagulum proteins of human semen, semenogelins I and II, are secreted in abundance by the seminal vesicles. Their function in reproduction is poorly understood as they are rapidly degraded in ejaculated semen. However, more recent results indicate that it is time to put the semenogelins in a broader physiological perspective that goes beyond reproduction and fertility.

  15. Effects of ecosystem development on benthic secondary production in restored and created mangrove habitats

    EPA Science Inventory

    Wetland creation, enhancement, and restoration activities are commonly implemented to compensate for wetland loss or degradation. However, functional equivalence in restored and created wetland habitats is often poorly understood. In estuarine habitats, changes in habitat qualit...

  16. Bridging the knowledge gap: from microbiome composition to function

    PubMed Central

    Faith, Jeremiah J

    2015-01-01

    Despite the wealth of metagenomic sequencing data, the functions of most bacterial genes from the mammalian microbiota have remained poorly understood. In their recent study (Yaung et al 2015), Wang, Gerber, and colleagues present a platform which allows functional mining of bacterial genomes for genes that contribute to fitness in vivo and holds great potential for forward engineering microbes with enhanced colonization abilities in the microbiota. PMID:26148349

  17. Perfectionism related to self-reported insomnia severity, but not when controlled for stress and emotion regulation.

    PubMed

    Brand, Serge; Kirov, Roumen; Kalak, Nadeem; Gerber, Markus; Pühse, Uwe; Lemola, Sakari; Correll, Christoph U; Cortese, Samuele; Meyer, Till; Holsboer-Trachsler, Edith

    2015-01-01

    Perfectionism is understood as a set of personality traits such as unrealistically high and rigid standards for performance, fear of failure, and excessive self-criticism. Previous studies showed a direct association between increased perfectionism and poor sleep, though without taking into account possible mediating factors. Here, we tested the hypothesis that perfectionism was directly associated with poor sleep, and that this association collapsed, if mediating factors such as stress and poor emotion regulation were taken into account. Three hundred and forty six young adult students (M=23.87 years) completed questionnaires relating to perfectionism traits, sleep, and psychological functioning such as stress perception, coping with stress, emotion regulation, and mental toughness. Perfectionism was directly associated with poor sleep and poor psychological functioning. When stress, poor coping, and poor emotion regulation were entered in the equation, perfectionism traits no longer contributed substantively to the explanation of poor sleep. Though perfectionism traits seem associated with poor sleep, the direct role of such traits seemed small, when mediating factors such as stress perception and emotion regulation were taken into account.

  18. Perfectionism related to self-reported insomnia severity, but not when controlled for stress and emotion regulation

    PubMed Central

    Brand, Serge; Kirov, Roumen; Kalak, Nadeem; Gerber, Markus; Pühse, Uwe; Lemola, Sakari; Correll, Christoph U; Cortese, Samuele; Meyer, Till; Holsboer-Trachsler, Edith

    2015-01-01

    Background Perfectionism is understood as a set of personality traits such as unrealistically high and rigid standards for performance, fear of failure, and excessive self-criticism. Previous studies showed a direct association between increased perfectionism and poor sleep, though without taking into account possible mediating factors. Here, we tested the hypothesis that perfectionism was directly associated with poor sleep, and that this association collapsed, if mediating factors such as stress and poor emotion regulation were taken into account. Methods Three hundred and forty six young adult students (M=23.87 years) completed questionnaires relating to perfectionism traits, sleep, and psychological functioning such as stress perception, coping with stress, emotion regulation, and mental toughness. Results Perfectionism was directly associated with poor sleep and poor psychological functioning. When stress, poor coping, and poor emotion regulation were entered in the equation, perfectionism traits no longer contributed substantively to the explanation of poor sleep. Conclusion Though perfectionism traits seem associated with poor sleep, the direct role of such traits seemed small, when mediating factors such as stress perception and emotion regulation were taken into account. PMID:25678791

  19. At the Intersection of Attention and Memory: The Mechanistic Role of the Posterior Parietal Lobe in Working Memory

    ERIC Educational Resources Information Center

    Berryhill, Marian E.; Chein, Jason; Olson, Ingrid R.

    2011-01-01

    Portions of the posterior parietal cortex (PPC) play a role in working memory (WM) yet the precise mechanistic function of this region remains poorly understood. The "pure storage" hypothesis proposes that this region functions as a short-lived modality-specific memory store. Alternatively, the "internal attention" hypothesis proposes that the PPC…

  20. Accumulation of the Antibiotic Phenazine-1-Carboxylic Acid in the Rhizosphere of Dryland Cereals

    USDA-ARS?s Scientific Manuscript database

    Natural antibiotics are thought to function in the defense, fitness, competitiveness, biocontrol activity, communication and gene regulation of microorganisms. However, the scale and quantitative aspects of antibiotic production in natural settings are poorly understood. We addressed these fundament...

  1. Size matters: The contribution of mega-infauna to the food webs and ecosystem services of an Oregon estuary - ESA

    EPA Science Inventory

    Background/Questions/Methods Large-bodied invertebrates (bivalves, polychaetes, burrowing shrimps) are common to infaunal communities of NE Pacific estuaries, but their contribution to estuarine community structure, function and ecosystem services is poorly understood because ...

  2. Disruption of the circadian clock within the cardiomyocyte influences mycardial contractile function, metabolism, and gene expression

    USDA-ARS?s Scientific Manuscript database

    Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology is poorly understood. We hypothesized that the circadian clock within the cardiomyocyte influences diurnal variatio...

  3. The role of methionine metabolism in inflammatory bowel disease

    USDA-ARS?s Scientific Manuscript database

    Methionine (Met) cycle activity is critical for normal cell functions. Met metabolites S-adenosylmethionine (SAM) and methylthioadenosine (MTA) are anti-inflammatory, yet their role in inflammatory bowel disease (IBD) is poorly understood. We hypothesize that active IBD leads to changes in Met metab...

  4. Ecosystem Development after Mangrove Wetland Creation: Plant-Soil Change across a 20-year Chronosequence

    EPA Science Inventory

    Mangrove wetland restoration and creation efforts are increasingly proposed as mechanisms to compensate for mangrove wetland loss. However, ecosystem development and functional equivalence in restored and created mangrove wetlands is poorly understood. We compared a 20-yr chrono...

  5. Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals

    USDA-ARS?s Scientific Manuscript database

    Natural antibiotics are thought to function in microbial defense, fitness, competitiveness, biocontrol, communication and gene regulation. However, the frequency and amount of antibiotics produced in nature are poorly understood. In this study, we assessed the geographic distribution of indigenous p...

  6. FUNCTIONS EXERTED BY THE VIRULENCE ASSOCIATED TYPE THREE SECRETION SYSTEMS DURING SALMONELLA ENTERICA SEROVAR ENTERITIDIS INFECTION OF CHICKEN OVIDUCT EPITHELIAL CELLS AND MACROPHAGES

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serovar, Enteritidis (SE) infection of chicken is a major contributing factor to non-typhoidal salmonellosis. The roles of the type three secretion systems (T3SS-1 and T3SS-2) in the pathogenesis of SE infection of chickens are poorly understood. In this study, the functions exer...

  7. Size matters: The contribution of mega-infauna to the food webs and ecosystem services of an Oregon estuary - 9-30-12

    EPA Science Inventory

    Large-bodied invertebrates (bivalves, polychaetes, burrowing shrimps) are common to infaunal communities of NE Pacific estuaries, but their contribution to estuarine community structure, function and ecosystem services is poorly understood because they are difficult to sample and...

  8. Dissecting genome-wide association signals for loss-of-function phenotypes in sorghum flavonoid pigmentation traits

    USDA-ARS?s Scientific Manuscript database

    Genome-wide association studies (GWAS) are a powerful method to dissect the genetic basis of traits, though in practice the effects of complex genetic architecture and population structure remain poorly understood. To compare mapping strategies we dissect the genetic control of flavonoid pigmentatio...

  9. The Importance of Allochthonous Subsidies to an Estuarine Food Web along a Salinity Gradient

    EPA Science Inventory

    Estuarine food webs function within a heterogeneous mosaic and are supported by a mix of primary producers from both local and distant sources. Processes governing the exchange and consumption of organic matter (OM), however, are poorly understood. To study the contribution of ...

  10. Metabolic coevolution in the bacterial symbiosis of whiteflies and related plant sap-feeding insects

    USDA-ARS?s Scientific Manuscript database

    In animals dependent on intracellular bacteria with very small genomes, the host cell is adapted to support the function of its bacterial symbionts, but the molecular basis of these adaptations is poorly understood. We investigated the metabolic coevolution between the whitefly Bemisia tabaci and th...

  11. Poorly Understood Aspects of Striated Muscle Contraction

    PubMed Central

    Månsson, Alf

    2015-01-01

    Muscle contraction results from cyclic interactions between the contractile proteins myosin and actin, driven by the turnover of adenosine triphosphate (ATP). Despite intense studies, several molecular events in the contraction process are poorly understood, including the relationship between force-generation and phosphate-release in the ATP-turnover. Different aspects of the force-generating transition are reflected in the changes in tension development by muscle cells, myofibrils and single molecules upon changes in temperature, altered phosphate concentration, or length perturbations. It has been notoriously difficult to explain all these events within a given theoretical framework and to unequivocally correlate observed events with the atomic structures of the myosin motor. Other incompletely understood issues include the role of the two heads of myosin II and structural changes in the actin filaments as well as the importance of the three-dimensional order. We here review these issues in relation to controversies regarding basic physiological properties of striated muscle. We also briefly consider actomyosin mutation effects in cardiac and skeletal muscle function and the possibility to treat these defects by drugs. PMID:25961006

  12. Poorly understood aspects of striated muscle contraction.

    PubMed

    Månsson, Alf; Rassier, Dilson; Tsiavaliaris, Georgios

    2015-01-01

    Muscle contraction results from cyclic interactions between the contractile proteins myosin and actin, driven by the turnover of adenosine triphosphate (ATP). Despite intense studies, several molecular events in the contraction process are poorly understood, including the relationship between force-generation and phosphate-release in the ATP-turnover. Different aspects of the force-generating transition are reflected in the changes in tension development by muscle cells, myofibrils and single molecules upon changes in temperature, altered phosphate concentration, or length perturbations. It has been notoriously difficult to explain all these events within a given theoretical framework and to unequivocally correlate observed events with the atomic structures of the myosin motor. Other incompletely understood issues include the role of the two heads of myosin II and structural changes in the actin filaments as well as the importance of the three-dimensional order. We here review these issues in relation to controversies regarding basic physiological properties of striated muscle. We also briefly consider actomyosin mutation effects in cardiac and skeletal muscle function and the possibility to treat these defects by drugs.

  13. Alternative splicing in plant immunity.

    PubMed

    Yang, Shengming; Tang, Fang; Zhu, Hongyan

    2014-06-10

    Alternative splicing (AS) occurs widely in plants and can provide the main source of transcriptome and proteome diversity in an organism. AS functions in a range of physiological processes, including plant disease resistance, but its biological roles and functional mechanisms remain poorly understood. Many plant disease resistance (R) genes undergo AS, and several R genes require alternatively spliced transcripts to produce R proteins that can specifically recognize pathogen invasion. In the finely-tuned process of R protein activation, the truncated isoforms generated by AS may participate in plant disease resistance either by suppressing the negative regulation of initiation of immunity, or by directly engaging in effector-triggered signaling. Although emerging research has shown the functional significance of AS in plant biotic stress responses, many aspects of this topic remain to be understood. Several interesting issues surrounding the AS of R genes, especially regarding its functional roles and regulation, will require innovative techniques and additional research to unravel.

  14. The Impact of Threat of Shock-Induced Anxiety on Memory Encoding and Retrieval

    ERIC Educational Resources Information Center

    Bolton, Sorcha; Robinson, Oliver J.

    2017-01-01

    Anxiety disorders are the most common mental health disorders, and daily transient feelings of anxiety (or "stress") are ubiquitous. However, the precise impact of both transient and pathological anxiety on higher-order cognitive functions, including short- and long-term memory, is poorly understood. A clearer understanding of the…

  15. Spleen size is an indirect indicator of rainbow trout bacterial cold water disease resistance

    USDA-ARS?s Scientific Manuscript database

    The contribution of the spleen to anti-bacterial immunity in lower vertebrates is poorly understood. The spleen first appears as a recognizable organ in shark and bony fish lineages while factors influencing its size and functions in lower vertebrates have received little attention. We have previou...

  16. Plant–microbial competition for nitrogen increases microbial activities and carbon loss in invaded soils

    Treesearch

    Matthew E. Craig; Jennifer M. Fraterrigo

    2017-01-01

    Many invasive plant species show high rates of nutrient acquisition relative to their competitors. Yet the mechanisms underlying this phenomenon, and its implications for ecosystem functioning, are poorly understood, particularly in nutrient-limited systems. Here, we test the hypothesis that an invasive plant species (Microstegium vimineum...

  17. Does the Left Inferior Longitudinal Fasciculus Play a Role in Language? A Brain Stimulation Study

    ERIC Educational Resources Information Center

    Mandonnet, Emmanuel; Nouet, Aurelien; Gatignol, Peggy; Capelle, Laurent; Duffau, Hugues

    2007-01-01

    Although advances in diffusion tensor imaging have enabled us to better study the anatomy of the inferior longitudinal fasciculus (ILF), its function remains poorly understood. Recently, it was suggested that the subcortical network subserving the language semantics could be constituted, in parallel with the inferior occipitofrontal fasciculus, by…

  18. Reporter Discrepancies among Parents, Adolescents, and Peers: Adolescent Attachment and Informant Depressive Symptoms as Explanatory Factors

    ERIC Educational Resources Information Center

    Ehrlich, Katherine B.; Cassidy, Jude; Dykas, Matthew J.

    2011-01-01

    The issue of informant discrepancies about child and adolescent functioning is an important concern for clinicians, developmental psychologists, and others who must consider ways of handling discrepant reports of information, but reasons for discrepancies in reports have been poorly understood. Adolescent attachment and informant depressive…

  19. The Populus homeobox gene ARBORKNOX2 regulates cell differentiation during secondary growth

    Treesearch

    Juan Du; Shawn D. Mansfield; Andrew T. Groover

    2009-01-01

    The stem cells of the vascular cambium divide to produce daughter cells, which in turn divide before undergoing differentiation during the radial growth of woody stems. The genetic regulation of these developmental events is poorly understood, however. We report here the cloning and functional characterization of a Populus class-I KNOX...

  20. Evasion of mucosal defenses during Aeromonas hydrophila infection of channel catfish (Ictalurus punctatus) skin

    USDA-ARS?s Scientific Manuscript database

    The mucosal surfaces of fish serve as the first-line of defense against the myriad of aquatic pathogens present in the aquatic environment. The immune repertoire functioning at these interfaces is still poorly understood. The skin, in particular, must process signals from several fronts, sensing and...

  1. Fluoxetine Restores Spatial Learning but Not Accelerated Forgetting in Mesial Temporal Lobe Epilepsy

    ERIC Educational Resources Information Center

    Barkas, Lisa; Redhead, Edward; Taylor, Matthew; Shtaya, Anan; Hamilton, Derek A.; Gray, William P.

    2012-01-01

    Learning and memory dysfunction is the most common neuropsychological effect of mesial temporal lobe epilepsy, and because the underlying neurobiology is poorly understood, there are no pharmacological strategies to help restore memory function in these patients. We have demonstrated impairments in the acquisition of an allocentric spatial task,…

  2. Social Functioning among College Students Diagnosed with ADHD and the Mediating Role of Emotion Regulation

    ERIC Educational Resources Information Center

    Ryan, Julia; Ross, Samantha; Reyes, Rebecca; Kosmerly, Stacey; Rogers, Maria

    2016-01-01

    Despite the many studies that have documented the association between symptoms of ADHD and social difficulties in children and adolescents, few have examined this phenomenon in college students. In addition, the underlying factors contributing to such social difficulties are still poorly understood. We hypothesised that college students with…

  3. The PH gene determines fruit acidity and contributes to the evolution of sweet melons

    USDA-ARS?s Scientific Manuscript database

    Acids are one of the three major components of fleshy fruit taste, together with sugars and volatile flavor compounds. However, the molecular-genetic control of acid accumulation in fruit is poorly understood and, to date, no genes responsible for acid accumulation in fleshy fruit have been function...

  4. QTL mapping and candidate gene analysis of telomere length control factors in maize (Zea mays L.)

    USDA-ARS?s Scientific Manuscript database

    Telomere length is under genetic control and important for essential telomere functions. Failure to regulate telomere length homeostasis contributes to cancers and aging-related diseases in animals, but the effects of telomere length defects in plants remains poorly understood. To learn more about t...

  5. Photomorphogenic responses to ultraviolet-B light.

    PubMed

    Jenkins, Gareth I

    2017-11-01

    Exposure to ultraviolet B (UV-B) light regulates numerous aspects of plant metabolism, morphology and physiology through the differential expression of hundreds of genes. Photomorphogenic responses to UV-B are mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8). Considerable progress has been made in understanding UVR8 action: the structural basis of photoreceptor function, how interaction with CONSTITUTIVELY PHOTOMORPHOGENIC 1 initiates signaling and how REPRESSOR OF UV-B PHOTOMORPHOGENESIS proteins negatively regulate UVR8 action. In addition, recent research shows that UVR8 mediates several responses through interaction with other signaling pathways, in particular auxin signaling. Nevertheless, many aspects of UVR8 action remain poorly understood. Most research to date has been undertaken with Arabidopsis, and it is important to explore the functions and regulation of UVR8 in diverse plant species. Furthermore, it is essential to understand how UVR8, and UV-B signaling in general, regulates processes under natural growth conditions. Ultraviolet B regulates the expression of many genes through UVR8-independent pathways, but the activity and importance of these pathways in plants growing in sunlight are poorly understood. © 2017 John Wiley & Sons Ltd.

  6. Accurately Characterizing the Importance of Wave-Particle Interactions in Radiation Belt Dynamics: The Pitfalls of Statistical Wave Representations

    NASA Technical Reports Server (NTRS)

    Murphy, Kyle R.; Mann, Ian R.; Rae, I. Jonathan; Sibeck, David G.; Watt, Clare E. J.

    2016-01-01

    Wave-particle interactions play a crucial role in energetic particle dynamics in the Earths radiation belts. However, the relative importance of different wave modes in these dynamics is poorly understood. Typically, this is assessed during geomagnetic storms using statistically averaged empirical wave models as a function of geomagnetic activity in advanced radiation belt simulations. However, statistical averages poorly characterize extreme events such as geomagnetic storms in that storm-time ultralow frequency wave power is typically larger than that derived over a solar cycle and Kp is a poor proxy for storm-time wave power.

  7. Children's Ideas about the Internal Structure of Trees: Cross-Age Studies

    ERIC Educational Resources Information Center

    Rybska, Eliza; Tunnicliffe, Sue Dale; Sajkowska, Zofia Anna

    2017-01-01

    Trees are important to the environment owing to their ecological services. However, many aspects of their form and function are poorly understood by the public. From their earliest years, children have an elementary knowledge about plants which they gain from their everyday observations, their parents and other people and from their kindergarten…

  8. The effects of Phytophthora ramorum stem inoculation on aspects of tanoak physiology and xylem function in saplings and seedlings

    Treesearch

    Elizabeth Stamm

    2012-01-01

    Phytophthora ramorum, an oomycete plant pathogen, is the causal agent of sudden oak death, a serious disease of Fagaceous trees in California and Oregon over the last decade. Tanoak (Notholithocarpus densiflorus) is one of the most susceptible host species, but the cause of host mortality is poorly understood....

  9. Effects of rubber flooring during the first 2 lactations on production, locomotion, hoof health, immune functions, and stress

    USDA-ARS?s Scientific Manuscript database

    Some housing can result in long-term chronic pain. Acute pain on immunity has been explored, but chronic pain influence on immune responses is poorly understood. Therefore the objective of this research was to determine chronic effects on immune responses and production of flooring in free-stall h...

  10. Lipid droplet-associated proteins (LDAPs) are required for the dynamic regulation of neutral lipid compartmentation in plant cells

    USDA-ARS?s Scientific Manuscript database

    Eukaryotic cells compartmentalize neutral lipids into organelles called lipid droplets (LDs), and while much is known about the role of LDs in storing triacylglycerols (TAGs) in seeds, their biogenesis and function in non-seed tissues is poorly understood. Recently, we identified a class of plant-sp...

  11. The in-feed antibiotic carbadox induces phage gene transcription in the swine gut microbiome

    USDA-ARS?s Scientific Manuscript database

    Carbadox is a quinoxaline-di-N-oxide antibiotic fed to over 40 percent of young pigs in the U.S. and has been shown to induce phage DNA transduction in vitro; however, the effects of carbadox on swine microbiome functions are poorly understood. We investigated the in vivo effects of carbadox on swin...

  12. Functional heartburn: the stimulus, the pain, and the brain

    PubMed Central

    Fass, R; Tougas, G

    2002-01-01

    Functional heartburn is a common disorder and appears to be composed of several distinct subgroups. Identifying the different subgroups based on clinical history only is not achievable at present. The mechanisms responsible for pain, clinical characteristics, and the optimal therapeutic approach remain poorly understood. Response to potent antireflux treatment is relatively limited. Current and future treatment strategies for functional heartburn patients who have failed standard dose proton pump inhibitors (PPIs) include increased PPI dose in some, as well as addition of pain modulators in others. PMID:12427796

  13. Structural adaptations to diverse fighting styles in sexually selected weapons

    PubMed Central

    McCullough, Erin L.; Tobalske, Bret W.; Emlen, Douglas J.

    2014-01-01

    The shapes of sexually selected weapons differ widely among species, but the drivers of this diversity remain poorly understood. Existing explanations suggest weapon shapes reflect structural adaptations to different fighting styles, yet explicit tests of this hypothesis are lacking. We constructed finite element models of the horns of different rhinoceros beetle species to test whether functional specializations for increased performance under species-specific fighting styles could have contributed to the diversification of weapon form. We find that horns are both stronger and stiffer in response to species-typical fighting loads and that they perform more poorly under atypical fighting loads, which suggests weapons are structurally adapted to meet the functional demands of fighting. Our research establishes a critical link between weapon form and function, revealing one way male–male competition can drive the diversification of animal weapons. PMID:25201949

  14. Structural adaptations to diverse fighting styles in sexually selected weapons.

    PubMed

    McCullough, Erin L; Tobalske, Bret W; Emlen, Douglas J

    2014-10-07

    The shapes of sexually selected weapons differ widely among species, but the drivers of this diversity remain poorly understood. Existing explanations suggest weapon shapes reflect structural adaptations to different fighting styles, yet explicit tests of this hypothesis are lacking. We constructed finite element models of the horns of different rhinoceros beetle species to test whether functional specializations for increased performance under species-specific fighting styles could have contributed to the diversification of weapon form. We find that horns are both stronger and stiffer in response to species-typical fighting loads and that they perform more poorly under atypical fighting loads, which suggests weapons are structurally adapted to meet the functional demands of fighting. Our research establishes a critical link between weapon form and function, revealing one way male-male competition can drive the diversification of animal weapons.

  15. Current transcatheter devices to treat functional tricuspid regurgitation with discussion of issues relevant to clinical trial design

    PubMed Central

    2017-01-01

    Functional or secondary tricuspid regurgitation (TR) has seen increased attention in recent times as relationships with clinically-relevant outcomes have come to light. Despite the association of increased mortality with significant TR, the disease remains under-recognized and thus relatively untreated. In addition, the disease itself has not been extensively studied and the interactions between annular dilatation, right heart disease and pulmonary hypertension are poorly understood. However, the high mortality and recurrence rate with current surgical replacement or repair techniques is well recognised, opening the door to transcatheter therapies for functional TR. The current perspective reviews the rationale for transcatheter solutions, describes some of the current approaches and discusses the ongoing questions of a poorly-studied condition which may limit the design of clinical trials for this disease. PMID:28706866

  16. When the "Golden Years" Turn Blue: Using the Healthy Aging Literature to Elucidate Anxious and Depressive Disorders in Older Adulthood

    ERIC Educational Resources Information Center

    Green, Jennifer S.; Magee, Joshua C.; Steiner, Amanda R. W.; Teachman, Bethany A.

    2017-01-01

    Current treatments for disorders of emotion, such as pathological anxiety, are often less effective in older adults than in younger adults and have poorly understood mechanisms, pointing to the need for psychopathology models that better account for age-related changes in normative emotional functioning and the expression of disordered emotion.…

  17. How well do parental and peer relationships in adolescence predict health in adulthood?

    PubMed

    Landstedt, Evelina; Hammarström, Anne; Winefield, Helen

    2015-07-01

    Although health effects of social relationships are well-researched, long-term health consequences of adolescent family as well as peer relationships are poorly understood. The aim of the study was to explore the prospective importance of parental and peer social relationships in adolescence on internalising and functional somatic symptoms in adulthood. Data were drawn from four waves of the Northern Swedish Cohort Study, response rate 94.3%, N=1001. Outcome variables were internalising and functional somatic symptoms at the ages of 21, 30 and 42. Relationship variables at age 16 were poor parental contact and three indicators of poor peer relationships. Associations were assessed in multivariate ordinal logistic regressions with adjustment for confounders and baseline health. Results show that the main relationships-related predictors of adult internalising symptoms were self-rated poor peer relationships in terms of spending time alone during after-school hours and poor parental relationship. Functional somatic symptoms on the other hand were most strongly associated with poor parental contact and not being happy with classmates at age 16. The quality of parental and peer relationships in adolescence predicts adult mental and functional somatic health as much as 26 years later, even when accounting for confounders and adolescent symptomatology. This study extends past research by exploring how both adolescent parental and peer relationships (self-reported as well as teacher reported) predict adult self-reported health. © 2015 the Nordic Societies of Public Health.

  18. Indications for hydrodilatation for frozen shoulder

    PubMed Central

    Rymaruk, S.; Peach, C.

    2017-01-01

    Frozen shoulder causes significant functional disability and pain in a population group constituted by patients who are often middle-aged and working. Frozen shoulder remains poorly understood. The available literature is limited and often prone to bias. A rapid, non-surgical and cost-effective treatment that reduces pain and restores function is an attractive option. Hydrodilatation is a potential first-line treatment of frozen shoulder in secondary care. Cite this article: EFORT Open Rev 2017;2:462–468. DOI: 10.1302/2058-5241.2.160061 PMID:29218231

  19. Introduction to the Thematic Minireview Series: Brain glycogen metabolism.

    PubMed

    Carlson, Gerald M; Dienel, Gerald A; Colbran, Roger J

    2018-05-11

    The synthesis of glycogen allows for efficient intracellular storage of glucose molecules in a soluble form that can be rapidly released to enter glycolysis in response to energy demand. Intensive studies of glucose and glycogen metabolism, predominantly in skeletal muscle and liver, have produced innumerable insights into the mechanisms of hormone action, resulting in the award of several Nobel Prizes over the last one hundred years. Glycogen is actually present in all cells and tissues, albeit at much lower levels than found in muscle or liver. However, metabolic and physiological roles of glycogen in other tissues are poorly understood. This series of Minireviews summarizes what is known about the enzymes involved in brain glycogen metabolism and studies that have linked glycogen metabolism to multiple brain functions involving metabolic communication between astrocytes and neurons. Recent studies unexpectedly linking some forms of epilepsy to mutations in two poorly understood proteins involved in glycogen metabolism are also reviewed. © 2018 Carlson et al.

  20. Differential Patterns of Abnormal Activity and Connectivity in the Amygdala-Prefrontal Circuitry in Bipolar-I and Bipolar-NOS Youth

    ERIC Educational Resources Information Center

    Ladouceur, Cecile D.; Farchione, Tiffany; Diwadkar, Vaibhav; Pruitt, Patrick; Radwan, Jacqueline; Axelson, David A.; Birmaher, Boris; Phillips, Mary L.

    2011-01-01

    Objective: The functioning of neural systems supporting emotion processing and regulation in youth with bipolar disorder not otherwise specified (BP-NOS) remains poorly understood. We sought to examine patterns of activity and connectivity in youth with BP-NOS relative to youth with bipolar disorder type I (BP-I) and healthy controls (HC). Method:…

  1. Seasonal Pond Characteristics Across A Chronosequence Of djacent Forest Ages In Northern Minnesota, USA

    Treesearch

    Brian J. Palik; Darold P. Batzer; Richard Buech; Dale Nichols; Kory Cease; Leanne M. Egeland; Dwight E. Streblow

    2001-01-01

    Small seasonal ponds are abundant in many forest landscapes, yet they remain poorly understood in terms of their response to disturbance of the surrounding upland forest. The potential for such a response is large because of the small size and, hence, high perimeter-to-area ratios of most ponds. High perimeter-to-area ratio may increase the importance of functional...

  2. Use of pyrolysis molecular beam mass spectrometry (py-MBMS) to characterize forest soil carbon: method and preliminary results

    Treesearch

    K.A. Magrini; R.J. Evans; C.M. Hoover; C.C. Elam; M.F. Davis

    2002-01-01

    The components of soil organic matter (SOM) and their degradation dynamics in forest soils are difficult to study and thus poorly understood,due to time-consuming sample collection, preparation, and difficulty of analyzing and identifying major components. As a result, changes in soil organic matter chemical composition as a function of age, forest type, or disturbance...

  3. Examining the Relationship between Home Literacy Environment and Neural Correlates of Phonological Processing in Beginning Readers with and without a Familial Risk for Dyslexia: An fMRI Study

    ERIC Educational Resources Information Center

    Powers, Sara J.; Wang, Yingying; Beach, Sara D.; Sideridis, Georgios D.; Gaab, Nadine

    2016-01-01

    Developmental dyslexia is a language-based learning disability characterized by persistent difficulty in learning to read. While an understanding of genetic contributions is emerging, the ways the environment affects brain functioning in children with developmental dyslexia are poorly understood. A relationship between the home literacy…

  4. Synaptic Activation of Ribosomal Protein S6 Phosphorylation Occurs Locally in Activated Dendritic Domains

    ERIC Educational Resources Information Center

    Pirbhoy, Patricia Salgado; Farris, Shannon; Steward, Oswald

    2016-01-01

    Previous studies have shown that induction of long-term potentiation (LTP) induces phosphorylation of ribosomal protein S6 (rpS6) in postsynaptic neurons, but the functional significance of rpS6 phosphorylation is poorly understood. Here, we show that synaptic stimulation that induces perforant path LTP triggers phosphorylation of rpS6 (p-rpS6)…

  5. Induction of Inhibitory Receptors on T Cells During Plasmodium vivax Malaria Impairs Cytokine Production

    PubMed Central

    Costa, Pedro A. C.; Leoratti, Fabiana M. S.; Figueiredo, Maria M.; Tada, Mauro S.; Pereira, Dhelio B.; Junqueira, Caroline; Soares, Irene S.; Barber, Daniel L.; Gazzinelli, Ricardo T.; Antonelli, Lis R. V.

    2015-01-01

    The function and regulation of the immune response triggered during malaria is complex and poorly understood, and there is a particular paucity of studies conducted in humans infected with Plasmodium vivax. While it has been proposed that T-cell-effector responses are crucial for protection against blood-stage malaria in mice, the mechanisms behind this in humans remain poorly understood. Experimental models of malaria have shown that the regulatory molecules, cytotoxic T-lymphocyte attenuator-4 (CTLA-4), lymphocyte activation gene-3 (LAG-3), and programmed death-1 (PD-1) are involved in the functional impairment of T cells during infection. Our goal was to define the role of these molecules during P. vivax malaria. We demonstrate that infection triggers the expression of regulatory molecules on T cells. The pattern of expression differs in CD4+ and CD8+ T cells. Higher frequencies of CD4+ express more than 1 regulatory molecule compared to CD8+ T cells. Moreover, lower proportions of CD4+ T cells coexpress regulatory molecules, but are still able to proliferate. Importantly, simultaneously blockade of the CLTA-4, PD-1, and T-cell immunoglobulin and mucin–3 signaling restores the cytokine production by antigen-specific cells. These data support the hypothesis that upregulation of inhibitory receptors on T cells during P. vivax malaria impairs parasite-specific T-cell effector function. PMID:26019284

  6. Diastolic dysfunction in hypertension.

    PubMed

    Nazário Leão, R; Marques da Silva, P

    Hypertension and coronary heart disease, often coexisting, are the most common risk factors for heart failure. The progression of hypertensive heart disease involves myocardial fibrosis and alterations in the left ventricular geometry that precede the functional change, initially asymptomatic. The left ventricular diastolic dysfunction is part of this continuum being defined by the presence of left ventricular diastolic dysfunction without signs or symptoms of heart failure or poor left ventricular systolic function. It is highly prevalent in hypertensive patients and is associated with increased cardiovascular morbidity and mortality. Despite its growing importance in clinical practice it remains poorly understood. This review aims to present the epidemiological fundamentals and the latest developments in the pathophysiology, diagnosis and treatment of left ventricular diastolic dysfunction. Copyright © 2017 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Muscle Functional Morphology in Paleobiology: The Past, Present, and Future of "Paleomyology".

    PubMed

    Perry, Jonathan M G; Prufrock, Kristen A

    2018-03-01

    Our knowledge of muscle anatomy and physiology in vertebrates has increased dramatically over the last two-hundred years. Today, much is understood about how muscles contract and about the functional meaning of muscular variation at multiple scales. Progress in muscle anatomy has profited from the availability of broad comparative samples, advances in microscopy have permitted comparisons at increasingly finer scales, and progress in muscle physiology has profited from many carefully designed and executed experiments. Several avenues of future work are promising. In particular, muscle ontogeny (growth and development) is poorly understood for many vertebrate groups. We consider which types of advances in muscle functional morphology are of use to paleobiologists. These are only a modest subset for muscle anatomy and a very small subset for muscle physiology. The relationship between muscle and bone - spatially and mechanically-is critical to any future advances in "paleomyology". Anat Rec, 301:538-555, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  8. Motor and somatosensory conversion disorder: a functional unawareness syndrome?

    PubMed

    Perez, David L; Barsky, Arthur J; Daffner, Kirk; Silbersweig, David A

    2012-01-01

    Although conversion disorder is closely connected to the origins of neurology and psychiatry, it remains poorly understood. In this article, the authors discuss neural and clinical parallels between lesional unawareness disorders and unilateral motor and somatosensory conversion disorder, emphasizing functional neuroimaging/disease correlates. Authors suggest that a functional-unawareness neurobiological framework, mediated by right hemisphere-lateralized, large-scale brain network dysfunction, may play a significant role in the neurobiology of conversion disorder. The perigenual anterior cingulate and the posterior parietal cortices are detailed as important in disease pathophysiology. Further investigations will refine the functional-unawareness concept, clarify the role of affective circuits, and delineate the process through which functional neurologic symptoms emerge.

  9. Homogenizing and diversifying effects of intensive agricultural land-use on plant species beta diversity in Central Europe - A call to adapt our conservation measures

    Treesearch

    Constanze Buhk; Martin Alt; Manuel J. Steinbauer; Carl Beierkuhnlein; Steve Warren; Anke Jentsch

    2017-01-01

    The prevention of biodiversity loss in agricultural landscapes to protect ecosystem stability and functions is of major importance to stabilize overall diversity. Intense agriculture leads to a loss in species richness and homogenization of species pools, but the processes behind are poorly understood due to a lack of systematic case studies: The specific...

  10. MicroRNA-281 regulates the expression of ecdysone receptor (EcR) isoform B in the silkworm, Bombyx mori

    USDA-ARS?s Scientific Manuscript database

    Hundreds of Bombyx mori miRNAs had been identified in recent years, but their function in vivo remains poorly understood. The silkworm EcR gene (BmEcR) has three transcriptional isoforms, A, B1 and B2. Isoform sequences are different in the 3’UTR region of the gene, which is the case only in insects...

  11. Visual/Verbal-Analytic Reasoning Bias as a Function of Self-Reported Autistic-Like Traits: A Study of Typically Developing Individuals Solving Raven's Advanced Progressive Matrices

    ERIC Educational Resources Information Center

    Fugard, Andrew J. B.; Stewart, Mary E.; Stenning, Keith

    2011-01-01

    People with autism spectrum condition (ASC) perform well on Raven's matrices, a test which loads highly on the general factor in intelligence. However, the mechanisms supporting enhanced performance on the test are poorly understood. Evidence is accumulating that milder variants of the ASC phenotype are present in typically developing individuals,…

  12. Laboratory tests for mumps vaccines.

    PubMed

    Minor, P D

    1997-03-01

    The action of live attenuated vaccines against mumps is poorly understood although their clinical efficacy is beyond doubt. The attenuated character of the vaccine is assured by consistency of production related to clinical trials, and limited studies of vaccine seeds in primates. Potency is assessed by infectivity in vitro and is subject to poorly understood sources of variation. Molecular biological studies are at an early stage.

  13. A descriptive model of resting-state networks using Markov chains.

    PubMed

    Xie, H; Pal, R; Mitra, S

    2016-08-01

    Resting-state functional connectivity (RSFC) studies considering pairwise linear correlations have attracted great interests while the underlying functional network structure still remains poorly understood. To further our understanding of RSFC, this paper presents an analysis of the resting-state networks (RSNs) based on the steady-state distributions and provides a novel angle to investigate the RSFC of multiple functional nodes. This paper evaluates the consistency of two networks based on the Hellinger distance between the steady-state distributions of the inferred Markov chain models. The results show that generated steady-state distributions of default mode network have higher consistency across subjects than random nodes from various RSNs.

  14. Software and the future of programming languages.

    PubMed

    Aho, Alfred V

    2004-02-27

    Although software is the key enabler of the global information infrastructure, the amount and extent of software in use in the world today are not widely understood, nor are the programming languages and paradigms that have been used to create the software. The vast size of the embedded base of existing software and the increasing costs of software maintenance, poor security, and limited functionality are posing significant challenges for the software R&D community.

  15. Molecular Basis of Essential Thrombocytosis

    DTIC Science & Technology

    2007-06-01

    notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does...not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 01-06-2007 2...known about platelet mRNAs. The pathogenesis of essential thrombocytosis (ET), a disease of platelet number and function, is poorly understood at the

  16. CTCF genetic alterations in endometrial carcinoma are pro-tumorigenic

    PubMed Central

    Marshall, A D; Bailey, C G; Champ, K; Vellozzi, M; O'Young, P; Metierre, C; Feng, Y; Thoeng, A; Richards, A M; Schmitz, U; Biro, M; Jayasinghe, R; Ding, L; Anderson, L; Mardis, E R; Rasko, J E J

    2017-01-01

    CTCF is a haploinsufficient tumour suppressor gene with diverse normal functions in genome structure and gene regulation. However the mechanism by which CTCF haploinsufficiency contributes to cancer development is not well understood. CTCF is frequently mutated in endometrial cancer. Here we show that most CTCF mutations effectively result in CTCF haploinsufficiency through nonsense-mediated decay of mutant transcripts, or loss-of-function missense mutation. Conversely, we identified a recurrent CTCF mutation K365T, which alters a DNA binding residue, and acts as a gain-of-function mutation enhancing cell survival. CTCF genetic deletion occurs predominantly in poor prognosis serous subtype tumours, and this genetic deletion is associated with poor overall survival. In addition, we have shown that CTCF haploinsufficiency also occurs in poor prognosis endometrial clear cell carcinomas and has some association with endometrial cancer relapse and metastasis. Using shRNA targeting CTCF to recapitulate CTCF haploinsufficiency, we have identified a novel role for CTCF in the regulation of cellular polarity of endometrial glandular epithelium. Overall, we have identified two novel pro-tumorigenic roles (promoting cell survival and altering cell polarity) for genetic alterations of CTCF in endometrial cancer. PMID:28319062

  17. Olive Component Oleuropein Promotes β-Cell Insulin Secretion and Protects β-Cells from Amylin Amyloid-Induced Cytotoxicity.

    PubMed

    Wu, Ling; Velander, Paul; Liu, Dongmin; Xu, Bin

    2017-09-26

    Oleuropein, a natural product derived from olive leaves, has reported anti-diabetic functions. However, detailed molecular mechanisms for how it affects β-cell functions remain poorly understood. Here, we present evidence that oleuropein promotes glucose-stimulated insulin secretion (GSIS) in β-cells. The effect is dose-dependent and stimulates the ERK/MAPK signaling pathway. We further demonstrated that oleuropein inhibits the cytotoxicity induced by amylin amyloids, a hallmark feature of type 2 diabetes. We demonstrated that these dual functions are structure-specific: we identified the 3-hydroxytyrosol moiety of oleuropein as the main functional entity responsible for amyloid inhibition, but the novel GSIS function requires the entire structure scaffold of the molecule.

  18. A conceptual framework for Lake Michigan coastal/nearshore ecosystems, with application to Lake Michigan Lakewide Management Plan (LaMP) objectives

    USGS Publications Warehouse

    Seelbach, Paul W.; Fogarty, Lisa R.; Bunnell, David Bo; Haack, Sheridan K.; Rogers, Mark W.

    2013-01-01

    The Lakewide Management Plans (LaMPs) within the Great Lakes region are examples of broad-scale, collaborative resource-management efforts that require a sound ecosystems approach. Yet, the LaMP process is lacking a holistic framework that allows these individual actions to be planned and understood within the broader context of the Great Lakes ecosystem. In this paper we (1) introduce a conceptual framework that unifies ideas and language among Great Lakes managers and scientists, whose focus areas range from tributary watersheds to open-lake waters, and (2) illustrate how the framework can be used to outline the geomorphic, hydrologic biological, and societal processes that underlie several goals of the Lake Michigan LaMP, thus providing a holistic and fairly comprehensive roadmap for tackling these challenges. For each selected goal, we developed a matrix that identifies the key ecosystem processes within the cell for each lake zone and each discipline; we then provide one example where a process is poorly understood and a second where a process is understood, but its impact or importance is unclear. Implicit in these objectives was our intention to highlight the importance of the Great Lakes coastal/nearshore zone. Although the coastal/nearshore zone is the important linkage zone between the watershed and open-lake zones—and is the zone where most LaMP issues are focused--scientists and managers have a relatively poor understanding of how the coastal/nearshore zone functions. We envision follow-up steps including (1) collaborative development of a more detailed and more complete conceptual model of how (and where) identified processes are thought to function, and (2) a subsequent gap analysis of science and monitoring priorities.

  19. Human tears contain a chemosignal.

    PubMed

    Gelstein, Shani; Yeshurun, Yaara; Rozenkrantz, Liron; Shushan, Sagit; Frumin, Idan; Roth, Yehudah; Sobel, Noam

    2011-01-14

    Emotional tearing is a poorly understood behavior that is considered uniquely human. In mice, tears serve as a chemosignal. We therefore hypothesized that human tears may similarly serve a chemosignaling function. We found that merely sniffing negative-emotion-related odorless tears obtained from women donors induced reductions in sexual appeal attributed by men to pictures of women's faces. Moreover, after sniffing such tears, men experienced reduced self-rated sexual arousal, reduced physiological measures of arousal, and reduced levels of testosterone. Finally, functional magnetic resonance imaging revealed that sniffing women's tears selectively reduced activity in brain substrates of sexual arousal in men.

  20. Biogeographical disparity in the functional diversity and redundancy of corals.

    PubMed

    McWilliam, Mike; Hoogenboom, Mia O; Baird, Andrew H; Kuo, Chao-Yang; Madin, Joshua S; Hughes, Terry P

    2018-03-20

    Corals are major contributors to a range of key ecosystem functions on tropical reefs, including calcification, photosynthesis, nutrient cycling, and the provision of habitat structure. The abundance of corals is declining at multiple scales, and the species composition of assemblages is responding to escalating human pressures, including anthropogenic global warming. An urgent challenge is to understand the functional consequences of these shifts in abundance and composition in different biogeographical contexts. While global patterns of coral species richness are well known, the biogeography of coral functions in provinces and domains with high and low redundancy is poorly understood. Here, we quantify the functional traits of all currently recognized zooxanthellate coral species ( n = 821) in both the Indo-Pacific and Atlantic domains to examine the relationships between species richness and the diversity and redundancy of functional trait space. We find that trait diversity is remarkably conserved (>75% of the global total) along latitudinal and longitudinal gradients in species richness, falling away only in species-poor provinces ( n < 200), such as the Persian Gulf (52% of the global total), Hawaii (37%), the Caribbean (26%), and the East-Pacific (20%), where redundancy is also diminished. In the more species-poor provinces, large and ecologically important areas of trait space are empty, or occupied by just a few, highly distinctive species. These striking biogeographical differences in redundancy could affect the resilience of critical reef functions and highlight the vulnerability of relatively depauperate, peripheral locations, which are often a low priority for targeted conservation efforts.

  1. Conserved sequence-specific lincRNA-steroid receptor interactions drive transcriptional repression and direct cell fate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, William H.; Pickard, Mark R.; de Vera, Ian Mitchelle S.

    2014-12-23

    The majority of the eukaryotic genome is transcribed, generating a significant number of long intergenic noncoding RNAs (lincRNAs). Although lincRNAs represent the most poorly understood product of transcription, recent work has shown lincRNAs fulfill important cellular functions. In addition to low sequence conservation, poor understanding of structural mechanisms driving lincRNA biology hinders systematic prediction of their function. Here we report the molecular requirements for the recognition of steroid receptors (SRs) by the lincRNA growth arrest-specific 5 (Gas5), which regulates steroid-mediated transcriptional regulation, growth arrest and apoptosis. We identify the functional Gas5-SR interface and generate point mutations that ablate the SR-Gas5more » lincRNA interaction, altering Gas5-driven apoptosis in cancer cell lines. Further, we find that the Gas5 SR-recognition sequence is conserved among haplorhines, with its evolutionary origin as a splice acceptor site. This study demonstrates that lincRNAs can recognize protein targets in a conserved, sequence-specific manner in order to affect critical cell functions.« less

  2. Emerging Synaptic Molecules as Candidates in the Etiology of Neurological Disorders

    PubMed Central

    Torres, Viviana I.; Vallejo, Daniela

    2017-01-01

    Synapses are complex structures that allow communication between neurons in the central nervous system. Studies conducted in vertebrate and invertebrate models have contributed to the knowledge of the function of synaptic proteins. The functional synapse requires numerous protein complexes with specialized functions that are regulated in space and time to allow synaptic plasticity. However, their interplay during neuronal development, learning, and memory is poorly understood. Accumulating evidence links synapse proteins to neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. In this review, we describe the way in which several proteins that participate in cell adhesion, scaffolding, exocytosis, and neurotransmitter reception from presynaptic and postsynaptic compartments, mainly from excitatory synapses, have been associated with several synaptopathies, and we relate their functions to the disease phenotype. PMID:28331639

  3. Cadherin-11 regulates protrusive activity in Xenopus cranial neural crest cells upstream of Trio and the small GTPases.

    PubMed

    Kashef, Jubin; Köhler, Almut; Kuriyama, Sei; Alfandari, Dominique; Mayor, Roberto; Wedlich, Doris

    2009-06-15

    Xenopus Cadherin-11 (Xcad-11) is expressed when cranial neural crest cells (CNC) acquire motility. However, its function in stimulating cell migration is poorly understood. Here, we demonstrate that Xcad-11 initiates filopodia and lamellipodia formation, which is essential for CNC to populate pharyngeal pouches. We identified the cytoplasmic tail of Xcad-11 as both necessary and sufficient for proper CNC migration as long as it was linked to the plasma membrane. Our results showing that guanine nucleotide exchange factor (GEF)-Trio binds to Xcad-11 and can functionally substitute for it like constitutively active forms of RhoA, Rac, and cdc42 unravel a novel cadherin function.

  4. A Comparative Study of Airflow and Odorant Deposition in the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Richter, Joseph; Rumple, Christopher; Ranslow, Allison; Quigley, Andrew; Pang, Benison; Neuberger, Thomas; Krane, Michael; van Valkenburgh, Blaire; Craven, Brent

    2013-11-01

    The complex structure of the mammalian nasal cavity provides a tortuous airflow path and a large surface area for respiratory air conditioning, filtering of inspired contaminants, and olfaction. Due to the small and contorted structure of the nasal turbinals, nasal anatomy and function remains poorly understood in most mammals. Here, we utilize high-resolution MRI scans to reconstruct anatomically-accurate models of the mammalian nasal cavity. These data are used to compare the form and function of the mammalian nose. High-fidelity computational fluid dynamics (CFD) simulations of nasal airflow and odorant deposition are presented and used to compare olfactory function across species (primate, rodent, canine, feline, ungulate).

  5. Activation of Corticostriatal Circuitry Relieves Chronic Neuropathic Pain

    PubMed Central

    Lee, Michelle; Manders, Toby R.; Eberle, Sarah E.; Su, Chen; D'amour, James; Yang, Runtao; Lin, Hau Yueh; Deisseroth, Karl; Froemke, Robert C.

    2015-01-01

    Neural circuits that determine the perception and modulation of pain remain poorly understood. The prefrontal cortex (PFC) provides top-down control of sensory and affective processes. While animal and human imaging studies have shown that the PFC is involved in pain regulation, its exact role in pain states remains incompletely understood. A key output target for the PFC is the nucleus accumbens (NAc), an important component of the reward circuitry. Interestingly, recent human imaging studies suggest that the projection from the PFC to the NAc is altered in chronic pain. The function of this corticostriatal projection in pain states, however, is not known. Here we show that optogenetic activation of the PFC produces strong antinociceptive effects in a rat model (spared nerve injury model) of persistent neuropathic pain. PFC activation also reduces the affective symptoms of pain. Furthermore, we show that this pain-relieving function of the PFC is likely mediated by projections to the NAc. Thus, our results support a novel role for corticostriatal circuitry in pain regulation. PMID:25834050

  6. Template-Directed Copolymerization, Random Walks along Disordered Tracks, and Fractals

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre

    2016-12-01

    In biology, template-directed copolymerization is the fundamental mechanism responsible for the synthesis of DNA, RNA, and proteins. More than 50 years have passed since the discovery of DNA structure and its role in coding genetic information. Yet, the kinetics and thermodynamics of information processing in DNA replication, transcription, and translation remain poorly understood. Challenging issues are the facts that DNA or RNA sequences constitute disordered media for the motion of polymerases or ribosomes while errors occur in copying the template. Here, it is shown that these issues can be addressed and sequence heterogeneity effects can be quantitatively understood within a framework revealing universal aspects of information processing at the molecular scale. In steady growth regimes, the local velocities of polymerases or ribosomes along the template are distributed as the continuous or fractal invariant set of a so-called iterated function system, which determines the copying error probabilities. The growth may become sublinear in time with a scaling exponent that can also be deduced from the iterated function system.

  7. Mapping the Relationship between Glycosyl Acceptor Reactivity and Glycosylation Stereoselectivity.

    PubMed

    van der Vorm, Stefan; van Hengst, Jacob M A; Bakker, Marloes; Overkleeft, Herman S; van der Marel, Gijsbert A; Codée, Jeroen D C

    2018-03-30

    The reactivity of both coupling partners-the glycosyl donor and acceptor-is decisive for the outcome of a glycosylation reaction, in terms of both yield and stereoselectivity. Where the reactivity of glycosyl donors is well understood and can be controlled through manipulation of the functional/protecting-group pattern, the reactivity of glycosyl acceptor alcohols is poorly understood. We here present an operationally simple system to gauge glycosyl acceptor reactivity, which employs two conformationally locked donors with stereoselectivity that critically depends on the reactivity of the nucleophile. A wide array of acceptors was screened and their structure-reactivity/stereoselectivity relationships established. By systematically varying the protecting groups, the reactivity of glycosyl acceptors can be adjusted to attain stereoselective cis-glucosylations. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Forest restoration, biodiversity and ecosystem functioning.

    PubMed

    Aerts, Raf; Honnay, Olivier

    2011-11-24

    Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF) perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context, but it also highlights that much remains to be understood, especially regarding the relation between forest functioning on the one side and genetic diversity and above-ground-below-ground species associations on the other. The strong emphasis of the BEF-approach on functional rather than taxonomic diversity may also be the beginning of a paradigm shift in restoration ecology, increasing the tolerance towards allochthonous species.

  9. Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses.

    PubMed

    Mahanty, Siddhartha; Hutchinson, Karen; Agarwal, Sudhanshu; McRae, Michael; Rollin, Pierre E; Pulendran, Bali

    2003-03-15

    Acute infection of humans with Ebola and Lassa viruses, two principal etiologic agents of hemorrhagic fevers, often results in a paradoxical pattern of immune responses: early infection, characterized by an outpouring of inflammatory mediators such as TNF-alpha, IL-1 beta, and IL-6, vs late stage infections, which are associated with poor immune responses. The mechanisms underlying these diverse outcomes are poorly understood. In particular, the role played by cells of the innate immune system, such as dendritic cells (DC), is not known. In this study, we show that Ebola and Lassa viruses infect human monocyte-derived DC and impair their function. Monocyte-derived DC exposed to either virus fail to secrete proinflammatory cytokines, do not up-regulate costimulatory molecules, and are poor stimulators of T cells. These data represent the first evidence for a mechanism by which Ebola and Lassa viruses target DC to impair adaptive immunity.

  10. Seizure Control and Memory Impairment Are Related to Disrupted Brain Functional Integration in Temporal Lobe Epilepsy.

    PubMed

    Park, Chang-Hyun; Choi, Yun Seo; Jung, A-Reum; Chung, Hwa-Kyoung; Kim, Hyeon Jin; Yoo, Jeong Hyun; Lee, Hyang Woon

    2017-01-01

    Brain functional integration can be disrupted in patients with temporal lobe epilepsy (TLE), but the clinical relevance of this disruption is not completely understood. The authors hypothesized that disrupted functional integration over brain regions remote from, as well as adjacent to, the seizure focus could be related to clinical severity in terms of seizure control and memory impairment. Using resting-state functional MRI data acquired from 48 TLE patients and 45 healthy controls, the authors mapped functional brain networks and assessed changes in a network parameter of brain functional integration, efficiency, to examine the distribution of disrupted functional integration within and between brain regions. The authors assessed whether the extent of altered efficiency was influenced by seizure control status and whether the degree of altered efficiency was associated with the severity of memory impairment. Alterations in the efficiency were observed primarily near the subcortical region ipsilateral to the seizure focus in TLE patients. The extent of regional involvement was greater in patients with poor seizure control: it reached the frontal, temporal, occipital, and insular cortices in TLE patients with poor seizure control, whereas it was limited to the limbic and parietal cortices in TLE patients with good seizure control. Furthermore, TLE patients with poor seizure control experienced more severe memory impairment, and this was associated with lower efficiency in the brain regions with altered efficiency. These findings indicate that the distribution of disrupted brain functional integration is clinically relevant, as it is associated with seizure control status and comorbid memory impairment.

  11. Crystal structure of AFV1-102, a protein from the acidianus filamentous virus 1

    PubMed Central

    Keller, Jenny; Leulliot, Nicolas; Collinet, Bruno; Campanacci, Valerie; Cambillau, Christian; Pranghisvilli, David; van Tilbeurgh, Herman

    2009-01-01

    Viruses infecting hyperthermophilic archaea have intriguing morphologies and genomic properties. The vast majority of their genes do not have homologs other than in other hyperthermophilic viruses, and the biology of these viruses is poorly understood. As part of a structural genomics project on the proteins of these viruses, we present here the structure of a 102 amino acid protein from acidianus filamentous virus 1 (AFV1-102). The structure shows that it is made of two identical motifs that have poor sequence similarity. Although no function can be proposed from structural analysis, tight binding of the gateway tag peptide in a groove between the two motifs suggests AFV1-102 is involved in protein protein interactions. PMID:19319936

  12. Emergence of collective propulsion through cell-cell adhesion.

    PubMed

    Matsushita, Katsuyoshi

    2018-04-01

    The mechanisms driving the collective movement of cells remain poorly understood. To contribute toward resolving this mystery, a model was formulated to theoretically explore the possible functions of polarized cell-cell adhesion in collective cell migration. The model consists of an amoeba cell with polarized cell-cell adhesion, which is controlled by positive feedback with cell motion. This model cell has no persistent propulsion and therefore exhibits a simple random walk when in isolation. However, at high density, these cells acquire collective propulsion and form ordered movement. This result suggests that cell-cell adhesion has a potential function, which induces collective propulsion with persistence.

  13. The role of skeletal muscle in the pathophysiology and management of knee osteoarthritis.

    PubMed

    Krishnasamy, Priathashini; Hall, Michelle; Robbins, Sarah R

    2018-05-01

    The role of skeletal muscle in the pathophysiology of knee OA is poorly understood. To date, the majority of literature has focused on the association of muscle strength with OA symptoms, disease onset and progression. However, deficits or improvements in skeletal muscle strength do not fully explain the mechanisms behind outcome measures in knee OA, such as pain, function and structural disease. This review aims to summarize components of skeletal muscle, providing a holistic view of skeletal muscle mechanisms that includes muscle function, quality and composition and their interactions. Similarly, the role of skeletal muscle in the management of knee OA will be discussed.

  14. Emergence of collective propulsion through cell-cell adhesion

    NASA Astrophysics Data System (ADS)

    Matsushita, Katsuyoshi

    2018-04-01

    The mechanisms driving the collective movement of cells remain poorly understood. To contribute toward resolving this mystery, a model was formulated to theoretically explore the possible functions of polarized cell-cell adhesion in collective cell migration. The model consists of an amoeba cell with polarized cell-cell adhesion, which is controlled by positive feedback with cell motion. This model cell has no persistent propulsion and therefore exhibits a simple random walk when in isolation. However, at high density, these cells acquire collective propulsion and form ordered movement. This result suggests that cell-cell adhesion has a potential function, which induces collective propulsion with persistence.

  15. [Fanconi anemia: cellular and molecular features].

    PubMed

    Macé, G; Briot, D; Guervilly, J-H; Rosselli, F

    2007-02-01

    Fanconi anemia (FA) is a recessive human cancer prone syndrome featuring bone marrow failure, developmental abnormalities and hypersensitivity to DNA crosslinking agents exposure. 11 among 12 FA gene have been isolated. The biochemical functions of the FANC proteins remain poorly understood. Anyhow, to cope with DNA crosslinks a cell needs a functional FANC pathway. Moreover, the FANC proteins appear to be involved in cell protection against oxidative damage and in the control of TNF-alpha activity. In this review, we describe the current understanding of the FANC pathway and we present how it may be integrated in the complex networks of proteins involved in maintaining the cellular homeostasis.

  16. Contribution of Theory of Mind, Executive Functioning, and Pragmatics to Socialization Behaviors of Children with High-Functioning Autism.

    PubMed

    Berenguer, Carmen; Miranda, Ana; Colomer, Carla; Baixauli, Inmaculada; Roselló, Belén

    2018-02-01

    Social difficulties are a key aspect of autism, but the intervening factors are still poorly understood. This study had two objectives: to compare the profile of ToM skills, executive functioning (EF), and pragmatic competence (PC) of children with high-functioning autism (HFA) and children with typical development (TD), and analyze their mediator role in social functioning. The participants were 52 children with HFA and 37 children with TD matched on age, intelligence quotient, and expressive vocabulary. Significant differences were found on measures of ToM, both explicit and applied, EF, and PC between children with HFA and TD. Multiple mediation analysis revealed that applied ToM skills and PC mediated the relations between autism symptoms and social functioning. Implications for social cognitive interventions to address these findings are discussed.

  17. Why Is Your Patient Still Short of Breath? Understanding the Complex Pathophysiology of Dyspnea in Chronic Kidney Disease.

    PubMed

    Salerno, Fabio Rosario; Parraga, Grace; McIntyre, Christopher William

    2017-01-01

    Dyspnea is one of the most common symptoms associated with CKD. It has a profound influence on the quality of life of CKD patients, and its underlying causes are often associated with a negative prognosis. However, its pathophysiology is poorly understood. While hemodialysis may address fluid overload, it often does not significantly improve breathlessness, suggesting multiple and co-existing alternative issues exist. The aim of this article is to discuss the main pathophysiologic mechanisms and the most important putative etiologies underlying dyspnea in CKD patients. Congestive heart failure, unrecognized chronic lung disease, pulmonary hypertension, lung fibrosis, air microembolism, dialyzer bio-incompatibility, anemia, sodium, and fluid overload are potential frequent causes of breathing disorders in this population. However, the relative contributions in any one given patient are poorly understood. Systemic inflammation is a common theme and contributes to the development of endothelial dysfunction, lung fibrosis, anemia, malnutrition, and muscle wasting. The introduction of novel multimodal imaging techniques, including pulmonary functional magnetic resonance imaging with inhaled contrast agents, could provide new insights into the pathophysiology of dyspnea in CKD patients and ultimately contribute to improving our clinical management of this symptom. © 2016 Wiley Periodicals, Inc.

  18. Extinction order and altered community structure rapidly disrupt ecosystem functioning.

    PubMed

    Larsen, Trond H; Williams, Neal M; Kremen, Claire

    2005-05-01

    By causing extinctions and altering community structure, anthropogenic disturbances can disrupt processes that maintain ecosystem integrity. However, the relationship between community structure and ecosystem functioning in natural systems is poorly understood. Here we show that habitat loss appeared to disrupt ecosystem functioning by affecting extinction order, species richness and abundance. We studied pollination by bees in a mosaic of agricultural and natural habitats in California and dung burial by dung beetles on recently created islands in Venezuela. We found that large-bodied bee and beetle species tended to be both most extinction-prone and most functionally efficient, contributing to rapid functional loss. Simulations confirmed that extinction order led to greater disruption of function than predicted by random species loss. Total abundance declined with richness and also appeared to contribute to loss of function. We demonstrate conceptually and empirically how the non-random response of communities to disturbance can have unexpectedly large functional consequences.

  19. Role of a new Rho family member in cell migration and axon guidance in C. elegans.

    PubMed

    Zipkin, I D; Kindt, R M; Kenyon, C J

    1997-09-05

    Rho family GTPases are thought to regulate actin-dependent processes, but their functions in vivo are still poorly understood. We have investigated the function of a new, widely expressed Rho family member in C. elegans by analyzing mutations in the endogenous gene. Activated and null alleles all inhibit cell migration, demonstrating that this protein is required for cell migration in vivo. Only a small subset of the migrations inhibited by activating mutations are inhibited by null mutations, suggesting that considerable functional redundancy exists within this system. Our findings support this conclusion and show that mig-2 functions redundantly with another pathway to regulate nuclear migration. Surprisingly, activated alleles also cause misguided axon growth, suggesting that Rho family GTPases may couple guidance cues to process outgrowth.

  20. Alkylation Damage by Lipid Electrophiles Targets Functional Protein Systems*

    PubMed Central

    Codreanu, Simona G.; Ullery, Jody C.; Zhu, Jing; Tallman, Keri A.; Beavers, William N.; Porter, Ned A.; Marnett, Lawrence J.; Zhang, Bing; Liebler, Daniel C.

    2014-01-01

    Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions. PMID:24429493

  1. Brain and Cognitive Reserve: Translation via Network Control Theory

    PubMed Central

    Medaglia, John Dominic; Pasqualetti, Fabio; Hamilton, Roy H.; Thompson-Schill, Sharon L.; Bassett, Danielle S.

    2017-01-01

    Traditional approaches to understanding the brain’s resilience to neuropathology have identified neurophysiological variables, often described as brain or cognitive “reserve,” associated with better outcomes. However, mechanisms of function and resilience in large-scale brain networks remain poorly understood. Dynamic network theory may provide a basis for substantive advances in understanding functional resilience in the human brain. In this perspective, we describe recent theoretical approaches from network control theory as a framework for investigating network level mechanisms underlying cognitive function and the dynamics of neuroplasticity in the human brain. We describe the theoretical opportunities offered by the application of network control theory at the level of the human connectome to understand cognitive resilience and inform translational intervention. PMID:28104411

  2. Cadherin-11 regulates protrusive activity in Xenopus cranial neural crest cells upstream of Trio and the small GTPases

    PubMed Central

    Kashef, Jubin; Köhler, Almut; Kuriyama, Sei; Alfandari, Dominique; Mayor, Roberto; Wedlich, Doris

    2009-01-01

    Xenopus Cadherin-11 (Xcad-11) is expressed when cranial neural crest cells (CNC) acquire motility. However, its function in stimulating cell migration is poorly understood. Here, we demonstrate that Xcad-11 initiates filopodia and lamellipodia formation, which is essential for CNC to populate pharyngeal pouches. We identified the cytoplasmic tail of Xcad-11 as both necessary and sufficient for proper CNC migration as long as it was linked to the plasma membrane. Our results showing that guanine nucleotide exchange factor (GEF)-Trio binds to Xcad-11 and can functionally substitute for it like constitutively active forms of RhoA, Rac, and cdc42 unravel a novel cadherin function. PMID:19528317

  3. DNA replication-timing analysis of human chromosome 22 at high resolution and different developmental states.

    PubMed

    White, Eric J; Emanuelsson, Olof; Scalzo, David; Royce, Thomas; Kosak, Steven; Oakeley, Edward J; Weissman, Sherman; Gerstein, Mark; Groudine, Mark; Snyder, Michael; Schübeler, Dirk

    2004-12-21

    Duplication of the genome during the S phase of the cell cycle does not occur simultaneously; rather, different sequences are replicated at different times. The replication timing of specific sequences can change during development; however, the determinants of this dynamic process are poorly understood. To gain insights into the contribution of developmental state, genomic sequence, and transcriptional activity to replication timing, we investigated the timing of DNA replication at high resolution along an entire human chromosome (chromosome 22) in two different cell types. The pattern of replication timing was correlated with respect to annotated genes, gene expression, novel transcribed regions of unknown function, sequence composition, and cytological features. We observed that chromosome 22 contains regions of early- and late-replicating domains of 100 kb to 2 Mb, many (but not all) of which are associated with previously described chromosomal bands. In both cell types, expressed sequences are replicated earlier than nontranscribed regions. However, several highly transcribed regions replicate late. Overall, the DNA replication-timing profiles of the two different cell types are remarkably similar, with only nine regions of difference observed. In one case, this difference reflects the differential expression of an annotated gene that resides in this region. Novel transcribed regions with low coding potential exhibit a strong propensity for early DNA replication. Although the cellular function of such transcripts is poorly understood, our results suggest that their activity is linked to the replication-timing program.

  4. The Evolution of the Data Scientist.

    NASA Astrophysics Data System (ADS)

    Parsons, M. A.

    2011-12-01

    When did the data scientist come into being? The National Science Board formally defined the term in 2005. Prior to that, the term was used sporadically, but typically to refer to statisticians or analysts. Nevertheless, the data scientist function has existed for a long time. Those who performed the function were called data managers or librarians or curators. Their role with digital data was critical but ill defined and poorly understood, especially by outsiders. Today, the tem data scientist is gaining currency and the discipline is gaining prominence, but it is a very dynamic field. And while it may be better defined, the term is still poorly understood. This lack of understanding can partly be attributed to the dynamic and evolutionary nature of the field. Domain scientists have developed new expectations for technology and services that enhance their ability to handle massive and complex data and present new challenges to data scientists. In response, data scientists are redefining and adapting their role to these rapidly changing demands of data-driven science and the fourth paradigm. In this paper, I explore the recent evolution of the field of data science as a socio-technical discipline. I discuss what has changed as well as what has remained the same and how some things that seem new may be a recasting of old problems. I take the view that data science is necessarily an evolutionary field that will need to continue to adapt in response to known and unknown challenges in order to ensure a healthy data ecosystem.

  5. Identifying balance and fall risk in community-dwelling older women: the effect of executive function on postural control.

    PubMed

    Muir-Hunter, Susan W; Clark, Jennifer; McLean, Stephanie; Pedlow, Sam; Van Hemmen, Alysia; Montero Odasso, Manuel; Overend, Tom

    2014-01-01

    The mechanisms linking cognition, balance function, and fall risk among older adults are not fully understood. An evaluation of the effect of cognition on balance tests commonly used in clinical practice to assess community-dwelling older adults could enhance the identification of at-risk individuals. The study aimed to determine (1) the association between cognition and clinical tests of balance and (2) the relationship between executive function (EF) and balance under single- and dual-task testing. Participants (24 women, mean age of 76.18 [SD 16.45] years) completed six clinical balance tests, four cognitive tests, and two measures of physical function. Poor balance function was associated with poor performance on cognitive testing of EF. In addition, the association with EF was strongest under the dual-task timed up-and-go (TUG) test and the Fullerton Advanced Balance Scale. Measures of global cognition were associated only with the dual-task performance of the TUG. Postural sway measured with the Standing Balance Test, under single- or dual-task test conditions, was not associated with cognition. Decreased EF was associated with worse performance on functional measures of balance. The relationship between EF and balance was more pronounced with dual-task testing using a complex cognitive task combined with the TUG.

  6. Atmospheric Research at BNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Daum

    2008-10-06

    Brookhaven researcher Peter Daum discusses an international field experiment designed to make observations of critical components of the climate system of the southeastern Pacific. Because elements of this system are poorly understood and poorly represent

  7. Atmospheric Research at BNL

    ScienceCinema

    Peter Daum

    2017-12-09

    Brookhaven researcher Peter Daum discusses an international field experiment designed to make observations of critical components of the climate system of the southeastern Pacific. Because elements of this system are poorly understood and poorly represent

  8. Learning a Foreign Language: A New Path to Enhancement of Cognitive Functions.

    PubMed

    Shoghi Javan, Sara; Ghonsooly, Behzad

    2018-02-01

    The complicated cognitive processes involved in natural (primary) bilingualism lead to significant cognitive development. Executive functions as a fundamental component of human cognition are deemed to be affected by language learning. To date, a large number of studies have investigated how natural (primary) bilingualism influences executive functions; however, the way acquired (secondary) bilingualism manipulates executive functions is poorly understood. To fill this gap, controlling for age, gender, IQ, and socio-economic status, the researchers compared 60 advanced learners of English as a foreign language (EFL) to 60 beginners on measures of executive functions involving Stroop, Wisconsin Card Sorting Task (WCST) and Wechsler's digit span tasks. The results suggested that mastering English as a foreign language causes considerable enhancement in two components of executive functions, namely cognitive flexibility and working memory. However, no significant difference was observed in inhibitory control between the advanced EFL learners and beginners.

  9. Poor oral status is associated with rehabilitation outcome in older people.

    PubMed

    Shiraishi, Ai; Yoshimura, Yoshihiro; Wakabayashi, Hidetaka; Tsuji, Yuri

    2017-04-01

    Poor oral status is associated with increased physical dependency and cognitive decline. Malnutrition, a potential result of poor oral status, is associated with poorer rehabilitation outcome and physical function. However, the association between oral status and rehabilitation outcome is not fully understood. The present study investigated the association of poor oral status with rehabilitation outcome in older patients. A retrospective cohort study was carried out of 108 consecutive patients (mean age 80.5 ± 6.8 years; 50.9% men) who were admitted to convalescent rehabilitation wards. The Revised Oral Assessment Guide was used to evaluate oral status. Rehabilitation outcome was evaluated by the Functional Independence Measure (FIM) on discharge. Multivariate analyses were applied to examine the associations between poor oral status and motor-FIM on discharge. According to the Revised Oral Assessment Guide score, 14.8% of participants had normal oral status, 52.8% had slight to moderate oral problems and 32.4% had severe oral problems. The median scores of motor-FIM on admission and on discharge were 52 (interquartile range 25-70) and 75 (interquartile range 51-89), respectively. Multivariate analysis showed that the Revised Oral Assessment Guide score and the motor-/cognitive-FIM scores on admission were significant independent factors for motor-FIM on discharge, after adjusted for sex, age, length of stay, nutritional status, handgrip and causative diseases (P < 0.001). Poor oral status is associated with rehabilitation outcome in older people. Geriatr Gerontol Int 2017; 17: 598-604. © 2016 Japan Geriatrics Society.

  10. Functional duality of the cell wall.

    PubMed

    Latgé, Jean-Paul; Beauvais, Anne

    2014-08-01

    The polysaccharide cell wall is the extracellular armour of the fungal cell. Although essential in the protection of the fungal cell against aggressive external stresses, the biosynthesis of the polysaccharide core is poorly understood. For a long time it was considered that this cell wall skeleton was a fixed structure whose role was only to be sensed as non-self by the host and consequently trigger the defence response. It is now known that the cell wall polysaccharide composition and localization continuously change to adapt to their environment and that these modifications help the fungus to escape from the immune system. Moreover, cell wall polysaccharides could function as true virulence factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The Role of Histone Deacetylases in Neurodegenerative Diseases and Small-Molecule Inhibitors as a Potential Therapeutic Approach

    NASA Astrophysics Data System (ADS)

    Bürli, Roland W.; Thomas, Elizabeth; Beaumont, Vahri

    Neurodegenerative disorders are devastating for patients and their social environment. Their etiology is poorly understood and complex. As a result, there is clearly an urgent need for therapeutic agents that slow down disease progress and alleviate symptoms. In this respect, interference with expression and function of multiple gene products at the epigenetic level has offered much promise, and histone deacetylases play a crucial role in these processes. This review presents an overview of the biological pathways in which these enzymes are involved and illustrates the complex network of proteins that governs their activity. An overview of small molecules that interfere with histone deacetylase function is provided.

  12. Dynamic Neuroplasticity after Human Prefrontal Cortex Damage

    PubMed Central

    Voytek, Bradley; Davis, Matar; Yago, Elena; Barceló, Francisco; Vogel, Edward K.; Knight, Robert T.

    2010-01-01

    Summary Memory and attention deficits are common after prefrontal cortex (PFC) damage, yet people generally recover some function over time. Recovery is thought to be dependent upon undamaged brain regions but the temporal dynamics underlying cognitive recovery are poorly understood. Here we provide evidence that the intact PFC compensates for damage in the lesioned PFC on a trial-by-trial basis dependent on cognitive load. The extent of this rapid functional compensation is indexed by transient increases in electrophysiological measures of attention and memory in the intact PFC, detectable within a second after stimulus presentation and only when the lesioned hemisphere is challenged. These observations provide evidence supporting a dynamic and flexible model of compensatory neural plasticity. PMID:21040843

  13. Myeloid-derived suppressor cells modulate B-cell responses.

    PubMed

    Lelis, Felipe J N; Jaufmann, Jennifer; Singh, Anurag; Fromm, Katja; Teschner, Annkathrin Chiara; Pöschel, Simone; Schäfer, Iris; Beer-Hammer, Sandra; Rieber, Nikolaus; Hartl, Dominik

    2017-08-01

    Myeloid-derived suppressor cells (MDSCs) are key regulators of adaptive immunity by suppressing T-cell functions. However, their potential action on or interaction with B cells remained poorly understood. Here we demonstrate that human polymorphonuclear MDSCs differentially modulate B-cell function by suppressing B-cell proliferation and antibody production. We further demonstrate that this MDSC-mediated effect is cell contact dependent and involves established mediators such as arginase-1, nitric oxide (NO), reactive oxygen species (ROS) as well as B-cell death. Collectively, our studies provide novel evidence that human MDSCs modulate B cells, which could have future implications for immunotherapy approaches. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  14. Pivotal response treatment prompts a functional rewiring of the brain among individuals with autism spectrum disorder.

    PubMed

    Venkataraman, Archana; Yang, Daniel Y-J; Dvornek, Nicha; Staib, Lawrence H; Duncan, James S; Pelphrey, Kevin A; Ventola, Pamela

    2016-09-28

    Behavioral interventions for autism have gained prominence in recent years; however, the neural-systems-level targets of these interventions remain poorly understood. We use a novel Bayesian framework to extract network-based differences before and after a 16-week pivotal response treatment (PRT) regimen. Our results suggest that the functional changes induced by PRT localize to the posterior cingulate and are marked by a shift in connectivity from the orbitofrontal cortex to the occipital-temporal cortex. Our results illuminate a potential PRT-induced learning mechanism, whereby the neural circuits involved during social perception shift from sensory and attentional systems to higher-level object and face processing areas.

  15. Pivotal Response Treatment Prompts a Functional Rewiring of the Brain amongst Individuals with Autism Spectrum Disorder

    PubMed Central

    Venkataraman, Archana; Yang, Daniel Y.-J.; Dvornek, Nicha; Staib, Lawrence H.; Duncan, James S.; Pelphrey, Kevin A.; Ventola, Pamela

    2016-01-01

    Behavioral interventions for autism have gained prominence in recent years; however, the neural-systems-level targets of these interventions remain poorly understood. We use a novel Bayesian framework to extract network-based differences before and after a 16-week Pivotal Response Treatment (PRT) regimen. Our results suggest that functional changes induced by PRT localize to the posterior cingulate and are marked by a shift in connectivity from the orbitofrontal cortex to the occipital temporal cortex. Our results illuminate a potential PRT-induced learning mechanism, whereby the neural circuits involved during social perception shift from sensory and attentional systems to higher-level object and face processing areas. PMID:27532879

  16. Modulation of taste sensitivity by GLP-1 signaling in taste buds.

    PubMed

    Martin, Bronwen; Dotson, Cedrick D; Shin, Yu-Kyong; Ji, Sunggoan; Drucker, Daniel J; Maudsley, Stuart; Munger, Steven D

    2009-07-01

    Modulation of sensory function can help animals adjust to a changing external and internal environment. Even so, mechanisms for modulating taste sensitivity are poorly understood. Using immunohistochemical, biochemical, and behavioral approaches, we found that the peptide hormone glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) are expressed in mammalian taste buds. Furthermore, we found that GLP-1 signaling plays an important role in the modulation of taste sensitivity: GLP-1R knockout mice exhibit a dramatic reduction in sweet taste sensitivity as well as an enhanced sensitivity to umami-tasting stimuli. Together, these findings suggest a novel paracrine mechanism for the hormonal modulation of taste function in mammals.

  17. Flavonoid transport mechanisms: how to go, and with whom.

    PubMed

    Zhao, Jian

    2015-09-01

    Subcellular flavonoid transport and its underlying regulatory mechanisms are still poorly understood, but are fascinating research frontiers in plant science. Recent studies support and further extend previous hypotheses indicating that vacuolar sequestration of flavonoids involves vesicle trafficking, membrane transporters, and glutathione S-transferase (GST). However, the question remains to be addressed of how three distinct but nonexclusive mechanisms are functionally integrated into diverse but redundant transport routes for vacuolar sequestration or extracellular secretion of flavonoids. In this review, I highlight recent progress in understanding flavonoid-transporting vesicle behavior and properties, GST and membrane transporter functions and mechanisms, and flavonoid transport substrate specificity and preference. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Microstructural and functional connectivity in the developing preterm brain

    PubMed Central

    Lubsen, Julia; Vohr, Betty; Myers, Eliza; Hampson, Michelle; Lacadie, Cheryl; Schneider, Karen C.; Katz, Karol H.; Constable, R. Todd; Ment, Laura R.

    2011-01-01

    Prematurely born children are at increased risk for cognitive deficits, but the neurobiological basis of these findings remains poorly understood. Since variations in neural circuitry may influence performance on cognitive tasks, recent investigations have explored the impact of preterm birth on connectivity in the developing brain. Diffusion tensor imaging studies demonstrate widespread alterations in fractional anisotropy, a measure of axonal integrity and microstructural connectivity, throughout the developing preterm brain. Functional connectivity studies report that preterm neonates, children and adolescents exhibit alterations in both resting state and task-based connectivity when compared to term control subjects. Taken together, these data suggest that neurodevelopmental impairment following preterm birth may represent a disease of neural connectivity. PMID:21255705

  19. Bordetella pertussis pathogenesis: current and future challenges.

    PubMed

    Melvin, Jeffrey A; Scheller, Erich V; Miller, Jeff F; Cotter, Peggy A

    2014-04-01

    Pertussis, also known as whooping cough, has recently re-emerged as a major public health threat despite high levels of vaccination against the aetiological agent Bordetella pertussis. In this Review, we describe the pathogenesis of this disease, with a focus on recent mechanistic insights into B. pertussis virulence-factor function. We also discuss the changing epidemiology of pertussis and the challenges facing vaccine development. Despite decades of research, many aspects of B. pertussis physiology and pathogenesis remain poorly understood. We highlight knowledge gaps that must be addressed to develop improved vaccines and therapeutic strategies.

  20. Bordetella pertussis pathogenesis: current and future challenges

    PubMed Central

    Melvin, Jeffrey A.; Scheller, Erich V.; Miller, Jeff F.; Cotter, Peggy A.

    2014-01-01

    Pertussis, or whooping cough, has recently reemerged as a major public health threat despite high levels of vaccination against the etiological agent, Bordetella pertussis. In this Review, we describe the pathogenesis of this disease, with a focus on recent mechanistic insights into virulence factor function. We also discuss the changing epidemiology of pertussis and the challenges of vaccine development. Despite decades of research, many aspects of B. pertussis physiology and pathogenesis remain poorly understood. We highlight knowledge gaps that must be addressed to develop improved vaccines and therapeutic strategies. PMID:24608338

  1. Voxelwise Correlational Analyses of White Matter Integrity in Multiple Cognitive Domains in Schizophrenia

    PubMed Central

    Lim, Kelvin O.; Ardekani, Babak A.; Nierenberg, Jay; Butler, Pamela D.; Javitt, Daniel C.; Hoptman, Matthew J.

    2007-01-01

    Patients with schizophrenia show deficits in several neurocognitive domains. However, the relationship between white matter integrity and performance in these domains is poorly understood. The authors conducted neurocognitive testing and diffusion tensor imaging in 25 patients with schizophrenia. Performance was examined for tests of verbal declarative memory, attention, and executive function. Relationships between fractional anisotropy and cognitive performance were examined by using voxelwise correlational analyses. In each case, better performance on these tasks was associated with higher levels of fractional anisotropy in task-relevant regions. PMID:17074956

  2. Hypothalamic involvement in stress-induced hypocalcemia in rats.

    PubMed

    Aou, S; Ma, J; Hori, T

    1993-08-20

    Although hormonal regulation of blood calcium homeostasis has been intensively investigated in the peripheral organs, the involvement of the central nervous system in calcium regulation is still poorly understood. In the present study, we found that (1) bilateral lesions of the ventromedial nucleus of the hypothalamus (VMH), but not those of the paraventricular hypothalamic nucleus or the lateral hypothalamic area, eliminated immobilization (IMB)-induced hypocalcemia, and (2) electrical stimulation of the VMH decreased the blood calcium level. The results suggest that the VMH has a hypocalcemic function and plays a role in IMB-induced hypocalcemia.

  3. How botulinum toxin in neurogenic detrusor overactivity can reduce upper urinary tract damage?

    PubMed Central

    Baron, Maximilien; Grise, Philippe; Cornu, Jean-Nicolas

    2016-01-01

    Intradetrusor injections of botulinum toxin are the cornerstone of medical treatment of neurogenic detrusor overactivity. The primary aim of this treatment is to ensure a low pressure regimen in the urinary bladder, but the mechanisms leading to long-term protection of the urinary tract remain poorly understood. In this paper, we highlight the potential benefits of intradetrusor injections of botulinum toxin regarding local effects on the bladder structures, urinary tract infections, stone disease, vesico ureteral reflux, hydronephrosis, renal function based on a comprehensive literature review. PMID:26981445

  4. Osteoblast role in osteoarthritis pathogenesis.

    PubMed

    Maruotti, Nicola; Corrado, Addolorata; Cantatore, Francesco P

    2017-11-01

    Even if osteoarthritis pathogenesis is still poorly understood, numerous evidences suggest that osteoblasts dysregulation plays a key role in osteoarthritis pathogenesis. An abnormal expression of OPG and RANKL has been described in osteoarthritis osteoblasts, which is responsible for abnormal bone remodeling and decreased mineralization. Alterations in genes expression are involved in dysregulation of osteoblast function, bone remodeling, and mineralization, leading to osteoarthritis development. Moreover, osteoblasts produce numerous transcription factors, growth factors, and other proteic molecules which are involved in osteoarthritis pathogenesis. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  5. Effects of Surface Nonuniformities on the Mean Transverse Energy from Photocathodes

    NASA Astrophysics Data System (ADS)

    Karkare, Siddharth; Bazarov, Ivan

    2015-08-01

    The performance of photoinjectors is limited by the lowest value of the mean transverse energy of the electrons obtained from photocathodes. The factors that influence the mean transverse energy are poorly understood. In this paper, we develop models to calculate the effect of spatial work-function variations and subnanometer-scale roughness and surface defects on the mean transverse energy. We show that these can limit the lowest value of mean transverse energy achieved and that atomically perfect surfaces will be required to further reduce the mean transverse energy obtained from photocathodes.

  6. Microscopic theory of cation exchange in CdSe nanocrystals.

    PubMed

    Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C

    2014-10-10

    Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.

  7. Independent and interactive effects of immune activation and larval diet on adult immune function, growth and development in the greater wax moth (Galleria mellonella).

    PubMed

    Kangassalo, Katariina; Valtonen, Terhi M; Sorvari, Jouni; Kecko, Sanita; Pölkki, Mari; Krams, Indrikis; Krama, Tatjana; Rantala, Markus J

    2018-06-29

    Organisms in the wild are likely to face multiple immune challenges as well as additional ecological stressors, yet their interactive effects on immune function are poorly understood. Insects are found to respond to cues of increased infection risk by enhancing their immune capacity. However, such adaptive plasticity in immune function may be limited by physiological and environmental constraints. Here, we investigated the effects of two environmental stressors - poor larval diet and an artificial parasite-like immune challenge at the pupal stage - on adult immune function, growth and development in the greater wax moth (Galleria mellonella). Males whose immune system was activated with an artificial parasite-like immune challenge had weaker immune response - measured as strength of encapsulation response - as adults compared to the control groups, but only when raised in high-nutrition larval diet. Immune activation did not negatively affect adult immune response in males reared in low-nutrition larval diet, indicating that poor larval diet improved the capacity of the insects to respond to repeated immune challenges. Low-nutrition larval diet also had a positive independent effect on immune capacity in females, yet it negatively affected development time and adult body mass in both sexes. As in the nature immune challenges are rarely isolated, and adverse nutritional environment may indicate an elevated risk of infection, resilience to repeated immune challenges as a response to poor nutritional environment could provide a significant fitness advantage. The present study highlights the importance of considering environmental context when investigating effects of immune activation in insects. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. The Fanconi anemia ID2 complex: dueling saxes at the crossroads.

    PubMed

    Boisvert, Rebecca A; Howlett, Niall G

    2014-01-01

    Fanconi anemia (FA) is a rare recessive genetic disease characterized by congenital abnormalities, bone marrow failure and heightened cancer susceptibility in early adulthood. FA is caused by biallelic germ-line mutation of any one of 16 genes. While several functions for the FA proteins have been ascribed, the prevailing hypothesis is that the FA proteins function cooperatively in the FA-BRCA pathway to repair damaged DNA. A pivotal step in the activation of the FA-BRCA pathway is the monoubiquitination of the FANCD2 and FANCI proteins. Despite their importance for DNA repair, the domain structure, regulation, and function of FANCD2 and FANCI remain poorly understood. In this review, we provide an overview of our current understanding of FANCD2 and FANCI, with an emphasis on their posttranslational modification and common and unique functions.

  9. The Fanconi anemia ID2 complex: Dueling saxes at the crossroads

    PubMed Central

    Boisvert, Rebecca A; Howlett, Niall G

    2014-01-01

    Fanconi anemia (FA) is a rare recessive genetic disease characterized by congenital abnormalities, bone marrow failure and heightened cancer susceptibility in early adulthood. FA is caused by biallelic germ-line mutation of any one of 16 genes. While several functions for the FA proteins have been ascribed, the prevailing hypothesis is that the FA proteins function cooperatively in the FA-BRCA pathway to repair damaged DNA. A pivotal step in the activation of the FA-BRCA pathway is the monoubiquitination of the FANCD2 and FANCI proteins. Despite their importance for DNA repair, the domain structure, regulation, and function of FANCD2 and FANCI remain poorly understood. In this review, we provide an overview of our current understanding of FANCD2 and FANCI, with an emphasis on their posttranslational modification and common and unique functions. PMID:25486561

  10. Tagging methyl-CpG-binding domain proteins reveals different spatiotemporal expression and supports distinct functions.

    PubMed

    Wood, Kathleen H; Johnson, Brian S; Welsh, Sarah A; Lee, Jun Y; Cui, Yue; Krizman, Elizabeth; Brodkin, Edward S; Blendy, Julie A; Robinson, Michael B; Bartolomei, Marisa S; Zhou, Zhaolan

    2016-04-01

    DNA methylation is recognized by methyl-CpG-binding domain (MBD) proteins. Multiple MBDs are linked to neurodevelopmental disorders in humans and mice. However, the functions of MBD2 are poorly understood. We characterized Mbd2 knockout mice and determined spatiotemporal expression of MBDs and MBD2-NuRD (nucleosome remodeling deacetylase) interactions. We analyzed behavioral phenotypes, generated biotin-tagged MBD1 and MBD2 knockin mice, and performed biochemical studies of MBD2-NuRD. Most behavioral measures are minimally affected in Mbd2 knockout mice. In contrast to other MBDs, MBD2 shows distinct expression patterns. Unlike most MBDs, MBD2 is ubiquitously expressed in all tissues examined and appears dispensable for brain functions measured in this study. We provide novel genetic tools and reveal new directions to investigate MBD2 functions in vivo.

  11. Different forms of effective connectivity in primate frontotemporal pathways.

    PubMed

    Petkov, Christopher I; Kikuchi, Yukiko; Milne, Alice E; Mishkin, Mortimer; Rauschecker, Josef P; Logothetis, Nikos K

    2015-01-23

    It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex.

  12. Bone marrow-resident NK cells prime monocytes for regulatory function during infection

    PubMed Central

    Askenase, Michael H.; Han, Seong-Ji; Byrd, Allyson L.; da Fonseca, Denise Morais; Bouladoux, Nicolas; Wilhelm, Christoph; Konkel, Joanne E.; Hand, Timothy W.; Lacerda-Queiroz, Norinne; Su, Xin-Zhuan; Trinchieri, Giorgio; Grainger, John R.; Belkaid, Yasmine

    2015-01-01

    SUMMARY Tissue-infiltrating Ly6Chi monocytes play diverse roles in immunity, ranging from pathogen killing to immune regulation. How and where this diversity of function is imposed remains poorly understood. Here we show that during acute gastrointestinal infection, priming of monocytes for regulatory function preceded systemic inflammation and was initiated prior to bone marrow egress. Notably, natural killer (NK) cell-derived IFN-γ promoted a regulatory program in monocyte progenitors during development. Early bone marrow NK cell activation was controlled by systemic interleukin-12 (IL-12) produced by Batf3-dependent dendritic cells (DC) in the mucosal-associated lymphoid tissue (MALT). This work challenges the paradigm that monocyte function is dominantly imposed by local signals following tissue recruitment, and instead proposes a sequential model of differentiation in which monocytes are pre-emptively educated during development in the bone marrow to promote their tissue-specific function. PMID:26070484

  13. Different forms of effective connectivity in primate frontotemporal pathways

    PubMed Central

    Petkov, Christopher I.; Kikuchi, Yukiko; Milne, Alice E.; Mishkin, Mortimer; Rauschecker, Josef P.; Logothetis, Nikos K.

    2015-01-01

    It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex. PMID:25613079

  14. Lengthening our perspective: morphological, cellular, and molecular responses to eccentric exercise.

    PubMed

    Hyldahl, Robert D; Hubal, Monica J

    2014-02-01

    The response of skeletal muscle to unaccustomed eccentric exercise has been studied widely, yet it is incompletely understood. This review is intended to provide an up-to-date overview of our understanding of how skeletal muscle responds to eccentric actions, with particular emphasis on the underlying molecular and cellular mechanisms of damage and recovery. This review begins by addressing the question of whether eccentric actions result in physical damage to muscle fibers and/or connective tissue. We next review the symptomatic manifestations of eccentric exercise (i.e., indirect damage markers, such as delayed onset muscle soreness), with emphasis on their relatively poorly understood molecular underpinnings. We then highlight factors that potentially modify the muscle damage response following eccentric exercise. Finally, we explore the utility of using eccentric training to improve muscle function in populations of healthy and aging individuals, as well as those living with neuromuscular disorders. Copyright © 2013 Wiley Periodicals, Inc.

  15. The effects of perinatal testosterone exposure on the DNA methylome of the mouse brain are late-emerging

    PubMed Central

    2014-01-01

    Background The biological basis for sex differences in brain function and disease susceptibility is poorly understood. Examining the role of gonadal hormones in brain sexual differentiation may provide important information about sex differences in neural health and development. Permanent masculinization of brain structure, function, and disease is induced by testosterone prenatally in males, but the possible mediation of these effects by long-term changes in the epigenome is poorly understood. Methods We investigated the organizational effects of testosterone on the DNA methylome and transcriptome in two sexually dimorphic forebrain regions—the bed nucleus of the stria terminalis/preoptic area and the striatum. To study the contribution of testosterone to both the establishment and persistence of sex differences in DNA methylation, we performed genome-wide surveys in male, female, and female mice given testosterone on the day of birth. Methylation was assessed during the perinatal window for testosterone's organizational effects and in adulthood. Results The short-term effect of testosterone exposure was relatively modest. However, in adult animals the number of genes whose methylation was altered had increased by 20-fold. Furthermore, we found that in adulthood, methylation at a substantial number of sexually dimorphic CpG sites was masculinized in response to neonatal testosterone exposure. Consistent with this, testosterone's effect on gene expression in the striatum was more apparent in adulthood. Conclusion Taken together, our data imply that the organizational effects of testosterone on the brain methylome and transcriptome are dramatic and late-emerging. Our findings offer important insights into the long-term molecular effects of early-life hormonal exposure. PMID:24976947

  16. The evolution of transcriptional regulation in eukaryotes

    NASA Technical Reports Server (NTRS)

    Wray, Gregory A.; Hahn, Matthew W.; Abouheif, Ehab; Balhoff, James P.; Pizer, Margaret; Rockman, Matthew V.; Romano, Laura A.

    2003-01-01

    Gene expression is central to the genotype-phenotype relationship in all organisms, and it is an important component of the genetic basis for evolutionary change in diverse aspects of phenotype. However, the evolution of transcriptional regulation remains understudied and poorly understood. Here we review the evolutionary dynamics of promoter, or cis-regulatory, sequences and the evolutionary mechanisms that shape them. Existing evidence indicates that populations harbor extensive genetic variation in promoter sequences, that a substantial fraction of this variation has consequences for both biochemical and organismal phenotype, and that some of this functional variation is sorted by selection. As with protein-coding sequences, rates and patterns of promoter sequence evolution differ considerably among loci and among clades for reasons that are not well understood. Studying the evolution of transcriptional regulation poses empirical and conceptual challenges beyond those typically encountered in analyses of coding sequence evolution: promoter organization is much less regular than that of coding sequences, and sequences required for the transcription of each locus reside at multiple other loci in the genome. Because of the strong context-dependence of transcriptional regulation, sequence inspection alone provides limited information about promoter function. Understanding the functional consequences of sequence differences among promoters generally requires biochemical and in vivo functional assays. Despite these challenges, important insights have already been gained into the evolution of transcriptional regulation, and the pace of discovery is accelerating.

  17. Defining the human deubiquitinating enzyme interaction landscape.

    PubMed

    Sowa, Mathew E; Bennett, Eric J; Gygi, Steven P; Harper, J Wade

    2009-07-23

    Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.

  18. Defining the Human Deubiquitinating Enzyme Interaction Landscape

    PubMed Central

    Sowa, Mathew E.; Bennett, Eric J.; Gygi, Steven P.; Harper, J. Wade

    2009-01-01

    Summary Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform, called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel non-reciprocal proteomic datasets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, sub-cellular localization and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway. PMID:19615732

  19. From Embryonic Development to Human Diseases: The Functional Role of Caveolae/Caveolin

    PubMed Central

    Sohn, Jihee; Brick, Rachel M.; Tuan, Rocky S.

    2017-01-01

    Caveolae, an almost ubiquitous, structural component of the plasma membrane, play a critical role in many functions essential for proper cell function, including membrane trafficking, signal transduction, extracellular matrix remodeling, and tissue regeneration. Three main types of caveolin proteins have been identified from caveolae since the discovery of caveolin-1 in the early 1990s. All three (Cav-1, Cav-2, and Cav-3) play crucial roles in mammalian physiology, and can effect pathogenesis in a wide range of human diseases. While many biological activities of caveolins have been uncovered since its discovery, their role and regulation in embryonic develop remain largely poorly understood, although there is increasing evidence that caveolins may be linked to lung and brain birth defects. Further investigations are clearly needed to decipher how caveolae/caveolins mediate cellular functions and activities of normal embryogenesis and how their perturbations contribute to developmental disorders. PMID:26991990

  20. Introduction and historical perspective.

    PubMed

    Gunning, Peter

    2008-01-01

    Tropomyosin is a coiled coil dimer which forms a polymer along the major groove of the majority of actin filaments. It is therefore one of the two primary components of the actin filament. Our understanding of the biological function of tropomyosin has been driven almost entirely by its role in striated muscle. This reflects both its original discovery as part of the thin filament in skeletal muscle and its pivotal role in regulating muscle contraction. In contrast, its role in the function of the cytoskeleton of all cells has been poorly understood due, at least in part, to the technical challenge of deciphering the function of a large number of isoforms. This book has brought together many of the leading researchers who have defined the function of tropomyosin in both normal and pathological conditions. Each author brings their own perspective in a series of stand alone reviews of the areas of tropomyosin research they have played a major role in defining.

  1. Sonic Hedgehog Expression in Corticofugal Projection Neurons Directs Cortical Microcircuit Formation

    PubMed Central

    Harwell, Corey C.; Parker, Philip R.L.; Gee, Steven M.; Okada, Ami; McConnell, Susan K.; Kreitzer, Anatol C.; Kriegstein, Arnold R.

    2012-01-01

    SUMMARY The precise connectivity of inputs and outputs is critical for cerebral cortex function; however, the cellular mechanisms that establish these connections are poorly understood. Here, we show that the secreted molecule Sonic Hedgehog (Shh) is involved in synapse formation of a specific cortical circuit. Shh is expressed in layer V corticofugal projection neurons and the Shh receptor, Brother of CDO (Boc), is expressed in local and callosal projection neurons of layer II/III that synapse onto the subcortical projection neurons. Layer V neurons of mice lacking functional Shh exhibit decreased synapses. Conversely, the loss of functional Boc leads to a reduction in the strength of synaptic connections onto layer Vb, but not layer II/III, pyramidal neurons. These results demonstrate that Shh is expressed in postsynaptic target cells while Boc is expressed in a complementary population of presynaptic input neurons, and they function to guide the formation of cortical microcircuitry. PMID:22445340

  2. Evolutionary interplay between sister cytochrome P450 genes shapes plasticity in plant metabolism.

    PubMed

    Liu, Zhenhua; Tavares, Raquel; Forsythe, Evan S; André, François; Lugan, Raphaël; Jonasson, Gabriella; Boutet-Mercey, Stéphanie; Tohge, Takayuki; Beilstein, Mark A; Werck-Reichhart, Danièle; Renault, Hugues

    2016-10-07

    Expansion of the cytochrome P450 gene family is often proposed to have a critical role in the evolution of metabolic complexity, in particular in microorganisms, insects and plants. However, the molecular mechanisms underlying the evolution of this complexity are poorly understood. Here we describe the evolutionary history of a plant P450 retrogene, which emerged and underwent fixation in the common ancestor of Brassicales, before undergoing tandem duplication in the ancestor of Brassicaceae. Duplication leads first to gain of dual functions in one of the copies. Both sister genes are retained through subsequent speciation but eventually return to a single copy in two of three diverging lineages. In the lineage in which both copies are maintained, the ancestral functions are split between paralogs and a novel function arises in the copy under relaxed selection. Our work illustrates how retrotransposition and gene duplication can favour the emergence of novel metabolic functions.

  3. Roles for Hedgehog signaling in adult organ homeostasis and repair

    PubMed Central

    Petrova, Ralitsa; Joyner, Alexandra L.

    2014-01-01

    The hedgehog (HH) pathway is well known for its mitogenic and morphogenic functions during development, and HH signaling continues in discrete populations of cells within many adult mammalian tissues. Growing evidence indicates that HH regulates diverse quiescent stem cell populations, but the exact roles that HH signaling plays in adult organ homeostasis and regeneration remain poorly understood. Here, we review recently identified functions of HH in modulating the behavior of tissue-specific adult stem and progenitor cells during homeostasis, regeneration and disease. We conclude that HH signaling is a key factor in the regulation of adult tissue homeostasis and repair, acting via multiple different routes to regulate distinct cellular outcomes, including maintenance of plasticity, in a context-dependent manner. PMID:25183867

  4. Mechano-adaptation of the stem cell nucleus.

    PubMed

    Heo, Su-Jin; Cosgrove, Brian D; Dai, Eric N; Mauck, Robert L

    2018-01-01

    Exogenous mechanical forces are transmitted through the cell and to the nucleus, initiating mechanotransductive signaling cascades with profound effects on cellular function and stem cell fate. A growing body of evidence has shown that the force sensing and force-responsive elements of the nucleus adapt to these mechanotransductive events, tuning their response to future mechanical input. The mechanisms underlying this "mechano-adaptation" are only just beginning to be elucidated, and it remains poorly understood how these components act and adapt in tandem to drive stem cell differentiation. Here, we review the evidence on how the stem cell nucleus responds and adapts to physical forces, and provide a perspective on how this mechano-adaptation may function to drive and enforce stem cell differentiation.

  5. Mechano-adaptation of the stem cell nucleus

    PubMed Central

    Heo, Su-Jin; Cosgrove, Brian D.; Dai, Eric N.; Mauck, Robert L.

    2018-01-01

    ABSTRACT Exogenous mechanical forces are transmitted through the cell and to the nucleus, initiating mechanotransductive signaling cascades with profound effects on cellular function and stem cell fate. A growing body of evidence has shown that the force sensing and force-responsive elements of the nucleus adapt to these mechanotransductive events, tuning their response to future mechanical input. The mechanisms underlying this “mechano-adaptation” are only just beginning to be elucidated, and it remains poorly understood how these components act and adapt in tandem to drive stem cell differentiation. Here, we review the evidence on how the stem cell nucleus responds and adapts to physical forces, and provide a perspective on how this mechano-adaptation may function to drive and enforce stem cell differentiation. PMID:29099288

  6. Pseudomonas aeruginosa Airway Infection Recruits and Modulates Neutrophilic Myeloid-Derived Suppressor Cells

    PubMed Central

    Öz, Hasan H.; Zhou, Benyuan; Voss, Pina; Carevic, Melanie; Schroth, Carolin; Frey, Nina; Rieber, Nikolaus; Hector, Andreas; Hartl, Dominik

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes infections mainly in patients with cystic fibrosis (CF) lung disease. Despite innate and adaptive immune responses upon infection, P. aeruginosa is capable of efficiently escaping host defenses, but the underlying immune mechanisms remain poorly understood. Myeloid-derived suppressor cells (MDSCs) are innate immune cells that are functionally characterized by their potential to suppress T- and natural killer (NK)-cell responses. Here we demonstrate, using an airway in vivo infection model, that P. aeruginosa recruits and activates neutrophilic MDSCs, which functionally suppress T-cell responses. We further show that the CF gene defect (CF transmembrane conductance regulator, CFTR) modulates the functionality, but not the recruitment or generation of neutrophilic MDSCs. Collectively, we define a mechanism by which P. aeruginosa airway infection undermines host immunity by modulating neutrophilic MDSCs in vivo. PMID:27965936

  7. A PR-1-like Protein of Fusarium oxysporum Functions in Virulence on Mammalian Hosts*

    PubMed Central

    Prados-Rosales, Rafael C.; Roldán-Rodríguez, Raquel; Serena, Carolina; López-Berges, Manuel S.; Guarro, Josep; Martínez-del-Pozo, Álvaro; Di Pietro, Antonio

    2012-01-01

    The pathogenesis-related PR-1-like protein family comprises secreted proteins from the animal, plant, and fungal kingdoms whose biological function remains poorly understood. Here we have characterized a PR-1-like protein, Fpr1, from Fusarium oxysporum, an ubiquitous fungal pathogen that causes vascular wilt disease on a wide range of plant species and can produce life-threatening infections in immunocompromised humans. Fpr1 is secreted and proteolytically processed by the fungus. The fpr1 gene is required for virulence in a disseminated immunodepressed mouse model, and its function depends on the integrity of the proposed active site of PR-1-like proteins. Fpr1 belongs to a gene family that has expanded in plant pathogenic Sordariomycetes. These results suggest that secreted PR-1-like proteins play important roles in fungal pathogenicity. PMID:22553200

  8. Nuclear Transcription Factors in the Mitochondria: A New Paradigm in Fine-Tuning Mitochondrial Metabolism.

    PubMed

    Sepuri, Naresh Babu V; Tammineni, Prasad; Mohammed, Fareed; Paripati, Arunkumar

    2017-01-01

    Noncanonical functions of several nuclear transcription factors in the mitochondria have been gaining exceptional traction over the years. These transcription factors include nuclear hormone receptors like estrogen, glucocorticoid, and thyroid hormone receptors: p53, IRF3, STAT3, STAT5, CREB, NF-kB, and MEF-2D. Mitochondria-localized nuclear transcription factors regulate mitochondrial processes like apoptosis, respiration and mitochondrial transcription albeit being nuclear in origin and having nuclear functions. Hence, the cell permits these multi-stationed transcription factors to orchestrate and fine-tune cellular metabolism at various levels of operation. Despite their ubiquitous distribution in different subcompartments of mitochondria, their targeting mechanism is poorly understood. Here, we review the current status of mitochondria-localized transcription factors and discuss the possible targeting mechanism besides the functional interplay between these factors.

  9. Impulse Control Disorders: Updated Review of Clinical Characteristics and Pharmacological Management

    PubMed Central

    Schreiber, Liana; Odlaug, Brian L.; Grant, Jon E.

    2011-01-01

    Impulse control disorders (ICDs) are characterized by urges and behaviors that are excessive and/or harmful to oneself or others and cause significant impairment in social and occupational functioning, as well as legal and financial difficulties. ICDs are relatively common psychiatric conditions, yet are poorly understood by the general public, clinicians, and individuals struggling with the disorder. Although ICD treatment research is limited, studies have shown ICDs may respond well to pharmacological treatment. This article presents a brief overview about the clinical characteristics of ICDs and pharmacological treatment options for individuals with ICDs. PMID:21556272

  10. From the Cover: Understanding nature's design for a nanosyringe

    NASA Astrophysics Data System (ADS)

    Lopez, Carlos F.; Nielsen, Steve O.; Moore, Preston B.; Klein, Michael L.

    2004-03-01

    Synthetic and natural peptide assemblies can possess transport or conductance activity across biomembranes through the formation of nanopores. The fundamental mechanisms of membrane insertion necessary for antimicrobial or synthetic pore formation are poorly understood. We observe a lipid-assisted mechanism for passive insertion into a model membrane from molecular dynamics simulations. The assembly used in the study, a generic nanotube functionalized with hydrophilic termini, is assisted in crossing the membrane core by transleaflet lipid flips. Lipid tails occlude a purely hydrophobic nanotube. The observed insertion mechanism requirements for hydrophobic-hydrophilic matching have implications for the design of synthetic channels and antibiotics.

  11. An aegialodontid upper molar and the evolution of mammal dentition.

    PubMed

    Lopatin, Alexey V; Averianov, Alexander O

    2006-08-25

    The most obvious key synapomorphy of the therian mammals is the tribosphenic pattern of their molars. Tribosphenic teeth are capable of both shearing and grinding, which substantially increase effectiveness of food processing and, in turn, permit evolution of a wide range of dietary specializations. Functional tribospheny developed repeatedly during mammalian evolution but was successful only in the Boreosphenida. The earliest stage in the development of boreosphenidan tribospheny has remained poorly understood, being documented only by lower molars of aegialodontids. Here, we report a known upper molar of an aegialodontid mammal, Kielantherium, from the Early Cretaceous of Mongolia.

  12. Atomic-Scale Insights into the Oxidation of Aluminum.

    PubMed

    Nguyen, Lan; Hashimoto, Teruo; Zakharov, Dmitri N; Stach, Eric A; Rooney, Aidan P; Berkels, Benjamin; Thompson, George E; Haigh, Sarah J; Burnett, Tim L

    2018-01-24

    The surface oxidation of aluminum is still poorly understood despite its vital role as an insulator in electronics, in aluminum-air batteries, and in protecting the metal against corrosion. Here we use atomic resolution imaging in an environmental transmission electron microscope (TEM) to investigate the mechanism of aluminum oxide formation. Harnessing electron beam sputtering we prepare a pristine, oxide-free metal surface in the TEM. This allows us to study, as a function of crystallographic orientation and oxygen gas pressure, the full oxide growth regime from the first oxide nucleation to a complete saturated, few-nanometers-thick surface film.

  13. The Ufm1 Cascade

    PubMed Central

    Daniel, Jens; Liebau, Eva

    2014-01-01

    The ubiquitin-fold modifier 1 (Ufm1) is a posttranslational modifier that belongs to the ubiquitin-like protein (UBL) family. Ufm1 is present in nearly all eukaryotic organisms, with the exception of fungi. It resembles ubiquitin in its ability to be ligated to other proteins, as well as in the mechanism of ligation. While the Ufm1 cascade has been implicated in endoplasmic reticulum functions and cell cycle control, its biological role still remains poorly understood. In this short review, we summarize the current state of Ufm1 research and its potential role in human diseases, like diabetes, ischemic heart disease and cancer. PMID:24921187

  14. Wavelet transform analysis of dynamic speckle patterns texture

    NASA Astrophysics Data System (ADS)

    Limia, Margarita Fernandez; Nunez, Adriana Mavilio; Rabal, Hector; Trivi, Marcelo

    2002-11-01

    We propose the use of the wavelet transform to characterize the time evolution of dynamic speckle patterns. We describe it by using as an example a method used for the assessment of the drying of paint. Optimal texture features are determined and the time evolution is described in terms of the Mahalanobis distance to the final (dry) state. From the behavior of this distance function, two parameters are defined that characterize the evolution. Because detailed knowledge of the involved dynamics is not required, the methodology could be implemented for other complex or poorly understood dynamic phenomena.

  15. Atomic-Scale Insights into the Oxidation of Aluminum

    DOE PAGES

    Nguyen, Lan; Hashimoto, Teruo; Zakharov, Dmitri N.; ...

    2018-01-10

    Here, the surface oxidation of aluminum is still poorly understood despite its vital role as an insulator in electronics, in aluminum–air batteries, and in protecting the metal against corrosion. Here we use atomic resolution imaging in an environmental transmission electron microscope (TEM) to investigate the mechanism of aluminum oxide formation. Harnessing electron beam sputtering we prepare a pristine, oxide-free metal surface in the TEM. This allows us to study, as a function of crystallographic orientation and oxygen gas pressure, the full oxide growth regime from the first oxide nucleation to a complete anometers-thick surface film.

  16. Lab Astro and the Origins of the Chemical Elements

    NASA Astrophysics Data System (ADS)

    Lawler, James E.

    2010-03-01

    Interpretation of the spectra of metal-poor Galactic halo stars is dependent on AMO laboratory data [1,2]. Metal-poor Galactic halo stars were born when the Milky Way was young and they provide a record of the chemical evolution of the Galaxy. Elements heavier than iron are produced via r(apid)-process and s(low)-process n(eutron)-capture mechanisms. The s-process mechanism, which occurs in certain AGB stars, is relatively well understood. The explosive r-process is not well understood. The r-process n-capture mechanism was dominant early in the Galaxy's history [3]. New large aperture telescopes make it possible to record high-resolution spectra with high signal-to-noise ratios on a growing number of metal-poor stars. In addition to mapping the chemical evolution of the Galaxy, these studies are yielding an increasingly well-defined r-process elemental abundance pattern which constrains models of r-process nucleosynthesis [1]. The next phase of this ongoing research will address challenges in modeling stellar photospheres. Peculiar trends in abundances of specific Fe-group elements as a function of stellar age or metallicity may be due to limitations in traditional one dimensional (1d) local thermodynamic equilibrium (LTE) models of stellar photospheres or may be due to poorly understood nucleosynthesis [4]. Efforts are now underway to test the Saha or ionization equilibrium in a variety of stellar atmospheres for several Fe-group elements using the best available spectroscopic data for selected transitions. More comprehensive spectroscopic data of improved accuracy and accurate collisional data, especially for inelastic collisions of H atoms with metal atoms and ions, will be needed to fully develop 3d/non-LTE models of photospheres [e.g. 5]. [4pt] [1] C. Sneden, J. E. Lawler, J. J. Cowan, I. I. Ivans, and E. A. Den Hartog, Astrophys. J. Suppl. Ser. 182, 80-96 (2009). [0pt] [2] J. E. Lawler, C. Sneden, J. J. Cowan, I. I. Ivans, and E. A. Den Hartog, Astrophys. J. Suppl. Ser. 182, 51-79 (2009). [0pt] [3] J. Simmerer, C. Sneden, J. J. Cowan, J. Collier, V. M. Woolf, and J. E. Lawler, Astrophys. J. 617, 1091-1114 (2004). [0pt] [4] A. McWilliam, Ann. Rev. Astron. & Astrophys. 35, 503 (1997). [0pt] [5] M. Asplund, Ann. Rev. Astron. & Astrophys. 43, 481 (2005).

  17. Beyond the sniffer: frontal sinuses in Carnivora.

    PubMed

    Curtis, Abigail A; Van Valkenburgh, Blaire

    2014-11-01

    Paranasal sinuses are some of the most poorly understood features of mammalian cranial anatomy. They are highly variable in presence and form among species, but their function is not well understood. The best-supported explanations for the function of sinuses is that they opportunistically fill mechanically unnecessary space, but that in some cases, sinuses in combination with the configuration of the frontal bone may improve skull performance by increasing skull strength and dissipating stresses more evenly. We used CT technology to investigate patterns in frontal sinus size and shape disparity among three families of carnivores: Canidae, Felidae, and Hyaenidae. We provide some of the first quantitative data on sinus morphology for these three families, and employ a novel method to quantify the relationship between three-dimensional sinus shape and skull shape. As expected, frontal sinus size and shape were more strongly correlated with frontal bone size and shape than with the morphology of the skull as a whole. However, sinus morphology was also related to allometric differences among families that are linked to biomechanical function. Our results support the hypothesis that frontal sinuses most often opportunistically fill space that is mechanically unnecessary, and they can facilitate cranial shape changes that reduce stress during feeding. Moreover, we suggest that the ability to form frontal sinuses allows species to modify skull function without compromising the performance of more functionally constrained regions such as the nasal chamber (heat/water conservation, olfaction), and braincase (housing the brain and sensory structures). © 2014 Wiley Periodicals, Inc.

  18. Anatomy of the Spinal Meninges.

    PubMed

    Sakka, Laurent; Gabrillargues, Jean; Coll, Guillaume

    2016-06-01

    The spinal meninges have received less attention than the cranial meninges in the literature, although several points remain debatable and poorly understood, like their phylogenesis, their development, and their interactions with the spinal cord. Their constancy among the chordates shows their crucial importance in central nervous system homeostasis and suggests a role far beyond mechanical protection of the neuraxis. This work provides an extensive study of the spinal meninges, from an overview of their phylogenesis and embryology to a descriptive and topographic anatomy with clinical implications. It examines their involvement in spinal cord development, functioning, and repair. This work is a review of the literature using PubMed as a search engine on Medline. The stages followed by the meninges along the phylogenesis could not be easily compared with their development in vertebrates for methodological aspects and convergence processes throughout evolution. The distinction between arachnoid and pia mater appeared controversial. Several points of descriptive anatomy remain debatable: the functional organization of the arterial network, and the venous and lymphatic drainages, considered differently by classical anatomic and neuroradiological approaches. Spinal meninges are involved in neurodevelopment and neurorepair producing neural stem cells and morphogens, in cerebrospinal fluid dynamics and neuraxis functioning by the synthesis of active molecules, and the elimination of waste products of central nervous system metabolism. The spinal meninges should be considered as dynamic functional formations evolving over a lifetime, with ultrastructural features and functional interactions with the neuraxis remaining not fully understood.

  19. Lack of Comprehension of Common Prostate Cancer Terms in an Underserved Population

    PubMed Central

    Kilbridge, Kerry L.; Fraser, Gertrude; Krahn, Murray; Nelson, Elizabeth M.; Conaway, Mark; Bashore, Randall; Wolf, Andrew; Barry, Michael J.; Gong, Debra A.; Nease, Robert F.; Connors, Alfred F.

    2009-01-01

    Purpose To assess the comprehension of common medical terms used in prostate cancer in patient education materials to obtain informed consent, and to measure outcomes after prostate cancer treatment. We address this issue among underserved, African-American men because of the increased cancer incidence and mortality observed in this population. Patients and Methods We reviewed patient education materials and prostate-specific quality-of-life instruments to identify technical terms describing sexual, urinary, and bowel function. Understanding of these terms was assessed in face-to-face interviews of 105, mostly African-American men, age ≥ 40, from two low-income clinics. Comprehension was evaluated using semiqualitative methods coded by two independent investigators. Demographics were collected and literacy was measured. Results Fewer than 50% of patients understood the terms “erection” or “impotent.” Only 5% of patients understood the term “incontinence” and 25% understood the term “bowel habits.” More patients recognized word roots than related terms or compound words (eg, “rectum” v “rectal urgency,” “intercourse” v “vaginal intercourse”). Comprehension of terms from all domains was statistically significantly correlated with reading level (P < .001). Median literacy level was fourth to sixth grade. Prostate cancer knowledge was poor. Many patients had difficulty locating key anatomic structures. Conclusion Limited comprehension of prostate cancer terms and low literacy create barriers to obtaining informed consent for treatment and to measuring prostate cancer outcomes accurately in our study population. In addition, the level of prostate cancer knowledge was poor. These results highlight the need for prostate cancer education efforts and outcomes measurements that consider literacy and use nonmedical language. PMID:19307512

  20. Research Review: The Neurobiology and Genetics of Maltreatment and Adversity

    ERIC Educational Resources Information Center

    McCrory, Eamon; De Brito, Stephane A.; Viding, Essi

    2010-01-01

    The neurobiological mechanisms by which childhood maltreatment heightens vulnerability to psychopathology remain poorly understood. It is likely that a complex interaction between environmental experiences (including poor caregiving) and an individual's genetic make-up influence neurobiological development across infancy and childhood, which in…

  1. Partitioning of functional and taxonomic diversity in surface-associated microbial communities.

    PubMed

    Roth-Schulze, Alexandra J; Zozaya-Valdés, Enrique; Steinberg, Peter D; Thomas, Torsten

    2016-12-01

    Surfaces, including those submerged in the marine environment, are subjected to constant interactions and colonisation by surrounding microorganisms. The principles that determine the assembly of those epibiotic communities are however poorly understood. In this study, we employed a hierarchical design to assess the functionality and diversity of microbial communities on different types of host surfaces (e.g. macroalgae, seagrasses). We found that taxonomic diversity was unique to each type of host, but that the majority of functions (> 95%) could be found in any given surface community, suggesting a high degree of functional redundancy. However, some community functions were enriched on certain surfaces and were related to host-specific properties (e.g. the degradation of specific polysaccharides). Together these observations support a model, whereby communities on surfaces are assembled from guilds of microorganisms with a functionality that is partitioned into general properties for a surface-associated life-style, but also specific features that mediate host-specificity. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Relationship between insulin sensitivity index and cognitive function in diet-induced insulin resistant rats.

    PubMed

    Chen, Sisi; Xie, Hao; Wu, Jing; Hong, Hao; Jin, Jianwen; Fang, Jinbo; Huang, Ji; Fu, Ying Zhou; Ji, Hui; Li, Yong Qi; Long, Yan; Xia, Yuan Zheng

    2009-06-01

    Clinical and animal studies have revealed significant cognitive impairment in type II diabetic subjects. However, whether there is a relationship between insulin resistance and cognitive function is poorly understood. In the present study, we used a high fat diet to induce insulin resistance (IR) in rats, insulin sensitivity index (ISI) (= FINS x FPG/22.5) to assess the extent of insulin resistance and the Morris Water Maze Task to judge cognitive function. The relationship between insulin sensitivity index and cognitive function was determined by analysing the correlation between ISI and the time rat spent in targeted quadrant, as well as between ISI and the times the rat swam across the very point where a platform was previously placed, using Pearson's method. Perfect negative correlation between ISI and cognitive function existed when ISI fell within a certain range, which indicates that insulin resistance is associated with cognitive function impairment in some cases where ISI might be an indicator.

  3. Illness Denial in Schizophrenia Spectrum Disorders: A Function of Left Hemisphere Dominance

    PubMed Central

    Gerretsen, Philip; Menon, Mahesh; Chakravarty, M. Mallar; Lerch, Jason P; Mamo, David C.; Remington, Gary; Pollock, Bruce G; Graff-Guerrero, Ariel

    2014-01-01

    Impaired illness awareness or anosognosia is a common, but poorly understood feature of schizophrenia that contributes to medication nonadherence and poor treatment outcomes. Here we present a functional imaging study to measure brain activity at the moment of illness denial. To accomplish this, participants with schizophrenia (n = 18) with varying degrees of illness awareness were confronted with their illness beliefs while undergoing functional MRI. To link structure with function, we explored the relationships among impaired illness awareness and brain activity during the illness denial task with cortical thickness (CT). Impaired illness awareness was associated with increased brain activity in the left temporoparietooccipital junction (TPO) and left medial prefrontal cortex (mPFC) at the moment of illness denial. Brain activity in the left mPFC appeared to be a function of participants’ degree of self-reflectiveness, while the activity in the left TPO was associated with cortical thinning in this region and more specific to illness denial. Participants with impaired illness awareness had slower response times to illness related stimuli than those with good illness awareness. Increased left hemisphere brain activity in association with illness denial is consistent with the literature in other neuropsychiatric conditions attributing anosognosia or impaired illness awareness to left hemisphere dominance. The TPO and mPFC may represent putative targets for non-invasive treatment interventions, such as transcranial magnetic or direct current stimulation. PMID:25209949

  4. Pak2 is required for actin cytoskeleton remodeling, TCR signaling, and normal thymocyte development and maturation

    PubMed Central

    Phee, Hyewon; Au-Yeung, Byron B; Pryshchep, Olga; O'Hagan, Kyle Leonard; Fairbairn, Stephanie Grace; Radu, Maria; Kosoff, Rachelle; Mollenauer, Marianne; Cheng, Debra; Chernoff, Jonathan; Weiss, Arthur

    2014-01-01

    The molecular mechanisms that govern thymocyte development and maturation are incompletely understood. The P21-activated kinase 2 (Pak2) is an effector for the Rho family GTPases Rac and Cdc42 that regulate actin cytoskeletal remodeling, but its role in the immune system remains poorly understood. In this study, we show that T-cell specific deletion of Pak2 gene in mice resulted in severe T cell lymphopenia accompanied by marked defects in development, maturation, and egress of thymocytes. Pak2 was required for pre-TCR β-selection and positive selection. Surprisingly, Pak2 deficiency in CD4 single positive thymocytes prevented functional maturation and reduced expression of S1P1 and KLF2. Mechanistically, Pak2 is required for actin cytoskeletal remodeling triggered by TCR. Failure to induce proper actin cytoskeletal remodeling impaired PLCγ1 and Erk1/2 signaling in the absence of Pak2, uncovering the critical function of Pak2 as an essential regulator that governs the actin cytoskeleton-dependent signaling to ensure normal thymocyte development and maturation. DOI: http://dx.doi.org/10.7554/eLife.02270.001 PMID:24843022

  5. Social attribution processes and comorbid psychiatric symptoms in children with Asperger syndrome

    PubMed Central

    Meyer, Jessica A.; Mundy, Peter C.; Van Hecke, Amy Vaughan; Durocher, Jennifer Stella

    2009-01-01

    The factors that place children with Asperger syndrome at risk for comorbid psychiatric symptoms, such as anxiety and depression, remain poorly understood. We investigated the possibility that the children’s emotional and behavioral difficulties are associated with social information and attribution processing. Participants were children with either Asperger syndrome (n = 31) or typical development (n = 33).To assess social information and attribution processing, children responded to hypothetical social vignettes.They also completed self-report measures of social difficulties and psychological functioning. Their parents provided information on social competence and clinical presentation. Children with Asperger syndrome showed poor psychosocial adjustment, which was related to their social information and attribution processing patterns. Cognitive and social-cognitive abilities were associated with aspects of social information processing tendencies, but not with emotional and behavioral difficulties. Results suggest that the comorbid symptoms of children with Asperger syndrome may be associated with their social perception, understanding, and experience. PMID:16908481

  6. NASA Aims to Create First-Ever Space-Based Sodium Lidar to Study Poorly Understood Mesosphere

    NASA Image and Video Library

    2017-12-08

    Caption: Mike Krainak (left) and Diego Janches recently won NASA follow-on funding to advance a spaceborne sodium lidar needed to probe Earth’s poorly understood mesosphere. Credits: NASA/W. Hrybyk More: A team of NASA scientists and engineers now believes it can leverage recent advances in a greenhouse-detecting instrument to build the world’s first space-based sodium lidar to study Earth’s poorly understood mesosphere. Scientist Diego Janches and laser experts Mike Krainak and Tony Yu, all of whom work at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, are leading a research-and-development effort to further advance the sodium lidar, which the group plans to deploy on the International Space Station if it succeeds in proving its flightworthiness. Read more: go.nasa.gov/2rcGpSM NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Auditory Processing Disorders: Acquisition and Treatment

    ERIC Educational Resources Information Center

    Moore, David R.

    2007-01-01

    Auditory processing disorder (APD) describes a mixed and poorly understood listening problem characterised by poor speech perception, especially in challenging environments. APD may include an inherited component, and this may be major, but studies reviewed here of children with long-term otitis media with effusion (OME) provide strong evidence…

  8. Affective context interferes with cognitive control in unipolar depression: An fMRI investigation

    PubMed Central

    Dichter, Gabriel S.; Felder, Jennifer N.; Smoski, Moria J.

    2009-01-01

    Background Unipolar major depressive disorder (MDD) is characterized by aberrant amygdala responses to sad stimuli and poor cognitive control, but the interactive effects of these impairments are poorly understood. Aim To evaluate brain activation in MDD in response to cognitive control stimuli embedded within sad and neutral contexts. Method Fourteen adults with MDD and fifteen matched controls participated in a mixed block/event-related functional magnetic resonance imaging (fMRI) task that presented oddball target stimuli embedded within blocks of sad or neutral images. Results Target events activated similar prefrontal brain regions in both groups. However, responses to target events embedded within blocks of emotional images revealed a clear group dissociation. During neutral blocks, the control group demonstrated greater activation to targets in the midfrontal gyrus and anterior cingulate relative to the MDD group, replicating previous findings of prefrontal hypo-activation in MDD samples to cognitive control stimuli. However, during sad blocks, the MDD group demonstrated greater activation in a number of prefrontal regions, including the mid-, inferior, and orbito-frontal gyri and the anterior cingulate, suggesting that relatively more prefrontal brain activation was required to disengage from the sad images to respond to the target events. Limitations A larger sample size would have provided greater statistical power, and more standardized stimuli would have increased external validity. Conclusions This double dissociation of prefrontal responses to target events embedded within neutral and sad context suggests that MDD impacts not only responses to affective events, but extends to other cognitive processes carried out in the context of affective engagement. This implies that emotional reactivity to sad events in MDD may impact functioning more broadly than previously understood. PMID:18706701

  9. Ontogeny of the Middle-Ear Air-Sinus System in Alligator mississippiensis (Archosauria: Crocodylia)

    PubMed Central

    Dufeau, David L.; Witmer, Lawrence M.

    2015-01-01

    Modern crocodylians, including Alligator mississippiensis, have a greatly elaborated system of pneumatic sinuses invading the cranium. These sinuses invade nearly all the bones of the chondrocranium and several bony elements of the splanchnocranium, but patterns of postnatal paratympanic sinus development are poorly understood and documented. Much of crocodylomorph—indeed archosaurian—evolution is characterized by the evolution of various paratympanic air sinuses, the homologies of which are poorly understood due in large part to the fact that individual sinuses tend to become confluent in adults, obscuring underlying patterns. This study seeks to explore the ontogeny of these sinuses primarily to clarify the anatomical relations of the individual sinuses before they become confluent and thus to provide the foundation for later studies testing hypotheses of homology across extant and extinct Archosauria. Ontogeny was assessed using computed tomography in a sample of 13 specimens covering an almost 19-fold increase in head size. The paratympanic sinus system comprises two major inflations of evaginated pharyngeal epithelium: the pharyngotympanic sinus, which communicates with the pharynx via the lateral (true) Eustachian tubes and forms the cavum tympanicum proprium, and the median pharyngeal sinus, which communicates with the pharynx via the median pharyngeal tube. Each of these primary inflations gives rise to a number of secondary inflations that further invade the bones of the skull. The primary sinuses and secondary diverticula are well developed in perinatal individuals of Alligator, but during ontogeny the number and relative volumes of the secondary diverticula are reduced. In addition to describing the morphological ontogeny of this sinus system, we provide some preliminary exploratory analyses of sinus function and allometry, rejecting the hypothesis that changes in the volume of the paratympanic sinuses are simply an allometric function of braincase volume, but instead support the hypothesis that these changes may be a function of the acoustic properties of the middle ear. PMID:26398659

  10. The Atypical MAP Kinase SWIP-13/ERK8 Regulates Dopamine Transporters through a Rho-Dependent Mechanism

    PubMed Central

    Bermingham, Daniel P.; Snider, Sam L.; Miller, David M.

    2017-01-01

    The neurotransmitter dopamine (DA) regulates multiple behaviors across phylogeny, with disrupted DA signaling in humans associated with addiction, attention-deficit/ hyperactivity disorder, schizophrenia, and Parkinson's disease. The DA transporter (DAT) imposes spatial and temporal limits on DA action, and provides for presynaptic DA recycling to replenish neurotransmitter pools. Molecular mechanisms that regulate DAT expression, trafficking, and function, particularly in vivo, remain poorly understood, though recent studies have implicated rho-linked pathways in psychostimulant action. To identify genes that dictate the ability of DAT to sustain normal levels of DA clearance, we pursued a forward genetic screen in Caenorhabditis elegans based on the phenotype swimming-induced paralysis (Swip), a paralytic behavior observed in hermaphrodite worms with loss-of-function dat-1 mutations. Here, we report the identity of swip-13, which encodes a highly conserved ortholog of the human atypical MAP kinase ERK8. We present evidence that SWIP-13 acts presynaptically to insure adequate levels of surface DAT expression and DA clearance. Moreover, we provide in vitro and in vivo evidence supporting a conserved pathway involving SWIP-13/ERK8 activation of Rho GTPases that dictates DAT surface expression and function. SIGNIFICANCE STATEMENT Signaling by the neurotransmitter dopamine (DA) is tightly regulated by the DA transporter (DAT), insuring efficient DA clearance after release. Molecular networks that regulate DAT are poorly understood, particularly in vivo. Using a forward genetic screen in the nematode Caenorhabditis elegans, we implicate the atypical mitogen activated protein kinase, SWIP-13, in DAT regulation. Moreover, we provide in vitro and in vivo evidence that SWIP-13, as well as its human counterpart ERK8, regulate DAT surface availability via the activation of Rho proteins. Our findings implicate a novel pathway that regulates DA synaptic availability and that may contribute to risk for disorders linked to perturbed DA signaling. Targeting this pathway may be of value in the development of therapeutics in such disorders. PMID:28842414

  11. Her versus his migraine: multiple sex differences in brain function and structure

    PubMed Central

    Linnman, Clas; Brawn, Jennifer; Burstein, Rami; Becerra, Lino; Borsook, David

    2012-01-01

    Migraine is twice as common in females as in males, but the mechanisms behind this difference are still poorly understood. We used high-field magnetic resonance imaging in male and female age-matched interictal (migraine free) migraineurs and matched healthy controls to determine alterations in brain structure. Female migraineurs had thicker posterior insula and precuneus cortices compared with male migraineurs and healthy controls of both sexes. Furthermore, evaluation of functional responses to heat within the migraine groups indicated concurrent functional differences in male and female migraineurs and a sex-specific pattern of functional connectivity of these two regions with the rest of the brain. The results support the notion of a ‘sex phenotype’ in migraine and indicate that brains are differentially affected by migraine in females compared with males. Furthermore, the results also support the notion that sex differences involve both brain structure as well as functional circuits, in that emotional circuitry compared with sensory processing appears involved to a greater degree in female than male migraineurs. PMID:22843414

  12. RNA splicing regulated by RBFOX1 is essential for cardiac function in zebrafish.

    PubMed

    Frese, Karen S; Meder, Benjamin; Keller, Andreas; Just, Steffen; Haas, Jan; Vogel, Britta; Fischer, Simon; Backes, Christina; Matzas, Mark; Köhler, Doreen; Benes, Vladimir; Katus, Hugo A; Rottbauer, Wolfgang

    2015-08-15

    Alternative splicing is one of the major mechanisms through which the proteomic and functional diversity of eukaryotes is achieved. However, the complex nature of the splicing machinery, its associated splicing regulators and the functional implications of alternatively spliced transcripts are only poorly understood. Here, we investigated the functional role of the splicing regulator rbfox1 in vivo using the zebrafish as a model system. We found that loss of rbfox1 led to progressive cardiac contractile dysfunction and heart failure. By using deep-transcriptome sequencing and quantitative real-time PCR, we show that depletion of rbfox1 in zebrafish results in an altered isoform expression of several crucial target genes, such as actn3a and hug. This study underlines that tightly regulated splicing is necessary for unconstrained cardiac function and renders the splicing regulator rbfox1 an interesting target for investigation in human heart failure and cardiomyopathy. © 2015. Published by The Company of Biologists Ltd.

  13. Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests

    PubMed Central

    van der Plas, Fons; Manning, Peter; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A.; Hector, Andy; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Berthold, Felix; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coomes, David; Coppi, Andrea; Bastias, Cristina C.; Muhie Dawud, Seid; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Gessler, Arthur; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-Xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Müller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus

    2016-01-01

    There is considerable evidence that biodiversity promotes multiple ecosystem functions (multifunctionality), thus ensuring the delivery of ecosystem services important for human well-being. However, the mechanisms underlying this relationship are poorly understood, especially in natural ecosystems. We develop a novel approach to partition biodiversity effects on multifunctionality into three mechanisms and apply this to European forest data. We show that throughout Europe, tree diversity is positively related with multifunctionality when moderate levels of functioning are required, but negatively when very high function levels are desired. For two well-known mechanisms, ‘complementarity' and ‘selection', we detect only minor effects on multifunctionality. Instead a third, so far overlooked mechanism, the ‘jack-of-all-trades' effect, caused by the averaging of individual species effects on function, drives observed patterns. Simulations demonstrate that jack-of-all-trades effects occur whenever species effects on different functions are not perfectly correlated, meaning they may contribute to diversity–multifunctionality relationships in many of the world's ecosystems. PMID:27010076

  14. Her versus his migraine: multiple sex differences in brain function and structure.

    PubMed

    Maleki, Nasim; Linnman, Clas; Brawn, Jennifer; Burstein, Rami; Becerra, Lino; Borsook, David

    2012-08-01

    Migraine is twice as common in females as in males, but the mechanisms behind this difference are still poorly understood. We used high-field magnetic resonance imaging in male and female age-matched interictal (migraine free) migraineurs and matched healthy controls to determine alterations in brain structure. Female migraineurs had thicker posterior insula and precuneus cortices compared with male migraineurs and healthy controls of both sexes. Furthermore, evaluation of functional responses to heat within the migraine groups indicated concurrent functional differences in male and female migraineurs and a sex-specific pattern of functional connectivity of these two regions with the rest of the brain. The results support the notion of a 'sex phenotype' in migraine and indicate that brains are differentially affected by migraine in females compared with males. Furthermore, the results also support the notion that sex differences involve both brain structure as well as functional circuits, in that emotional circuitry compared with sensory processing appears involved to a greater degree in female than male migraineurs.

  15. Interconnection of Key Microbial Functional Genes for Enhanced Benzo[a]pyrene Biodegradation in Sediments by Microbial Electrochemistry.

    PubMed

    Yan, Zaisheng; He, Yuhong; Cai, Haiyuan; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Krumholz, Lee R; Jiang, He-Long

    2017-08-01

    Sediment microbial fuel cells (SMFCs) can stimulate the degradation of polycyclic aromatic hydrocarbons in sediments, but the mechanism of this process is poorly understood at the microbial functional gene level. Here, the use of SMFC resulted in 92% benzo[a]pyrene (BaP) removal over 970 days relative to 54% in the controls. Sediment functions, microbial community structure, and network interactions were dramatically altered by the SMFC employment. Functional gene analysis showed that c-type cytochrome genes for electron transfer, aromatic degradation genes, and extracellular ligninolytic enzymes involved in lignin degradation were significantly enriched in bulk sediments during SMFC operation. Correspondingly, chemical analysis of the system showed that these genetic changes resulted in increases in the levels of easily oxidizable organic carbon and humic acids which may have resulted in increased BaP bioavailability and increased degradation rates. Tracking microbial functional genes and corresponding organic matter responses should aid mechanistic understanding of BaP enhanced biodegradation by microbial electrochemistry and development of sustainable bioremediation strategies.

  16. Jack-of-all-trades effects drive biodiversity-ecosystem multifunctionality relationships in European forests.

    PubMed

    van der Plas, Fons; Manning, Peter; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A; Hector, Andy; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Berthold, Felix; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coomes, David; Coppi, Andrea; Bastias, Cristina C; Muhie Dawud, Seid; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Gessler, Arthur; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-Xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Müller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus

    2016-03-24

    There is considerable evidence that biodiversity promotes multiple ecosystem functions (multifunctionality), thus ensuring the delivery of ecosystem services important for human well-being. However, the mechanisms underlying this relationship are poorly understood, especially in natural ecosystems. We develop a novel approach to partition biodiversity effects on multifunctionality into three mechanisms and apply this to European forest data. We show that throughout Europe, tree diversity is positively related with multifunctionality when moderate levels of functioning are required, but negatively when very high function levels are desired. For two well-known mechanisms, 'complementarity' and 'selection', we detect only minor effects on multifunctionality. Instead a third, so far overlooked mechanism, the 'jack-of-all-trades' effect, caused by the averaging of individual species effects on function, drives observed patterns. Simulations demonstrate that jack-of-all-trades effects occur whenever species effects on different functions are not perfectly correlated, meaning they may contribute to diversity-multifunctionality relationships in many of the world's ecosystems.

  17. Genetics and epigenetics of rheumatoid arthritis

    PubMed Central

    Viatte, Sebastien; Plant, Darren; Raychaudhuri, Soumya

    2013-01-01

    Investigators have made key advances in rheumatoid arthritis (RA) genetics in the past 10 years. Although genetic studies have had limited influence on clinical practice and drug discovery, they are currently generating testable hypotheses to explain disease pathogenesis. Firstly, we review here the major advances in identifying RA genetic susceptibility markers both within and outside of the MHC. Understanding how genetic variants translate into pathogenic mechanisms and ultimately into phenotypes remains a mystery for most of the polymorphisms that confer susceptibility to RA, but functional data are emerging. Interplay between environmental and genetic factors is poorly understood and in need of further investigation. Secondly, we review current knowledge of the role of epigenetics in RA susceptibility. Differences in the epigenome could represent one of the ways in which environmental exposures translate into phenotypic outcomes. The best understood epigenetic phenomena include post-translational histone modifications and DNA methylation events, both of which have critical roles in gene regulation. Epigenetic studies in RA represent a new area of research with the potential to answer unsolved questions. PMID:23381558

  18. Shear thinning in soft particle suspensions

    NASA Astrophysics Data System (ADS)

    Voudouris, Panayiotis; van der Zanden, Berco; Florea, Daniel; Fahimi, Zahra; Wyss, Hans

    2012-02-01

    Suspensions of soft deformable particles are encountered in a wide range of food and biological materials. Examples are biological cells, micelles, vesicles or microgel particles. While the behavior of suspenions of hard spheres - the classical model system of colloid science - is reasonably well understood, a full understanding of these soft particle suspensions remains elusive. The relation between single particle properties and macroscopic mechanical behavior still remains poorly understood in these materials. Here we examine the surprising shear thinning behavior that is observed in soft particle suspensions as a function of particle softness. We use poly-N-isopropylacrylamide (p-NIPAM) microgel particles as a model system to study this effect in detail. These soft spheres show significant shear thinning even at very large Peclet numbers, where this would not be observed for hard particles. The degree of shear thinning is directly related to the single particle elastic properties, which we characterize by the recently developed Capillary Micromechanics technique. We present a simple model that qualitatively accounts for the observed behavior.

  19. Rare, Intense, Big fires dominate the global tropics under drier conditions.

    PubMed

    Hantson, Stijn; Scheffer, Marten; Pueyo, Salvador; Xu, Chi; Lasslop, Gitta; van Nes, Egbert H; Holmgren, Milena; Mendelsohn, John

    2017-10-30

    Wildfires burn large parts of the tropics every year, shaping ecosystem structure and functioning. Yet the complex interplay between climate, vegetation and human factors that drives fire dynamics is still poorly understood. Here we show that on all continents, except Australia, tropical fire regimes change drastically as mean annual precipitation falls below 550 mm. While the frequency of fires decreases below this threshold, the size and intensity of wildfires rise sharply. This transition to a regime of Rare-Intense-Big fires (RIB-fires) corresponds to the relative disappearance of trees from the landscape. Most dry regions on the globe are projected to become substantially drier under global warming. Our findings suggest a global zone where this drying may have important implications for fire risks to society and ecosystem functioning.

  20. Sorting Out the Ocean Crust Deep Biosphere with Single Cell Omics Approaches

    NASA Astrophysics Data System (ADS)

    Orcutt, B.; D'Angelo, T.; Goordial, J.; Jones, R. M.; Carr, S. A.

    2017-12-01

    Although oceanic crust comprises a large habitat for subsurface life, the structure, function, and dynamics of microbial communities living on rocks in the subsurface are poorly understood. Single cell level approaches can overcome limitations of low biomass in subsurface systems. Coupled with incubation experiments with amino acid orthologs, single cell level sorting can reveal high resolution information about identity, functional potential, and growth. Leveraging collaboration with the Single Cell Genomics Center and the Facility for Aquatic Cytometry at Bigelow Laboratory, we present recent results from single cell level sorting and -omics sequencing from several crustal environments, including the Atlantis Massif and the Juan de Fuca Ridge flank. We will also highlight new experiments conducted with samples recovered from the flank of the Mid-Atlantic Ridge.

  1. A shared molecular mechanism underlies the human rasopathies Legius syndrome and Neurofibromatosis-1

    PubMed Central

    Stowe, Irma B.; Mercado, Ellen L.; Stowe, Timothy R.; Bell, Erika L.; Oses-Prieto, Juan A.; Hernández, Hilda; Burlingame, Alma L.; McCormick, Frank

    2012-01-01

    The Ras/mitogen-activated protein kinase (MAPK) pathway plays a critical role in transducing mitogenic signals from receptor tyrosine kinases. Loss-of-function mutations in one feedback regulator of Ras/MAPK signaling, SPRED1 (Sprouty-related protein with an EVH1 domain), cause Legius syndrome, an autosomal dominant human disorder that resembles Neurofibromatosis-1 (NF1). Spred1 functions as a negative regulator of the Ras/MAPK pathway; however, the underlying molecular mechanism is poorly understood. Here we show that neurofibromin, the NF1 gene product, is a Spred1-interacting protein that is necessary for Spred1's inhibitory function. We show that Spred1 binding induces the plasma membrane localization of NF1, which subsequently down-regulates Ras-GTP levels. This novel mechanism for the regulation of neurofibromin provides a molecular bridge for understanding the overlapping pathophysiology of NF1 and Legius syndrome. PMID:22751498

  2. Interhemispheric compensation: a hypothesis of TMS-induced effects on language-related areas.

    PubMed

    Andoh, Jamila; Martinot, Jean-Luc

    2008-06-01

    Repetitive transcranial magnetic stimulation (rTMS) applied over brain regions responsible for language processing is used to curtail potentially auditory hallucinations in schizophrenia patients and to investigate the functional organisation of language-related areas. Variability of effects is, however, marked across studies and between subjects. Furthermore, the mechanisms of action of rTMS are poorly understood. Here, we reviewed different factors related to the structural and functional organisation of the brain that might influence rTMS-induced effects. Then, by analogy with aphasia studies, and the plastic-adaptive changes in both the left and right hemispheres following aphasia recovery, a hypothesis is proposed about rTMS mechanisms over language-related areas (e.g. Wernicke, Broca). We proposed that the local interference induced by rTMS in language-related areas might be analogous to aphasic stroke and might lead to a functional reorganisation in areas connected to the virtual lesion for language recovery.

  3. Poreless eggshells

    PubMed Central

    Lin, Haifan; Matzuk, Martin M.

    2015-01-01

    The oocyte is the sole source of the female genetic material that will be fertilized by sperm to form an embryo. Many extrinsic and intrinsic factors are critical for oocyte development and survival; however, these mediators are incompletely understood. In this issue of the JCI, Weinberg-Shukron et al. uncover a novel recessive missense mutation in the gene encoding nucleoporin-107 (NUP107) that results in abnormal ovarian development. Recapitulation of the human mutation in the Drosophila NUP107 ortholog resulted in poor follicular development and demonstrated an evolutionarily conserved and ovary-specific role of NUP107. While NUP107 is required for nuclear pore complex function in somatic cells of flies and women, this specific amino acid change appears only to be disruptive in the ovary. All together, these findings imply that missense mutations in other genes could be specifically disruptive of ovarian or testicular function, while leaving extragonadal function intact. PMID:26485282

  4. Neutrophils suppress intraluminal NK-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells

    PubMed Central

    Spiegel, Asaf; Brooks, Mary W.; Houshyar, Samin; Reinhardt, Ferenc; Ardolino, Michele; Fessler, Evelyn; Chen, Michelle B.; Krall, Jordan A.; DeCock, Jasmine; Zervantonakis, Ioannis K.; Iannello, Alexandre; Iwamoto, Yoshiko; Cortez-Retamozo, Virna; Kamm, Roger D.; Pittet, Mikael J.; Raulet, David H.; Weinberg, Robert A.

    2016-01-01

    Immune cells promote the initial metastatic dissemination of carcinoma cells from primary tumors. In contrast to their well-studied functions in the initial stages of metastasis, the specific roles of immunocytes in facilitating progression through the critical later steps of the invasion-metastasis cascade remain poorly understood. Here we define novel functions of neutrophils in promoting intraluminal survival and extravasation at sites of metastatic dissemination. We show that CD11b+/Ly6G+ neutrophils enhance metastasis formation via two distinct mechanisms. First, neutrophils inhibit natural killer cell function, which leads to a significant increase in the intraluminal survival time of tumor cells. Thereafter, neutrophils operate to facilitate extravasation of tumor cells through the secretion of IL-1β and matrix metalloproteinases. These results identify neutrophils as key regulators of intraluminal survival and extravasation through their crosstalk with host cells and disseminating carcinoma cells. PMID:27072748

  5. Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice.

    PubMed

    Takeda, K; Kamanaka, M; Tanaka, T; Kishimoto, T; Akira, S

    1996-10-15

    IL-13 shares many biologic responses with IL-4. In contrast to well-characterized IL-4 signaling pathways, which utilize STAT6 and 4PS/IRS2, IL-13 signaling pathways are poorly understood. Recent studies performed with STAT6-deficient mice have demonstrated that STAT6 plays an essential role in IL-4 signaling. In this study, the functions of peritoneal macrophages of STAT6-deficient mice in response to IL-13 were analyzed. In STAT6-deficient mice, neither morphologic changes nor augmentation of MHC class II expression in response to IL-13 was observed. In addition, IL-13 did not decrease the nitric oxide production by activated macrophages. Taken together, these results suggest that the macrophage functions in response to IL-13 were impaired in STAT6-deficient mice, indicating that IL-13 and IL-4 share the signaling pathway via STAT6.

  6. Functional requirements of AID's higher order structures and their interaction with RNA-binding proteins.

    PubMed

    Mondal, Samiran; Begum, Nasim A; Hu, Wenjun; Honjo, Tasuku

    2016-03-15

    Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. Although both the N and C termini of AID have unique functions in DNA cleavage and recombination, respectively, during SHM and CSR, their molecular mechanisms are poorly understood. Using a bimolecular fluorescence complementation (BiFC) assay combined with glycerol gradient fractionation, we revealed that the AID C terminus is required for a stable dimer formation. Furthermore, AID monomers and dimers form complexes with distinct heterogeneous nuclear ribonucleoproteins (hnRNPs). AID monomers associate with DNA cleavage cofactor hnRNP K whereas AID dimers associate with recombination cofactors hnRNP L, hnRNP U, and Serpine mRNA-binding protein 1. All of these AID/ribonucleoprotein associations are RNA-dependent. We propose that AID's structure-specific cofactor complex formations differentially contribute to its DNA-cleavage and recombination functions.

  7. Searching for Electrical Properties, Phenomena and Mechanisms in the Construction and Function of Chromosomes

    PubMed Central

    Kanev, Ivan; Mei, Wai-Ning; Mizuno, Akira; DeHaai, Kristi; Sanmann, Jennifer; Hess, Michelle; Starr, Lois; Grove, Jennifer; Dave, Bhavana; Sanger, Warren

    2013-01-01

    Our studies reveal previously unidentified electrical properties of chromosomes: (1) chromosomes are amazingly similar in construction and function to electrical transformers; (2) chromosomes possess in their construction and function, components similar to those of electric generators, conductors, condensers, switches, and other components of electrical circuits; (3) chromosomes demonstrate in nano-scale level electromagnetic interactions, resonance, fusion and other phenomena similar to those described by equations in classical physics. These electrical properties and phenomena provide a possible explanation for unclear and poorly understood mechanisms in clinical genetics including: (a) electrically based mechanisms responsible for breaks, translocations, fusions, and other chromosomal abnormalities associated with cancer, intellectual disability, infertility, pregnancy loss, Down syndrome, and other genetic disorders; (b) electrically based mechanisms involved in crossing over, non-disjunction and other events during meiosis and mitosis; (c) mechanisms demonstrating heterochromatin to be electrically active and genetically important. PMID:24688715

  8. Tissue-Specific Enrichment of Lymphoma Risk Loci in Regulatory Elements

    PubMed Central

    Hayes, James E.; Trynka, Gosia; Vijai, Joseph; Offit, Kenneth; Raychaudhuri, Soumya; Klein, Robert J.

    2015-01-01

    Though numerous polymorphisms have been associated with risk of developing lymphoma, how these variants function to promote tumorigenesis is poorly understood. Here, we report that lymphoma risk SNPs, especially in the non-Hodgkin’s lymphoma subtype chronic lymphocytic leukemia, are significantly enriched for co-localization with epigenetic marks of active gene regulation. These enrichments were seen in a lymphoid-specific manner for numerous ENCODE datasets, including DNase-hypersensitivity as well as multiple segmentation-defined enhancer regions. Furthermore, we identify putatively functional SNPs that are both in regulatory elements in lymphocytes and are associated with gene expression changes in blood. We developed an algorithm, UES, that uses a Monte Carlo simulation approach to calculate the enrichment of previously identified risk SNPs in various functional elements. This multiscale approach integrating multiple datasets helps disentangle the underlying biology of lymphoma, and more broadly, is generally applicable to GWAS results from other diseases as well. PMID:26422229

  9. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Sean P.; Contreras-Moreira, Bruno; Woods, Daniel P.

    While prokaryotic pan-genomes have been shown to contain many more genes than any individual organism, the prevalence and functional significance of differentially present genes in eukaryotes remains poorly understood. Whole-genome de novo assembly and annotation of 54 lines of the grass Brachypodium distachyon yield a pan-genome containing nearly twice the number of genes found in any individual genome. Genes present in all lines are enriched for essential biological functions, while genes present in only some lines are enriched for conditionally beneficial functions (e.g., defense and development), display faster evolutionary rates, lie closer to transposable elements and are less likely tomore » be syntenic with orthologous genes in other grasses. Our data suggest that differentially present genes contribute substantially to phenotypic variation within a eukaryote species, these genes have a major influence in population genetics, and transposable elements play a key role in pan-genome evolution.« less

  10. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure.

    PubMed

    Gordon, Sean P; Contreras-Moreira, Bruno; Woods, Daniel P; Des Marais, David L; Burgess, Diane; Shu, Shengqiang; Stritt, Christoph; Roulin, Anne C; Schackwitz, Wendy; Tyler, Ludmila; Martin, Joel; Lipzen, Anna; Dochy, Niklas; Phillips, Jeremy; Barry, Kerrie; Geuten, Koen; Budak, Hikmet; Juenger, Thomas E; Amasino, Richard; Caicedo, Ana L; Goodstein, David; Davidson, Patrick; Mur, Luis A J; Figueroa, Melania; Freeling, Michael; Catalan, Pilar; Vogel, John P

    2017-12-19

    While prokaryotic pan-genomes have been shown to contain many more genes than any individual organism, the prevalence and functional significance of differentially present genes in eukaryotes remains poorly understood. Whole-genome de novo assembly and annotation of 54 lines of the grass Brachypodium distachyon yield a pan-genome containing nearly twice the number of genes found in any individual genome. Genes present in all lines are enriched for essential biological functions, while genes present in only some lines are enriched for conditionally beneficial functions (e.g., defense and development), display faster evolutionary rates, lie closer to transposable elements and are less likely to be syntenic with orthologous genes in other grasses. Our data suggest that differentially present genes contribute substantially to phenotypic variation within a eukaryote species, these genes have a major influence in population genetics, and transposable elements play a key role in pan-genome evolution.

  11. PINK1 deficiency enhances autophagy and mitophagy induction.

    PubMed

    Gómez-Sánchez, Rubén; Yakhine-Diop, Sokhna M S; Bravo-San Pedro, José M; Pizarro-Estrella, Elisa; Rodríguez-Arribas, Mario; Climent, Vicente; Martin-Cano, Francisco E; González-Soltero, María E; Tandon, Anurag; Fuentes, José M; González-Polo, Rosa A

    2016-03-01

    Parkinson's disease (PD) is a neurodegenerative disorder with poorly understood etiology. Increasing evidence suggests that age-dependent compromise of the maintenance of mitochondrial function is a key risk factor. Several proteins encoded by PD-related genes are associated with mitochondria including PTEN-induced putative kinase 1 (PINK1), which was first identified as a gene that is upregulated by PTEN. Loss-of-function PINK1 mutations induce mitochondrial dysfunction and, ultimately, neuronal cell death. To mitigate the negative effects of altered cellular functions cells possess a degradation mechanism called autophagy for recycling damaged components; selective elimination of dysfunctional mitochondria by autophagy is termed mitophagy. Our study indicates that autophagy and mitophagy are upregulated in PINK1-deficient cells, and is the first report to demonstrate efficient fluxes by one-step analysis. We propose that autophagy is induced to maintain cellular homeostasis under conditions of non-regulated mitochondrial quality control.

  12. PINK1 deficiency enhances autophagy and mitophagy induction

    PubMed Central

    Gómez-Sánchez, Rubén; Yakhine-Diop, Sokhna M S; Bravo-San Pedro, José M; Pizarro-Estrella, Elisa; Rodríguez-Arribas, Mario; Climent, Vicente; Martin-Cano, Francisco E; González-Soltero, María E; Tandon, Anurag; Fuentes, José M; González-Polo, Rosa A

    2016-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder with poorly understood etiology. Increasing evidence suggests that age-dependent compromise of the maintenance of mitochondrial function is a key risk factor. Several proteins encoded by PD-related genes are associated with mitochondria including PTEN-induced putative kinase 1 (PINK1), which was first identified as a gene that is upregulated by PTEN. Loss-of-function PINK1 mutations induce mitochondrial dysfunction and, ultimately, neuronal cell death. To mitigate the negative effects of altered cellular functions cells possess a degradation mechanism called autophagy for recycling damaged components; selective elimination of dysfunctional mitochondria by autophagy is termed mitophagy. Our study indicates that autophagy and mitophagy are upregulated in PINK1-deficient cells, and is the first report to demonstrate efficient fluxes by one-step analysis. We propose that autophagy is induced to maintain cellular homeostasis under conditions of non-regulated mitochondrial quality control. PMID:27308585

  13. Paleo-tribology: development of wear measurement techniques and a three-dimensional model revealing how grinding dentitions self-wear to enable functionality

    NASA Astrophysics Data System (ADS)

    Erickson, Gregory M.; Sidebottom, Mark A.; Curry, John F.; Kay, David Ian; Kuhn-Hendricks, Stephen; Norell, Mark A.; Sawyer, W. Gregory; Krick, Brandon A.

    2016-06-01

    In most mammals and a rare few reptilian lineages the evolution of precise dental occlusion led to the capacity to form functional chewing surfaces due to pressures generated while feeding. The complex dental architectures of such teeth and the biomechanics of their self-wearing nature are poorly understood. Our research team composed of paleontologists, evolutionary biologists, and engineers have developed a protocol to: (1) determine the histological make-up of grinding dentitions in extant and fossil taxa; (2) ascertain wear-relevant material properties of the tissues; (3) determine how those properties relate to inter-tissue-biomechanics leading the dental functionality using a three-dimensional Archard’s wear model developed specifically for dental applications; (4) analyze those data in phylogenetic contexts to infer evolutionary patterns as they relate to feeding. Finally we discuss industrial applications that are emerging from our paleontologically-inspired research.

  14. The role of protein dynamics in the evolution of new enzyme function.

    PubMed

    Campbell, Eleanor; Kaltenbach, Miriam; Correy, Galen J; Carr, Paul D; Porebski, Benjamin T; Livingstone, Emma K; Afriat-Jurnou, Livnat; Buckle, Ashley M; Weik, Martin; Hollfelder, Florian; Tokuriki, Nobuhiko; Jackson, Colin J

    2016-11-01

    Enzymes must be ordered to allow the stabilization of transition states by their active sites, yet dynamic enough to adopt alternative conformations suited to other steps in their catalytic cycles. The biophysical principles that determine how specific protein dynamics evolve and how remote mutations affect catalytic activity are poorly understood. Here we examine a 'molecular fossil record' that was recently obtained during the laboratory evolution of a phosphotriesterase from Pseudomonas diminuta to an arylesterase. Analysis of the structures and dynamics of nine protein variants along this trajectory, and three rationally designed variants, reveals cycles of structural destabilization and repair, evolutionary pressure to 'freeze out' unproductive motions and sampling of distinct conformations with specific catalytic properties in bi-functional intermediates. This work establishes that changes to the conformational landscapes of proteins are an essential aspect of molecular evolution and that change in function can be achieved through enrichment of preexisting conformational sub-states.

  15. Functional requirements of AID’s higher order structures and their interaction with RNA-binding proteins

    PubMed Central

    Mondal, Samiran; Begum, Nasim A.; Hu, Wenjun; Honjo, Tasuku

    2016-01-01

    Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. Although both the N and C termini of AID have unique functions in DNA cleavage and recombination, respectively, during SHM and CSR, their molecular mechanisms are poorly understood. Using a bimolecular fluorescence complementation (BiFC) assay combined with glycerol gradient fractionation, we revealed that the AID C terminus is required for a stable dimer formation. Furthermore, AID monomers and dimers form complexes with distinct heterogeneous nuclear ribonucleoproteins (hnRNPs). AID monomers associate with DNA cleavage cofactor hnRNP K whereas AID dimers associate with recombination cofactors hnRNP L, hnRNP U, and Serpine mRNA-binding protein 1. All of these AID/ribonucleoprotein associations are RNA-dependent. We propose that AID’s structure-specific cofactor complex formations differentially contribute to its DNA-cleavage and recombination functions. PMID:26929374

  16. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure

    DOE PAGES

    Gordon, Sean P.; Contreras-Moreira, Bruno; Woods, Daniel P.; ...

    2017-12-19

    While prokaryotic pan-genomes have been shown to contain many more genes than any individual organism, the prevalence and functional significance of differentially present genes in eukaryotes remains poorly understood. Whole-genome de novo assembly and annotation of 54 lines of the grass Brachypodium distachyon yield a pan-genome containing nearly twice the number of genes found in any individual genome. Genes present in all lines are enriched for essential biological functions, while genes present in only some lines are enriched for conditionally beneficial functions (e.g., defense and development), display faster evolutionary rates, lie closer to transposable elements and are less likely tomore » be syntenic with orthologous genes in other grasses. Our data suggest that differentially present genes contribute substantially to phenotypic variation within a eukaryote species, these genes have a major influence in population genetics, and transposable elements play a key role in pan-genome evolution.« less

  17. Continental-scale patterns of canopy tree composition and function across Amazonia.

    PubMed

    ter Steege, Hans; Pitman, Nigel C A; Phillips, Oliver L; Chave, Jerome; Sabatier, Daniel; Duque, Alvaro; Molino, Jean-François; Prévost, Marie-Françoise; Spichiger, Rodolphe; Castellanos, Hernán; von Hildebrand, Patricio; Vásquez, Rodolfo

    2006-09-28

    The world's greatest terrestrial stores of biodiversity and carbon are found in the forests of northern South America, where large-scale biogeographic patterns and processes have recently begun to be described. Seven of the nine countries with territory in the Amazon basin and the Guiana shield have carried out large-scale forest inventories, but such massive data sets have been little exploited by tropical plant ecologists. Although forest inventories often lack the species-level identifications favoured by tropical plant ecologists, their consistency of measurement and vast spatial coverage make them ideally suited for numerical analyses at large scales, and a valuable resource to describe the still poorly understood spatial variation of biomass, diversity, community composition and forest functioning across the South American tropics. Here we show, by using the seven forest inventories complemented with trait and inventory data collected elsewhere, two dominant gradients in tree composition and function across the Amazon, one paralleling a major gradient in soil fertility and the other paralleling a gradient in dry season length. The data set also indicates that the dominance of Fabaceae in the Guiana shield is not necessarily the result of root adaptations to poor soils (nodulation or ectomycorrhizal associations) but perhaps also the result of their remarkably high seed mass there as a potential adaptation to low rates of disturbance.

  18. At the intersection of attention and memory: the mechanistic role of the posterior parietal lobe in working memory

    PubMed Central

    Berryhill, Marian E.; Chein, Jason; Olson, Ingrid R.

    2011-01-01

    Portions of the posterior parietal cortex (PPC) play a role in working memory (WM) yet the precise mechanistic function of this region remains poorly understood. The pure storage hypothesis proposes that this region functions as a short-lived modality-specific memory store. Alternatively, the internal attention hypothesis proposes that the PPC functions as an attention-based storage and refreshing mechanism deployable as an alternative to material-specific rehearsal. These models were tested in patients with bilateral PPC lesions. Our findings discount the pure storage hypothesis because variables indexing storage capacity and longevity were not disproportionately affected by PPC damage. Instead, our data support the internal attention account by showing that (a) normal participants tend to use a rehearsal-based WM maintenance strategy for recall tasks but not for recognition tasks; (b) patients with PPC lesions performed normally on WM tasks that relied on material-specific rehearsal strategies but poorly on WM tasks that relied on attention-based maintenance strategies and patient strategy usage could be shifted by task or instructions; (c) patients’ memory deficits extended into the long-term domain. These findings suggest that the PPC maintains or shifts internal attention among the representations of items in WM. PMID:21345344

  19. At the intersection of attention and memory: the mechanistic role of the posterior parietal lobe in working memory.

    PubMed

    Berryhill, Marian E; Chein, Jason; Olson, Ingrid R

    2011-04-01

    Portions of the posterior parietal cortex (PPC) play a role in working memory (WM) yet the precise mechanistic function of this region remains poorly understood. The pure storage hypothesis proposes that this region functions as a short-lived modality-specific memory store. Alternatively, the internal attention hypothesis proposes that the PPC functions as an attention-based storage and refreshing mechanism deployable as an alternative to material-specific rehearsal. These models were tested in patients with bilateral PPC lesions. Our findings discount the pure storage hypothesis because variables indexing storage capacity and longevity were not disproportionately affected by PPC damage. Instead, our data support the internal attention account by showing that (a) normal participants tend to use a rehearsal-based WM maintenance strategy for recall tasks but not for recognition tasks; (b) patients with PPC lesions performed normally on WM tasks that relied on material-specific rehearsal strategies but poorly on WM tasks that relied on attention-based maintenance strategies and patient strategy usage could be shifted by task or instructions; (c) patients' memory deficits extended into the long-term domain. These findings suggest that the PPC maintains or shifts internal attention among the representations of items in WM. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Continental-scale patterns of canopy tree composition and function across Amazonia

    NASA Astrophysics Data System (ADS)

    Ter Steege, Hans; Pitman, Nigel C. A.; Phillips, Oliver L.; Chave, Jerome; Sabatier, Daniel; Duque, Alvaro; Molino, Jean-François; Prévost, Marie-Françoise; Spichiger, Rodolphe; Castellanos, Hernán; von Hildebrand, Patricio; Vásquez, Rodolfo

    2006-09-01

    The world's greatest terrestrial stores of biodiversity and carbon are found in the forests of northern South America, where large-scale biogeographic patterns and processes have recently begun to be described. Seven of the nine countries with territory in the Amazon basin and the Guiana shield have carried out large-scale forest inventories, but such massive data sets have been little exploited by tropical plant ecologists. Although forest inventories often lack the species-level identifications favoured by tropical plant ecologists, their consistency of measurement and vast spatial coverage make them ideally suited for numerical analyses at large scales, and a valuable resource to describe the still poorly understood spatial variation of biomass, diversity, community composition and forest functioning across the South American tropics. Here we show, by using the seven forest inventories complemented with trait and inventory data collected elsewhere, two dominant gradients in tree composition and function across the Amazon, one paralleling a major gradient in soil fertility and the other paralleling a gradient in dry season length. The data set also indicates that the dominance of Fabaceae in the Guiana shield is not necessarily the result of root adaptations to poor soils (nodulation or ectomycorrhizal associations) but perhaps also the result of their remarkably high seed mass there as a potential adaptation to low rates of disturbance.

  1. PLOD2 regulated by transcription factor FOXA1 promotes metastasis in NSCLC

    PubMed Central

    Du, Hongzhi; Chen, Yulong; Hou, Xiaoying; Huang, Yue; Wei, Xiaohui; Yu, Xiaowen; Feng, Shuyun; Wu, Yao; Zhan, Meixiao; Shi, Xin; Lin, Sensen; Lu, Ligong; Yuan, Shengtao; Sun, Li

    2017-01-01

    In multiple types of tumors, fibrotic collagen is regarded as the 'highway' for cancer cell migration, which is mainly modified by lysyl hydroxylase 2 (PLOD2). The previous findings have demonstrated that the expression of PLOD2 was regulated by multiple factors, including HIF-1α, TGF-β and microRNA-26a/b. Although PLOD2 was confirmed to be related to poor prognosis in lung adenocarcinoma, the regulatory mechanism and function of PLOD2 in human lung adenocarcinoma is poorly understood. On the other hand, upregulation or hyperactivation of epidermal growth factor receptor is considered as a prognostic marker in many cancers, especially in non-small-cell lung cancer (NSCLC). In this study, we found that PLOD2 was elevated in NSCLC specimens and positively links to NSCLC poor prognosis. Gain- and loss-of-function studies and orthotopic implantation metastasis model pinpointed that PLOD2 promotes NSCLC metastasis directly by enhancing migration and indirectly by inducing collagen reorganization. In addition, we revealed that PLOD2 was regulated by PI3K/AKT-FOXA1 axis. The transcription factor FOXA1 directly bound to the PLOD2 promoter, and turned on PLOD2 transcription. In summary, our findings revealed a regulatory mechanism of NSCLC metastasis through EGFR-PI3K/AKT-FOXA1-PLOD2 pathway, and provided PLOD2 as a therapeutic target for NSCLC treatment. PMID:29072684

  2. Individual Differences Reveal Correlates of Hidden Hearing Deficits

    PubMed Central

    Masud, Salwa; Mehraei, Golbarg; Verhulst, Sarah; Shinn-Cunningham, Barbara G.

    2015-01-01

    Clinical audiometry has long focused on determining the detection thresholds for pure tones, which depend on intact cochlear mechanics and hair cell function. Yet many listeners with normal hearing thresholds complain of communication difficulties, and the causes for such problems are not well understood. Here, we explore whether normal-hearing listeners exhibit such suprathreshold deficits, affecting the fidelity with which subcortical areas encode the temporal structure of clearly audible sound. Using an array of measures, we evaluated a cohort of young adults with thresholds in the normal range to assess both cochlear mechanical function and temporal coding of suprathreshold sounds. Listeners differed widely in both electrophysiological and behavioral measures of temporal coding fidelity. These measures correlated significantly with each other. Conversely, these differences were unrelated to the modest variation in otoacoustic emissions, cochlear tuning, or the residual differences in hearing threshold present in our cohort. Electroencephalography revealed that listeners with poor subcortical encoding had poor cortical sensitivity to changes in interaural time differences, which are critical for localizing sound sources and analyzing complex scenes. These listeners also performed poorly when asked to direct selective attention to one of two competing speech streams, a task that mimics the challenges of many everyday listening environments. Together with previous animal and computational models, our results suggest that hidden hearing deficits, likely originating at the level of the cochlear nerve, are part of “normal hearing.” PMID:25653371

  3. Consumer perception of beneficial effects of probiotics for human health.

    PubMed

    Rijkers, G T; Bimmel, D; Grevers, D; den Haan, N; Hristova, Y

    2013-03-01

    The purpose of this study was to evaluate the knowledge, perception and buying behaviour of probiotics. 72 participants in Middelburg, the Netherlands, filled out a detailed questionnaire regarding probiotics and their customer and consumer behaviour. It can be concluded from this study that the concept of probiotics is generally poorly understood. Health-conscious consumers seem to be the group most aware of the correct meaning of the term probiotics. Almost 50% of the participants did not believe that probiotics had any health effect. Independent organisations and/or government agencies appeared to be the preferred source of information on the functionality of probiotics.

  4. The Road not Taken: Less Traveled Roads from the TGN to the Plasma Membrane

    PubMed Central

    Spang, Anne

    2015-01-01

    The trans-Golgi network functions in the distribution of cargo into different transport vesicles that are destined to endosomes, lysosomes and the plasma membrane. Over the years, it has become clear that more than one transport pathway promotes plasma membrane localization of proteins. In spite of the importance of temporal and spatial control of protein localization at the plasma membrane, the regulation of sorting into and the formation of different transport containers are still poorly understood. In this review different transport pathways, with a special emphasis on exomer-dependent transport, and concepts of regulation and sorting at the TGN are discussed. PMID:25764365

  5. LEAFY blossoms.

    PubMed

    Moyroud, Edwige; Kusters, Elske; Monniaux, Marie; Koes, Ronald; Parcy, François

    2010-06-01

    The LEAFY (LFY) gene of Arabidopsis and its homologs in other angiosperms encode a unique plant-specific transcription factor that assigns the floral fate of meristems and plays a key role in the patterning of flowers, probably since the origin of flowering plants. LFY-like genes are also found in gymnosperms, ferns and mosses that do not produce flowers, but their role in these plants is poorly understood. Here, we review recent findings explaining how the LFY protein works and how it could have evolved throughout land plant history. We propose that LFY homologs have an ancestral role in regulating cell division and arrangement, and acquired novel functions in seed plants, such as activating reproductive gene networks.

  6. Song recorded near a super-group of humpback whales on a mid-latitude feeding ground off South Africa.

    PubMed

    Gridley, T; Silva, M F P; Wilkinson, C; Seakamela, S M; Elwen, S H

    2018-04-01

    Humpback whales (Megaptera novaeangliae) are well known for their complex song which is culturally transmitted and produced by males. However, the function of singing behavior remains poorly understood. Song was observed from 57 min of acoustic recording in the presence of feeding humpback whales aggregated in the near-shore waters on the west coast of South Africa. The structural organization of the song components, lack of overlap between song units, and consistency in relative received level suggest the song was produced by one "singer." The unusual timing and location of song production adds further evidence of plasticity in song production.

  7. Manuscript peer review at the AJR: facts, figures, and quality assessment.

    PubMed

    Friedman, D P

    1995-04-01

    Concern by the government, funding institutions, and the public for quality assurance in all aspects of medical endeavors mandates critical examination of various professional activities. Although peer review is generally regarded as the best system for selecting and improving scientific papers for publication, the efficacy of this process has never been proved. Moreover, the administrative functions of the editorial staff are often poorly understood. The purpose of this article is to make peer review a the AJR less esoteric and more understandable by quantifying some of its activities. This information is then assessed as it relates to the quality of this important step in scientific publication.

  8. The Road not Taken: Less Traveled Roads from the TGN to the Plasma Membrane.

    PubMed

    Spang, Anne

    2015-03-10

    The trans-Golgi network functions in the distribution of cargo into different transport vesicles that are destined to endosomes, lysosomes and the plasma membrane. Over the years, it has become clear that more than one transport pathway promotes plasma membrane localization of proteins. In spite of the importance of temporal and spatial control of protein localization at the plasma membrane, the regulation of sorting into and the formation of different transport containers are still poorly understood. In this review different transport pathways, with a special emphasis on exomer-dependent transport, and concepts of regulation and sorting at the TGN are discussed.

  9. Isotopic signals of summer denitrification in a northern hardwood forested catchment

    Treesearch

    Sarah K. Wexler; Christine L. Goodale; Kevin J. McGuire; Scott W. Bailey; Peter M. Groffman

    2014-01-01

    Despite decades of measurements, the nitrogen balance of temperate forest catchments remains poorly understood. Atmospheric nitrogen deposition often greatly exceeds streamwater nitrogen losses; the fate of the remaining nitrogen is highly uncertain. Gaseous losses of nitrogen to denitrification are especially poorly documented and are often ignored. Here, we provide...

  10. Punishment and Welfare: Paternal Incarceration and Families' Receipt of Public Assistance

    ERIC Educational Resources Information Center

    Sugie, Naomi F.

    2012-01-01

    The United States criminal justice and welfare systems are two important government institutions in the lives of the poor. Despite many theoretical discussions about their relationship, their operation at the level of offenders and families remains poorly understood. This paper utilizes Fragile Families and Child Wellbeing data to examine how…

  11. Stress and strain in the contractile and cytoskeletal filaments of airway smooth muscle.

    PubMed

    Deng, Linhong; Bosse, Ynuk; Brown, Nathan; Chin, Leslie Y M; Connolly, Sarah C; Fairbank, Nigel J; King, Greg G; Maksym, Geoffrey N; Paré, Peter D; Seow, Chun Y; Stephen, Newman L

    2009-10-01

    Stress and strain are omnipresent in the lung due to constant lung volume fluctuation associated with respiration, and they modulate the phenotype and function of all cells residing in the airways including the airway smooth muscle (ASM) cell. There is ample evidence that the ASM cell is very sensitive to its physical environment, and can alter its structure and/or function accordingly, resulting in either desired or undesired consequences. The forces that are either conferred to the ASM cell due to external stretching or generated inside the cell must be borne and transmitted inside the cytoskeleton (CSK). Thus, maintaining appropriate levels of stress and strain within the CSK is essential for maintaining normal function. Despite the importance, the mechanisms regulating/dysregulating ASM cytoskeletal filaments in response to stress and strain remained poorly understood until only recently. For example, it is now understood that ASM length and force are dynamically regulated, and both can adapt over a wide range of length, rendering ASM one of the most malleable living tissues. The malleability reflects the CSK's dynamic mechanical properties and plasticity, both of which strongly interact with the loading on the CSK, and all together ultimately determines airway narrowing in pathology. Here we review the latest advances in our understanding of stress and strain in ASM cells, including the organization of contractile and cytoskeletal filaments, range and adaptation of functional length, structural and functional changes of the cell in response to mechanical perturbation, ASM tone as a mediator of strain-induced responses, and the novel glassy dynamic behaviors of the CSK in relation to asthma pathophysiology.

  12. Cell- and virus-mediated regulation of the barrier-to-autointegration factor's phosphorylation state controls its DNA binding, dimerization, subcellular localization, and antipoxviral activity.

    PubMed

    Jamin, Augusta; Wicklund, April; Wiebe, Matthew S

    2014-05-01

    Barrier-to-autointegration factor (BAF) is a DNA binding protein with multiple cellular functions, including the ability to act as a potent defense against vaccinia virus infection. This antiviral function involves BAF's ability to condense double-stranded DNA and subsequently prevent viral DNA replication. In recent years, it has become increasingly evident that dynamic phosphorylation involving the vaccinia virus B1 kinase and cellular enzymes is likely a key regulator of multiple BAF functions; however, the precise mechanisms are poorly understood. Here we analyzed how phosphorylation impacts BAF's DNA binding, subcellular localization, dimerization, and antipoxviral activity through the characterization of BAF phosphomimetic and unphosphorylatable mutants. Our studies demonstrate that increased phosphorylation enhances BAF's mobilization from the nucleus to the cytosol, while dephosphorylation restricts BAF to the nucleus. Phosphorylation also impairs both BAF's dimerization and its DNA binding activity. Furthermore, our studies of BAF's antiviral activity revealed that hyperphosphorylated BAF is unable to suppress viral DNA replication or virus production. Interestingly, the unphosphorylatable BAF mutant, which is capable of binding DNA but localizes predominantly to the nucleus, was also incapable of suppressing viral replication. Thus, both DNA binding and localization are important determinants of BAF's antiviral function. Finally, our examination of how phosphatases are involved in regulating BAF revealed that PP2A dephosphorylates BAF during vaccinia infection, thus counterbalancing the activity of the B1 kinase. Altogether, these data demonstrate that phosphoregulation of BAF by viral and cellular enzymes modulates this protein at multiple molecular levels, thus determining its effectiveness as an antiviral factor and likely other functions as well. The barrier-to-autointegration factor (BAF) contributes to cellular genomic integrity in multiple ways, the best characterized of which are as a host defense against cytoplasmic DNA and as a regulator of mitotic nuclear reassembly. Although dynamic phosphorylation involving both viral and cellular enzymes is likely a key regulator of multiple BAF functions, the precise mechanisms involved are poorly understood. Here we demonstrate that phosphorylation coordinately regulates BAF's DNA binding, subcellular localization, dimerization, and antipoxviral activity. Overall, our findings provide new insights into how phosphoregulation of BAF modulates this protein at multiple levels and governs its effectiveness as an antiviral factor against foreign DNA.

  13. Congenital Myasthenic Syndromes or Inherited Disorders of Neuromuscular Transmission: Recent Discoveries and Open Questions

    PubMed Central

    Nicole, Sophie; Azuma, Yoshiteru; Bauché, Stéphanie; Eymard, Bruno; Lochmüller, Hanns; Slater, Clarke

    2017-01-01

    Congenital myasthenic syndromes (CMS) form a heterogeneous group of rare diseases characterized by fatigable muscle weakness. They are genetically-inherited and caused by defective synaptic transmission at the cholinergic neuromuscular junction (NMJ). The number of genes known to cause CMS when mutated is currently 30, and the relationship between fatigable muscle weakness and defective functions is quite well-understood for many of them. However, some of the most recent discoveries in individuals with CMS challenge our knowledge of the NMJ, where the basis of the pathology has mostly been investigated in animal models. Frontier forms between CMS and congenital myopathy, which have been genetically and clinically identified, underline the poorly understood interplay between the synaptic and extrasynaptic molecules in the neuromuscular system. In addition, precise electrophysiological and histopathological investigations of individuals with CMS suggest an important role of NMJ plasticity in the response to CMS pathogenesis. While efficient drug-based treatments are already available to improve neuromuscular transmission for most forms of CMS, others, as well as neurological and muscular comorbidities, remain resistant. Taken together, the available pathological data point to physiological issues which remain to be understood in order to achieve precision medicine with efficient therapeutics for all individuals suffering from CMS. PMID:29125502

  14. A fructose receptor functions as a nutrient sensor in the Drosophila brain

    PubMed Central

    Miyamoto, Tetsuya; Slone, Jesse; Song, Xiangyu; Amrein, Hubert

    2012-01-01

    SUMMARY Internal nutrient sensors play important roles in feeding behavior, yet their molecular structure and mechanism of action are poorly understood. Using Ca2+ imaging and behavioral assays, we show that the Gustatory Receptor 43a functions as a narrowly tuned fructose receptor in taste neurons. Remarkably, GR43a also functions as a fructose receptor in the brain. Interestingly, hemolymph fructose levels are tightly linked to feeding status: after nutritious carbohydrate consumption, fructose levels rise several fold and reach a concentration sufficient to activate GR43a in the brain. By using different feeding paradigms and artificial activation of Gr43a-expressing brain neurons, we show that GR43a is both necessary and sufficient to sense hemolymph fructose and promote feeding in hungry flies, but suppress feeding in satiated flies. Thus, our studies indicate that the Gr43a-expressing brain neurons function as a nutrient sensor for hemolymph fructose and assign opposing valence to feeding experiences in a satiation-dependent manner. PMID:23178127

  15. A mechanism of Cu work function reduction in CsBr/Cu photocathodes

    DOE PAGES

    Halliday, M. T. E.; Hess, W. P.; Shluger, A. L.

    2016-02-15

    Thin films of CsBr deposited on Cu(100) have been proposed as next-generation photocathode materials for applications in particle accelerators and free-electron lasers. However, the mechanisms underlying an improved photocathode performance remain poorly understood. We present density Functional Theory (DFT) calculations of the work function reduction following the application of CsBr thin film coatings to Cu photocathodes. The effects of structure and van der Waals forces are examined. Calculations suggest that CsBr films can reduce the work function by around 1.5 eV, which would explain the exponential increase in quantum efficiency (QE) of coated vs. uncoated photocathodes. In conclusion, a modelmore » explaining experimentally observed laser activation of photocathode is provided whereby the photo-induced creation of di-vacancies at the surface, and their subsequent diffusion throughout the lattice and segregation at the interface leads to a further increase in QE after a period of laser irradiation.« less

  16. Construction of synthetic nucleoli in human cells reveals how a major functional nuclear domain is formed and propagated through cell division.

    PubMed

    Grob, Alice; Colleran, Christine; McStay, Brian

    2014-02-01

    Human cell nuclei are functionally organized into structurally stable yet dynamic bodies whose cell cycle inheritance is poorly understood. Here, we investigate the biogenesis and propagation of nucleoli, sites of ribosome biogenesis and key regulators of cellular growth. Nucleolar and cell cycles are intimately connected. Nucleoli disappear during mitosis, reforming around prominent uncharacterized chromosomal features, nucleolar organizer regions (NORs). By examining the effects of UBF depletion on both endogenous NORs and synthetic pseudo-NORs, we reveal its essential role in maintaining competency and establishing a bookmark on mitotic NORs. Furthermore, we demonstrate that neo-NORs, UBF-binding site arrays coupled with rDNA transcription units, direct the de novo biogenesis of functional compartmentalized neonucleoli irrespective of their site of chromosomal integration. For the first time, we establish the sequence requirements for nucleolar biogenesis and provide proof that this is a staged process where UBF-dependent mitotic bookmarking precedes function-dependent nucleolar assembly.

  17. Construction of synthetic nucleoli in human cells reveals how a major functional nuclear domain is formed and propagated through cell division

    PubMed Central

    Grob, Alice; Colleran, Christine; McStay, Brian

    2014-01-01

    Human cell nuclei are functionally organized into structurally stable yet dynamic bodies whose cell cycle inheritance is poorly understood. Here, we investigate the biogenesis and propagation of nucleoli, sites of ribosome biogenesis and key regulators of cellular growth. Nucleolar and cell cycles are intimately connected. Nucleoli disappear during mitosis, reforming around prominent uncharacterized chromosomal features, nucleolar organizer regions (NORs). By examining the effects of UBF depletion on both endogenous NORs and synthetic pseudo-NORs, we reveal its essential role in maintaining competency and establishing a bookmark on mitotic NORs. Furthermore, we demonstrate that neo-NORs, UBF-binding site arrays coupled with rDNA transcription units, direct the de novo biogenesis of functional compartmentalized neonucleoli irrespective of their site of chromosomal integration. For the first time, we establish the sequence requirements for nucleolar biogenesis and provide proof that this is a staged process where UBF-dependent mitotic bookmarking precedes function-dependent nucleolar assembly. PMID:24449107

  18. Childhood functional abdominal pain: mechanisms and management.

    PubMed

    Korterink, Judith; Devanarayana, Niranga Manjuri; Rajindrajith, Shaman; Vlieger, Arine; Benninga, Marc A

    2015-03-01

    Chronic abdominal pain is one of the most common clinical syndromes encountered in day to day clinical paediatric practice. Although common, its definition is confusing, predisposing factors are poorly understood and the pathophysiological mechanisms are not clear. The prevailing viewpoint in the pathogenesis involves the inter-relationship between changes in hypersensitivity and altered motility, to which several risk factors have been linked. Making a diagnosis of functional abdominal pain can be a challenge, as it is unclear which further diagnostic tests are necessary to exclude an organic cause. Moreover, large, well-performed, high-quality clinical trials for effective agents are lacking, which undermines evidence-based treatment. This Review summarizes current knowledge regarding the epidemiology, pathophysiology, risk factors and diagnostic work-up of functional abdominal pain. Finally, management options for children with functional abdominal pain are discussed including medications, dietary interventions, probiotics and psychological and complementary therapies, to improve understanding and to maximize the quality of care for children with this condition.

  19. Sonic hedgehog expression in corticofugal projection neurons directs cortical microcircuit formation.

    PubMed

    Harwell, Corey C; Parker, Philip R L; Gee, Steven M; Okada, Ami; McConnell, Susan K; Kreitzer, Anatol C; Kriegstein, Arnold R

    2012-03-22

    The precise connectivity of inputs and outputs is critical for cerebral cortex function; however, the cellular mechanisms that establish these connections are poorly understood. Here, we show that the secreted molecule Sonic Hedgehog (Shh) is involved in synapse formation of a specific cortical circuit. Shh is expressed in layer V corticofugal projection neurons and the Shh receptor, Brother of CDO (Boc), is expressed in local and callosal projection neurons of layer II/III that synapse onto the subcortical projection neurons. Layer V neurons of mice lacking functional Shh exhibit decreased synapses. Conversely, the loss of functional Boc leads to a reduction in the strength of synaptic connections onto layer Vb, but not layer II/III, pyramidal neurons. These results demonstrate that Shh is expressed in postsynaptic target cells while Boc is expressed in a complementary population of presynaptic input neurons, and they function to guide the formation of cortical microcircuitry. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. The impact of threat of shock on the framing effect and temporal discounting: executive functions unperturbed by acute stress?

    PubMed

    Robinson, Oliver J; Bond, Rebecca L; Roiser, Jonathan P

    2015-01-01

    Anxiety and stress-related disorders constitute a large global health burden, but are still poorly understood. Prior work has demonstrated clear impacts of stress upon basic cognitive function: biasing attention toward unexpected and potentially threatening information and instantiating a negative affective bias. However, the impact that these changes have on higher-order, executive, decision-making processes is unclear. In this study, we examined the impact of a translational within-subjects stress induction (threat of unpredictable shock) on two well-established executive decision-making biases: the framing effect (N = 83), and temporal discounting (N = 36). In both studies, we demonstrate (a) clear subjective effects of stress, and (b) clear executive decision-making biases but (c) no impact of stress on these decision-making biases. Indeed, Bayes factor analyses confirmed substantial preference for decision-making models that did not include stress. We posit that while stress may induce subjective mood change and alter low-level perceptual and action processes (Robinson et al., 2013c), some higher-level executive processes remain unperturbed by these impacts. As such, although stress can induce a transient affective biases and altered mood, these need not result in poor financial decision-making.

  1. Human and rodent aryl hydrocarbon receptor (AHR): from mediator of dioxin toxicity to physiologic AHR functions and therapeutic options.

    PubMed

    Bock, Karl Walter

    2017-04-01

    Metabolism of aryl hydrocarbons and toxicity of dioxins led to the discovery of the aryl hydrocarbon receptor (AHR). Tremendous advances have been made on multiplicity of AHR signaling and identification of endogenous ligands including the tryptophan metabolites FICZ and kynurenine. However, human AHR functions are still poorly understood due to marked species differences as well as cell-type- and cell context-dependent AHR functions. Observations in dioxin-poisoned individuals may provide hints to physiologic AHR functions in humans. Based on these observations three human AHR functions are discussed: (1) Chemical defence and homeostasis of endobiotics. The AHR variant Val381 in modern humans leads to reduced AHR affinity to aryl hydrocarbons in comparison with Neanderthals and primates expressing the Ala381 variant while affinity to indoles remains unimpaired. (2) Homeostasis of stem/progenitor cells. Dioxins dysregulate homeostasis in sebocyte stem cells. (3) Modulation of immunity. In addition to microbial defence, AHR may be involved in a 'disease tolerance defence pathway'. Further characterization of physiologic AHR functions may lead to therapeutic options.

  2. Relationships between cortical myeloarchitecture and electrophysiological networks

    PubMed Central

    Hunt, Benjamin A. E.; Tewarie, Prejaas K.; Mougin, Olivier E.; Geades, Nicolas; Singh, Krish D.; Morris, Peter G.; Gowland, Penny A.; Brookes, Matthew J.

    2016-01-01

    The human brain relies upon the dynamic formation and dissolution of a hierarchy of functional networks to support ongoing cognition. However, how functional connectivities underlying such networks are supported by cortical microstructure remains poorly understood. Recent animal work has demonstrated that electrical activity promotes myelination. Inspired by this, we test a hypothesis that gray-matter myelin is related to electrophysiological connectivity. Using ultra-high field MRI and the principle of structural covariance, we derive a structural network showing how myelin density differs across cortical regions and how separate regions can exhibit similar myeloarchitecture. Building upon recent evidence that neural oscillations mediate connectivity, we use magnetoencephalography to elucidate networks that represent the major electrophysiological pathways of communication in the brain. Finally, we show that a significant relationship exists between our functional and structural networks; this relationship differs as a function of neural oscillatory frequency and becomes stronger when integrating oscillations over frequency bands. Our study sheds light on the way in which cortical microstructure supports functional networks. Further, it paves the way for future investigations of the gray-matter structure/function relationship and its breakdown in pathology. PMID:27830650

  3. The Combined Roles of Nonsomatic Depressive Symptomatology, Neurocognitive Function, and Current Substance Use in Medication Adherence in Adults Living With HIV Infection.

    PubMed

    Scott, Travis M; Byrd, Desiree; Arce Rentería, Miguel; Coulehan, Kelly; Miranda, Caitlin; Fuentes, Armando; Rivera Mindt, Monica

    Depression, global neurocognitive (GNC) function, and substance use disorders (SUDs) are each associated with medication adherence in persons living with HIV (PLWH). Because somatic symptoms can inflate depression scores in PLWH, the role of nonsomatic depressive symptomatology (NSDS) should be considered in adherence. However, the combined roles of NSDS, GNC function, and current SUDs in predicting combined antiretroviral therapy (cART) adherence remain poorly understood. Forty PLWH (70% Latina/o; 30% non-Hispanic White) completed psychiatric/SUD, neurocognitive, and self-report cART adherence evaluations. Higher NSDS was associated with suboptimal adherence (p < .01), but optimal and suboptimal adherers did not differ in GNC function or current SUDs. Only NSDS was associated with suboptimal adherence, after accounting for GNC function and SUDs (p = .01). NSDS uniquely predicted self-reported adherence, beyond GNC function and current SUDs among ethnically diverse PLWH. Methodological issues between present and prior studies should also be considered. Copyright © 2017 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.

  4. Structural white matter asymmetries in relation to functional asymmetries during speech perception and production.

    PubMed

    Ocklenburg, Sebastian; Hugdahl, Kenneth; Westerhausen, René

    2013-12-01

    Functional hemispheric asymmetries of speech production and perception are a key feature of the human language system, but their neurophysiological basis is still poorly understood. Using a combined fMRI and tract-based spatial statistics approach, we investigated the relation of microstructural asymmetries in language-relevant white matter pathways and functional activation asymmetries during silent verb generation and passive listening to spoken words. Tract-based spatial statistics revealed several leftward asymmetric clusters in the arcuate fasciculus and uncinate fasciculus that were differentially related to activation asymmetries in the two functional tasks. Frontal and temporal activation asymmetries during silent verb generation were positively related to the strength of specific microstructural white matter asymmetries in the arcuate fasciculus. In contrast, microstructural uncinate fasciculus asymmetries were related to temporal activation asymmetries during passive listening. These findings suggest that white matter asymmetries may indeed be one of the factors underlying functional hemispheric asymmetries. Moreover, they also show that specific localized white matter asymmetries might be of greater relevance for functional activation asymmetries than microstructural features of whole pathways. © 2013.

  5. Regulation of Mitochondrial Function and Cellular Energy Metabolism by Protein Kinase C-λ/ι: A Novel Mode of Balancing Pluripotency

    PubMed Central

    Mahato, Biraj; Home, Pratik; Rajendran, Ganeshkumar; Paul, Arindam; Saha, Biswarup; Ganguly, Avishek; Ray, Soma; Roy, Nairita; Swerdlow, Russell H.; Paul, Soumen

    2014-01-01

    Pluripotent stem cells (PSCs) contain functionally immature mitochondria and rely upon high rates of glycolysis for their energy requirements. Thus, altered mitochondrial function and promotion of aerobic glycolysis is key to maintain and induce pluripotency. However, signaling mechanisms that regulate mitochondrial function and reprogram metabolic preferences in self-renewing vs. differentiated PSC populations are poorly understood. Here, using murine embryonic stem cells (ESCs) as a model system, we demonstrate that atypical protein kinase C isoform, PKC lambda/iota (PKCλ/ι), is a key regulator of mitochondrial function in ESCs. Depletion of PKCλ/ι in ESCs maintains their pluripotent state as evident from germline offsprings. Interestingly, loss of PKCλ/ι in ESCs leads to impairment in mitochondrial maturation, organization and a metabolic shift toward glycolysis under differentiating condition. Our mechanistic analyses indicate that a PKCλ/ι-HIF1α-PGC1α axis regulates mitochondrial respiration and balances pluripotency in ESCs. We propose that PKCλ/ι could be a crucial regulator of mitochondrial function and energy metabolism in stem cells and other cellular contexts. PMID:25142417

  6. Genomic Insights into the Biomineralization and Environmental Function of Magnetotactic Bacteria

    NASA Astrophysics Data System (ADS)

    Lin, W.; Pan, Y.

    2015-12-01

    Microorganisms have populated the Earth for billions of years and their activities are important biologic forces shaping our planetary environments. Microbial biomineralization that selectively take up environmental elements (e.g., C, S, P, Fe) and synthesize minerals either intracellularly or extracellularly is of great interest. One of the most interesting examples of these types of organisms are magnetotactic bacteria (MTB), a polyphyletic group of prokaryotes that uptake iron from aquatic habitats and biomineralize intracellular nano-sized iron minerals of magnetite (Fe3O4) and/or greigite (Fe3S4), known as magnetosomes, and orientate and swim along the Earth's magnetic field. However, our knowledge on the biomineralization mechanisms of MTB and their environmental function remains very limited because the genomic information of most MTB is still not fully understood. By using metagenomic approaches, we have acquired genomic sequences of environmental MTB communities and discovered several conserved genomic fragments containing gene operons for magnetite or greigite biomineralization from Proteobacteria and Nitrospirae MTB. The comparison of these gene clusters has provided valuable insights into the origin and evolution of magnetosome biomineralization. We further obtained several draft genomes of uncultivated MTB belonging to the phylum Nitrospirae, which reveals a metabolic flexibility of this poorly understood magnetotactic group and indicates their considerable roles in the biogeochemical cycles of iron and sulfur.

  7. Evolution of a sediment wave in an experimental channel

    Treesearch

    Thomas E. Lisle; James E. Pizzuto; Hiroshi Ikeda; Fujiko Iseya; Yoshinori Kodama

    1997-01-01

    Abstract - The routing of bed material through channels is poorly understood. We approach the problem by observing and modeling the fate of a low-amplitude sediment wave of poorly sorted sand that we introduced into an experimental channel transporting sediment identical to that of the introduced wave. The wave essentially dispersed upstream and downstream without...

  8. Independent Learning--What We Do When You're Not There

    ERIC Educational Resources Information Center

    Hockings, Christine; Thomas, Liz; Ottaway, Jim; Jones, Rob

    2018-01-01

    Independent learning is one of the cornerstones of UK higher education yet it is poorly understood by students and is seen by politicians as a poor substitute for face to face teaching. This paper explores students' understandings, approaches and experiences of independent learning and how they may become more effective independent learners. This…

  9. The role of bedrock groundwater in rainfall-runoff response at hillslope and catchment scales

    Treesearch

    C. Gabrielli; J.J. McDonnell; W.T. Jarvis

    2012-01-01

    Bedrock groundwater dynamics in headwater catchments are poorly understood and poorly characterized. Direct hydrometric measurements have been limited due to the logistical challenges associated with drilling through hard rock in steep, remote and often roadless terrain. We used a new portable bedrock drilling system to explore bedrock groundwater dynamics aimed at...

  10. Asian and Pacific Islander American Poverty: The Working Poor and the Jobless Poor.

    ERIC Educational Resources Information Center

    Toji, Dean S.; Johnson, James H.

    1992-01-01

    Assesses the incidence of Asian-American and Pacific Islander-American poverty, and offers a theoretical explanation for its existence. It is argued that poverty of Americans of Asian and Pacific Island descent is best understood in the context of the linkage of labor migration and U.S. labor market segmentation. (SLD)

  11. Complementary uses of small angle X-ray scattering and X-ray crystallography.

    PubMed

    Pillon, Monica C; Guarné, Alba

    2017-11-01

    Most proteins function within networks and, therefore, protein interactions are central to protein function. Although stable macromolecular machines have been extensively studied, dynamic protein interactions remain poorly understood. Small-angle X-ray scattering probes the size, shape and dynamics of proteins in solution at low resolution and can be used to study samples in a large range of molecular weights. Therefore, it has emerged as a powerful technique to study the structure and dynamics of biomolecular systems and bridge fragmented information obtained using high-resolution techniques. Here we review how small-angle X-ray scattering can be combined with other structural biology techniques to study protein dynamics. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. LincRNA-p21: Implications in Human Diseases.

    PubMed

    Tang, Sai-Sai; Zheng, Bi-Ying; Xiong, Xing-Dong

    2015-08-11

    Long noncoding RNAs (lncRNAs), which lack significant protein-coding capacity, regulate various biological processes through diverse and as yet poorly understood molecular mechanisms. However, a number of studies in the past few years have documented important functions for lncRNAs in human diseases. Among these lncRNAs, lincRNA-p21 has been proposed to be a novel regulator of cell proliferation, apoptosis and DNA damage response, and involved in the initiation and progression of human diseases. In this review, we summarize the current knowledge of lincRNA-p21, mainly focus on the known biological functions and its underlying mechanisms. Moreover, we highlight the growing body of evidences for the importance of lincRNA-p21 in diverse human diseases, which indicate lincRNA-p21 as a potential diagnostic marker and/or a valuable therapeutic target for these diseases.

  13. High-resolution structure of the Escherichia coli ribosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noeske, Jonas; Wasserman, Michael R.; Terry, Daniel S.

    Protein synthesis by the ribosome is highly dependent on the ionic conditions in the cellular environment, but the roles of ribosome solvation remain poorly understood. Moreover, the function of modifications to ribosomal RNA and ribosomal proteins are unclear. Here we present the structure of the Escherichia coli 70S ribosome to 2.4 Å resolution. The structure reveals details of the ribosomal subunit interface that are conserved in all domains of life, and suggest how solvation contributes to ribosome integrity and function. The structure also suggests how the conformation of ribosomal protein uS12 likely impacts its contribution to messenger RNA decoding. Inmore » conclusion, this structure helps to explain the phylogenetic conservation of key elements of the ribosome, including posttranscriptional and posttranslational modifications and should serve as a basis for future antibiotic development.« less

  14. High-resolution structure of the Escherichia coli ribosome

    DOE PAGES

    Noeske, Jonas; Wasserman, Michael R.; Terry, Daniel S.; ...

    2015-03-16

    Protein synthesis by the ribosome is highly dependent on the ionic conditions in the cellular environment, but the roles of ribosome solvation remain poorly understood. Moreover, the function of modifications to ribosomal RNA and ribosomal proteins are unclear. Here we present the structure of the Escherichia coli 70S ribosome to 2.4 Å resolution. The structure reveals details of the ribosomal subunit interface that are conserved in all domains of life, and suggest how solvation contributes to ribosome integrity and function. The structure also suggests how the conformation of ribosomal protein uS12 likely impacts its contribution to messenger RNA decoding. Inmore » conclusion, this structure helps to explain the phylogenetic conservation of key elements of the ribosome, including posttranscriptional and posttranslational modifications and should serve as a basis for future antibiotic development.« less

  15. Spatial and temporal dynamics of receptor for advanced glycation endproducts, integrins, and actin cytoskeleton as probed with fluorescence-based imaging techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syed, Aleem

    Systematic spatial and temporal fluctuations are a fundamental part of any biological process. For example, lateral diffusion of membrane proteins is one of the key mechanisms in their cellular function. Lateral diffusion governs how membrane proteins interact with intracellular, transmembrane, and extracellular components to achieve their function. Herein, fluorescence-based techniques are used to elucidate the dynamics of receptor for advanced glycation end-products (RAGE) and integrin membrane proteins. RAGE is a transmembrane protein that is being used as a biomarker for various diseases. RAGE dependent signaling in numerous pathological conditions is well studied. However, RAGE lateral diffusion in the cell membranemore » is poorly understood. For this purpose, effect of cholesterol, cytoskeleton dynamics, and presence of ligand on RAGE lateral diffusion is investigated.« less

  16. Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging.

    PubMed

    Chen, Junling; Gao, Jing; Zhang, Min; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda

    2016-07-25

    Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes.

  17. Integrative Analysis of Many RNA-Seq Datasets to Study Alternative Splicing

    PubMed Central

    Li, Wenyuan; Dai, Chao; Kang, Shuli; Zhou, Xianghong Jasmine

    2014-01-01

    Alternative splicing is an important gene regulatory mechanism that dramatically increases the complexity of the proteome. However, how alternative splicing is regulated and how transcription and splicing are coordinated are still poorly understood, and functions of transcript isoforms have been studied only in a few limited cases. Nowadays, RNA-seq technology provides an exceptional opportunity to study alternative splicing on genome-wide scales and in an unbiased manner. With the rapid accumulation of data in public repositories, new challenges arise from the urgent need to effectively integrate many different RNA-seq datasets for study alterative splicing. This paper discusses a set of advanced computational methods that can integrate and analyze many RNA-seq datasets to systematically identify splicing modules, unravel the coupling of transcription and splicing, and predict the functions of splicing isoforms on a genome-wide scale. PMID:24583115

  18. New experimental models of skin homeostasis and diseases.

    PubMed

    Larcher, F; Espada, J; Díaz-Ley, B; Jaén, P; Juarranz, A; Quintanilla, M

    2015-01-01

    Homeostasis, whose regulation at the molecular level is still poorly understood, is intimately related to the functions of epidermal stem cells. Five research groups have been brought together to work on new in vitro and in vivo skin models through the SkinModel-CM program, under the auspices of the Spanish Autonomous Community of Madrid. This project aims to analyze the functions of DNA methyltransferase 1, endoglin, and podoplanin in epidermal stem cell activity, homeostasis, and skin cancer. These new models include 3-dimensional organotypic cultures, immunodeficient skin-humanized mice, and genetically modified mice. Another aim of the program is to use skin-humanized mice to model dermatoses such as Gorlin syndrome and xeroderma pigmentosum in order to optimize new protocols for photodynamic therapy. Copyright © 2013 Elsevier España, S.L.U. and AEDV. All rights reserved.

  19. Effector Regulatory T Cell Differentiation and Immune Homeostasis Depend on the Transcription Factor Myb.

    PubMed

    Dias, Sheila; D'Amico, Angela; Cretney, Erika; Liao, Yang; Tellier, Julie; Bruggeman, Christine; Almeida, Francisca F; Leahy, Jamie; Belz, Gabrielle T; Smyth, Gordon K; Shi, Wei; Nutt, Stephen L

    2017-01-17

    FoxP3-expressing regulatory T (Treg) cells are essential for maintaining immune homeostasis. Activated Treg cells undergo further differentiation into an effector state that highly expresses genes critical for Treg cell function, although how this process is coordinated on a transcriptional level is poorly understood. Here, we demonstrate that mice lacking the transcription factor Myb in Treg cells succumbed to a multi-organ inflammatory disease. Myb was specifically expressed in, and required for the differentiation of, thymus-derived effector Treg cells. The combination of transcriptome and genomic footprint analyses revealed that Myb directly regulated a large proportion of the gene expression specific to effector Treg cells, identifying Myb as a critical component of the gene regulatory network controlling effector Treg cell differentiation and function. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging

    PubMed Central

    Chen, Junling; Gao, Jing; Zhang, Min; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda

    2016-01-01

    Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes. PMID:27453176

  1. Bile salts as semiochemicals in fish

    USGS Publications Warehouse

    Buchinger, Tyler J.; Li, Weiming; Johnson, Nicholas S.

    2014-01-01

    Bile salts are potent olfactory stimuli in fishes; however the biological functions driving such sensitivity remain poorly understood. We provide an integrative review of bile salts as semiochemicals in fish. First, we present characteristics of bile salt structure, metabolism, and function that are particularly relevant to chemical communication. Bile salts display a systematic pattern of structural variation across taxa, are efficiently synthesized, and are stable in the environment. Bile salts are released into the water via the intestine, urinary tract, or gills, and are highly water soluble. Second, we consider the potential role of bile salts as semiochemicals in the contexts of detecting nearby fish, foraging, assessing risk, migrating, and spawning. Lastly, we suggest future studies on bile salts as semiochemicals further characterize release into the environment, behavioral responses by receivers, and directly test the biological contexts underlying olfactory sensitivity.

  2. Lags in the response of mountain plant communities to climate change

    PubMed Central

    Alexander, Jake M.; Chalmandrier, Loïc; Lenoir, Jonathan; Burgess, Treena I.; Essl, Franz; Haider, Sylvia; Kueffer, Christoph; McDougall, Keith; Milbau, Ann; Nuñez, Martin A.; Pauchard, Aníbal; Rabitsch, Wolfgang; Rew, Lisa J.; Sanders, Nathan J.; Pellissier, Loïc

    2018-01-01

    Rapid climatic changes and increasing human influence at high elevations around the world will have profound impacts on mountain biodiversity. However, forecasts from statistical models (e.g. species distribution models) rarely consider that plant community changes could substantially lag behind climatic changes, hindering our ability to make temporally realistic projections for the coming century. Indeed, the magnitudes of lags, and the relative importance of the different factors giving rise to them, remain poorly understood. We review evidence for three types of lag: “dispersal lags” affecting plant species’ spread along elevational gradients, “establishment lags” following their arrival in recipient communities, and “extinction lags” of resident species. Variation in lags is explained by variation among species in physiological and demographic responses, by effects of altered biotic interactions, and by aspects of the physical environment. Of these, altered biotic interactions could contribute substantially to establishment and extinction lags, yet impacts of biotic interactions on range dynamics are poorly understood. We develop a mechanistic community model to illustrate how species turnover in future communities might lag behind simple expectations based on species’ range shifts with unlimited dispersal. The model shows a combined contribution of altered biotic interactions and dispersal lags to plant community turnover along an elevational gradient following climate warming. Our review and simulation support the view that accounting for disequilibrium range dynamics will be essential for realistic forecasts of patterns of biodiversity under climate change, with implications for the conservation of mountain species and the ecosystem functions they provide. PMID:29112781

  3. Foot Disorders, Foot Posture, and Foot Function: The Framingham Foot Study

    PubMed Central

    Hagedorn, Thomas J.; Dufour, Alyssa B.; Riskowski, Jody L.; Hillstrom, Howard J.; Menz, Hylton B.; Casey, Virginia A.; Hannan, Marian T.

    2013-01-01

    Introduction Foot disorders are common among older adults and may lead to outcomes such as falls and functional limitation. However, the associations of foot posture and foot function to specific foot disorders at the population level remain poorly understood. The purpose of this study was to assess the relation between specific foot disorders, foot posture, and foot function. Methods Participants were from the population-based Framingham Foot Study. Quintiles of the modified arch index and center of pressure excursion index from plantar pressure scans were used to create foot posture and function subgroups. Adjusted odds ratios of having each specific disorder were calculated for foot posture and function subgroups relative to a referent 3 quintiles. Results Pes planus foot posture was associated with increased odds of hammer toes and overlapping toes. Cavus foot posture was not associated with the foot disorders evaluated. Odds of having hallux valgus and overlapping toes were significantly increased in those with pronated foot function, while odds of hallux valgus and hallux rigidus were significantly decreased in those with supinated function. Conclusions Foot posture and foot function were associated with the presence of specific foot disorders. PMID:24040231

  4. Hippo signaling impedes adult heart regeneration

    PubMed Central

    Heallen, Todd; Morikawa, Yuka; Leach, John; Tao, Ge; Willerson, James T.; Johnson, Randy L.; Martin, James F.

    2013-01-01

    Heart failure due to cardiomyocyte loss after ischemic heart disease is the leading cause of death in the United States in large part because heart muscle regenerates poorly. The endogenous mechanisms preventing mammalian cardiomyocyte regeneration are poorly understood. Hippo signaling, an ancient organ size control pathway, is a kinase cascade that inhibits developing cardiomyocyte proliferation but it has not been studied postnatally or in fully mature adult cardiomyocytes. Here, we investigated Hippo signaling in adult cardiomyocyte renewal and regeneration. We found that unstressed Hippo-deficient adult mouse cardiomyocytes re-enter the cell cycle and undergo cytokinesis. Moreover, Hippo deficiency enhances cardiomyocyte regeneration with functional recovery after adult myocardial infarction as well as after postnatal day eight (P8) cardiac apex resection and P8 myocardial infarction. In damaged hearts, Hippo mutant cardiomyocytes also have elevated proliferation. Our findings reveal that Hippo signaling is an endogenous repressor of adult cardiomyocyte renewal and regeneration. Targeting the Hippo pathway in human disease might be beneficial for the treatment of heart disease. PMID:24255096

  5. Protein Malnutrition Modifies Innate Immunity and Gene Expression by Intestinal Epithelial Cells and Human Rotavirus Infection in Neonatal Gnotobiotic Pigs

    PubMed Central

    Paim, Francine C.; Kandasamy, Sukumar; Alhamo, Moyasar A.; Fischer, David D.; Langel, Stephanie N.; Deblais, Loic; Kumar, Anand; Chepngeno, Juliet; Shao, Lulu; Huang, Huang-Chi; Candelero-Rueda, Rosario A.; Rajashekara, Gireesh

    2017-01-01

    ABSTRACT Malnutrition affects millions of children in developing countries, compromising immunity and contributing to increased rates of death from infectious diseases. Rotavirus is a major etiological agent of childhood diarrhea in developing countries, where malnutrition is prevalent. However, the interactions between the two and their combined effects on immune and intestinal functions are poorly understood. In this study, we used neonatal gnotobiotic (Gn) pigs transplanted with the fecal microbiota of a healthy 2-month-old infant (HIFM) and fed protein-deficient or -sufficient bovine milk diets. Protein deficiency induced hypoproteinemia, hypoalbuminemia, hypoglycemia, stunting, and generalized edema in Gn pigs, as observed in protein-malnourished children. Irrespective of the diet, human rotavirus (HRV) infection early, at HIFM posttransplantation day 3 (PTD3), resulted in adverse health effects and higher mortality rates (45 to 75%) than later HRV infection (PTD10). Protein malnutrition exacerbated HRV infection and affected the morphology and function of the small intestinal epithelial barrier. In pigs infected with HRV at PTD10, there was a uniform decrease in the function and/or frequencies of natural killer cells, plasmacytoid dendritic cells, and CD103+ and apoptotic mononuclear cells and altered gene expression profiles of intestinal epithelial cells (chromogranin A, mucin 2, proliferating cell nuclear antigen, SRY-Box 9, and villin). Thus, we have established the first HIFM-transplanted neonatal pig model that recapitulates major aspects of protein malnutrition in children and can be used to evaluate physiologically relevant interventions. Our findings provide an explanation of why nutrient-rich diets alone may lack efficacy in malnourished children. IMPORTANCE Malnutrition and rotavirus infection, prevalent in developing countries, individually and in combination, affect the health of millions of children, compromising their immunity and increasing the rates of death from infectious diseases. However, the interactions between the two and their combined effects on immune and intestinal functions are poorly understood. We have established the first human infant microbiota-transplanted neonatal pig model of childhood malnutrition that reproduced the impaired immune, intestinal, and other physiological functions seen in malnourished children. This model can be used to evaluate relevant dietary and other health-promoting interventions. Our findings provide an explanation of why adequate nutrition alone may lack efficacy in malnourished children. PMID:28261667

  6. Individual differences reveal correlates of hidden hearing deficits.

    PubMed

    Bharadwaj, Hari M; Masud, Salwa; Mehraei, Golbarg; Verhulst, Sarah; Shinn-Cunningham, Barbara G

    2015-02-04

    Clinical audiometry has long focused on determining the detection thresholds for pure tones, which depend on intact cochlear mechanics and hair cell function. Yet many listeners with normal hearing thresholds complain of communication difficulties, and the causes for such problems are not well understood. Here, we explore whether normal-hearing listeners exhibit such suprathreshold deficits, affecting the fidelity with which subcortical areas encode the temporal structure of clearly audible sound. Using an array of measures, we evaluated a cohort of young adults with thresholds in the normal range to assess both cochlear mechanical function and temporal coding of suprathreshold sounds. Listeners differed widely in both electrophysiological and behavioral measures of temporal coding fidelity. These measures correlated significantly with each other. Conversely, these differences were unrelated to the modest variation in otoacoustic emissions, cochlear tuning, or the residual differences in hearing threshold present in our cohort. Electroencephalography revealed that listeners with poor subcortical encoding had poor cortical sensitivity to changes in interaural time differences, which are critical for localizing sound sources and analyzing complex scenes. These listeners also performed poorly when asked to direct selective attention to one of two competing speech streams, a task that mimics the challenges of many everyday listening environments. Together with previous animal and computational models, our results suggest that hidden hearing deficits, likely originating at the level of the cochlear nerve, are part of "normal hearing." Copyright © 2015 the authors 0270-6474/15/352161-12$15.00/0.

  7. Ability to Cope with Pain Puts Migraine Surgery Patients in Perspective.

    PubMed

    Gfrerer, Lisa; Lans, Jonathan; Faulkner, Heather R; Nota, Sjoerd; Bot, Arjan G J; Austen, William Gerald

    2018-01-01

    Candidates for migraine surgery are chronic pain patients with significant disability. Currently, migraine-specific questionnaires are used to evaluate these patients. Analysis tools widely used in evaluation of better understood pain conditions are not typically applied. This is the first study to include a commonly used pain questionnaire, the Pain Self-Efficacy Questionnaire (PSEQ) that is used to determine patients' pain coping abilities and function. It is an important predictor of pain intensity/disability in patients with musculoskeletal pain, as low scores have been associated with poor outcome. Ninety patients were enrolled prospectively and completed the Migraine Headache Index and PSEQ preoperatively and at 12 months postoperatively. Scores were evaluated using paired t tests and Pearson correlation. Representative PSEQ scores for other pain conditions were chosen for score comparison. All scores improved significantly from baseline (p < 0.01). Mean preoperative pain coping score (PSEQ) was 18.2 ± 11.7, which is extremely poor compared with scores reported for other pain conditions. Improvement of PSEQ score after migraine surgery was higher than seen in other pain conditions after treatment (112 percent). Preoperative PSEQ scores did not influence postoperative outcome. The PSEQ successfully demonstrates the extent of debility in migraine surgery patients by putting migraine pain in perspective with other known pain conditions. It further evaluates functional status, rather than improvement in migraine characteristics, which significantly adds to our understanding of outcome. Poor preoperative PSEQ scores do not influence outcome and should not be used to determine eligibility for migraine surgery. Therapeutic, IV.

  8. Phenazines and Other Redox-Active Antibiotics Promote Microbial Mineral Reduction

    PubMed Central

    Hernandez, Maria E.; Kappler, Andreas; Newman, Dianne K.

    2004-01-01

    Natural products with important therapeutic properties are known to be produced by a variety of soil bacteria, yet the ecological function of these compounds is not well understood. Here we show that phenazines and other redox-active antibiotics can promote microbial mineral reduction. Pseudomonas chlororaphis PCL1391, a root isolate that produces phenazine-1-carboxamide (PCN), is able to reductively dissolve poorly crystalline iron and manganese oxides, whereas a strain carrying a mutation in one of the phenazine-biosynthetic genes (phzB) is not; the addition of purified PCN restores this ability to the mutant strain. The small amount of PCN produced relative to the large amount of ferric iron reduced in cultures of P. chlororaphis implies that PCN is recycled multiple times; moreover, poorly crystalline iron (hydr)oxide can be reduced abiotically by reduced PCN. This ability suggests that PCN functions as an electron shuttle rather than an iron chelator, a finding that is consistent with the observation that dissolved ferric iron is undetectable in culture fluids. Multiple phenazines and the glycopeptidic antibiotic bleomycin can also stimulate mineral reduction by the dissimilatory iron-reducing bacterium Shewanella oneidensis MR1. Because diverse bacterial strains that cannot grow on iron can reduce phenazines, and because thermodynamic calculations suggest that phenazines have lower redox potentials than those of poorly crystalline iron (hydr)oxides in a range of relevant environmental pH (5 to 9), we suggest that natural products like phenazines may promote microbial mineral reduction in the environment. PMID:14766572

  9. Brain evolution and development: adaptation, allometry and constraint

    PubMed Central

    Barton, Robert A.

    2016-01-01

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. PMID:27629025

  10. Biodiversity-ecosystem functioning relationships in long-term time series and palaeoecological records: deep sea as a test bed.

    PubMed

    Yasuhara, Moriaki; Doi, Hideyuki; Wei, Chih-Lin; Danovaro, Roberto; Myhre, Sarah E

    2016-05-19

    The link between biodiversity and ecosystem functioning (BEF) over long temporal scales is poorly understood. Here, we investigate biological monitoring and palaeoecological records on decadal, centennial and millennial time scales from a BEF framework by using deep sea, soft-sediment environments as a test bed. Results generally show positive BEF relationships, in agreement with BEF studies based on present-day spatial analyses and short-term manipulative experiments. However, the deep-sea BEF relationship is much noisier across longer time scales compared with modern observational studies. We also demonstrate with palaeoecological time-series data that a larger species pool does not enhance ecosystem stability through time, whereas higher abundance as an indicator of higher ecosystem functioning may enhance ecosystem stability. These results suggest that BEF relationships are potentially time scale-dependent. Environmental impacts on biodiversity and ecosystem functioning may be much stronger than biodiversity impacts on ecosystem functioning at long, decadal-millennial, time scales. Longer time scale perspectives, including palaeoecological and ecosystem monitoring data, are critical for predicting future BEF relationships on a rapidly changing planet. © 2016 The Author(s).

  11. Functional relevance of water and glycerol channels in Saccharomyces cerevisiae.

    PubMed

    Sabir, Farzana; Loureiro-Dias, Maria C; Soveral, Graça; Prista, Catarina

    2017-05-01

    Our understanding of the functional relevance of orthodox aquaporins and aquaglyceroporins in Saccharomyces cerevisiae is essentially based on phenotypic variations obtained by expression/overexpression/deletion of these major intrinsic proteins in selected strains. These water/glycerol channels are considered crucial during various life-cycle phases, such as sporulation and mating and in some life processes such as rapid freeze-thaw tolerance, osmoregulation and phenomena associated with cell surface. Despite their putative functional roles not only as channels but also as sensors, their underlying mechanisms and their regulation are still poorly understood. In the present review, we summarize and discuss the physiological relevance of S. cerevisiae aquaporins (Aqy1 and Aqy2) and aquaglyceroporins (Fps1 and Yfl054c). In particular, the fact that most S. cerevisiae laboratory strains harbor genes coding for non-functional aquaporins, while wild and industrial strains possess at least one functional aquaporin, suggests that aquaporin activity is required for cell survival under more harsh conditions. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Color Change for Thermoregulation versus Camouflage in Free-Ranging Lizards.

    PubMed

    Smith, Kathleen R; Cadena, Viviana; Endler, John A; Kearney, Michael R; Porter, Warren P; Stuart-Fox, Devi

    2016-12-01

    Animal coloration has multiple functions including thermoregulation, camouflage, and social signaling, and the requirements of each function may sometimes conflict. Many terrestrial ectotherms accommodate the multiple functions of color through color change. However, the relative importance of these functions and how color-changing species accommodate them when they do conflict are poorly understood because we lack data on color change in the wild. Here, we show that the color of individual radio-tracked bearded dragon lizards, Pogona vitticeps, correlates strongly with background color and less strongly, but significantly, with temperature. We found no evidence that individuals simultaneously optimize camouflage and thermoregulation by choosing light backgrounds when hot or dark backgrounds when cold. In laboratory experiments, lizards showed both UV-visible (300-700 nm) and near-infrared (700-2,100 nm) reflectance changes in response to different background and temperature treatments, consistent with camouflage and thermoregulatory functions, respectively, but with no interaction between the two. Overall, our results suggest that wild bearded dragons change color to improve both thermoregulation and camouflage but predominantly adjust for camouflage, suggesting that compromising camouflage may entail a greater potential immediate survival cost.

  13. Controlling specific locomotor behaviors through multidimensional monoaminergic modulation of spinal circuitries

    PubMed Central

    Musienko, Pavel; van den Brand, Rubia; Märzendorfer, Olivia; Roy, Roland R.; Gerasimenko, Yury; Edgerton, V. Reggie; Courtine, Grégoire

    2012-01-01

    Descending monoaminergic inputs markedly influence spinal locomotor circuits, but the functional relationships between specific receptors and the control of walking behavior remain poorly understood. To identify these interactions, we manipulated serotonergic, dopaminergic, and noradrenergic neural pathways pharmacologically during locomotion enabled by electrical spinal cord stimulation in adult spinal rats in vivo. Using advanced neurobiomechanical recordings and multidimensional statistical procedures, we reveal that each monoaminergic receptor modulates a broad but distinct spectrum of kinematic, kinetic and EMG characteristics, which we expressed into receptor–specific functional maps. We then exploited this catalogue of monoaminergic tuning functions to devise optimal pharmacological combinations to encourage locomotion in paralyzed rats. We found that, in most cases, receptor-specific modulatory influences summed near algebraically when stimulating multiple pathways concurrently. Capitalizing on these predictive interactions, we elaborated a multidimensional monoaminergic intervention that restored coordinated hindlimb locomotion with normal levels of weight bearing and partial equilibrium maintenance in spinal rats. These findings provide new perspectives on the functions of and interactions between spinal monoaminergic receptor systems in producing stepping, and define a framework to tailor pharmacotherapies for improving neurological functions after CNS disorders. PMID:21697376

  14. Integration of color, orientation, and size functional domains in the ventral pathway

    PubMed Central

    Ghose, Geoffrey M.; Ts’o, Daniel Y.

    2017-01-01

    Abstract. Functional specialization within the extrastriate areas of the ventral pathway associated with visual form analysis is poorly understood. Studies comparing the functional selectivities of neurons within the early visual areas have found that there are more similar than different between the areas. We simultaneously imaged visually evoked activation over regions of V2 and V4 and parametrically varied three visual attributes for which selectivity exists in both areas: color, orientation, and size. We found that color selective regions were observed in both areas and were of similar size and spatial distribution. However, two major areal distinctions were observed: V4 contained a greater number and diversity of color-specific regions than V2 and exhibited a higher degree of overlap between domains for different functional attributes. In V2, size and color regions were largely segregated from orientation domains, whereas in V4 both color and size regions overlapped considerably with orientation regions. Our results suggest that higher-order composite selectivities in the extrastriate cortex may arise organically from the interactions afforded by an overlap of functional domains for lower order selectivities. PMID:28573155

  15. An Hsp20-FBXO4 Axis Regulates Adipocyte Function through Modulating PPARγ Ubiquitination.

    PubMed

    Peng, Jiangtong; Li, Yutian; Wang, Xiaohong; Deng, Shan; Holland, Jenna; Yates, Emily; Chen, Jing; Gu, Haitao; Essandoh, Kobina; Mu, Xingjiang; Wang, Boyu; McNamara, Robert K; Peng, Tianqing; Jegga, Anil G; Liu, Tiemin; Nakamura, Takahisa; Huang, Kai; Perez-Tilve, Diego; Fan, Guo-Chang

    2018-06-19

    Exposure to cold temperature is well known to upregulate heat shock protein (Hsp) expression and recruit and/or activate brown adipose tissue and beige adipocytes in humans and animals. However, whether and how Hsps regulate adipocyte function for energy homeostatic responses is poorly understood. Here, we demonstrate a critical role of Hsp20 as a negative regulator of adipocyte function. Deletion of Hsp20 enhances non-shivering thermogenesis and suppresses inflammatory responses, leading to improvement of glucose and lipid metabolism under both chow diet and high-fat diet conditions. Mechanistically, Hsp20 controls adipocyte function by interacting with the subunit of the ubiquitin ligase complex, F-box only protein 4 (FBXO4), and regulating the ubiquitin-dependent degradation of peroxisome proliferation activated receptor gamma (PPARγ). Indeed, Hsp20 deficiency mimics and enhances the pharmacological effects of the PPARγ agonist rosiglitazone. Together, our findings suggest a role of Hsp20 in mediating adipocyte function by linking β-adrenergic signaling to PPARγ activity. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. What does productivity really mean? Towards an integrative paradigm in the search for biodiversity-productivity relationships

    Treesearch

    Liangjun Hu; Qinfeng Guo

    2013-01-01

    How species diversity relates to productivity remains a major debate. To date, however, the underlying mechanisms that regulate the ecological processes involved are still poorly understood. Three major issues persist in early efforts at resolution. First, in the context that productivity drives species diversity, how the pathways operate is poorly-explained. Second,...

  17. Low serum omega-3 and omega-6 polyunsaturated fatty acids and other metabolites are associated with poor linear growth in young children from rural Malawi

    USDA-ARS?s Scientific Manuscript database

    Stunting affects ~25% of children <5 y of age and is associated with impaired cognitive and motor development and increased morbidity and mortality. The pathogenesis of stunting is poorly understood. The purpose of this study was to identify altered metabolic pathways associated with child stunting...

  18. Dynamic stroma reorganization drives blood vessel dysmorphia during glioma growth.

    PubMed

    Mathivet, Thomas; Bouleti, Claire; Van Woensel, Matthias; Stanchi, Fabio; Verschuere, Tina; Phng, Li-Kun; Dejaegher, Joost; Balcer, Marly; Matsumoto, Ken; Georgieva, Petya B; Belmans, Jochen; Sciot, Raf; Stockmann, Christian; Mazzone, Massimiliano; De Vleeschouwer, Steven; Gerhardt, Holger

    2017-12-01

    Glioma growth and progression are characterized by abundant development of blood vessels that are highly aberrant and poorly functional, with detrimental consequences for drug delivery efficacy. The mechanisms driving this vessel dysmorphia during tumor progression are poorly understood. Using longitudinal intravital imaging in a mouse glioma model, we identify that dynamic sprouting and functional morphogenesis of a highly branched vessel network characterize the initial tumor growth, dramatically changing to vessel expansion, leakage, and loss of branching complexity in the later stages. This vascular phenotype transition was accompanied by recruitment of predominantly pro-inflammatory M1-like macrophages in the early stages, followed by in situ repolarization to M2-like macrophages, which produced VEGF-A and relocate to perivascular areas. A similar enrichment and perivascular accumulation of M2 versus M1 macrophages correlated with vessel dilation and malignancy in human glioma samples of different WHO malignancy grade. Targeting macrophages using anti-CSF1 treatment restored normal blood vessel patterning and function. Combination treatment with chemotherapy showed survival benefit, suggesting that targeting macrophages as the key driver of blood vessel dysmorphia in glioma progression presents opportunities to improve efficacy of chemotherapeutic agents. We propose that vessel dysfunction is not simply a general feature of tumor vessel formation, but rather an emergent property resulting from a dynamic and functional reorganization of the tumor stroma and its angiogenic influences. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  19. Cell division is dispensable but not irrelevant in Streptomyces.

    PubMed

    McCormick, Joseph R

    2009-12-01

    In part, members of the genus Streptomyces have been studied because they produce many important secondary metabolites with antibiotic activity and for the interest in their relatively elaborate life cycle. These sporulating filamentous bacteria are remarkably synchronous for division and genome segregation in specialized aerial hyphae. Streptomycetes share some, but not all, of the division genes identified in the historic model rod-shaped organisms. Curiously, normally essential cell division genes are dispensable for growth and viability of Streptomyces coelicolor. Mainly, cell division plays a more important role in the developmental phase of life than during vegetative growth. Dispensability provides an advantageous genetic system to probe the mechanisms of division proteins, especially those with functions that are poorly understood.

  20. Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes

    PubMed Central

    Arruda, Ana Paula; Hotamisligil, Gökhan S.

    2015-01-01

    Summary A number of chronic metabolic pathologies, including obesity, diabetes, cardiovascular disease, asthma, and cancer cluster together to present the greatest threat to human health. As research in this field has advanced, it has become clear that unresolved metabolic inflammation, organelle dysfunction, and other cellular and metabolic stresses underlie the development of these chronic metabolic diseases. However, the relationship between these systems and pathological mechanisms is poorly understood. Here, we will discuss the role of cellular Ca2+ homeostasis as a critical mechanism integrating the myriad of cellular and subcellular dysfunctional networks found in metabolic tissues such as liver and adipose tissue in the context of metabolic disease particularly in obesity and diabetes. PMID:26190652

  1. Entry and Exit Mechanisms at the cis-Face of the Golgi Complex

    PubMed Central

    Lorente-Rodríguez, Andrés; Barlowe, Charles

    2011-01-01

    Vesicular transport of protein and lipid cargo from the endoplasmic reticulum (ER) to cis-Golgi compartments depends on coat protein complexes, Rab GTPases, tethering factors, and membrane fusion catalysts. ER-derived vesicles deliver cargo to an ER-Golgi intermediate compartment (ERGIC) that then fuses with and/or matures into cis-Golgi compartments. The forward transport pathway to cis-Golgi compartments is balanced by a retrograde directed pathway that recycles transport machinery back to the ER. How trafficking through the ERGIC and cis-Golgi is coordinated to maintain organelle structure and function is poorly understood and highlights central questions regarding trafficking routes and organization of the early secretory pathway. PMID:21482742

  2. LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling.

    PubMed

    Glinka, Andrei; Dolde, Christine; Kirsch, Nadine; Huang, Ya-Lin; Kazanskaya, Olga; Ingelfinger, Dierk; Boutros, Michael; Cruciat, Cristina-Maria; Niehrs, Christof

    2011-09-30

    R-spondins are secreted Wnt signalling agonists, which regulate embryonic patterning and stem cell proliferation, but whose mechanism of action is poorly understood. Here we show that R-spondins bind to the orphan G-protein-coupled receptors LGR4 and LGR5 by their Furin domains. Gain- and loss-of-function experiments in mammalian cells and Xenopus embryos indicate that LGR4 and LGR5 promote R-spondin-mediated Wnt/β-catenin and Wnt/PCP signalling. R-spondin-triggered β-catenin signalling requires Clathrin, while Wnt3a-mediated β-catenin signalling requires Caveolin-mediated endocytosis, suggesting that internalization has a mechanistic role in R-spondin signalling.

  3. LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling

    PubMed Central

    Glinka, Andrei; Dolde, Christine; Kirsch, Nadine; Huang, Ya-Lin; Kazanskaya, Olga; Ingelfinger, Dierk; Boutros, Michael; Cruciat, Cristina-Maria; Niehrs, Christof

    2011-01-01

    R-spondins are secreted Wnt signalling agonists, which regulate embryonic patterning and stem cell proliferation, but whose mechanism of action is poorly understood. Here we show that R-spondins bind to the orphan G-protein-coupled receptors LGR4 and LGR5 by their Furin domains. Gain- and loss-of-function experiments in mammalian cells and Xenopus embryos indicate that LGR4 and LGR5 promote R-spondin-mediated Wnt/β-catenin and Wnt/PCP signalling. R-spondin-triggered β-catenin signalling requires Clathrin, while Wnt3a-mediated β-catenin signalling requires Caveolin-mediated endocytosis, suggesting that internalization has a mechanistic role in R-spondin signalling. PMID:21909076

  4. Deficiency of respiratory chain complex I in Hashimoto thyroiditis.

    PubMed

    Zimmermann, Franz A; Neureiter, Daniel; Feichtinger, René G; Trost, Andrea; Sperl, Wolfgang; Kofler, Barbara; Mayr, Johannes A

    2016-01-01

    Oncocytic cells (OCs) are characterized by an accumulation of mitochondria and their occurrence in the thyroid gland of patients with Hashimoto thyroiditis (HT) is well known. However, their properties and functional relevance are poorly understood. We investigated OC lesions (n=212) in the thyroid of 12 HT patients. Loss of complex I protein was observed in oncocytic lesions of each of the patients. In addition to isolated complex I deficiency, 25% of oncocytic lesions showed combined deficiency of complex I and IV. Thus, we demonstrate for the first time a defect of respiratory chain complex I in OCs of HT patients. Copyright © 2015 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  5. Rethinking the Stalk Effect: A New Hypothesis Explaining Suprasellar Tumor-Induced Hyperprolactinemia

    PubMed Central

    Skinner, Donal C.

    2009-01-01

    The pars tuberalis is a distinct subdivision of the pituitary gland but its function remains poorly understood. Suprasellar tumors in this pars tuberalis region are frequently accompanied by hyperprolactinemia. As these tumors do not immunoreact for any of the established pituitary hormones, they are classified as non-secretory. It has been postulated that these suprasellar tumors induce hyperprolactinemia by compressing the pituitary stalk, resulting in impaired dopamine delivery to the pituitary and, consequently, disinhibition of the lactotropes. An alternative hypothesis proposed is that suprasellar tumors secrete a specific pars tuberalis factor that stimulates prolactin secretion. Hypothesized candidates are the preprotachykinin A derived tachykinins, substance P and/or neurokinin A. PMID:19028420

  6. How to train your microbe: methods for dynamically characterizing gene networks

    PubMed Central

    Castillo-Hair, Sebastian M.; Igoshin, Oleg A.; Tabor, Jeffrey J.

    2015-01-01

    Gene networks regulate biological processes dynamically. However, researchers have largely relied upon static perturbations, such as growth media variations and gene knockouts, to elucidate gene network structure and function. Thus, much of the regulation on the path from DNA to phenotype remains poorly understood. Recent studies have utilized improved genetic tools, hardware, and computational control strategies to generate precise temporal perturbations outside and inside of live cells. These experiments have, in turn, provided new insights into the organizing principles of biology. Here, we introduce the major classes of dynamical perturbations that can be used to study gene networks, and discuss technologies available for creating them in a wide range of microbial pathways. PMID:25677419

  7. NIPA1 Gene Mutations Cause Autosomal Dominant Hereditary Spastic Paraplegia (SPG6)

    PubMed Central

    Rainier, Shirley; Chai, Jing-Hua; Tokarz, Debra; Nicholls, Robert D.; Fink, John K.

    2003-01-01

    The hereditary spastic paraplegias (HSPs) are genetically heterogeneous disorders characterized by progressive lower-extremity weakness and spasticity. The molecular pathogenesis is poorly understood. We report discovery of a dominant negative mutation in the NIPA1 gene in a kindred with autosomal dominant HSP (ADHSP), linked to chromosome 15q11-q13 (SPG6 locus); and precisely the same mutation in an unrelated kindred with ADHSP that was too small for meaningful linkage analysis. NIPA1 is highly expressed in neuronal tissues and encodes a putative membrane transporter or receptor. Identification of the NIPA1 function and ligand will aid an understanding of axonal neurodegeneration in HSP and may have important therapeutic implications. PMID:14508710

  8. When the “Golden Years” Turn Blue: Using the Healthy Aging Literature to Elucidate Anxious and Depressive Disorders in Older Adulthood

    PubMed Central

    Green, Jennifer S.; Magee, Joshua C.; Steiner, Amanda R. W.; Teachman, Bethany A.

    2016-01-01

    Current treatments for disorders of emotion, like pathological anxiety, are often less effective in older adults than in younger adults and have poorly understood mechanisms, pointing to the need for psychopathology models that better account for age-related changes in normative emotional functioning and the expression of disordered emotion. This article describes ways in which the healthy aging and emotion literature can enhance understanding and treatment of symptoms of anxiety and depression in later life. We offer recommendations for how to integrate the healthy aging literatures' theories and findings with psychopathology research and clinical practice, and highlight opportunities for future research. PMID:28503011

  9. Context Switching with Multiple Register Windows: A RISC Performance Study

    NASA Technical Reports Server (NTRS)

    Konsek, Marion B.; Reed, Daniel A.; Watcharawittayakul, Wittaya

    1987-01-01

    Although previous studies have shown that a large file of overlapping register windows can greatly reduce procedure call/return overhead, the effects of register windows in a multiprogramming environment are poorly understood. This paper investigates the performance of multiprogrammed, reduced instruction set computers (RISCs) as a function of window management strategy. Using an analytic model that reflects context switch and procedure call overheads, we analyze the performance of simple, linearly self-recursive programs. For more complex programs, we present the results of a simulation study. These studies show that a simple strategy that saves all windows prior to a context switch, but restores only a single window following a context switch, performs near optimally.

  10. Changes in leisure-time physical activity and physical and mental health functioning: a follow-up study.

    PubMed

    Holstila, A; Mänty, M; Rahkonen, O; Lahelma, E; Lahti, J

    2017-12-01

    Functioning will be an increasingly important issue in Finland over the coming decades as the proportion of the population aged 65 and older is growing significantly. However, the associations between changes in physical activity and subsequent health functioning are poorly understood. The aim of this study was to examine how changes in physical activity relate to concurrent and prospective levels of health functioning. Cohort data from the Helsinki Health Study were used. Phase 1 (n = 8960, response rate 67%, 80% women) was conducted among 40- to 60-year-old employees of the City of Helsinki in 2000-2002, phase 2 in 2007 (n = 7332, response rate 83%), and phase 3 in 2012 (n = 6814, response rate 79%). Linear mixed models were used as the main statistical method. Increasing physical activity was associated with higher concurrent and prospective levels of physical health functioning, whereas decreasing activity was associated with lower levels of physical health functioning. The associations were stronger with physical than with mental health functioning. Promoting physical activity among aging people may help to maintain their level of health functioning. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Functional Amnesia: Clinical Description and Neuropsychological Profile of 10 Cases

    PubMed Central

    Kritchevsky, Mark; Chang, Judy; Squire, Larry R.

    2004-01-01

    We carried out the first neuropsychological study of a series of patients with functional amnesia. We evaluated 10 patients, first with a neurological examination and then with three tests of anterograde amnesia and four tests of retrograde amnesia. Excluding one patient who later admitted to malingering, all patients had a significant premorbid psychiatric history and one or more possible precipitating factors for their amnesia. Eight of the 10 patients still had persistent retrograde amnesia at our last contact with them (median = 14 mo after the onset of amnesia). On tests of anterograde amnesia, the patients performed normally as a group, though some patients scored poorly on tests of verbal memory. On tests of retrograde amnesia, all patients had difficulty recollecting well-formed autobiographical memories of specific events from their past. In contrast, patients performed as well as controls at distinguishing the names of cities from fictitious city names. On remote memory tests for past public events and famous faces, different patients exhibited different but internally consistent patterns of impaired and spared performance. The variability in the clinical and neuropsychological findings among our patients may be understood by supposing that memory performance is poor in proportion to how directly a test appears to assess a patient's commonsense concept of memory. The presentation of patients with functional amnesia is as variable as humankind's concept of what memory is and how it works. PMID:15054137

  12. Defining Ebstein's malformation using three-dimensional echocardiography.

    PubMed

    Vettukattil, Joseph J; Bharucha, Tara; Anderson, Robert H

    2007-12-01

    Ebstein's malformation is difficult to visualise, for both the echocardiographer and the surgeon. The essence of the problem in Ebstein's malformation is the deviation of the hingepoints of the leaflets towards the junctions of the inlet and apical trabecular parts of the right ventricle. Three-dimensional echocardiography offers new insights into the morphology and function of malformed valves, and allows elucidation of all the features. It allows clear visualisation of the valve leaflets, showing the precise morphology of the valve leaflets, the extent of their formation, the level of their attachment, and their degree of coaptation. Visualisation of the mechanism of regurgitation or stenosis is possible, as is more accurate quantification of the regurgitant jet or jets. Subchordal apparatus may be seen more clearly using three-dimensional echocardiography, and their functional anatomy understood. The multiplanar review modality allows examination of the three-dimensional data set even in patients with sub-optimal echocardiographic imaging. Previously, much of this information could only be well-understood at the time of surgery or post mortem, meaning that the majority of the specimens fully examined were at the poorly functioning end of the spectrum. This information is of use in furthering our understanding of this complex lesion as it functions in vivo, and demonstrating which anatomical pathology is significant in producing functional and physiological consequences. It is also of use for the clinician in selecting which patients are amenable to surgical intervention, for either single or biventricular repair, and for the surgeon in planning how to approach the operation. Correlation between three-dimensional echocardiographic findings and surgical findings has already been established, but the effect of this enhanced anatomical knowledge on surgical planning and surgical outcome requires further investigation.

  13. Acute clinical recovery from sport-related concussion.

    PubMed

    Nelson, Lindsay D; Janecek, Julie K; McCrea, Michael A

    2013-12-01

    Concussion is a highly prevalent injury in contact and collision sports that has historically been poorly understood. An influx of sport-concussion research in recent years has led to a dramatic improvement in our understanding of the injury's defining characteristics and natural history of recovery. In this review, we discuss the current state of knowledge regarding the characteristic features of concussion and typical acute course of recovery, with an emphasis on the aspects of functioning most commonly assessed by clinicians and researchers (e.g., symptoms, cognitive deficits, postural stability). While prototypical clinical recovery is becoming better understood, questions remain regarding what factors (e.g., injury severity, demographic variables, history of prior concussions, psychological factors) may explain individual variability in recovery. Although research concerning individual differences in response to concussion is relatively new, and in many cases limited methodologically, we discuss the evidence about several potential moderators of concussion recovery and point out areas for future research. Finally, we describe how increased knowledge about the negative effects of and recovery following concussion has been translated into clinical guidelines for managing concussed athletes.

  14. Digestive tract absorption of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in a nursing infant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLachlan, M.S.

    The digestive tract absorption of environmental contaminants is an important but poorly understood parameter in contaminant is an important but poorly understood parameter in contaminant risk assessments. The net absorption of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in a nursing infant was measured under natural conditions over 12 days. The levels of the substances in the mother's milk were typical for Germany. It was found that for almost all congeners over 90% of the ingested compound was absorbed. This indicates that the common assumption of 100% absorption in nursing infants is reasonable. No firm conclusions could be drawn regarding the absorptionmore » of Cl7- and Cl8DD/F due to high blank levels in the cotton diapers used.« less

  15. Landscape topography structures the soil microbiome in arctic polygonal tundra

    DOE PAGES

    Taş, Neslihan; Prestat, Emmanuel; Wang, Shi; ...

    2018-02-22

    Global temperature increases are resulting in thaw of permafrost soil in the arctic with increased emission of greenhouse gases (GHGs). Soil microorganisms are responsible for degradation of the trapped organic carbon (C) in permafrost and emission of GHG as it thaws. However, environmental factors governing microbial degradation of soil C and GHG emissions are poorly understood. Here we determined the functional potential of soil microbiomes in arctic tundra across a cryoperturbed polygonal landscape in Barrow, Alaska. Using a combination of metagenome sequencing and gas flux measurements, we found that the soil microbiome composition, diversity and functional potential varied across themore » polygon transect and that specific microbes and functional genes were correlated to GHG measurements. Several draft genomes of novel species were obtained with genes encoding enzymes involved in cycling of complex organic compounds. These results have larger implications for prediction of the influence of the soil microbiome on soil C flux from arctic regions undergoing environmental change.« less

  16. Landscape topography structures the soil microbiome in arctic polygonal tundra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taş, Neslihan; Prestat, Emmanuel; Wang, Shi

    Global temperature increases are resulting in thaw of permafrost soil in the arctic with increased emission of greenhouse gases (GHGs). Soil microorganisms are responsible for degradation of the trapped organic carbon (C) in permafrost and emission of GHG as it thaws. However, environmental factors governing microbial degradation of soil C and GHG emissions are poorly understood. Here we determined the functional potential of soil microbiomes in arctic tundra across a cryoperturbed polygonal landscape in Barrow, Alaska. Using a combination of metagenome sequencing and gas flux measurements, we found that the soil microbiome composition, diversity and functional potential varied across themore » polygon transect and that specific microbes and functional genes were correlated to GHG measurements. Several draft genomes of novel species were obtained with genes encoding enzymes involved in cycling of complex organic compounds. These results have larger implications for prediction of the influence of the soil microbiome on soil C flux from arctic regions undergoing environmental change.« less

  17. Secondary Plastids of Euglenids and Chlorarachniophytes Function with a Mix of Genes of Red and Green Algal Ancestry.

    PubMed

    Ponce-Toledo, Rafael I; Moreira, David; López-García, Purificación; Deschamps, Philippe

    2018-06-19

    Endosymbiosis has been common all along eukaryotic evolution, providing opportunities for genomic and organellar innovation. Plastids are a prominent example. After the primary endosymbiosis of the cyanobacterial plastid ancestor, photosynthesis spread in many eukaryotic lineages via secondary endosymbioses involving red or green algal endosymbionts and diverse heterotrophic hosts. However, the number of secondary endosymbioses and how they occurred remain poorly understood. In particular, contrasting patterns of endosymbiotic gene transfer (EGT) have been detected and subjected to various interpretations. In this context, accurate detection of EGTs is essential to avoid wrong evolutionary conclusions. We have assembled a strictly selected set of markers that provides robust phylogenomic evidence suggesting that nuclear genes involved in the function and maintenance of green secondary plastids in chlorarachniophytes and euglenids have unexpected mixed red and green algal origins. This mixed ancestry contrasts with the clear red algal origin of most nuclear genes carrying similar functions in secondary algae with red plastids.

  18. Reversible changes in pancreatic islet structure and function produced by elevated blood glucose

    PubMed Central

    Brereton, Melissa F.; Iberl, Michaela; Shimomura, Kenju; Zhang, Quan; Adriaenssens, Alice E.; Proks, Peter; Spiliotis, Ioannis I.; Dace, William; Mattis, Katia K.; Ramracheya, Reshma; Gribble, Fiona M.; Reimann, Frank; Clark, Anne; Rorsman, Patrik; Ashcroft, Frances M.

    2014-01-01

    Diabetes is characterized by hyperglycaemia due to impaired insulin secretion and aberrant glucagon secretion resulting from changes in pancreatic islet cell function and/or mass. The extent to which hyperglycaemia per se underlies these alterations remains poorly understood. Here we show that β-cell-specific expression of a human activating KATP channel mutation in adult mice leads to rapid diabetes and marked alterations in islet morphology, ultrastructure and gene expression. Chronic hyperglycaemia is associated with a dramatic reduction in insulin-positive cells and an increase in glucagon-positive cells in islets, without alterations in cell turnover. Furthermore, some β-cells begin expressing glucagon, whilst retaining many β-cell characteristics. Hyperglycaemia, rather than KATP channel activation, underlies these changes, as they are prevented by insulin therapy and fully reversed by sulphonylureas. Our data suggest that many changes in islet structure and function associated with diabetes are attributable to hyperglycaemia alone and are reversed when blood glucose is normalized. PMID:25145789

  19. EGFR ligands exert diverging effects on male reproductive organs.

    PubMed

    Schneider, Marlon R; Gratao, Ana A; Dahlhoff, Maik; Boersma, Auke; Hrabé de Angelis, Martin; Hoang-Vu, Cuong; Wolf, Eckhard; Klonisch, Thomas

    2010-02-01

    While the EGFR and most of its ligands are expressed in the male reproductive tract, their functions in male reproduction are poorly understood. Interestingly, male transgenic mice overexpressing EGF are sterile, and transgenic mice overexpressing TGFA, another EGFR ligand, show an enlarged coagulation gland (anterior prostate) due to severe hyperplasia with focal dysplasia. We studied the male reproductive tract of transgenic mice overexpressing betacellulin (BTC-tg) under the control of a promoter conferring widespread transgene expression. Despite strong overexpression of BTC in different parts of the male reproductive tract, the gross appearance and histology of the reproductive organs of BTC-tg males were normal and the same were true for sperm parameters and the in vitro fertilization rate. Collectively, our findings demonstrate that excess of BTC exerts no deleterious effects on the structure or function of the male reproductive tract in mice and indicates unique, non-overlapping functions of specific EGFR ligands in male reproduction. Copyright 2009 Elsevier Inc. All rights reserved.

  20. The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System

    PubMed Central

    Menazza, Sara; Murphy, Elizabeth

    2016-01-01

    Estrogen has important effects on cardiovascular function including regulation of vascular function, blood pressure, endothelial relaxation, the development of hypertrophy and cardioprotection. However, the mechanisms by which estrogen mediates these effects are still poorly understood. As detailed in this review, estrogen can regulate transcription by binding to two nuclear receptors, ERα and ERβ, which differentially regulate gene transcription. ERα and ERβ regulation of gene transcription is further modulated by tissue specific co-activators and co-repressors. Estrogen can bind to ERα and ERβ localized at the plasma membrane as well as GPER to initiate membrane delimited signaling, which enhances kinase signaling pathways that can have acute and long term effects. The kinase signaling pathways can also mediate transcriptional changes, and can synergize with the estrogen receptor to regulate cell function. This review will summarize the beneficial effects of estrogen in protecting the cardiovascular system through ER-dependent mechanisms with an emphasis on the role of the recently described ER-membrane signaling mechanisms. PMID:26838792

  1. Conformational Rigidity and Protein Dynamics at Distinct Timescales Regulate PTP1B Activity and Allostery.

    PubMed

    Choy, Meng S; Li, Yang; Machado, Luciana E S F; Kunze, Micha B A; Connors, Christopher R; Wei, Xingyu; Lindorff-Larsen, Kresten; Page, Rebecca; Peti, Wolfgang

    2017-02-16

    Protein function originates from a cooperation of structural rigidity, dynamics at different timescales, and allostery. However, how these three pillars of protein function are integrated is still only poorly understood. Here we show how these pillars are connected in Protein Tyrosine Phosphatase 1B (PTP1B), a drug target for diabetes and cancer that catalyzes the dephosphorylation of numerous substrates in essential signaling pathways. By combining new experimental and computational data on WT-PTP1B and ≥10 PTP1B variants in multiple states, we discovered a fundamental and evolutionarily conserved CH/π switch that is critical for positioning the catalytically important WPD loop. Furthermore, our data show that PTP1B uses conformational and dynamic allostery to regulate its activity. This shows that both conformational rigidity and dynamics are essential for controlling protein activity. This connection between rigidity and dynamics at different timescales is likely a hallmark of all enzyme function. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Establishment and function of tissue-resident innate lymphoid cells in the skin.

    PubMed

    Yang, Jie; Zhao, Luming; Xu, Ming; Xiong, Na

    2017-07-01

    Innate lymphoid cells (ILCs) are a newly classified family of immune cells of the lymphoid lineage. While they could be found in both lymphoid organs and non-lymphoid tissues, ILCs are preferentially enriched in barrier tissues such as the skin, intestine, and lung where they could play important roles in maintenance of tissue integrity and function and protection against assaults of foreign agents. On the other hand, dysregulated activation of ILCs could contribute to tissue inflammatory diseases. In spite of recent progress towards understanding roles of ILCs in the health and disease, mechanisms regulating specific establishment, activation, and function of ILCs in barrier tissues are still poorly understood. We herein review the up-to-date understanding of tissue-specific relevance of ILCs. Particularly we will focus on resident ILCs of the skin, the outmost barrier tissue critical in protection against various foreign hazardous agents and maintenance of thermal and water balance. In addition, we will discuss remaining outstanding questions yet to be addressed.

  3. DNA-PK Promotes the Mitochondrial, Metabolic, and Physical Decline that Occurs During Aging.

    PubMed

    Park, Sung-Jun; Gavrilova, Oksana; Brown, Alexandra L; Soto, Jamie E; Bremner, Shannon; Kim, Jeonghan; Xu, Xihui; Yang, Shutong; Um, Jee-Hyun; Koch, Lauren G; Britton, Steven L; Lieber, Richard L; Philp, Andrew; Baar, Keith; Kohama, Steven G; Abel, E Dale; Kim, Myung K; Chung, Jay H

    2017-05-02

    Hallmarks of aging that negatively impact health include weight gain and reduced physical fitness, which can increase insulin resistance and risk for many diseases, including type 2 diabetes. The underlying mechanism(s) for these phenomena is poorly understood. Here we report that aging increases DNA breaks and activates DNA-dependent protein kinase (DNA-PK) in skeletal muscle, which suppresses mitochondrial function, energy metabolism, and physical fitness. DNA-PK phosphorylates threonines 5 and 7 of HSP90α, decreasing its chaperone function for clients such as AMP-activated protein kinase (AMPK), which is critical for mitochondrial biogenesis and energy metabolism. Decreasing DNA-PK activity increases AMPK activity and prevents weight gain, decline of mitochondrial function, and decline of physical fitness in middle-aged mice and protects against type 2 diabetes. In conclusion, DNA-PK is one of the drivers of the metabolic and fitness decline during aging, and therefore DNA-PK inhibitors may have therapeutic potential in obesity and low exercise capacity. Published by Elsevier Inc.

  4. Planarian myosin essential light chain is involved in the formation of brain lateral branches during regeneration.

    PubMed

    Yu, Shuying; Chen, Xuhui; Yuan, Zuoqing; Zhou, Luming; Pang, Qiuxiang; Mao, Bingyu; Zhao, Bosheng

    2015-08-01

    The myosin essential light chain (ELC) is a structure component of the actomyosin cross-bridge, however, the functions in the central nervous system (CNS) development and regeneration remain poorly understood. Planarian Dugesia japonica has revealed fundamental mechanisms and unique aspects of neuroscience and neuroregeneration. In this study, the cDNA DjElc, encoding a planarian essential light chain of myosin, was identified from the planarian Dugesia japonica cDNA library. It encodes a deduced protein with highly conserved functionally domains EF-Hand and Ca(2+) binding sites that shares significant similarity with other members of ELC. Whole mount in situ hybridization studies show that DjElc expressed in CNS during embryonic development and regeneration of adult planarians. Loss of function of DjElc by RNA interference during planarian regeneration inhibits brain lateral branches regeneration completely. In conclusion, these results demonstrated that DjElc is required for maintenance of neurons and neurite outgrowth, particularly for involving the brain later branch regeneration.

  5. Conserved functional antagonism of CELF and MBNL proteins controls stem cell-specific alternative splicing in planarians

    PubMed Central

    Solana, Jordi; Irimia, Manuel; Ayoub, Salah; Orejuela, Marta Rodriguez; Zywitza, Vera; Jens, Marvin; Tapial, Javier; Ray, Debashish; Morris, Quaid; Hughes, Timothy R; Blencowe, Benjamin J; Rajewsky, Nikolaus

    2016-01-01

    In contrast to transcriptional regulation, the function of alternative splicing (AS) in stem cells is poorly understood. In mammals, MBNL proteins negatively regulate an exon program specific of embryonic stem cells; however, little is known about the in vivo significance of this regulation. We studied AS in a powerful in vivo model for stem cell biology, the planarian Schmidtea mediterranea. We discover a conserved AS program comprising hundreds of alternative exons, microexons and introns that is differentially regulated in planarian stem cells, and comprehensively identify its regulators. We show that functional antagonism between CELF and MBNL factors directly controls stem cell-specific AS in planarians, placing the origin of this regulatory mechanism at the base of Bilaterians. Knockdown of CELF or MBNL factors lead to abnormal regenerative capacities by affecting self-renewal and differentiation sets of genes, respectively. These results highlight the importance of AS interactions in stem cell regulation across metazoans. DOI: http://dx.doi.org/10.7554/eLife.16797.001 PMID:27502555

  6. Centromeres and kinetochores of Brassicaceae.

    PubMed

    Lermontova, Inna; Sandmann, Michael; Demidov, Dmitri

    2014-06-01

    The centromere-the primary constriction of monocentric chromosomes-is essential for correct segregation of chromosomes during mitosis and meiosis. Centromeric DNA varies between different organisms in sequence composition and extension. The main components of centromeric and pericentromeric DNA of Brassicaceae species are centromeric satellite repeats. Centromeric DNA initiates assembly of the kinetochore, the large protein complex where the spindle fibers attach during nuclear division to pull sister chromatids apart. Kinetochore assembly is initiated by incorporation of the centromeric histone H3 cenH3 into centromeric nucleosomes. The spindle assembly checkpoint acts during mitosis and meiosis at centromeres and maintains genome stability by preventing chromosome segregation before all kinetochores are correctly attached to microtubules. The function of the spindle assembly checkpoint in plants is still poorly understood. Here, we review recent advances of studies on structure and functional importance of centromeric DNA of Brassicaceae, assembly and function of cenH3 in Arabidopsis thaliana and characterization of core SAC proteins of A. thaliana in comparison with non-plant homologues.

  7. Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization.

    PubMed

    Nora, Elphège P; Goloborodko, Anton; Valton, Anne-Laure; Gibcus, Johan H; Uebersohn, Alec; Abdennur, Nezar; Dekker, Job; Mirny, Leonid A; Bruneau, Benoit G

    2017-05-18

    The molecular mechanisms underlying folding of mammalian chromosomes remain poorly understood. The transcription factor CTCF is a candidate regulator of chromosomal structure. Using the auxin-inducible degron system in mouse embryonic stem cells, we show that CTCF is absolutely and dose-dependently required for looping between CTCF target sites and insulation of topologically associating domains (TADs). Restoring CTCF reinstates proper architecture on altered chromosomes, indicating a powerful instructive function for CTCF in chromatin folding. CTCF remains essential for TAD organization in non-dividing cells. Surprisingly, active and inactive genome compartments remain properly segregated upon CTCF depletion, revealing that compartmentalization of mammalian chromosomes emerges independently of proper insulation of TADs. Furthermore, our data support that CTCF mediates transcriptional insulator function through enhancer blocking but not as a direct barrier to heterochromatin spreading. Beyond defining the functions of CTCF in chromosome folding, these results provide new fundamental insights into the rules governing mammalian genome organization. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization

    PubMed Central

    Nora, Elphège P.; Goloborodko, Anton; Valton, Anne-Laure; Gibcus, Johan H.; Uebersohn, Alec; Abdennur, Nezar; Dekker, Job; Mirny, Leonid A.; Bruneau, Benoit G.

    2017-01-01

    Summary The molecular mechanisms underlying folding of mammalian chromosomes remain poorly understood. The transcription factor CTCF is a candidate regulator of chromosomal structure. Using the auxin-inducible degron system in mouse embryonic stem cells, we show that CTCF is absolutely and dose-dependently required for looping between CTCF target sites and insulation of topologically associating domains (TADs). Restoring CTCF reinstates proper architecture on altered chromosomes, indicating a powerful instructive function for CTCF in chromatin folding. CTCF remains essential for TAD organization in non-dividing cells. Surprisingly, active and inactive genome compartments remain properly segregated upon CTCF depletion, revealing that compartmentalization of mammalian chromosomes emerges independently of proper insulation of TADs. Further, our data support that CTCF mediates transcriptional insulator function through enhancer-blocking but not as a direct barrier to heterochromatin spreading. Beyond defining the functions of CTCF in chromosome folding these results provide new fundamental insights into the rules governing mammalian genome organization. PMID:28525758

  9. Paracrystalline Disorder from Phosphate Ion Orientation and Substitution in Synthetic Bone Mineral.

    PubMed

    Marisa, Mary E; Zhou, Shiliang; Melot, Brent C; Peaslee, Graham F; Neilson, James R

    2016-12-05

    Hydroxyapatite is an inorganic mineral closely resembling the mineral phase in bone. However, as a biological mineral, it is highly disordered, and its composition and atomistic structure remain poorly understood. Here, synchrotron X-ray total scattering and pair distribution function analysis methods provide insight into the nature of atomistic disorder in a synthetic bone mineral analogue, chemically substituted hydroxyapatite. By varying the effective hydrolysis rate and/or carbonate concentration during growth of the mineral, compounds with varied degrees of paracrystallinity are prepared. From advanced simulations constrained by the experimental pair distribution function and density functional theory, the paracrystalline disorder prevalent in these materials appears to result from accommodation of carbonate in the lattice through random displacement of the phosphate groups. Though many substitution modalities are likely to occur in concert, the most predominant substitution places carbonate into the mirror plane of an ideal phosphate site. Understanding the mineralogical imperfections of a biologically analogous hydroxyapatite is important not only to potential bone grafting applications but also to biological mineralization processes themselves.

  10. Can Neuroimaging Markers of Vascular Pathology Explain Cognitive Performance in Adults with Sickle Cell Anemia? A Review of the Literature

    PubMed Central

    Jorgensen, Dana R.; Rosano, Caterina; Novelli, Enrico M.

    2017-01-01

    Adults with homozygous sickle cell anemia have, on average, lower cognitive function than unaffected controls. The mechanisms underlying cognitive deterioration in this population are poorly understood, but cerebral small vessel disease (CSVD) is likely to be implicated. We conducted a systematic review using the Prisma Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines of articles that included both measures of cognitive function and magnetic resonance imaging (MRI) neuroimaging markers of small vessel disease. While all five studies identified small vessel disease by MRI, only two of them found a significant relationship between structural changes and cognitive performance. Differences in methodologies and small sample sizes likely accounted for the discrepancies between the studies. We conclude that while MRI is a valuable tool to identify markers of CSVD in this population, larger studies are needed to definitely establish a link between MRI-detectable abnormalities and cognitive function in sickle cell anemia. PMID:27689914

  11. Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex.

    PubMed

    Boniecki, Michal T; Freibert, Sven A; Mühlenhoff, Ulrich; Lill, Roland; Cygler, Miroslaw

    2017-11-03

    Iron-sulfur (Fe/S) clusters are essential protein cofactors crucial for many cellular functions including DNA maintenance, protein translation, and energy conversion. De novo Fe/S cluster synthesis occurs on the mitochondrial scaffold protein ISCU and requires cysteine desulfurase NFS1, ferredoxin, frataxin, and the small factors ISD11 and ACP (acyl carrier protein). Both the mechanism of Fe/S cluster synthesis and function of ISD11-ACP are poorly understood. Here, we present crystal structures of three different NFS1-ISD11-ACP complexes with and without ISCU, and we use SAXS analyses to define the 3D architecture of the complete mitochondrial Fe/S cluster biosynthetic complex. Our structural and biochemical studies provide mechanistic insights into Fe/S cluster synthesis at the catalytic center defined by the active-site Cys of NFS1 and conserved Cys, Asp, and His residues of ISCU. We assign specific regulatory rather than catalytic roles to ISD11-ACP that link Fe/S cluster synthesis with mitochondrial lipid synthesis and cellular energy status.

  12. ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the Androgen Receptor.

    PubMed

    Mounir, Zineb; Korn, Joshua M; Westerling, Thomas; Lin, Fallon; Kirby, Christina A; Schirle, Markus; McAllister, Gregg; Hoffman, Greg; Ramadan, Nadire; Hartung, Anke; Feng, Yan; Kipp, David Randal; Quinn, Christopher; Fodor, Michelle; Baird, Jason; Schoumacher, Marie; Meyer, Ronald; Deeds, James; Buchwalter, Gilles; Stams, Travis; Keen, Nicholas; Sellers, William R; Brown, Myles; Pagliarini, Raymond A

    2016-05-16

    The TMPRSS2:ERG gene fusion is common in androgen receptor (AR) positive prostate cancers, yet its function remains poorly understood. From a screen for functionally relevant ERG interactors, we identify the arginine methyltransferase PRMT5. ERG recruits PRMT5 to AR-target genes, where PRMT5 methylates AR on arginine 761. This attenuates AR recruitment and transcription of genes expressed in differentiated prostate epithelium. The AR-inhibitory function of PRMT5 is restricted to TMPRSS2:ERG-positive prostate cancer cells. Mutation of this methylation site on AR results in a transcriptionally hyperactive AR, suggesting that the proliferative effects of ERG and PRMT5 are mediated through attenuating AR's ability to induce genes normally involved in lineage differentiation. This provides a rationale for targeting PRMT5 in TMPRSS2:ERG positive prostate cancers. Moreover, methylation of AR at arginine 761 highlights a mechanism for how the ERG oncogene may coax AR towards inducing proliferation versus differentiation.

  13. Genetic Differences in the Immediate Transcriptome Response to Stress Predict Risk-Related Brain Function and Psychiatric Disorders

    PubMed Central

    Arloth, Janine; Bogdan, Ryan; Weber, Peter; Frishman, Goar; Menke, Andreas; Wagner, Klaus V.; Balsevich, Georgia; Schmidt, Mathias V.; Karbalai, Nazanin; Czamara, Darina; Altmann, Andre; Trümbach, Dietrich; Wurst, Wolfgang; Mehta, Divya; Uhr, Manfred; Klengel, Torsten; Erhardt, Angelika; Carey, Caitlin E.; Conley, Emily Drabant; Ripke, Stephan; Wray, Naomi R.; Lewis, Cathryn M.; Hamilton, Steven P.; Weissman, Myrna M.; Breen, Gerome; Byrne, Enda M.; Blackwood, Douglas H.R.; Boomsma, Dorret I.; Cichon, Sven; Heath, Andrew C.; Holsboer, Florian; Lucae, Susanne; Madden, Pamela A.F.; Martin, Nicholas G.; McGuffin, Peter; Muglia, Pierandrea; Noethen, Markus M.; Penninx, Brenda P.; Pergadia, Michele L.; Potash, James B.; Rietschel, Marcella; Lin, Danyu; Müller-Myhsok, Bertram; Shi, Jianxin; Steinberg, Stacy; Grabe, Hans J.; Lichtenstein, Paul; Magnusson, Patrik; Perlis, Roy H.; Preisig, Martin; Smoller, Jordan W.; Stefansson, Kari; Uher, Rudolf; Kutalik, Zoltan; Tansey, Katherine E.; Teumer, Alexander; Viktorin, Alexander; Barnes, Michael R.; Bettecken, Thomas; Binder, Elisabeth B.; Breuer, René; Castro, Victor M.; Churchill, Susanne E.; Coryell, William H.; Craddock, Nick; Craig, Ian W.; Czamara, Darina; De Geus, Eco J.; Degenhardt, Franziska; Farmer, Anne E.; Fava, Maurizio; Frank, Josef; Gainer, Vivian S.; Gallagher, Patience J.; Gordon, Scott D.; Goryachev, Sergey; Gross, Magdalena; Guipponi, Michel; Henders, Anjali K.; Herms, Stefan; Hickie, Ian B.; Hoefels, Susanne; Hoogendijk, Witte; Hottenga, Jouke Jan; Iosifescu, Dan V.; Ising, Marcus; Jones, Ian; Jones, Lisa; Jung-Ying, Tzeng; Knowles, James A.; Kohane, Isaac S.; Kohli, Martin A.; Korszun, Ania; Landen, Mikael; Lawson, William B.; Lewis, Glyn; MacIntyre, Donald; Maier, Wolfgang; Mattheisen, Manuel; McGrath, Patrick J.; McIntosh, Andrew; McLean, Alan; Middeldorp, Christel M.; Middleton, Lefkos; Montgomery, Grant M.; Murphy, Shawn N.; Nauck, Matthias; Nolen, Willem A.; Nyholt, Dale R.; O’Donovan, Michael; Oskarsson, Högni; Pedersen, Nancy; Scheftner, William A.; Schulz, Andrea; Schulze, Thomas G.; Shyn, Stanley I.; Sigurdsson, Engilbert; Slager, Susan L.; Smit, Johannes H.; Stefansson, Hreinn; Steffens, Michael; Thorgeirsson, Thorgeir; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, Edwin J.C.G.; Van Grootheest, Gerard; Völzke, Henry; Weilburg, Jeffrey B.; Willemsen, Gonneke; Zitman, Frans G.; Neale, Benjamin; Daly, Mark; Levinson, Douglas F.; Sullivan, Patrick F.; Ruepp, Andreas; Müller-Myhsok, Bertram; Hariri, Ahmad R.; Binder, Elisabeth B.

    2015-01-01

    Summary Depression risk is exacerbated by genetic factors and stress exposure; however, the biological mechanisms through which these factors interact to confer depression risk are poorly understood. One putative biological mechanism implicates variability in the ability of cortisol, released in response to stress, to trigger a cascade of adaptive genomic and non-genomic processes through glucocorticoid receptor (GR) activation. Here, we demonstrate that common genetic variants in long-range enhancer elements modulate the immediate transcriptional response to GR activation in human blood cells. These functional genetic variants increase risk for depression and co-heritable psychiatric disorders. Moreover, these risk variants are associated with inappropriate amygdala reactivity, a transdiagnostic psychiatric endophenotype and an important stress hormone response trigger. Network modeling and animal experiments suggest that these genetic differences in GR-induced transcriptional activation may mediate the risk for depression and other psychiatric disorders by altering a network of functionally related stress-sensitive genes in blood and brain. Video Abstract PMID:26050039

  14. Controlling epithelial sodium channels with light using photoswitchable amilorides

    NASA Astrophysics Data System (ADS)

    Schönberger, Matthias; Althaus, Mike; Fronius, Martin; Clauss, Wolfgang; Trauner, Dirk

    2014-08-01

    Amiloride is a widely used diuretic that blocks epithelial sodium channels (ENaCs). These heterotrimeric transmembrane proteins, assembled from β, γ and α or δ subunits, effectively control water transport across epithelia and sodium influx into non-epithelial cells. The functional role of δβγENaC in various organs, including the human brain, is still poorly understood and no pharmacological tools are available for the functional differentiation between α- and δ-containing ENaCs. Here we report several photoswitchable versions of amiloride. One compound, termed PA1, enables the optical control of ENaC channels, in particular the δβγ isoform, by switching between blue and green light, or by turning on and off blue light. PA1 was used to modify functionally δβγENaC in amphibian and mammalian cells. We also show that PA1 can be used to differentiate between δβγENaC and αβγENaC in a model for the human lung epithelium.

  15. Can physical exercise in old age improve memory and hippocampal function?

    PubMed Central

    van Praag, Henriette; Sendtner, Michael

    2016-01-01

    Abstract Physical exercise can convey a protective effect against cognitive decline in ageing and Alzheimer’s disease. While the long-term health-promoting and protective effects of exercise are encouraging, it’s potential to induce neuronal and vascular plasticity in the ageing brain is still poorly understood. It remains unclear whether exercise slows the trajectory of normal ageing by modifying vascular and metabolic risk factors and/or consistently boosts brain function by inducing structural and neurochemical changes in the hippocampus and related medial temporal lobe circuitry—brain areas that are important for learning and memory. Hence, it remains to be established to what extent exercise interventions in old age can improve brain plasticity above and beyond preservation of function. Existing data suggest that exercise trials aiming for improvement and preservation may require different outcome measures and that the balance between the two may depend on exercise intensity and duration, the presence of preclinical Alzheimer’s disease pathology, vascular and metabolic risk factors and genetic variability. PMID:26912638

  16. Working memory capacity and the functional connectome - insights from resting-state fMRI and voxelwise centrality mapping.

    PubMed

    Markett, Sebastian; Reuter, Martin; Heeren, Behrend; Lachmann, Bernd; Weber, Bernd; Montag, Christian

    2018-02-01

    The functional connectome represents a comprehensive network map of functional connectivity throughout the human brain. To date, the relationship between the organization of functional connectivity and cognitive performance measures is still poorly understood. In the present study we use resting-state functional magnetic resonance imaging (fMRI) data to explore the link between the functional connectome and working memory capacity in an individual differences design. Working memory capacity, which refers to the maximum amount of context information that an individual can retain in the absence of external stimulation, was assessed outside the MRI scanner and estimated based on behavioral data from a change detection task. Resting-state time series were analyzed by means of voxelwise degree and eigenvector centrality mapping, which are data-driven network analytic approaches for the characterization of functional connectivity. We found working memory capacity to be inversely correlated with both centrality in the right intraparietal sulcus. Exploratory analyses revealed that this relationship was putatively driven by an increase in negative connectivity strength of the structure. This resting-state connectivity finding fits previous task based activation studies that have shown that this area responds to manipulations of working memory load.

  17. Uncovering the etiology of conversion disorder: insights from functional neuroimaging

    PubMed Central

    Ejareh dar, Maryam; Kanaan, Richard AA

    2016-01-01

    Conversion disorder (CD) is a syndrome of neurological symptoms arising without organic cause, arguably in response to emotional stress, but the exact neural substrates of these symptoms and the underlying mechanisms remain poorly understood with the hunt for a biological basis afoot for centuries. In the past 15 years, novel insights have been gained with the advent of functional neuroimaging studies in patients suffering from CDs in both motor and nonmotor domains. This review summarizes recent functional neuroimaging studies including functional magnetic resonance imaging (fMRI), single photon emission computerized tomography (SPECT), and positron emission tomography (PET) to see whether they bring us closer to understanding the etiology of CD. Convergent functional neuroimaging findings suggest alterations in brain circuits that could point to different mechanisms for manifesting functional neurological symptoms, in contrast with feigning or healthy controls. Abnormalities in emotion processing and in emotion-motor processing suggest a diathesis, while differential reactions to certain stressors implicate a specific response to trauma. No comprehensive theory emerges from these clues, and all results remain preliminary, but functional neuroimaging has at least given grounds for hope that a model for CD may soon be found. PMID:26834476

  18. Seasonal dynamics alter taxonomical and functional microbial profiles in Pampa biome soils under natural grasslands

    PubMed Central

    Barboza, Anthony Diego Muller; Pylro, Victor Satler; Jacques, Rodrigo Josemar Seminot; Gubiani, Paulo Ivonir; de Quadros, Fernando Luiz Ferreira; da Trindade, Júlio Kuhn; Triplett, Eric W.

    2018-01-01

    Soil microbial communities’ assembly is strongly tied to changes in temperature and moisture. Although microbial functional redundancy seems to overcome taxonomical composition changes, the sensitivity and resilience of soil microbial communities from subtropical regions in response to seasonal variations are still poorly understood. Thus, the development of new strategies for biodiversity conservation and sustainable management require a complete understanding of the soil abiotic process involved in the selection of microbial taxa and functions. In this work, we used state of the art molecular methodologies (Next Generation Sequencing) to compare the taxonomic (metataxonomics) and functional (metatranscriptomics) profiles among soil samples from two subtropical natural grasslands located in the Pampa biome, Brazil, in response to short-term seasonal variations. Our data suggest that grasslands maintained a stable microbial community membership along the year with oscillation in abundance. Apparently soil microbial taxa are more susceptible to natural climatic disturbances while functions are more stable and change with less intensity along the year. Finally, our data allow us to conclude that the most abundant microbial groups and functions were shared between seasons and locations reflecting the existence of a stable taxonomical and functional core microbiota.

  19. Linking Early Environmental Exposures to Adult Diseases

    MedlinePlus

    ... diseases. Given that many disorders arise during fetal development from disruptions in the dynamic but still poorly understood interplay of genes, environment and nutrition, prevention may have to occur decades ...

  20. Distinct Contributions of T1R2 and T1R3 Taste Receptor Subunits to the Detection of Sweet Stimuli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie,Y.; Vigues, S.; Hobbs, J.

    2005-01-01

    The molecular mechanisms by which G protein-coupled receptor (GPCR)-type chemosensory receptors of animals selectively interact with their cognate ligands remain poorly understood. There is growing evidence that many chemosensory receptors exist in multimeric complexes, though little is known about the relative contributions of individual subunits to receptor functions. This study showed that each of the two subunits in the mammalian heteromeric T1R2:T1R3 sweet taste receptor binds sweet stimuli, though with distinct affinities and conformational changes. Furthermore, ligand affinities for T1R3 are drastically reduced by the introduction of a single amino acid change associated with decreased sweet taste sensitivity in mice.more » Thus, individual T1R subunits increase the receptive range of the sweet taste receptor, offering a functional mechanism for phenotypic variations in sweet taste.« less

  1. Functional dissociation in sweet taste receptor neurons between and within taste organs of Drosophila

    PubMed Central

    Thoma, Vladimiros; Knapek, Stephan; Arai, Shogo; Hartl, Marion; Kohsaka, Hiroshi; Sirigrivatanawong, Pudith; Abe, Ayako; Hashimoto, Koichi; Tanimoto, Hiromu

    2016-01-01

    Finding food sources is essential for survival. Insects detect nutrients with external taste receptor neurons. Drosophila possesses multiple taste organs that are distributed throughout its body. However, the role of different taste organs in feeding remains poorly understood. By blocking subsets of sweet taste receptor neurons, we show that receptor neurons in the legs are required for immediate sugar choice. Furthermore, we identify two anatomically distinct classes of sweet taste receptor neurons in the leg. The axonal projections of one class terminate in the thoracic ganglia, whereas the other projects directly to the brain. These two classes are functionally distinct: the brain-projecting neurons are involved in feeding initiation, whereas the thoracic ganglia-projecting neurons play a role in sugar-dependent suppression of locomotion. Distinct receptor neurons for the same taste quality may coordinate early appetitive responses, taking advantage of the legs as the first appendages to contact food. PMID:26893070

  2. Human mutant huntingtin disrupts vocal learning in transgenic songbirds.

    PubMed

    Liu, Wan-Chun; Kohn, Jessica; Szwed, Sarah K; Pariser, Eben; Sepe, Sharon; Haripal, Bhagwattie; Oshimori, Naoki; Marsala, Martin; Miyanohara, Atsushi; Lee, Ramee

    2015-11-01

    Speech and vocal impairments characterize many neurological disorders. However, the neurogenetic mechanisms of these disorders are not well understood, and current animal models do not have the necessary circuitry to recapitulate vocal learning deficits. We developed germline transgenic songbirds, zebra finches (Taneiopygia guttata) expressing human mutant huntingtin (mHTT), a protein responsible for the progressive deterioration of motor and cognitive function in Huntington's disease (HD). Although generally healthy, the mutant songbirds had severe vocal disorders, including poor vocal imitation, stuttering, and progressive syntax and syllable degradation. Their song abnormalities were associated with HD-related neuropathology and dysfunction of the cortical-basal ganglia (CBG) song circuit. These transgenics are, to the best of our knowledge, the first experimentally created, functional mutant songbirds. Their progressive and quantifiable vocal disorder, combined with circuit dysfunction in the CBG song system, offers a model for genetic manipulation and the development of therapeutic strategies for CBG-related vocal and motor disorders.

  3. A melanosomal two-pore sodium channel regulates pigmentation

    PubMed Central

    Bellono, Nicholas W.; Escobar, Iliana E.; Oancea, Elena

    2016-01-01

    Intracellular organelles mediate complex cellular functions that often require ion transport across their membranes. Melanosomes are organelles responsible for the synthesis of the major mammalian pigment melanin. Defects in melanin synthesis result in pigmentation defects, visual deficits, and increased susceptibility to skin and eye cancers. Although genes encoding putative melanosomal ion transporters have been identified as key regulators of melanin synthesis, melanosome ion transport and its contribution to pigmentation remain poorly understood. Here we identify two-pore channel 2 (TPC2) as the first reported melanosomal cation conductance by directly patch-clamping skin and eye melanosomes. TPC2 has been implicated in human pigmentation and melanoma, but the molecular mechanism mediating this function was entirely unknown. We demonstrate that the vesicular signaling lipid phosphatidylinositol bisphosphate PI(3,5)P2 modulates TPC2 activity to control melanosomal membrane potential, pH, and regulate pigmentation. PMID:27231233

  4. LincRNA-p21: Implications in Human Diseases

    PubMed Central

    Tang, Sai-Sai; Zheng, Bi-Ying; Xiong, Xing-Dong

    2015-01-01

    Long noncoding RNAs (lncRNAs), which lack significant protein-coding capacity, regulate various biological processes through diverse and as yet poorly understood molecular mechanisms. However, a number of studies in the past few years have documented important functions for lncRNAs in human diseases. Among these lncRNAs, lincRNA-p21 has been proposed to be a novel regulator of cell proliferation, apoptosis and DNA damage response, and involved in the initiation and progression of human diseases. In this review, we summarize the current knowledge of lincRNA-p21, mainly focus on the known biological functions and its underlying mechanisms. Moreover, we highlight the growing body of evidences for the importance of lincRNA-p21 in diverse human diseases, which indicate lincRNA-p21 as a potential diagnostic marker and/or a valuable therapeutic target for these diseases. PMID:26270659

  5. HIV-1, Reactive Oxygen Species and Vascular Complications

    PubMed Central

    Porter, Kristi M.; Sutliff, Roy L.

    2012-01-01

    Over 1 million people in the United States and 33 million individuals worldwide suffer from HIV/AIDS. Since its discovery, HIV/AIDS has been associated with an increased susceptibility to opportunistic infection due to immune dysfunction. Highly active antiretroviral therapies (HAART) restore immune function and, as a result, people infected with HIV-1 are living longer. This improved survival of HIV-1 patients has revealed a previously unrecognized risk of developing vascular complications, such as atherosclerosis and pulmonary hypertension. The mechanisms underlying these HIV-associated vascular disorders are poorly understood. However, HIV-induced elevations in reactive oxygen species, including superoxide and hydrogen peroxide, may contribute to vascular disease development and progression by altering cell function and redox-sensitive signaling pathways. In this review, we summarize the clinical and experimental evidence demonstrating HIV- and HIV antiretroviral therapy-induced alterations in reactive oxygen species (ROS) and how these effects likely contribute to vascular dysfunction and disease. PMID:22564529

  6. The neural correlates of reciprocity are sensitive to prior experience of reciprocity.

    PubMed

    Cáceda, Ricardo; Prendes-Alvarez, Stefania; Hsu, Jung-Jiin; Tripathi, Shanti P; Kilts, Clint D; James, G Andrew

    2017-08-14

    Reciprocity is central to human relationships and is strongly influenced by multiple factors including the nature of social exchanges and their attendant emotional reactions. Despite recent advances in the field, the neural processes involved in this modulation of reciprocal behavior by ongoing social interaction are poorly understood. We hypothesized that activity within a discrete set of neural networks including a putative moral cognitive neural network is associated with reciprocity behavior. Nineteen healthy adults underwent functional magnetic resonance imaging scanning while playing the trustee role in the Trust Game. Personality traits and moral development were assessed. Independent component analysis was used to identify task-related functional brain networks and assess their relationship to behavior. The saliency network (insula and anterior cingulate) was positively correlated with reciprocity behavior. A consistent array of brain regions supports the engagement of emotional, self-referential and planning processes during social reciprocity behavior. Published by Elsevier B.V.

  7. The Bridge Helix of RNA polymerase acts as a central nanomechanical switchboard for coordinating catalysis and substrate movement.

    PubMed

    Weinzierl, Robert O J

    2011-01-01

    The availability of in vitro assembly systems to produce recombinant archaeal RNA polymerases (RNAPs) offers one of the most powerful experimental tools for investigating the still relatively poorly understood molecular mechanisms underlying RNAP function. Over the last few years, we pioneered new robot-based high-throughput mutagenesis approaches to study structure/function relationships within various domains surrounding the catalytic center. The Bridge Helix domain, which appears in numerous X-ray structures as a 35-amino-acid-long alpha helix, coordinates the concerted movement of several other domains during catalysis through kinking of two discrete molecular hinges. Mutations affecting these kinking mechanisms have a direct effect on the specific catalytic activity of RNAP and can in some instances more than double it. Molecular dynamics simulations have established themselves as exceptionally useful for providing additional insights and detailed models to explain the underlying structural motions.

  8. On the Communicative Function of Body Odors.

    PubMed

    de Groot, Jasper H B; Semin, Gün R; Smeets, Monique A M

    2017-03-01

    Humans use multiple senses to navigate the social world, and the sense of smell is arguably the most underestimated one. An intriguing aspect of the sense of smell is its social communicative function. Research has shown that human odors convey information about a range of states (e.g., emotions, sickness) and traits (e.g., individuality, gender). Yet, what underlies the communicability of these states and traits via smell? We fill this explanatory gap with a framework that highlights the dynamic and flexible aspects of human olfactory communication. In particular, we explain how chemical profiles, associative learning (i.e., the systematic co-occurrence of chemical profiles with state- or trait-related information), and top-down contextual influences could interact to shape human odor perception. Our model not only helps to integrate past research on human olfactory communication but it also opens new avenues for future research on this fascinating, yet to date poorly understood, field.

  9. Smooth muscle architecture within cell-dense vascular tissues influences functional contractility.

    PubMed

    Win, Zaw; Vrla, Geoffrey D; Steucke, Kerianne E; Sevcik, Emily N; Hald, Eric S; Alford, Patrick W

    2014-12-01

    The role of vascular smooth muscle architecture in the function of healthy and dysfunctional vessels is poorly understood. We aimed at determining the relationship between vascular smooth muscle architecture and contractile output using engineered vascular tissues. We utilized microcontact printing and a microfluidic cell seeding technique to provide three different initial seeding conditions, with the aim of influencing the cellular architecture within the tissue. Cells seeded in each condition formed confluent and aligned tissues but within the tissues, the cellular architecture varied. Tissues with a more elongated cellular architecture had significantly elevated basal stress and produced more contractile stress in response to endothelin-1 stimulation. We also found a correlation between the contractile phenotype marker expression and the cellular architecture, contrary to our previous findings in non-confluent tissues. Taken with previous results, these data suggest that within cell-dense vascular tissues, smooth muscle contractility is strongly influenced by cell and tissue architectures.

  10. Characterizing associations and dissociations between anxiety, social, and cognitive phenotypes of Williams syndrome

    PubMed Central

    Ng, Rowena; Järvinen, Anna; Bellugi, Ursula

    2014-01-01

    Williams syndrome (WS) is a neurogenetic disorder known for its “hypersocial” phenotype and a complex profile of anxieties. The anxieties are poorly understood specifically in relation to the social-emotional and cognitive profiles. To address this gap, we employed a Wechsler intelligence test, the Brief Symptom Inventory, Beck Anxiety Inventory, and Salk Institute Sociability Questionnaire, to (1) examine how anxiety symptoms distinguish individuals with WS from typically developing (TD) individuals; and (2) assess the associations between three key phenotypic features of WS: intellectual impairment, social-emotional functioning, and anxiety. The results highlighted intensified neurophysiological symptoms and subjective experiences of anxiety in WS. Moreover, whereas higher cognitive ability was positively associated with anxiety in WS, the opposite pattern characterized the TD individuals. This study provides novel insight into how the three core phenotypic features associate/dissociate in WS, specifically in terms of the contribution of cognitive and emotional functioning to anxiety symptoms. PMID:24973548

  11. Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores.

    PubMed

    Sanders, Jon G; Beichman, Annabel C; Roman, Joe; Scott, Jarrod J; Emerson, David; McCarthy, James J; Girguis, Peter R

    2015-09-22

    Mammals host gut microbiomes of immense physiological consequence, but the determinants of diversity in these communities remain poorly understood. Diet appears to be the dominant factor, but host phylogeny also seems to be an important, if unpredictable, correlate. Here we show that baleen whales, which prey on animals (fish and crustaceans), harbor unique gut microbiomes with surprising parallels in functional capacity and higher level taxonomy to those of terrestrial herbivores. These similarities likely reflect a shared role for fermentative metabolisms despite a shift in primary carbon sources from plant-derived to animal-derived polysaccharides, such as chitin. In contrast, protein catabolism and essential amino acid synthesis pathways in baleen whale microbiomes more closely resemble those of terrestrial carnivores. Our results demonstrate that functional attributes of the microbiome can vary independently even given an animal-derived diet, illustrating how diet and evolutionary history combine to shape microbial diversity in the mammalian gut.

  12. Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores

    PubMed Central

    Sanders, Jon G.; Beichman, Annabel C.; Roman, Joe; Scott, Jarrod J.; Emerson, David; McCarthy, James J.; Girguis, Peter R.

    2015-01-01

    Mammals host gut microbiomes of immense physiological consequence, but the determinants of diversity in these communities remain poorly understood. Diet appears to be the dominant factor, but host phylogeny also seems to be an important, if unpredictable, correlate. Here we show that baleen whales, which prey on animals (fish and crustaceans), harbor unique gut microbiomes with surprising parallels in functional capacity and higher level taxonomy to those of terrestrial herbivores. These similarities likely reflect a shared role for fermentative metabolisms despite a shift in primary carbon sources from plant-derived to animal-derived polysaccharides, such as chitin. In contrast, protein catabolism and essential amino acid synthesis pathways in baleen whale microbiomes more closely resemble those of terrestrial carnivores. Our results demonstrate that functional attributes of the microbiome can vary independently even given an animal-derived diet, illustrating how diet and evolutionary history combine to shape microbial diversity in the mammalian gut. PMID:26393325

  13. Metabolic drift in the aging brain.

    PubMed

    Ivanisevic, Julijana; Stauch, Kelly L; Petrascheck, Michael; Benton, H Paul; Epstein, Adrian A; Fang, Mingliang; Gorantla, Santhi; Tran, Minerva; Hoang, Linh; Kurczy, Michael E; Boska, Michael D; Gendelman, Howard E; Fox, Howard S; Siuzdak, Gary

    2016-05-01

    Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energymetabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication.

  14. The Long Noncoding RNA lncPARP1 Contributes to Progression of Hepatocellular Carcinoma through Upregulation of PARP1.

    PubMed

    Qi, Heqiang; Lu, Yuyan; Lv, Jie; Wu, Huita; Lu, Jing; Zhang, Changmao; Zhang, Sheng; Bao, Qing; Zhang, Xiuming; Xie, Chengrong; Yin, Zhenyu

    2018-05-18

    Hepatocellular carcinoma (HCC) accounts for a large proportion of cancer-associated mortality worldwide. The functional impact of long noncoding RNAs (lncRNAs) in human cancer is not fully understood. Here, we identified a novel oncogenic lncRNA termed lncPARP1, which was significantly upregulated in HCC. Increase of lncPARP1 expression was associated with age, AFP levels, tumor size, recurrence, and poor prognosis of HCC patients. Loss-of-function approaches showed that knockdown of lncPARP1 inhibited proliferation, migration and invasion, while induced apoptosis in HCC cells. Moreover, mechanistic investigation demonstrated that PARP1 was an underlying target of lncPARP1 in HCC. In summary, we provide the first evidence that lncPARP1 exerts an oncogene to promote HCC development and progression, at least in part, by affecting PARP1 expression. ©2018 The Author(s).

  15. The epidermis coordinates auxin-induced stem growth in response to shade

    PubMed Central

    Procko, Carl; Burko, Yogev; Long, Jeff A.; Chory, Joanne

    2016-01-01

    Growth of a complex multicellular organism requires coordinated changes in diverse cell types. These cellular changes generate organs of the correct size, shape, and functionality. In plants, the growth hormone auxin induces stem elongation in response to shade; however, which cell types of the stem perceive the auxin signal and contribute to organ growth is poorly understood. Here, we blocked the transcriptional response to auxin within specific tissues to show that auxin signaling is required in many cell types for correct hypocotyl growth in shade, with a key role for the epidermis. Combining genetic manipulations in Arabidopsis thaliana with transcriptional profiling of the hypocotyl epidermis from Brassica rapa, we show that auxin acts in the epidermis in part by inducing activity of the locally acting, growth-promoting brassinosteroid pathway. Our findings clarify cell-specific auxin function in the hypocotyl and highlight the complexity of cell type interactions within a growing organ. PMID:27401556

  16. Modulation of the brain's functional network architecture in the transition from wake to sleep

    PubMed Central

    Larson-Prior, Linda J.; Power, Jonathan D.; Vincent, Justin L.; Nolan, Tracy S.; Coalson, Rebecca S.; Zempel, John; Snyder, Abraham Z.; Schlaggar, Bradley L.; Raichle, Marcus E.; Petersen, Steven E.

    2013-01-01

    The transition from quiet wakeful rest to sleep represents a period over which attention to the external environment fades. Neuroimaging methodologies have provided much information on the shift in neural activity patterns in sleep, but the dynamic restructuring of human brain networks in the transitional period from wake to sleep remains poorly understood. Analysis of electrophysiological measures and functional network connectivity of these early transitional states shows subtle shifts in network architecture that are consistent with reduced external attentiveness and increased internal and self-referential processing. Further, descent to sleep is accompanied by the loss of connectivity in anterior and posterior portions of the default-mode network and more locally organized global network architecture. These data clarify the complex and dynamic nature of the transitional period between wake and sleep and suggest the need for more studies investigating the dynamics of these processes. PMID:21854969

  17. A Review of MR Spectroscopy Studies of Pediatric Bipolar Disorder

    PubMed Central

    Kondo, D.G.; Hellem, T.L.; Shi, X.-F.; Sung, Y.H.; Prescot, A.P.; Kim, T.S.; Huber, R.S.; Forrest, L.N.; Renshaw, P.F.

    2015-01-01

    Pediatric bipolar disorder is a severe mental illness whose pathophysiology is poorly understood and for which there is an urgent need for improved diagnosis and treatment. MR spectroscopy is a neuroimaging method capable of in vivo measurement of neurochemicals relevant to bipolar disorder neurobiology. MR spectroscopy studies of adult bipolar disorder provide consistent evidence for alterations in the glutamate system and mitochondrial function. In bipolar disorder, these 2 phenomena may be linked because 85% of glucose in the brain is consumed by glutamatergic neurotransmission and the conversion of glutamate to glutamine. The purpose of this article is to review the MR spectroscopic imaging literature in pediatric bipolar disorder, at-risk samples, and severe mood dysregulation, with a focus on the published findings that are relevant to glutamatergic and mitochondrial functioning. Potential directions for future MR spectroscopy studies of the glutamate system and mitochondrial dysfunction in pediatric bipolar disorder are discussed. PMID:24557702

  18. Neural Correlates of Lyrical Improvisation: An fMRI Study of Freestyle Rap

    PubMed Central

    Liu, Siyuan; Chow, Ho Ming; Xu, Yisheng; Erkkinen, Michael G.; Swett, Katherine E.; Eagle, Michael W.; Rizik-Baer, Daniel A.; Braun, Allen R.

    2012-01-01

    The neural correlates of creativity are poorly understood. Freestyle rap provides a unique opportunity to study spontaneous lyrical improvisation, a multidimensional form of creativity at the interface of music and language. Here we use functional magnetic resonance imaging to characterize this process. Task contrast analyses indicate that improvised performance is characterized by dissociated activity in medial and dorsolateral prefrontal cortices, providing a context in which stimulus-independent behaviors may unfold in the absence of conscious monitoring and volitional control. Connectivity analyses reveal widespread improvisation-related correlations between medial prefrontal, cingulate motor, perisylvian cortices and amygdala, suggesting the emergence of a network linking motivation, language, affect and movement. Lyrical improvisation appears to be characterized by altered relationships between regions coupling intention and action, in which conventional executive control may be bypassed and motor control directed by cingulate motor mechanisms. These functional reorganizations may facilitate the initial improvisatory phase of creative behavior. PMID:23155479

  19. Neural correlates of lyrical improvisation: an FMRI study of freestyle rap.

    PubMed

    Liu, Siyuan; Chow, Ho Ming; Xu, Yisheng; Erkkinen, Michael G; Swett, Katherine E; Eagle, Michael W; Rizik-Baer, Daniel A; Braun, Allen R

    2012-01-01

    The neural correlates of creativity are poorly understood. Freestyle rap provides a unique opportunity to study spontaneous lyrical improvisation, a multidimensional form of creativity at the interface of music and language. Here we use functional magnetic resonance imaging to characterize this process. Task contrast analyses indicate that improvised performance is characterized by dissociated activity in medial and dorsolateral prefrontal cortices, providing a context in which stimulus-independent behaviors may unfold in the absence of conscious monitoring and volitional control. Connectivity analyses reveal widespread improvisation-related correlations between medial prefrontal, cingulate motor, perisylvian cortices and amygdala, suggesting the emergence of a network linking motivation, language, affect and movement. Lyrical improvisation appears to be characterized by altered relationships between regions coupling intention and action, in which conventional executive control may be bypassed and motor control directed by cingulate motor mechanisms. These functional reorganizations may facilitate the initial improvisatory phase of creative behavior.

  20. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment.

    PubMed

    van der Heijden, Marcel G A; de Bruin, Susanne; Luckerhoff, Ludo; van Logtestijn, Richard S P; Schlaeppi, Klaus

    2016-02-01

    Highly diverse microbial assemblages colonize plant roots. It is still poorly understood whether different members of this root microbiome act synergistically by supplying different services (for example, different limiting nutrients) to plants and plant communities. In order to test this, we manipulated the presence of two widespread plant root symbionts, arbuscular mycorrhizal fungi and nitrogen-fixing rhizobia bacteria in model grassland communities established in axenic microcosms. Here, we demonstrate that both symbionts complement each other resulting in increased plant diversity, enhanced seedling recruitment and improved nutrient acquisition compared with a single symbiont situation. Legume seedlings obtained up to 15-fold higher productivity if they formed an association with both symbionts, opposed to productivity they reached with only one symbiont. Our results reveal the importance of functional diversity of symbionts and demonstrate that different members of the root microbiome can complement each other in acquiring different limiting nutrients and in driving important ecosystem functions.

  1. Quantitative structure-property relationship (QSPR) modeling of drug-loaded polymeric micelles via genetic function approximation.

    PubMed

    Wu, Wensheng; Zhang, Canyang; Lin, Wenjing; Chen, Quan; Guo, Xindong; Qian, Yu; Zhang, Lijuan

    2015-01-01

    Self-assembled nano-micelles of amphiphilic polymers represent a novel anticancer drug delivery system. However, their full clinical utilization remains challenging because the quantitative structure-property relationship (QSPR) between the polymer structure and the efficacy of micelles as a drug carrier is poorly understood. Here, we developed a series of QSPR models to account for the drug loading capacity of polymeric micelles using the genetic function approximation (GFA) algorithm. These models were further evaluated by internal and external validation and a Y-randomization test in terms of stability and generalization, yielding an optimization model that is applicable to an expanded materials regime. As confirmed by experimental data, the relationship between microstructure and drug loading capacity can be well-simulated, suggesting that our models are readily applicable to the quantitative evaluation of the drug-loading capacity of polymeric micelles. Our work may offer a pathway to the design of formulation experiments.

  2. Screening of binding proteins that interact with Chinese sacbrood virus VP3 capsid protein in Apis cerana larvae cDNA library by the yeast two-hybrid method.

    PubMed

    Fei, Dongliang; Wei, Dong; Yu, Xiaolei; Yue, Jinjin; Li, Ming; Sun, Li; Jiang, Lili; Li, Yijing; Diao, Qingyun; Ma, Mingxiao

    2018-03-15

    Chinese sacbrood virus (CSBV) causes larval death and apiary collapse of Apis cerana. VP3 is a capsid protein of CSBV but its function is poorly understood. To determine the function of VP3 and screen for novel binding proteins that interact with VP3, we conducted yeast two-hybrid screening, glutathione S-transferase pull-down, and co-immunoprecipitation assays. Galectin (GAL) is a protein involved in immune regulation and host-pathogen interactions. The yeast two-hybrid screen implicated GAL as a major VP3-binding candidate. The assays showed that the VP3 interacted with GAL. Identification of these cellular targets and clarifying their contributions to the host-pathogen interaction may be useful for the development of novel therapeutic and prevention strategies against CSBV infection. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Variability in sperm form and function in the context of sperm competition risk in two Tupinambis lizards

    PubMed Central

    Blengini, Cecilia S; Sergio, Naretto; Gabriela, Cardozo; Giojalas, Laura C; Margarita, Chiaraviglio

    2014-01-01

    In polyandrous species, sperm morphometry and sperm velocity are under strong sexual selection. Although several hypotheses have been proposed to explain the role of sperm competition in sperm trait variation, this aspect is still poorly understood. It has been suggested that an increase in sperm competition pressure could reduce sperm size variation or produce a diversity of sperm to maximize male fertilization success. We aim at elucidating the variability of sperm morphometric traits and velocity in two Tupinambis lizards in the context of sperm competition risk. Sperm traits showed substantial variation at all levels examined: between species, among males within species, and within the ejaculate of individual males. Sperm velocity was found to be positively correlated with flagellum: midpiece ratio, with relatively longer flagella associated with faster sperm. Our results document high variability in sperm form and function in lizards. PMID:25505535

  4. A novel perivascular cell population in the zebrafish brain.

    PubMed

    Venero Galanternik, Marina; Castranova, Daniel; Gore, Aniket V; Blewett, Nathan H; Jung, Hyun Min; Stratman, Amber N; Kirby, Martha R; Iben, James; Miller, Mayumi F; Kawakami, Koichi; Maraia, Richard J; Weinstein, Brant M

    2017-04-11

    The blood-brain barrier is essential for the proper homeostasis and function of the CNS, but its mechanism of function is poorly understood. Perivascular cells surrounding brain blood vessels are thought to be important for blood-brain barrier establishment, but their roles are not well defined. Here, we describe a novel perivascular cell population closely associated with blood vessels on the zebrafish brain. Based on similarities in their morphology, location, and scavenger behavior, these cells appear to be the zebrafish equivalent of cells variably characterized as Fluorescent Granular Perithelial cells (FGPs), perivascular macrophages, or 'Mato Cells' in mammals. Despite their macrophage-like morphology and perivascular location, zebrafish FGPs appear molecularly most similar to lymphatic endothelium, and our imaging studies suggest that these cells emerge by differentiation from endothelium of the optic choroidal vascular plexus. Our findings provide the first report of a perivascular cell population in the brain derived from vascular endothelium.

  5. Landscape topography structures the soil microbiome in arctic polygonal tundra.

    PubMed

    Taş, Neslihan; Prestat, Emmanuel; Wang, Shi; Wu, Yuxin; Ulrich, Craig; Kneafsey, Timothy; Tringe, Susannah G; Torn, Margaret S; Hubbard, Susan S; Jansson, Janet K

    2018-02-22

    In the Arctic, environmental factors governing microbial degradation of soil carbon (C) in active layer and permafrost are poorly understood. Here we determined the functional potential of soil microbiomes horizontally and vertically across a cryoperturbed polygonal landscape in Alaska. With comparative metagenomics, genome binning of novel microbes, and gas flux measurements we show that microbial greenhouse gas (GHG) production is strongly correlated to landscape topography. Active layer and permafrost harbor contrasting microbiomes, with increasing amounts of Actinobacteria correlating with decreasing soil C in permafrost. While microbial functions such as fermentation and methanogenesis were dominant in wetter polygons, in drier polygons genes for C mineralization and CH 4 oxidation were abundant. The active layer microbiome was poised to assimilate N and not to release N 2 O, reflecting low N 2 O flux measurements. These results provide mechanistic links of microbial metabolism to GHG fluxes that are needed for the refinement of model predictions.

  6. Predictive codes of familiarity and context during the perceptual learning of facial identities

    NASA Astrophysics Data System (ADS)

    Apps, Matthew A. J.; Tsakiris, Manos

    2013-11-01

    Face recognition is a key component of successful social behaviour. However, the computational processes that underpin perceptual learning and recognition as faces transition from unfamiliar to familiar are poorly understood. In predictive coding, learning occurs through prediction errors that update stimulus familiarity, but recognition is a function of both stimulus and contextual familiarity. Here we show that behavioural responses on a two-option face recognition task can be predicted by the level of contextual and facial familiarity in a computational model derived from predictive-coding principles. Using fMRI, we show that activity in the superior temporal sulcus varies with the contextual familiarity in the model, whereas activity in the fusiform face area covaries with the prediction error parameter that updated facial familiarity. Our results characterize the key computations underpinning the perceptual learning of faces, highlighting that the functional properties of face-processing areas conform to the principles of predictive coding.

  7. Quantitative Structure-Property Relationship (QSPR) Modeling of Drug-Loaded Polymeric Micelles via Genetic Function Approximation

    PubMed Central

    Lin, Wenjing; Chen, Quan; Guo, Xindong; Qian, Yu; Zhang, Lijuan

    2015-01-01

    Self-assembled nano-micelles of amphiphilic polymers represent a novel anticancer drug delivery system. However, their full clinical utilization remains challenging because the quantitative structure-property relationship (QSPR) between the polymer structure and the efficacy of micelles as a drug carrier is poorly understood. Here, we developed a series of QSPR models to account for the drug loading capacity of polymeric micelles using the genetic function approximation (GFA) algorithm. These models were further evaluated by internal and external validation and a Y-randomization test in terms of stability and generalization, yielding an optimization model that is applicable to an expanded materials regime. As confirmed by experimental data, the relationship between microstructure and drug loading capacity can be well-simulated, suggesting that our models are readily applicable to the quantitative evaluation of the drug-loading capacity of polymeric micelles. Our work may offer a pathway to the design of formulation experiments. PMID:25780923

  8. Chronic sublethal stress causes bee colony failure.

    PubMed

    Bryden, John; Gill, Richard J; Mitton, Robert A A; Raine, Nigel E; Jansen, Vincent A A

    2013-12-01

    Current bee population declines and colony failures are well documented yet poorly understood and no single factor has been identified as a leading cause. The evidence is equivocal and puzzling: for instance, many pathogens and parasites can be found in both failing and surviving colonies and field pesticide exposure is typically sublethal. Here, we investigate how these results can be due to sublethal stress impairing colony function. We mathematically modelled stress on individual bees which impairs colony function and found how positive density dependence can cause multiple dynamic outcomes: some colonies fail while others thrive. We then exposed bumblebee colonies to sublethal levels of a neonicotinoid pesticide. The dynamics of colony failure, which we observed, were most accurately described by our model. We argue that our model can explain the enigmatic aspects of bee colony failures, highlighting an important role for sublethal stress in colony declines. © 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  9. A transcription factor collective defines the HSN serotonergic neuron regulatory landscape

    PubMed Central

    Artacho, Alejandro; Jimeno-Martín, Ángela; Chirivella, Laura; Weinberg, Peter

    2018-01-01

    Cell differentiation is controlled by individual transcription factors (TFs) that together activate a selection of enhancers in specific cell types. How these combinations of TFs identify and activate their target sequences remains poorly understood. Here, we identify the cis-regulatory transcriptional code that controls the differentiation of serotonergic HSN neurons in Caenorhabditis elegans. Activation of the HSN transcriptome is directly orchestrated by a collective of six TFs. Binding site clusters for this TF collective form a regulatory signature that is sufficient for de novo identification of HSN neuron functional enhancers. Among C. elegans neurons, the HSN transcriptome most closely resembles that of mouse serotonergic neurons. Mouse orthologs of the HSN TF collective also regulate serotonergic differentiation and can functionally substitute for their worm counterparts which suggests deep homology. Our results identify rules governing the regulatory landscape of a critically important neuronal type in two species separated by over 700 million years. PMID:29553368

  10. Read count-based method for high-throughput allelic genotyping of transposable elements and structural variants.

    PubMed

    Kuhn, Alexandre; Ong, Yao Min; Quake, Stephen R; Burkholder, William F

    2015-07-08

    Like other structural variants, transposable element insertions can be highly polymorphic across individuals. Their functional impact, however, remains poorly understood. Current genome-wide approaches for genotyping insertion-site polymorphisms based on targeted or whole-genome sequencing remain very expensive and can lack accuracy, hence new large-scale genotyping methods are needed. We describe a high-throughput method for genotyping transposable element insertions and other types of structural variants that can be assayed by breakpoint PCR. The method relies on next-generation sequencing of multiplex, site-specific PCR amplification products and read count-based genotype calls. We show that this method is flexible, efficient (it does not require rounds of optimization), cost-effective and highly accurate. This method can benefit a wide range of applications from the routine genotyping of animal and plant populations to the functional study of structural variants in humans.

  11. Low calorie sweeteners: Evidence remains lacking for effects on human gut function.

    PubMed

    Bryant, Charlotte; Mclaughlin, John

    2016-10-01

    The importance of nutrient induced gut-brain signalling in the regulation of human food intake has become an increasing focus of research. Much of the caloric excess consumed comes from dietary sugars, but our knowledge about the mechanisms mediating the physiological and appetitive effects of sweet tastants in the human gut and gut-brain axis is far from complete. The comparative effects of natural sugars vs low calorie sweeteners are also poorly understood. Research in animal and cellular models has suggested a key functional role in gut endocrine cells for the sweet taste receptors previously well described in oral taste. However human studies to date have very consistently failed to show that activation of the sweet taste receptor by low calorie sweeteners placed in the human gut fails to replicate any of the effects on gastric motility, gut hormones or appetitive responses evoked by caloric sugars. Copyright © 2016. Published by Elsevier Inc.

  12. Diversity in arrestin function.

    PubMed

    Kendall, Ryan T; Luttrell, Louis M

    2009-09-01

    The termination of heptahelical receptor signaling is a multilevel process coordinated, in large part, by members of the arrestin family of proteins. Arrestin binding to agonist-occupied receptors promotes desensitization by interrupting receptor-G protein coupling, while simultaneously recruiting machinery for receptor endocytosis, vesicular trafficking, and receptor fate determination. By simultaneously binding other proteins, arrestins also act as ligand-regulated scaffolds that recruit protein and lipid kinase, phosphatase, phosphodiesterase, and ubiquitin ligase activity into receptor-based multiprotein 'signalsome' complexes. Arrestin-binding thus 'switches' receptors from a transient G protein-coupled state to a persistent arrestin-coupled state that continues to signal as the receptor transits intracellular compartments. While it is clear that signalsome assembly has profound effects on the duration and spatial characteristics of heptahelical receptor signals, the physiologic functions of this novel signaling mechanism are poorly understood. Growing evidence suggests that signalsomes regulate such diverse processes as endocytosis and exocytosis, cell migration, survival, and contractility.

  13. Chronic sublethal stress causes bee colony failure

    PubMed Central

    Bryden, John; Gill, Richard J; Mitton, Robert A A; Raine, Nigel E; Jansen, Vincent A A; Hodgson, David

    2013-01-01

    Current bee population declines and colony failures are well documented yet poorly understood and no single factor has been identified as a leading cause. The evidence is equivocal and puzzling: for instance, many pathogens and parasites can be found in both failing and surviving colonies and field pesticide exposure is typically sublethal. Here, we investigate how these results can be due to sublethal stress impairing colony function. We mathematically modelled stress on individual bees which impairs colony function and found how positive density dependence can cause multiple dynamic outcomes: some colonies fail while others thrive. We then exposed bumblebee colonies to sublethal levels of a neonicotinoid pesticide. The dynamics of colony failure, which we observed, were most accurately described by our model. We argue that our model can explain the enigmatic aspects of bee colony failures, highlighting an important role for sublethal stress in colony declines. PMID:24112478

  14. Jaw1/LRMP has a role in maintaining nuclear shape via interaction with SUN proteins.

    PubMed

    Kozono, Takuma; Tadahira, Kazuko; Okumura, Wataru; Itai, Nao; Tamura-Nakano, Miwa; Dohi, Taeko; Tonozuka, Takashi; Nishikawa, Atsushi

    2018-06-06

    Jaw1/LRMP is characterized as a type II integral membrane protein that is localized to endoplasmic reticulum (ER), however, its physiological functions have been poorly understood. An alignment of amino acid sequence of Jaw1 with KASH proteins, outer nuclear membrane proteins, revealed that Jaw1 has a partial homology to the KASH domain. Here, we show that the function of Jaw1 is to maintain nuclear shape in mouse melanoma cell line. The siRNA-mediated knockdown of Jaw1 caused a severe defect in nuclear shape, and the defect was rescued by ectopic expression of siRNA-resistant Jaw1. Since co-immunoprecipitation assay indicates that Jaw1 interacts with SUN proteins that are inner nuclear proteins and microtubules, this study suggests that Jaw1 has a role in maintaining nuclear shape via interactions with SUN proteins and microtubules.

  15. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation

    PubMed Central

    Covarrubias, Anthony J; Aksoylar, Halil Ibrahim; Yu, Jiujiu; Snyder, Nathaniel W; Worth, Andrew J; Iyer, Shankar S; Wang, Jiawei; Ben-Sahra, Issam; Byles, Vanessa; Polynne-Stapornkul, Tiffany; Espinosa, Erika C; Lamming, Dudley; Manning, Brendan D; Zhang, Yijing; Blair, Ian A; Horng, Tiffany

    2016-01-01

    Macrophage activation/polarization to distinct functional states is critically supported by metabolic shifts. How polarizing signals coordinate metabolic and functional reprogramming, and the potential implications for control of macrophage activation, remains poorly understood. Here we show that IL-4 signaling co-opts the Akt-mTORC1 pathway to regulate Acly, a key enzyme in Ac-CoA synthesis, leading to increased histone acetylation and M2 gene induction. Only a subset of M2 genes is controlled in this way, including those regulating cellular proliferation and chemokine production. Moreover, metabolic signals impinge on the Akt-mTORC1 axis for such control of M2 activation. We propose that Akt-mTORC1 signaling calibrates metabolic state to energetically demanding aspects of M2 activation, which may define a new role for metabolism in supporting macrophage activation. DOI: http://dx.doi.org/10.7554/eLife.11612.001 PMID:26894960

  16. Bacteria-bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance.

    PubMed

    Fraune, Sebastian; Anton-Erxleben, Friederike; Augustin, René; Franzenburg, Sören; Knop, Mirjam; Schröder, Katja; Willoweit-Ohl, Doris; Bosch, Thomas C G

    2015-07-01

    Epithelial surfaces of most animals are colonized by diverse microbial communities. Although it is generally agreed that commensal bacteria can serve beneficial functions, the processes involved are poorly understood. Here we report that in the basal metazoan Hydra, ectodermal epithelial cells are covered with a multilayered glycocalyx that provides a habitat for a distinctive microbial community. Removing this epithelial microbiota results in lethal infection by the filamentous fungus Fusarium sp. Restoring the complex microbiota in gnotobiotic polyps prevents pathogen infection. Although mono-associations with distinct members of the microbiota fail to provide full protection, additive and synergistic interactions of commensal bacteria are contributing to full fungal resistance. Our results highlight the importance of resident microbiota diversity as a protective factor against pathogen infections. Besides revealing insights into the in vivo function of commensal microbes in Hydra, our findings indicate that interactions among commensal bacteria are essential to inhibit pathogen infection.

  17. Bacteria–bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance

    PubMed Central

    Fraune, Sebastian; Anton-Erxleben, Friederike; Augustin, René; Franzenburg, Sören; Knop, Mirjam; Schröder, Katja; Willoweit-Ohl, Doris; Bosch, Thomas CG

    2015-01-01

    Epithelial surfaces of most animals are colonized by diverse microbial communities. Although it is generally agreed that commensal bacteria can serve beneficial functions, the processes involved are poorly understood. Here we report that in the basal metazoan Hydra, ectodermal epithelial cells are covered with a multilayered glycocalyx that provides a habitat for a distinctive microbial community. Removing this epithelial microbiota results in lethal infection by the filamentous fungus Fusarium sp. Restoring the complex microbiota in gnotobiotic polyps prevents pathogen infection. Although mono-associations with distinct members of the microbiota fail to provide full protection, additive and synergistic interactions of commensal bacteria are contributing to full fungal resistance. Our results highlight the importance of resident microbiota diversity as a protective factor against pathogen infections. Besides revealing insights into the in vivo function of commensal microbes in Hydra, our findings indicate that interactions among commensal bacteria are essential to inhibit pathogen infection. PMID:25514534

  18. Asymmetric homotypic interactions of the atypical cadherin Flamingo mediate intercellular polarity signaling

    PubMed Central

    Chen, Wei-Shen; Antic, Dragana; Matis, Maja; Logan, Catriona Y.; Povelones, Michael; Anderson, Graham; Nusse, Roel; Axelrod, Jeffrey D.

    2008-01-01

    Acquisition of planar cell polarity (PCP) in epithelia involves intercellular communication, during which cells align their polarity with that of their neighbors. The transmembrane proteins Frizzled (Fz) and Van Gogh (Vang) are essential components of the intercellular communication mechanism, as loss of either strongly perturbs the polarity of neighboring cells. How Fz and Vang communicate polarity information between neighboring cells is poorly understood. The atypical cadherin, Flamingo (Fmi), is implicated in this process, yet whether Fmi acts permissively as a scaffold, or instructively as a signal is unclear. Here, we provide evidence that Fmi functions instructively to mediate Fz-Vang intercellular signal relay, recruiting Fz and Vang to opposite sides of cell boundaries. We propose that two functional forms of Fmi, one of which is induced by and physically interacts with Fz, form cadherin homodimers that signal bidirectionally and asymmetrically, instructing unequal responses in adjacent cell membranes to establish molecular asymmetry. PMID:18555784

  19. Do chromatin changes around a nascent double strand DNA break spread spherically into linearly non-adjacent chromatin?

    PubMed

    Savic, Velibor

    2013-01-01

    In the last decade, a lot has been done in elucidating the sequence of events that occur at the nascent double strand DNA break. Nevertheless, the overall structure formed by the DNA damage response (DDR) factors around the break site, the repair focus, remains poorly understood. Although most of the data presented so far only address events that occur in chromatin in cis around the break, there are strong indications that in mammalian systems it may also occur in trans, analogous to the recent findings showing this if budding yeast. There have been attempts to address the issue but the final proof is still missing due to lack of a proper experimental system. If found to be true, the spatial distribution of DDR factors would have a major impact on the neighboring chromatin both in cis and in trans, significantly affecting local chromatin function; gene transcription and potentially other functions.

  20. The Response of Ice Sheets to Climate Variability

    NASA Astrophysics Data System (ADS)

    Snow, K.; Goldberg, D. N.; Holland, P. R.; Jordan, J. R.; Arthern, R. J.; Jenkins, A.

    2017-12-01

    West Antarctic Ice Sheet loss is a significant contributor to sea level rise. While the ice loss is thought to be triggered by fluctuations in oceanic heat at the ice shelf bases, ice sheet response to ocean variability remains poorly understood. Using a synchronously coupled ice-ocean model permitting grounding line migration, this study evaluates the response of an ice sheet to periodic variations in ocean forcing. Resulting oscillations in grounded ice volume amplitude is shown to grow as a nonlinear function of ocean forcing period. This implies that slower oscillations in climatic forcing are disproportionately important to ice sheets. The ice shelf residence time offers a critical time scale, above which the ice response amplitude is a linear function of ocean forcing period and below which it is quadratic. These results highlight the sensitivity of West Antarctic ice streams to perturbations in heat fluxes occurring at decadal time scales.

  1. Fluid shear stress activates YAP1 to promote cancer cell motility

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Jung; Diaz, Miguel F.; Price, Katherine M.; Ozuna, Joyce A.; Zhang, Songlin; Sevick-Muraca, Eva M.; Hagan, John P.; Wenzel, Pamela L.

    2017-01-01

    Mechanical stress is pervasive in egress routes of malignancy, yet the intrinsic effects of force on tumour cells remain poorly understood. Here, we demonstrate that frictional force characteristic of flow in the lymphatics stimulates YAP1 to drive cancer cell migration; whereas intensities of fluid wall shear stress (WSS) typical of venous or arterial flow inhibit taxis. YAP1, but not TAZ, is strictly required for WSS-enhanced cell movement, as blockade of YAP1, TEAD1-4 or the YAP1-TEAD interaction reduces cellular velocity to levels observed without flow. Silencing of TEAD phenocopies loss of YAP1, implicating transcriptional transactivation function in mediating force-enhanced cell migration. WSS dictates expression of a network of YAP1 effectors with executive roles in invasion, chemotaxis and adhesion downstream of the ROCK-LIMK-cofilin signalling axis. Altogether, these data implicate YAP1 as a fluid mechanosensor that functions to regulate genes that promote metastasis.

  2. Impact of airway morphological changes on pulmonary flows in scoliosis

    NASA Astrophysics Data System (ADS)

    Farrell, James; Garrido, Enrique; Valluri, Prashant

    2016-11-01

    The relationship between thoracic deformity in scoliosis and lung function is poorly understood. In a pilot study, we reviewed computed tomography (CT) routine scans of patients undergoing scoliosis surgery. The CT scans were processed to segment the anatomy of the airways, lung and spine. A three-dimensional model was created to study the anatomical relationship. Preliminary analysis showed significant airway morphological differences depending on the anterior position of the spine. A computational fluid dynamics (CFD) study was also conducted on the airway geometry using the inspiratory scans. The CFD model assuming non-compliant airway walls was capable of showing pressure drops in areas of high airway resistance, but was unable to predict regional ventilation differences. Our results indicate a dependence between the dynamic deformation of the airway during breathing and lung function. Dynamic structural deformation must therefore be incorporated within any modelling approaches to guide clinicians on the decision to perform surgical correction of the scoliosis.

  3. Excitatory glutamate is essential for development and maintenance of the piloneural mechanoreceptor.

    PubMed

    Woo, Seung-Hyun; Baba, Yoshichika; Franco, Alexa M; Lumpkin, Ellen A; Owens, David M

    2012-02-01

    The piloneural collar in mammalian hairy skin comprises an intricate pattern of circumferential and longitudinal sensory afferents that innervate primary and secondary pelage hairs. The longitudinal afferents tightly associate with terminal Schwann cell processes to form encapsulated lanceolate nerve endings of rapidly adapting mechanoreceptors. The molecular basis for piloneural development, maintenance and function is poorly understood. Here, we show that Nefh-expressing glutamatergic neurons represent a major population of longitudinal and circumferential sensory afferents innervating the piloneural collar. Our findings using a VGLUT2 conditional-null mouse model indicate that glutamate is essential for innervation, patterning and differentiation of NMDAR(+) terminal Schwann cells during piloneural collar development. Similarly, treatment of adult mice with a selective NMDAR antagonist severely perturbed piloneural collar structure and reduced excitability of these mechanosensory neurons. Collectively, these results show that DRG-derived glutamate is essential for the proper development, maintenance and sensory function of the piloneural mechanoreceptor.

  4. Limited dissemination of the wastewater treatment plant core resistome.

    PubMed

    Munck, Christian; Albertsen, Mads; Telke, Amar; Ellabaan, Mostafa; Nielsen, Per Halkjær; Sommer, Morten O A

    2015-09-30

    Horizontal gene transfer is a major contributor to the evolution of bacterial genomes and can facilitate the dissemination of antibiotic resistance genes between environmental reservoirs and potential pathogens. Wastewater treatment plants (WWTPs) are believed to play a central role in the dissemination of antibiotic resistance genes. However, the contribution of the dominant members of the WWTP resistome to resistance in human pathogens remains poorly understood. Here we use a combination of metagenomic functional selections and comprehensive metagenomic sequencing to uncover the dominant genes of the WWTP resistome. We find that this core resistome is unique to the WWTP environment, with <10% of the resistance genes found outside the WWTP environment. Our data highlight that, despite an abundance of functional resistance genes within WWTPs, only few genes are found in other environments, suggesting that the overall dissemination of the WWTP resistome is comparable to that of the soil resistome.

  5. Limited dissemination of the wastewater treatment plant core resistome

    PubMed Central

    Munck, Christian; Albertsen, Mads; Telke, Amar; Ellabaan, Mostafa; Nielsen, Per Halkjær; Sommer, Morten O. A.

    2015-01-01

    Horizontal gene transfer is a major contributor to the evolution of bacterial genomes and can facilitate the dissemination of antibiotic resistance genes between environmental reservoirs and potential pathogens. Wastewater treatment plants (WWTPs) are believed to play a central role in the dissemination of antibiotic resistance genes. However, the contribution of the dominant members of the WWTP resistome to resistance in human pathogens remains poorly understood. Here we use a combination of metagenomic functional selections and comprehensive metagenomic sequencing to uncover the dominant genes of the WWTP resistome. We find that this core resistome is unique to the WWTP environment, with <10% of the resistance genes found outside the WWTP environment. Our data highlight that, despite an abundance of functional resistance genes within WWTPs, only few genes are found in other environments, suggesting that the overall dissemination of the WWTP resistome is comparable to that of the soil resistome. PMID:26419330

  6. A Quaternary Mechanism Enables the Complex Biological Functions of Octameric Human UDP-glucose Pyrophosphorylase, a Key Enzyme in Cell Metabolism

    PubMed Central

    Führing, Jana Indra; Cramer, Johannes Thomas; Schneider, Julia; Baruch, Petra; Gerardy-Schahn, Rita; Fedorov, Roman

    2015-01-01

    In mammals, UDP-glucose pyrophosphorylase (UGP) is the only enzyme capable of activating glucose-1-phosphate (Glc-1-P) to UDP-glucose (UDP-Glc), a metabolite located at the intersection of virtually all metabolic pathways in the mammalian cell. Despite the essential role of its product, the molecular basis of UGP function is poorly understood. Here we report the crystal structure of human UGP in complex with its product UDP-Glc. Beyond providing first insight into the active site architecture, we describe the substrate binding mode and intermolecular interactions in the octameric enzyme that are crucial to its activity. Importantly, the quaternary mechanism identified for human UGP in this study may be common for oligomeric sugar-activating nucleotidyltransferases. Elucidating such mechanisms is essential for understanding nucleotide sugar metabolism and opens the perspective for the development of drugs that specifically inhibit simpler organized nucleotidyltransferases in pathogens. PMID:25860585

  7. The interplay between immunity and aging in Drosophila.

    PubMed

    Garschall, Kathrin; Flatt, Thomas

    2018-01-01

    Here, we provide a brief review of the mechanistic connections between immunity and aging-a fundamental biological relationship that remains poorly understood-by considering two intertwined questions: how does aging affect immunity, and how does immunity affect aging? On the one hand, aging contributes to the deterioration of immune function and predisposes the organism to infections ("immuno-senescence"). On the other hand, excessive activation of the immune system can accelerate degenerative processes, cause inflammation and immunopathology, and thus promote aging ("inflammaging"). Interestingly, several recent lines of evidence support the hypothesis that restrained or curbed immune activity at old age (that is, optimized age-dependent immune homeostasis) might actually improve realized immune function and thereby promote longevity. We focus mainly on insights from Drosophila , a powerful genetic model system in which both immunity and aging have been extensively studied, and conclude by outlining several unresolved questions in the field.

  8. Gating Topology of the Proton-Coupled Oligopeptide Symporters

    PubMed Central

    Fowler, Philip W.; Orwick-Rydmark, Marcella; Radestock, Sebastian; Solcan, Nicolae; Dijkman, Patricia M.; Lyons, Joseph A.; Kwok, Jane; Caffrey, Martin; Watts, Anthony; Forrest, Lucy R.; Newstead, Simon

    2015-01-01

    Summary Proton-coupled oligopeptide transporters belong to the major facilitator superfamily (MFS) of membrane transporters. Recent crystal structures suggest the MFS fold facilitates transport through rearrangement of their two six-helix bundles around a central ligand binding site; how this is achieved, however, is poorly understood. Using modeling, molecular dynamics, crystallography, functional assays, and site-directed spin labeling combined with double electron-electron resonance (DEER) spectroscopy, we present a detailed study of the transport dynamics of two bacterial oligopeptide transporters, PepTSo and PepTSt. Our results identify several salt bridges that stabilize outward-facing conformations and we show that, for all the current structures of MFS transporters, the first two helices of each of the four inverted-topology repeat units form half of either the periplasmic or cytoplasmic gate and that these function cooperatively in a scissor-like motion to control access to the peptide binding site during transport. PMID:25651061

  9. An inexpensive and portable drill rig for bedrock groundwater studies in headwater catchments

    Treesearch

    C. Gabrielli; J.J. McDonnell

    2011-01-01

    Bedrock groundwater dynamics in headwater catchments are poorly understood and poorly characterized. Here, we present an inexpensive and portable bedrock drilling system designed for use in remote locations. Our system is capable of drilling bedrock wells up to 11 m deep and 38 mm in diameter in a wide range of bedrock types. The drill consists of a lawn mower engine...

  10. Researchers Realize Major Breakthrough in Understanding Endometriosis

    MedlinePlus

    ... a rarely studied and poorly understood disease that affects many, many women.” Health Terms: Women's Health RELATED LINKS RSS LISTSERV YOUTUBE FACEBOOK TWITTER GOOGLE+ NIH...T URNING D ISCOVERY I ...

  11. Sleep-wake disturbances in sporadic Creutzfeldt-Jakob disease.

    PubMed

    Landolt, H-P; Glatzel, M; Blättler, T; Achermann, P; Roth, C; Mathis, J; Weis, J; Tobler, I; Aguzzi, A; Bassetti, C L

    2006-05-09

    The prevalence and characteristics of sleep-wake disturbances in sporadic Creutzfeldt-Jakob disease (sCJD) are poorly understood. Seven consecutive patients with definite sCJD underwent a systematic assessment of sleep-wake disturbances, including clinical history, video-polysomnography, and actigraphy. Extent and distribution of neurodegeneration was estimated by brain autopsy in six patients. Western blot analyses enabling classification and quantification of the protease-resistant isoform of the prion protein, PrPSc, in thalamus and occipital cortex was available in four patients. Sleep-wake symptoms were observed in all patients, and were prominent in four of them. All patients had severe sleep EEG abnormalities with loss of sleep spindles, very low sleep efficiency, and virtual absence of REM sleep. The correlation between different methods to assess sleep-wake functions (history, polysomnography, actigraphy, videography) was generally poor. Brain autopsy revealed prominent changes in cortical areas, but only mild changes in the thalamus. No mutation of the PRNP gene was found. This study demonstrates in sporadic Creutzfeldt-Jakob disease, first, the existence of sleep-wake disturbances similar to those reported in fatal familial insomnia in the absence of prominent and isolated thalamic neuronal loss, and second, the need of a multimodal approach for the unambiguous assessment of sleep-wake functions in these patients.

  12. Functional anatomy and feeding biomechanics of a giant Upper Jurassic pliosaur (Reptilia: Sauropterygia) from Weymouth Bay, Dorset, UK.

    PubMed

    Foffa, Davide; Cuff, Andrew R; Sassoon, Judyth; Rayfield, Emily J; Mavrogordato, Mark N; Benton, Michael J

    2014-08-01

    Pliosaurs were among the largest predators in Mesozoic seas, and yet their functional anatomy and feeding biomechanics are poorly understood. A new, well-preserved pliosaur from the Kimmeridgian of Weymouth Bay (UK) revealed cranial adaptations related to feeding. Digital modelling of computed tomography scans allowed reconstruction of missing, distorted regions of the skull and of the adductor musculature, which indicated high bite forces. Size-corrected beam theory modelling showed that the snout was poorly optimised against bending and torsional stresses compared with other aquatic and terrestrial predators, suggesting that pliosaurs did not twist or shake their prey during feeding and that seizing was better performed with post-symphyseal bites. Finite element analysis identified biting-induced stress patterns in both the rostrum and lower jaws, highlighting weak areas in the rostral maxillary-premaxillary contact and the caudal mandibular symphysis. A comparatively weak skull coupled with musculature that was able to produce high forces, is explained as a trade-off between agility, hydrodynamics and strength. In the Kimmeridgian ecosystem, we conclude that Late Jurassic pliosaurs were generalist predators at the top of the food chain, able to prey on reptiles and fishes up to half their own length. © 2014 Anatomical Society.

  13. Functional anatomy and feeding biomechanics of a giant Upper Jurassic pliosaur (Reptilia: Sauropterygia) from Weymouth Bay, Dorset, UK

    PubMed Central

    Foffa, Davide; Cuff, Andrew R; Sassoon, Judyth; Rayfield, Emily J; Mavrogordato, Mark N; Benton, Michael J

    2014-01-01

    Pliosaurs were among the largest predators in Mesozoic seas, and yet their functional anatomy and feeding biomechanics are poorly understood. A new, well-preserved pliosaur from the Kimmeridgian of Weymouth Bay (UK) revealed cranial adaptations related to feeding. Digital modelling of computed tomography scans allowed reconstruction of missing, distorted regions of the skull and of the adductor musculature, which indicated high bite forces. Size-corrected beam theory modelling showed that the snout was poorly optimised against bending and torsional stresses compared with other aquatic and terrestrial predators, suggesting that pliosaurs did not twist or shake their prey during feeding and that seizing was better performed with post-symphyseal bites. Finite element analysis identified biting-induced stress patterns in both the rostrum and lower jaws, highlighting weak areas in the rostral maxillary-premaxillary contact and the caudal mandibular symphysis. A comparatively weak skull coupled with musculature that was able to produce high forces, is explained as a trade-off between agility, hydrodynamics and strength. In the Kimmeridgian ecosystem, we conclude that Late Jurassic pliosaurs were generalist predators at the top of the food chain, able to prey on reptiles and fishes up to half their own length. PMID:24925465

  14. Mitochondrial dysfunction as a central actor in intellectual disability-related diseases: an overview of Down syndrome, autism, Fragile X and Rett syndrome.

    PubMed

    Valenti, Daniela; de Bari, Lidia; De Filippis, Bianca; Henrion-Caude, Alexandra; Vacca, Rosa Anna

    2014-10-01

    Clinical manifestations typical of mitochondrial diseases are often present in various genetic syndromes associated with intellectual disability, a condition leading to deficit in cognitive functions and adaptive behaviors. Until now, the causative mechanism leading to intellectual disability is unknown and the progression of the condition is poorly understood. We first report latest advances on genetic and environmental regulation of mitochondrial function and its role in brain development. Starting from the structure, function and regulation of the oxidative phosphorylation apparatus, we review how mitochondrial biogenesis and dynamics play a central role in neurogenesis and neuroplasticity. We then discuss how dysfunctional mitochondria and alterations in reactive oxygen species homeostasis are potentially involved in the pathogenesis of various neurodevelopmental syndromes with a special focus on Down, Rett, Fragile X syndromes and autism spectrum disorders. Finally, we review and suggest novel therapeutic approaches aimed at improving intellectual disability by activating mitochondrial function and reducing oxidative stress to amiliorate the quality of life in the subjects affected. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Functional neuroanatomy of human voluntary cough and sniff production

    PubMed Central

    Simonyan, Kristina; Saad, Ziad S.; Loucks, Torrey M.J.; Poletto, Christopher J.; Ludlow, Christy L.

    2007-01-01

    Cough and sniff are both spontaneous respiratory behaviors that can be initiated voluntarily in humans. Disturbances of cough may be life threatening, while inability to sniff impairs the sense of smell in neurological patients. Cortical mechanisms of voluntary cough and sniff production have been predicted to exist; however, the localization and function of supramedullary areas responsible for these behaviors are poorly understood. We used functional magnetic resonance imaging to identify the central control of voluntary cough and sniff compared with breathing. We determined that both voluntary cough and sniff require a widespread pattern of sensorimotor activation along the Sylvian fissure convergent with voluntary breathing. Task-specific activation occurred in a ponto-mesencephalic region during voluntary coughing and in the hippocampus and piriform cortex during voluntary sniffing. Identification of the localization of cortical activation for cough control in humans may help potential drug development to target these regions in patients with chronic cough. Understanding the sensorimotor sniff control mechanisms may provide a new view on the cerebral functional reorganization of olfactory control in patients with neurological disorders. PMID:17574873

  16. Conformational entropic maps of functional coupling domains in GPCR activation: A case study with beta2 adrenergic receptor

    NASA Astrophysics Data System (ADS)

    Liu, Fan; Abrol, Ravinder; Goddard, William, III; Dougherty, Dennis

    2014-03-01

    Entropic effect in GPCR activation is poorly understood. Based on the recent solved structures, researchers in the GPCR structural biology field have proposed several ``local activating switches'' that consisted of a few number of conserved residues, but have long ignored the collective dynamical effect (conformational entropy) of a domain comprised of an ensemble of residues. A new paradigm has been proposed recently that a GPCR can be viewed as a composition of several functional coupling domains, each of which undergoes order-to-disorder or disorder-to-order transitions upon activation. Here we identified and studied these functional coupling domains by comparing the local entropy changes of each residue between the inactive and active states of the β2 adrenergic receptor from computational simulation. We found that agonist and G-protein binding increases the heterogeneity of the entropy distribution in the receptor. This new activation paradigm and computational entropy analysis scheme provides novel ways to design functionally modified mutant and identify new allosteric sites for GPCRs. The authors thank NIH and Sanofi for funding this project.

  17. Histone H1 is essential for mitotic chromosome architecture and segregation in Xenopus laevis egg extracts

    PubMed Central

    Maresca, Thomas J.; Freedman, Benjamin S.; Heald, Rebecca

    2005-01-01

    During cell division, condensation and resolution of chromosome arms and the assembly of a functional kinetochore at the centromere of each sister chromatid are essential steps for accurate segregation of the genome by the mitotic spindle, yet the contribution of individual chromatin proteins to these processes is poorly understood. We have investigated the role of embryonic linker histone H1 during mitosis in Xenopus laevis egg extracts. Immunodepletion of histone H1 caused the assembly of aberrant elongated chromosomes that extended off the metaphase plate and outside the perimeter of the spindle. Although functional kinetochores assembled, aligned, and exhibited poleward movement, long and tangled chromosome arms could not be segregated in anaphase. Histone H1 depletion did not significantly affect the recruitment of known structural or functional chromosomal components such as condensins or chromokinesins, suggesting that the loss of H1 affects chromosome architecture directly. Thus, our results indicate that linker histone H1 plays an important role in the structure and function of vertebrate chromosomes in mitosis. PMID:15967810

  18. Brain correlates of hypnotic paralysis-a resting-state fMRI study.

    PubMed

    Pyka, M; Burgmer, M; Lenzen, T; Pioch, R; Dannlowski, U; Pfleiderer, B; Ewert, A W; Heuft, G; Arolt, V; Konrad, C

    2011-06-15

    Hypnotic paralysis has been used since the times of Charcot to study altered states of consciousness; however, the underlying neurobiological correlates are poorly understood. We investigated human brain function during hypnotic paralysis using resting-state functional magnetic resonance imaging (fMRI), focussing on two core regions of the default mode network and the representation of the paralysed hand in the primary motor cortex. Hypnotic suggestion induced an observable left-hand paralysis in 19 participants. Resting-state fMRI at 3T was performed in pseudo-randomised order awake and in the hypnotic condition. Functional connectivity analyses revealed increased connectivity of the precuneus with the right dorsolateral prefrontal cortex, angular gyrus, and a dorsal part of the precuneus. Functional connectivity of the medial frontal cortex and the primary motor cortex remained unchanged. Our results reveal that the precuneus plays a pivotal role during maintenance of an altered state of consciousness. The increased coupling of selective cortical areas with the precuneus supports the concept that hypnotic paralysis may be mediated by a modified representation of the self which impacts motor abilities. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Genetic analysis of Ikaros target genes and tumor suppressor function in BCR-ABL1+ pre–B ALL

    PubMed Central

    Aghajanirefah, Ali; McLaughlin, Jami; Cheng, Donghui; Geng, Huimin; Eggesbø, Linn M.; Smale, Stephen T.; Müschen, Markus

    2017-01-01

    Inactivation of the tumor suppressor gene encoding the transcriptional regulator Ikaros (IKZF1) is a hallmark of BCR-ABL1+ precursor B cell acute lymphoblastic leukemia (pre–B ALL). However, the mechanisms by which Ikaros functions as a tumor suppressor in pre–B ALL remain poorly understood. Here, we analyzed a mouse model of BCR-ABL1+ pre–B ALL together with a new model of inducible expression of wild-type Ikaros in IKZF1 mutant human BCR-ABL1+ pre–B ALL. We performed integrated genome-wide chromatin and expression analyses and identified Ikaros target genes in mouse and human BCR-ABL1+ pre–B ALL, revealing novel conserved gene pathways associated with Ikaros tumor suppressor function. Notably, genetic depletion of different Ikaros targets, including CTNND1 and the early hematopoietic cell surface marker CD34, resulted in reduced leukemic growth. Our results suggest that Ikaros mediates tumor suppressor function by enforcing proper developmental stage–specific expression of multiple genes through chromatin compaction at its target genes. PMID:28190001

  20. Changes in the location of biodiversity-ecosystem function hot spots across the seafloor landscape with increasing sediment nutrient loading.

    PubMed

    Thrush, Simon F; Hewitt, Judi E; Kraan, Casper; Lohrer, A M; Pilditch, Conrad A; Douglas, Emily

    2017-04-12

    Declining biodiversity and loss of ecosystem function threatens the ability of habitats to contribute ecosystem services. However, the form of the relationship between biodiversity and ecosystem function (BEF) and how relationships change with environmental change is poorly understood. This limits our ability to predict the consequences of biodiversity loss on ecosystem function, particularly in real-world marine ecosystems that are species rich, and where multiple ecosystem functions are represented by multiple indicators. We investigated spatial variation in BEF relationships across a 300 000 m 2 intertidal sandflat by nesting experimental manipulations of sediment pore water nitrogen concentration into sites with contrasting macrobenthic community composition. Our results highlight the significance of many different elements of biodiversity associated with environmental characteristics, community structure, functional diversity, ecological traits or particular species (ecosystem engineers) to important functions of coastal marine sediments (benthic oxygen consumption, ammonium pore water concentrations and flux across the sediment-water interface). Using the BEF relationships developed from our experiment, we demonstrate patchiness across a landscape in functional performance and the potential for changes in the location of functional hot and cold spots with increasing nutrient loading that have important implications for mapping and predicating change in functionality and the concomitant delivery of ecosystem services. © 2017 The Author(s).

  1. A rho-binding protein kinase C-like activity is required for the function of protein kinase N in Drosophila development.

    PubMed

    Betson, Martha; Settleman, Jeffrey

    2007-08-01

    The Rho GTPases interact with multiple downstream effectors to exert their biological functions, which include important roles in tissue morphogenesis during the development of multicellular organisms. Among the Rho effectors are the protein kinase N (PKN) proteins, which are protein kinase C (PKC)-like kinases that bind activated Rho GTPases. The PKN proteins are well conserved evolutionarily, but their biological role in any organism is poorly understood. We previously determined that the single Drosophila ortholog of mammalian PKN proteins, Pkn, is a Rho/Rac-binding kinase essential for Drosophila development. By performing "rescue" studies with various Pkn mutant constructs, we have defined the domains of Pkn required for its role during Drosophila development. These studies suggested that Rho, but not Rac binding is important for Pkn function in development. In addition, we determined that the kinase domain of PKC53E, a PKC family kinase, can functionally substitute for the kinase domain of Pkn during development, thereby exemplifying the evolutionary strategy of "combining" functional domains to produce proteins with distinct biological activities. Interestingly, we also identified a requirement for Pkn in wing morphogenesis, thereby revealing the first postembryonic function for Pkn.

  2. Decreased Cerebellar-Orbitofrontal Connectivity Correlates with Stuttering Severity: Whole-Brain Functional and Structural Connectivity Associations with Persistent Developmental Stuttering.

    PubMed

    Sitek, Kevin R; Cai, Shanqing; Beal, Deryk S; Perkell, Joseph S; Guenther, Frank H; Ghosh, Satrajit S

    2016-01-01

    Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had stronger functional connectivity between cerebellum and thalamus than people with fluent speech, while stutterers with the least severe symptoms had greater functional connectivity between left cerebellum and left orbitofrontal cortex (OFC). Additionally, people who stutter had decreased functional and white matter connectivity among the perisylvian auditory, motor, and speech planning regions compared to typical speakers, but greater functional connectivity between the right basal ganglia and bilateral temporal auditory regions. Structurally, disfluency ratings were negatively correlated with white matter connections to left perisylvian regions and to the brain stem. Overall, we found increased connectivity among subcortical and reward network structures in people who stutter compared to controls. These connections were negatively correlated with stuttering severity, suggesting the involvement of cerebellum and OFC may underlie successful compensatory mechanisms by more fluent stutterers.

  3. Rare species contribute disproportionately to the functional structure of species assemblages.

    PubMed

    Leitão, Rafael P; Zuanon, Jansen; Villéger, Sébastien; Williams, Stephen E; Baraloto, Christopher; Fortunel, Claire; Mendonça, Fernando P; Mouillot, David

    2016-04-13

    There is broad consensus that the diversity of functional traits within species assemblages drives several ecological processes. It is also widely recognized that rare species are the first to become extinct following human-induced disturbances. Surprisingly, however, the functional importance of rare species is still poorly understood, particularly in tropical species-rich assemblages where the majority of species are rare, and the rate of species extinction can be high. Here, we investigated the consequences of local and regional extinctions on the functional structure of species assemblages. We used three extensive datasets (stream fish from the Brazilian Amazon, rainforest trees from French Guiana, and birds from the Australian Wet Tropics) and built an integrative measure of species rarity versus commonness, combining local abundance, geographical range, and habitat breadth. Using different scenarios of species loss, we found a disproportionate impact of rare species extinction for the three groups, with significant reductions in levels of functional richness, specialization, and originality of assemblages, which may severely undermine the integrity of ecological processes. The whole breadth of functional abilities within species assemblages, which is disproportionately supported by rare species, is certainly critical in maintaining ecosystems particularly under the ongoing rapid environmental transitions. © 2016 The Author(s).

  4. Regulation of mitochondrial function and cellular energy metabolism by protein kinase C-λ/ι: a novel mode of balancing pluripotency.

    PubMed

    Mahato, Biraj; Home, Pratik; Rajendran, Ganeshkumar; Paul, Arindam; Saha, Biswarup; Ganguly, Avishek; Ray, Soma; Roy, Nairita; Swerdlow, Russell H; Paul, Soumen

    2014-11-01

    Pluripotent stem cells (PSCs) contain functionally immature mitochondria and rely upon high rates of glycolysis for their energy requirements. Thus, altered mitochondrial function and promotion of aerobic glycolysis are key to maintain and induce pluripotency. However, signaling mechanisms that regulate mitochondrial function and reprogram metabolic preferences in self-renewing versus differentiated PSC populations are poorly understood. Here, using murine embryonic stem cells (ESCs) as a model system, we demonstrate that atypical protein kinase C isoform, PKC lambda/iota (PKCλ/ι), is a key regulator of mitochondrial function in ESCs. Depletion of PKCλ/ι in ESCs maintains their pluripotent state as evident from germline offsprings. Interestingly, loss of PKCλ/ι in ESCs leads to impairment in mitochondrial maturation, organization, and a metabolic shift toward glycolysis under differentiating condition. Our mechanistic analyses indicate that a PKCλ/ι-hypoxia-inducible factor 1α-PGC1α axis regulates mitochondrial respiration and balances pluripotency in ESCs. We propose that PKCλ/ι could be a crucial regulator of mitochondrial function and energy metabolism in stem cells and other cellular contexts. © 2014 AlphaMed Press.

  5. Rare species contribute disproportionately to the functional structure of species assemblages

    PubMed Central

    Zuanon, Jansen; Williams, Stephen E.; Baraloto, Christopher; Mendonça, Fernando P.

    2016-01-01

    There is broad consensus that the diversity of functional traits within species assemblages drives several ecological processes. It is also widely recognized that rare species are the first to become extinct following human-induced disturbances. Surprisingly, however, the functional importance of rare species is still poorly understood, particularly in tropical species-rich assemblages where the majority of species are rare, and the rate of species extinction can be high. Here, we investigated the consequences of local and regional extinctions on the functional structure of species assemblages. We used three extensive datasets (stream fish from the Brazilian Amazon, rainforest trees from French Guiana, and birds from the Australian Wet Tropics) and built an integrative measure of species rarity versus commonness, combining local abundance, geographical range, and habitat breadth. Using different scenarios of species loss, we found a disproportionate impact of rare species extinction for the three groups, with significant reductions in levels of functional richness, specialization, and originality of assemblages, which may severely undermine the integrity of ecological processes. The whole breadth of functional abilities within species assemblages, which is disproportionately supported by rare species, is certainly critical in maintaining ecosystems particularly under the ongoing rapid environmental transitions. PMID:27053754

  6. Lags in the response of mountain plant communities to climate change.

    PubMed

    Alexander, Jake M; Chalmandrier, Loïc; Lenoir, Jonathan; Burgess, Treena I; Essl, Franz; Haider, Sylvia; Kueffer, Christoph; McDougall, Keith; Milbau, Ann; Nuñez, Martin A; Pauchard, Aníbal; Rabitsch, Wolfgang; Rew, Lisa J; Sanders, Nathan J; Pellissier, Loïc

    2018-02-01

    Rapid climatic changes and increasing human influence at high elevations around the world will have profound impacts on mountain biodiversity. However, forecasts from statistical models (e.g. species distribution models) rarely consider that plant community changes could substantially lag behind climatic changes, hindering our ability to make temporally realistic projections for the coming century. Indeed, the magnitudes of lags, and the relative importance of the different factors giving rise to them, remain poorly understood. We review evidence for three types of lag: "dispersal lags" affecting plant species' spread along elevational gradients, "establishment lags" following their arrival in recipient communities, and "extinction lags" of resident species. Variation in lags is explained by variation among species in physiological and demographic responses, by effects of altered biotic interactions, and by aspects of the physical environment. Of these, altered biotic interactions could contribute substantially to establishment and extinction lags, yet impacts of biotic interactions on range dynamics are poorly understood. We develop a mechanistic community model to illustrate how species turnover in future communities might lag behind simple expectations based on species' range shifts with unlimited dispersal. The model shows a combined contribution of altered biotic interactions and dispersal lags to plant community turnover along an elevational gradient following climate warming. Our review and simulation support the view that accounting for disequilibrium range dynamics will be essential for realistic forecasts of patterns of biodiversity under climate change, with implications for the conservation of mountain species and the ecosystem functions they provide. © 2017 John Wiley & Sons Ltd.

  7. 76 FR 61379 - Final Recovery Plan, Bexar County Karst Invertebrates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... 200, Austin, TX (512-490-0057 ext. 223). FOR FURTHER INFORMATION CONTACT: Adam Zerrenner, at the above... poorly understood, recovery is also dependant on incorporating research findings into adaptive management...

  8. Fine-scale landscape genetics of the American badger (Taxidea taxus): disentangling landscape effects and sampling artifacts in a poorly understood species

    PubMed Central

    Kierepka, E M; Latch, E K

    2016-01-01

    Landscape genetics is a powerful tool for conservation because it identifies landscape features that are important for maintaining genetic connectivity between populations within heterogeneous landscapes. However, using landscape genetics in poorly understood species presents a number of challenges, namely, limited life history information for the focal population and spatially biased sampling. Both obstacles can reduce power in statistics, particularly in individual-based studies. In this study, we genotyped 233 American badgers in Wisconsin at 12 microsatellite loci to identify alternative statistical approaches that can be applied to poorly understood species in an individual-based framework. Badgers are protected in Wisconsin owing to an overall lack in life history information, so our study utilized partial redundancy analysis (RDA) and spatially lagged regressions to quantify how three landscape factors (Wisconsin River, Ecoregions and land cover) impacted gene flow. We also performed simulations to quantify errors created by spatially biased sampling. Statistical analyses first found that geographic distance was an important influence on gene flow, mainly driven by fine-scale positive spatial autocorrelations. After controlling for geographic distance, both RDA and regressions found that Wisconsin River and Agriculture were correlated with genetic differentiation. However, only Agriculture had an acceptable type I error rate (3–5%) to be considered biologically relevant. Collectively, this study highlights the benefits of combining robust statistics and error assessment via simulations and provides a method for hypothesis testing in individual-based landscape genetics. PMID:26243136

  9. DISCOIDIN DOMAIN RECEPTOR TYROSINE KINASES: NEW PLAYERS IN CANCER PROGRESSION

    PubMed Central

    Valiathan, Rajeshwari R.; Marco, Marta; Leitinger, Birgit; Kleer, Celina G.; Fridman, Rafael

    2012-01-01

    Almost all human cancers display dysregulated expression and/or function of one or more receptor tyrosine kinases (RTKs). The strong causative association between altered RTK function and cancer progression has translated into novel therapeutic strategies that target these cell surface receptors in the treatment of cancer. Yet, the full spectrum of RTKs that may alter the oncogenic process is not completely understood. Accumulating evidence suggests that a unique set of RTKs known as the Discoidin Domain Receptors (DDRs) play a role in cancer progression by regulating the interactions of tumor cells with their surrounding collagen matrix. The DDRs are the only RTKs that specifically bind to, and are activated by collagen. Hence, the DDRs are part of the signaling networks that translate information from the extracellular matrix thereby acting as key regulators of cell-matrix interactions. Under physiological conditions, DDRs control cell and tissue homeostasis by acting as collagen sensors, transducing signals that regulate cell polarity, tissue morphogenesis, and cell differentiation. In cancer, DDRs are hijacked by tumor cells to disrupt normal cell-matrix communication and initiate pro-migratory and pro-invasive programs. Importantly, several cancer types exhibit DDR mutations, which are thought to alter receptor function and contribute to cancer progression. Other evidence suggests that the actions of DDRs in cancer are complex, either promoting or suppressing tumor cell behavior in a DDR type/isoform specific and context dependent manner. Thus, there is still a considerable gap in our knowledge of DDR actions in cancer tissues. This review summarizes the current knowledge on DDR expression and function in cancer and discusses the potential implications of DDRs in cancer biology. It is hoped that this effort will encourage more research into these poorly understood but unique RTKs, which have the potential of becoming novel therapeutics targets in cancer. PMID:22366781

  10. Cognition and bimanual performance in children with unilateral cerebral palsy: protocol for a multicentre, cross-sectional study.

    PubMed

    Hoare, Brian; Ditchfield, Michael; Thorley, Megan; Wallen, Margaret; Bracken, Jenny; Harvey, Adrienne; Elliott, Catherine; Novak, Iona; Crichton, Ali

    2018-05-08

    Motor outcomes of children with unilateral cerebral palsy are clearly documented and well understood, yet few studies describe the cognitive functioning in this population, and the associations between the two is poorly understood. Using two hands together in daily life involves complex motor and cognitive processes. Impairment in either domain may contribute to difficulties with bimanual performance. Research is yet to derive whether, and how, cognition affects a child's ability to use their two hands to perform bimanual tasks. This study will use a prospective, cross-sectional multi-centre observational design. Children (aged 6-12 years) with unilateral cerebral palsy will be recruited from one of five Australian treatment centres. We will examine associations between cognition, bimanual performance and brain neuropathology (lesion type and severity) in a sample of 131 children. The primary outcomes are: Motor - the Assisting Hand Assessment; Cognitive - Executive Function; and Brain - lesion location on structural MRI. Secondary data collected will include: Motor - Box and Blocks, ABILHAND- Kids, Sword Test; Cognitive - standard neuropsychological measures of intelligence. We will use generalized linear modelling and structural equation modelling techniques to investigate relationships between bimanual performance, executive function and brain lesion location. This large multi-centre study will examine how cognition affects bimanual performance in children with unilateral cerebral palsy. First, it is anticipated that distinct relationships between bimanual performance and cognition (executive function) will be identified. Second, it is anticipated that interrelationships between bimanual performance and cognition will be associated with common underlying neuropathology. Findings have the potential to improve the specificity of existing upper limb interventions by providing more targeted treatments and influence the development of novel methods to improve both cognitive and motor outcomes in children with unilateral cerebral palsy. ACTRN12614000631606 ; Date of retrospective registration 29/05/2014.

  11. Convergence in Multispecies Interactions.

    PubMed

    Bittleston, Leonora S; Pierce, Naomi E; Ellison, Aaron M; Pringle, Anne

    2016-04-01

    The concepts of convergent evolution and community convergence highlight how selective pressures can shape unrelated organisms or communities in similar ways. We propose a related concept, convergent interactions, to describe the independent evolution of multispecies interactions with similar physiological or ecological functions. A focus on convergent interactions clarifies how natural selection repeatedly favors particular kinds of associations among species. Characterizing convergent interactions in a comparative context is likely to facilitate prediction of the ecological roles of organisms (including microbes) in multispecies interactions and selective pressures acting in poorly understood or newly discovered multispecies systems. We illustrate the concept of convergent interactions with examples: vertebrates and their gut bacteria; ectomycorrhizae; insect-fungal-bacterial interactions; pitcher-plant food webs; and ants and ant-plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Long non-coding RNAs in cancer metabolism.

    PubMed

    Xiao, Zhen-Dong; Zhuang, Li; Gan, Boyi

    2016-10-01

    Altered cellular metabolism is an emerging hallmark of cancer. Accumulating recent evidence links long non-coding RNAs (lncRNAs), a still poorly understood class of non-coding RNAs, to cancer metabolism. Here we review the emerging findings on the functions of lncRNAs in cancer metabolism, with particular emphasis on how lncRNAs regulate glucose and glutamine metabolism in cancer cells, discuss how lncRNAs regulate various aspects of cancer metabolism through their cross-talk with other macromolecules, explore the mechanistic conceptual framework of lncRNAs in reprogramming metabolism in cancers, and highlight the challenges in this field. A more in-depth understanding of lncRNAs in cancer metabolism may enable the development of novel and effective therapeutic strategies targeting cancer metabolism. © 2016 WILEY Periodicals, Inc.

  13. The Arabidopsis EIN2 restricts organ growth by retarding cell expansion

    PubMed Central

    Feng, Guanping; Liu, Gang; Xiao, Jianhua

    2015-01-01

    The growth of plant organ to its characteristic size is a fundamental developmental process, but the mechanism is still poorly understood. Plant hormones play a great role in organ size control by modulating cell division and/or cell expansion. ETHYLENE INSENSITVE 2 (EIN2) was first identified by a genetic screen for ethylene insensitivity and is regarded as a central component of ethylene signaling, but its role in cell growth has not been reported. Here we demonstrate that changed expression of EIN2 led to abnormity of cell expansion by morphological and cytological analyses of EIN2 loss-of-function mutants and the overexpressing transgenic plant. Our findings suggest that EIN2 controls final organ size by restricting cell expansion. PMID:26039475

  14. Molecular Mechanisms of Cutaneous Inflammatory Disorder: Atopic Dermatitis

    PubMed Central

    Kim, Jung Eun; Kim, Jong Sic; Cho, Dae Ho; Park, Hyun Jeong

    2016-01-01

    Atopic dermatitis (AD) is a multifactorial inflammatory skin disease resulting from interactions between genetic susceptibility and environmental factors. The pathogenesis of AD is poorly understood, and the treatment of recalcitrant AD is still challenging. There is accumulating evidence for new gene polymorphisms related to the epidermal barrier function and innate and adaptive immunity in patients with AD. Newly-found T cells and dendritic cell subsets, cytokines, chemokines and signaling pathways have extended our understanding of the molecular pathomechanism underlying AD. Genetic changes caused by environmental factors have been shown to contribute to the pathogenesis of AD. We herein present a review of the genetics, epigenetics, barrier dysfunction and immunological abnormalities in AD with a focus on updated molecular biology. PMID:27483258

  15. Joint Stability in Total Knee Arthroplasty: What Is the Target for a Stable Knee?

    PubMed

    Wright, Timothy M

    2017-02-01

    Instability remains a common cause of failure in total knee arthroplasty. Although approaches for surgical treatment of instability exist, the target for initial stability remains elusive, increasing the likelihood that failures will persist because adequate stability is not restored when performing the primary arthroplasty. Although the mechanisms that stabilize the knee joint-contact between the articular surfaces, ligamentous constraints, and muscle forces-are well-defined, their relative importance and the interplay among them throughout functions of daily living are poorly understood. The problem is exacerbated by the complex multiplanar motions that occur across the joint and the large variations in these motions across the population, suggesting that stability targets may need to be patient-specific.

  16. Bergmann glia modulate cerebellar Purkinje cell bistability via Ca2+-dependent K+ uptake

    PubMed Central

    Wang, Fushun; Xu, Qiwu; Wang, Weishan; Takano, Takahiro; Nedergaard, Maiken

    2012-01-01

    Recent studies have shown that cerebellar Bergmann glia display coordinated Ca2+ transients in live mice. However, the functional significance of Bergmann glial Ca2+ signaling remains poorly understood. Using transgenic mice that allow selective stimulation of glial cells, we report here that cytosolic Ca2+ regulates uptake of K+ by Bergmann glia, thus providing a powerful mechanism for control of Purkinje cell-membrane potential. The decline in extracellular K+ evoked by agonist-induced Ca2+ in Bergmann glia transiently increased spike activity of Purkinje cells in cerebellar slices as well as in live anesthetized mice. Thus, Bergmann glia play a previously unappreciated role in controlling the membrane potential and thereby the activity of adjacent Purkinje cells. PMID:22547829

  17. Exploring the Chemistry and Biology of Vanadium-dependent Haloperoxidases*

    PubMed Central

    Winter, Jaclyn M.; Moore, Bradley S.

    2009-01-01

    Nature has developed an exquisite array of methods to introduce halogen atoms into organic compounds. Most of these enzymes are oxidative and require either hydrogen peroxide or molecular oxygen as a cosubstrate to generate a reactive halogen atom for catalysis. Vanadium-dependent haloperoxidases contain a vanadate prosthetic group and utilize hydrogen peroxide to oxidize a halide ion into a reactive electrophilic intermediate. These metalloenzymes have a large distribution in nature, where they are present in macroalgae, fungi, and bacteria, but have been exclusively characterized in eukaryotes. In this minireview, we highlight the chemistry and biology of vanadium-dependent haloperoxidases from fungi and marine algae and the emergence of new bacterial members that extend the biological function of these poorly understood halogenating enzymes. PMID:19363038

  18. Multiple genes contribute to anhydrobiosis (tolerance to extreme desiccation) in the nematode Panagrolaimus superbus

    PubMed Central

    Evangelista, Cláudia Carolina Silva; Guidelli, Giovanna Vieira; Borges, Gustavo; Araujo, Thais Fenz; de Souza, Tiago Alves Jorge; Neves, Ubiraci Pereira da Costa; Tunnacliffe, Alan; Pereira, Tiago Campos

    2017-01-01

    Abstract The molecular basis of anhydrobiosis, the state of suspended animation entered by some species during extreme desiccation, is still poorly understood despite a number of transcriptome and proteome studies. We therefore conducted functional screening by RNA interference (RNAi) for genes involved in anhydrobiosis in the holo-anhydrobiotic nematode Panagrolaimus superbus. A new method of survival analysis, based on staining, and proof-of-principle RNAi experiments confirmed a role for genes involved in oxidative stress tolerance, while a novel medium-scale RNAi workflow identified a further 40 anhydrobiosis-associated genes, including several involved in proteostasis, DNA repair and signal transduction pathways. This suggests that multiple genes contribute to anhydrobiosis in P. superbus. PMID:29111563

  19. GABAergic anxiolytic drug in water increases migration behaviour in salmon

    NASA Astrophysics Data System (ADS)

    Hellström, Gustav; Klaminder, Jonatan; Finn, Fia; Persson, Lo; Alanärä, Anders; Jonsson, Micael; Fick, Jerker; Brodin, Tomas

    2016-12-01

    Migration is an important life-history event in a wide range of taxa, yet many migrations are influenced by anthropogenic change. Although migration dynamics are extensively studied, the potential effects of environmental contaminants on migratory physiology are poorly understood. In this study we show that an anxiolytic drug in water can promote downward migratory behaviour of Atlantic salmon (Salmo salar) in both laboratory setting and in a natural river tributary. Exposing salmon smolt to a dilute concentration of a GABAA receptor agonist (oxazepam) increased migration intensity compared with untreated smolt. These results implicate that salmon migration may be affected by human-induced changes in water chemical properties, such as acidification and pharmaceutical residues in wastewater effluent, via alterations in the GABAA receptor function.

  20. Arabidopsis non-host resistance to powdery mildews.

    PubMed

    Lipka, Ulrike; Fuchs, Rene; Lipka, Volker

    2008-08-01

    Immunity of an entire plant species against all genetic variants of a particular parasite is referred to as non-host resistance. Although non-host resistance represents the most common and durable form of plant resistance in nature, it has thus far been poorly understood at the molecular level. Recently, novel model systems have established the first mechanistic insights. The genetic dissection of Arabidopsis non-host resistance to non-adapted biotrophic powdery mildew fungi provided evidence for functionally redundant but operationally distinct pre- and post-invasion immune responses. Conceptually, these complex and successive defence mechanisms explain the durable and robust nature of non-host resistance. Pathogen lifestyle and infection biology, ecological parameters and the evolutionary relationship of the interaction partners determine differences and commonalities in other model systems.

  1. Science to Practice: Killing Dormant Cells-Is Targeting Autophagy the Key to Complete Tumor Response in Transarterial Chemoembolization?

    PubMed

    Savic, Lynn Jeanette; Chapiro, Julius; Geschwind, Jean-François

    2017-06-01

    In this issue of Radiology, Gade et al ( 1 ) describe a unique mechanism of hepatocellular carcinoma (HCC) cells for surviving ischemia induced by transarterial embolization (TAE)/transarterial chemoembolization (TACE) in a state of cell cycle arrest-a function that may serve as a defensive shield against conventional chemotherapeutic agents. This finding adds to our knowledge and establishes a previously poorly understood mechanism of chemoresistance in HCC. As the Achilles heel in terms of this process, a concurrent upregulation of autophagic flux as an adaptive response to TAE-like ischemia was found by the authors. This is a targetable mechanism that can potentially be exploited for combined therapeutic approaches of embolotherapy and autophagy inhibition in HCC.

  2. Biotechnological applications of transglutaminases.

    PubMed

    Rachel, Natalie M; Pelletier, Joelle N

    2013-10-22

    In nature, transglutaminases catalyze the formation of amide bonds between proteins to form insoluble protein aggregates. This specific function has long been exploited in the food and textile industries as a protein cross-linking agent to alter the texture of meat, wool, and leather. In recent years, biotechnological applications of transglutaminases have come to light in areas ranging from material sciences to medicine. There has also been a substantial effort to further investigate the fundamentals of transglutaminases, as many of their characteristics that remain poorly understood. Those studies also work towards the goal of developing transglutaminases as more efficient catalysts. Progress in this area includes structural information and novel chemical and biological assays. Here, we review recent achievements in this area in order to illustrate the versatility of transglutaminases.

  3. The public's belief about biology.

    PubMed

    Wolpert, L

    2007-02-01

    This short review is concerned with a topic that has been neglected and is still very poorly understood: what the general public think and believe about biology (including health and medicine, and bioethics), and, in particular, about biotechnology.

  4. Physiology of breathlessness associated with pleural effusions

    PubMed Central

    Thomas, Rajesh; Jenkins, Susan; Eastwood, Peter R.; Lee, Y.C. Gary; Singh, Bhajan

    2015-01-01

    Purpose of review Pleural effusions have a major impact on the cardiorespiratory system. This article reviews the pathophysiological effects of pleural effusions and pleural drainage, their relationship with breathlessness, and highlights key knowledge gaps. Recent findings The basis for breathlessness in pleural effusions and relief following thoracentesis is not well understood. Many existing studies on the pathophysiology of breathlessness in pleural effusions are limited by small sample sizes, heterogeneous design and a lack of direct measurements of respiratory muscle function. Gas exchange worsens with pleural effusions and improves after thoracentesis. Improvements in ventilatory capacity and lung volumes following pleural drainage are small, and correlate poorly with the volume of fluid drained and the severity of breathlessness. Rather than lung compression, expansion of the chest wall, including displacement of the diaphragm, appears to be the principle mechanism by which the effusion is accommodated. Deflation of the thoracic cage and restoration of diaphragmatic function after thoracentesis may improve diaphragm effectiveness and efficiency, and this may be an important mechanism by which breathlessness improves. Effusions do not usually lead to major hemodynamic changes, but large effusions may cause cardiac tamponade and ventricular diastolic collapse. Patients with effusions can have impaired exercise capacity and poor sleep quality and efficiency. Summary Pleural effusions are associated with abnormalities in gas exchange, respiratory mechanics, respiratory muscle function and hemodynamics, but the association between these abnormalities and breathlessness remains unclear. Prospective studies should aim to identify the key mechanisms of effusion-related breathlessness and predictors of improvement following pleural drainage. PMID:25978627

  5. Physiology of breathlessness associated with pleural effusions.

    PubMed

    Thomas, Rajesh; Jenkins, Susan; Eastwood, Peter R; Lee, Y C Gary; Singh, Bhajan

    2015-07-01

    Pleural effusions have a major impact on the cardiorespiratory system. This article reviews the pathophysiological effects of pleural effusions and pleural drainage, their relationship with breathlessness, and highlights key knowledge gaps. The basis for breathlessness in pleural effusions and relief following thoracentesis is not well understood. Many existing studies on the pathophysiology of breathlessness in pleural effusions are limited by small sample sizes, heterogeneous design and a lack of direct measurements of respiratory muscle function. Gas exchange worsens with pleural effusions and improves after thoracentesis. Improvements in ventilatory capacity and lung volumes following pleural drainage are small, and correlate poorly with the volume of fluid drained and the severity of breathlessness. Rather than lung compression, expansion of the chest wall, including displacement of the diaphragm, appears to be the principle mechanism by which the effusion is accommodated. Deflation of the thoracic cage and restoration of diaphragmatic function after thoracentesis may improve diaphragm effectiveness and efficiency, and this may be an important mechanism by which breathlessness improves. Effusions do not usually lead to major hemodynamic changes, but large effusions may cause cardiac tamponade and ventricular diastolic collapse. Patients with effusions can have impaired exercise capacity and poor sleep quality and efficiency. Pleural effusions are associated with abnormalities in gas exchange, respiratory mechanics, respiratory muscle function and hemodynamics, but the association between these abnormalities and breathlessness remains unclear. Prospective studies should aim to identify the key mechanisms of effusion-related breathlessness and predictors of improvement following pleural drainage.

  6. Physical Functioning Trends among US Women and Men Age 45-64 by Education Level.

    PubMed

    Zajacova, Anna; Montez, Jennifer Karas

    2017-01-01

    Functional limitations and disability declined in the US during the 1980s and 1990s, but reports of early 21st century trends are mixed. Whether educational inequalities in functioning increased or decreased is also poorly understood. Given the importance of disability for productivity, independent living, and health care costs, these trends are critical to US social and health policies. We examine recent trends in functional limitations and disability among women and men aged 45-64. Using 2000-2015 National Health Interview Surveys data on over 155,000 respondents, semiparametric and logistic regression models visualize and test functioning trends by education. Among women and men with at least a college degree, there was no change in disability and mild increase in limitations over time. All other education levels experienced significant increases in functioning problems ranging from 18% higher odds of functional limitations in 2015 compared to 2000 among men with some college to about 80% increase in the odds of disability among women and men with less than high school education. The similar trends for both genders suggest common underlying causes, possibly including the worsening economic well-being of middle- and working-class families. The pervasive growth of functioning problems is a cause for concern that necessitates further scholarly investigation.

  7. Loneliness and cognitive function in the older adult: a systematic review.

    PubMed

    Boss, Lisa; Kang, Duck-Hee; Branson, Sandy

    2015-04-01

    Loneliness is a significant concern among the elderly, particularly in societies with rapid growth in aging populations. Loneliness may influence cognitive function, but the exact nature of the association between loneliness and cognitive function is poorly understood. The purpose of this systematic review was to synthesize current findings on the association between loneliness and cognitive function in older adults. A comprehensive, electronic review of the literature was performed. Criteria for inclusion were original quantitative or qualitative research, report written in English, human participants with a mean age ≥ 60 years, and published from January 2000 through July 2013. The total number of studies included in this systematic review was ten. Main findings from the ten studies largely indicate that loneliness is significantly and negatively correlated with cognitive function, specifically in domains of global cognitive function or general cognitive ability, intelligence quotient (IQ), processing speed, immediate recall, and delayed recall. However, some initial correlations were not significant after controlling for a wide range of demographic and psychosocial risk factors thought to influence loneliness. Greater loneliness is associated with lower cognitive function. Although preliminary evidence is promising, additional studies are necessary to determine the causality and biological mechanisms underlying the relationship between loneliness and cognitive function. Findings should be verified in culturally diverse populations in different ages and settings using biobehavioral approaches.

  8. Role of selenium-containing proteins in T cell and macrophage function

    PubMed Central

    Carlson, Bradley A.; Yoo, Min-Hyuk; Shrimali, Rajeev K.; Irons, Robert; Gladyshev, Vadim N.; Hatfield, Dolph L.; Park, Jin Mo

    2011-01-01

    Synopsis Selenium has been known for many years to have a role in boosting immune function, but the manner in which this element acts at the molecular level in host defense and inflammatory diseases is poorly understood. To elucidate the role of selenium-containing proteins in immune function, we knocked out the expression of this protein class in T cells or macrophages of mice by targeting the removal of the selenocysteine tRNA gene using loxP-Cre technology. Mice with selenoprotein-less T cells manifested reduced pools of mature and functional T cells in lymphoid tissues and an impairment in T cell-dependent antibody responses. Furthermore, selenoprotein deficiency in T cells led to an inability of these cells to suppress reactive oxygen species (ROS) production, which in turn affected their ability to proliferate in response to T cell receptor stimulation. Selenoprotein-less macrophages, on the other hand, manifested mostly normal inflammatory responses, but this deficiency resulted in an altered regulation in extracellular matrix-related gene expression and a diminished migration of macrophages in a protein gel matrix. These observations provided novel insights into the role of selenoproteins in immune function and tissue homeostasis. PMID:20576203

  9. White matter changes linked to visual recovery after nerve decompression

    PubMed Central

    Paul, David A.; Gaffin-Cahn, Elon; Hintz, Eric B.; Adeclat, Giscard J.; Zhu, Tong; Williams, Zoë R.; Vates, G. Edward; Mahon, Bradford Z.

    2015-01-01

    The relationship between the integrity of white matter tracts and cortical function in the human brain remains poorly understood. Here we use a model of reversible white matter injury, compression of the optic chiasm by tumors of the pituitary gland, to study the structural and functional changes that attend spontaneous recovery of cortical function and visual abilities after surgical tumor removal and subsequent decompression of the nerves. We show that compression of the optic chiasm leads to demyelination of the optic tracts, which reverses as quickly as 4 weeks after nerve decompression. Furthermore, variability across patients in the severity of demyelination in the optic tracts predicts visual ability and functional activity in early cortical visual areas, and pre-operative measurements of myelination in the optic tracts predicts the magnitude of visual recovery after surgery. These data indicate that rapid regeneration of myelin in the human brain is a significant component of the normalization of cortical activity, and ultimately the recovery of sensory and cognitive function, after nerve decompression. More generally, our findings demonstrate the utility of diffusion tensor imaging as an in vivo measure of myelination in the human brain. PMID:25504884

  10. Auditory Resting-State Network Connectivity in Tinnitus: A Functional MRI Study

    PubMed Central

    Maudoux, Audrey; Lefebvre, Philippe; Cabay, Jean-Evrard; Demertzi, Athena; Vanhaudenhuyse, Audrey; Laureys, Steven; Soddu, Andrea

    2012-01-01

    The underlying functional neuroanatomy of tinnitus remains poorly understood. Few studies have focused on functional cerebral connectivity changes in tinnitus patients. The aim of this study was to test if functional MRI “resting-state” connectivity patterns in auditory network differ between tinnitus patients and normal controls. Thirteen chronic tinnitus subjects and fifteen age-matched healthy controls were studied on a 3 tesla MRI. Connectivity was investigated using independent component analysis and an automated component selection approach taking into account the spatial and temporal properties of each component. Connectivity in extra-auditory regions such as brainstem, basal ganglia/NAc, cerebellum, parahippocampal, right prefrontal, parietal, and sensorimotor areas was found to be increased in tinnitus subjects. The right primary auditory cortex, left prefrontal, left fusiform gyrus, and bilateral occipital regions showed a decreased connectivity in tinnitus. These results show that there is a modification of cortical and subcortical functional connectivity in tinnitus encompassing attentional, mnemonic, and emotional networks. Our data corroborate the hypothesized implication of non-auditory regions in tinnitus physiopathology and suggest that various regions of the brain seem involved in the persistent awareness of the phenomenon as well as in the development of the associated distress leading to disabling chronic tinnitus. PMID:22574141

  11. Genomic integration of ERRγ-HNF1β regulates renal bioenergetics and prevents chronic kidney disease.

    PubMed

    Zhao, Juanjuan; Lupino, Katherine; Wilkins, Benjamin J; Qiu, Chengxiang; Liu, Jian; Omura, Yasuhiro; Allred, Amanda L; McDonald, Caitlin; Susztak, Katalin; Barish, Grant D; Pei, Liming

    2018-05-22

    Mitochondrial dysfunction is increasingly recognized as a critical determinant of both hereditary and acquired kidney diseases. However, it remains poorly understood how mitochondrial metabolism is regulated to support normal kidney function and how its dysregulation contributes to kidney disease. Here, we show that the nuclear receptor estrogen-related receptor gamma (ERRγ) and hepatocyte nuclear factor 1 beta (HNF1β) link renal mitochondrial and reabsorptive functions through coordinated epigenomic programs. ERRγ directly regulates mitochondrial metabolism but cooperatively controls renal reabsorption via convergent binding with HNF1β. Deletion of ERRγ in renal epithelial cells (RECs), in which it is highly and specifically expressed, results in severe renal energetic and reabsorptive dysfunction and progressive renal failure that recapitulates phenotypes of animals and patients with HNF1β loss-of-function gene mutations. Moreover, ERRγ expression positively correlates with renal function and is decreased in patients with chronic kidney disease (CKD). REC-ERRγ KO mice share highly overlapping renal transcriptional signatures with human patients with CKD. Together these findings reveal a role for ERRγ in directing independent and HNF1β-integrated programs for energy production and use essential for normal renal function and the prevention of kidney disease.

  12. What have we learned? A review of the literature on children's health and the environment in the Aral Sea area.

    PubMed

    Crighton, Eric James; Barwin, Lynn; Small, Ian; Upshur, Ross

    2011-04-01

    To review the published literature examining the impacts of the Aral Sea disaster on children's health. A systematic review of the English language literature. The literature search uncovered 26 peer-reviewed articles and four major reports published between 1994 and 2008. Anemia, diarrheal diseases, and high body burdens of toxic contaminants were identified as being among the significant health problems for children. These problems are associated either directly with the environmental disaster or indirectly via the deterioration of the region's economy and social and health care services. While links between persistent organic pollutant exposures and body burdens are clear, health impacts remain poorly understood. No clear evidence for the link between dust exposure and respiratory function was identified. While important questions about the nature of the child health and environment relationships remain to be answered, the literature unequivocally illustrates the seriousness of the public health tragedy and provides sufficient evidence to justify immediate action. Regrettably, international awareness of the crisis continues to be poor, and the level of action addressing the situation is wholly inadequate.

  13. Advances in IBS 2016: A Review of Current and Emerging Data.

    PubMed

    Schoenfeld, Philip S

    2016-08-01

    Irritable bowel syndrome (IBS) is characterized by chronic intermittent abdominal pain and associated diarrhea (IBS-D), constipation (IBS-C), or both. IBS can significantly impact patient function and quality of life. The diagnosis of IBS is based on the presence of characteristic symptoms, the exclusion of concerning features, and selected tests to exclude organic diseases that can mimic IBS. The pathophysiology of IBS remains incompletely understood, and new contributing factors have been identified over the past decade. Altered gut immune activation, intestinal permeability, and the intestinal and colonic microbiome may be important factors. Poorly absorbed carbohydrates have been implicated in triggering IBS symptoms. Increasing evidence supports the benefit of a diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs). Although there are several randomized controlled trials of probiotics in IBS, they are typically poorly designed and have not consistently demonstrated efficacy. Until recently, there were few effective treatments for IBS-D. Data from recent clinical trials support the use of rifaximin, eluxadoline, and peppermint oil. Options for the treatment of IBS-C include lubiprostone and linaclotide.

  14. Advances in IBS 2016: A Review of Current and Emerging Data

    PubMed Central

    Schoenfeld, Philip S.

    2016-01-01

    Irritable bowel syndrome (IBS) is characterized by chronic intermittent abdominal pain and associated diarrhea (IBS-D), constipation (IBS-C), or both. IBS can significantly impact patient function and quality of life. The diagnosis of IBS is based on the presence of characteristic symptoms, the exclusion of concerning features, and selected tests to exclude organic diseases that can mimic IBS. The pathophysiology of IBS remains incompletely understood, and new contributing factors have been identified over the past decade. Altered gut immune activation, intestinal permeability, and the intestinal and colonic microbiome may be important factors. Poorly absorbed carbohydrates have been implicated in triggering IBS symptoms. Increasing evidence supports the benefit of a diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs). Although there are several randomized controlled trials of probiotics in IBS, they are typically poorly designed and have not consistently demonstrated efficacy. Until recently, there were few effective treatments for IBS-D. Data from recent clinical trials support the use of rifaximin, eluxadoline, and peppermint oil. Options for the treatment of IBS-C include lubiprostone and linaclotide. PMID:28070176

  15. Blaming the helpers: the marginalization of teachers and parents of the urban poor.

    PubMed

    Farber, B A; Azar, S T

    1999-10-01

    The nature and origins of the current tendency toward disparaging parents and teachers of the urban poor are examined. It is suggested that the influence of parents and teachers must be understood in the context of multiple intervening variables. Several explanations are offered for the phenomenon of blame, including the fact that women constitute the great majority of teachers and are often the primary agents of parenting.

  16. PHYTOASSESSMENT OF ESTUARINE SEDIMENTS

    EPA Science Inventory

    Most sediment quality assessments and quality guidelines are based on the laboratory response of single animal species and benthic animal community composition. The role of plants in this hazard assessment process is poorly understood despite the fact that plant-dominated habitat...

  17. FACTORS INFLUENCING LIGHT-INDUCED MORTALITY OF ENTEROCOCCI IN SEDIMENT SUSPENSIONS

    EPA Science Inventory

    Contamination of recreational waters by pathogenic microorganisms occurs through complex, poorly understood interactions involving variable microbial sources, hydrodynamic transport, arid microbial fate processes. Fecal indicator bacteria such as enterococci have been used to ass...

  18. Plantation management intensity affects belowground carbon and nitrogen storage in northern California

    Treesearch

    K. J. McFarlane; S. H. Schoenholtz; R. F. Powers

    2009-01-01

    Belowground C and N storage is important in maintaining forestproductivity and to CO2 sequestration. How these pools respondto management is poorly understood. We investigated effectsof repeated applications of complete fertilizer and competing...

  19. Predictive Models of Liver Cancer

    EPA Science Inventory

    Predictive models of chemical-induced liver cancer face the challenge of bridging causative molecular mechanisms to adverse clinical outcomes. The latent sequence of intervening events from chemical insult to toxicity are poorly understood because they span multiple levels of bio...

  20. What Can Plasticity Contribute to Insect Responses to Climate Change?

    PubMed

    Sgrò, Carla M; Terblanche, John S; Hoffmann, Ary A

    2016-01-01

    Plastic responses figure prominently in discussions on insect adaptation to climate change. Here we review the different types of plastic responses and whether they contribute much to adaptation. Under climate change, plastic responses involving diapause are often critical for population persistence, but key diapause responses under dry and hot conditions remain poorly understood. Climate variability can impose large fitness costs on insects showing diapause and other life cycle responses, threatening population persistence. In response to stressful climatic conditions, insects also undergo ontogenetic changes including hardening and acclimation. Environmental conditions experienced across developmental stages or by prior generations can influence hardening and acclimation, although evidence for the latter remains weak. Costs and constraints influence patterns of plasticity across insect clades, but they are poorly understood within field contexts. Plastic responses and their evolution should be considered when predicting vulnerability to climate change-but meaningful empirical data lag behind theory.

  1. Activity-Induced Remodeling of Olfactory Bulb Microcircuits Revealed by Monosynaptic Tracing

    PubMed Central

    Arenkiel, Benjamin R.; Hasegawa, Hiroshi; Yi, Jason J.; Larsen, Rylan S.; Wallace, Michael L.; Philpot, Benjamin D.; Wang, Fan; Ehlers, Michael D.

    2011-01-01

    The continued addition of new neurons to mature olfactory circuits represents a remarkable mode of cellular and structural brain plasticity. However, the anatomical configuration of newly established circuits, the types and numbers of neurons that form new synaptic connections, and the effect of sensory experience on synaptic connectivity in the olfactory bulb remain poorly understood. Using in vivo electroporation and monosynaptic tracing, we show that postnatal-born granule cells form synaptic connections with centrifugal inputs and mitral/tufted cells in the mouse olfactory bulb. In addition, newly born granule cells receive extensive input from local inhibitory short axon cells, a poorly understood cell population. The connectivity of short axon cells shows clustered organization, and their synaptic input onto newborn granule cells dramatically and selectively expands with odor stimulation. Our findings suggest that sensory experience promotes the synaptic integration of new neurons into cell type-specific olfactory circuits. PMID:22216277

  2. The Multifactorial Epidemiology of Blackwater Fever.

    PubMed

    Shanks, G Dennis

    2017-12-01

    Blackwater fever is a massive hemolytic event usually occurring in the context of repeated falciparum malaria infections and intermittent quinine use. Its etiology is poorly understood, and it is rarely seen today. Historical epidemiological observations from the 20th century demonstrated variable patterns in prisoners in Andaman Islands, refugees in Macedonia, canal workers in Panama, expatriates in Rhodesia, and Second World War soldiers. Rates of blackwater fever per 1,000 malaria cases varied over two orders of magnitude. Islands, such as the Andaman Islands and New Guinea, had lower blackwater fever rates than continental areas. During the Second World War, blackwater fever rates in British soldiers in West Africa and Australian soldiers in New Guinea differed by a factor of 40 despite similar treatment regimens and falciparum malaria transmission risks. Blackwater fever is a complex interaction between host erythrocyte, falciparum malaria, and antimalarial drugs which remains poorly understood.

  3. Health-related quality of life in children with high-functioning autism.

    PubMed

    Potvin, Marie-Christine; Snider, Laurie; Prelock, Patricia A; Wood-Dauphinee, Sharon; Kehayia, Eva

    2015-01-01

    The health-related quality of life of school-aged children with high-functioning autism is poorly understood. The objectives of this study were to compare the health-related quality of life of children with high-functioning autism to that of typically developing peers and to compare child-self and parent-proxy reports of health-related quality of life of children. A cross-sectional study of children with high-functioning autism (n = 30) and peers (n = 31) was conducted using the Pediatric Quality of Life Inventory 4.0 Generic Core Scales. Children with high-functioning autism had significantly poorer health-related quality of life than peers whether reported by themselves (p < .001) or their parents (p < .001), although disagreement (intra-class coefficient = -.075) between children and parental scores suggested variance in points of view. This study specifically investigated health-related quality of life in children with high-functioning autism as compared to a sample of peers, from the child's perspective. It strengthens earlier findings that children with high-functioning autism experience poorer health-related quality of life than those without this disorder and points to the importance of clinicians working with families to identify areas in a child's life that promote or hinder their sense of well-being. © The Author(s) 2013.

  4. The Potential Utility of Eye Movements in the Detection and Characterization of Everyday Functional Difficulties in Mild Cognitive Impairment.

    PubMed

    Seligman, Sarah C; Giovannetti, Tania

    2015-06-01

    Mild cognitive impairment (MCI) refers to the intermediate period between the typical cognitive decline of normal aging and more severe decline associated with dementia, and it is associated with greater risk for progression to dementia. Research has suggested that functional abilities are compromised in MCI, but the degree of impairment and underlying mechanisms remain poorly understood. The development of sensitive measures to assess subtle functional decline poses a major challenge for characterizing functional limitations in MCI. Eye-tracking methodology has been used to describe visual processes in everyday, naturalistic action among healthy older adults as well as several case studies of severely impaired individuals, and it has successfully differentiated healthy older adults from those with MCI on specific visual tasks. These studies highlight the promise of eye-tracking technology as a method to characterize subtle functional decline in MCI. However, to date no studies have examined visual behaviors during completion of naturalistic tasks in MCI. This review describes the current understanding of functional ability in MCI, summarizes findings of eye-tracking studies in healthy individuals, severe impairment, and MCI, and presents future research directions to aid with early identification and prevention of functional decline in disorders of aging.

  5. Inter-subject synchrony as an index of functional specialization in early childhood.

    PubMed

    Moraczewski, Dustin; Chen, Gang; Redcay, Elizabeth

    2018-02-02

    Early childhood is a time of significant change within multiple cognitive domains including social cognition, memory, executive function, and language; however, the corresponding neural changes remain poorly understood. This is likely due to the difficulty in acquiring artifact-free functional MRI data during complex task-based or unconstrained resting-state experiments in young children. In addition, task-based and resting state experiments may not capture dynamic real-world processing. Here we overcome both of these challenges through use of naturalistic viewing (i.e., passively watching a movie in the scanner) combined with inter-subject neural synchrony to examine functional specialization within 4- and 6-year old children. Using a novel and stringent crossed random effect statistical analysis, we find that children show more variable patterns of activation compared to adults, particularly within regions of the default mode network (DMN). In addition, we found partial evidence that child-to-adult synchrony increased as a function of age within a DMN region: the temporoparietal junction. Our results suggest age-related differences in functional brain organization within a cross-sectional sample during an ecologically valid context and demonstrate that neural synchrony during naturalistic viewing fMRI can be used to examine functional specialization during early childhood - a time when neural and cognitive systems are in flux.

  6. Sex-Specific Patterns of Aberrant Brain Function in First-Episode Treatment-Naive Patients with Schizophrenia.

    PubMed

    Lei, Wei; Li, Mingli; Deng, Wei; Zhou, Yi; Ma, Xiaohong; Wang, Qiang; Guo, Wanjun; Li, Yinfei; Jiang, Lijun; Han, Yuanyuan; Huang, Chaohua; Hu, Xun; Li, Tao

    2015-07-16

    Male and female patients with schizophrenia show significant differences in a number of important clinical features, yet the neural substrates of these differences are still poorly understood. Here we explored the sex differences in the brain functional aberrations in 124 treatment-naïve patients with first-episode schizophrenia (61 males), compared with 102 age-matched healthy controls (50 males). Maps of degree centrality (DC) and amplitude of low-frequency fluctuations (ALFF) were constructed using resting-state functional magnetic resonance imaging data and compared between groups. We found that: (1) Selective DC reduction was observed in the right putamen (Put_R) in male patients and the left middle frontal gyrus (MFG) in female patients; (2) Functional connectivity analysis (using Put_R and MFG as seeds) found that male and female patients have disturbed functional integration in two separate networks, i.e., the sensorimotor network and the default mode network; (3) Significant ALFF alterations were also observed in these two networks in both genders; (4) Sex specific brain functional alterations were associated with various symptoms in patients. These results suggested that sex-specific patterns of functional aberration existed in schizophrenia, and these patterns were associated with the clinical features both in male and female patients.

  7. Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling

    PubMed Central

    Wang, Feng; Liang, Yuting; Jiang, Yuji; Yang, Yunfeng; Xue, Kai; Xiong, Jinbo; Zhou, Jizhong; Sun, Bo

    2015-01-01

    Plants have an important impact on soil microbial communities and their functions. However, how plants determine the microbial composition and network interactions is still poorly understood. During a four-year field experiment, we investigated the functional gene composition of three types of soils (Phaeozem, Cambisols and Acrisol) under maize planting and bare fallow regimes located in cold temperate, warm temperate and subtropical regions, respectively. The core genes were identified using high-throughput functional gene microarray (GeoChip 3.0), and functional molecular ecological networks (fMENs) were subsequently developed with the random matrix theory (RMT)-based conceptual framework. Our results demonstrated that planting significantly (P < 0.05) increased the gene alpha-diversity in terms of richness and Shannon – Simpson’s indexes for all three types of soils and 83.5% of microbial alpha-diversity can be explained by the plant factor. Moreover, planting had significant impacts on the microbial community structure and the network interactions of the microbial communities. The calculated network complexity was higher under maize planting than under bare fallow regimes. The increase of the functional genes led to an increase in both soil respiration and nitrification potential with maize planting, indicating that changes in the soil microbial communities and network interactions influenced ecological functioning. PMID:26396042

  8. The adenosine salvage pathway as an alternative to mitochondrial production of ATP in maturing mammalian oocytes.

    PubMed

    Scantland, Sara; Tessaro, Irene; Macabelli, Carolina H; Macaulay, Angus D; Cagnone, Gaël; Fournier, Éric; Luciano, Alberto M; Robert, Claude

    2014-09-01

    Although the oocyte is the largest cell in the body and an unavoidable phase in life, its physiology is still poorly understood, and other cell types provide little insight into its unique nature. Even basic cellular functions in the oocyte such as energy metabolism are not yet fully understood. It is known that the mitochondria of the female gamete exhibit an immature form characterized by limited energy production from glucose and oxidative phosphorylation. We show that the bovine oocyte uses alternative means to maintain ATP production during maturation, namely, the adenosine salvage pathway. Meiosis resumption is triggered by destruction of cyclic AMP by phosphodiesterases producing adenosine monophosphate that is converted into ATP by adenylate kinases and creatine kinases. Inhibition of these enzymes decreased ATP production, and addition of their substrates restored ATP production in denuded oocytes. Addition of phosphocreatine to the oocyte maturation medium influenced the phenotype of the resulting blastocysts. We propose a model in which adenylate kinases and creatine kinases act as drivers of ATP production from added AMP during oocyte maturation. © 2014 by the Society for the Study of Reproduction, Inc.

  9. Disentangling the Role of Entanglement Density and Molecular Alignment in the Mechanical Response of Glassy Polymers

    NASA Astrophysics Data System (ADS)

    O'Connor, Thomas; Robbins, Mark

    Glassy polymers are a ubiquitous part of modern life, but much about their mechanical properties remains poorly understood. Since chains in glassy states are hindered from exploring their conformational entropy, they can't be understood with common entropic network models. Additionally, glassy states are highly sensitive to material history and nonequilibrium distributions of chain alignment and entanglement can be produced during material processing. Understanding how these far-from equilibrium states impact mechanical properties is analytically challenging but essential to optimizing processing methods. We use molecular dynamics simulations to study the yield and strain hardening of glassy polymers as separate functions of the degree of molecular alignment and inter-chain entanglement. We vary chain alignment and entanglement with three different preparation protocols that mimic common processing conditions in and out of solution. We compare our results to common mechanical models of amorphous polymers and assess their applicability to different experimental processing conditions. This research was performed within the Center for Materials in Extreme Dynamic Environments (CMEDE) under the Hopkins Extreme Materials Institute at Johns Hopkins University. Financial support was provided by Grant W911NF-12-2-0022.

  10. Tracking contaminant flux from aquatic to terrestrial food webs

    EPA Science Inventory

    Aquatic insects provide a critical energy subsidy to riparian food webs, yet their role as vectors of contaminants to terrestrial ecosystems is poorly understood. We investigated aquatic resource utilization and contaminant exposure among riparian invertivores (spiders and herpt...

  11. Asthma and Respiratory Allergic Disease

    EPA Science Inventory

    The pathogenesis of non-communicable diseases such as allergy is complex and poorly understood. The causes of chronic allergic diseases including asthma involve to a large extent, immunomodulation of the adaptive and particularly the innate immune systems and are markedly influen...

  12. AtCHX13 is a plasma membrane K(+) transporter

    USDA-ARS?s Scientific Manuscript database

    Potassium (K+) homeostasis is essential for diverse cellular processes, although how various cation transporters collaborate to maintain a suitable K(+) required for growth and development is poorly understood. The Arabidopsis ("Arabidopsis thaliana") genome contains numerous cation:proton antiporte...

  13. AtCHX13 is a plasma membrane K+ transporter

    USDA-ARS?s Scientific Manuscript database

    Potassium (K+) homeostasis is essential for diverse cellular processes, although how various cation transporters collaborate to maintain a suitable K+ required for growth and development is poorly understood. The Arabidopsis (Arabidopsis thaliana) genome contains numerous cation:proton antiporters (...

  14. The 2011 National Wetland Condition Assessment

    EPA Science Inventory

    The ecological condition of wetland resources across the conterminous United States is poorly understood. To address this issue, the U.S. Environmental Protection Agency (USEPA), in collaboration with states, tribes, and other federal partners, is conducting the first-ever Natio...

  15. Impacts of Human Activity on the Microbial Communities of Devon Island, Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Bywaters, K. B.; Burton, A. S.; Wallace, S. L.; Glass, B. J.

    2016-09-01

    The impacts of human activities on microbial communities in arctic environments are poorly understood. This project compares the distribution of microbes at the HMP Mars analog site prior to and after human settlement.

  16. AN IMPROVED METHOD FOR DETECTING VIRUSES IN WATER

    EPA Science Inventory

    Enteroviruses are important etiological agents of waterborne disease and are responsible for outbreaks of gastroenteritis. However, the prevalence and occurrence of these pathogens in raw drinking water sources is poorly understood. This is primarily due to the limited methods ...

  17. The mechanisms of intrarenal hemodynamic changes following acute arterial occlusion.

    DOT National Transportation Integrated Search

    1963-10-01

    The hemodynamic response of the kidney to acute arterial occlusion is poorly understood. The purpose of the present study was to determine intrarenal hemodynamic changes in intact and isolated kidneys following arterial occlusion. : The relative role...

  18. Prediction of Membership in Rehabilitation Counseling Professional Associations

    ERIC Educational Resources Information Center

    Phillips, Brian N.; Leahy, Michael J.

    2012-01-01

    Declining membership is a concerning yet poorly understood issue affecting professional associations across disciplines (Bauman, 2008). Rehabilitation counseling association membership is in decline even while number of certified rehabilitation counselors continues to increase (Leahy, 2009). Factors influencing rehabilitation counseling…

  19. The prevalence and causes of autistic spectrum disorders.

    PubMed

    Hainsworth, Terry

    Autism and autistic spectrum disorders are still relatively poorly understood. This article outlines the results of new research into the prevalence of autism and into the causes of the condition and highlights implications for nurses from the findings.

  20. Familiarity and Aptness in Metaphor Comprehension.

    PubMed

    Damerall, Alison Whiteford; Kellogg, Ronald T

    2016-01-01

    The career of metaphor hypothesis suggests that novel metaphors are understood through a search for shared features between the topic and vehicle, but with repeated exposure, the figurative meaning is understood directly as a new category is established. The categorization hypothesis argues that instead good or apt metaphors are understood through a categorization process, whether or not they are familiar. Only poor metaphors ever invoke a literal comparison. In Experiment 1, with aptness equated, we found that high familiarity speeded comprehension time over low-familiarity metaphors. In Experiment 2a, providing a literal prime failed to facilitate interpretation of low-familiarity metaphors, contrary to the career of metaphor hypothesis. In Experiment 2b, with familiarity equated, high- and low-aptness metaphors did not differ, contrary to the categorization hypothesis.

  1. Metabolic Reprogramming and Oncogenesis: One Hallmark, Many Organelles.

    PubMed

    Costa, A S H; Frezza, C

    2017-01-01

    The process of tumorigenesis can be described by a series of molecular features, among which alteration of cellular metabolism has recently emerged. This metabolic rewiring fulfills the energy and biosynthetic demands of fast proliferating cancer cells and amplifies their metabolic repertoire to survive and proliferate in the poorly oxygenated and nutrient-deprived tumor microenvironment. During the last decade, the complex reprogramming of cancer cell metabolism has been widely investigated, revealing cancer-specific metabolic alterations. These include dysregulation of glucose and glutamine metabolism, alterations of lipid synthesis and oxidation, and a complex rewiring of mitochondrial function. However, mitochondria are not the only metabolically active organelles within the cell, and other organelles, including lysosomes, peroxisomes, and endoplasmic reticulum, harbor components of the metabolic network. Of note, dysregulation of the function of these organelles is increasingly recognized in cancer cells. However, to what extent these organelles contribute to the metabolic reprogramming of cancer is not fully understood. In this review, we describe the main metabolic functions of these organelles and provide insights into how they communicate to orchestrate a coordinated metabolic reprogramming during transformation. © 2017 Elsevier Inc. All rights reserved.

  2. Nuclear Architecture Organized by Rif1 Underpins the Replication-Timing Program

    PubMed Central

    Foti, Rossana; Gnan, Stefano; Cornacchia, Daniela; Dileep, Vishnu; Bulut-Karslioglu, Aydan; Diehl, Sarah; Buness, Andreas; Klein, Felix A.; Huber, Wolfgang; Johnstone, Ewan; Loos, Remco; Bertone, Paul; Gilbert, David M.; Manke, Thomas; Jenuwein, Thomas; Buonomo, Sara C.B.

    2016-01-01

    Summary DNA replication is temporally and spatially organized in all eukaryotes, yet the molecular control and biological function of the replication-timing program are unclear. Rif1 is required for normal genome-wide regulation of replication timing, but its molecular function is poorly understood. Here we show that in mouse embryonic stem cells, Rif1 coats late-replicating domains and, with Lamin B1, identifies most of the late-replicating genome. Rif1 is an essential determinant of replication timing of non-Lamin B1-bound late domains. We further demonstrate that Rif1 defines and restricts the interactions between replication-timing domains during the G1 phase, thereby revealing a function of Rif1 as organizer of nuclear architecture. Rif1 loss affects both number and replication-timing specificity of the interactions between replication-timing domains. In addition, during the S phase, Rif1 ensures that replication of interacting domains is temporally coordinated. In summary, our study identifies Rif1 as the molecular link between nuclear architecture and replication-timing establishment in mammals. PMID:26725008

  3. Paracrystalline Disorder from Phosphate Ion Orientation and Substitution in Synthetic Bone Mineral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marisa, Mary E.; Zhou, Shiliang; Melot, Brent C.

    Hydroxyapatite is an inorganic mineral closely resembling the mineral phase in bone. However, as a biological mineral, it is highly disordered, and its composition and atomistic structure remain poorly understood. Here, synchrotron X-ray total scattering and pair distribution function analysis methods provide insight into the nature of atomistic disorder in a synthetic bone mineral analogue, chemically substituted hydroxyapatite. By varying the effective hydrolysis rate and/or carbonate concentration during growth of the mineral, compounds with varied degrees of paracrystallinity are prepared. From advanced simulations constrained by the experimental pair distribution function and density functional theory, the paracrystalline disorder prevalent in thesemore » materials appears to result from accommodation of carbonate in the lattice through random displacement of the phosphate groups. Though many substitution modalities are likely to occur in concert, the most predominant substitution places carbonate into the mirror plane of an ideal phosphate site. Understanding the mineralogical imperfections of a biologically analogous hydroxyapatite is important not only to potential bone grafting applications but also to biological mineralization processes themselves.« less

  4. Generalized non-equilibrium vertex correction method in coherent medium theory for quantum transport simulation of disordered nanoelectronics

    NASA Astrophysics Data System (ADS)

    Yan, Jiawei; Ke, Youqi

    In realistic nanoelectronics, disordered impurities/defects are inevitable and play important roles in electron transport. However, due to the lack of effective quantum transport method, the important effects of disorders remain poorly understood. Here, we report a generalized non-equilibrium vertex correction (NVC) method with coherent potential approximation to treat the disorder effects in quantum transport simulation. With this generalized NVC method, any averaged product of two single-particle Green's functions can be obtained by solving a set of simple linear equations. As a result, the averaged non-equilibrium density matrix and various important transport properties, including averaged current, disordered induced current fluctuation and the averaged shot noise, can all be efficiently computed in a unified scheme. Moreover, a generalized form of conditionally averaged non-equilibrium Green's function is derived to incorporate with density functional theory to enable first-principles simulation. We prove the non-equilibrium coherent potential equals the non-equilibrium vertex correction. Our approach provides a unified, efficient and self-consistent method for simulating non-equilibrium quantum transport through disorder nanoelectronics. Shanghaitech start-up fund.

  5. Effects of Simulated Microgravity on Functions of Neutrophil-like HL-60 Cells

    NASA Astrophysics Data System (ADS)

    Wang, Chengzhi; Li, Ning; Zhang, Chen; Sun, Shujin; Gao, Yuxin; Long, Mian

    2015-11-01

    Altered gravity, especially microgravity affects cellular functions of immune cells and can result in immune dysfunction for long-term, manned spaceflight and space exploration. The underlying mechanism, however, of sensing and responding to the gravity alteration is poorly understood. Here, a rotary cell culture system (RCCS) bioreactor was used to elucidate the effects of simulated microgravity on polymorphonuclear neutrophils (PMN)-like HL-60 cells. Alteration of cell morphology, up-regulation of (nitric oxide) NO production, enhancement of interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemotactic protein 1 (MCP-1) secretion, and diversity of cellular adhesion molecule expression were observed for the cells cultured in RCCS, leading to the up-regulated inflammatory immune responses and host defense. It was also indicated that such alterations in biological responses of PMNs mediated the reduced rolling velocity and decreased adhesion of PMN-like HL-60 cells on endothelial cells under shear flow. This work furthers the understandings in the effects and mechanism of microgravity on PMN functions, which are potentially helpful for optimizing the countermeasures to immune suppression in the future long-term, manned spaceflight.

  6. Family-wide Structural Characterization and Genomic Comparisons Decode the Diversity-oriented Biosynthesis of Thalassospiramides by Marine Proteobacteria*

    PubMed Central

    Zhang, Weipeng; Lu, Liang; Lai, Qiliang; Zhu, Beika; Li, Zhongrui; Xu, Ying; Shao, Zongze; Herrup, Karl; Moore, Bradley S.; Ross, Avena C.; Qian, Pei-Yuan

    2016-01-01

    The thalassospiramide lipopeptides have great potential for therapeutic applications; however, their structural and functional diversity and biosynthesis are poorly understood. Here, by cultivating 130 Rhodospirillaceae strains sampled from oceans worldwide, we discovered 21 new thalassospiramide analogues and demonstrated their neuroprotective effects. To investigate the diversity of biosynthetic gene cluster (BGC) architectures, we sequenced the draft genomes of 28 Rhodospirillaceae strains. Our family-wide genomic analysis revealed three types of dysfunctional BGCs and four functional BGCs whose architectures correspond to four production patterns. This correlation allowed us to reassess the “diversity-oriented biosynthesis” proposed for the microbial production of thalassospiramides, which involves iteration of several key modules. Preliminary evolutionary investigation suggested that the functional BGCs could have arisen through module/domain loss, whereas the dysfunctional BGCs arose through horizontal gene transfer. Further comparative genomics indicated that thalassospiramide production is likely to be attendant on particular genes/pathways for amino acid metabolism, signaling transduction, and compound efflux. Our findings provide a systematic understanding of thalassospiramide production and new insights into the underlying mechanism. PMID:27875306

  7. The ortholog of the human proto-oncogene ROS1 is required for epithelial development in C. elegans

    PubMed Central

    Jones, Martin R; Rose, Ann M; Baillie, David L

    2013-01-01

    The orphan receptor ROS1 is a human proto-oncogene, mutations of which are found in an increasing number of cancers. Little is known about the role of ROS1, however in vertebrates it has been implicated in promoting differentiation programs in specialized epithelial tissues. In this study we show that the C. elegans ortholog of ROS1, the receptor tyrosine kinase ROL-3, has an essential role in orchestrating the morphogenesis and development of specialized epidermal tissues, highlighting a potentially conserved function in coordinating crosstalk between developing epithelial cells. We also provide evidence of a direct relationship between ROL-3, the mucin SRAP-1, and BCC-1, the homolog of mRNA regulating protein Bicaudal-C. This study answers a longstanding question as to the developmental function of ROL-3, identifies three new genes that are expressed and function in the developing epithelium of C. elegans, and introduces the nematode as a potentially powerful model system for investigating the increasingly important, yet poorly understood, human oncogene ROS1. genesis 51:545–561. PMID:23733356

  8. Structural Basis of Vta1 Function in the Multivesicular Body Sorting Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Junyu; Xia, Hengchuan; Zhou, Jiahai

    The MVB pathway plays essential roles in several eukaryotic cellular processes. Proper function of the MVB pathway requires reversible membrane association of the ESCRTs, a process catalyzed by Vps4 ATPase. Vta1 regulates the Vps4 activity, but its mechanism of action was poorly understood. We report the high-resolution crystal structures of the Did2- and Vps60-binding N-terminal domain and the Vps4-binding C-terminal domain of S. cerevisiae Vta1. The C-terminal domain also mediates Vta1 dimerization and both subunits are required for its function as a Vps4 regulator. Emerging from our analysis is a mechanism of regulation by Vta1 in which the C-terminal domainmore » stabilizes the ATP-dependent double ring assembly of Vps4. In addition, the MIT motif-containing N-terminal domain, projected by a long disordered linker, allows contact between the Vps4 disassembly machinery and the accessory ESCRT-III proteins. This provides an additional level of regulation and coordination for ESCRT-III assembly and disassembly.« less

  9. Neural sex modifies the function of a C. elegans sensory circuit.

    PubMed

    Lee, Kyunghwa; Portman, Douglas S

    2007-11-06

    Though sex differences in animal behavior are ubiquitous, their neural and genetic underpinnings remain poorly understood. In particular, the role of functional differences in the neural circuitry that is shared by both sexes has not been extensively investigated. We have addressed these issues with C. elegans olfaction, a simple innate behavior mediated by sexually isomorphic neurons. Though males respond to the same olfactory attractants as do hermaphrodites, we find that each sex has a characteristic repertoire of olfactory preferences. These are not secondary to other sex-specific behaviors and do not require signaling from the gonad. Sex-specific olfactory preferences are controlled by tra-1, the master regulator of C. elegans sexual differentiation. Moreover, the genetic masculinization of neurons in an otherwise wild-type hermaphrodite is sufficient to switch the sexual phenotype of olfactory preference behavior. These studies reveal novel and unexpected sex differences in a C. elegans sensory behavior that is exhibited by both sexes. Our results indicate that these differences are a function of the chromosomally determined sexual identity of shared neural circuitry.

  10. Expression pattern and signalling pathways in neutrophil like HL-60 cells after treatment with estrogen receptor selective ligands.

    PubMed

    Blesson, Chellakkan Selvanesan; Sahlin, Lena

    2012-09-25

    Estrogens play a role in the regulation of genes associated with inflammation and immunity in neutrophils. Estrogen signalling is mediated by estrogen receptor (ER)α, ERβ, and G-protein-coupled estrogen receptor-1 (GPER). The mechanisms by which estrogen regulate genes in neutrophils are poorly understood. Our aim was to identify the presence of ERs and to characterize estrogen responsive genes in terminally differentiated neutrophil like HL-60 (nHL-60) cells using estradiol and selective ER agonists. ERs were identified by Western blotting and immunocytochemistry. Microarray technique was used to screen for differentially expressed genes and the selected genes were verified by quantitative PCR. We show the presence of functional ERα, ERβ and GPER. Microarray analysis showed the presence of genes that are uniquely regulated by a single ligand and also genes that are regulated by multiple ligands. We conclude that ERs are functionally active in nHL-60 cells regulating genes involved in key physiological functions. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Amylin structure–function relationships and receptor pharmacology: implications for amylin mimetic drug development

    PubMed Central

    Bower, Rebekah L

    2016-01-01

    Amylin is an important, but poorly understood, 37 amino acid glucoregulatory hormone with great potential to target metabolic diseases. A working example that the amylin system is one worth developing is the FDA‐approved drug used in insulin‐requiring diabetic patients, pramlintide. However, certain characteristics of pramlintide pharmacokinetics and formulation leave considerable room for further development of amylin‐mimetic compounds. Given that amylin‐mimetic drug design and development is an active area of research, surprisingly little is known about the structure/function relationships of amylin. This is largely due to the unfavourable aggregative and solubility properties of the native peptide sequence, which are further complicated by the composition of amylin receptors. These are complexes of the calcitonin receptor with receptor activity‐modifying proteins. This review explores what is known of the structure–function relationships of amylin and provides insights that can be drawn from the closely related peptide, CGRP. We also describe how this information is aiding the development of more potent and stable amylin mimetics, including peptide hybrids. PMID:27061187

  12. Successful choice behavior is associated with distinct and coherent network states in anterior cingulate cortex

    PubMed Central

    Lapish, Christopher C.; Durstewitz, Daniel; Chandler, L. Judson; Seamans, Jeremy K.

    2008-01-01

    Successful decision making requires an ability to monitor contexts, actions, and outcomes. The anterior cingulate cortex (ACC) is thought to be critical for these functions, monitoring and guiding decisions especially in challenging situations involving conflict and errors. A number of different single-unit correlates have been observed in the ACC that reflect the diverse cognitive components involved. Yet how ACC neurons function as an integrated network is poorly understood. Here we show, using advanced population analysis of multiple single-unit recordings from the rat ACC during performance of an ecologically valid decision-making task, that ensembles of neurons move through different coherent and dissociable states as the cognitive requirements of the task change. This organization into distinct network patterns with respect to both firing-rate changes and correlations among units broke down during trials with numerous behavioral errors, especially at choice points of the task. These results point to an underlying functional organization into cell assemblies in the ACC that may monitor choices, outcomes, and task contexts, thus tracking the animal's progression through “task space.” PMID:18708525

  13. Hyporesponsive reward anticipation in the basal ganglia following severe institutional deprivation early in life.

    PubMed

    Mehta, Mitul A; Gore-Langton, Emma; Golembo, Nicole; Colvert, Emma; Williams, Steven C R; Sonuga-Barke, Edmund

    2010-10-01

    Severe deprivation in the first few years of life is associated with multiple difficulties in cognition and behavior. However, the brain basis for these difficulties is poorly understood. Structural and functional neuroimaging studies have implicated limbic system structures as dysfunctional, and one functional imaging study in a heterogeneous group of maltreated individuals has confirmed the presence of abnormalities in the basal ganglia. Based on these studies and known dopaminergic abnormalities from studies in experimental animals using social isolation, we used a task of monetary reward anticipation to examine the functional integrity of brain regions previously shown to be implicated in reward processing. Our sample included a group of adolescents (n = 12) who had experienced global deprivation early in their lives in Romania prior to adoption into UK families. In contrast to a nonadopted comparison group (n = 11), the adoptees did not recruit the striatum during reward anticipation despite comparable performance accuracy and latency. These results show, for the first time, an association between early institutional deprivation and brain reward systems in humans and highlight potential neural vulnerabilities resulting from such exposures.

  14. Towards an integrated understanding of how micro scale processes shape groundwater ecosystem functions.

    PubMed

    Schmidt, Susanne I; Cuthbert, Mark O; Schwientek, Marc

    2017-08-15

    Micro scale processes are expected to have a fundamental role in shaping groundwater ecosystems and yet they remain poorly understood and under-researched. In part, this is due to the fact that sampling is rarely carried out at the scale at which microorganisms, and their grazers and predators, function and thus we lack essential information. While set within a larger scale framework in terms of geochemical features, supply with energy and nutrients, and exchange intensity and dynamics, the micro scale adds variability, by providing heterogeneous zones at the micro scale which enable a wider range of redox reactions. Here we outline how understanding micro scale processes better may lead to improved appreciation of the range of ecosystems functions taking place at all scales. Such processes are relied upon in bioremediation and we demonstrate that ecosystem modelling as well as engineering measures have to take into account, and use, understanding at the micro scale. We discuss the importance of integrating faunal processes and computational appraisals in research, in order to continue to secure sustainable water resources from groundwater. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Food Web Response to Habitat Restoration in Various Coastal Wetland Ecosystems

    NASA Astrophysics Data System (ADS)

    James, W. R.; Nelson, J. A.

    2017-12-01

    Coastal wetland habitats provide important ecosystem services, including supporting coastal food webs. These habitats are being lost rapidly. To combat the effects of these losses, millions of dollars have been invested to restore these habitats. However, the relationship between restoring habitat and restoring ecosystem functioning is poorly understood. Analyzing energy flow through food web comparisons between restored and natural habitats can give insights into ecosystem functioning. Using published stable isotope values from organisms in restored and natural habitats, we assessed the food web response of habitat restoration in salt marsh, mangrove, sea grass, and algal bed ecosystems. We ran Bayesian mixing models to quantify resource use by consumers and generated habitat specific niche hypervolumes for each ecosystem to assess food web differences between restored and natural habitats. Salt marsh, mangrove, and sea grass ecosystems displayed functional differences between restored and natural habitats. Salt marsh and mangrove food webs varied in the amount of each resource used, while the sea grass food web displayed more variation between individual organisms. The algal bed food web showed little variation between restored and natural habitats.

  16. In Vivo Determination of Mitochondrial Function Using Luciferase-Expressing Caenorhabditis elegans: Contribution of Oxidative Phosphorylation, Glycolysis, and Fatty Acid Oxidation to Toxicant-Induced Dysfunction.

    PubMed

    Luz, Anthony L; Lagido, Cristina; Hirschey, Matthew D; Meyer, Joel N

    2016-08-01

    Mitochondria are a target of many drugs and environmental toxicants; however, how toxicant-induced mitochondrial dysfunction contributes to the progression of human disease remains poorly understood. To address this issue, in vivo assays capable of rapidly assessing mitochondrial function need to be developed. Here, using the model organism Caenorhabditis elegans, we describe how to rapidly assess the in vivo role of the electron transport chain, glycolysis, or fatty acid oxidation in energy metabolism following toxicant exposure, using a luciferase-expressing ATP reporter strain. Alterations in mitochondrial function subsequent to toxicant exposure are detected by depleting steady-state ATP levels with inhibitors of the mitochondrial electron transport chain, glycolysis, or fatty acid oxidation. Differential changes in ATP following short-term inhibitor exposure indicate toxicant-induced alterations at the site of inhibition. Because a microplate reader is the only major piece of equipment required, this is a highly accessible method for studying toxicant-induced mitochondrial dysfunction in vivo. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  17. Differential regulation of oestrogen receptor β isoforms by 5′ untranslated regions in cancer

    PubMed Central

    Smith, Laura; Brannan, Rebecca A; Hanby, Andrew M; Shaaban, Abeer M; Verghese, Eldo T; Peter, Mark B; Pollock, Steven; Satheesha, Sampoorna; Szynkiewicz, Marcin; Speirs, Valerie; Hughes, Thomas A

    2010-01-01

    Abstract Oestrogen receptors (ERs) are critical regulators of the behaviour of many cancers. Despite this, the roles and regulation of one of the two known ERs – ERβ– are poorly understood. This is partly because analyses have been confused by discrepancies between ERβ expression at mRNA and proteins levels, and because ERβ is expressed as several functionally distinct isoforms. We investigated human ERβ 5′ untranslated regions (UTRs) and their influences on ERβ expression and function. We demonstrate that two alternative ERβ 5′UTRs have potent and differential influences on expression acting at the level of translation. We show that their influences are modulated by cellular context and in carcinogenesis, and demonstrate the contributions of both upstream open reading frames and RNA secondary structure. These regulatory mechanisms offer explanations for the non-concordance of ERβ mRNA and protein. Importantly, we also demonstrate that 5′UTRs allow the first reported mechanisms for differential regulation of the expression of the ERβ isoforms 1, 2 and 5, and thereby have critical influences on ERβ function. PMID:20920096

  18. Axon-Axon Interactions Regulate Topographic Optic Tract Sorting via CYFIP2-Dependent WAVE Complex Function.

    PubMed

    Cioni, Jean-Michel; Wong, Hovy Ho-Wai; Bressan, Dario; Kodama, Lay; Harris, William A; Holt, Christine E

    2018-03-07

    The axons of retinal ganglion cells (RGCs) are topographically sorted before they arrive at the optic tectum. This pre-target sorting, typical of axon tracts throughout the brain, is poorly understood. Here, we show that cytoplasmic FMR1-interacting proteins (CYFIPs) fulfill non-redundant functions in RGCs, with CYFIP1 mediating axon growth and CYFIP2 specifically involved in axon sorting. We find that CYFIP2 mediates homotypic and heterotypic contact-triggered fasciculation and repulsion responses between dorsal and ventral axons. CYFIP2 associates with transporting ribonucleoprotein particles in axons and regulates translation. Axon-axon contact stimulates CYFIP2 to move into growth cones where it joins the actin nucleating WAVE regulatory complex (WRC) in the periphery and regulates actin remodeling and filopodial dynamics. CYFIP2's function in axon sorting is mediated by its binding to the WRC but not its translational regulation. Together, these findings uncover CYFIP2 as a key regulatory link between axon-axon interactions, filopodial dynamics, and optic tract sorting. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. The role of food in the functional gastrointestinal disorders: introduction to a manuscript series.

    PubMed

    Chey, William D

    2013-05-01

    Functional gastrointestinal disorders (FGIDs) are characterized by the presence of chronic or recurrent symptoms that are felt to originate from the gastrointestinal (GI) tract, which cannot be attributed to an identifiable structural or biochemical cause. Food is associated with symptom onset or exacerbation in a significant proportion of FGID patients. Despite this, the role of food in the pathogenesis of the FGIDs has remained poorly understood. For this reason, diet has largely played an adjunctive rather than a primary role in the management of FGID patients. In recent years, there has been a rapid expansion in our understanding of the role of food in GI function and sensation and how food relates to GI symptoms in FGID patients. In a series of evidence-based manuscripts produced by the Rome Foundation Working Group on the role of food in FGIDs, comprehensive reviews of the physiological changes associated with nutrient intake, and the respective roles of carbohydrates, fiber, protein, and fats are provided. The series concludes with a manuscript that provides guidance on proper clinical trial design when considering the role of food in FGIDs.

  20. DCAF1 controls T-cell function via p53-dependent and -independent mechanisms.

    PubMed

    Guo, Zengli; Kong, Qing; Liu, Cui; Zhang, Song; Zou, Liyun; Yan, Feng; Whitmire, Jason K; Xiong, Yue; Chen, Xian; Wan, Yisong Y

    2016-01-05

    On activation, naive T cells grow in size and enter cell cycle to mount immune response. How the fundamental processes of T-cell growth and cell cycle entry are regulated is poorly understood. Here we report that DCAF1 (Ddb1-cullin4-associated-factor 1) is essential for these processes. The deletion of DCAF1 in T cells impairs their peripheral homeostasis. DCAF1 is upregulated on T-cell receptor activation and critical for activation-induced T-cell growth, cell cycle entry and proliferation. In addition, DCAF1 is required for T-cell expansion and function during anti-viral and autoimmune responses in vivo. DCAF1 deletion leads to a drastic stabilization of p53 protein, which can be attributed to a requirement of DCAF1 for MDM2-mediated p53 poly-ubiquitination. Importantly, p53 deletion rescues the cell cycle entry defect but not the growth defect of DCAF1-deficient cells. Therefore, DCAF1 is vital for T-cell function through p53-dependent and -independent mechanisms.

  1. DCAF1 controls T-cell function via p53-dependent and -independent mechanisms

    PubMed Central

    Guo, Zengli; Kong, Qing; Liu, Cui; Zhang, Song; Zou, Liyun; Yan, Feng; Whitmire, Jason K.; Xiong, Yue; Chen, Xian; Wan, Yisong Y.

    2016-01-01

    On activation, naive T cells grow in size and enter cell cycle to mount immune response. How the fundamental processes of T-cell growth and cell cycle entry are regulated is poorly understood. Here we report that DCAF1 (Ddb1–cullin4-associated-factor 1) is essential for these processes. The deletion of DCAF1 in T cells impairs their peripheral homeostasis. DCAF1 is upregulated on T-cell receptor activation and critical for activation-induced T-cell growth, cell cycle entry and proliferation. In addition, DCAF1 is required for T-cell expansion and function during anti-viral and autoimmune responses in vivo. DCAF1 deletion leads to a drastic stabilization of p53 protein, which can be attributed to a requirement of DCAF1 for MDM2-mediated p53 poly-ubiquitination. Importantly, p53 deletion rescues the cell cycle entry defect but not the growth defect of DCAF1-deficient cells. Therefore, DCAF1 is vital for T-cell function through p53-dependent and -independent mechanisms. PMID:26728942

  2. The Roles of Vitamin C in Skin Health.

    PubMed

    Pullar, Juliet M; Carr, Anitra C; Vissers, Margreet C M

    2017-08-12

    The primary function of the skin is to act as a barrier against insults from the environment, and its unique structure reflects this. The skin is composed of two layers: the epidermal outer layer is highly cellular and provides the barrier function, and the inner dermal layer ensures strength and elasticity and gives nutritional support to the epidermis. Normal skin contains high concentrations of vitamin C, which supports important and well-known functions, stimulating collagen synthesis and assisting in antioxidant protection against UV-induced photodamage. This knowledge is often used as a rationale for the addition of vitamin C to topical applications, but the efficacy of such treatment, as opposed to optimising dietary vitamin C intake, is poorly understood. This review discusses the potential roles for vitamin C in skin health and summarises the in vitro and in vivo research to date. We compare the efficacy of nutritional intake of vitamin C versus topical application, identify the areas where lack of evidence limits our understanding of the potential benefits of vitamin C on skin health, and suggest which skin properties are most likely to benefit from improved nutritional vitamin C intake.

  3. Creative cognition and dopaminergic modulation of fronto-striatal networks: Integrative review and research agenda.

    PubMed

    Boot, Nathalie; Baas, Matthijs; van Gaal, Simon; Cools, Roshan; De Dreu, Carsten K W

    2017-07-01

    Creative cognition is key to human functioning yet the underlying neurobiological mechanisms are sparsely addressed and poorly understood. Here we address the possibility that creative cognition is a function of dopaminergic modulation in fronto-striatal brain circuitries. It is proposed that (i) creative cognition benefits from both flexible and persistent processing, (ii) striatal dopamine and the integrity of the nigrostriatal dopaminergic pathway is associated with flexible processing, while (iii) prefrontal dopamine and the integrity of the mesocortical dopaminergic pathway is associated with persistent processing. We examine this possibility in light of studies linking creative ideation, divergent thinking, and creative problem-solving to polymorphisms in dopamine receptor genes, indirect markers and manipulations of the dopaminergic system, and clinical populations with dysregulated dopaminergic activity. Combined, studies suggest a functional differentiation between striatal and prefrontal dopamine: moderate (but not low or high) levels of striatal dopamine benefit creative cognition by facilitating flexible processes, and moderate (but not low or high) levels of prefrontal dopamine enable persistence-driven creativity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Structural basis of Vta1 function in the multi-vesicular body sorting pathway

    PubMed Central

    Xiao, Junyu; Xia, Hengchuan; Zhou, Jiahai; Azmi, Ishara; Davies, Brian A.; Katzmann, David J.; Xu, Zhaohui

    2009-01-01

    Summary The MVB pathway plays essential roles in several eukaryotic cellular processes. Proper function of the MVB pathway requires reversible membrane association of the ESCRTs, a process catalyzed by Vps4 ATPase. Vta1 regulates the Vps4 activity but its mechanism of action was poorly understood. We report the high-resolution crystal structures of the Did2- and Vps60-binding N-terminal domain and the Vps4-binding C-terminal domain of S. cerevisiae Vta1. The C-terminal domain also mediates Vta1 dimerization and both subunits are required for its function as a Vps4 regulator. Emerging from our analysis is a mechanism of regulation by Vta1 in which the C-terminal domain stabilizes the ATP-dependent double ring assembly of Vps4. In addition, the MIT motif containing N-terminal domain, projected by a long disordered linker, allows contact between the Vps4 disassembly machinery and the accessory ESCRT-III proteins. This provides an additional level of regulation and coordination for ESCRT-III assembly and disassembly. PMID:18194651

  5. Loneliness in psychosis: a systematic review.

    PubMed

    Lim, Michelle H; Gleeson, John F M; Alvarez-Jimenez, Mario; Penn, David L

    2018-03-01

    The aim of the review is to understand the relationships between loneliness and related psychological and social factors in individuals with psychosis. Loneliness is poorly understood in people with psychosis. Given the myriad of social challenges facing individuals with psychosis, these findings can inform psychosocial interventions that specifically target loneliness in this vulnerable group. We adhered to the PRISMA guidelines and systematically reviewed empirical studies that measured loneliness either as a main outcome or as an associated variable in individuals with psychosis. A total of ten studies examining loneliness in people diagnosed with a psychotic disorder were examined. Heterogeneity in the assessment of loneliness was found, and there were contradictory findings on the relationship between loneliness and psychotic symptomatology. In individuals with psychosis, loneliness may be influenced by psychological and social factors such as increased depression, psychosis, and anxiety, poor social support, poor quality of life, more severe internalised stigma and perceived discrimination, and low self-esteem. The relationship between loneliness and psychosis remains poorly understood due to a lack of rigorous studies. Although having strong social relationships is crucial to facilitate recovery from serious mental illness, psychosocial interventions that specifically target loneliness in individuals with psychosis are lacking and sorely needed. Interventions targeting loneliness in those with psychosis will also need to account for additional barriers associated with psychosis (e.g., social skill deficits, impoverished social networks, and negative symptoms).

  6. Very low concentrations of ethanol suppress excitatory synaptic transmission in rat visual cortex.

    PubMed

    Luong, Lucas; Bannon, Nicholas M; Redenti, Andrew; Chistiakova, Marina; Volgushev, Maxim

    2017-05-01

    Ethanol is one of the most commonly used substances in the world. Behavioral effects of alcohol are well described, however, cellular mechanisms of its action are poorly understood. There is an apparent contradiction between measurable behavioral changes produced by low concentrations of ethanol, and lack of evidence of synaptic changes at these concentrations. Furthermore, effects of ethanol on synaptic transmission in the neocortex are poorly understood. Here, we set to determine effects of ethanol on excitatory synaptic transmission in the neocortex. We show that 1-50 mm ethanol suppresses excitatory synaptic transmission to layer 2/3 pyramidal neurons in rat visual cortex in a concentration-dependent manner. To the best of our knowledge, this is the first demonstration of the effects of very low concentrations of ethanol (from 1 mm) on synaptic transmission in the neocortex. We further show that a selective antagonist of A 1 adenosine receptors, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), blocks effects of 1-10 mm ethanol on synaptic transmission. However, the reduction in excitatory postsynaptic potential amplitude by 50 mm ethanol was not affected by DPCPX. We propose that ethanol depresses excitatory synaptic transmission in the neocortex by at least two mechanisms, engaged at different concentrations: low concentrations of ethanol reduce synaptic transmission via A 1 R-dependent mechanism and involve presynaptic changes, while higher concentrations activate additional, adenosine-independent mechanisms with predominantly postsynaptic action. Involvement of adenosine signaling in mediating effects of low concentrations of ethanol may have important implications for understanding alcohol's effects on brain function, and provide a mechanistic explanation to the interaction between alcohol and caffeine. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Ancient DNA Investigation of a Medieval German Cemetery Confirms Long-Term Stability of CCR5-Δ32 Allele Frequencies in Central Europe.

    PubMed

    Bouwman, Abigail; Shved, Natallia; Akgül, Gülfirde; Rühli, Frank; Warinner, Christina

    2017-04-01

    The CCR5-Δ32 mutation present in European populations is among the most prominently debated cases of recent positive selection in humans. This allele, a 32-bp deletion that renders the T-cell CCR5 receptor nonfunctional, has important epidemiological and public health significance, as homozygous carriers are resistant to several HIV strains. However, although the function of this allele in preventing HIV infection is now well described, its human evolutionary origin is poorly understood. Initial attempts to determine the emergence of the CCR5-Δ32 allele pointed to selection during the 14th-century Black Death pandemic; however, subsequent analyses suggest that the allele rose in frequency more than 5,000 years ago, possibly through drift. Recently, three studies have identified populations predating the 14th century CE that are positive for the CCR5-Δ32 allele, supporting the claim for a more ancient origin. However, these studies also suggest poorly understood regional differences in the recent evolutionary history of the CCR5-Δ32 allele. Here a new hydrolysis-probe-based real-time PCR assay was designed to ascertain CCR5 allele frequency in 53 individuals from a 10th- to 12th-century CE church and convent complex in central Germany that predates outbreaks of the Black Death pandemic. High-confidence genotypes were obtained for 32 individuals, and results show that CCR5-Δ32 allele frequency has remained unchanged in this region of Central Europe over the last millennium, suggesting that there has been no strong positive selective pressure over this time period and confirming a more ancient origin for the allele.

  8. Insulin-like peptide genes in honey bee fat body respond differently to manipulation of social behavioral physiology.

    PubMed

    Nilsen, Kari-Anne; Ihle, Kate E; Frederick, Katy; Fondrk, M Kim; Smedal, Bente; Hartfelder, Klaus; Amdam, Gro V

    2011-05-01

    Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee's ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain.

  9. Insulin-like peptide genes in honey bee fat body respond differently to manipulation of social behavioral physiology

    PubMed Central

    Nilsen, Kari-Anne; Ihle, Kate E.; Frederick, Katy; Fondrk, M. Kim; Smedal, Bente; Hartfelder, Klaus; Amdam, Gro V.

    2011-01-01

    SUMMARY Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee's ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain. PMID:21490257

  10. Significance of the E3 ubiquitin protein UBR5 as an oncogene and a prognostic biomarker in colorectal cancer

    PubMed Central

    Xu, Xiaowen; Zhu, Yan; Guo, Aizhen; Shen, Xian; Cao, Fuao; Chang, Wenjun

    2017-01-01

    The E3 ubiquitin protein UBR5 has been implicated in the regulation of multiple biological functions and has recently emerged as a key regulator of the ubiquitin-proteasome system (UPS) in cancer. However, the clinical significance and biological function of UBR5 in colorectal cancer (CRC) are poorly understood. In this study, we compared the expression pattern of UBR5 between CRC and adjacent normal tissues and found that UBR5 expression was frequently elevated in CRC, possibly through chromosomal gains. Using three CRC patient cohorts, we found that patients with high UBR5 mRNA levels, UBR5 gene amplification, or high nuclear UBR5 protein levels had poor prognoses. Multivariate analysis showed that the alterations in UBR5 were independent predictors of CRC prognosis with the TNM stage as a confounding factor. Furthermore, knockdown of UBR5 prevented the proliferation, colony formation, migration, and invasion of CRC cells in cell culture models. An in vivo animal model further confirmed that UBR5 knockdown reduced the growth of CRC tumors. In conclusion, our study is the first to systematically investigate the clinical and biological significance of UBR5 and to conclude that an elevated UBR5 level plays an oncogenic role and may be a potential prognostic marker in CRC. PMID:29296225

  11. Pulmonary Catherization Data Correlate Poorly with Renal Function in Heart Failure.

    PubMed

    Masha, Luke; Stone, James; Stone, Danielle; Zhang, Jun; Sheng, Luo

    2018-04-10

    The mechanisms of renal dysfunction in heart failure are poorly understood. We chose to explore the relationship of cardiac filling pressures and cardiac index (CI) in relation to renal dysfunction in advanced heart failure. To determine the relationship between renal function and cardiac filling pressures using the United Network of Organ Sharing (UNOS) pulmonary artery catherization registry. Patients over the age of 18 years who were listed for single-organ heart transplantation were included. Exclusion criteria included a history of mechanical circulatory support, previous transplantation, any use of renal replacement therapy, prior history of malignancy, and cardiac surgery, amongst others. Correlations between serum creatinine (SCr) and CI, pulmonary capillary wedge pressure (PCWP), pulmonary artery systolic pressure (PASP), and pulmonary artery diastolic pressure (PADP) were assessed by Pearson correlation coefficients and simple linear regression coefficients. Pearson correlation coefficients between SCr and PCWP, PASP, and PADP were near zero with values of 0.1, 0.07, and 0.08, respectively (p < 0.0001). A weak negative correlation coefficient between SCr and CI was found (correlation coefficient, -0.045, p = 0.027). In a subgroup of young patients unlikely to have noncardiac etiologies, no significant correlations between these values were identified. These findings suggest that, as assessed by pulmonary artery catherization, none of the factors - PCWP, PASP, PADP, or CI - play a prominent role in cardiorenal syndromes. © 2018 S. Karger AG, Basel.

  12. CXCL12 Chemokine Expression Suppresses Human Pancreatic Cancer Growth and Metastasis

    PubMed Central

    Roy, Ishan; Zimmerman, Noah P.; Mackinnon, A. Craig; Tsai, Susan; Evans, Douglas B.; Dwinell, Michael B.

    2014-01-01

    Pancreatic ductal adenocarcinoma is an unsolved health problem with nearly 75% of patients diagnosed with advanced disease and an overall 5-year survival rate near 5%. Despite the strong link between mortality and malignancy, the mechanisms behind pancreatic cancer dissemination and metastasis are poorly understood. Correlative pathological and cell culture analyses suggest the chemokine receptor CXCR4 plays a biological role in pancreatic cancer progression. In vivo roles for the CXCR4 ligand CXCL12 in pancreatic cancer malignancy were investigated. CXCR4 and CXCR7 were consistently expressed in normal and cancerous pancreatic ductal epithelium, established cell lines, and patient-derived primary cancer cells. Relative to healthy exocrine ducts, CXCL12 expression was pathologically repressed in pancreatic cancer tissue specimens and patient-derived cell lines. To test the functional consequences of CXCL12 silencing, pancreatic cancer cell lines stably expressingthe chemokine were engineered. Consistent with a role for CXCL12 as a tumor suppressor, cells producing the chemokine wereincreasingly adherent and migration deficient in vitro and poorly metastatic in vivo, compared to control cells. Further, CXCL12 reintroduction significantly reduced tumor growth in vitro, with significantly smaller tumors in vivo, leading to a pronounced survival advantage in a preclinical model. Together, these data demonstrate a functional tumor suppressive role for the normal expression of CXCL12 in pancreatic ducts, regulating both tumor growth andcellulardissemination to metastatic sites. PMID:24594697

  13. NF-κB-Dependent Lymphoid Enhancer Co-option Promotes Renal Carcinoma Metastasis.

    PubMed

    Rodrigues, Paulo; Patel, Saroor A; Harewood, Louise; Olan, Ioana; Vojtasova, Erika; Syafruddin, Saiful E; Zaini, M Nazhif; Richardson, Emma K; Burge, Johanna; Warren, Anne Y; Stewart, Grant D; Saeb-Parsy, Kourosh; Samarajiwa, Shamith A; Vanharanta, Sakari

    2018-06-06

    Metastases, the spread of cancer cells to distant organs, cause the majority of cancer-related deaths. Few metastasis-specific driver mutations have been identified, suggesting aberrant gene regulation as a source of metastatic traits. However, how metastatic gene expression programs arise is poorly understood. Here, using human-derived metastasis models of renal cancer, we identify transcriptional enhancers that promote metastatic carcinoma progression. Specific enhancers and enhancer clusters are activated in metastatic cancer cell populations, and the associated gene expression patterns are predictive of poor patient outcome in clinical samples. We find that the renal cancer metastasis-associated enhancer complement consists of multiple coactivated tissue-specific enhancer modules. Specifically, we identify and functionally characterize a coregulatory enhancer cluster, activated by the renal cancer driver HIF2A and an NF-κB-driven lymphoid element, as a mediator of metastasis in vivo We conclude that oncogenic pathways can acquire metastatic phenotypes through cross-lineage co-option of physiologic epigenetic enhancer states. SIGNIFICANCE: Renal cancer is associated with significant mortality due to metastasis. We show that in metastatic renal cancer, functionally important metastasis genes are activated via co-option of gene regulatory enhancer modules from distant developmental lineages, thus providing clues to the origins of metastatic cancer. Cancer Discov; 8(7); 1-16. ©2018 AACR. ©2018 American Association for Cancer Research.

  14. Memory binding and white matter integrity in familial Alzheimer’s disease

    PubMed Central

    Saarimäki, Heini; Bastin, Mark E.; Londoño, Ana C.; Pettit, Lewis; Lopera, Francisco; Della Sala, Sergio; Abrahams, Sharon

    2015-01-01

    Binding information in short-term and long-term memory are functions sensitive to Alzheimer’s disease. They have been found to be affected in patients who meet criteria for familial Alzheimer’s disease due to the mutation E280A of the PSEN1 gene. However, only short-term memory binding has been found to be affected in asymptomatic carriers of this mutation. The neural correlates of this dissociation are poorly understood. The present study used diffusion tensor magnetic resonance imaging to investigate whether the integrity of white matter structures could offer an account. A sample of 19 patients with familial Alzheimer’s disease, 18 asymptomatic carriers and 21 non-carrier controls underwent diffusion tensor magnetic resonance imaging, neuropsychological and memory binding assessment. The short-term memory binding task required participants to detect changes across two consecutive screens displaying arrays of shapes, colours, or shape-colour bindings. The long-term memory binding task was a Paired Associates Learning Test. Performance on these tasks were entered into regression models. Relative to controls, patients with familial Alzheimer’s disease performed poorly on both memory binding tasks. Asymptomatic carriers differed from controls only in the short-term memory binding task. White matter integrity explained poor memory binding performance only in patients with familial Alzheimer’s disease. White matter water diffusion metrics from the frontal lobe accounted for poor performance on both memory binding tasks. Dissociations were found in the genu of corpus callosum which accounted for short-term memory binding impairments and in the hippocampal part of cingulum bundle which accounted for long-term memory binding deficits. The results indicate that white matter structures in the frontal and temporal lobes are vulnerable to the early stages of familial Alzheimer’s disease and their damage is associated with impairments in two memory binding functions known to be markers for Alzheimer’s disease. PMID:25762465

  15. Memory binding and white matter integrity in familial Alzheimer's disease.

    PubMed

    Parra, Mario A; Saarimäki, Heini; Bastin, Mark E; Londoño, Ana C; Pettit, Lewis; Lopera, Francisco; Della Sala, Sergio; Abrahams, Sharon

    2015-05-01

    Binding information in short-term and long-term memory are functions sensitive to Alzheimer's disease. They have been found to be affected in patients who meet criteria for familial Alzheimer's disease due to the mutation E280A of the PSEN1 gene. However, only short-term memory binding has been found to be affected in asymptomatic carriers of this mutation. The neural correlates of this dissociation are poorly understood. The present study used diffusion tensor magnetic resonance imaging to investigate whether the integrity of white matter structures could offer an account. A sample of 19 patients with familial Alzheimer's disease, 18 asymptomatic carriers and 21 non-carrier controls underwent diffusion tensor magnetic resonance imaging, neuropsychological and memory binding assessment. The short-term memory binding task required participants to detect changes across two consecutive screens displaying arrays of shapes, colours, or shape-colour bindings. The long-term memory binding task was a Paired Associates Learning Test. Performance on these tasks were entered into regression models. Relative to controls, patients with familial Alzheimer's disease performed poorly on both memory binding tasks. Asymptomatic carriers differed from controls only in the short-term memory binding task. White matter integrity explained poor memory binding performance only in patients with familial Alzheimer's disease. White matter water diffusion metrics from the frontal lobe accounted for poor performance on both memory binding tasks. Dissociations were found in the genu of corpus callosum which accounted for short-term memory binding impairments and in the hippocampal part of cingulum bundle which accounted for long-term memory binding deficits. The results indicate that white matter structures in the frontal and temporal lobes are vulnerable to the early stages of familial Alzheimer's disease and their damage is associated with impairments in two memory binding functions known to be markers for Alzheimer's disease. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Microbial community assembly and metabolic function during mammalian corpse decomposition

    USGS Publications Warehouse

    Metcalf, Jessica L; Xu, Zhenjiang Zech; Weiss, Sophie; Lax, Simon; Van Treuren, Will; Hyde, Embriette R.; Song, Se Jin; Amir, Amnon; Larsen, Peter; Sangwan, Naseer; Haarmann, Daniel; Humphrey, Greg C; Ackermann, Gail; Thompson, Luke R; Lauber, Christian; Bibat, Alexander; Nicholas, Catherine; Gebert, Matthew J; Petrosino, Joseph F; Reed, Sasha C.; Gilbert, Jack A; Lynne, Aaron M; Bucheli, Sibyl R; Carter, David O; Knight, Rob

    2016-01-01

    Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in low abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations.

  17. Optical metabolic imaging for monitoring tracheal health

    NASA Astrophysics Data System (ADS)

    Sharick, Joe T.; Gil, Daniel A.; Choma, Michael A.; Skala, Melissa C.

    2016-04-01

    The health of the tracheal mucosa and submucosa is a vital yet poorly understood component of critical care medicine, and a minimally-invasive method is needed to monitor tracheal health in patients. Of particular interest are the ciliated cells of the tracheal epithelium that move mucus away from the lungs and prevent respiratory infection. Optical metabolic imaging (OMI) allows cellular-level measurement of metabolism, and is a compelling method for assessing tracheal health because ciliary motor proteins require ATP to function. In this pilot study, we apply multiphoton imaging of the fluorescence intensities and lifetimes of metabolic co-enzymes NAD(P)H and FAD to the mucosa and submucosa of ex vivo mouse trachea. We demonstrate the feasibility and potential diagnostic utility of these measurements for assessing tracheal health and pathophysiology at the single-cell level.

  18. Recombinant human dihydroxyacetonephosphate acyl-transferase characterization as an integral monotopic membrane protein.

    PubMed

    Piano, Valentina; Nenci, Simone; Magnani, Francesca; Aliverti, Alessandro; Mattevi, Andrea

    2016-12-02

    Although the precise functions of ether phospholipids are still poorly understood, significant alterations in their physiological levels are associated either to inherited disorders or to aggressive metastatic cancer. The essential precursor, alkyl-dihydroxyacetone phosphate (DHAP), for all ether phospholipids species is synthetized in two consecutive reactions performed by two enzymes sitting on the inner side of the peroxisomal membrane. Here, we report the characterization of the recombinant human DHAP acyl-transferase, which performs the first step in alkyl-DHAP synthesis. By exploring several expression systems and designing a number of constructs, we were able to purify the enzyme in its active form and we found that it is tightly bound to the membrane through the N-terminal residues. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Silencing of ATP11B by RNAi-Induced Changes in Neural Stem Cell Morphology.

    PubMed

    Wang, Jiao; Wang, Qian; Zhou, Fangfang; Wang, Dong; Wen, Tieqiao

    2017-01-01

    RNA interference (RNAi) technology is one of the main research tools in many studies of neural stem cells. This study describes effects of ATP11B on the morphology change of neural stem cells by using RNAi. ATP11B belongs to P4-ATPases family, which is preferential translocate phosphatidylserine of cell membrane. Although it exists in neural stem cells, its physiological function is poorly understood. By using RNAi technology to downregulate expression of ATP11B, we found distinct morphological changes in neural stem cells. More important, psiRNA-ATP11B-transfected cells displayed short neurite outgrowth compared to the control cells. These data strongly suggest that ATP11B plays a key role in the morphological change of neural stem cells.

  20. Emergency warning for people with disabilities.

    PubMed

    Putkovich, Kenneth

    2013-01-01

    The intent of this article is to assess the current state of Emergency Warning capabilities in the United States and make recommendations on what needs to be done to cost effectively establish a National Emergency Warning System to best serve the people of the United States, including those with disabilities. As part of this assessment, terminology will be defined, existing systems will be examined, critical needs and functions will be explained, and recommendations made for a system to deliver emergency messages to those people immediately at risk from natural and human-caused disasters in a timely and effective manner, regardless of location or situational circumstance. The assessment will include the needs and available technologies for delivering emergency warnings to people with disabilities, which are generally little understood, poorly addressed, and often ignored.

  1. The molecular basis of plant cell wall extension.

    PubMed

    Darley, C P; Forrester, A M; McQueen-Mason, S J

    2001-09-01

    In all terrestrial and aquatic plant species the primary cell wall is a dynamic structure, adjusted to fulfil a diversity of functions. However a universal property is its considerable mechanical and tensile strength, whilst being flexible enough to accommodate turgor and allow for cell elongation. The wall is a composite material consisting of a framework of cellulose microfibrils embedded in a matrix of non-cellulosic polysaccharides, interlaced with structural proteins and pectic polymers. The assembly and modification of these polymers within the growing cell wall has, until recently, been poorly understood. Advances in cytological and genetic techniques have thrown light on these processes and have led to the discovery of a number of wall-modifying enzymes which, either directly or indirectly, play a role in the molecular basis of cell wall expansion.

  2. Microbial community assembly and metabolic function during mammalian corpse decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metcalf, J. L.; Xu, Z. Z.; Weiss, S.

    2015-12-10

    Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in lowmore » abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations.« less

  3. p53 functions as a cell cycle control protein in osteosarcomas.

    PubMed

    Diller, L; Kassel, J; Nelson, C E; Gryka, M A; Litwak, G; Gebhardt, M; Bressac, B; Ozturk, M; Baker, S J; Vogelstein, B

    1990-11-01

    Mutations in the p53 gene have been associated with a wide range of human tumors, including osteosarcomas. Although it has been shown that wild-type p53 can block the ability of E1a and ras to cotransform primary rodent cells, it is poorly understood why inactivation of the p53 gene is important for tumor formation. We show that overexpression of the gene encoding wild-type p53 blocks the growth of osteosarcoma cells. The growth arrest was determined to be due to an inability of the transfected cells to progress into S phase. This suggests that the role of the p53 gene as an antioncogene may be in controlling the cell cycle in a fashion analogous to the check-point control genes in Saccharomyces cerevisiae.

  4. CoMIC, the hidden dynamics of mitochondrial inner compartments

    PubMed Central

    Cho, Bongki; Sun, Woong

    2017-01-01

    Mitochondria have evolutionarily, functionally and structurally distinct outer- (OMM) and inner-membranes (IMM). Thus, mitochondrial morphology is controlled by independent but coordinated activity of fission and fusion of the OMM and IMM. Constriction and division of the OMM are mediated by endocytosis-like machineries, which include dynamin-related protein 1 with additional cytosolic vesicle scissoring machineries such as actin filament and Dynamin 2. However, structural alteration of the IMM during mitochondrial division has been poorly understood. Recently, we found that the IMM and the inner compartments undergo transient and reversible constriction prior to the OMM division, which we termed CoMIC, Constriction of Mitochondrial Inner Compartment. In this short review, we further discuss the evolutionary perspective and the regulatory mechanism of CoMIC during mitochondrial division. PMID:28803609

  5. CoMIC, the hidden dynamics of mitochondrial inner compartments.

    PubMed

    Cho, Bongki; Sun, Woong

    2017-12-01

    Mitochondria have evolutionarily, functionally and structurally distinct outer- (OMM) and inner-membranes (IMM). Thus, mitochondrial morphology is controlled by independent but coordinated activity of fission and fusion of the OMM and IMM. Constriction and division of the OMM are mediated by endocytosis-like machineries, which include dynamin-related protein 1 with additional cytosolic vesicle scissoring machineries such as actin filament and Dynamin 2. However, structural alteration of the IMM during mitochondrial division has been poorly understood. Recently, we found that the IMM and the inner compartments undergo transient and reversible constriction prior to the OMM division, which we termed CoMIC, Constriction of Mitochondrial Inner Compartment. In this short review, we further discuss the evolutionary perspective and the regulatory mechanism of CoMIC during mitochondrial division. [BMB Reports 2017; 50(12): 597-598].

  6. Obesity and heart failure as a mediator of the cerebrorenal interaction.

    PubMed

    Jindal, Ankur; Whaley-Connell, Adam; Sowers, James R

    2013-01-01

    The obesity epidemic is contributing substantially to the burden of cardiovascular disease including heart disease and congestive heart failure, in the United States and the rest of the world. Overnutrition as a driver of obesity, promotes alterations in fatty acid, lipid, and glucose metabolism that influence myocardial function and progression of heart failure from diastolic to systolic failure. The association of progressive heart failure and progressive chronic kidney disease is well documented and often referred to as the cardiorenal syndrome, as well as a prognosticator for cerebrovascular disease (e.g. stroke). Whether the relationship between obesity, heart disease/failure and risk for chronic kidney disease and stroke is direct or a confluence of risk factors is poorly understood. Copyright © 2013 S. Karger AG, Basel.

  7. Loss of l(3)mbt leads to acquisition of the ping-pong cycle in Drosophila ovarian somatic cells

    PubMed Central

    Sumiyoshi, Tetsutaro; Sato, Kaoru; Yamamoto, Hitomi; Iwasaki, Yuka W.; Siomi, Haruhiko; Siomi, Mikiko C.

    2016-01-01

    In Drosophila germ cells, PIWI-interacting RNAs (piRNAs) are amplified through a PIWI slicer-dependent feed-forward loop termed the ping-pong cycle, yielding secondary piRNAs. However, the detailed mechanism remains poorly understood, largely because an ex vivo model system amenable to biochemical analyses has not been available. Here, we show that CRISPR-mediated loss of function of lethal (3) malignant brain tumor [l(3)mbt] leads to ectopic activation of the germ-specific ping-pong cycle in ovarian somatic cells. Perinuclear foci resembling nuage, the ping-pong center, appeared following l(3)mbt mutation. This activation of the ping-pong machinery in cultured cells will greatly facilitate elucidation of the mechanism underlying secondary piRNA biogenesis in Drosophila. PMID:27474440

  8. Growth of language-related brain areas after foreign language learning.

    PubMed

    Mårtensson, Johan; Eriksson, Johan; Bodammer, Nils Christian; Lindgren, Magnus; Johansson, Mikael; Nyberg, Lars; Lövdén, Martin

    2012-10-15

    The influence of adult foreign-language acquisition on human brain organization is poorly understood. We studied cortical thickness and hippocampal volumes of conscript interpreters before and after three months of intense language studies. Results revealed increases in hippocampus volume and in cortical thickness of the left middle frontal gyrus, inferior frontal gyrus, and superior temporal gyrus for interpreters relative to controls. The right hippocampus and the left superior temporal gyrus were structurally more malleable in interpreters acquiring higher proficiency in the foreign language. Interpreters struggling relatively more to master the language displayed larger gray matter increases in the middle frontal gyrus. These findings confirm structural changes in brain regions known to serve language functions during foreign-language acquisition. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Modeling and Deorphanization of Orphan GPCRs.

    PubMed

    Diaz, Constantino; Angelloz-Nicoud, Patricia; Pihan, Emilie

    2018-01-01

    Despite tremendous efforts, approximately 120 GPCRs remain orphan. Their physiological functions and their potential roles in diseases are poorly understood. Orphan GPCRs are extremely important because they may provide novel therapeutic targets for unmet medical needs. As a complement to experimental approaches, molecular modeling and virtual screening are efficient techniques to discover synthetic surrogate ligands which can help to elucidate the role of oGPCRs. Constitutively activated mutants and recently published active structures of GPCRs provide stimulating opportunities for building active molecular models for oGPCRs and identifying activators using virtual screening of compound libraries. We describe the molecular modeling and virtual screening process we have applied in the discovery of surrogate ligands, and provide examples for CCKA, a simulated oGPCR, and for two oGPCRs, GPR52 and GPR34.

  10. The computational worm: spatial orientation and its neuronal basis in C. elegans.

    PubMed

    Lockery, Shawn R

    2011-10-01

    Spatial orientation behaviors in animals are fundamental for survival but poorly understood at the neuronal level. The nematode Caenorhabditis elegans orients to a wide range of stimuli and has a numerically small and well-described nervous system making it advantageous for investigating the mechanisms of spatial orientation. Recent work by the C. elegans research community has identified essential computational elements of the neural circuits underlying two orientation strategies that operate in five different sensory modalities. Analysis of these circuits reveals novel motifs including simple circuits for computing temporal derivatives of sensory input and for integrating sensory input with behavioral state to generate adaptive behavior. These motifs constitute hypotheses concerning the identity and functionality of circuits controlling spatial orientation in higher organisms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow, N.D.; Wang, G.; Volkow, N.D.

    A major challenge in understanding substance-use disorders lies in uncovering why some individuals become addicted when exposed to drugs, whereas others do not. Although genetic, developmental, and environmental factors are recognized as major contributors to a person's risk of becoming addicted, the neurobiological processes that underlie this vulnerability are still poorly understood. Imaging studies suggest that individual variations in key dopamine-modulated brain circuits, including circuits involved in reward, memory, executive function, and motivation, contribute to some of the differences in addiction vulnerability. A better understanding of the main circuits affected by chronic drug use and the influence of social stressors,more » developmental trajectories, and genetic background on these circuits is bound to lead to a better understanding of addiction and to more effective strategies for the prevention and treatment of substance-use disorders.« less

  12. Cellular and molecular pathways of extremely-low-frequency electromagnetic field interactions with living systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenforde, T.S.

    1992-06-01

    There is growing evidence that environmental electric and magnetic fields in the extremely-low-frequency (ELF) band below 300 Hz can influence biological functions by mechanisms that are only poorly understood at the present time. The primary objectives of this paper are to review the physical properties of ELF fields, their interactions with living systems at the tissue, cellular, and subcellular levels, and the key role of cell membranes ;in the transduction of signals from imposed ELF fields. Topics of discussion include signal-to-noise ratios for single cells and cell aggregates, resonance phenomena involving a combination of static and ELF magnetic fields, andmore » the possible influence of ELF fields on molecular signaling pathways that involve membrane receptors and cytoplasmic second messengers.« less

  13. Deficiency of Huntingtin Has Pleiotropic Effects in the Social Amoeba Dictyostelium discoideum

    PubMed Central

    Myre, Michael A.; Lumsden, Amanda L.; Thompson, Morgan N.; Wasco, Wilma; MacDonald, Marcy E.; Gusella, James F.

    2011-01-01

    Huntingtin is a large HEAT repeat protein first identified in humans, where a polyglutamine tract expansion near the amino terminus causes a gain-of-function mechanism that leads to selective neuronal loss in Huntington's disease (HD). Genetic evidence in humans and knock-in mouse models suggests that this gain-of-function involves an increase or deregulation of some aspect of huntingtin's normal function(s), which remains poorly understood. As huntingtin shows evolutionary conservation, a powerful approach to discovering its normal biochemical role(s) is to study the effects caused by its deficiency in a model organism with a short life-cycle that comprises both cellular and multicellular developmental stages. To facilitate studies aimed at detailed knowledge of huntingtin's normal function(s), we generated a null mutant of hd, the HD ortholog in Dictyostelium discoideum. Dictyostelium cells lacking endogenous huntingtin were viable but during development did not exhibit the typical polarized morphology of Dictyostelium cells, streamed poorly to form aggregates by accretion rather than chemotaxis, showed disorganized F-actin staining, exhibited extreme sensitivity to hypoosmotic stress, and failed to form EDTA-resistant cell–cell contacts. Surprisingly, chemotactic streaming could be rescued in the presence of the bivalent cations Ca2+ or Mg2+ but not pulses of cAMP. Although hd − cells completed development, it was delayed and proceeded asynchronously, producing small fruiting bodies with round, defective spores that germinated spontaneously within a glassy sorus. When developed as chimeras with wild-type cells, hd − cells failed to populate the pre-spore region of the slug. In Dictyostelium, huntingtin deficiency is compatible with survival of the organism but renders cells sensitive to low osmolarity, which produces pleiotropic cell autonomous defects that affect cAMP signaling and as a consequence development. Thus, Dictyostelium provides a novel haploid organism model for genetic, cell biological, and biochemical studies to delineate the functions of the HD protein. PMID:21552328

  14. Continuous-variable quantum key distribution protocols over noisy channels.

    PubMed

    García-Patrón, Raúl; Cerf, Nicolas J

    2009-04-03

    A continuous-variable quantum key distribution protocol based on squeezed states and heterodyne detection is introduced and shown to attain higher secret key rates over a noisy line than any other one-way Gaussian protocol. This increased resistance to channel noise can be understood as resulting from purposely adding noise to the signal that is converted into the secret key. This notion of noise-enhanced tolerance to noise also provides a better physical insight into the poorly understood discrepancies between the previously defined families of Gaussian protocols.

  15. Altered functional connectivity of the language network in ASD: Role of classical language areas and cerebellum☆

    PubMed Central

    Verly, Marjolein; Verhoeven, Judith; Zink, Inge; Mantini, Dante; Peeters, Ronald; Deprez, Sabine; Emsell, Louise; Boets, Bart; Noens, Ilse; Steyaert, Jean; Lagae, Lieven; De Cock, Paul; Rommel, Nathalie; Sunaert, Stefan

    2014-01-01

    The development of language, social interaction and communicative skills is remarkably different in the child with autism spectrum disorder (ASD). Atypical brain connectivity has frequently been reported in this patient population. However, the neural correlates underlying their disrupted language development and functioning are still poorly understood. Using resting state fMRI, we investigated the functional connectivity properties of the language network in a group of ASD patients with clear comorbid language impairment (ASD-LI; N = 19) and compared them to the language related connectivity properties of 23 age-matched typically developing children. A verb generation task was used to determine language components commonly active in both groups. Eight joint language components were identified and subsequently used as seeds in a resting state analysis. Interestingly, both the interregional and the seed-based whole brain connectivity analysis showed preserved connectivity between the classical intrahemispheric language centers, Wernicke's and Broca's areas. In contrast however, a marked loss of functional connectivity was found between the right cerebellar region and the supratentorial regulatory language areas. Also, the connectivity between the interhemispheric Broca regions and modulatory control dorsolateral prefrontal region was found to be decreased. This disruption of normal modulatory control and automation function by the cerebellum may underlie the abnormal language function in children with ASD-LI. PMID:24567909

  16. The role of genes, intelligence, personality, and social engagement in cognitive performance in Klinefelter syndrome.

    PubMed

    Skakkebæk, Anne; Moore, Philip J; Pedersen, Anders Degn; Bojesen, Anders; Kristensen, Maria Krarup; Fedder, Jens; Laurberg, Peter; Hertz, Jens Michael; Østergaard, John Rosendahl; Wallentin, Mikkel; Gravholt, Claus Højbjerg

    2017-03-01

    The determinants of cognitive deficits among individuals with Klinefelter syndrome (KS) are not well understood. This study was conducted to assess the impact of general intelligence, personality, and social engagement on cognitive performance among patients with KS and a group of controls matched for age and years of education. Sixty-nine patients with KS and 69 controls were assessed in terms of IQ, NEO personality inventory, the Autism Spectrum Quotient (AQ) scale, and measures of cognitive performance reflecting working memory and executive function. Patients with KS performed more poorly on memory and executive-function tasks. Patients with KS also exhibited greater neuroticism and less extraversion, openness, and conscientiousness than controls. Memory deficits among patients with KS were associated with lower intelligence, while diminished executive functioning was mediated by both lower intelligence and less social engagement. Our results suggest that among patients with KS, memory deficits are principally a function of lower general intelligence, while executive-function deficits are associated with both lower intelligence and poorer social skills. This suggests a potential influence of social engagement on executive cognitive functioning (and/or vice-versa) among individuals with KS, and perhaps those with other genetic disorders. Future longitudinal research would be important to further clarify this and other issues discussed in this research.

  17. Expression of checkpoint molecules on myeloid-derived suppressor cells.

    PubMed

    Ballbach, Marlene; Dannert, Angelika; Singh, Anurag; Siegmund, Darina M; Handgretinger, Rupert; Piali, Luca; Rieber, Nikolaus; Hartl, Dominik

    2017-12-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population expanded in cancer, infection and autoimmunity capable of suppressing T-cell functions. Checkpoint inhibitors have emerged as a key therapeutic strategy in immune-oncology. While checkpoint molecules were initially associated with T cell functions, recent evidence suggests a broader expression and function in innate myeloid cells. Previous studies provided first evidence for a potential role for checkpoints on MDSCs, yet the human relevance remained poorly understood. Therefore, we investigated the expression and functional relevance of checkpoint molecules in human MDSC-T-cell interactions. Our studies demonstrate that programmed death-ligand 1 (PD-L1) is expressed on granulocytic MDSCs upon co-culture with T cells. Transwell experiments showed that cell-to-cell contact was required for MDSC-T-cell interactions and antibody blocking studies showed that targeting PD-L1 partially impaired MDSC-mediated T-cell suppression. Collectively, these studies suggest a role for PD-L1 in human MDSC function and thereby expand the functionality of this checkpoint beyond T cells, which could pave the way for further understanding and therapeutic targeting of PD-1/PD-L1 in innate immune-mediated diseases. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  18. Integration of biological data by kernels on graph nodes allows prediction of new genes involved in mitotic chromosome condensation

    PubMed Central

    Hériché, Jean-Karim; Lees, Jon G.; Morilla, Ian; Walter, Thomas; Petrova, Boryana; Roberti, M. Julia; Hossain, M. Julius; Adler, Priit; Fernández, José M.; Krallinger, Martin; Haering, Christian H.; Vilo, Jaak; Valencia, Alfonso; Ranea, Juan A.; Orengo, Christine; Ellenberg, Jan

    2014-01-01

    The advent of genome-wide RNA interference (RNAi)–based screens puts us in the position to identify genes for all functions human cells carry out. However, for many functions, assay complexity and cost make genome-scale knockdown experiments impossible. Methods to predict genes required for cell functions are therefore needed to focus RNAi screens from the whole genome on the most likely candidates. Although different bioinformatics tools for gene function prediction exist, they lack experimental validation and are therefore rarely used by experimentalists. To address this, we developed an effective computational gene selection strategy that represents public data about genes as graphs and then analyzes these graphs using kernels on graph nodes to predict functional relationships. To demonstrate its performance, we predicted human genes required for a poorly understood cellular function—mitotic chromosome condensation—and experimentally validated the top 100 candidates with a focused RNAi screen by automated microscopy. Quantitative analysis of the images demonstrated that the candidates were indeed strongly enriched in condensation genes, including the discovery of several new factors. By combining bioinformatics prediction with experimental validation, our study shows that kernels on graph nodes are powerful tools to integrate public biological data and predict genes involved in cellular functions of interest. PMID:24943848

  19. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    NASA Astrophysics Data System (ADS)

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.

  20. Decreased Cerebellar-Orbitofrontal Connectivity Correlates with Stuttering Severity: Whole-Brain Functional and Structural Connectivity Associations with Persistent Developmental Stuttering

    PubMed Central

    Sitek, Kevin R.; Cai, Shanqing; Beal, Deryk S.; Perkell, Joseph S.; Guenther, Frank H.; Ghosh, Satrajit S.

    2016-01-01

    Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had stronger functional connectivity between cerebellum and thalamus than people with fluent speech, while stutterers with the least severe symptoms had greater functional connectivity between left cerebellum and left orbitofrontal cortex (OFC). Additionally, people who stutter had decreased functional and white matter connectivity among the perisylvian auditory, motor, and speech planning regions compared to typical speakers, but greater functional connectivity between the right basal ganglia and bilateral temporal auditory regions. Structurally, disfluency ratings were negatively correlated with white matter connections to left perisylvian regions and to the brain stem. Overall, we found increased connectivity among subcortical and reward network structures in people who stutter compared to controls. These connections were negatively correlated with stuttering severity, suggesting the involvement of cerebellum and OFC may underlie successful compensatory mechanisms by more fluent stutterers. PMID:27199712

  1. Convergent and divergent functional connectivity patterns in patients with long-term left-sided and right-sided deafness.

    PubMed

    Zhang, Yanyang; Mao, Zhiqi; Feng, Shiyu; Wang, Wenxin; Zhang, Jun; Yu, Xinguang

    2018-02-05

    Cortical reorganization may be induced in long-term single-sided deafness (SD); however, the influence of the deafness side on the functional changes remains poorly understood. Here, we investigated whole-brain functional connectivity patterns in long-term SD patients. The normalized voxel-based functional connectivity strength (FCS) was determined using resting-state fMRI (rs-fMRI) in 17 left-sided deafness (LD) patients, 21 right-sided deafness (RD) patients and 21 healthy controls (HCs). Relative to the HCs, both the LD and RD patients exhibited a reduction in the FCS in the ipsilateral visual cortex. However, compared to that in the HCs, a significantly higher FCS was observed in some regions in the salience and default-mode networks in the RD patients, but this FCS alternation pattern was not observed in the LD patients. A direct comparison of the two patient groups revealed a significantly increased FCS in the supplemental motor area in the LD group. Altogether, the long-term SD groups with LD and RD exhibited convergent and divergent functional connectivity patterns in whole-brain networks, providing promising evidence that the functional changes in long-term SD are highly deafness-side-dependent. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Musical Experience, Auditory Perception and Reading-Related Skills in Children

    PubMed Central

    Banai, Karen; Ahissar, Merav

    2013-01-01

    Background The relationships between auditory processing and reading-related skills remain poorly understood despite intensive research. Here we focus on the potential role of musical experience as a confounding factor. Specifically we ask whether the pattern of correlations between auditory and reading related skills differ between children with different amounts of musical experience. Methodology/Principal Findings Third grade children with various degrees of musical experience were tested on a battery of auditory processing and reading related tasks. Very poor auditory thresholds and poor memory skills were abundant only among children with no musical education. In this population, indices of auditory processing (frequency and interval discrimination thresholds) were significantly correlated with and accounted for up to 13% of the variance in reading related skills. Among children with more than one year of musical training, auditory processing indices were better, yet reading related skills were not correlated with them. A potential interpretation for the reduction in the correlations might be that auditory and reading-related skills improve at different rates as a function of musical training. Conclusions/Significance Participants’ previous musical training, which is typically ignored in studies assessing the relations between auditory and reading related skills, should be considered. Very poor auditory and memory skills are rare among children with even a short period of musical training, suggesting musical training could have an impact on both. The lack of correlation in the musically trained population suggests that a short period of musical training does not enhance reading related skills of individuals with within-normal auditory processing skills. Further studies are required to determine whether the associations between musical training, auditory processing and memory are indeed causal or whether children with poor auditory and memory skills are less likely to study music and if so, why this is the case. PMID:24086654

  3. Cryptic iridescence in a fossil weevil generated by single diamond photonic crystals

    PubMed Central

    McNamara, Maria E.; Saranathan, Vinod; Locatelli, Emma R.; Noh, Heeso; Briggs, Derek E. G.; Orr, Patrick J.; Cao, Hui

    2014-01-01

    Nature's most spectacular colours originate in integumentary tissue architectures that scatter light via nanoscale modulations of the refractive index. The most intricate biophotonic nanostructures are three-dimensional crystals with opal, single diamond or single gyroid lattices. Despite intense interest in their optical and structural properties, the evolution of such nanostructures is poorly understood, due in part to a lack of data from the fossil record. Here, we report preservation of single diamond (Fd-3m) three-dimensional photonic crystals in scales of a 735 000 year old specimen of the brown Nearctic weevil Hypera diversipunctata from Gold Run, Canada, and in extant conspecifics. The preserved red to green structural colours exhibit near-field brilliancy yet are inconspicuous from afar; they most likely had cryptic functions in substrate matching. The discovery of pristine fossil examples indicates that the fossil record is likely to yield further data on the evolution of three-dimensional photonic nanostructures and their biological functions. PMID:25185581

  4. LPCAT1 controls phosphate homeostasis in a zinc-dependent manner

    PubMed Central

    Kisko, Mushtak; Bouain, Nadia; Safi, Alaeddine; Medici, Anna; Akkers, Robert C; Secco, David; Fouret, Gilles; Krouk, Gabriel; Aarts, Mark GM; Busch, Wolfgang

    2018-01-01

    All living organisms require a variety of essential elements for their basic biological functions. While the homeostasis of nutrients is highly intertwined, the molecular and genetic mechanisms of these dependencies remain poorly understood. Here, we report a discovery of a molecular pathway that controls phosphate (Pi) accumulation in plants under Zn deficiency. Using genome-wide association studies, we first identified allelic variation of the Lyso-PhosphatidylCholine (PC) AcylTransferase 1 (LPCAT1) gene as the key determinant of shoot Pi accumulation under Zn deficiency. We then show that regulatory variation at the LPCAT1 locus contributes significantly to this natural variation and we further demonstrate that the regulation of LPCAT1 expression involves bZIP23 TF, for which we identified a new binding site sequence. Finally, we show that in Zn deficient conditions loss of function of LPCAT1 increases the phospholipid Lyso-PhosphatidylCholine/PhosphatidylCholine ratio, the expression of the Pi transporter PHT1;1, and that this leads to shoot Pi accumulation. PMID:29453864

  5. Transcriptional Profiling of Hypoxic Neural Stem Cells Identifies Calcineurin-NFATc4 Signaling as a Major Regulator of Neural Stem Cell Biology

    PubMed Central

    Moreno, Marta; Fernández, Virginia; Monllau, Josep M.; Borrell, Víctor; Lerin, Carles; de la Iglesia, Núria

    2015-01-01

    Summary Neural stem cells (NSCs) reside in a hypoxic microenvironment within the brain. However, the crucial transcription factors (TFs) that regulate NSC biology under physiologic hypoxia are poorly understood. Here we have performed gene set enrichment analysis (GSEA) of microarray datasets from hypoxic versus normoxic NSCs with the aim of identifying pathways and TFs that are activated under oxygen concentrations mimicking normal brain tissue microenvironment. Integration of TF target (TFT) and pathway enrichment analysis identified the calcium-regulated TF NFATc4 as a major candidate to regulate hypoxic NSC functions. Nfatc4 expression was coordinately upregulated by top hypoxia-activated TFs, while NFATc4 target genes were enriched in hypoxic NSCs. Loss-of-function analyses further revealed that the calcineurin-NFATc4 signaling axis acts as a major regulator of NSC self-renewal and proliferation in vitro and in vivo by promoting the expression of TFs, including Id2, that contribute to the maintenance of the NSC state. PMID:26235896

  6. Design of crystal-like aperiodic solids with selective disorder–phonon coupling

    PubMed Central

    Overy, Alistair R.; Cairns, Andrew B.; Cliffe, Matthew J.; Simonov, Arkadiy; Tucker, Matthew G.; Goodwin, Andrew L.

    2016-01-01

    Functional materials design normally focuses on structurally ordered systems because disorder is considered detrimental to many functional properties. Here we challenge this paradigm by showing that particular types of strongly correlated disorder can give rise to useful characteristics that are inaccessible to ordered states. A judicious combination of low-symmetry building unit and high-symmetry topological template leads to aperiodic ‘procrystalline' solids that harbour this type of disorder. We identify key classes of procrystalline states together with their characteristic diffraction behaviour, and establish mappings onto known and target materials. The strongly correlated disorder found in these systems is associated with specific sets of modulation periodicities distributed throughout the Brillouin zone. Lattice dynamical calculations reveal selective disorder-driven phonon broadening that resembles the poorly understood ‘waterfall' effect observed in relaxor ferroelectrics. This property of procrystalline solids suggests a mechanism by which strongly correlated topological disorder might allow independently optimized thermal and electronic transport behaviour, such as required for high-performance thermoelectrics. PMID:26842772

  7. The polycystins are modulated by cellular oxygen-sensing pathways and regulate mitochondrial function

    PubMed Central

    Padovano, Valeria; Kuo, Ivana Y.; Stavola, Lindsey K.; Aerni, Hans R.; Flaherty, Benjamin J.; Chapin, Hannah C.; Ma, Ming; Somlo, Stefan; Boletta, Alessandra; Ehrlich, Barbara E.; Rinehart, Jesse; Caplan, Michael J.

    2017-01-01

    Autosomal dominant polycystic kidney disease is caused by mutations in the genes encoding polycystin-1 (PC1) and polycystin-2 (PC2), which form an ion channel complex that may mediate ciliary sensory processes and regulate endoplasmic reticulum (ER) Ca2+ release. Loss of PC1 expression profoundly alters cellular energy metabolism. The mechanisms that control the trafficking of PC1 and PC2, as well as their broader physiological roles, are poorly understood. We found that O2 levels regulate the subcellular localization and channel activity of the polycystin complex through its interaction with the O2-sensing prolyl hydroxylase domain containing protein EGLN3 (or PHD3), which hydroxylates PC1. Moreover, cells lacking PC1 expression use less O2 and show less mitochondrial Ca2+ uptake in response to bradykinin-induced ER Ca2+ release, indicating that PC1 can modulate mitochondrial function. These data suggest a novel role for the polycystins in sensing and responding to cellular O2 levels. PMID:27881662

  8. Return of visual function after bilateral visual loss following flow diversion embolization of a giant ophthalmic aneurysm due to both reduction in mass effect and reduction in aneurysm pulsation.

    PubMed

    Patel, Saharsh; Fargen, Kyle M; Peters, Keith; Krall, Peter; Samy, Hazem; Hoh, Brian L

    2014-01-10

    Large and giant paraclinoid aneurysms are challenging to treat by either surgical or endovascular means. Visual dysfunction secondary to optic nerve compression and its relationship with aneurysm size, pulsation and thrombosis is poorly understood. We present a patient with a giant paraclinoid aneurysm resulting in bilateral visual loss that worsened following placement of a Pipeline Embolization Device and adjunctive coiling. Visual worsening occurred in conjunction with aneurysm thrombosis, increase in maximal aneurysm diameter and new adjacent edema. Her visual function spontaneously improved in a delayed fashion to better than pre-procedure, in conjunction with reduced aneurysmal mass effect, size and pulsation artifact on MRI. This report documents detailed ophthalmologic and MRI evidence for the role of thrombosis, aneurysm mass effect and aneurysm pulsation as causative etiologies for both cranial nerve dysfunction and delayed resolution following flow diversion treatment of large cerebral aneurysms.

  9. Functional Imaging of Audio-Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences?

    PubMed

    Rinne, Teemu; Muers, Ross S; Salo, Emma; Slater, Heather; Petkov, Christopher I

    2017-06-01

    The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio-visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio-visual selective attention modulates the primate brain, identify sources for "lost" attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals. © The Author 2017. Published by Oxford University Press.

  10. Functional Imaging of Audio–Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences?

    PubMed Central

    Muers, Ross S.; Salo, Emma; Slater, Heather; Petkov, Christopher I.

    2017-01-01

    Abstract The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio–visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio–visual selective attention modulates the primate brain, identify sources for “lost” attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals. PMID:28419201

  11. Altered Escherichia coli membrane protein assembly machinery allows proper membrane assembly of eukaryotic protein vitamin K epoxide reductase.

    PubMed

    Hatahet, Feras; Blazyk, Jessica L; Martineau, Eugenie; Mandela, Eric; Zhao, Yongxin; Campbell, Robert E; Beckwith, Jonathan; Boyd, Dana

    2015-12-08

    Functional overexpression of polytopic membrane proteins, particularly when in a foreign host, is often a challenging task. Factors that negatively affect such processes are poorly understood. Using the mammalian membrane protein vitamin K epoxide reductase (VKORc1) as a reporter, we describe a genetic selection approach allowing the isolation of Escherichia coli mutants capable of functionally expressing this blood-coagulation enzyme. The isolated mutants map to components of membrane protein assembly and quality control proteins YidC and HslV. We show that changes in the VKORc1 sequence and in the YidC hydrophilic groove along with the inactivation of HslV promote VKORc1 activity and dramatically increase its expression level. We hypothesize that such changes correct for mismatches in the membrane topogenic signals between E. coli and eukaryotic cells guiding proper membrane integration. Furthermore, the obtained mutants allow the study of VKORc1 reaction mechanisms, inhibition by warfarin, and the high-throughput screening for potential anticoagulants.

  12. Altered Escherichia coli membrane protein assembly machinery allows proper membrane assembly of eukaryotic protein vitamin K epoxide reductase

    PubMed Central

    Hatahet, Feras; Blazyk, Jessica L.; Martineau, Eugenie; Mandela, Eric; Zhao, Yongxin; Campbell, Robert E.; Beckwith, Jonathan; Boyd, Dana

    2015-01-01

    Functional overexpression of polytopic membrane proteins, particularly when in a foreign host, is often a challenging task. Factors that negatively affect such processes are poorly understood. Using the mammalian membrane protein vitamin K epoxide reductase (VKORc1) as a reporter, we describe a genetic selection approach allowing the isolation of Escherichia coli mutants capable of functionally expressing this blood-coagulation enzyme. The isolated mutants map to components of membrane protein assembly and quality control proteins YidC and HslV. We show that changes in the VKORc1 sequence and in the YidC hydrophilic groove along with the inactivation of HslV promote VKORc1 activity and dramatically increase its expression level. We hypothesize that such changes correct for mismatches in the membrane topogenic signals between E. coli and eukaryotic cells guiding proper membrane integration. Furthermore, the obtained mutants allow the study of VKORc1 reaction mechanisms, inhibition by warfarin, and the high-throughput screening for potential anticoagulants. PMID:26598701

  13. Extracellular Signal-regulated Kinase and Glycogen Synthase Kinase 3β Regulate Gephyrin Postsynaptic Aggregation and GABAergic Synaptic Function in a Calpain-dependent Mechanism*

    PubMed Central

    Tyagarajan, Shiva K.; Ghosh, Himanish; Yévenes, Gonzalo E.; Imanishi, Susumu Y.; Zeilhofer, Hanns Ulrich; Gerrits, Bertran; Fritschy, Jean-Marc

    2013-01-01

    Molecular mechanisms of plasticity at GABAergic synapses are currently poorly understood. To identify signaling cascades that converge onto GABAergic postsynaptic density proteins, we performed MS analysis using gephyrin isolated from rat brain and identified multiple novel phosphorylation and acetylation residues on gephyrin. Here, we report the characterization of one of these phosphoresidues, Ser-268, which when dephosphorylated leads to the formation of larger postsynaptic scaffolds. Using a combination of mutagenesis, pharmacological treatment, and biochemical assays, we identify ERK as the kinase phosphorylating Ser-268 and describe a functional interaction between residues Ser-268 and Ser-270. We further demonstrate that alterations in gephyrin clustering via ERK modulation are reflected by amplitude and frequency changes in miniature GABAergic postsynaptic currents. We unravel novel mechanisms for activity- and ERK-dependent calpain action on gephyrin, which are likely relevant in the context of cellular signaling affecting GABAergic transmission and homeostatic synaptic plasticity in pathology. PMID:23408424

  14. Nodal signalling and asymmetry of the nervous system

    PubMed Central

    Signore, Iskra A.; Palma, Karina

    2016-01-01

    The role of Nodal signalling in nervous system asymmetry is still poorly understood. Here, we review and discuss how asymmetric Nodal signalling controls the ontogeny of nervous system asymmetry using a comparative developmental perspective. A detailed analysis of asymmetry in ascidians and fishes reveals a critical context-dependency of Nodal function and emphasizes that bilaterally paired and midline-unpaired structures/organs behave as different entities. We propose a conceptual framework to dissect the developmental function of Nodal as asymmetry inducer and laterality modulator in the nervous system, which can be used to study other types of body and visceral organ asymmetries. Using insights from developmental biology, we also present novel evolutionary hypotheses on how Nodal led the evolution of directional asymmetry in the brain, with a particular focus on the epithalamus. We intend this paper to provide a synthesis on how Nodal signalling controls left–right asymmetry of the nervous system. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821531

  15. ptk7 mutant zebrafish models of congenital and idiopathic scoliosis implicate dysregulated Wnt signalling in disease

    PubMed Central

    Hayes, Madeline; Gao, Xiaochong; Yu, Lisa X; Paria, Nandina; Henkelman, R. Mark; Wise, Carol A.; Ciruna, Brian

    2014-01-01

    Scoliosis is a complex genetic disorder of the musculoskeletal system, characterized by three-dimensional rotation of the spine. Curvatures caused by malformed vertebrae (congenital scoliosis (CS)) are apparent at birth. Spinal curvatures with no underlying vertebral abnormality (idiopathic scoliosis (IS)) most commonly manifest during adolescence. The genetic and biological mechanisms responsible for IS remain poorly understood due largely to limited experimental models. Here we describe zygotic ptk7 (Zptk7) mutant zebrafish, deficient in a critical regulator of Wnt signalling, as the first genetically defined developmental model of IS. We identify a novel sequence variant within a single IS patient that disrupts PTK7 function, consistent with a role for dysregulated Wnt activity in disease pathogenesis. Furthermore, we demonstrate that embryonic loss-of-gene function in maternal-zygotic ptk7 mutants (MZptk7) leads to vertebral anomalies associated with CS. Our data suggest novel molecular origins of, and genetic links between, congenital and idiopathic forms of disease. PMID:25182715

  16. The nature of short-term consolidation in visual working memory.

    PubMed

    Ricker, Timothy J; Hardman, Kyle O

    2017-11-01

    Short-term consolidation is the process by which stable working memory representations are created. This process is fundamental to cognition yet poorly understood. The present work examines short-term consolidation using a Bayesian hierarchical model of visual working memory recall to determine the underlying processes at work. Our results show that consolidation functions largely through changing the proportion of memory items successfully maintained until test. Although there was some evidence that consolidation affects representational precision, this change was modest and could not account for the bulk of the consolidation effect on memory performance. The time course of the consolidation function and selective influence of consolidation on specific serial positions strongly indicates that short-term consolidation induces an attentional blink. The blink leads to deficits in memory for the immediately following item when time pressure is introduced. Temporal distinctiveness accounts of the consolidation process are tested and ruled out. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Sputum Inflammatory Mediators Are Increased in Aspergillus fumigatus Culture-Positive Asthmatics

    PubMed Central

    Ghebre, Michael A; Desai, Dhananjay; Singapuri, Amisha; Woods, Joanne; Rapley, Laura; Cohen, Suzanne; Herath, Athula; Wardlaw, Andrew J; Pashley, Catherine H; May, Richard

    2017-01-01

    Aspergillus fumigatus sensitization and culture in asthma are associated with disease severity and lung function impairment, but their relationship with airway inflammation is poorly understood. We investigated the profile of 24 sputum inflammatory mediators in A. fumigatus culture-positive or-negative moderate-to-severe asthmatics. Fifty-two subjects were recruited from a single center. A. fumigatus was cultured from 19 asthmatics. Asthma control, symptom score, lung function, and sputum cell count were not significantly different between the asthmatics with and without a positive A. fumigatus culture. All of the sputum mediators were numerically increased in subjects with a positive versus negative sputum A. fumigatus culture. Sputum TNF-R2 was significantly elevated (P=0.03) and the mediator that best distinguished A. fumigatus culture-positive from culture-negative subjects (receiver-operator characteristic area under the curve 0.66 [95% CI: 0.51 to 0.82, P=0.045]). A. fumigates-positive culture in moderate-to-severe asthma is associated with increased inflammatory sputum mediators. PMID:28102063

  18. Cardiovascular Impact in Patients Undergoing Maintenance Hemodialysis: Clinical Management Considerations

    PubMed Central

    Chirakarnjanakorn, Srisakul; Navaneethan, Sankar D.; Francis, Gary S.; Tang, W.H. Wilson

    2017-01-01

    Patients undergoing maintenance hemodialysis develop both structural and functional cardiovascular abnormalities. Despite improvement of dialysis technology, cardiovascular mortality of this population remains high. The pathophysiological mechanisms of these changes are complex and not well understood. It has been postulated that several non-traditional, uremic-related risk factors, especially the long-term uremic state, which may affect the cardiovascular system. There are many cardiovascular changes that occur in chronic kidney disease including left ventricular hypertrophy, myocardial fibrosis, microvascular disease, accelerated atherosclerosis and arteriosclerosis. These structural and functional changes in patients receiving chronic dialysis make them more susceptible to myocardial ischemia. Hemodialysis itself may adversely affect the cardiovascular system due to non-physiologic fluid removal, leading to hemodynamic instability and initiation of systemic inflammation. In the past decade there has been growing awareness that pathophysiological mechanisms cause cardiovascular dysfunction in patients on chronic dialysis, and there are now pharmacological and non-pharmacological therapies that may improve the poor quality of life and high mortality rate that these patients experience. PMID:28108129

  19. Entorhinal Cortical Ocean Cells Encode Specific Contexts and Drive Context-Specific Fear Memory

    PubMed Central

    Kitamura, Takashi; Sun, Chen; Martin, Jared; Kitch, Lacey J; Schnitzer, Mark J; Tonegawa, Susumu

    2016-01-01

    Summary Forming distinct representations and memories of multiple contexts and episodes is thought to be a crucial function of the hippocampal-entorhinal cortical network. The hippocampal dentate gyrus (DG) and CA3 are known to contribute to these functions but the role of the entorhinal cortex (EC) is poorly understood. Here, we show that Ocean cells, excitatory stellate neurons in the medial EC layer II projecting into DG and CA3, rapidly form a distinct representation of a novel context and drive context-specific activation of downstream CA3 cells as well as context-specific fear memory. In contrast, Island cells, excitatory pyramidal neurons in the medial EC layer II projecting into CA1, are indifferent to context-specific encoding or memory. On the other hand, Ocean cells are dispensable for temporal association learning, for which Island cells are crucial. Together, the two excitatory medial EC layer II inputs to the hippocampus have complementary roles in episodic memory. PMID:26402611

  20. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma

    PubMed Central

    Odejide, Oreofe; Weigert, Oliver; Lane, Andrew A.; Toscano, Dan; Lunning, Matthew A.; Kopp, Nadja; Kim, Sunhee; van Bodegom, Diederik; Bolla, Sudha; Schatz, Jonathan H.; Teruya-Feldstein, Julie; Hochberg, Ephraim; Louissaint, Abner; Dorfman, David; Stevenson, Kristen; Rodig, Scott J.; Piccaluga, Pier Paolo; Jacobsen, Eric; Pileri, Stefano A.; Harris, Nancy L.; Ferrero, Simone; Inghirami, Giorgio; Horwitz, Steven M.

    2014-01-01

    The genetics of angioimmunoblastic T-cell lymphoma (AITL) are very poorly understood. We defined the mutational landscape of AITL across 219 genes in 85 cases from the United States and Europe. We identified ≥2 mutations in 34 genes, nearly all of which were not previously implicated in AITL. These included loss-of-function mutations in TP53 (n = 4), ETV6 (n = 3), CCND3 (n = 2), and EP300 (n = 5), as well as gain-of-function mutations in JAK2 (n = 2) and STAT3 (n = 4). TET2 was mutated in 65 (76%) AITLs, including 43 that harbored 2 or 3 TET2 mutations. DNMT3A mutations occurred in 28 (33%) AITLs; 100% of these also harbored TET2 mutations (P < .0001). Seventeen AITLs harbored IDH2 R172 substitutions, including 15 with TET2 mutations. In summary, AITL is characterized by high frequencies of overlapping mutations in epigenetic modifiers and targetable mutations in a subset of cases. PMID:24345752

Top