Allee effect: the story behind the stabilization or extinction of microbial ecosystem.
Goswami, Madhurankhi; Bhattacharyya, Purnita; Tribedi, Prosun
2017-03-01
A population exhibiting Allee effect shows a positive correlation between population fitness and population size or density. Allee effect decides the extinction or conservation of a microbial population and thus appears to be an important criterion in population ecology. The underlying factor of Allee effect that decides the stabilization and extinction of a particular population density is the threshold or the critical density of their abundance. According to Allee, microbial populations exhibit a definite, critical or threshold density, beyond which the population fitness of a particular population increases with the rise in population density and below it, the population fitness goes down with the decrease in population density. In particular, microbial population displays advantageous traits such as biofilm formation, expression of virulence genes, spore formation and many more only at a high population density. It has also been observed that microorganisms exhibiting a lower population density undergo complete extinction from the residual microbial ecosystem. In reference to Allee effect, decrease in population density or size introduces deleterious mutations among the population density through genetic drift. Mutations are carried forward to successive generations resulting in its accumulation among the population density thus reducing its microbial fitness and thereby increasing the risk of extinction of a particular microbial population. However, when the microbial load is high, the chance of genetic drift is less, and through the process of biofilm formation, the cooperation existing among the microbial population increases that increases the microbial fitness. Thus, the high microbial population through the formation of microbial biofilm stabilizes the ecosystem by increasing fitness. Taken together, microbial fitness shows positive correlation with the ecosystem conservation and negative correlation with ecosystem extinction.
Relationships between human population density and burned area at continental and global scales.
Bistinas, Ioannis; Oom, Duarte; Sá, Ana C L; Harrison, Sandy P; Prentice, I Colin; Pereira, José M C
2013-01-01
We explore the large spatial variation in the relationship between population density and burned area, using continental-scale Geographically Weighted Regression (GWR) based on 13 years of satellite-derived burned area maps from the global fire emissions database (GFED) and the human population density from the gridded population of the world (GPW 2005). Significant relationships are observed over 51.5% of the global land area, and the area affected varies from continent to continent: population density has a significant impact on fire over most of Asia and Africa but is important in explaining fire over < 22% of Europe and Australia. Increasing population density is associated with both increased and decreased in fire. The nature of the relationship depends on land-use: increasing population density is associated with increased burned are in rangelands but with decreased burned area in croplands. Overall, the relationship between population density and burned area is non-monotonic: burned area initially increases with population density and then decreases when population density exceeds a threshold. These thresholds vary regionally. Our study contributes to improved understanding of how human activities relate to burned area, and should contribute to a better estimate of atmospheric emissions from biomass burning.
Relationships between Human Population Density and Burned Area at Continental and Global Scales
Bistinas, Ioannis; Oom, Duarte; Sá, Ana C. L.; Harrison, Sandy P.; Prentice, I. Colin; Pereira, José M. C.
2013-01-01
We explore the large spatial variation in the relationship between population density and burned area, using continental-scale Geographically Weighted Regression (GWR) based on 13 years of satellite-derived burned area maps from the global fire emissions database (GFED) and the human population density from the gridded population of the world (GPW 2005). Significant relationships are observed over 51.5% of the global land area, and the area affected varies from continent to continent: population density has a significant impact on fire over most of Asia and Africa but is important in explaining fire over < 22% of Europe and Australia. Increasing population density is associated with both increased and decreased in fire. The nature of the relationship depends on land-use: increasing population density is associated with increased burned are in rangelands but with decreased burned area in croplands. Overall, the relationship between population density and burned area is non-monotonic: burned area initially increases with population density and then decreases when population density exceeds a threshold. These thresholds vary regionally. Our study contributes to improved understanding of how human activities relate to burned area, and should contribute to a better estimate of atmospheric emissions from biomass burning. PMID:24358108
Paradoxical effects of density on measurement of copper tolerance in Silene paradoxa L.
Capuana, Maurizio; Colzi, Ilaria; Buccianti, Antonella; Coppi, Andrea; Palm, Emily; Del Bubba, Massimo; Gonnelli, Cristina
2018-01-01
This work investigated if the assessment of tolerance to trace metals can depend on plant density in the experimental design. A non-metallicolous and a metallicolous populations of Silene paradoxa were hydroponically cultivated at increasing density and in both the absence (-Cu conditions) and excess of copper (+Cu conditions). In -Cu conditions, the metallicolous population showed a lower susceptibility to plant density in comparison to the non-metallicolous one, explained by a higher capacity of the metallicolous population to exploit resources. In +Cu conditions, an alleviating effect of increasing density was found in roots. Such effect was present to a greater extent in the non-metallicolous population, thus making the populations equally copper-tolerant at the highest density used. In shoots, an additive effect of increasing plant density to copper toxicity was reported. Its higher intensity in the metallicolous population reverted the copper tolerance relationship at the highest plant densities used. In both populations, a density-induced decrease in root copper accumulation was observed, thus concurring to the reported mitigation in +Cu conditions. Our work revealed the importance of density studies on the optimization of eco-toxicological bioassays and of metal tolerance assessment and it can be considered the first example of an alleviating effect of increasing plant number on copper stress in a metallophyte.
Xu, Laixiang; Xue, Huiliang; Song, Mingjing; Zhao, Qinghua; Dong, Jingping; Liu, Juan; Guo, Yu; Xu, Tongqin; Cao, Xiaoping; Wang, Fusheng; Wang, Shuqing; Hao, Shushen; Yang, Hefang; Zhang, Zhibin
2013-01-01
Genetic diversity is essential for persistence of animal populations over both the short- and long-term. Previous studies suggest that genetic diversity may decrease with population decline due to genetic drift or inbreeding of small populations. For oscillating populations, there are some studies on the relationship between population density and genetic diversity, but these studies were based on short-term observation or in low-density phases. Evidence from rapidly expanding populations is lacking. In this study, genetic diversity of a rapidly expanding population of the Greater long-tailed hamsters during 1984-1990, in the Raoyang County of the North China Plain was studied using DNA microsatellite markers. Results show that genetic diversity was positively correlated with population density (as measured by % trap success), and the increase in population density was correlated with a decrease of genetic differentiation between the sub-population A and B. The genetic diversity tended to be higher in spring than in autumn. Variation in population density and genetic diversity are consistent between sub-population A and B. Such results suggest that dispersal is density- and season-dependent in a rapidly expanding population of the Greater long-tailed hamster. For typically solitary species, increasing population density can increase intra-specific attack, which is a driving force for dispersal. This situation is counterbalanced by decreasing population density caused by genetic drift or inbreeding as the result of small population size. Season is a major factor influencing population density and genetic diversity. Meanwhile, roads, used to be considered as geographical isolation, have less effect on genetic differentiation in a rapidly expanding population. Evidences suggest that gene flow (Nm) is positively correlated with population density, and it is significant higher in spring than that in autumn.
Shukla, J B; Goyal, Ashish; Singh, Shikha; Chandra, Peeyush
2014-06-01
In this paper, a non-linear model is proposed and analyzed to study the effects of habitat characteristics favoring logistically growing carrier population leading to increased spread of typhoid fever. It is assumed that the cumulative density of habitat characteristics and the density of carrier population are governed by logistic models; the growth rate of the former increases as the density of human population increases. The model is analyzed by stability theory of differential equations and computer simulation. The analysis shows that as the density of the infective carrier population increases due to habitat characteristics, the spread of typhoid fever increases in comparison with the case without such factors. Copyright © 2013 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.
Density dependence in a recovering osprey population: demographic and behavioural processes.
Bretagnolle, V; Mougeot, F; Thibault, J-C
2008-09-01
1. Understanding how density-dependent and independent processes influence demographic parameters, and hence regulate population size, is fundamental within population ecology. We investigated density dependence in growth rate and fecundity in a recovering population of a semicolonial raptor, the osprey Pandion haliaetus [Linnaeus, 1758], using 31 years of count and demographic data in Corsica. 2. The study population increased from three pairs in 1974 to an average of 22 pairs in the late 1990s, with two distinct phases during the recovery (increase followed by stability) and contrasted trends in breeding parameters in each phase. 3. We show density dependence in population growth rate in the second phase, indicating that the stabilized population was regulated. We also show density dependence in productivity (fledging success between years and hatching success within years). 4. Using long-term data on behavioural interactions at nest sites, and on diet and fish provisioning rate, we evaluated two possible mechanisms of density dependence in productivity, food depletion and behavioural interference. 5. As density increased, both provisioning rate and the size of prey increased, contrary to predictions of a food-depletion mechanism. In the time series, a reduction in fledging success coincided with an increase in the number of non-breeders. Hatching success decreased with increasing local density and frequency of interactions with conspecifics, suggesting that behavioural interference was influencing hatching success. 6. Our study shows that, taking into account the role of non-breeders, in particular in species or populations where there are many floaters and where competition for nest sites is intense, can improve our understanding of density-dependent processes and help conservation actions.
Jensen, Elizabeth T; Hoffman, Kate; Shaheen, Nicholas J; Genta, Robert M; Dellon, Evan S
2014-05-01
Eosinophilic esophagitis (EoE) is an increasingly prevalent chronic disease arising from an allergy/immune-mediated process. Generally, the risk of atopic disease differs in rural and urban environments. The relationship between population density and EoE is unknown. Our aim was to assess the relationship between EoE and population density. We conducted a cross-sectional, case-control study of patients with esophageal biopsies in a US national pathology database between January 2009 and June 2012 to assess the relationship between population density and EoE. Using geographic information systems, the population density (individuals per square mile) was determined for each patient zip code. The odds of esophageal eosinophilia and EoE were estimated for each quintile of population density and adjusted for potential confounders. Sensitivity analyses were conducted with varying case definitions and to evaluate the potential for bias from endoscopy volume and patient factors. Of 292,621 unique patients in the source population, 89,754 had normal esophageal biopsies and 14,381 had esophageal eosinophilia with ≥15 eosinophils per high-power field. The odds of having esophageal eosinophilia increased with decreasing population density (P for trend <0.001). Compared with those in the highest quintile of population density, odds of having esophageal eosinophilia were significantly higher among those in the lowest quintile of population density (adjusted odds ratio (aOR) 1.27, 95% confidence interval (CI): 1.18, 1.36). A similar dose-response trend was observed across case definitions with increased odds of EoE in the lowest population density quintile (aOR 1.59, 95% CI: 1.45-1.76). Estimates were robust to sensitivity analyses. Population density is strongly and inversely associated with esophageal eosinophilia and EoE. This association is robust to varying case definitions and adjustment factors. Environmental exposures that are more prominent in rural areas may be relevant to the pathogenesis of EoE.
Jensen, Elizabeth T.; Hoffman, Kate; Shaheen, Nicholas J.; Genta, Robert M.; Dellon, Evan S.
2015-01-01
Objectives Eosinophilic esophagitis (EoE) is an increasingly prevalent chronic disease arising from an allergy/immune-mediated process. Generally, the risk of atopic disease differs in rural and urban environments. The relationship between population density and EoE is unknown. Our aim was to assess the relationship between EoE and population density. Methods : We conducted a cross-sectional, case-control study of patients with esophageal biopsies in a U.S. national pathology database between January 2009 and June 2012 to assess the relationship between population density and EoE. Using Geographic Information Systems (GIS), the population density (individuals/mile2) was determined for each patient zip code. The odds of esophageal eosinophilia and EoE were estimated for each quintile of population density and adjusted for potential confounders. Sensitivity analyses were conducted with varying case definitions and to evaluate the potential for bias from endoscopy volume and patient factors. Results Of 292,621 unique patients in the source population, 89,754 had normal esophageal biopsies and 14,381 had esophageal eosinophilia with ≥15 eosinophils per high-power field (eos/hpf). The odds of esophageal eosinophilia increased with decreasing population density (p for trend < 0.001). Compared to those in the highest quintile of population density, odds of esophageal eosinophilia were significantly higher amongst those in the lowest quintile of population density (aOR 1.27, 95% CI: 1.18, 1.36). A similar dose-response trend was observed across case definitions with odds of EoE increased in the lowest population density quintile (aOR 1.59, 95% CI: 1.45-1.76). Estimates were robust to sensitivity analyses. Conclusions Population density is strongly and inversely associated with esophageal eosinophilia and EoE. This association is robust to varying case definitions and adjustment factors. Environmental exposures more prominent in rural areas may be relevant to the pathogenesis of EoE. PMID:24667575
Influence of Population Density on Offspring Number and Size in Burying Beetles
ERIC Educational Resources Information Center
Rauter, Claudia M.
2010-01-01
This laboratory exercise investigates the influence of population density on offspring number and size in burying beetles. Students test the theoretical predictions that brood size declines and offspring size increases when competition over resources becomes stronger with increasing population density. Students design the experiment, collect and…
Enhanced leaf nitrogen status stabilizes omnivore population density.
Liman, Anna-Sara; Dalin, Peter; Björkman, Christer
2017-01-01
Plant traits can mediate the strength of interactions between omnivorous predators and their prey through density effects and changes in the omnivores' trophic behavior. In this study, we explored the established assumption that enhanced nutrient status in host plants strengthens the buffering effect of plant feeding for omnivorous predators, i.e., prevents rapid negative population growth during prey density decline and thereby increases and stabilizes omnivore population density. We analyzed 13 years of field data on population densities of a heteropteran omnivore on Salix cinerea stands, arranged along a measured leaf nitrogen gradient and found a 195 % increase in omnivore population density and a 63 % decrease in population variability with an increase in leaf nitrogen status from 26 to 40 mgN × g -1 . We recreated the leaf nitrogen gradient in a greenhouse experiment and found, as expected, that increasing leaf nitrogen status enhanced omnivore performance but reduced per capita prey consumption. Feeding on high nitrogen status host plants can potentially decouple omnivore-prey population dynamics and allow omnivores to persist and function effectively at low prey densities to provide "background level" control of insect herbivores. This long-term effect is expected to outweigh the short-term effect on per capita prey consumption-resulting in a net increase in population predation rates with increasing leaf nitrogen status. Conservation biological control of insect pests that makes use of omnivore background control could, as a result, be manipulated via management of crop nitrogen status.
High urban population density of birds reflects their timing of urbanization.
Møller, Anders Pape; Diaz, Mario; Flensted-Jensen, Einar; Grim, Tomas; Ibáñez-Álamo, Juan Diego; Jokimäki, Jukka; Mänd, Raivo; Markó, Gábor; Tryjanowski, Piotr
2012-11-01
Living organisms generally occur at the highest population density in the most suitable habitat. Therefore, invasion of and adaptation to novel habitats imply a gradual increase in population density, from that at or below what was found in the ancestral habitat to a density that may reach higher levels in the novel habitat following adaptation to that habitat. We tested this prediction of invasion biology by analyzing data on population density of breeding birds in their ancestral rural habitats and in matched nearby urban habitats that have been colonized recently across a continental latitudinal gradient. We estimated population density in the two types of habitats using extensive point census bird counts, and we obtained information on the year of urbanization when population density in urban habitats reached levels higher than that of the ancestral rural habitat from published records and estimates by experienced ornithologists. Both the difference in population density between urban and rural habitats and the year of urbanization were significantly repeatable when analyzing multiple populations of the same species across Europe. Population density was on average 30 % higher in urban than in rural habitats, although density reached as much as 100-fold higher in urban habitats in some species. Invasive urban bird species that colonized urban environments over a long period achieved the largest increases in population density compared to their ancestral rural habitats. This was independent of whether species were anciently or recently urbanized, providing a unique cross-validation of timing of urban invasions. These results suggest that successful invasion of urban habitats was associated with gradual adaptation to these habitats as shown by a significant increase in population density in urban habitats over time.
Predation and nutrients drive population declines in breeding waders.
Møller, Anders Pape; Thorup, Ole; Laursen, Karsten
2018-04-20
Allee effects are defined as a decline in per capita fitness at low population density. We hypothesized that predation reduces population size of breeding waders and thereby the efficiency of predator deterrence, while total nitrogen through its effects on primary and secondary productivity increases population size. Therefore, nest predation could have negative consequences for population size because nest failure generally results in breeding dispersal and hence reduced local population density. To test these predictions, we recorded nest predation in five species of waders for 4,745 nests during 1987-2015 at the nature reserve Tipperne, Denmark. Predation rates were generally negatively related to conspecific and heterospecific population density, but positively related to overall population density of the entire wader community. Nest predation and population density were related to ground water level, management (grazing and mowing), and nutrients. High nest predation with a time lag of one year resulted in low overall breeding population density, while high nutrient levels resulted in higher population density. These two factors accounted for 86% of the variance in population size, presumably due to effects of nest predation on emigration, while nutrient levels increased the level of vegetation cover and the abundance of food in the surrounding brackish water. These findings are consistent with the hypothesis that predation may reduce population density through negative density dependence, while total nitrogen at adjacent shallow water may increase population size. Nest predation rates were reduced by high ground water level in March, grazing by cattle and mowing that affected access to and susceptibility of nests to predators. These effects can be managed to benefit breeding waders. © 2018 by the Ecological Society of America.
Critical patch size generated by Allee effect in gypsy moth, Lymantria dispar (L.)
E. Vercken; A.M. Kramer; P.C. Tobin; J.M. Drake
2011-01-01
Allee effects are important dynamical mechanisms in small-density populations in which per capita population growth rate increases with density. When positive density dependence is sufficiently severe (a 'strong' Allee effect), a critical density arises below which populations do not persist. For spatially distributed populations subject to dispersal, theory...
Bjornlie, Daniel D.; van Manen, Frank T.; Ebinger, Michael R.; Haroldson, Mark A.; Thompson, Daniel J.; Costello, Cecily M.
2014-01-01
Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.
Bjornlie, Daniel D.; Van Manen, Frank T.; Ebinger, Michael R.; Haroldson, Mark A.; Thompson, Daniel J.; Costello, Cecily M.
2014-01-01
Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size. PMID:24520354
Bjornlie, Daniel D; Van Manen, Frank T; Ebinger, Michael R; Haroldson, Mark A; Thompson, Daniel J; Costello, Cecily M
2014-01-01
Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.
Tourism in Austria: biodiversity, environmental sustainability, and growth issues.
Malik, Muhammad Asad Saleem; Shah, Syed Asim; Zaman, Khalid
2016-12-01
This study examined the long-run and causal relationships between international tourism, biodiversity loss, environmental sustainability, and specific growth factors under the premises of sustainable tourism in Austria, by using a consistent time series data from 1975 to 2015. The results reveal that inbound tourism, per capita income, and population density affected the potential habitat area while population density largely affected the food production in a country. Inbound tourism and population density both deteriorate the environmental quality in a form of increasing carbon dioxide (CO 2 ) emissions and fossil fuel energy consumption while per capita income reduces the fossil fuel energy consumption. Food exports increase per capita income, while food imports and population density both decrease economic growth. Inbound tourism and economic growth advance population density while forest area and food exports decrease the population density. The study supports growth-led tourism and growth-led food production in a country.
Sharma, S. B.; Rego, T. J.; Mohiuddin, M.; Rao, V. N.
1996-01-01
The significance of double crop (intercrop and sequential crop), single crop (rainy season crop fallow from June to September), and rotations on densities of Heterodera cajani, Helicotylenchus retusus, and Rotylenchulus reniformis was studied on Vertisol (Typic Pellusterts) between 1987 and 1993. Cowpea (Vigna sinensis), mungbean (Phaseolus aureus), and pigeonpea (Cajanus cajan) greatly increased the population densities of H. cajani and suppressed the population densities of other plant-parasitic nematodes. Mean population densities of H. cajani were about 8 times lower in single crop systems than in double crop systems, with pigeonpea as a component intercrop. Plots planted to sorghum, safflower, and chickpea in the preceding year contained fewer H. cajani eggs and juveniles than did plots previously planted to pigeonpea, cowpea, or mungbean. Continuous cropping of sorghum in the rainy season and safflower in the post-rainy season markedly reduced the population density of H. cajani. Sorghum, safflower, and chickpea favored increased population densities of H. retusus. Adding cowpea to the system resulted in a significant increase in the densities of R. reniformis. Mean densities of total plant-parasitic nematodes were three times greater in double crop systems, with pigeonpea as a component intercrop than in single crop systems with rainy season fallow component. Cropping systems had a regulatory effect on the nematode populations and could be an effective nematode management tactic. Intercropping of sorghum with H. cajani tolerant pigeonpea could be effective in increasing the productivity of traditional production systems in H. cajani infested regions. PMID:19277141
Soutullo, Alvaro; Limiñana, Rubén; Urios, Vicente; Surroca, Martín; A Gill, Jennifer
2006-09-01
Expanding populations offer an opportunity to uncover the processes driving spatial variation in distribution and abundance. Individual settlement decisions will be influenced by the availability and relative quality of patches, and by how these respond to changes in conspecific density. For example, conspecific presence can alter patch suitability through reductions in resource availability or territorial exclusion, leading to buffer effect patterns of disproportionate population expansion into poorer quality areas. However, conspecific presence can also enhance patch suitability through Allee effect processes, such as transmission of information about resources or improved predator detection and deterrence. Here, we explore the factors underlying the settlement pattern of a growing population of Montagu's harriers (Circus pygargus) in Spain. The population increased exponentially between 1981 and 2001, but stabilised between 2001 and 2004. This population increase occurred alongside a remarkable spatial expansion, with novel site use occurring prior to maximum densities in occupied sites being reached. However, no temporal trends in fecundity were observed and, within sites, average fecundity did not decline with increasing density. Across the population, variance in productivity did increase with population size, suggesting a complex pattern of density-dependent costs and benefits. We suggest that both Allee and buffer effects are operating in this system, with the benefits of conspecific presence counteracting density-dependent declines in resource availability or quality.
Increased natural mortality at low abundance can generate an Allee effect in a marine fish.
Kuparinen, Anna; Hutchings, Jeffrey A
2014-10-01
Negative density-dependent regulation of population dynamics promotes population growth at low abundance and is therefore vital for recovery following depletion. Inversely, any process that reduces the compensatory density-dependence of population growth can negatively affect recovery. Here, we show that increased adult mortality at low abundance can reverse compensatory population dynamics into its opposite-a demographic Allee effect. Northwest Atlantic cod (Gadus morhua) stocks collapsed dramatically in the early 1990s and have since shown little sign of recovery. Many experienced dramatic increases in natural mortality, ostensibly attributable in some populations to increased predation by seals. Our findings show that increased natural mortality of a magnitude observed for overfished cod stocks has been more than sufficient to fundamentally alter the dynamics of density-dependent population regulation. The demographic Allee effect generated by these changes can slow down or even impede the recovery of depleted populations even in the absence of fishing.
Brennan, Angela K.; Cross, Paul C.; Higgs, Megan D.; Edwards, W. Henry; Scurlock, Brandon M.; Creel, Scott
2014-01-01
Understanding how animal density is related to pathogen transmission is important to develop effective disease control strategies, but requires measuring density at a scale relevant to transmission. However, this is not straightforward or well-studied among large mammals with group sizes that range several orders of magnitude or aggregation patterns that vary across space and time. To address this issue, we examined spatial variation in elk (Cervus canadensis) aggregation patterns and brucellosis across 10 regions in the Greater Yellowstone Area where previous studies suggest the disease may be increasing. We hypothesized that rates of increasing brucellosis would be better related to the frequency of large groups than mean group size or population density, but we examined whether other measures of density would also explain rising seroprevalence. To do this, we measured wintering elk density and group size across multiple spatial and temporal scales from monthly aerial surveys. We used Bayesian hierarchical models and 20 years of serologic data to estimate rates of increase in brucellosis within the 10 regions, and to examine the linear relationships between these estimated rates of increase and multiple measures of aggregation. Brucellosis seroprevalence increased over time in eight regions (one region showed an estimated increase from 0.015 in 1991 to 0.26 in 2011), and these rates of increase were positively related to all measures of aggregation. The relationships were weaker when the analysis was restricted to areas where brucellosis was present for at least two years, potentially because aggregation was related to disease-establishment within a population. Our findings suggest that (1) group size did not explain brucellosis increases any better than population density and (2) some elk populations may have high densities with small groups or lower densities with large groups, but brucellosis is likely to increase in either scenario. In this case, any one control method such as reducing population density or group size may not be sufficient to reduce transmission. This study highlights the importance of examining the density-transmission relationship at multiple scales and across populations before broadly applying disease control strategies.
Exploring the relationship between population density and maternal health coverage.
Hanlon, Michael; Burstein, Roy; Masters, Samuel H; Zhang, Raymond
2012-11-21
Delivering health services to dense populations is more practical than to dispersed populations, other factors constant. This engenders the hypothesis that population density positively affects coverage rates of health services. This hypothesis has been tested indirectly for some services at a local level, but not at a national level. We use cross-sectional data to conduct cross-country, OLS regressions at the national level to estimate the relationship between population density and maternal health coverage. We separately estimate the effect of two measures of density on three population-level coverage rates (6 tests in total). Our coverage indicators are the fraction of the maternal population completing four antenatal care visits and the utilization rates of both skilled birth attendants and in-facility delivery. The first density metric we use is the percentage of a population living in an urban area. The second metric, which we denote as a density score, is a relative ranking of countries by population density. The score's calculation discounts a nation's uninhabited territory under the assumption those areas are irrelevant to service delivery. We find significantly positive relationships between our maternal health indicators and density measures. On average, a one-unit increase in our density score is equivalent to a 0.2% increase in coverage rates. Countries with dispersed populations face higher burdens to achieve multinational coverage targets such as the United Nations' Millennial Development Goals.
Tatara, Christopher P.; Riley, Stephen C.; Berejikian, Barry A.
2011-01-01
Hatchery supplementation of steelhead Oncorhynchus mykiss raises concerns about the impacts on natural populations, including reduced growth and survival, displacement, and increased predation. The potential risks may be density dependent.We examined how hatchery stocking density and the opportunity to emigrate affect the responses of natural steelhead parr in an experimental stream channel and after 15 d found no density-dependent effects on growth, emigration, or survival at densities ranging from 1-6 hatchery parr/m2. The opportunity for steelhead parr to emigrate reduced predation by coastal cutthroat trout O. clarkii clarkii on both hatchery and natural steelhead parr. The cutthroat trout exhibited a type-I functional response (constant predation rate with increased prey density) for the hatchery and composite populations. In contrast, the predation rate on natural parr decreased as hatchery stocking density increased. Supplementation with hatchery parr at any experimental stocking density reduced the final natural parr density. This decline was explained by increased emigration fromthe supplemented groups. Natural parr had higher mean instantaneous growth rates than hatchery parr. The proportion of parr emigrating decreased as parr size increased over successive experimental trials. Smaller parr had lower survival and suffered higher predation. The final density of the composite population, a measure of supplementation effectiveness, increased with the hatchery steelhead stocking rate. Our results indicate that stocking larger hatchery parr (over 50 d postemergence) at densities within the carrying capacity would have low short-term impact on the growth, survival, and emigration of natural parr while increasing the density of the composite population; in addition, a stocking density greater than 3 fish/m2 might be a good starting point for the evaluation of parr stocking in natural streams.
Population density-dependent hair cortisol concentrations in rhesus monkeys (Macaca mulatta)
Dettmer, A.M.; Novak, M.A.; Meyer, J.S.; Suomi, S.J.
2014-01-01
Summary Population density is known to influence acute measures of hypothalamic-pituitary-adrenal (HPA) axis activity in a variety of species, including fish, deer, birds, and humans. However, the effects of population density on levels of chronic stress are unknown. Given the fact that exposure to chronically elevated levels of circulating glucocorticoids results in a host of health disparities in animals and humans alike, it is important to understand how population density may impact chronic stress. We assessed hair cortisol concentrations (HCCs), which are reliable indicators of chronic HPA axis activity, in rhesus monkeys (Macaca mulatta) to determine the influence of population density on these values. In Experiment 1, we compared HCCs of monkeys living in high-density (HD; 1 monkey/0.87m2) and low-density (LD; 1 monkey/63.37m2) environments (N=236 hair samples) and found that HD monkeys exhibited higher hair cortisol across all age categories (infant, juvenile, young adult, adult, and aged) except infancy and aged (F(5)=4.240, p=0.001), for which differences were nearly significant. HD monkeys also received more severe fight wounds than LD monkeys (χ2=26.053, p<0.001), though no effects of dominance status emerged. In Experiment 2, we examined how HCCs change with fluctuating population levels across five years in the adult LD monkeys (N=155 hair samples) and found that increased population density was significantly positively correlated with HCCs in this semi-naturalistic population (r(s)=0.975, p=0.005). These are the first findings to demonstrate that increased population density is associated with increased chronic, endogenous glucocorticoid exposure in a nonhuman primate species. We discuss the implications of these findings with respect to laboratory research, population ecology, and human epidemiology. PMID:24636502
Population density-dependent hair cortisol concentrations in rhesus monkeys (Macaca mulatta).
Dettmer, A M; Novak, M A; Meyer, J S; Suomi, S J
2014-04-01
Population density is known to influence acute measures of hypothalamic-pituitary-adrenal (HPA) axis activity in a variety of species, including fish, deer, birds, and humans. However, the effects of population density on levels of chronic stress are unknown. Given the fact that exposure to chronically elevated levels of circulating glucocorticoids results in a host of health disparities in animals and humans alike, it is important to understand how population density may impact chronic stress. We assessed hair cortisol concentrations (HCCs), which are reliable indicators of chronic HPA axis activity, in rhesus monkeys (Macaca mulatta) to determine the influence of population density on these values. In Experiment 1, we compared HCCs of monkeys living in high-density (HD; 1 monkey/0.87m(2)) and low-density (LD; 1 monkey/63.37m(2)) environments (N=236 hair samples) and found that HD monkeys exhibited higher hair cortisol across all age categories (infant, juvenile, young adult, adult, and aged) except infancy and aged (F(5)=4.240, p=0.001), for which differences were nearly significant. HD monkeys also received more severe fight wounds than LD monkeys (χ(2)=26.053, p<0.001), though no effects of dominance status emerged. In Experiment 2, we examined how HCCs change with fluctuating population levels across 5 years in the adult LD monkeys (N=155 hair samples) and found that increased population density was significantly positively correlated with HCCs in this semi-naturalistic population (r(s)=0.975, p=0.005). These are the first findings to demonstrate that increased population density is associated with increased chronic, endogenous glucocorticoid exposure in a nonhuman primate species. We discuss the implications of these findings with respect to laboratory research, population ecology, and human epidemiology. Published by Elsevier Ltd.
McNamara, K B; Simmons, L W
2017-09-01
Group living can select for increased immunity, given the heightened risk of parasite transmission. Yet, it also may select for increased male reproductive investment, given the elevated risk of female multiple mating. Trade-offs between immunity and reproduction are well documented. Phenotypically, population density mediates both reproductive investment and immune function in the Indian meal moth, Plodia interpunctella. However, the evolutionary response of populations to these traits is unknown. We created two replicated populations of P. interpunctella, reared and mated for 14 generations under high or low population densities. These population densities cause plastic responses in immunity and reproduction: at higher numbers, both sexes invest more in one index of immunity [phenoloxidase (PO) activity] and males invest more in sperm. Interestingly, our data revealed divergence in PO and reproduction in a different direction to previously reported phenotypic responses. Males evolving at low population densities transferred more sperm, and both males and females displayed higher PO than individuals at high population densities. These positively correlated responses to selection suggest no apparent evolutionary trade-off between immunity and reproduction. We speculate that the reduced PO activity and sperm investment when evolving under high population density may be due to the reduced population fitness predicted under increased sexual conflict and/or to trade-offs between pre- and post-copulatory traits. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Karslake, Jason; Maltas, Jeff; Brumm, Peter; Wood, Kevin B
2016-10-01
The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments.
Maltas, Jeff; Brumm, Peter; Wood, Kevin B.
2016-01-01
The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments. PMID:27764095
Thermal and energetic constraints on ectotherm abundance: A global test using lizards
Buckley, L.B.; Rodda, G.H.; Jetz, W.
2008-01-01
Population densities of birds and mammals have been shown to decrease with body mass at approximately the same rate as metabolic rates increase, indicating that energetic needs constrain endotherm population densities. In ectotherms, the exponential increase of metabolic rate with body temperature suggests that environmental temperature may additionally constrain population densities. Here we test simple bioenergetic models for an ecologically important group of ectothermic vertebrates by examining 483 lizard populations. We find that lizard population densities decrease as a power law of body mass with a slope approximately inverse to the slope of the relationship between metabolic rates and body mass. Energy availability should limit population densities. As predicted, environmental productivity has a positive effect on lizard density, strengthening the relationship between lizard density and body mass. In contrast, the effect of environmental temperature is at most weak due to behavioral thermoregulation, thermal evolution, or the temperature dependence of ectotherm performance. Our results provide initial insights into how energy needs and availability differentially constrain ectotherm and endotherm density across broad spatial scales. ?? 2008 by the Ecological Society of America.
Thermal and energetic constraints on ectotherm abundance: a global test using lizards.
Buckley, Lauren B; Rodda, Gordon H; Jetz, Walter
2008-01-01
Population densities of birds and mammals have been shown to decrease with body mass at approximately the same rate as metabolic rates increase, indicating that energetic needs constrain endotherm population densities. In ectotherms, the exponential increase of metabolic rate with body temperature suggests that environmental temperature may additionally constrain population densities. Here we test simple bioenergetic models for an ecologically important group of ectothermic vertebrates by examining 483 lizard populations. We find that lizard population densities decrease as a power law of body mass with a slope approximately inverse to the slope of the relationship between metabolic rates and body mass. Energy availability should limit population densities. As predicted, environmental productivity has a positive effect on lizard density, strengthening the relationship between lizard density and body mass. In contrast, the effect of environmental temperature is at most weak due to behavioral thermoregulation, thermal evolution, or the temperature dependence of ectotherm performance. Our results provide initial insights into how energy needs and availability differentially constrain ectotherm and endotherm density across broad spatial scales.
Grossman, Gary D.; Carline, Robert F.; Wagner, Tyler
2017-01-01
We examined the relationship between density-independent and density-dependent factors on the demography of a dense, relatively unexploited population of brown trout in Spruce Creek Pennsylvania between 1985 and 2011.Individual PCAs of flow and temperature data elucidated groups of years with multiple high flow versus multiple low flow characteristics and high versus low temperature years, although subtler patterns of variation also were observed.Density and biomass displayed similar temporal patterns, ranging from 710 to 1,803 trout/ha and 76–263 kg/ha. We detected a significantly negative linear stock-recruitment relationship (R2 = .39) and there was no evidence that flow or water temperature affected recruitment.Both annual survival and the per-capita rate of increase (r) for the population varied over the study, and density-dependent mechanisms possessed the greatest explanatory power for annual survival data. Temporal trends in population r suggested it displayed a bounded equilibrium with increases observed in 12 years and decreases detected in 13 years.Model selection analysis of per-capita rate of increase data for age 1, and adults (N = eight interpretable models) indicated that both density-dependent (five of eight) and negative density-independent processes (five of eight, i.e. high flows or temperatures), affected r. Recruitment limitation also was identified in three of eight models. Variation in the per-capita rate of increase for the population was most strongly affected by positive density independence in the form of increasing spring–summer temperatures and recruitment limitation.Model selection analyses describing annual variation in both mean length and mass data yielded similar results, although maximum wi values were low ranging from 0.09 to 0.23 (length) and 0.13 to 0.22 (mass). Density-dependence was included in 15 of 15 interpretable models for length and all ten interpretable models for mass. Similarly, positive density-independent effects in the form of increasing autumn–winter flow were present in seven of 15 interpretable models for length and five of ten interpretable models for mass. Negative density independent effects also were observed in the form of high spring–summer flows or temperatures (N = 4), or high autumn–winter temperatures (N = 1).Our analyses of the factors affecting population regulation in an introduced population of brown trout demonstrate that density-dependent forces affected every important demographic characteristic (recruitment, survivorship, the rate of increase, and size) within this population. However, density-independent forces in the form of seasonal variations in flow and temperature also helped explain annual variation in the per-capita rate of increase, and mean length and mass data. Consequently, population regulation within this population is driven by a complex of biotic and environmental factors, although it seems clear that density-dependent factors play a dominant role.
Jones, F.A; Comita, L.S
2008-01-01
Tropical trees may show positive density dependence in fruit set and maturation due to pollen limitation in low-density populations. However, pollen from closely related individuals in the local neighbourhood might reduce fruit set or increase fruit abortion in self-incompatible tree species. We investigated the role of neighbourhood density and genetic relatedness on individual fruit set and abortion in the neotropical tree Jacaranda copaia in a large forest plot in central Panama. Using nested neighbourhood models, we found a strong positive effect of increased conspecific density on fruit set and maturation. However, high neighbourhood genetic relatedness interacted with density to reduce total fruit set and increase the proportion of aborted fruit. Our results imply a fitness advantage for individuals growing in high densities as measured by fruit set, but realized fruit set is lowered by increased neighbourhood relatedness. We hypothesize that the mechanism involved is increased visitation by density-dependent invertebrate pollinators in high-density populations, which increases pollen quantity and carry-over and increases fruit set and maturation, coupled with self-incompatibility at early and late stages due to biparental inbreeding that lowers fruit set and increases fruit abortion. Implications for the reproductive ecology and conservation of tropical tree communities in continuous and fragmented habitats are discussed. PMID:18713714
Predator-induced synchrony in population oscillations of coexisting small mammal species.
Korpimäki, Erkki; Norrdahl, Kai; Huitu, Otso; Klemola, Tero
2005-01-22
Comprehensive analyses of long-term (1977-2003) small-mammal abundance data from western Finland showed that populations of Microtus voles (field voles M. agrestis and sibling voles M. rossiaemeridionalis) voles, bank (Clethrionomys glareolus) and common shrews (Sorex araneus) fluctuated synchronously in 3 year population cycles. Time-series analyses indicated that interspecific synchrony is influenced strongly by density-dependent processes. Synchrony among Microtus and bank voles appeared additionally to be influenced by density-independent processes. To test whether interspecific synchronization through density-dependent processes is caused by predation, we experimentally reduced the densities of the main predators of small mammals in four large agricultural areas, and compared small mammal abundances in these to those in four control areas (2.5-3 km(2)) through a 3 year small-mammal population cycle. Predator reduction increased densities of the main prey species, Microtus voles, in all phases of the population cycle, while bank voles, the most important alternative prey of predators, responded positively only in the low and the increase phase. Manipulation also increased the autumn densities of water voles (Arvicola terrestris) in the increase phase of the cycle. No treatment effects were detected for common shrews or mice. Our results are in accordance with the alternative prey hypothesis, by which predators successively reduce the densities of both main and alternative prey species after the peak phase of small-mammal population cycles, thus inducing a synchronous low phase.
[Effect of the population density on growth and regeneration in the snail Achatina fulica].
Sidel'nikov, A P; Stepanov, I I
2000-01-01
In the laboratory, the growth rate of the giant African snail Achatina fulica, as estimated by the weight and shell length was shown to decrease when the population density increased from 10 to 60 snails/m2 of the total terrarium area for five months. In the second experiment, when the population density increased from 48 to 193 snails/m2, the growth rate had already decreased by six weeks. In the groups with a high population density the feeding behavior was weakened, expressed by a greater amount of nonconsumed food, according to visual observations, than in the groups with lower population densities. At the population density of 10 to 60 snails/m2, the proliferative activity in the course of the optic tentacle regeneration, as expressed by the mitotic index, did not differ reliably within five months. In the second experiment, the mitotic indices at the population densities of 96 and 193 snails/m2 within 1.5 months exceeded that of 48 snails/m2. Recommendations are given concerning the population density from the viewpoint of commercial growth of the snails. It was proposed that, based on the analysis of the mechanism underlying the inhibition of feeding behavior in populations with extra high densities, one may develop a new approach to the production of chemical agents to control land snails as agricultural pests.
Demonstration Report for Visual Sample Plan (VSP) Verification Sampling Methods at the Navy/DRI Site
2011-08-01
population of 537,197 with an overall population density of 608 people per square mile (people/ mi2 ). However, the population density in the vicinity...Preliminary Assessment Findings approximately 12 people/ mi2 . Population density is expected to greatly increase following development of the site
Syphard, Alexandra D; Radeloff, Volker C; Hawbaker, Todd J; Stewart, Susan I
2009-06-01
Periodic wildfire is an important natural process in Mediterranean-climate ecosystems, but increasing fire recurrence threatens the fragile ecology of these regions. Because most fires are human-caused, we investigated how human population patterns affect fire frequency. Prior research in California suggests the relationship between population density and fire frequency is not linear. There are few human ignitions in areas with low population density, so fire frequency is low. As population density increases, human ignitions and fire frequency also increase, but beyond a density threshold, the relationship becomes negative as fuels become sparser and fire suppression resources are concentrated. We tested whether this hypothesis also applies to the other Mediterranean-climate ecosystems of the world. We used global satellite databases of population, fire activity, and land cover to evaluate the spatial relationship between humans and fire in the world's five Mediterranean-climate ecosystems. Both the mean and median population densities were consistently and substantially higher in areas with than without fire, but fire again peaked at intermediate population densities, which suggests that the spatial relationship is complex and nonlinear. Some land-cover types burned more frequently than expected, but no systematic differences were observed across the five regions. The consistent association between higher population densities and fire suggests that regardless of differences between land-cover types, natural fire regimes, or overall population, the presence of people in Mediterranean-climate regions strongly affects the frequency of fires; thus, population growth in areas now sparsely settled presents a conservation concern. Considering the sensitivity of plant species to repeated burning and the global conservation significance of Mediterranean-climate ecosystems, conservation planning needs to consider the human influence on fire frequency. Fine-scale spatial analysis of relationships between people and fire may help identify areas where increases in fire frequency will threaten ecologically valuable areas. ©2009 Society for Conservation Biology.
Forage selection by mule deer: does niche breadth increase with population density.
M.C. Nicholson; R.T. Bowyer; J.G. Kie
2006-01-01
Effects of population density of mule deer Odocoileus hemionus on forage selection were investigated by comparing diet characteristics of two subpopulations of deer in southern California, USA, that differed in population density during winter. Quality of diet for deer, as indexed by faecal crude protein, was higher at the low-density site than at...
Population density and mortality among individuals in motor vehicle crashes.
Gedeborg, Rolf; Thiblin, Ingemar; Byberg, Liisa; Melhus, Håkan; Lindbäck, Johan; Michaelsson, Karl
2010-10-01
To assess whether higher mortality rates among individuals in motor vehicle crashes in areas with low population density depend on injury type and severity or are related to the performance of emergency medical services (EMS). Prehospital and hospital deaths were studied in a population-based cohort of 41,243 motor vehicle crashes that occurred in Sweden between 1998 and 2004. The final multivariable analysis was restricted to 6884 individuals in motor vehicle crashes, to minimise the effects of confounding factors. Crude mortality rates following motor vehicle crashes were inversely related to regional population density. In regions with low population density, the unadjusted rate ratio for prehospital death was 2.2 (95% CI 1.9 to 2.5) and for hospital death 1.5 (95% CI 1.1 to 1.9), compared with a high-density population. However, after controlling for regional differences in age, gender and the type/severity of injuries among 6884 individuals in motor vehicle crashes, low population density was no longer associated with increased mortality. At 25 years of age, predicted prehospital mortality was 9% lower (95% CI 5% to 12%) in regions with low population density compared with high population density. This difference decreased with increasing age, but was still 3% lower (95% CI 0.5% to 5%) at 65 years of age. The inverse relationship between population density and mortality among individuals in motor vehicle crashes is related to pre-crash factors that influence the type and severity of injuries and not to differences in EMS.
Exploring the relationship between population density and maternal health coverage
2012-01-01
Background Delivering health services to dense populations is more practical than to dispersed populations, other factors constant. This engenders the hypothesis that population density positively affects coverage rates of health services. This hypothesis has been tested indirectly for some services at a local level, but not at a national level. Methods We use cross-sectional data to conduct cross-country, OLS regressions at the national level to estimate the relationship between population density and maternal health coverage. We separately estimate the effect of two measures of density on three population-level coverage rates (6 tests in total). Our coverage indicators are the fraction of the maternal population completing four antenatal care visits and the utilization rates of both skilled birth attendants and in-facility delivery. The first density metric we use is the percentage of a population living in an urban area. The second metric, which we denote as a density score, is a relative ranking of countries by population density. The score’s calculation discounts a nation’s uninhabited territory under the assumption those areas are irrelevant to service delivery. Results We find significantly positive relationships between our maternal health indicators and density measures. On average, a one-unit increase in our density score is equivalent to a 0.2% increase in coverage rates. Conclusions Countries with dispersed populations face higher burdens to achieve multinational coverage targets such as the United Nations’ Millennial Development Goals. PMID:23170895
Dietary niche variation and its relationship to lizard population density.
Novosolov, Maria; Rodda, Gordon H; Gainsbury, Alison M; Meiri, Shai
2018-01-01
Insular species are predicted to broaden their niches, in response to having fewer competitors. They can thus exploit a greater proportion of the resource spectrum. In turn, broader niches are hypothesized to facilitate (or be a consequence of) increased population densities. We tested whether insular lizards have broader dietary niches than mainland species, how it relates to competitor and predator richness, and the nature of the relationship between population density and dietary niche breadth. We collected population density and dietary niche breadth data for 36 insular and 59 mainland lizard species, and estimated competitor and predator richness at the localities where diet data were collected. We estimated dietary niche shift by comparing island species to their mainland relatives. We controlled for phylogenetic relatedness, body mass and the size of the plots over which densities were estimated. We found that island and mainland species had similar niche breadths. Dietary niche breadth was unrelated to competitor and predator richness, on both islands and the mainland. Population density was unrelated to dietary niche breadth across island and mainland populations. Our results indicate that dietary generalism is not an effective way of increasing population density nor is it result of lower competitive pressure. A lower variety of resources on islands may prevent insular animals from increasing their niche breadths even in the face of few competitors. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Walsh, Michael G; Haseeb, Ma
2015-01-01
Ebola virus disease (EVD) is an emerging infectious disease of zoonotic origin that has been responsible for high mortality and significant social disruption in West and Central Africa. Zoonotic transmission of EVD requires contact between susceptible human hosts and the reservoir species for Ebolaviruses, which are believed to be fruit bats. Nevertheless, features of the landscape that may facilitate such points of contact have not yet been adequately identified. Nor have spatial dependencies between zoonotic EVD transmission and landscape structures been delineated. This investigation sought to describe the spatial relationship between zoonotic EVD transmission events, or spillovers, and population density and vegetation cover. An inhomogeneous Poisson process model was fitted to all precisely geolocated zoonotic transmissions of EVD in West and Central Africa. Population density was strongly associated with spillover; however, there was significant interaction between population density and green vegetation cover. In areas of very low population density, increasing vegetation cover was associated with a decrease in risk of zoonotic transmission, but as population density increased in a given area, increasing vegetation cover was associated with increased risk of zoonotic transmission. This study showed that the spatial dependencies of Ebolavirus spillover were associated with the distribution of population density and vegetation cover in the landscape, even after controlling for climate and altitude. While this is an observational study, and thus precludes direct causal inference, the findings do highlight areas that may be at risk for zoonotic EVD transmission based on the spatial configuration of important features of the landscape.
Spatial distribution of limited resources and local density regulation in juvenile Atlantic salmon.
Finstad, Anders G; Einum, Sigurd; Ugedal, Ola; Forseth, Torbjørn
2009-01-01
1. Spatial heterogeneity of resources may influence competition among individuals and thus have a fundamental role in shaping population dynamics and carrying capacity. In the present study, we identify shelter opportunities as a limiting resource for juvenile Atlantic salmon (Salmo salar L.). Experimental and field studies are combined in order to demonstrate how the spatial distribution of shelters may influence population dynamics on both within and among population scales. 2. In closed experimental streams, fish performance scaled negatively with decreasing shelter availability and increasing densities. In contrast, the fish in open stream channels dispersed according to shelter availability and performance of fish remaining in the streams did not depend on initial density or shelters. 3. The field study confirmed that spatial variation in densities of 1-year-old juveniles was governed both by initial recruit density and shelter availability. Strength of density-dependent population regulation, measured as carrying capacity, increased with decreasing number of shelters. 4. Nine rivers were surveyed for spatial variation in shelter availability and increased shelter heterogeneity tended to decrease maximum observed population size (measured using catch statistics of adult salmon as a proxy). 5. Our studies highlight the importance of small-scale within-population spatial structure in population dynamics and demonstrate that not only the absolute amount of limiting resources but also their spatial arrangement can be an important factor influencing population carrying capacity.
Predator-induced synchrony in population oscillations of coexisting small mammal species
Korpimäki, Erkki; Norrdahl, Kai; Huitu, Otso; Klemola, Tero
2005-01-01
Comprehensive analyses of long-term (1977–2003) small-mammal abundance data from western Finland showed that populations of Microtus voles (field voles M. agrestis and sibling voles M. rossiaemeridionalis) voles, bank (Clethrionomys glareolus) and common shrews (Sorex araneus) fluctuated synchronously in 3 year population cycles. Time-series analyses indicated that interspecific synchrony is influenced strongly by density-dependent processes. Synchrony among Microtus and bank voles appeared additionally to be influenced by density-independent processes. To test whether interspecific synchronization through density-dependent processes is caused by predation, we experimentally reduced the densities of the main predators of small mammals in four large agricultural areas, and compared small mammal abundances in these to those in four control areas (2.5–3 km2) through a 3 year small-mammal population cycle. Predator reduction increased densities of the main prey species, Microtus voles, in all phases of the population cycle, while bank voles, the most important alternative prey of predators, responded positively only in the low and the increase phase. Manipulation also increased the autumn densities of water voles (Arvicola terrestris) in the increase phase of the cycle. No treatment effects were detected for common shrews or mice. Our results are in accordance with the alternative prey hypothesis, by which predators successively reduce the densities of both main and alternative prey species after the peak phase of small-mammal population cycles, thus inducing a synchronous low phase. PMID:15695211
Lankau, Richard A; Strauss, Sharon Y
2011-01-01
Environmental management typically seeks to increase or maintain the population sizes of desirable species and to decrease population sizes of undesirable pests, pathogens, or invaders. With changes in population size come long-recognized changes in ecological processes that act in a density-dependent fashion. While the ecological effects of density dependence have been well studied, the evolutionary effects of changes in population size, via changes in ecological interactions with community members, are underappreciated. Here, we provide examples of changing selective pressures on, or evolution in, species as a result of changes in either density of conspecifics or changes in the frequency of heterospecific versus conspecific interactions. We also discuss the management implications of such evolutionary responses in species that have experienced rapid increases or decreases in density caused by human actions. PMID:25567977
Anthropogenically-Mediated Density Dependence in a Declining Farmland Bird
Dunn, Jenny C.; Hamer, Keith C.; Benton, Tim G.
2015-01-01
Land management intrinsically influences the distribution of animals and can consequently alter the potential for density-dependent processes to act within populations. For declining species, high densities of breeding territories are typically considered to represent productive populations. However, as density-dependent effects of food limitation or predator pressure may occur (especially when species are dependent upon separate nesting and foraging habitats), high territory density may limit per-capita productivity. Here, we use a declining but widespread European farmland bird, the yellowhammer Emberiza citrinella L., as a model system to test whether higher territory densities result in lower fledging success, parental provisioning rates or nestling growth rates compared to lower densities. Organic landscapes held higher territory densities, but nests on organic farms fledged fewer nestlings, translating to a 5 times higher rate of population shrinkage on organic farms compared to conventional. In addition, when parental provisioning behaviour was not restricted by predation risk (i.e., at times of low corvid activity), nestling provisioning rates were higher at lower territory densities, resulting in a much greater increase in nestling mass in low density areas, suggesting that food limitation occurred at high densities. These findings in turn suggest an ecological trap, whereby preferred nesting habitat does not provide sufficient food for rearing nestlings at high population density, creating a population sink. Habitat management for farmland birds should focus not simply on creating a high nesting density, but also on ensuring heterogeneous habitats to provide food resources in close proximity to nesting birds, even if this occurs through potentially restricting overall nest density but increasing population-level breeding success. PMID:26431173
NASA Astrophysics Data System (ADS)
Romanova, Elena
2018-03-01
High-rise apartment houses have technical and economic advantages in areas with dense population. Their placement in the central part of the city allows increasing the number of living space in the limited territory, to bring population to the place of employment and reduce pendular migration. But increase in population density leads to psychological problems: level of a stress, fatigue increases, the number of phobias grows, infectious diseases extend quicker. These problems can be solved at resettlement of inhabitants to the suburb. However such decision leads to aggravation of a transport problem and the pulsing increase in population density in the downtown and on its suburb. To solve a transport problem, it is necessary not to increase the square of the cities. Therefore in the suburbs is also used high-rise construction. But high-rise residential districts on the suburb of the city get own social problems which are capable to destroy all advantages of high-rise construction.
Shenoi, V N; Ali, S Z; Prasad, N G
2016-02-01
In holometabolous animals such as Drosophila melanogaster, larval crowding can affect a wide range of larval and adult traits. Adults emerging from high larval density cultures have smaller body size and increased mean life span compared to flies emerging from low larval density cultures. Therefore, adaptation to larval crowding could potentially affect adult longevity as a correlated response. We addressed this issue by studying a set of large, outbred populations of D. melanogaster, experimentally evolved for adaptation to larval crowding for 83 generations. We assayed longevity of adult flies from both selected (MCUs) and control populations (MBs) after growing them at different larval densities. We found that MCUs have evolved increased mean longevity compared to MBs at all larval densities. The interaction between selection regime and larval density was not significant, indicating that the density dependence of mean longevity had not evolved in the MCU populations. The increase in longevity in MCUs can be partially attributed to their lower rates of ageing. It is also noteworthy that reaction norm of dry body weight, a trait probably under direct selection in our populations, has indeed evolved in MCU populations. To the best of our knowledge, this is the first report of the evolution of adult longevity as a correlated response of adaptation to larval crowding. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Acosta, J A; Gabarrón, M; Faz, A; Martínez-Martínez, S; Zornoza, R; Arocena, J M
2015-09-01
Street dust and soil from high, medium and low populated cities and natural area were analysed for selected physical-chemical properties, total and chemical speciation of Zn, Pb, Cu, Cr, Cd, Co, Ni to understand the influence of human activities on metal accumulation and mobility in the environment. The pH, salinity, carbonates and organic carbon contents were similar between soil and dust from the same city. Population density increases dust/soil salinity but has no influence on metals concentrations in soils. Increases in metal concentrations with population density were observed in dusts. Cu, Zn, Pb, Cr can be mobilized more easily from dust compared to the soil. In addition, population density increase the percentage of Pb and Zn associated to reducible and carbonate phase in the dust. The behaviour of metals except Cd in soil is mainly affected by physico-chemical properties, while total metal influenced the speciation except Cr and Ni in dusts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modelling interactions of toxicants and density dependence in wildlife populations
Schipper, Aafke M.; Hendriks, Harrie W.M.; Kauffman, Matthew J.; Hendriks, A. Jan; Huijbregts, Mark A.J.
2013-01-01
1. A major challenge in the conservation of threatened and endangered species is to predict population decline and design appropriate recovery measures. However, anthropogenic impacts on wildlife populations are notoriously difficult to predict due to potentially nonlinear responses and interactions with natural ecological processes like density dependence. 2. Here, we incorporated both density dependence and anthropogenic stressors in a stage-based matrix population model and parameterized it for a density-dependent population of peregrine falcons Falco peregrinus exposed to two anthropogenic toxicants [dichlorodiphenyldichloroethylene (DDE) and polybrominated diphenyl ethers (PBDEs)]. Log-logistic exposure–response relationships were used to translate toxicant concentrations in peregrine falcon eggs to effects on fecundity. Density dependence was modelled as the probability of a nonbreeding bird acquiring a breeding territory as a function of the current number of breeders. 3. The equilibrium size of the population, as represented by the number of breeders, responded nonlinearly to increasing toxicant concentrations, showing a gradual decrease followed by a relatively steep decline. Initially, toxicant-induced reductions in population size were mitigated by an alleviation of the density limitation, that is, an increasing probability of territory acquisition. Once population density was no longer limiting, the toxicant impacts were no longer buffered by an increasing proportion of nonbreeders shifting to the breeding stage, resulting in a strong decrease in the equilibrium number of breeders. 4. Median critical exposure concentrations, that is, median toxicant concentrations in eggs corresponding with an equilibrium population size of zero, were 33 and 46 μg g−1 fresh weight for DDE and PBDEs, respectively. 5. Synthesis and applications. Our modelling results showed that particular life stages of a density-limited population may be relatively insensitive to toxicant impacts until a critical threshold is crossed. In our study population, toxicant-induced changes were observed in the equilibrium number of nonbreeding rather than breeding birds, suggesting that monitoring efforts including both life stages are needed to timely detect population declines. Further, by combining quantitative exposure–response relationships with a wildlife demographic model, we provided a method to quantify critical toxicant thresholds for wildlife population persistence.
Williams, Jennifer L; Levine, Jonathan M
2018-04-01
Populations of range expanding species encounter patches of both favorable and unfavorable habitat as they spread across landscapes. Theory shows that increasing patchiness slows the spread of populations modeled with continuously varying population density when dispersal is not influence by the environment or individual behavior. However, as is found in uniformly favorable landscapes, spread remains driven by fecundity and dispersal from low density individuals at the invasion front. In contrast, when modeled populations are composed of discrete individuals, patchiness causes populations to build up to high density before dispersing past unsuitable habitat, introducing an important influence of density dependence on spread velocity. To test the hypothesized interaction between habitat patchiness and density dependence, we simultaneously manipulated these factors in a greenhouse system of annual plants spreading through replicated experimental landscapes. We found that increasing the size of gaps and amplifying the strength of density dependence both slowed spread velocity, but contrary to predictions, the effect of amplified density dependence was similar across all landscape types. Our results demonstrate that the discrete nature of individuals in spreading populations has a strong influence on how both landscape patchiness and density dependence influence spread through demographic and dispersal stochasticity. Both finiteness and landscape structure should be critical components to theoretical predictions of future spread for range expanding native species or invasive species colonizing new habitat. © 2018 by the Ecological Society of America.
Fishing for lobsters indirectly increases epidemics in sea urchins
Lafferty, Kevin D.
2004-01-01
Two ecological paradigms, the trophic cascade and the host-density threshold in disease, interact in the kelp-forest ecosystem to structure the community. To investigate what happens when a trophic cascade pushes a host population over a host-threshold density, I analyzed a 20-year data set of kelp forest communities at 16 sites in the region of the Channel Islands National Park, California, USA. Historically, lobsters, and perhaps other predators, kept urchin populations at low levels and kelp forests developed a community-level trophic cascade. In geographic areas where the main predators on urchins were fished, urchin populations increased to the extent that they overgrazed algae and starvation eventually limited urchin-population growth. Despite the limitation of urchin population size by food availability, urchin densities, at times, well exceeded the host-density threshold for epidemics. An urchin-specific bacterial disease entered the region after 1992 and acted as a density-dependent mortality source. Dense populations were more likely to experience epidemics and suffer higher mortality. Disease did not reduce the urchin population at a site to the density that predators previously did. Therefore, disease did not fully replace predators in the trophic cascade. These results indicate how fishing top predators can indirectly favor disease transmission in prey populations.
Lord, Joshua P; Williams, Larissa M
2017-04-01
Hemigrapsus sanguineus , the Asian shore crab, has rapidly replaced Carcinus maenas , the green crab, as the most abundant crab on rocky shores in the northwest Atlantic since its introduction to the United States (USA) in 1988. The northern edge of this progressing invasion is the Gulf of Maine, where Asian shore crabs are only abundant in the south. We compared H. sanguineus population densities to those from published 2005 surveys and quantified genetic variation using the cytochrome c oxidase subunit I gene. We found that the range of H. sanguineus had extended northward since 2005, that population density had increased substantially (at least 10-fold at all sites), and that Asian shore crabs had become the dominant intertidal crab species in New Hampshire and southern Maine. Despite the significant increase in population density of H. sanguineus , populations only increased by a factor of 14 in Maine compared to 70 in southern New England, possibly due to cooler temperatures in the Gulf of Maine. Genetically, populations were predominantly composed of a single haplotype of Japanese, Korean, or Taiwanese origin, although an additional seven haplotypes were found. Six of these haplotypes were of Asian origin, while two are newly described. Large increases in population sizes of genetically diverse individuals in Maine will likely have a large ecological impact, causing a reduction in populations of mussels, barnacles, snails, and other crabs, similar to what has occurred at southern sites with large populations of this invasive crab species.
Huntsman, Brock M.; Petty, J. Todd
2014-01-01
Spatial population models predict strong density-dependence and relatively stable population dynamics near the core of a species' distribution with increasing variance and importance of density-independent processes operating towards the population periphery. Using a 10-year data set and an information-theoretic approach, we tested a series of candidate models considering density-dependent and density-independent controls on brook trout population dynamics across a core-periphery distribution gradient within a central Appalachian watershed. We sampled seven sub-populations with study sites ranging in drainage area from 1.3–60 km2 and long-term average densities ranging from 0.335–0.006 trout/m. Modeled response variables included per capita population growth rate of young-of-the-year, adult, and total brook trout. We also quantified a stock-recruitment relationship for the headwater population and coefficients of variability in mean trout density for all sub-populations over time. Density-dependent regulation was prevalent throughout the study area regardless of stream size. However, density-independent temperature models carried substantial weight and likely reflect the effect of year-to-year variability in water temperature on trout dispersal between cold tributaries and warm main stems. Estimated adult carrying capacities decreased exponentially with increasing stream size from 0.24 trout/m in headwaters to 0.005 trout/m in the main stem. Finally, temporal variance in brook trout population size was lowest in the high-density headwater population, tended to peak in mid-sized streams and declined slightly in the largest streams with the lowest densities. Our results provide support for the hypothesis that local density-dependent processes have a strong control on brook trout dynamics across the entire distribution gradient. However, the mechanisms of regulation likely shift from competition for limited food and space in headwater streams to competition for thermal refugia in larger main stems. It also is likely that source-sink dynamics and dispersal from small headwater habitats may partially influence brook trout population dynamics in the main stem. PMID:24618602
Profound Effects of Population Density on Fitness-Related Traits in an Invasive Freshwater Snail
Zachar, Nicholas; Neiman, Maurine
2013-01-01
Population density can profoundly influence fitness-related traits and population dynamics, and density dependence plays a key role in many prominent ecological and evolutionary hypotheses. Here, we evaluated how individual-level changes in population density affect growth rate and embryo production early in reproductive maturity in two different asexual lineages of Potamopyrgus antipodarum, a New Zealand freshwater snail that is an important model system for ecotoxicology and the evolution of sexual reproduction as well as a potentially destructive worldwide invader. We showed that population density had a major influence on individual growth rate and early-maturity embryo production, effects that were often apparent even when comparing treatments that differed in population density by only one individual. While individual growth rate generally decreased as population density increased, we detected a hump-shaped relationship between embryo production and density, with females from intermediate-density treatments producing the most embryos and females from low- and high-density treatments producing the fewest embryos. The two lineages responded similarly to the treatments, indicating that these effects of population density might apply more broadly across P. antipodarum. These results indicate that there are profound and complex relationships between population density, growth rate, and early-maturity embryo production in at least two lineages of this important model system, with potential implications for the study of invasive populations, research on the maintenance of sex, and approaches used in ecotoxicology. PMID:24278240
Profound effects of population density on fitness-related traits in an invasive freshwater snail.
Zachar, Nicholas; Neiman, Maurine
2013-01-01
Population density can profoundly influence fitness-related traits and population dynamics, and density dependence plays a key role in many prominent ecological and evolutionary hypotheses. Here, we evaluated how individual-level changes in population density affect growth rate and embryo production early in reproductive maturity in two different asexual lineages of Potamopyrgus antipodarum, a New Zealand freshwater snail that is an important model system for ecotoxicology and the evolution of sexual reproduction as well as a potentially destructive worldwide invader. We showed that population density had a major influence on individual growth rate and early-maturity embryo production, effects that were often apparent even when comparing treatments that differed in population density by only one individual. While individual growth rate generally decreased as population density increased, we detected a hump-shaped relationship between embryo production and density, with females from intermediate-density treatments producing the most embryos and females from low- and high-density treatments producing the fewest embryos. The two lineages responded similarly to the treatments, indicating that these effects of population density might apply more broadly across P. antipodarum. These results indicate that there are profound and complex relationships between population density, growth rate, and early-maturity embryo production in at least two lineages of this important model system, with potential implications for the study of invasive populations, research on the maintenance of sex, and approaches used in ecotoxicology.
Effects of population reduction on white-tailed deer home-range dynamics
Crimmins, Shawn M.; Edwards, John W.; Campbell, Tyler A; Ford, W. Mark; Keyser, Patrick D.; Miller, Brad F.; Miller, Karl V.
2015-01-01
Management strategies designed to reduce the negative impacts of overabundant Odocoileus virginianus (White-tailed Deer) populations on forest regeneration may be influenced by changes in both population density and timber harvest. However, there is conflicting evidence as to how such changes in per capita resource availability influence home-range patterns. We compared home-range patterns of 33 female White-tailed Deer from a low-density population at a site with abundant browse to patterns of a sample of >100 females prior to a 75% reduction in population density and a doubling in timber harvest area. Home-range and core-area sizes were approximately 3 times larger than were found prior to population decline and timber harvest increase, consistent with predictions related to intraspecific competition. We also observed greater site fidelity than previously exhibited, although this may be an artifact of increased home-range sizes. Our results support previous research suggesting that White-tailed Deer home-range size is inversely related to population density and is driven, in part, by intraspecific competition for resources. Relationships among population density, resource availability, and home-range patterns among female White-tailed Deer appear to be complex and context specific.
Kyes, Randall C; Iskandar, Entang; Onibala, Jane; Paputungan, Umar; Laatung, Sylvia; Huettmann, Falk
2013-01-01
The Sulawesi black macaque (Macaca nigra) population at Tangkoko Nature Reserve in North Sulawesi, Indonesia has been the focus of periodic study for over 30 years. The population has shown considerable decline during much of that time. Here we present the results of a long-term population survey of the Tangkoko M. nigra, conducted over the past decade, to provide updated information and on-going assessment of the population. Line-transect sampling was conducted annually from 1999 to 2002 and 2005 to 2011 along the same transect during a 2- to 3-week survey period. Although further decline in the population was observed at the outset of the survey, over the subsequent 12-year period we have seen stability in the population parameters with evidence of modest increases in both group and population density. During the 1999-2002 survey periods, there was a mean group density of 3.6 groups/km(2) and a mean population density of 39.8 individuals/km(2) . During 2005-2011, mean group density increased to 3.8 groups/km(2) and mean population density was 51.4 individuals/km(2) . The 2011 survey data indicated an estimated group density of 4.3 groups/km(2) and a population density of 61.5 individuals/km(2) . Given that our transect was located in the core of the Tangkoko reserve, our density estimates should be limited to that area of the reserve. One explanation for the apparent stabilization of the population may be tied to the increasing and sustained number of training and research programs being conducted at the reserve. This collective effort by local and international groups may be helping to reduce illegal activity in the reserve (i.e., hunting and habitat destruction) and generate greater awareness of this critically endangered species. Without the continued vigilance afforded by the existing research and training programs and the support and involvement of the local people, the M. nigra at the Tangkoko Nature Reserve will likely face further decline. © 2012 Wiley Periodicals, Inc.
Abrams, Peter A
2009-09-01
Consumer-resource models are used to deduce the functional form of density dependence in the consumer population. A general approach to determining the form of consumer density dependence is proposed; this involves determining the equilibrium (or average) population size for a series of different harvest rates. The relationship between a consumer's mortality and its equilibrium population size is explored for several one-consumer/one-resource models. The shape of density dependence in the resource and the shape of the numerical and functional responses all tend to be "inherited" by the consumer's density dependence. Consumer-resource models suggest that density dependence will very often have both concave and convex segments, something that is impossible under the commonly used theta-logistic model. A range of consumer-resource models predicts that consumer population size often declines at a decelerating rate with mortality at low mortality rates, is insensitive to or increases with mortality over a wide range of intermediate mortalities, and declines at a rapidly accelerating rate with increased mortality when mortality is high. This has important implications for management and conservation of natural populations.
Sexual segregation in North American elk: the role of density dependence
Stewart, Kelley M; Walsh, Danielle R; Kie, John G; Dick, Brian L; Bowyer, R Terry
2015-01-01
We investigated how density-dependent processes and subsequent variation in nutritional condition of individuals influenced both timing and duration of sexual segregation and selection of resources. During 1999–2001, we experimentally created two population densities of North American elk (Cervus elaphus), a high-density population at 20 elk/km2, and a low-density population at 4 elk/km2 to test hypotheses relative to timing and duration of sexual segregation and variation in selection of resources. We used multi-response permutation procedures to investigate patterns of sexual segregation, and resource selection functions to document differences in selection of resources by individuals in high- and low-density populations during sexual segregation and aggregation. The duration of sexual segregation was 2 months longer in the high-density population and likely was influenced by individuals in poorer nutritional condition, which corresponded with later conception and parturition, than at low density. Males and females in the high-density population overlapped in selection of resources to a greater extent than in the low-density population, probably resulting from density-dependent effects of increased intraspecific competition and lower availability of resources. PMID:25691992
Roy, Justin; Yannic, Glenn; Côté, Steeve D; Bernatchez, Louis
2012-01-01
Although the dispersal of animals is influenced by a variety of factors, few studies have used a condition-dependent approach to assess it. The mechanisms underlying dispersal are thus poorly known in many species, especially in large mammals. We used 10 microsatellite loci to examine population density effects on sex-specific dispersal behavior in the American black bear, Ursus americanus. We tested whether dispersal increases with population density in both sexes. Fine-scale genetic structure was investigated in each of four sampling areas using Mantel tests and spatial autocorrelation analyses. Our results revealed male-biased dispersal pattern in low-density areas. As population density increased, females appeared to exhibit philopatry at smaller scales. Fine-scale genetic structure for males at higher densities may indicate reduced dispersal distances and delayed dispersal by subadults. PMID:22822432
White, Richard S A; McHugh, Peter A; McIntosh, Angus R
2016-10-01
Because smaller habitats dry more frequently and severely during droughts, habitat size is likely a key driver of survival in populations during climate change and associated increased extreme drought frequency. Here, we show that survival in populations during droughts is a threshold function of habitat size driven by an interaction with population density in metapopulations of the forest pool dwelling fish, Neochanna apoda. A mark-recapture study involving 830 N. apoda individuals during a one-in-seventy-year extreme drought revealed that survival during droughts was high for populations occupying pools deeper than 139 mm, but declined steeply in shallower pools. This threshold was caused by an interaction between increasing population density and drought magnitude associated with decreasing habitat size, which acted synergistically to increase physiological stress and mortality. This confirmed two long-held hypotheses, firstly concerning the interactive role of population density and physiological stress, herein driven by habitat size, and secondly, the occurrence of drought survival thresholds. Our results demonstrate how survival in populations during droughts will depend strongly on habitat size and highlight that minimum habitat size thresholds will likely be required to maximize survival as the frequency and intensity of droughts are projected to increase as a result of global climate change. © 2016 John Wiley & Sons Ltd.
Schrader, Matthew; Travis, Joseph
2012-01-01
Population density is an ecological variable that is hypothesized to be a major agent of selection on offspring size. In high-density populations, high levels of intraspecific competition are expected to favor the production of larger offspring. In contrast, lower levels of intraspecific competition and selection for large offspring should be weaker and more easily overridden by direct selection for increased fecundity in low-density populations. Some studies have found associations between population density and offspring size consistent with this hypothesis. However, their interpretations are often clouded by a number of issues. Here, we use data from a 10-year study of nine populations of the least killifish, Heterandria formosa, to describe the associations of offspring size with habitat type, population density, and predation risk. We found that females from spring populations generally produced larger offspring than females from ponds; however, the magnitude of this difference varied among years. Across all populations, larger offspring were associated with higher densities and lower risks of predation. Interestingly, the associations between the two ecological variables (density and predation risk) and offspring size were largely independent of one another. Our results suggest that previously described genetic differences in offspring size are due to density-dependent natural selection. PMID:22957156
Evaluating factors driving population densities of mayfly nymphs in Western Lake Erie
Stapanian, Martin A.; Kocovsky, Patrick; Bodamer Scarbro, Betsy L.
2017-01-01
Mayfly (Hexagenia spp.) nymphs have been widely used as indicators of water and substrate quality in lakes. Thermal stratification and the subsequent formation of benthic hypoxia may result in nymph mortality. Our goal was to identify potential associations between recent increases in temperature and eutrophication, which exacerbate hypoxic events in lakes, and mayfly populations in Lake Erie. Nymphs were collected during April–May 1999–2014. We used wind and temperature data to calculate four measures of thermal stratification, which drives hypoxic events, during summers of 1998–2013. Bottom trawl data collected during August 1998–2013 were used to estimate annual biomass of fishes known to be predators of mayfly nymphs. We used Akaike's Information Criterion to identify the best one- and two-predictor regression models of annual population densities (N/m2) of age-1 and age-2 nymphs, in which candidate predictors included the four measures of stratification, predator fish biomass, competition, and population densities of age-2 (for age-1) and age-1 (for age-2) nymphs from the previous year. Densities of both age classes of nymphs declined over the time series. Population densities of age-1 and age-2 nymphs from the previous year best predicted annual population densities of nymphs of both age classes. However, hypoxic conditions (indicated by stratification) and predation both had negative effects on annual population density of mayflies. Compared with predation, hypoxia had an inconsistent effect on annual nymph density. The increases in temperature and eutrophication in Lake Erie, which exacerbate hypoxic events, may have drastic effects on the mayfly populations.
McCreesh, Nicky; Arinaitwe, Moses; Arineitwe, Wilber; Tukahebwa, Edridah M; Booth, Mark
2014-11-12
Mathematical models can be used to identify areas at risk of increased or new schistosomiasis transmission as a result of climate change. The results of these models can be very different when parameterised to different species of host snail, which have varying temperature preferences. Currently, the experimental data needed by these models are available for only a few species of snail. The choice of density-dependent functions can also affect model results, but the effects of increasing densities on Biomphalaria populations have only previously been investigated in artificial aquariums. Laboratory experiments were conducted to estimate Biomphalaria sudanica mortality, fecundity and growth rates at ten different constant water temperatures, ranging from 13-32°C. Snail cages were used to determine the effects of snail densities on B. sudanica and B. stanleyi mortality and fecundity rates in semi-natural conditions in Lake Albert. B. sudanica survival and fecundity were highest at 20°C and 22°C respectively. Growth in shell diameter was estimated to be highest at 23°C in small and medium sized snails, but the relationship between temperature and growth was not clear. The fecundity of both B. sudanica and B. stanleyi decreased by 72-75% with a four-fold increase in population density. Increasing densities four-fold also doubled B. stanleyi mortality rates, but had no effect on the survival of B. sudanica. The optimum temperature for fecundity was lower for B. sudanica than for previously studied species of Biomphalaria. In contrast to other Biomphalaria species, B. sudanica have a distinct peak temperature for survival, as opposed to a plateau of highly suitable temperatures. For both B. stanleyi and B. sudanica, fecundity decreased with increasing population densities. This means that snail populations may experience large fluctuations in numbers, even in the absence of any external factors such as seasonal temperature changes. Survival also decreased with increasing density for B. stanleyi, in contrast to B. sudanica and other studied Biomphalaria species where only fecundity has been shown to decrease.
Desai, Atman; Bekelis, Kimon; Zhao, Wenyan; Ball, Perry A
2012-09-01
Motor vehicle accidents (MVAs) are a leading cause of death and disability in young people. Given that a major cause of death from MVAs is traumatic brain injury, and neurosurgeons hold special expertise in this area relative to other members of a trauma team, the authors hypothesized that neurosurgeon population density would be related to reduced mortality from MVAs across US counties. The Area Resource File (2009-2010), a national health resource information database, was retrospectively analyzed. The primary outcome variable was the 3-year (2004-2006) average in MVA deaths per million population for each county. The primary independent variable was the density of neurosurgeons per million population in the year 2006. Multiple regression analysis was performed, adjusting for population density of general practitioners, urbanicity of the county, and socioeconomic status of the county. The median number of annual MVA deaths per million population, in the 3141 counties analyzed, was 226 (interquartile range [IQR] 151-323). The median number of neurosurgeons per million population was 0 (IQR 0-0), while the median number of general practitioners per million population was 274 (IQR 175-410). Using an unadjusted analysis, each increase of 1 neurosurgeon per million population was associated with 1.90 fewer MVA deaths per million population (p < 0.001). On multivariate adjusted analysis, each increase of 1 neurosurgeon per million population was associated with 1.01 fewer MVA deaths per million population (p < 0.001), with a respective decrease in MVA deaths of 0.03 per million population for an increase in 1 general practitioner (p = 0.007). Rural location, persistent poverty, and low educational level were all associated with significant increases in the rate of MVA deaths. A higher population density of neurosurgeons is associated with a significant reduction in deaths from MVAs, a major cause of death nationally. This suggests that the availability of local neurosurgeons is an important factor in the overall likelihood of survival from an MVA, and therefore indicates the importance of promoting neurosurgical education and practice throughout the country.
Mating systems of Cuphea laminuligera and Cuphea lutea.
Krueger, S K; Knapp, S J
1991-08-01
In this paper, the mating systems of experimental populations of C. laminuligera and C. lutea are described. Outcrossing rates (t) were estimated for four populations of C. laminuligera and three populations of C. lutea using allozyme phenotypes of open-pollinated individual plant families. Populations were grown at densities of 1.0 × 1.0 m (low) and 0.04 × 0.3 m (high). Pollen and ovule frequencies and single locus and multilocus outcrossing rates were estimated for each population using the mixed-mating model. Multilocus estimates of t ranged from 0.83 to 0.98 and 1.00 to 1.01 for low and high density populations of C. laminuligera, respectively, and 0.17 to 0.26 and 0.36 to 0.54 for low and high density populations of C. lutea, respectively. C. laminuligera is predominantly allogamous; however, selfing rates as great as 17% were observed for this species. C. lutea is predominantly autogamous, but outcrossing rates as great as 54% were observed for this species. Outcrossing rates increased as density increased within C. lutea populations.
Williams, Larissa M.
2017-01-01
Hemigrapsus sanguineus, the Asian shore crab, has rapidly replaced Carcinus maenas, the green crab, as the most abundant crab on rocky shores in the northwest Atlantic since its introduction to the United States (USA) in 1988. The northern edge of this progressing invasion is the Gulf of Maine, where Asian shore crabs are only abundant in the south. We compared H. sanguineus population densities to those from published 2005 surveys and quantified genetic variation using the cytochrome c oxidase subunit I gene. We found that the range of H. sanguineus had extended northward since 2005, that population density had increased substantially (at least 10-fold at all sites), and that Asian shore crabs had become the dominant intertidal crab species in New Hampshire and southern Maine. Despite the significant increase in population density of H. sanguineus, populations only increased by a factor of 14 in Maine compared to 70 in southern New England, possibly due to cooler temperatures in the Gulf of Maine. Genetically, populations were predominantly composed of a single haplotype of Japanese, Korean, or Taiwanese origin, although an additional seven haplotypes were found. Six of these haplotypes were of Asian origin, while two are newly described. Large increases in population sizes of genetically diverse individuals in Maine will likely have a large ecological impact, causing a reduction in populations of mussels, barnacles, snails, and other crabs, similar to what has occurred at southern sites with large populations of this invasive crab species. PMID:28919836
Obesity and Regional Immigrant Density.
Emerson, Scott D; Carbert, Nicole S
2017-11-24
Canada has an increasingly large immigrant population. Areas of higher immigrant density, may relate to immigrants' health through reduced acculturation to Western foods, greater access to cultural foods, and/or promotion of salubrious values/practices. It is unclear, however, whether an association exists between Canada-wide regional immigrant density and obesity among immigrants. Thus, we examined whether regional immigrant density was related to obesity, among immigrants. Adult immigrant respondents (n = 15,595) to a national population-level health survey were merged with region-level immigrant density data. Multi-level logistic regression was used to model the odds of obesity associated with increased immigrant density. The prevalence of obesity among the analytic sample was 16%. Increasing regional immigrant density was associated with lower odds of obesity among minority immigrants and long-term white immigrants. Immigrant density at the region-level in Canada may be an important contextual factor to consider when examining obesity among immigrants.
Changes in seasonal climate outpace compensatory density-dependence in eastern brook trout
Bassar, Ronald D.; Letcher, Benjamin H.; Nislow, Keith H.; Whiteley, Andrew R.
2016-01-01
Understanding how multiple extrinsic (density-independent) factors and intrinsic (density-dependent) mechanisms influence population dynamics has become increasingly urgent in the face of rapidly changing climates. It is particularly unclear how multiple extrinsic factors with contrasting effects among seasons are related to declines in population numbers and changes in mean body size and whether there is a strong role for density-dependence. The primary goal of this study was to identify the roles of seasonal variation in climate driven environmental direct effects (mean stream flow and temperature) versus density-dependence on population size and mean body size in eastern brook trout (Salvelinus fontinalis). We use data from a 10-year capture-mark-recapture study of eastern brook trout in four streams in Western Massachusetts, USA to parameterize a discrete-time population projection model. The model integrates matrix modeling techniques used to characterize discrete population structures (age, habitat type and season) with integral projection models (IPMs) that characterize demographic rates as continuous functions of organismal traits (in this case body size). Using both stochastic and deterministic analyses we show that decreases in population size are due to changes in stream flow and temperature and that these changes are larger than what can be compensated for through density-dependent responses. We also show that the declines are due mostly to increasing mean stream temperatures decreasing the survival of the youngest age class. In contrast, increases in mean body size over the same period are the result of indirect changes in density with a lesser direct role of climate-driven environmental change.
NASA Astrophysics Data System (ADS)
Iida, Taichi; Soga, Masashi; Koike, Shinsuke
2018-04-01
Dramatic increases in populations of large mammalian herbivores have become a major ecological issue, particularly in the northern hemisphere, due to their substantial impacts on both animal and plant communities through processes such as grazing, browsing, and trampling. However, little is known about the consequences of these population explosions on ecosystem functions. Here, we experimentally investigated how the population density of sika deer (Cervus nippon) in temperate deciduous forest areas in Japan affected the decomposition of mammal dung by dung beetles, which is a key process in forest ecosystems. We measured a range of environmental variables (e.g., vegetation cover, soil hardness) and the dung decomposition rate, measured as the amount of deer dung decomposed during one week, and sampled dung beetles at 16 study sites with three different deer densities (high/intermediate/low). We then used structural equation modeling to investigate the relationships between deer density, environmental variables, the biomass of dung beetles (classified into small or large species), and the dung decomposition rate. We found that the biomass of small species increased with increasing deer density, whereas that of large species was not related to deer density. Furthermore, the dung decomposition rate was positively related to the biomass of small species but unrelated to that of large species. Overall, our results showed that an increase in deer density affects the decomposition rate of mammal dung by changing the structure of dung beetle communities (i.e., increasing the number of small dung beetles). Such an understanding of how increases in large herbivore populations affect ecosystem functions is important for accurately evaluating the ecological consequences of their overabundance and ultimately managing their populations appropriately.
NASA Astrophysics Data System (ADS)
Xie, Zhihao; Xiao, Hui; Tang, Xuexi; Cai, Hengjiang
2009-06-01
The interspecific interactions between the rotifer Brachionus plicatilis and two harmful algal blooms (HAB) species were investigated experimentally by single culture method. B. plicatilis population and the growth of the two algae were compared at different algal cell densities. The results demonstrated that the B. plicatilis obtained sufficient nutrition from Prorocentrum donghaiense to support net population increase. With exposure to 2.5×104 cells mL-1 of P. donghaiense, the number of B. plicatilis increased faster than it did when exposed to other four algal densities (5, 10, 15 and 20 ×104 cells mL-1), and the increase rate of B. plicatilis population ( r) at this algal density was 0.104 ± 0.015 rd-1. Cell densities of P. donghaiense decreased due to the grazing of B. plicatilis. In contrast, Heterosigma akashiwo had an adverse effect on B. plicatilis population and its growth was largely unaffected by rotifer grazing. In this case, B. plicatilis population decreased and H. akashiwo grew at a rate similar to that of the control.
Levitan, Don R; Edmunds, Peter J; Levitan, Keeha E
2014-05-01
A potential consequence of individuals compensating for density-dependent processes is that rare or infrequent events can produce profound and long-term shifts in species abundance. In 1983-1984 a mass mortality event reduced the numbers of the abundant sea urchin Diadema antillarum by 95-99% throughout the Caribbean and western Atlantic. Following this event, the abundance of macroalgae increased and the few surviving D. antillarum responded by increasing in body size and fecundity. These initial observations suggested that populations of D. antillarum could recover rapidly following release from food limitation. In contrast, published studies of field manipulations indicate that this species had traits making it resistant to density-dependent effects on offspring production and adult mortality; this evidence raises the possibility that density-independent processes might keep populations at a diminished level. Decadal-scale (1983-2011) monitoring of recruitment, mortality, population density and size structure of D. antillarum from St John, US Virgin Islands, indicates that population density has remained relatively stable and more than an order of magnitude lower than that before the mortality event of 1983-1984. We detected no evidence of density-dependent mortality or recruitment since this mortality event. In this location, model estimates of equilibrium population density, assuming density-independent processes and based on parameters generated over the first decade following the mortality event, accurately predict the low population density 20 years later (2011). We find no evidence to support the notion that this historically dominant species will rebound from this temporally brief, but spatially widespread, perturbation.
Dańko, Aleksandra; Schaible, Ralf; Pijanowska, Joanna; Dańko, Maciej J
2018-01-01
Budding hydromedusae have high reproductive rates due to asexual reproduction and can occur in high population densities along the coasts, specifically in tidal pools. In laboratory experiments, we investigated the effects of population density on the survival and reproductive strategies of a single clone of Eleutheria dichotoma . We found that sexual reproduction occurs with the highest rate at medium population densities. Increased sexual reproduction was associated with lower budding (asexual reproduction) and survival probability. Sexual reproduction results in the production of motile larvae that can, in contrast to medusae, seek to escape unfavorable conditions by actively looking for better environments. The successful settlement of a larva results in starting the polyp stage, which is probably more resistant to environmental conditions. This is the first study that has examined the life-history strategies of the budding hydromedusa E. dichotoma by conducting a long-term experiment with a relatively large sample size that allowed for the examination of age-specific mortality and reproductive rates. We found that most sexual and asexual reproduction occurred at the beginning of life following a very rapid process of maturation. The parametric models fitted to the mortality data showed that population density was associated with an increase in the rate of aging, an increase in the level of late-life mortality plateau, and a decrease in the hidden heterogeneity in individual mortality rates. The effects of population density on life-history traits are discussed in the context of resource allocation and the r/K-strategies' continuum concept.
The determinants of county growth.
Carlino, G A; Mills, E S
1987-02-01
The determinants of population and employment growth were explored from a broader interregional (as opposed to intraregional) perspective. Data for the 1970s, at the county level of disaggregation, were used to analyze the effects of economic, demographic, and climatic variables on population and employment growth in a simultaneous equation framework. The use of data from the more than 3000 US counties provides a considerably larger testing ground than those used in previous research. The point of departure was a conventional, general equilibrium model in which both households and producers are geographically mobile. The study's dependent variables refer to population, total, and manufacturing employment densities. Family income had a powerful effect in stimulating both population and employment density. A 10% increase in family income led to a 7.9% increase in total and a 9.2% increase in manufacturing employment densities. High family income must stand for high demand, and thus, firms are drawn to an area. High family income also drew households to an area. A 10% increase in family income led to a 5.5% increase in population density. High family income must represent "good" neighborhoods for households. High family income was positively correlated with population and employment density, but in other recent studies either a negative and significant relationship or an insignificant relationship were reported. Local taxes consist of the receipts of county government and those of municipalities, townships, school districts, and special districts within the county. The elasticities reported in Table 4 suggest that a 10% increase in such taxes resulted in about a 0.072% reduction in county population density during the decade. The Industrial Revenue Bonds (IRBs) and the percent of the labor force that is unionized are 2 potential policy instruments at the state level. The study results suggest that IRBs have not stimulated either manufacturing or total employment, and the coefficients were statistically insignificant in the structural equations. The elasticities imply that a 10% increase in percent union reduces total employment by 0.42% and manufacturing employment by 0.18%. The effect on population was tiny. Further, while not intended, the interstate highway program may have been a significant redistributor of population and employment but has not caused immigration of people and jobs from central cities.
Effects of high density on spacing behaviour and reproduction in Akodon azarae: A fencing experiment
NASA Astrophysics Data System (ADS)
Ávila, Belén; Bonatto, Florencia; Priotto, José; Steinmann, Andrea R.
2016-01-01
We studied the short term spacing behavioural responses of Pampean grassland mouse (Akodon azarae) with regard to population density in four 0.25 ha enclosures (two control and two experimental) in the 2011 breeding season. Based on the hypothesis that A. azarae breeding females exhibit spacing behaviour, and breeding males show a fusion spatial response, we tested the following predictions: (1) home range size and intrasexual overlap degree of females are independent of population density values; (2) at high population density, home range size of males decreases and the intrasexual home range overlap degree increases. To determine if female reproductive success decreases at high population density, we analyzed pregnancy rate, size and weight of litters, and period until fecundation in both low and high enclosure population density. We found that both males and females varied their home range size in relation to population density. Although male home ranges were always bigger than those of females in populations with high density, home range sizes of both sexes decreased. Females kept exclusive home ranges independent of density values meanwhile males decreased home range overlap in high breeding density populations. Although females produced litters of similar size in both treatments, weight of litter, pregnant rate and period until fecundation varied in relation to population density. Our results did not support the hypothesis that at high density females of A. azarae exhibit spacing behaviour neither that males exhibit a fusion spatial response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostova, T; Carlsen, T
We present a study, based on simulations with SERDYCA, a spatially-explicit individual based model of rodent dynamics, on the connection between population persistence and the presence of inhomogeneities in the habitat. We are specifically interested on the effect that inhomogeneities that do not fragment the environment, have on population persistence. Our results suggest that a certain percentage of inhomogeneities can increase the average time to extinction of the population. Inhomogeneities decrease the population density and can increase the ratio of juveniles in the population thus providing a better chance for the population to restore itself after a severe period withmore » critically low population density. We call this the ''inhomogeneity localization effect''.« less
Escos, J.; Alados, C.L.; Emlen, John M.
1994-01-01
A stage-class population model with density-feedback term included was used to identify the most critical parameters determining the population dynamics of female Spanish ibex (Capra pyrenaica) in southern Spain. A population in the Cazorla and Segura mountains is rapidly declining, but the eastern Sierra Nevada population is growing. The stable population density obtained using estimated values of kid and adult survival (0.49 and 0.87, respectively) and with fecundity equal to 0.367 in the absence of density feedback is 12.7 or 16.82 individuals/km2, based on a non-time-lagged and a time-lagged model, respectively. Given the maximum estimate of fecundity and an adult survival rate of 0.87, a kid survival rate of at least 0.41 is required to avoid extinction. At the minimum fecundity estimate, kid survival would have to exceed 0.52. Elasticities were used to estimate the influence of variation in life-cycle parameters on the intrinsic rate of increase. Adult survival is the most critical parameter, while fecundity and juvenile survival are less important. An increase in adult survival from 0.87 to 0.91 in the Cazorla and Segura mountains population would almost stabilize the population in the absence of stochastic variation, while the same increase in the Sierra Nevada population would yield population growth of 4–5% per annum. A reduction in adult survival to 0.83 results in population decline in both cases.
Sexual conflict and the evolution of asexuality at low population densities.
Gerber, Nina; Kokko, Hanna
2016-10-26
Theories for the evolution of sex rarely include facultatively sexual reproduction. Sexual harassment by males is an underappreciated factor: it should at first sight increase the relative advantage of asexual reproduction by increasing the cost of sex. However, if the same females can perform either sexual or asexual life cycles, then females trying to reproduce asexually may not escape harassment. If resisting male harassment is costly, it might be beneficial for a female to accept a mating and undertake a sexual life cycle rather than 'insist' on an asexual one. We investigate the effects of sexual harassment on the maintenance of sex under different population densities. Our model shows that resisting matings pays off at low population densities, which leads to the complete extinction of males, and thus to the evolution of completely asexual populations. Facultative sex persists in a narrow range of slightly higher densities. At high densities, selection favours giving up resisting male mating attempts and thus sexual reproduction takes over. These interactions between the outcomes of sexual conflict and population density suggest an explanation for the rarity of facultative sex and also patterns of geographical parthenogenesis, where marginal environments with potentially low densities are associated with asexuality. © 2016 The Author(s).
49 CFR 192.609 - Change in class location: Required study.
Code of Federal Regulations, 2013 CFR
2013-10-01
... in class location: Required study. Whenever an increase in population density indicates a change in... account, for the segment of pipeline involved; and (f) The actual area affected by the population density...
49 CFR 192.609 - Change in class location: Required study.
Code of Federal Regulations, 2014 CFR
2014-10-01
... in class location: Required study. Whenever an increase in population density indicates a change in... account, for the segment of pipeline involved; and (f) The actual area affected by the population density...
Intraspecific competition and density dependence of food consumption and growth in Arctic charr.
Amundsen, Per-Arne; Knudsen, Rune; Klemetsen, Anders
2007-01-01
1. Intraspecific competition for restricted food resources is considered to play a fundamental part in density dependence of somatic growth and other population characteristics, but studies simultaneously addressing the interrelationships between population density, food acquisition and somatic growth have been missing. 2. We explored the food consumption and individual growth rates of Arctic charr Salvelinus alpinus in a long-term survey following a large-scale density manipulation experiment in a subarctic lake. 3. Prior to the initiation of the experiment, the population density was high and the somatic growth rates low, revealing a severely overcrowded and stunted fish population. 4. During the 6-year period of stock depletion the population density of Arctic charr was reduced with about 75%, resulting in an almost twofold increase in food consumption rates and enhanced individual growth rates of the fish. 5. Over the decade following the density manipulation experiment, the population density gradually rose to intermediate levels, accompanied by corresponding reductions in food consumption and somatic growth rates. 6. The study revealed negative relationships with population density for both food consumption and individual growth rates, reflecting a strong positive correlation between quantitative food intake and somatic growth rates. 7. Both the growth and consumption rate relationships with population density were well described by negative power curves, suggesting that large density perturbations are necessary to induce improved feeding conditions and growth rates in stunted fish populations. 8. The findings demonstrate that quantitative food consumption represents the connective link between population density and individual growth rates, apparently being highly influenced by intraspecific competition for limited resources.
Vallone, Donna M.; Allen, Jane A.; Cullen, Jennifer; Mowery, Paul D.; Xiao, Haijun; Dorrler, Nicole; Asche, Eric T.; Healton, Cheryl
2009-01-01
Objectives. We examined the effectiveness of a program to increase exposure to national “truth” tobacco countermarketing messages among youths in rural and low-population-density communities. Methods. A longitudinal survey of 2618 youths aged 12 to 17 years was conducted over 5 months in 8 media markets receiving supplemental advertising and 8 comparison markets receiving less than the national average of “truth” messages. Results. Confirmed awareness of “truth” increased from 40% to 71% among youths in treatment markets while remaining stable in comparison markets. Over 35% of all youths who were unaware of the campaign at baseline became aware of it as a direct result of the increased advertising. Youths living in rural and low-population-density communities were receptive to the campaign's messages. Conclusions. Through purchase of airtime in local broadcast media, the reach of a national tobacco countermarketing campaign was expanded among youths living in rural and low-population-density areas. This strategy of augmenting delivery of nationally broadcast antitobacco ads can serve as a model for leveraging limited tobacco control resources to increase the impact of evidence-based tobacco prevention campaigns. PMID:19833994
Willenborg, Christian J; Brûlé-Babel, Anita L; Van Acker, Rene C
2009-12-01
Transgenic wheat is currently being field tested with the intent of eventual commercialization. The development of wheat genotypes with novel traits has raised concerns regarding the presence of volunteer wheat populations and the role they may play in facilitating transgene movement. Here, we report the results of a field experiment that investigated the potential of spring wheat plant population density and crop height to minimize gene flow from a herbicide-resistant (HR) volunteer population to a non-HR crop. Pollen-mediated gene flow (PMGF) between the HR volunteer wheat population and four conventional spring wheat genotypes varying in height was assessed over a range of plant population densities. Natural hybridization events between the two cultivars were detected by phenotypically scoring plants in F(1) populations followed by verification with Mendelian segregation ratios in the F(1:2) families. PMGF was strongly associated with crop yield components, but showed no association with flowering synchrony. Maximum observed PMGF was always less than 0.6%, regardless of crop height and density. The frequency of PMGF in spring wheat decreased exponentially with increasing plant population density, but showed no dependence on either crop genotype or height. However, increasing plant densities beyond the recommended planting rate of 300 cropped wheat plants m(-2) provided no obvious benefit to reducing PMGF. Nevertheless, our results demonstrate a critical plant density of 175-200 cropped wheat plants m(-2) below which PMGF frequencies rise exponentially with decreasing plant density. These results will be useful in the development of mechanistic models and best management practices that collectively facilitate the coexistence of transgenic and nontransgenic wheat crops.
Temporal dynamics of Puumala hantavirus infection in cyclic populations of bank voles.
Voutilainen, Liina; Kallio, Eva R; Niemimaa, Jukka; Vapalahti, Olli; Henttonen, Heikki
2016-02-18
Understanding the dynamics of zoonotic pathogens in their reservoir host populations is a prerequisite for predicting and preventing human disease epidemics. The human infection risk of Puumala hantavirus (PUUV) is highest in northern Europe, where populations of the rodent host (bank vole, Myodes glareolus) undergo cyclic fluctuations. We conducted a 7-year capture-mark-recapture study to monitor seasonal and multiannual patterns of the PUUV infection rate in bank vole populations exhibiting a 3-year density cycle. Infected bank voles were most abundant in mid-winter months during years of increasing or peak host density. Prevalence of PUUV infection in bank voles exhibited a regular, seasonal pattern reflecting the annual population turnover and accumulation of infections within each year cohort. In autumn, the PUUV transmission rate tracked increasing host abundance, suggesting a density-dependent transmission. However, prevalence of PUUV infection was similar during the increase and peak years of the density cycle despite a twofold difference in host density. This may result from the high proportion of individuals carrying maternal antibodies constraining transmission during the cycle peak years. Our exceptionally intensive and long-term dataset provides a solid basis on which to develop models to predict the dynamic public health threat posed by PUUV in northern Europe.
Effects of population density on corticosterone levels of prairie voles in the field
Blondel, Dimitri V.; Wallace, Gerard N.; Calderone, Stefanie; Gorinshteyn, Marija; St. Mary, Colette M.; Phelps, Steven M.
2015-01-01
High population density is often associated with increased levels of stress-related hormones, such as corticosterone (CORT). Prairie voles (Microtus ochrogaster) are a socially monogamous species known for their large population density fluctuations in the wild. Although CORT influences the social behavior of prairie voles in the lab, the effect of population density on CORT has not previously been quantified in this species in the field. We validated a non-invasive hormone assay for measuring CORT metabolites in prairie vole feces. We then used semi-natural enclosures to experimentally manipulate population density, and measured density effects on male space use and fecal CORT levels. Our enclosures generated patterns of space use and social interaction that were consistent with previous prairie vole field studies. Contrary to the positive relationship between CORT and density typical of other taxa, we found that lower population densities (80 animals/ha) produced higher fecal CORT than high densities (240/ha). Combined with prior work in the lab and field, the data suggest that high prairie vole population densities indicate favorable environments, perhaps through reduced predation risk. Lastly, we found that field animals had lower fecal CORT levels than laboratory-living animals. The data emphasize the usefulness of prairie voles as models for integrating ecological, evolutionary and mechanistic questions in social behavior. PMID:26342968
Demographic response of black bears at Cold Lake, Alberta, to the removal of adult males
Sargeant, Glen A.; Ruff, Robert L.
2001-01-01
Previous reports described an increase in population density following the removal of 23 adult male black bears (Ursus americanus) from a 218-km2 study area near Cold Lake, Alberta (the CLSA). This finding plays a central role in continuing debates over population regulation in bears, but has recently been criticized because density estimates were based on assumptions that were not met. Moreover, subsequent discussion has been predicated on conjecture that human exploitation had minimal influence on population dynamics. Our reanalysis supports previous descriptions of trends in bear density at Cold Lake. However, survival records revealed heavier exploitation than previously suspected. An underlying assumption of previous interpretationsCthat the Cold Lake bear population was naturally regulated near carrying capacityCno longer seems reasonable. Adult males deterred bears in other sex-age groups from using the CLSA; however, we found no evidence that birth or death rates were affected. The observed increase in local density should not be construed as a density-dependent response. Abrupt changes in local density might not have occurred if males had been removed from a larger area encompassing the CLSA.
Sparkman, Amanda M.; Waits, Lisette P.; Murray, Dennis L.
2011-01-01
Whether anthropogenic mortality is additive or compensatory to natural mortality in animal populations has long been a question of theoretical and practical importance. Theoretically, under density-dependent conditions populations compensate for anthropogenic mortality through decreases in natural mortality and/or increases in productivity, but recent studies of large carnivores suggest that anthropogenic mortality can be fully additive to natural mortality and thereby constrain annual survival and population growth rate. Nevertheless, mechanisms underlying either compensatory or additive effects continue to be poorly understood. Using long-term data on a reintroduced population of the red wolf, we tested for evidence of additive vs. compensatory effects of anthropogenic mortality on annual survival and population growth rates, and the preservation and reproductive success of breeding pairs. We found that anthropogenic mortality had a strong additive effect on annual survival and population growth rate at low population density, though there was evidence for compensation in population growth at high density. When involving the death of a breeder, anthropogenic mortality was also additive to natural rates of breeding pair dissolution, resulting in a net decrease in the annual preservation of existing breeding pairs. However, though the disbanding of a pack following death of a breeder resulted in fewer recruits per litter relative to stable packs, there was no relationship between natural rates of pair dissolution and population growth rate at either high or low density. Thus we propose that short-term additive effects of anthropogenic mortality on population growth in the red wolf population at low density were primarily a result of direct mortality of adults rather than indirect socially-mediated effects resulting in reduced recruitment. Finally, we also demonstrate that per capita recruitment and the proportion of adults that became reproductive declined steeply with increasing population density, suggesting that there is potential for density-dependent compensation of anthropogenically-mediated population regulation. PMID:21738589
Chi, Michael W.; Griffith, Leslie C.; Vecsey, Christopher G.
2014-01-01
Sleep has many important biological functions, but how sleep is regulated remains poorly understood. In humans, social isolation and other stressors early in life can disrupt adult sleep. In fruit flies housed at different population densities during early adulthood, social enrichment was shown to increase subsequent sleep, but it is unknown if population density during early development can also influence adult sleep. To answer this question, we maintained Drosophila larvae at a range of population densities throughout larval development, kept them isolated during early adulthood, and then tested their sleep patterns. Our findings reveal that flies that had been isolated as larvae had more fragmented sleep than those that had been raised at higher population densities. This effect was more prominent in females than in males. Larval population density did not affect sleep in female flies that were mutant for amnesiac, which has been shown to be required for normal memory consolidation, adult sleep regulation, and brain development. In contrast, larval population density effects on sleep persisted in female flies lacking the olfactory receptor or83b, suggesting that olfactory signals are not required for the effects of larval population density on adult sleep. These findings show that population density during early development can alter sleep behavior in adulthood, suggesting that genetic and/or structural changes are induced by this developmental manipulation that persist through metamorphosis. PMID:25116571
Chi, Michael W; Griffith, Leslie C; Vecsey, Christopher G
2014-08-11
Sleep has many important biological functions, but how sleep is regulated remains poorly understood. In humans, social isolation and other stressors early in life can disrupt adult sleep. In fruit flies housed at different population densities during early adulthood, social enrichment was shown to increase subsequent sleep, but it is unknown if population density during early development can also influence adult sleep. To answer this question, we maintained Drosophila larvae at a range of population densities throughout larval development, kept them isolated during early adulthood, and then tested their sleep patterns. Our findings reveal that flies that had been isolated as larvae had more fragmented sleep than those that had been raised at higher population densities. This effect was more prominent in females than in males. Larval population density did not affect sleep in female flies that were mutant for amnesiac, which has been shown to be required for normal memory consolidation, adult sleep regulation, and brain development. In contrast, larval population density effects on sleep persisted in female flies lacking the olfactory receptor or83b, suggesting that olfactory signals are not required for the effects of larval population density on adult sleep. These findings show that population density during early development can alter sleep behavior in adulthood, suggesting that genetic and/or structural changes are induced by this developmental manipulation that persist through metamorphosis.
Pritchard, C; Evans, B
1997-07-01
The aetiology of malignant disease is multi-factorial, including contributory environmental factors. Based upon the premise that increases in the density of population will be coterminous with a worsening of the environment, it is hypothesised that such changes should be reflected in an increase in cancer mortality in general and in elderly populations. By focusing upon changes in the elderly (+75) deaths between two time periods, the study corrects for age factors related to cancer mortality. The study tests this hypothesis via correlations between population density and malignancy death rates in general and elderly age bands over a thirty year period. It was found that there were positive and significant correlations between population density and malignancy mortality rates in the Western World, especially amongst men, but all correlations strengthened in the direction hypothesised. The findings were not an artefact of longevity, further research is required to give a better understanding of these findings.
Ecological drivers of guanaco recruitment: variable carrying capacity and density dependence.
Marino, Andrea; Pascual, Miguel; Baldi, Ricardo
2014-08-01
Ungulates living in predator-free reserves offer the opportunity to study the influence of food limitation on population dynamics without the potentially confounding effects of top-down regulation or livestock competition. We assessed the influence of relative forage availability and population density on guanaco recruitment in two predator-free reserves in eastern Patagonia, with contrasting scenarios of population density. We also explored the relative contribution of the observed recruitment to population growth using a deterministic linear model to test the assumption that the studied populations were closed units. The observed densities increased twice as fast as our theoretical populations, indicating that marked immigration has taken place during the recovery phase experienced by both populations, thus we rejected the closed-population assumption. Regarding the factors driving variation in recruitment, in the low- to medium-density setting, we found a positive linear relationship between recruitment and surrogates of annual primary production, whereas no density dependence was detected. In contrast, in the high-density scenario, both annual primary production and population density showed marked effects, indicating a positive relationship between recruitment and per capita food availability above a food-limitation threshold. Our results support the idea that environmental carrying capacity fluctuates in response to climatic variation, and that these fluctuations have relevant consequences for herbivore dynamics, such as amplifying density dependence in drier years. We conclude that including the coupling between environmental variability in resources and density dependence is crucial to model ungulate population dynamics; to overlook temporal changes in carrying capacity may even mask density dependence as well as other important processes.
Physiological proteins in resource-limited herbivores experiencing a population die-off
NASA Astrophysics Data System (ADS)
Garnier, R.; Bento, A. I.; Hansen, C.; Pilkington, J. G.; Pemberton, J. M.; Graham, A. L.
2017-08-01
Nutrient availability is predicted to interact with herbivore population densities. Competition for low quality food at high density may reduce summer food intake, and in turn winter survival. Conversely, low population density may favor physiological recovery through better access to better quality spring forage. Here, we take advantage of the long-term study of the Soay sheep population of St. Kilda (Scotland) to measure plasma protein markers and immunity in two consecutive summers with contrasting population densities. We show that, following a winter die-off resulting in a shift to low population density, albumin and total proteins increased, but only in adult sheep. The effect was not solely attributable to selective disappearance of malnourished sheep. Similarly, the concentration of antibodies was higher following the die-off, potentially indicating recovery of immune function. Overall, our results are consistent with the physiological recovery of surviving individuals after a harsh winter.
Sofaer, Helen R; Sillett, T Scott; Langin, Kathryn M; Morrison, Scott A; Ghalambor, Cameron K
2014-01-01
Ecological factors often shape demography through multiple mechanisms, making it difficult to identify the sources of demographic variation. In particular, conspecific density can influence both the strength of competition and the predation rate, but density-dependent competition has received more attention, particularly among terrestrial vertebrates and in island populations. A better understanding of how both competition and predation contribute to density-dependent variation in fecundity can be gained by partitioning the effects of density on offspring number from its effects on reproductive failure, while also evaluating how biotic and abiotic factors jointly shape demography. We examined the effects of population density and precipitation on fecundity, nest survival, and adult survival in an insular population of orange-crowned warblers (Oreothlypis celata) that breeds at high densities and exhibits a suite of traits suggesting strong intraspecific competition. Breeding density had a negative influence on fecundity, but it acted by increasing the probability of reproductive failure through nest predation, rather than through competition, which was predicted to reduce the number of offspring produced by successful individuals. Our results demonstrate that density-dependent nest predation can underlie the relationship between population density and fecundity even in a high-density, insular population where intraspecific competition should be strong. PMID:25077023
Sofaer, Helen R; Sillett, T Scott; Langin, Kathryn M; Morrison, Scott A; Ghalambor, Cameron K
2014-07-01
Ecological factors often shape demography through multiple mechanisms, making it difficult to identify the sources of demographic variation. In particular, conspecific density can influence both the strength of competition and the predation rate, but density-dependent competition has received more attention, particularly among terrestrial vertebrates and in island populations. A better understanding of how both competition and predation contribute to density-dependent variation in fecundity can be gained by partitioning the effects of density on offspring number from its effects on reproductive failure, while also evaluating how biotic and abiotic factors jointly shape demography. We examined the effects of population density and precipitation on fecundity, nest survival, and adult survival in an insular population of orange-crowned warblers (Oreothlypis celata) that breeds at high densities and exhibits a suite of traits suggesting strong intraspecific competition. Breeding density had a negative influence on fecundity, but it acted by increasing the probability of reproductive failure through nest predation, rather than through competition, which was predicted to reduce the number of offspring produced by successful individuals. Our results demonstrate that density-dependent nest predation can underlie the relationship between population density and fecundity even in a high-density, insular population where intraspecific competition should be strong.
Evolutionary speed of species invasions.
García-Ramos, Gisela; Rodríguez, Diego
2002-04-01
Successful invasion may depend of the capacity of a species to adjust genetically to a spatially varying environment. This research modeled a species invasion by examining the interaction between a quantitative genetic trait and population density. It assumed: (I) a quantitative genetic trait describes the adaptation of an individual to its local ecological conditions; (2) populations far from the local optimum grow more slowly than those near the optimum; and (3) the evolution of a trait depends on local population density, because differences in local population densities cause asymmetrical gene flow. This genetics-density interaction determined the propagation speed of populations. Numerical simulations showed that populations spread by advancing as two synchronic traveling waves, one for population density and one for trait adaptation. The form of the density wave was a step front that advances homogenizing populations at their carrying capacity; the adaptation wave was a curve with finite slope that homogenizes populations at full adaptation. The largest speed of population expansion, for a dimensionless analysis, corresponded to an almost homogeneous spatial environment when this model approached an ecological description such as the Fisher-Skellam's model. A large genetic response also favored faster speeds. Evolutionary speeds, in a natural scale, showed a wide range of rates that were also slower compared to models that only consider demographics. This evolutionary speed increased with high heritability, strong stabilizing selection, and high intrinsic growth rate. It decreased for steeper environmental gradients. Also indicated was an optimal dispersal rate over which evolutionary speed declined. This is expected because dispersal moves individuals further, but homogenizes populations genetically, making them maladapted. The evolutionary speed was compared to observed data. Furthermore, a moderate increase in the speed of expansion was predicted for ecological changes related to global warming.
Allsopp, N; Stock, W D
1992-08-01
The interaction of density and mycorrhizal effects on the growth, mineral nutrition and size distribution of seedlings of two perennial members of the Fabaceae was investigated in pot culture. Seedlings of Otholobium hirtum and Aspalathus linearis were grown at densities of 1, 4, 8 and 16 plants per 13-cm pot with or without vesicular-arbuscular (VA) mycorrhizal inoculum for 120 days. Plant mass, relative growth rates, height and leaf number all decreased with increasing plant density. This was ascribed to the decreasing availability of phosphorus per plant as density increased. O. hirtum was highly dependent on mycorrhizas for P uptake but both mycorrhizal and non-mycorrhizal A. linearis seedlings were able to extract soil P with equal ease. Plant size distribution as measured by the coefficient of variation (CV) of shoot mass was greater at higher densities. CVs of mycorrhizal O. hirtum plants were higher than those of non-mycorrhizal plants. CVs of the facultatively mycorrhizal A. linearis were similar for both mycorrhizal and non-mycorrhizal plants. Higher CVs are attributed to resource preemption by larger individuals. Individuals in populations with high CVs will probably survive stress which would result in the extinction of populations with low CVs. Mass of mycorrhizal plants of both species decreased more rapidly with increasing density than did non-mycorrhizal plant mass. It is concluded that the cost of being mycorrhizal increases as plant density increases, while the benefit decreases. The results suggest that mycorrhizas will influence density-dependent population processes of faculative and obligate mycorrhizal species.
Impact of wild prey availability on livestock predation by snow leopards.
Suryawanshi, Kulbhushansingh R; Redpath, Stephen M; Bhatnagar, Yash Veer; Ramakrishnan, Uma; Chaturvedi, Vaibhav; Smout, Sophie C; Mishra, Charudutt
2017-06-01
An increasing proportion of the world's poor is rearing livestock today, and the global livestock population is growing. Livestock predation by large carnivores and their retaliatory killing is becoming an economic and conservation concern. A common recommendation for carnivore conservation and for reducing predation on livestock is to increase wild prey populations based on the assumption that the carnivores will consume this alternative food. Livestock predation, however, could either reduce or intensify with increases in wild prey depending on prey choice and trends in carnivore abundance. We show that the extent of livestock predation by the endangered snow leopard Panthera uncia intensifies with increases in the density of wild ungulate prey, and subsequently stabilizes. We found that snow leopard density, estimated at seven sites, was a positive linear function of the density of wild ungulates-the preferred prey-and showed no discernible relationship with livestock density. We also found that modelled livestock predation increased with livestock density. Our results suggest that snow leopard conservation would benefit from an increase in wild ungulates, but that would intensify the problem of livestock predation for pastoralists. The potential benefits of increased wild prey abundance in reducing livestock predation can be overwhelmed by a resultant increase in snow leopard populations. Snow leopard conservation efforts aimed at facilitating increases in wild prey must be accompanied by greater assistance for better livestock protection and offsetting the economic damage caused by carnivores.
Weiner, J; Kinsman, S; Williams, S
1998-11-01
We studied the growth of individual Xanthium strumarium plants growing at four naturally occurring local densities on a beach in Maine: (1) isolated plants, (2) pairs of plants ≤1 cm apart, (3) four plants within 4 cm of each other, and (4) discrete dense clumps of 10-39 plants. A combination of nondestructive measurements every 2 wk and parallel calibration harvests provided very good estimates of the growth in aboveground biomass of over 400 individual plants over 8 wk and afforded the opportunity to fit explicit growth models to 293 of them. There was large individual variation in growth and resultant size within the population and within all densities. Local crowding played a role in determining plant size within the population: there were significant differences in final size between all densities except pairs and quadruples, which were almost identical. Overall, plants growing at higher densities were more variable in growth and final size than plants growing at lower densities, but this was due to increased variation among groups (greater variation in local density and/or greater environmental heterogeneity), not to increased variation within groups. Thus, there was no evidence of size asymmetric competition in this population. The growth of most plants was close to exponential over the study period, but half the plants were slightly better fit by a sigmoidal (logistic) model. The proportion of plants better fit by the logistic model increased with density and with initial plant size. The use of explicit growth models over several growth intervals to describe stand development can provide more biological content and more statistical power than "growth-size" methods that analyze growth intervals separately.
Density dependence, whitebark pine, and vital rates of grizzly bears
van Manen, Frank T.; Haroldson, Mark A.; Bjornlie, Daniel D.; Ebinger, Michael R.; Thompson, Daniel J.; Costello, Cecily M.; White, Gary C.
2016-01-01
Understanding factors influencing changes in population trajectory is important for effective wildlife management, particularly for populations of conservation concern. Annual population growth of the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem, USA has slowed from 4.2–7.6% during 1983–2001 to 0.3–2.2% during 2002–2011. Substantial changes in availability of a key food source and bear population density have occurred. Whitebark pine (Pinus albicaulis), the seeds of which are a valuable but variable fall food for grizzly bears, has experienced substantial mortality primarily due to a mountain pine beetle (Dendroctonus ponderosae) outbreak that started in the early 2000s. Positive growth rates of grizzly bears have resulted in populations reaching high densities in some areas and have contributed to continued range expansion. We tested research hypotheses to examine if changes in vital rates detected during the past decade were more associated with whitebark pine decline or, alternatively, increasing grizzly bear density. We focused our assessment on known-fate data to estimate survival of cubs-of-the-year (cubs), yearlings, and independent bears (≥2 yrs), and reproductive transition of females from having no offspring to having cubs. We used spatially and temporally explicit indices for grizzly bear density and whitebark pine mortality as individual covariates. Models indicated moderate support for an increase in survival of independent male bears over 1983–2012, whereas independent female survival did not change. Cub survival, yearling survival, and reproductive transition from no offspring to cubs all changed during the 30-year study period, with lower rates evident during the last 10–15 years. Cub survival and reproductive transition were negatively associated with an index of grizzly bear density, indicating greater declines where bear densities were higher. Our analyses did not support a similar relationship for the index of whitebark pine mortality. The results of our study support the interpretation that slowing of population growth during the last decade was associated more with increasing grizzly bear density than the decline in whitebark pine. Grizzly bear density and its potential effect on vital rates and population trajectory warrant consideration for management of the grizzly bear population in the Greater Yellowstone Ecosystem.
DENSITY-DEPENDENT EVOLUTION OF LIFE-HISTORY TRAITS IN DROSOPHILA MELANOGASTER.
Bierbaum, Todd J; Mueller, Laurence D; Ayala, Francisco J
1989-03-01
Populations of Drosophila melanogaster were maintained for 36 generations in r- and K-selected environments in order to test the life-history predictions of theories on density-dependent selection. In the r-selection environment, populations were reduced to low densities by density-independent adult mortality, whereas populations in the K-selection environment were maintained at their carrying capacity. Some of the experimental results support the predictions or r- and K-selection theory; relative to the r-selected populations, the K-selected populations evolved an increased larval-to-adult viability, larger body size, and longer development time at high larval densities. Mueller and Ayala (1981) found that K-selected populations also have a higher rate of population growth at high densities. Other predictions of the thoery are contradicted by the lack of differences between the r and K populations in adult longevity and fecundity and a slower rate of development for r-selected individuals at low densities. The differences between selected populations in larval survivorship, larval-to-adult development time, and adult body size are strongly dependent on larval density, and there is a significant interaction between populations and larval density for each trait. This manifests an inadequacy of the theory on r- and K-selection, which does not take into account such interactions between genotypes and environments. We describe mechanisms that may explain the evolution of preadult life-history traits in our experiment and discuss the need for changes in theories of density-dependent selection. © 1989 The Society for the Study of Evolution.
Cinner, Joshua E; Graham, Nicholas A J; Huchery, Cindy; Macneil, M Aaron
2013-06-01
Coral reef fisheries support the livelihoods of millions of people but have been severely and negatively affected by anthropogenic activities. We conducted a systematic review of published data on the biomass of coral reef fishes to explore how the condition of reef fisheries is related to the density of local human populations, proximity of the reef to markets, and key environmental variables (including broad geomorphologic reef type, reef area, and net productivity). When only population density and environmental covariates were considered, high variability in fisheries conditions at low human population densities resulted in relatively weak explanatory models. The presence or absence of human settlements, habitat type, and distance to fish markets provided a much stronger explanatory model for the condition of reef fisheries. Fish biomass remained relatively low within 14 km of markets, then biomass increased exponentially as distance from reefs to markets increased. Our results suggest the need for an increased science and policy focus on markets as both a key driver of the condition of reef fisheries and a potential source of solutions. © 2012 Society for Conservation Biology.
Effects of population density on corticosterone levels of prairie voles in the field.
Blondel, Dimitri V; Wallace, Gerard N; Calderone, Stefanie; Gorinshteyn, Marija; St Mary, Colette M; Phelps, Steven M
2016-01-01
High population density is often associated with increased levels of stress-related hormones, such as corticosterone (CORT). Prairie voles (Microtus ochrogaster) are a socially monogamous species known for their large population density fluctuations in the wild. Although CORT influences the social behavior of prairie voles in the lab, the effect of population density on CORT has not previously been quantified in this species in the field. We validated a non-invasive hormone assay for measuring CORT metabolites in prairie vole feces. We then used semi-natural enclosures to experimentally manipulate population density, and measured density effects on male space use and fecal CORT levels. Our enclosures generated patterns of space use and social interaction that were consistent with previous prairie vole field studies. Contrary to the positive relationship between CORT and density typical of other taxa, we found that lower population densities (80 animals/ha) produced higher fecal CORT than higher densities (240/ha). Combined with prior work in the lab and field, the data suggest that high prairie vole population densities indicate favorable environments, perhaps through reduced predation risk. Lastly, we found that field animals had lower fecal CORT levels than laboratory-living animals. The data emphasize the usefulness of prairie voles as models for integrating ecological, evolutionary, and mechanistic questions in social behavior. Copyright © 2015 Elsevier Inc. All rights reserved.
Näyhä, Simo; Lankila, Tiina; Rautio, Arja; Koiranen, Markku; Tammelin, Tuija H; Taanila, Anja; Rusanen, Jarmo; Laitinen, Jaana
2013-10-08
The effect of urban sprawl on body weight in Finland is not well known. To provide more information, we examined whether body mass index (BMI) and the prevalence of overweight are associated with an individual's distance to the local community centre and population density in his/her resident area. The sample consisted of 5363 men and women, members of the Northern Finland Birth Cohort 1966 (NFBC), who filled in a postal questionnaire and attended a medical checkup in 1997, at the age of 31 years. Body mass index (BMI; kg/m(2)) and the prevalence of overweight (BMI ≥ 25.0 kg/m(2)) were regressed on each subject's road distance to the resident commune's centre and on population density in the 1 km(2) geographical grid in which he/she resided, using a generalized additive model. Adjustments were made for sex, marital status, occupational class, education, leisure-time and occupational physical activity, alcohol consumption and smoking. The mean BMI among the subjects was 24.7 kg/m(2), but it increased by increasing road distance (by 1.3 kg/m(2) from 5-10 to 20-184 km) and by decreasing population density (by 1.7 kg/m(2) from 1000-19,192 to 1-5 inhabitants/km(2)). The respective increases in overweight (overall prevalence 41%) were 13 per cent units for distance and 14 per cent units for population density. Adjusted regressions based on continuous explanatory variables showed an inverse L-shaped pattern with a mean BMI of 24.6 kg/m(2) at distances shorter than 5 km and a rise of 2.6 kg/m(2) at longer distances, and an increase of 2.5 kg/m(2) from highest to lowest population density. The associations with road distance were stronger for women than men, while the sex difference in association with population density remained indeterminate. We conclude that young adults in Northern Finland who live far away from local centres or in the most sparsely populated areas are fatter than those who live close to local centres or in densely populated areas. The likely explanations include variations in everyday physical activity in different residential environments, although causality of the associations remains to be confirmed.
2013-01-01
Background The effect of urban sprawl on body weight in Finland is not well known. To provide more information, we examined whether body mass index (BMI) and the prevalence of overweight are associated with an individual’s distance to the local community centre and population density in his/her resident area. Methods The sample consisted of 5363 men and women, members of the Northern Finland Birth Cohort 1966 (NFBC), who filled in a postal questionnaire and attended a medical checkup in 1997, at the age of 31 years. Body mass index (BMI; kg/m2) and the prevalence of overweight (BMI ≥ 25.0 kg/m2) were regressed on each subject’s road distance to the resident commune’s centre and on population density in the 1 km2 geographical grid in which he/she resided, using a generalized additive model. Adjustments were made for sex, marital status, occupational class, education, leisure-time and occupational physical activity, alcohol consumption and smoking. Results The mean BMI among the subjects was 24.7 kg/m2, but it increased by increasing road distance (by 1.3 kg/m2 from 5–10 to 20–184 km) and by decreasing population density (by 1.7 kg/m2 from 1000–19,192 to 1–5 inhabitants/km2). The respective increases in overweight (overall prevalence 41%) were 13 per cent units for distance and 14 per cent units for population density. Adjusted regressions based on continuous explanatory variables showed an inverse L-shaped pattern with a mean BMI of 24.6 kg/m2 at distances shorter than 5 km and a rise of 2.6 kg/m2 at longer distances, and an increase of 2.5 kg/m2 from highest to lowest population density. The associations with road distance were stronger for women than men, while the sex difference in association with population density remained indeterminate. Conclusions We conclude that young adults in Northern Finland who live far away from local centres or in the most sparsely populated areas are fatter than those who live close to local centres or in densely populated areas. The likely explanations include variations in everyday physical activity in different residential environments, although causality of the associations remains to be confirmed. PMID:24103455
Singh, Tulika; Khandelwal, Niranjan; Singla, Veenu; Kumar, Dileep; Gupta, Madhu; Singh, Gurpreet; Bal, Amanjit
2018-05-01
Mammography is the only method presently considered appropriate for mass screening of breast cancer. However, higher breast density was strongly associated with lower mammographic sensitivity. Breast density is also identified as independent and strongest risk factors for breast cancer. Studies have shown women with high breast density have four to six times increased risk of breast cancer as compare to women with fatty breast. It varies between different age group it generally decreases with increasing age in postmenopausal women and it can be different in different ethnic groups and people from different geographical areas. This study evaluates the breast density in Indian population and its relationship with the age. We reviewed of all screening mammography examinations performed from May 2012 to January 2015 at our institute PGIMER, Chandigarh, INDIA. Descriptive analyses were used to examine the association between age and breast density. A total of 6132 screening mammograms were performed. Each subgroup categorized by decade of age. There was a significant inverse relationship between age and breast density (P < .001). Twenty-two percent of patients between 40 and 49 years old had dense breasts. This percentage decreased to 9% of women in their 50s. Only 7% of women in their 60s and 8% of women in their 70s had dense breasts. This data has been compared with the Western study done in New York University (NYU) shows there is significant difference (P value <.05) in the breast density in Indian and Western population with more Indians having ACR Grade 1 and 2 and Western population having 2 and 3. We found an inverse relationship between patient age and mammographic breast density. However, there were a large proportion of young women who had lower grades of mammographic density which could potentially benefit from the use of routine screening mammography in this subgroup of patients. Moreover, the breast density of Indian population is less when compared to the Western population. This might suggest that mammography is a good modality of choice for screening Indian population. © 2017 Wiley Periodicals, Inc.
Population density of North American elk: effects on plant diversity.
Stewart, Kelley M; Bowyer, R Terry; Kie, John G; Dick, Brian L; Ruess, Roger W
2009-08-01
Large, herbivorous mammals have profound effects on ecosystem structure and function and often act as keystone species in ecosystems they inhabit. Density-dependent processes associated with population structure of large mammals may interact with ecosystem functioning to increase or decrease biodiversity, depending on the relationship of herbivore populations relative to the carrying capacity (K) of the ecosystem. We tested for indirect effects of population density of large herbivores on plant species richness and diversity in a montane ecosystem, where increased net aboveground primary productivity (NAPP) in response to low levels of herbivory has been reported. We documented a positive, linear relationship between plant-species diversity and richness with NAPP. Structural equation modeling revealed significant indirect relationships between population density of herbivores, NAPP, and species diversity. We observed an indirect effect of density-dependent processes in large, herbivorous mammals and species diversity of plants through changes in NAPP in this montane ecosystem. Changes in species diversity of plants in response to herbivory may be more indirect in ecosystems with long histories of herbivory. Those subtle or indirect effects of herbivory may have strong effects on ecosystem functioning, but may be overlooked in plant communities that are relatively resilient to herbivory.
Brassine, Eléanor; Parker, Daniel
2015-01-01
Camera trapping studies have become increasingly popular to produce population estimates of individually recognisable mammals. Yet, monitoring techniques for rare species which occur at extremely low densities are lacking. Additionally, species which have unpredictable movements may make obtaining reliable population estimates challenging due to low detectability. Our study explores the effectiveness of intensive camera trapping for estimating cheetah (Acinonyx jubatus) numbers. Using both a more traditional, systematic grid approach and pre-determined, targeted sites for camera placement, the cheetah population of the Northern Tuli Game Reserve, Botswana was sampled between December 2012 and October 2013. Placement of cameras in a regular grid pattern yielded very few (n = 9) cheetah images and these were insufficient to estimate cheetah density. However, pre-selected cheetah scent-marking posts provided 53 images of seven adult cheetahs (0.61 ± 0.18 cheetahs/100km²). While increasing the length of the camera trapping survey from 90 to 130 days increased the total number of cheetah images obtained (from 53 to 200), no new individuals were recorded and the estimated population density remained stable. Thus, our study demonstrates that targeted camera placement (irrespective of survey duration) is necessary for reliably assessing cheetah densities where populations are naturally very low or dominated by transient individuals. Significantly our approach can easily be applied to other rare predator species. PMID:26698574
Brassine, Eléanor; Parker, Daniel
2015-01-01
Camera trapping studies have become increasingly popular to produce population estimates of individually recognisable mammals. Yet, monitoring techniques for rare species which occur at extremely low densities are lacking. Additionally, species which have unpredictable movements may make obtaining reliable population estimates challenging due to low detectability. Our study explores the effectiveness of intensive camera trapping for estimating cheetah (Acinonyx jubatus) numbers. Using both a more traditional, systematic grid approach and pre-determined, targeted sites for camera placement, the cheetah population of the Northern Tuli Game Reserve, Botswana was sampled between December 2012 and October 2013. Placement of cameras in a regular grid pattern yielded very few (n = 9) cheetah images and these were insufficient to estimate cheetah density. However, pre-selected cheetah scent-marking posts provided 53 images of seven adult cheetahs (0.61 ± 0.18 cheetahs/100 km²). While increasing the length of the camera trapping survey from 90 to 130 days increased the total number of cheetah images obtained (from 53 to 200), no new individuals were recorded and the estimated population density remained stable. Thus, our study demonstrates that targeted camera placement (irrespective of survey duration) is necessary for reliably assessing cheetah densities where populations are naturally very low or dominated by transient individuals. Significantly our approach can easily be applied to other rare predator species.
Factors leading to different viability predictions for a grizzly bear data set
Mills, L.S.; Hayes, S.G.; Wisdom, M.J.; Citta, J.; Mattson, D.J.; Murphy, K.
1996-01-01
Population viability analysis programs are being used increasingly in research and management applications, but there has not been a systematic study of the congruence of different program predictions based on a single data set. We performed such an analysis using four population viability analysis computer programs: GAPPS, INMAT, RAMAS/AGE, and VORTEX. The standardized demographic rates used in all programs were generalized from hypothetical increasing and decreasing grizzly bear (Ursus arctos horribilis) populations. Idiosyncracies of input format for each program led to minor differences in intrinsic growth rates that translated into striking differences in estimates of extinction rates and expected population size. In contrast, the addition of demographic stochasticity, environmental stochasticity, and inbreeding costs caused only a small divergence in viability predictions. But, the addition of density dependence caused large deviations between the programs despite our best attempts to use the same density-dependent functions. Population viability programs differ in how density dependence is incorporated, and the necessary functions are difficult to parameterize accurately. Thus, we recommend that unless data clearly suggest a particular density-dependent model, predictions based on population viability analysis should include at least one scenario without density dependence. Further, we describe output metrics that may differ between programs; development of future software could benefit from standardized input and output formats across different programs.
Gamelon, Marlène; Grøtan, Vidar; Nilsson, Anna L. K.; Engen, Steinar; Hurrell, James W.; Jerstad, Kurt; Phillips, Adam S.; Røstad, Ole W.; Slagsvold, Tore; Walseng, Bjørn; Stenseth, Nils C.; Sæther, Bernt-Erik
2017-01-01
Climate change will affect the population dynamics of many species, yet the consequences for the long-term persistence of populations are poorly understood. A major reason for this is that density-dependent feedback effects caused by fluctuations in population size are considered independent of stochastic variation in the environment. We show that an interplay between winter temperature and population density can influence the persistence of a small passerine population under global warming. Although warmer winters favor an increased mean population size, density-dependent feedback can cause the local population to be less buffered against occasional poor environmental conditions (cold winters). This shows that it is essential to go beyond the population size and explore climate effects on the full dynamics to elaborate targeted management actions. PMID:28164157
Energetic and ecological constraints on population density of reef fishes.
Barneche, D R; Kulbicki, M; Floeter, S R; Friedlander, A M; Allen, A P
2016-01-27
Population ecology has classically focused on pairwise species interactions, hindering the description of general patterns and processes of population abundance at large spatial scales. Here we use the metabolic theory of ecology as a framework to formulate and test a model that yields predictions linking population density to the physiological constraints of body size and temperature on individual metabolism, and the ecological constraints of trophic structure and species richness on energy partitioning among species. Our model was tested by applying Bayesian quantile regression to a comprehensive reef-fish community database, from which we extracted density data for 5609 populations spread across 49 sites around the world. Our results indicate that population density declines markedly with increases in community species richness and that, after accounting for richness, energetic constraints are manifested most strongly for the most abundant species, which generally are of small body size and occupy lower trophic groups. Overall, our findings suggest that, at the global scale, factors associated with community species richness are the major drivers of variation in population density. Given that populations of species-rich tropical systems exhibit markedly lower maximum densities, they may be particularly susceptible to stochastic extinction. © 2016 The Author(s).
Energetic and ecological constraints on population density of reef fishes
Barneche, D. R.; Kulbicki, M.; Floeter, S. R.; Friedlander, A. M.; Allen, A. P.
2016-01-01
Population ecology has classically focused on pairwise species interactions, hindering the description of general patterns and processes of population abundance at large spatial scales. Here we use the metabolic theory of ecology as a framework to formulate and test a model that yields predictions linking population density to the physiological constraints of body size and temperature on individual metabolism, and the ecological constraints of trophic structure and species richness on energy partitioning among species. Our model was tested by applying Bayesian quantile regression to a comprehensive reef-fish community database, from which we extracted density data for 5609 populations spread across 49 sites around the world. Our results indicate that population density declines markedly with increases in community species richness and that, after accounting for richness, energetic constraints are manifested most strongly for the most abundant species, which generally are of small body size and occupy lower trophic groups. Overall, our findings suggest that, at the global scale, factors associated with community species richness are the major drivers of variation in population density. Given that populations of species-rich tropical systems exhibit markedly lower maximum densities, they may be particularly susceptible to stochastic extinction. PMID:26791611
Population density and suicide in Scotland.
Stark, Cameron; Hopkins, Paddy; Gibbs, Diane; Belbin, Alan; Hay, Alistair
2007-01-01
Suicide rates among men have increased in Scotland while falling in neighbouring countries. A national suicide prevention strategy has been produced. Previous work found that some rural areas of Scotland had higher than average rates of male suicide and undetermined deaths. This article describes the association between population density and suicide and undetermined death rates in Scotland. Anonymised information on deaths from suicide and undetermined cause in Scotland were obtained from the General Registrar Office for 1981-1999, including information on postcode sector. Each postcode sector was assigned a deprivation and population density score. Loglinear models were used to examine the effects of time period (grouped into four periods), deprivation quintiles, population density (grouped into four categories) and their interactions in each sex in three age groups. A significance level of 5% was used throughout. Adjusted rate ratios and 95% confidence intervals were based on models that included only significant factors and interactions. In men, there were higher rate ratios in the most densely populated and least densely populated quartiles, with intermediate rate ratios in other areas. There was no association with population density in women aged less than 25 years, a similar pattern to men in 25-44 year old women, and lower rates in rural areas in older women. Higher levels of deprivation were associated with higher rate ratios of suicide in both sexes and all age groups. Rate ratios over time increased in younger men and women, remained stable in older men, and declined in older women. Deprivation is associated with higher rates of suicide and undetermined deaths at all levels of population density and in all age groups. The highest rates of suicide among men are in the most and least densely populated areas, after adjusting for deprivation. The effect is different among women, with no effect among younger women, and lower rates among older women in areas with lower population density.
Shawn M. Crimmins; John W. Edwards; W. Mark Ford; Patrick D. Keyser; James M. Crum
2010-01-01
We examined browsing patterns of white-tailed deer (Odocoileus virginianus) on a site in the central Appalachians that experienced a substantial (>50%) reduction in deer population density and an increase in the amount of timber harvest since 2001. We sampled woody browse in and immediately adjacent to 12 clearcuts ranging in age from 0-5 years...
The frequency and distribution of recent landslides in three montane tropical regions of Puerto Rico
Matthew C. Larsen; Angel J. Torres-Sanchez
1998-01-01
Landslides are common in steep mountainous areas of Puerto Rico where mean annual rainfall and the frequency of intense storms are high. Each year, landslides cause extensive damage to property and occasionally result in loss of life. Average population density is high, 422 peoplerkm2, and is increasing. This increase in population density is accompanied by growing...
The association of alcohol outlet density with illegal underage adolescent purchasing of alcohol.
Rowland, Bosco; Toumbourou, John W; Livingston, Michael
2015-02-01
Although previous studies have suggested that greater community densities of alcohol sales outlets are associated with greater alcohol use and problems, the mechanisms are unclear. The present study examined whether density was associated with increased purchasing of alcohol by adolescents younger than the legal purchase age of 18 in Australia. The number of alcohol outlets per 10,000 population was identified within geographic regions in Victoria, Australia. A state-representative student survey (N = 10,143) identified adolescent reports of purchasing alcohol, and multilevel modeling was then used to predict the effects for different densities of outlet types (packaged, club, on-premise, general, and overall). Each extra sales outlet per 10,000 population was associated with a significant increase in the risk of underage adolescent purchasing. The strongest effect was for club density (odds ratio = 1.22) and packaged (takeaway) outlet density (odds ratio = 1.12). Males, older children, smokers, and those with substance-using friends were more likely to purchase alcohol. One mechanism by which alcohol sales outlet density may influence population rates of alcohol use and related problems is through increasing the illegal underage purchasing of alcohol. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Importance of latrine communication in European rabbits shifts along a rural-to-urban gradient.
Ziege, Madlen; Bierbach, David; Bischoff, Svenja; Brandt, Anna-Lena; Brix, Mareike; Greshake, Bastian; Merker, Stefan; Wenninger, Sandra; Wronski, Torsten; Plath, Martin
2016-06-14
Information transfer in mammalian communication networks is often based on the deposition of excreta in latrines. Depending on the intended receiver(s), latrines are either formed at territorial boundaries (between-group communication) or in core areas of home ranges (within-group communication). The relative importance of both types of marking behavior should depend, amongst other factors, on population densities and social group sizes, which tend to differ between urban and rural wildlife populations. Our study is the first to assess (direct and indirect) anthropogenic influences on mammalian latrine-based communication networks along a rural-to-urban gradient in European rabbits (Oryctolagus cuniculus) living in urban, suburban and rural areas in and around Frankfurt am Main (Germany). The proportion of latrines located in close proximity to the burrow was higher at rural study sites compared to urban and suburban ones. At rural sites, we found the largest latrines and highest latrine densities close to the burrow, suggesting that core marking prevailed. By contrast, latrine dimensions and densities increased with increasing distance from the burrow in urban and suburban populations, suggesting a higher importance of peripheral marking. Increased population densities, but smaller social group sizes in urban rabbit populations may lead to an increased importance of between-group communication and thus, favor peripheral over core marking. Our study provides novel insights into the manifold ways by which man-made habitat alterations along a rural-to-urban gradient directly and indirectly affect wildlife populations, including latrine-based communication networks.
Kuparinen, Anna; Stenseth, Nils Christian; Hutchings, Jeffrey A
2014-12-01
The evolution of life histories over contemporary time scales will almost certainly affect population demography. One important pathway for such eco-evolutionary interactions is the density-dependent regulation of population dynamics. Here, we investigate how fisheries-induced evolution (FIE) might alter density-dependent population-productivity relationships. To this end, we simulate the eco-evolutionary dynamics of an Atlantic cod (Gadus morhua) population under fishing, followed by a period of recovery in the absence of fishing. FIE is associated with increases in juvenile production, the ratio of juveniles to mature population biomass, and the ratio of the mature population biomass relative to the total population biomass. In contrast, net reproductive rate (R 0 ) and per capita population growth rate (r) decline concomitantly with evolution. Our findings suggest that FIE can substantially modify the fundamental population-productivity relationships that underlie density-dependent population regulation and that form the primary population-dynamical basis for fisheries stock-assessment projections. From a conservation and fisheries-rebuilding perspective, we find that FIE reduces R 0 and r, the two fundamental correlates of population recovery ability and inversely extinction probability.
NASA Astrophysics Data System (ADS)
Pfau, Jens; Kirley, Michael; Kashima, Yoshihisa
2013-01-01
We introduce a variant of the Axelrod model of cultural dissemination in which agents change their physical locations, social links, and cultures. Numerical simulations are used to investigate the evolution of social network communities and the cultural diversity within and between these communities. An analysis of the simulation results shows that an initial peak in the cultural diversity within network communities is evident before agents segregate into a final configuration of culturally homogeneous communities. Larger long-range interaction probabilities facilitate the initial emergence of culturally diverse network communities, which leads to a more pronounced initial peak in cultural diversity within communities. At equilibrium, the number of communities, and hence cultures, increases when the initial cultural diversity increases. However, the number of communities decreases when the lattice size or population density increases. A phase transition between two regimes of initial cultural diversity is evident. For initial diversities below a critical value, a single network community and culture emerges that dominates the population. For initial diversities above the critical value, multiple culturally homogeneous communities emerge. The critical value of initial diversity at which this transition occurs increases with increasing lattice size and population density and generally with increasing absolute population size. We conclude that larger initial diversities promote cultural heterogenization, while larger lattice sizes, population densities, and in fact absolute population sizes promote homogenization.
Chu, Cheng-Jin; Maestre, Fernando T; Xiao, Sa; Weiner, Jacob; Wang, You-Shi; Duan, Zheng-Hu; Wang, Gang
2008-11-01
Theories based on competition for resources predict a monotonic negative relationship between population density and individual biomass in plant populations. They do not consider the role of facilitative interactions, which are known to be important in high stress environments. Using an individual-based 'zone-of-influence' model, we investigated the hypothesis that the balance between facilitative and competitive interactions determines biomass-density relationships. We tested model predictions with a field experiment on the clonal grass Elymus nutans in an alpine meadow. In the model, the relationship between mean individual biomass and density shifted from monotonic to humped as abiotic stress increased. The model results were supported by the field experiment, in which the greatest individual and population biomass were found at intermediate densities in a high-stress alpine habitat. Our results show that facilitation can affect biomass-density relationships.
Sumi, Takuto; Miura, Kazuki; Miyatake, Takahisa
2017-01-01
Previous studies showed that the survival rate of Wolbachia decreases under high temperature in incubators. It is also known that a high density of Wolbachia in the host body reduces the host emergence rate, while low densities fail to change reproduction rates. However, few studies have examined the density of Wolbachia in hosts in the field. Here, we focus on Wolbachia infection of the pale grass blue butterfly, Zizeeria maha (Lepidoptera: Lycaenidae), which is distributed throughout the Japanese islands. We examined the rate and density of Wolbachia infection in the bodies of butterflies at thirteen locations in Japan. At seven of these places, we collected butterflies in different seasons to determine seasonal differences in the infection rate and density and found that Wolbachia density has seasonal differences within the same population. Moreover, to determine whether Wolbachia density has a geographical cline, we compared the infection density of Wolbachia amongst all geographical populations. In addition, we determined the sequences of Wolbachia wsp and host mtDNA CO1 haplotypes of all populations. The results showed that Wolbachia density increased in early summer and decreased in autumn. Further, the density of Wolbachia infecting the same strain of Z. maha varied amongst populations, although no tendency in geographical cline was observed. PMID:28403227
Sumi, Takuto; Miura, Kazuki; Miyatake, Takahisa
2017-01-01
Previous studies showed that the survival rate of Wolbachia decreases under high temperature in incubators. It is also known that a high density of Wolbachia in the host body reduces the host emergence rate, while low densities fail to change reproduction rates. However, few studies have examined the density of Wolbachia in hosts in the field. Here, we focus on Wolbachia infection of the pale grass blue butterfly, Zizeeria maha (Lepidoptera: Lycaenidae), which is distributed throughout the Japanese islands. We examined the rate and density of Wolbachia infection in the bodies of butterflies at thirteen locations in Japan. At seven of these places, we collected butterflies in different seasons to determine seasonal differences in the infection rate and density and found that Wolbachia density has seasonal differences within the same population. Moreover, to determine whether Wolbachia density has a geographical cline, we compared the infection density of Wolbachia amongst all geographical populations. In addition, we determined the sequences of Wolbachia wsp and host mtDNA CO1 haplotypes of all populations. The results showed that Wolbachia density increased in early summer and decreased in autumn. Further, the density of Wolbachia infecting the same strain of Z. maha varied amongst populations, although no tendency in geographical cline was observed.
Impact of wild prey availability on livestock predation by snow leopards
Redpath, Stephen M.; Bhatnagar, Yash Veer; Ramakrishnan, Uma; Chaturvedi, Vaibhav; Smout, Sophie C.; Mishra, Charudutt
2017-01-01
An increasing proportion of the world's poor is rearing livestock today, and the global livestock population is growing. Livestock predation by large carnivores and their retaliatory killing is becoming an economic and conservation concern. A common recommendation for carnivore conservation and for reducing predation on livestock is to increase wild prey populations based on the assumption that the carnivores will consume this alternative food. Livestock predation, however, could either reduce or intensify with increases in wild prey depending on prey choice and trends in carnivore abundance. We show that the extent of livestock predation by the endangered snow leopard Panthera uncia intensifies with increases in the density of wild ungulate prey, and subsequently stabilizes. We found that snow leopard density, estimated at seven sites, was a positive linear function of the density of wild ungulates—the preferred prey—and showed no discernible relationship with livestock density. We also found that modelled livestock predation increased with livestock density. Our results suggest that snow leopard conservation would benefit from an increase in wild ungulates, but that would intensify the problem of livestock predation for pastoralists. The potential benefits of increased wild prey abundance in reducing livestock predation can be overwhelmed by a resultant increase in snow leopard populations. Snow leopard conservation efforts aimed at facilitating increases in wild prey must be accompanied by greater assistance for better livestock protection and offsetting the economic damage caused by carnivores. PMID:28680665
Colchero, Fernando; Medellin, Rodrigo A; Clark, James S; Lee, Raymond; Katul, Gabriel G
2009-05-01
1. Our understanding of the interplay between density dependence, climatic perturbations, and conservation practices on the dynamics of small populations is still limited. This can result in uninformed strategies that put endangered populations at risk. Moreover, the data available for a large number of populations in such circumstances are sparse and mined with missing data. Under the current climate change scenarios, it is essential to develop appropriate inferential methods that can make use of such data sets. 2. We studied a population of desert bighorn sheep introduced to Tiburon Island, Mexico in 1975 and subjected to irregular extractions for the last 10 years. The unique attributes of this population are absence of predation and disease, thereby permitting us to explore the combined effect of density dependence, environmental variability and extraction in a 'controlled setting.' Using a combination of nonlinear discrete models with long-term field data, we constructed three basic Bayesian state space models with increasing density dependence (DD), and the same three models with the addition of summer drought effects. 3. We subsequently used Monte Carlo simulations to evaluate the combined effect of drought, DD, and increasing extractions on the probability of population survival under two climate change scenarios (based on the Intergovernmental Panel on Climate Change predictions): (i) increase in drought variability; and (ii) increase in mean drought severity. 4. The population grew from 16 individuals introduced in 1975 to close to 700 by 1993. Our results show that the population's growth was dominated by DD, with drought having a secondary but still relevant effect on its dynamics. 5. Our predictions suggest that under climate change scenario (i), extraction dominates the fate of the population, while for scenario (ii), an increase in mean drought affects the population's probability of survival in an equivalent magnitude as extractions. Thus, for the long-term survival of the population, our results stress that a more variable environment is less threatening than one in which the mean conditions become harsher. Current climate change scenarios and their underlying uncertainty make studies such as this one crucial for understanding the dynamics of ungulate populations and their conservation.
O’Brien, Paul P.; Vander Wal, Eric
2018-01-01
In many taxa, individual social traits appear to be consistent across time and context, thus meeting the criteria for animal personality. How these differences are maintained in response to changes in population density is unknown, particularly in large mammals, such as ungulates. Using a behavioral reaction norm (BRN) framework, we examined how among- and within-individual variation in social connectedness, measured using social network analyses, change as a function of population density. We studied a captive herd of elk (Cervus canadensis) separated into a group of male elk and a group of female elk. Males and females were exposed to three different density treatments and we recorded social associations between individuals with proximity-detecting radio-collars fitted to elk. We constructed social networks using dyadic association data and calculated three social network metrics reflective of social connectedness: eigenvector centrality, graph strength, and degree. Elk exhibited consistent individual differences in social connectedness across densities; however, they showed little individual variation in their response to changes in density, i.e., individuals oftentimes responded plastically, but in the same manner to changes in density. Female elk had highest connectedness at an intermediate density. In contrast, male elk increased connectedness with increasing density. Whereas this may suggest that the benefits of social connectedness outweigh the costs of increased competition at higher density for males, females appear to exhibit a threshold in social benefits (e.g. predator detection and forage information). Our study illustrates the importance of viewing social connectedness as a density-dependent trait, particularly in the context of plasticity. Moreover, we highlight the need to revisit our understanding of density dependence as a population-level phenomenon by accounting for consistent individual differences not only in social connectedness, but likely in other ecological processes (e.g., predator-prey dynamics, mate choice, disease transfer). PMID:29494640
Xiang, Ni; Lawrence, Kathy S; Kloepper, Joseph W; Donald, Patricia A; McInroy, John A
2017-01-01
Heterodera glycines, the soybean cyst nematode, is the most economically important plant-parasitic nematode on soybean production in the U.S. The objectives of this study were to evaluate the potential of plant growth-promoting rhizobacteria (PGPR) strains for mortality of H. glycines J2 in vitro and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to H. glycines in vitro was the genus Bacillus that consisted of 92.6% of the total 663 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 60 DAP. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13) reduced H. glycines cyst population density at 60 DAP in the field trials. Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. Bacillus altitudinis strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13) increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. These results demonstrated that individual PGPR strains and mixtures can reduce H. glycines population density in the greenhouse, microplot, and field conditions, and increased yield of soybean.
Stephen W. Fraedrich; L. David Dwinell
2005-01-01
Dazomet, metam sodium, and oxamyl were evaluated for nematode control and production of loblolly pine seedlings in a field infested by a Longidorus sp. Fumigation with dazomet or metam sodium reduced population densities of longidorus to nondetectable levels early in the growing season but population densities subsequently increases to levels found in untreated control...
French, Benjamin; Funamoto, Sachiyo; Sugiyama, Hiromi; Sakata, Ritsu; Cologne, John; Cullings, Harry M; Mabuchi, Kiyohiko; Preston, Dale L
2018-03-29
In the Life Span Study of atomic bomb survivors, differences in urbanicity between high-dose and low-dose survivors could confound the association between radiation dose and adverse outcomes. We obtained data on the pre-bombing population distribution in Hiroshima and Nagasaki, and quantified the impact of adjustment for population density on radiation risk estimates for mortality (1950-2003) and incident solid cancer (1958-2009). Population density ranged from 4,671-14,378 and 5,748-19,149 people/km2 in urban regions of Hiroshima and Nagasaki, respectively. Radiation risk estimates for solid cancer mortality were attenuated by 5.1%, but those for all-cause mortality and incident solid cancer were unchanged. There was no overall association between population density and adverse outcomes, but there was evidence that the association between density and mortality differed by age at exposure. Among survivors 10-14 years old in 1945, there was a positive association between population density and risk of all-cause mortality (relative risk, 1.053 per 5,000 people/km2 increase, 95% confidence interval: 1.027, 1.079) and solid cancer mortality (relative risk, 1.069 per 5,000 people/km2 increase, 95% confidence interval: 1.025, 1.115). Our results suggest that radiation risk estimates from the Life Span Study are not sensitive to unmeasured confounding by urban-rural differences.
R.R. Mason; H.G. Paul
1996-01-01
Larval densities of the western spruce budworm (Choristoneura occidentalis Freeman) were monitored for 12 years (1984-95) on permanent sample plots in northeastern Oregon. The time series spanned a period of general budworm infestations when populations increased rapidly from low densities, plateaued for a time at high-outbreak densities, and then declined suddenly....
Age- and sex-specific mortality and population structure in sea otters
Bodkin, James L.; Burdin, A.M.; Ryazanov, D.A.
2000-01-01
We used 742 beach-cast carcasses to characterize age- and sex-specific sea otter mortality during the winter of 1990-1991 at Bering Island, Russia. We also examined 363 carcasses recovered after the 1989 grounding of the T/V Exxon Valdez, to characterize age and sex composition in the living western Prince William Sound (WPWS) sea otter population. At Bering Island, mortality was male-biased (81%), and 75% were adults. The WPWS population was female-biased (59%) and most animals were subadult (79% of the males and 45% of the females). In the decade prior to 1990-1991 we found increasing sea otter densities (particularly among males), declining prey resources, and declining weights in adult male sea otters at Bering Island. Our findings suggest the increased mortality at Bering Island in 1990-1991 was a density-dependent population response. We propose male-maintained breeding territories and exclusion of juvenile females by adult females, providing a mechanism for maintaining densities in female areas below densities in male areas and for potentially moderating the effects of prey reductions on the female population. Increased adult male mortality at Bering Island in 1990-1991 likely modified the sex and age class structure there toward that observed in Prince William Sound.
Increased consumer density reduces the strength of neighborhood effects in a model system.
Merwin, Andrew C; Underwood, Nora; Inouye, Brian D
2017-11-01
An individual's susceptibility to attack can be influenced by conspecific and heterospecifics neighbors. Predicting how these neighborhood effects contribute to population-level processes such as competition and evolution requires an understanding of how the strength of neighborhood effects is modified by changes in the abundances of both consumers and neighboring resource species. We show for the first time that consumer density can interact with the density and frequency of neighboring organisms to determine the magnitude of neighborhood effects. We used the bean beetle, Callosobruchus maculatus, and two of its host beans, Vigna unguiculata and V. radiata, to perform a response-surface experiment with a range of resource densities and three consumer densities. At low beetle density, damage to beans was reduced with increasing conspecific density (i.e., resource dilution) and damage to the less preferred host, V. unguiculata, was reduced with increasing V. radiata frequency (i.e., frequency-dependent associational resistance). As beetle density increased, however, neighborhood effects were reduced; at the highest beetle densities neither focal nor neighboring resource density nor frequency influenced damage. These findings illustrate the importance of consumer density in mediating indirect effects among resources, and suggest that accounting for consumer density may improve our ability to predict population-level outcomes of neighborhood effects and our use of them in applications such as mixed-crop pest management. © 2017 by the Ecological Society of America.
Duminil, J; Daïnou, K; Kaviriri, D K; Gillet, P; Loo, J; Doucet, J-L; Hardy, O J
2016-03-01
Owing to the reduction of population density and/or the environmental changes it induces, selective logging could affect the demography, reproductive biology and evolutionary potential of forest trees. This is particularly relevant in tropical forests where natural population densities can be low and isolated trees may be subject to outcross pollen limitation and/or produce low-quality selfed seeds that exhibit inbreeding depression. Comparing reproductive biology processes and genetic diversity of populations at different densities can provide indirect evidence of the potential impacts of logging. Here, we analysed patterns of genetic diversity, mating system and gene flow in three Central African populations of the self-compatible legume timber species Erythrophleum suaveolens with contrasting densities (0.11, 0.68 and 1.72 adults per ha). The comparison of inbreeding levels among cohorts suggests that selfing is detrimental as inbred individuals are eliminated between seedling and adult stages. Levels of genetic diversity, selfing rates (∼16%) and patterns of spatial genetic structure (Sp ∼0.006) were similar in all three populations. However, the extent of gene dispersal differed markedly among populations: the average distance of pollen dispersal increased with decreasing density (from 200 m in the high-density population to 1000 m in the low-density one). Overall, our results suggest that the reproductive biology and genetic diversity of the species are not affected by current logging practices. However, further investigations need to be conducted in low-density populations to evaluate (1) whether pollen limitation may reduce seed production and (2) the regeneration potential of the species.
Qi, Yi; Wang, Rubin; Jiao, Xianfa; Du, Ying
2014-01-01
We proposed a higher-order coupling neural network model including the inhibitory neurons and examined the dynamical evolution of average number density and phase-neural coding under the spontaneous activity and external stimulating condition. The results indicated that increase of inhibitory coupling strength will cause decrease of average number density, whereas increase of excitatory coupling strength will cause increase of stable amplitude of average number density. Whether the neural oscillator population is able to enter the new synchronous oscillation or not is determined by excitatory and inhibitory coupling strength. In the presence of external stimulation, the evolution of the average number density is dependent upon the external stimulation and the coupling term in which the dominator will determine the final evolution. PMID:24516505
Urban heat island effect on cicada densities in metropolitan Seoul.
Nguyen, Hoa Q; Andersen, Desiree K; Kim, Yuseob; Jang, Yikweon
2018-01-01
Urban heat island (UHI) effect, the ubiquitous consequence of urbanization, is considered to play a major role in population expansion of numerous insects. Cryptotympana atrata and Hyalessa fuscata are the most abundant cicada species in the Korean Peninsula, where their population densities are higher in urban than in rural areas. We predicted a positive relationship between the UHI intensities and population densities of these two cicada species in metropolitan Seoul. To test this prediction, enumeration surveys of cicada exuviae densities were conducted in 36 localities located within and in the vicinity of metropolitan Seoul. Samples were collected in two consecutive periods from July to August 2015. The abundance of each species was estimated by two resource-weighted densities, one based on the total geographic area, and the other on the total number of trees. Multiple linear regression analyses were performed to identify factors critical for the prevalence of cicada species in the urban habitat. C. atrata and H. fuscata were major constituents of cicada species composition collected across all localities. Minimum temperature and sampling period were significant factors contributing to the variation in densities of both species, whereas other environmental factors related to urbanization were not significant. More cicada exuviae were collected in the second rather than in the first samplings, which matched the phenological pattern of cicadas in metropolitan Seoul. Cicada population densities increased measurably with the increase in temperature. Age of residential complex also exhibited a significantly positive correlation to H. fuscata densities, but not to C. atrata densities. Effects of temperature on cicada densities have been discerned from other environmental factors, as cicada densities increased measurably in tandem with elevated temperature. Several mechanisms may contribute to the abundance of cicadas in urban environments, such as higher fecundity of females, lower mortality rate of instars, decline in host plant quality, and local adaptation of organisms, but none of them were tested in the current study. In sum, results of the enumeration surveys of cicada exuviae support the hypothesis that the UHI effect underlies the population expansion of cicadas in metropolitan Seoul. Nevertheless, the underlying mechanisms for this remain untested.
Arana, Inés; Orruño, Maite; Seco, Carolina; Muela, Alicia; Barcina, Isabel
2008-03-01
The ability of Urografin or Percoll density gradient centrifugations to separate nonculturable subpopulations from heterogeneous Escherichia coli populations was analysed. Bacterial counts (total, active and culturable cells) and flow cytometric analyses were carried out in all recovered bands. After Urografin centrifugation, and despite the different origin of E. coli populations, a common pattern was obtained. High-density bands were formed mainly by nonculturable cells. However, the increase in cell density would not be common to all nonculturable cells, since part of this subpopulations banded in low-density zones, mixed with culturable cells. Bands obtained after Percoll centrifugation were heterogeneous and culturable and nonculturable cells were recovered along the gradient. Thus, fractionation in Urografin cannot be only attributed to changes in buoyant densities during the transition from culturable to nonculturable state. Urografin density gradients allow us to obtain enriched fractions in nonculturable subpopulations from a heterogeneous population, but working conditions should be carefully chosen to avoid Urografin toxicity.
NASA Astrophysics Data System (ADS)
SchläPfer, Felix; Witzig, Pieter-Jan
2006-12-01
In 1997, about 140,000 citizens in 388 voting districts in the Swiss canton of Bern passed a ballot initiative to allocate about 3 million Swiss Francs annually to a canton-wide river restoration program. Using the municipal voting returns and a detailed georeferenced data set on the ecomorphological status of the rivers, we estimate models of voter support in relation to local river ecomorphology, population density, mean income, cultural background, and recent flood damage. Support of the initiative increased with increasing population density and tended to increase with increasing mean income, in spite of progressive taxation. Furthermore, we found evidence that public support increased with decreasing "naturalness" of local rivers. The model estimates may be cautiously used to predict the public acceptance of similar restoration programs in comparable regions. Moreover, the voting-based insights into the distribution of river restoration benefits provide a useful starting point for debates about appropriate financing schemes.
Takeshita, Kazutaka; Ikeda, Takashi; Takahashi, Hiroshi; Yoshida, Tsuyoshi; Igota, Hiromasa; Matsuura, Yukiko; Kaji, Koichi
2016-01-01
Assessing temporal changes in abundance indices is an important issue in the management of large herbivore populations. The drive counts method has been frequently used as a deer abundance index in mountainous regions. However, despite an inherent risk for observation errors in drive counts, which increase with deer density, evaluations of the utility of drive counts at a high deer density remain scarce. We compared the drive counts and mark-resight (MR) methods in the evaluation of a highly dense sika deer population (MR estimates ranged between 11 and 53 individuals/km2) on Nakanoshima Island, Hokkaido, Japan, between 1999 and 2006. This deer population experienced two large reductions in density; approximately 200 animals in total were taken from the population through a large-scale population removal and a separate winter mass mortality event. Although the drive counts tracked temporal changes in deer abundance on the island, they overestimated the counts for all years in comparison to the MR method. Increased overestimation in drive count estimates after the winter mass mortality event may be due to a double count derived from increased deer movement and recovery of body condition secondary to the mitigation of density-dependent food limitations. Drive counts are unreliable because they are affected by unfavorable factors such as bad weather, and they are cost-prohibitive to repeat, which precludes the calculation of confidence intervals. Therefore, the use of drive counts to infer the deer abundance needs to be reconsidered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostova, T; Carlsen, T
We present a study, based on simulations with SERDYCA, a spatially-explicit individual-based model of rodent dynamics, on the relation between population persistence and the presence of numerous isolated disturbances in the habitat. We are specifically interested in the effect of disturbances that do not fragment the environment on population persistence. Our results suggest that the presence of disturbances in the absence of fragmentation can actually increase the average time to extinction of the modeled population. The presence of disturbances decreases population density but can increase the chance for mating in monogamous species and consequently, the ratio of juveniles in themore » population. It thus provides a better chance for the population to restore itself after a severe period with critically low population density. We call this the ''disturbance-forced localization effect''.« less
The evolutionary and behavioral modification of consumer responses to environmental change.
Abrams, Peter A
2014-02-21
How will evolution or other forms of adaptive change alter the response of a consumer species' population density to environmentally driven changes in population growth parameters? This question is addressed by analyzing some simple consumer-resource models to separate the ecological and evolutionary components of the population's response. Ecological responses are always decreased population size, but evolution of traits that have effects on both resource uptake rate and another fitness-related parameter may magnify, offset, or reverse this population decrease. Evolution can change ecologically driven decreases in population size to increases; this is likely when: (1) resources are initially below the density that maximizes resource growth, and (2) the evolutionary response decreases the consumer's resource uptake rate. Evolutionary magnification of the ecological decreases in population size can occur when the environmental change is higher trait-independent mortality. Such evolution-driven decreases are most likely when uptake-rate traits increase and the resource is initially below its maximum growth density. It is common for the difference between the new eco-evolutionary equilibrium and the new ecological equilibrium to be larger than that between the original and new ecological equilibrium densities. The relative magnitudes of ecological and evolutionary effects often depend sensitively on the magnitude of the environmental change and the nature of resource growth. © 2013 Elsevier Ltd. All rights reserved.
Sugiura, Natsuko; Doi, Kandai; Kato, Takuya; Morita, Tatsushi; Hayama, Shin-Ichi
2018-03-30
To examine outbreaks of mange in raccoon dogs (Nyctereutes procyonoides) with respect to population density, we analyzed camera trap videos, and isolated mites from raccoon dog carcasses. In a camera trapping survey, we categorized the skin condition of raccoon dogs, and used a number of independent videos to calculate the relative abundance index (RAI). The RAI of raccoon dogs with alopecia increased following an increase in the RAI of those without alopecia. Among 27 raccoon dog carcasses, 12 showed mange-compatible skin lesions. Sarcoptes scabiei was isolated from 11 of these raccoon dogs, indicating that sarcoptic mange was endemic in our study area. Therefore, a high relative population density may be a factor underlying epizootics of sarcoptic mange in raccoon dogs.
Density-dependent selection on mate search and evolution of Allee effects.
Berec, Luděk; Kramer, Andrew M; Bernhauerová, Veronika; Drake, John M
2018-01-01
Sexually reproducing organisms require males and females to find each other. Increased difficulty of females finding mates as male density declines is the most frequently reported mechanism of Allee effects in animals. Evolving more effective mate search may alleviate Allee effects, but may depend on density regimes a population experiences. In particular, high-density populations may evolve mechanisms that induce Allee effects which become detrimental when populations are reduced and maintained at a low density. We develop an individual-based, eco-genetic model to study how mating systems and fitness trade-offs interact with changes in population density to drive evolution of the rate at which males or females search for mates. Finite mate search rate triggers Allee effects in our model and we explore how these Allee effects respond to such evolution. We allow a population to adapt to several population density regimes and examine whether high-density populations are likely to reverse adaptations attained at low densities. We find density-dependent selection in most of scenarios, leading to search rates that result in lower Allee thresholds in populations kept at lower densities. This mainly occurs when fecundity costs are imposed on mate search, and provides an explanation for why Allee effects are often observed in anthropogenically rare species. Optimizing selection, where the attained trait value minimizes the Allee threshold independent of population density, depended on the trade-off between search and survival, combined with monogamy when females were searching. Other scenarios led to runaway selection on the mate search rate, including evolutionary suicide. Trade-offs involved in mate search may thus be crucial to determining how density influences the evolution of Allee effects. Previous studies did not examine evolution of a trait related to the strength of Allee effects under density variation. We emphasize the crucial role that mating systems, fitness trade-offs and the evolving sex have in determining the density threshold for population persistence, in particular since evolution need not always take the Allee threshold to its minimum value. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Modelling density-dependent resistance in insect-pathogen interactions.
White, K A; Wilson, K
1999-10-01
We consider a mathematical model for a host-pathogen interaction where the host population is split into two categories: those susceptible to disease and those resistant to disease. Since the model was motivated by studies on insect populations, we consider a discrete-time model to reflect the discrete generations which are common among insect species. Whether an individual is born susceptible or resistant to disease depends on the local population levels at the start of each generation. In particular, we are interested in the case where the fraction of resistant individuals in the population increases as the total population increases. This may be seen as a positive feedback mechanism since disease is the only population control imposed upon the system. Moreover, it reflects recent experimental observations from noctuid moth-baculovirus interactions that pathogen resistance may increase with larval density. We find that the inclusion of a resistant class can stabilise unstable host-pathogen interactions but there is greatest regulation when the fraction born resistant is density independent. Nonetheless, inclusion of density dependence can still allow intrinsically unstable host-pathogen dynamics to be stabilised provided that this effect is sufficiently small. Moreover, inclusion of density-dependent resistance to disease allows the system to give rise to bistable dynamics in which the final outcome is dictated by the initial conditions for the model system. This has implications for the management of agricultural pests using biocontrol agents-in particular, it is suggested that the propensity for density-dependent resistance be determined prior to such a biocontrol attempt in order to be sure that this will result in the prevention of pest outbreaks, rather than their facilitation. Finally we consider how the cost of resistance to disease affects model outcomes and discover that when there is no cost to resistance, the model predicts stable periodic outbreaks of the insect population. The results are interpreted ecologically and future avenues for research to address the shortfalls in the present model system are discussed. Copyright 1999 Academic Press.
Density-Dependent Growth in Invasive Lionfish (Pterois volitans)
Benkwitt, Cassandra E.
2013-01-01
Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans) is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss) were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration) of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion. PMID:23825604
Density-dependent growth in invasive Lionfish (Pterois volitans).
Benkwitt, Cassandra E
2013-01-01
Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans) is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss) were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration) of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.
Detectability of landscape effects on recolonization increases with regional population density
Liman, Anna-Sara; Dalin, Peter; Björkman, Christer
2015-01-01
Variation in population size over time can influence our ability to identify landscape-moderated differences in community assembly. To date, however, most studies at the landscape scale only cover snapshots in time, thereby overlooking the temporal dynamics of populations and communities. In this paper, we present data that illustrate how temporal variation in population density at a regional scale can influence landscape-moderated variation in recolonization and population buildup in disturbed habitat patches. Four common insect species, two omnivores and two herbivores, were monitored over 8 years in 10 willow short-rotation coppice bio-energy stands with a four-year disturbance regime (coppice cycle). The population densities in these regularly disturbed stands were compared to densities in 17 undisturbed natural Salix cinerea (grey willow) stands in the same region. A time series approach was used, utilizing the natural variation between years to statistically model recolonization as a function of landscape composition under two different levels of regional density. Landscape composition, i.e. relative amount of forest vs. open agricultural habitats, largely determined the density of re-colonizing populations following willow coppicing in three of the four species. However, the impact of landscape composition was not detectable in years with low regional density. Our results illustrate that landscape-moderated recolonization can change over time and that considering the temporal dynamics of populations may be crucial when designing and evaluating studies at landscape level. PMID:26257881
Detectability of landscape effects on recolonization increases with regional population density.
Liman, Anna-Sara; Dalin, Peter; Björkman, Christer
2015-07-01
Variation in population size over time can influence our ability to identify landscape-moderated differences in community assembly. To date, however, most studies at the landscape scale only cover snapshots in time, thereby overlooking the temporal dynamics of populations and communities. In this paper, we present data that illustrate how temporal variation in population density at a regional scale can influence landscape-moderated variation in recolonization and population buildup in disturbed habitat patches. Four common insect species, two omnivores and two herbivores, were monitored over 8 years in 10 willow short-rotation coppice bio-energy stands with a four-year disturbance regime (coppice cycle). The population densities in these regularly disturbed stands were compared to densities in 17 undisturbed natural Salix cinerea (grey willow) stands in the same region. A time series approach was used, utilizing the natural variation between years to statistically model recolonization as a function of landscape composition under two different levels of regional density. Landscape composition, i.e. relative amount of forest vs. open agricultural habitats, largely determined the density of re-colonizing populations following willow coppicing in three of the four species. However, the impact of landscape composition was not detectable in years with low regional density. Our results illustrate that landscape-moderated recolonization can change over time and that considering the temporal dynamics of populations may be crucial when designing and evaluating studies at landscape level.
Evidence-based control of canine rabies: a critical review of population density reduction
Morters, Michelle K; Restif, Olivier; Hampson, Katie; Cleaveland, Sarah; Wood, James L N; Conlan, Andrew J K
2013-01-01
Control measures for canine rabies include vaccination and reducing population density through culling or sterilization. Despite the evidence that culling fails to control canine rabies, efforts to reduce canine population density continue in many parts of the world. The rationale for reducing population density is that rabies transmission is density-dependent, with disease incidence increasing directly with host density. This may be based, in part, on an incomplete interpretation of historical field data for wildlife, with important implications for disease control in dog populations. Here, we examine historical and more recent field data, in the context of host ecology and epidemic theory, to understand better the role of density in rabies transmission and the reasons why culling fails to control rabies. We conclude that the relationship between host density, disease incidence and other factors is complex and may differ between species. This highlights the difficulties of interpreting field data and the constraints of extrapolations between species, particularly in terms of control policies. We also propose that the complex interactions between dogs and people may render culling of free-roaming dogs ineffective irrespective of the relationship between host density and disease incidence. We conclude that vaccination is the most effective means to control rabies in all species. PMID:23004351
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Won-Hwi; Dang, Jeong-Jeung; Kim, June Young
2016-02-15
Transverse magnetic filter field as well as operating pressure is considered to be an important control knob to enhance negative hydrogen ion production via plasma parameter optimization in volume-produced negative hydrogen ion sources. Stronger filter field to reduce electron temperature sufficiently in the extraction region is favorable, but generally known to be limited by electron density drop near the extraction region. In this study, unexpected electron density increase instead of density drop is observed in front of the extraction region when the applied transverse filter field increases monotonically toward the extraction aperture. Measurements of plasma parameters with a movable Langmuirmore » probe indicate that the increased electron density may be caused by low energy electron accumulation in the filter region decreasing perpendicular diffusion coefficients across the increasing filter field. Negative hydrogen ion populations are estimated from the measured profiles of electron temperatures and densities and confirmed to be consistent with laser photo-detachment measurements of the H{sup −} populations for various filter field strengths and pressures. Enhanced H{sup −} population near the extraction region due to the increased low energy electrons in the filter region may be utilized to increase negative hydrogen beam currents by moving the extraction position accordingly. This new finding can be used to design efficient H{sup −} sources with an optimal filtering system by maximizing high energy electron filtering while keeping low energy electrons available in the extraction region.« less
Wang, Qian; Xiao, Yong-fu; Vuitton, Dominique A; Schantz, Peter M; Raoul, Francis; Budke, Christine; Campos-Ponce, Maiza; Craig, Philip S; Giraudoux, Patrick
2007-02-05
Overgrazing was assumed to increase the population density of small mammals that are the intermediate hosts of Echinococcus multilocularis, the pathogen of alveolar echinococcosis in the Qinghai Tibet Plateau. This research tested the hypothesis that overgrazing might promote Echinococcus multilocularis transmission through increasing populations of small mammal, intermediate hosts in Tibetan pastoral communities. Grazing practices, small mammal indices and dog Echinococcus multilocularis infection data were collected to analyze the relation between overgrazing and Echinococcus multilocularis transmission using nonparametric tests and multiple stepwise logistic regression. In the investigated area, raising livestock was a key industry. The communal pastures existed and the available forage was deficient for grazing. Open (common) pastures were overgrazed and had higher burrow density of small mammals compared with neighboring fenced (private) pastures; this high overgrazing pressure on the open pastures measured by neighboring fenced area led to higher burrow density of small mammals in open pastures. The median burrow density of small mammals in open pastures was independently associated with nearby canine Echinococcus multilocularis infection (P = 0.003, OR = 1.048). Overgrazing may promote the transmission of Echinococcus multilocularis through increasing the population density of small mammals.
Putz, Christina M; Schmid, Christoph; Reisch, Christoph
2015-09-01
The endangered plant species Dianthus gratianopolitanus exhibits a highly fragmented distribution range comprising many isolated populations. Based upon this pattern of distribution, we selected a study region in Switzerland with a lower magnitude of isolation (Swiss Jura) and another study region in Germany with a higher degree of isolation (Franconian Jura). In each region, we chose ten populations to analyze population structure, reproduction, and genetic variation in a comparative approach. Therefore, we determined population density, cushion size, and cushion density to analyze population structure, investigated reproductive traits, including number of flowers, capsules, and germination rate, and analyzed amplified fragment length polymorphisms to study genetic variation. Population and cushion density were credibly higher in German than in Swiss populations, whereas reproductive traits and genetic variation within populations were similar in both study regions. However, genetic variation among populations and isolation by distance were stronger in Germany than in Switzerland. Generally, cushion size and density as well as flower and capsule production increased with population size and density, whereas genetic variation decreased with population density. In contrast to our assumptions, we observed denser populations and cushions in the region with the higher magnitude of isolation, whereas reproductive traits and genetic variation within populations were comparable in both regions. This corroborates the assumption that stronger isolation must not necessarily result in the loss of fitness and genetic variation. Furthermore, it supports our conclusion that the protection of strongly isolated populations contributes essentially to the conservation of a species' full evolutionary potential.
Population cycles in small rodents.
Krebs, C J; Gaines, M S; Keller, B L; Myers, J H; Tamarin, R H
1973-01-05
We conclude that population fluctuations in Microtus in southern Indiana are produced by a syndrome of changes in birth and death rates similar to that found in other species of voles and lemmings. The mechanisms which cause the changes in birth and death rates are demolished by fencing the population so that no dispersal can occur. Dispersal thus seems critical for population regulation in Microtus. Because most dispersal occurs during the increase phase of the population cycle and there is little dispersal during the decline phase, dispersal is not directly related to population density. Hence the quality of dispersing animals must be important, and we have found one case of increased dispersal tendency by one genotype. The failure of population regulation of Microtus in enclosed areas requires an explanation by any hypothesis attempting to explain population cycles in small rodents. It might be suggested that the fence changed the predation pressure on the enclosed populations. However, the fence was only 2 feet (0.6 meter) high and did not stop the entrance of foxes, weasels, shrews, or avian predators. A striking feature was that the habitat in the enclosures quickly recovered from complete devastation by the start of the spring growing season. Obviously the habitat and food quality were sufficient to support Microtus populations of abnormally high densities, and recovery of the habitat was sufficiently quick that the introduction of new animals to these enclosed areas resulted in another population explosion. Finally, hypotheses of population regulation by social stress must account for the finding that Microtus can exist at densities several times greater than normal without "stress" taking an obvious toll. We hypothesize that the prevention of dispersal changes the quality of the populations in the enclosures in comparison to those outside the fence. Voles forced to remain in an overcrowded fenced population do not suffer high mortality rates and continue to reproduce at abnormally high densities until starvation overtakes them. The initial behavioral interactions associated with crowding do not seem sufficient to cause voles to die in situ. What happens to animals during the population decline? Our studies have not answered this question. The animals did not appear to disperse, but it is possible that the method we used to measure dispersal (movement into a vacant habitat) missed a large segment of dispersing voles which did not remain in the vacant area but kept on moving. Perhaps the dispersal during the increase phase of the population cycle is a colonization type of dispersal, and the animals taking part in it are likely to stay in a new habitat, while during the population decline dispersal is a pathological response to high density, and the animals are not attracted to settling even in a vacant habitat. The alternative to this suggestion is that animals are dying in situ during the decline because of physiological or genetically determined behavioral stress. Thus the fencing of a population prevents the change in rates of survival and reproduction, from high rates in the increase phase to low rates in the decline phase, and the fenced populations resemble "mouse plagues." A possible explanation is that the differential dispersal of animals during the phase of increase causes the quality of the voles remaining at peak densities in wild populations to be different from the quality of voles at much higher densities in enclosures. Increased sensitivity to density in Microtus could cause the decline of wild populations at densities lower than those reached by fenced populations in which selection through dispersal has been prevented. Fencing might also alter the social interactions among Microtus in other ways that are not understood. The analysis of colonizing species by MacArthur and Wilson (27) can be applied to our studies of dispersal in populations of Microtus. Groups of organisms with good dispersal and colonizing ability are called r strategists because they have high reproductive potential and are able to exploit a new environment rapidly. Dispersing voles seem to be r strategists. Young females in breeding condition were over-represented in dispersing female Microtus (17). The Tf(C)/Tf(E) females, which were more common among dispersers during the phase of population increase (Fig. 6), also have a slight reproductive advantage over the other Tf genotypes (19). Thus in Microtus populations the animals with the highest reproductive potential, the r strategists, are dispersing. The segment of the population which remains behind after the selection-via-dispersal are those individuals which are less influenced by increasing population densities. These are the individuals which maximize use of the habitat, the K strategists in MacArthur and Wilson's terminology, or voles selected for spacing behavior. Thus we can describe population cycles in Microtus in the same theoretical framework as colonizing species on islands. Our work on Microtus is consistent with the hypothesis of genetic and behavioral effects proposed by Chitty (6) (Fig. 7) in that it shows both behavioral differences in males during the phases of population fluctuation and periods of strong genetic selection. The greatest gaps in our knowledge are in the area of genetic-behavioral interactions which are most difficult to measure. We have no information on the heritability of aggressive behavior in voles. The pathways by which behavioral events are translated into physiological changes which affect reproduction and growth have been carefully analyzed by Christian and his associates (28) for rodents in laboratory situations, but the application of these findings to the complex field events described above remains to be done. Several experiments are suggested by our work. First, other populations of other rodent species should increase to abnormal densities if enclosed in a large fenced area (29). We need to find situations in which this prediction is not fulfilled. Island populations may be an important source of material for such an experiment (30). Second, if one-way exit doors were provided from a fenced area, normal population regulation through dispersal should occur. This experiment would provide another method by which dispersers could be identified. Third, if dispersal were prevented after a population reached peak densities, a normal decline phase should occur. This prediction is based on the assumption that dispersal during the increase phase is sufficient to ensure the decline phase 1 or 2 years later. All these experiments are concerned with the dispersal factor, and our work on Microtus can be summarized by the admonition: study dispersal.
Ciparis, Serena; Iwanowicz, Deborah D.; Voshell, J. Reese
2013-01-01
Summary 1. Nutrient enrichment is a widespread environmental problem in freshwater ecosystems. Eutrophic conditions caused by nutrient enrichment may result in a higher prevalence of infection by trematode parasites in host populations, due to greater resource availability for the molluscan first intermediate hosts. 2. This study examined relationships among land use, environmental variables indicating eutrophication, population density of the pleurocerid snail, Leptoxis carinata, and trematode infections. Fifteen study sites were located in streams within the Shenandoah River catchment (Virginia, U.S.A.), where widespread nutrient enrichment has occurred. 3. Snail population density had a weak positive relationship with stream water nutrient concentration. Snail population density also increased as human activities within stream catchments increased, but density did not continue to increase in catchments where anthropogenic disturbance was greatest. 4. Cercariae from five families of trematodes were identified in L. carinata, and infection rate was generally low (<10%). Neither total infection rate nor the infection rate of individual trematode types showed a positive relationship with snail population density, nutrients or land use. 5. There were statistically significant but weak relationships between the prevalence of infection by two trematode families and physical and biological variables. The prevalence of Notocotylidae was positively related to water depth, which may be related to habitat use by definitive hosts. Prevalence of Opecoelidae had a negative relationship with orthophosphate concentration and a polynomial relationship with chlorophyll a concentration. Transmission of Opecoelid trematodes between hosts may be inhibited by eutrophic conditions. 6. Leptoxis carinata appears to be a useful species for monitoring the biological effects of eutrophication and investigating trematode transmission dynamics in lotic systems.
O'Neil, Shawn T; Bump, Joseph K; Beyer, Dean E
2017-11-01
Understanding landscape patterns in mortality risk is crucial for promoting recovery of threatened and endangered species. Humans affect mortality risk in large carnivores such as wolves ( Canis lupus ), but spatiotemporally varying density dependence can significantly influence the landscape of survival. This potentially occurs when density varies spatially and risk is unevenly distributed. We quantified spatiotemporal sources of variation in survival rates of gray wolves ( C. lupus ) during a 21-year period of population recovery in the Upper Peninsula of Michigan, USA. We focused on mapping risk across time using Cox Proportional Hazards (CPH) models with time-dependent covariates, thus exploring a shifting mosaic of survival. Extended CPH models and time-dependent covariates revealed influences of seasonality, density dependence and experience, as well as individual-level factors and landscape predictors of risk. We used results to predict the shifting landscape of risk at the beginning, middle, and end of the wolf recovery time series. Survival rates varied spatially and declined over time. Long-term change was density-dependent, with landscape predictors such as agricultural land cover and edge densities contributing negatively to survival. Survival also varied seasonally and depended on individual experience, sex, and resident versus transient status. The shifting landscape of survival suggested that increasing density contributed to greater potential for human conflict and wolf mortality risk. Long-term spatial variation in key population vital rates is largely unquantified in many threatened, endangered, and recovering species. Variation in risk may indicate potential for source-sink population dynamics, especially where individuals preemptively occupy suitable territories, which forces new individuals into riskier habitat types as density increases. We encourage managers to explore relationships between adult survival and localized changes in population density. Density-dependent risk maps can identify increasing conflict areas or potential habitat sinks which may persist due to high recruitment in adjacent habitats.
Population ecology of polar bears in Davis Strait, Canada and Greenland
Peacock, Elizabeth; Taylor, Mitchell K.; Laake, Jeffrey L.; Stirling, Ian
2013-01-01
Until recently, the sea ice habitat of polar bears was understood to be variable, but environmental variability was considered to be cyclic or random, rather than progressive. Harvested populations were believed to be at levels where density effects were considered not significant. However, because we now understand that polar bear demography can also be influenced by progressive change in the environment, and some populations have increased to greater densities than historically lower numbers, a broader suite of factors should be considered in demographic studies and management. We analyzed 35 years of capture and harvest data from the polar bear (Ursus maritimus) subpopulation in Davis Strait, including data from a new study (2005–2007), to quantify its current demography. We estimated the population size in 2007 to be 2,158 ± 180 (SE), a likely increase from the 1970s. We detected variation in survival, reproductive rates, and age-structure of polar bears from geographic sub-regions. Survival and reproduction of bears in southern Davis Strait was greater than in the north and tied to a concurrent dramatic increase in breeding harp seals (Pagophilus groenlandicus) in Labrador. The most supported survival models contained geographic and temporal variables. Harp seal abundance was significantly related to polar bear survival. Our estimates of declining harvest recovery rate, and increasing total survival, suggest that the rate of harvest declined over time. Low recruitment rates, average adult survival rates, and high population density, in an environment of high prey density, but deteriorating and variable ice conditions, currently characterize the Davis Strait polar bears. Low reproductive rates may reflect negative effects of greater densities or worsening ice conditions.
Duminil, J; Daïnou, K; Kaviriri, D K; Gillet, P; Loo, J; Doucet, J-L; Hardy, O J
2016-01-01
Owing to the reduction of population density and/or the environmental changes it induces, selective logging could affect the demography, reproductive biology and evolutionary potential of forest trees. This is particularly relevant in tropical forests where natural population densities can be low and isolated trees may be subject to outcross pollen limitation and/or produce low-quality selfed seeds that exhibit inbreeding depression. Comparing reproductive biology processes and genetic diversity of populations at different densities can provide indirect evidence of the potential impacts of logging. Here, we analysed patterns of genetic diversity, mating system and gene flow in three Central African populations of the self-compatible legume timber species Erythrophleum suaveolens with contrasting densities (0.11, 0.68 and 1.72 adults per ha). The comparison of inbreeding levels among cohorts suggests that selfing is detrimental as inbred individuals are eliminated between seedling and adult stages. Levels of genetic diversity, selfing rates (∼16%) and patterns of spatial genetic structure (Sp ∼0.006) were similar in all three populations. However, the extent of gene dispersal differed markedly among populations: the average distance of pollen dispersal increased with decreasing density (from 200 m in the high-density population to 1000 m in the low-density one). Overall, our results suggest that the reproductive biology and genetic diversity of the species are not affected by current logging practices. However, further investigations need to be conducted in low-density populations to evaluate (1) whether pollen limitation may reduce seed production and (2) the regeneration potential of the species. PMID:26696137
Density-dependent natal dispersal patterns in a leopard population recovering from over-harvest.
Fattebert, Julien; Balme, Guy; Dickerson, Tristan; Slotow, Rob; Hunter, Luke
2015-01-01
Natal dispersal enables population connectivity, gene flow and metapopulation dynamics. In polygynous mammals, dispersal is typically male-biased. Classically, the 'mate competition', 'resource competition' and 'resident fitness' hypotheses predict density-dependent dispersal patterns, while the 'inbreeding avoidance' hypothesis posits density-independent dispersal. In a leopard (Panthera pardus) population recovering from over-harvest, we investigated the effect of sex, population density and prey biomass, on age of natal dispersal, distance dispersed, probability of emigration and dispersal success. Over an 11-year period, we tracked 35 subadult leopards using VHF and GPS telemetry. Subadult leopards initiated dispersal at 13.6 ± 0.4 months. Age at commencement of dispersal was positively density-dependent. Although males (11.0 ± 2.5 km) generally dispersed further than females (2.7 ± 0.4 km), some males exhibited opportunistic philopatry when the population was below capacity. All 13 females were philopatric, while 12 of 22 males emigrated. Male dispersal distance and emigration probability followed a quadratic relationship with population density, whereas female dispersal distance was inversely density-dependent. Eight of 12 known-fate females and 5 of 12 known-fate male leopards were successful in settling. Dispersal success did not vary with population density, prey biomass, and for males, neither between dispersal strategies (philopatry vs. emigration). Females formed matrilineal kin clusters, supporting the resident fitness hypothesis. Conversely, mate competition appeared the main driver for male leopard dispersal. We demonstrate that dispersal patterns changed over time, i.e. as the leopard population density increased. We conclude that conservation interventions that facilitated local demographic recovery in the study area also restored dispersal patterns disrupted by unsustainable harvesting, and that this indirectly improved connectivity among leopard populations over a larger landscape.
Density-Dependent Natal Dispersal Patterns in a Leopard Population Recovering from Over-Harvest
Fattebert, Julien; Balme, Guy; Dickerson, Tristan; Slotow, Rob; Hunter, Luke
2015-01-01
Natal dispersal enables population connectivity, gene flow and metapopulation dynamics. In polygynous mammals, dispersal is typically male-biased. Classically, the ‘mate competition’, ‘resource competition’ and ‘resident fitness’ hypotheses predict density-dependent dispersal patterns, while the ‘inbreeding avoidance’ hypothesis posits density-independent dispersal. In a leopard (Panthera pardus) population recovering from over-harvest, we investigated the effect of sex, population density and prey biomass, on age of natal dispersal, distance dispersed, probability of emigration and dispersal success. Over an 11-year period, we tracked 35 subadult leopards using VHF and GPS telemetry. Subadult leopards initiated dispersal at 13.6 ± 0.4 months. Age at commencement of dispersal was positively density-dependent. Although males (11.0 ± 2.5 km) generally dispersed further than females (2.7 ± 0.4 km), some males exhibited opportunistic philopatry when the population was below capacity. All 13 females were philopatric, while 12 of 22 males emigrated. Male dispersal distance and emigration probability followed a quadratic relationship with population density, whereas female dispersal distance was inversely density-dependent. Eight of 12 known-fate females and 5 of 12 known-fate male leopards were successful in settling. Dispersal success did not vary with population density, prey biomass, and for males, neither between dispersal strategies (philopatry vs. emigration). Females formed matrilineal kin clusters, supporting the resident fitness hypothesis. Conversely, mate competition appeared the main driver for male leopard dispersal. We demonstrate that dispersal patterns changed over time, i.e. as the leopard population density increased. We conclude that conservation interventions that facilitated local demographic recovery in the study area also restored dispersal patterns disrupted by unsustainable harvesting, and that this indirectly improved connectivity among leopard populations over a larger landscape. PMID:25875293
Density-dependent vulnerability of forest ecosystems to drought
Bottero, Alessandra; D'Amato, Anthony W.; Palik, Brian J.; Bradford, John B.; Fraver, Shawn; Battaglia, Mike A.; Asherin, Lance A.
2017-01-01
1. Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary driver of competitive intensity among trees, which influences tree growth and mortality. Manipulating tree population density may be a mechanism for moderating drought-induced stress and growth reductions, although the relationship between tree population density and tree drought vulnerability remains poorly quantified, especially across climatic gradients.2. In this study, we examined three long-term forest ecosystem experiments in two widely distributed North American pine species, ponderosa pine Pinus ponderosa (Lawson & C. Lawson) and red pine Pinus resinosa (Aiton), to better elucidate the relationship between tree population density, growth and drought. These experiments span a broad latitude and aridity range and include tree population density treatments that have been purposefully maintained for several decades. We investigated how tree population density influenced resistance (growth during drought) and resilience (growth after drought compared to pre-drought growth) of stand-level growth during and after documented drought events.3. Our results show that relative tree population density was negatively related to drought resistance and resilience, indicating that trees growing at lower densities were less vulnerable to drought. This result was apparent in all three forest ecosystems, and was consistent across species, stand age and drought intensity.4. Synthesis and applications. Our results highlighted that managing pine forest ecosystems at low tree population density represents a promising adaptive strategy for reducing the adverse impacts of drought on forest growth in coming decades. Nonetheless, the broader applicability of our findings to other types of forest ecosystems merits additional investigation.
Pärn, Henrik; Ringsby, Thor Harald; Jensen, Henrik; Sæther, Bernt-Erik
2012-01-01
Dispersal plays a key role in the response of populations to climate change and habitat fragmentation. Here, we use data from a long-term metapopulation study of a non-migratory bird, the house sparrow (Passer domesticus), to examine the influence of increasing spring temperature and density-dependence on natal dispersal rates and how these relationships depend on spatial variation in habitat quality. The effects of spring temperature and population size on dispersal rate depended on the habitat quality. Dispersal rate increased with temperature and population size on poor-quality islands without farms, where house sparrows were more exposed to temporal fluctuations in weather conditions and food availability. By contrast, dispersal rate was independent of spring temperature and population size on high-quality islands with farms, where house sparrows had access to food and shelter all the year around. This illustrates large spatial heterogeneity within the metapopulation in how population density and environmental fluctuations affect the dispersal process. PMID:21613299
Parasite transmission in social interacting hosts: Monogenean epidemics in guppies
Johnson, M.B.; Lafferty, K.D.; van, Oosterhout C.; Cable, J.
2011-01-01
Background: Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings: Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance: These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density. ?? 2011 Johnson et al.
Parasite transmission in social interacting hosts: Monogenean epidemics in guppies
Johnson, Mirelle B.; Lafferty, Kevin D.; van Oosterhout, Cock; Cable, Joanne
2011-01-01
Background Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density.
Meijer, Mathias; Kejs, Anne Mette; Stock, Christiane; Bloomfield, Kim; Ejstrud, Bo; Schlattmann, Peter
2012-03-01
This study examines the relative effects of population density and area-level SES on all-cause mortality in Denmark. A shared frailty model was fitted with 2.7 million persons aged 30-81 years in 2,121 parishes. Residence in areas with high population density increased all-cause mortality for all age groups. For older age groups, residence in areas with higher proportions of unemployed persons had an additional effect. Area-level factors explained considerably more variation in mortality among the elderly than among younger generations. Overall this study suggests that structural prevention efforts in neighborhoods could help reduce mortality when mediating processes between area-level socioeconomic status, population density and mortality are found. Copyright © 2011 Elsevier Ltd. All rights reserved.
Liang, Minxia; Liu, Xubing; Gilbert, Gregory S; Zheng, Yi; Luo, Shan; Huang, Fengmin; Yu, Shixiao
2016-12-01
Negative density-dependent seedling mortality has been widely detected in tropical, subtropical and temperate forests, with soil pathogens as a major driver. Here we investigated how host density affects the composition of soil pathogen communities and consequently influences the strength of plant-soil feedbacks. In field censuses of six 1-ha permanent plots, we found that survival was much lower for newly germinated seedlings that were surrounded by more conspecific adults. The relative abundance of pathogenic fungi in soil increased with increasing conspecific tree density for five of nine tree species; more soil pathogens accumulated around roots where adult tree density was higher, and this greater pathogen frequency was associated with lower seedling survival. Our findings show how tree density influences populations of soil pathogens, which creates plant-soil feedbacks that contribute to community-level and population-level compensatory trends in seedling survival. © 2016 John Wiley & Sons Ltd/CNRS.
Ruane, Lauren G.; Rotzin, Andrew T.; Congleton, Philip H.
2014-01-01
Background and Aims Natural variation in fruit and seed set may be explained by factors that affect the composition of pollen grains on stigmas. Self-incompatible species require compatible outcross pollen grains to produce seeds. The siring success of outcross pollen grains, however, can be hindered if self (or other incompatible) pollen grains co-occur on stigmas. This study identifies factors that determine fruit set in Phlox hirsuta, a self-sterile endangered species that is prone to self-pollination, and its associated fitness costs. Methods Multiple linear regressions were used to identify factors that explain variation in percentage fruit set within three of the five known populations of this endangered species. Florivorous beetle density, petal colour, floral display size, local conspecific density and pre-dispersal seed predation were quantified and their effects on the ability of flowers to produce fruits were assessed. Key Results In all three populations, percentage fruit set decreased as florivorous beetle density increased and as floral display size increased. The effect of floral display size on fruit set, however, often depended on the density of nearby conspecific plants. High local conspecific densities offset – even reversed – the negative effects of floral display size on percentage fruit set. Seed predation by mammals decreased fruit set in one population. Conclusions The results indicate that seed production in P. hirsuta can be maximized by selectively augmenting populations in areas containing isolated large plants, by reducing the population sizes of florivorous beetles and by excluding mammals that consume unripe fruits. PMID:24557879
Correlates of bushmeat in markets and depletion of wildlife.
Fa, John E; Olivero, Jesus; Farfán, Miguel Á; Márquez, Ana L; Duarte, Jesús; Nackoney, Janet; Hall, Amy; Dupain, Jef; Seymour, Sarah; Johnson, Paul J; Macdonald, David W; Real, Raimundo; Vargas, Juan M
2015-06-01
We used data on number of carcasses of wildlife species sold in 79 bushmeat markets in a region of Nigeria and Cameroon to assess whether species composition of a market could be explained by anthropogenic pressures and environmental variables around each market. More than 45 mammal species from 9 orders were traded across all markets; mostly ungulates and rodents. For each market, we determined median body mass, species diversity (game diversity), and taxa that were principal contributors to the total number of carcasses for sale (game dominance). Human population density in surrounding areas was significantly and negatively related to the percentage ungulates and primates sold in markets and significantly and positively related to the proportion of rodents. The proportion of carnivores sold was higher in markets with high human population densities. Proportion of small-bodied mammals (<1 kg) sold in markets increased as human population density increased, but proportion of large-bodied mammals (>10 kg) decreased as human population density increased. We calculated an index of game depletion (GDI) for each market from the sum of the total number of carcasses traded per annum and species, weighted by the intrinsic rate of natural increase (rmax ) of each species, divided by individuals traded in a market. The GDI of a market increased as the proportion of fast-reproducing species (highest rmax ) increased and as the representation of species with lowest rmax (slow-reproducing) decreased. The best explanatory factor for a market's GDI was anthropogenic pressure-road density, human settlements with >3000 inhabitants, and nonforest vegetation. High and low GDI were significantly differentiated by human density and human settlements with >3000 inhabitants. Our results provided empirical evidence that human activity is correlated with more depleted bushmeat faunas and can be used as a proxy to determine areas in need of conservation action. © 2015 Society for Conservation Biology.
Lande, Russell; Engen, Steinar; Sæther, Bernt-Erik
2017-10-31
We analyze the stochastic demography and evolution of a density-dependent age- (or stage-) structured population in a fluctuating environment. A positive linear combination of age classes (e.g., weighted by body mass) is assumed to act as the single variable of population size, [Formula: see text], exerting density dependence on age-specific vital rates through an increasing function of population size. The environment fluctuates in a stationary distribution with no autocorrelation. We show by analysis and simulation of age structure, under assumptions often met by vertebrate populations, that the stochastic dynamics of population size can be accurately approximated by a univariate model governed by three key demographic parameters: the intrinsic rate of increase and carrying capacity in the average environment, [Formula: see text] and [Formula: see text], and the environmental variance in population growth rate, [Formula: see text] Allowing these parameters to be genetically variable and to evolve, but assuming that a fourth parameter, [Formula: see text], measuring the nonlinearity of density dependence, remains constant, the expected evolution maximizes [Formula: see text] This shows that the magnitude of environmental stochasticity governs the classical trade-off between selection for higher [Formula: see text] versus higher [Formula: see text] However, selection also acts to decrease [Formula: see text], so the simple life-history trade-off between [Formula: see text]- and [Formula: see text]-selection may be obscured by additional trade-offs between them and [Formula: see text] Under the classical logistic model of population growth with linear density dependence ([Formula: see text]), life-history evolution in a fluctuating environment tends to maximize the average population size. Published under the PNAS license.
Robinson, Hugh S.; Abarca, Maria; Zeller, Katherine A.; Velasquez, Grisel; Paemelaere, Evi A. D.; Goldberg, Joshua F.; Payan, Esteban; Hoogesteijn, Rafael; Boede, Ernesto O.; Schmidt, Krzysztof; Lampo, Margarita; Viloria, Ángel L.; Carreño, Rafael; Robinson, Nathaniel; Lukacs, Paul M.; Nowak, J. Joshua; Salom-Pérez, Roberto; Castañeda, Franklin; Boron, Valeria; Quigley, Howard
2018-01-01
Broad scale population estimates of declining species are desired for conservation efforts. However, for many secretive species including large carnivores, such estimates are often difficult. Based on published density estimates obtained through camera trapping, presence/absence data, and globally available predictive variables derived from satellite imagery, we modelled density and occurrence of a large carnivore, the jaguar, across the species’ entire range. We then combined these models in a hierarchical framework to estimate the total population. Our models indicate that potential jaguar density is best predicted by measures of primary productivity, with the highest densities in the most productive tropical habitats and a clear declining gradient with distance from the equator. Jaguar distribution, in contrast, is determined by the combined effects of human impacts and environmental factors: probability of jaguar occurrence increased with forest cover, mean temperature, and annual precipitation and declined with increases in human foot print index and human density. Probability of occurrence was also significantly higher for protected areas than outside of them. We estimated the world’s jaguar population at 173,000 (95% CI: 138,000–208,000) individuals, mostly concentrated in the Amazon Basin; elsewhere, populations tend to be small and fragmented. The high number of jaguars results from the large total area still occupied (almost 9 million km2) and low human densities (< 1 person/km2) coinciding with high primary productivity in the core area of jaguar range. Our results show the importance of protected areas for jaguar persistence. We conclude that combining modelling of density and distribution can reveal ecological patterns and processes at global scales, can provide robust estimates for use in species assessments, and can guide broad-scale conservation actions. PMID:29579129
Elliott, Jane C; Lucas, Robyn M; Clements, Mark S; Bambrick, Hilary J
2010-09-01
Type 1 diabetes incidence has increased rapidly over the last 20 years, and ecological studies show inverse latitudinal gradients for both incidence and prevalence. Some studies have found season of birth or season of diagnosis effects. Together these findings suggest an important role for environmental factors in disease etiology. To examine whether type 1 diabetes incidence varies in relation to ambient ultraviolet radiation (UVR) in Australian children. We used case records of 4773 children aged 0-14 yr from the Australian National Diabetes Register to estimate type 1 diabetes incidence in relation to residential ambient UVR, both as a continuous variable and in four categories. We examined season of birth and season of diagnosis and variation in these parameters and in age at diagnosis, in relation to ambient UVR. Overall incidence was 20 per 100 000 population with no sex difference. There was a statistically significant trend toward winter diagnosis (adjusted RR = 1.22, 95% CI 1.13-1.33, p<0.001) but no apparent season of birth effect. Incidence in the highest UVR category was significantly lower than in the lowest UVR category (RR = 0.85, 95% CI 0.75-0.96). We found an inverse association between incidence and ambient UVR that was present only at low population densities; at high population densities type 1 diabetes incidence increased with increasing ambient UVR. In low population density, largely rural environments, ambient UVR may better reflect the personal UV dose, with the latter being protective for the development of type 1 diabetes. This effect is lost or reversed in high population density, largely urban, environments.
Dispersal responses override density effects on genetic diversity during post-disturbance succession
Landguth, Erin L.; Bull, C. Michael; Banks, Sam C.; Gardner, Michael G.; Driscoll, Don A.
2016-01-01
Dispersal fundamentally influences spatial population dynamics but little is known about dispersal variation in landscapes where spatial heterogeneity is generated predominantly by disturbance and succession. We tested the hypothesis that habitat succession following fire inhibits dispersal, leading to declines over time in genetic diversity in the early successional gecko Nephrurus stellatus. We combined a landscape genetics field study with a spatially explicit simulation experiment to determine whether successional patterns in genetic diversity were driven by habitat-mediated dispersal or demographic effects (declines in population density leading to genetic drift). Initial increases in genetic structure following fire were likely driven by direct mortality and rapid population expansion. Subsequent habitat succession increased resistance to gene flow and decreased dispersal and genetic diversity in N. stellatus. Simulated changes in population density alone did not reproduce these results. Habitat-mediated reductions in dispersal, combined with changes in population density, were essential to drive the field-observed patterns. Our study provides a framework for combining demographic, movement and genetic data with simulations to discover the relative influence of demography and dispersal on patterns of landscape genetic structure. Our results suggest that succession can inhibit connectivity among individuals, opening new avenues for understanding how disturbance regimes influence spatial population dynamics. PMID:27009225
SUGIURA, Natsuko; DOI, Kandai; KATO, Takuya; MORITA, Tatsushi; HAYAMA, Shin-ichi
2018-01-01
To examine outbreaks of mange in raccoon dogs (Nyctereutes procyonoides) with respect to population density, we analyzed camera trap videos, and isolated mites from raccoon dog carcasses. In a camera trapping survey, we categorized the skin condition of raccoon dogs, and used a number of independent videos to calculate the relative abundance index (RAI). The RAI of raccoon dogs with alopecia increased following an increase in the RAI of those without alopecia. Among 27 raccoon dog carcasses, 12 showed mange-compatible skin lesions. Sarcoptes scabiei was isolated from 11 of these raccoon dogs, indicating that sarcoptic mange was endemic in our study area. Therefore, a high relative population density may be a factor underlying epizootics of sarcoptic mange in raccoon dogs. PMID:29353863
Density-associated recruitment mediates coral population dynamics on a coral reef
NASA Astrophysics Data System (ADS)
Bramanti, Lorenzo; Edmunds, Peter J.
2016-06-01
Theory suggests that density-associated processes can modulate community resilience following declines in population size. Here, we demonstrate density-associated processes in two scleractinian populations on the outer reef of Moorea, French Polynesia, that are rapidly increasing in size following the effects of two catastrophic disturbances. Between 2006 and 2010, predation by the corallivorous crown-of-thorns sea star reduced coral cover by 93 %; in 2010, the dead coral skeletons were removed by a cyclone, and in 2011 and 2012, high coral recruitment initiated population recovery. Coral recruitment was associated with coral cover, but the relationship differed between two coral genera that are almost exclusively broadcast spawners in Moorea. Acroporids recruited at low densities, and the density of recruits was positively associated with cover of Acropora, whereas pocilloporids recruited at high densities, and densities of their recruits were negatively associated with cover of Pocillopora. Together, our results suggest that associations between adult cover and density of both juveniles and recruits can mediate rapid coral community recovery after large disturbances. The difference between taxa in sign of the relationships between recruit density and coral cover indicate that they reflect contrasting mechanisms with the potential to mediate temporal shifts in taxonomic composition of coral communities.
Poor horse traders: large mammals trade survival for reproduction during the process of feralization
Grange, Sophie; Duncan, Patrick; Gaillard, Jean-Michel
2009-01-01
We investigated density dependence on the demographic parameters of a population of Camargue horses (Equus caballus), individually monitored and unmanaged for eight years. We also analysed the contributions of individual demographic parameters to changes in the population growth rates. The decrease in resources caused a loss of body condition. Adult male survival was not affected, but the survival of foals and adult females decreased with increasing density. Prime-aged females maintained high reproductive performance at high density, and their survival decreased. The higher survival of adult males compared with females at high density presumably results from higher investment in reproduction by mares. The high fecundity in prime-aged females, even when at high density, may result from artificial selection for high reproductive performance, which is known to have occurred in all the major domestic ungulates. Other studies suggest that feral ungulates including cattle and sheep, as these horses, respond differently from wild ungulates to increases in density, by trading adult survival for reproduction. As a consequence, populations of feral animals should oscillate more strongly than their wild counterparts, since they should be both more invasive (as they breed faster), and more sensitive to harsh environmental conditions (as the population growth rate of long-lived species is consistently more sensitive to a given proportional change in adult survival than to the same change in any other vital rate). If this principle proves to be general, it has important implications for management of populations of feral ungulates. PMID:19324787
Determinants of the Transmission Variation of Hand, Foot and Mouth Disease in China.
Zhao, Jijun; Li, Xinmin
2016-01-01
Severe outbreaks of hand, foot and mouth disease (HFMD) have occurred in China for decades. Our understanding of the HFMD transmission process and its determinants is still limited. In this paper, factors that affect the local variation of HFMD transmission process were studied. Three classes of factors, including meteorological, demographic and public health intervention factors, were carefully selected and their effects on HFMD transmission were investigated with Pearson's correlation coefficient and multiple linear regression models. The determining factors for the variation of HFMD transmission were different for the southeastern and the northwestern regions of China. In the northwest, fadeouts occurred yearly, and the average age at infection and the fadeout were negatively correlated with the population density. In the southeast, HFMD transmission was governed by the combined effects of the birth rate, the relative humidity and the interaction of the Health System Performance and the log of the population density. When the Health System Performance was low, HFMD transmission increased with the population density, but when the Health System Performance was high, the better health performance counteracted the transmission increase due to the higher population density.
Takeshita, Kazutaka; Yoshida, Tsuyoshi; Igota, Hiromasa; Matsuura, Yukiko
2016-01-01
Assessing temporal changes in abundance indices is an important issue in the management of large herbivore populations. The drive counts method has been frequently used as a deer abundance index in mountainous regions. However, despite an inherent risk for observation errors in drive counts, which increase with deer density, evaluations of the utility of drive counts at a high deer density remain scarce. We compared the drive counts and mark-resight (MR) methods in the evaluation of a highly dense sika deer population (MR estimates ranged between 11 and 53 individuals/km2) on Nakanoshima Island, Hokkaido, Japan, between 1999 and 2006. This deer population experienced two large reductions in density; approximately 200 animals in total were taken from the population through a large-scale population removal and a separate winter mass mortality event. Although the drive counts tracked temporal changes in deer abundance on the island, they overestimated the counts for all years in comparison to the MR method. Increased overestimation in drive count estimates after the winter mass mortality event may be due to a double count derived from increased deer movement and recovery of body condition secondary to the mitigation of density-dependent food limitations. Drive counts are unreliable because they are affected by unfavorable factors such as bad weather, and they are cost-prohibitive to repeat, which precludes the calculation of confidence intervals. Therefore, the use of drive counts to infer the deer abundance needs to be reconsidered. PMID:27711181
Liz, Eduardo
2018-02-01
The gamma-Ricker model is one of the more flexible and general discrete-time population models. It is defined on the basis of the Ricker model, introducing an additional parameter [Formula: see text]. For some values of this parameter ([Formula: see text], population is overcompensatory, and the introduction of an additional parameter gives more flexibility to fit the stock-recruitment curve to field data. For other parameter values ([Formula: see text]), the gamma-Ricker model represents populations whose per-capita growth rate combines both negative density dependence and positive density dependence. The former can lead to overcompensation and dynamic instability, and the latter can lead to a strong Allee effect. We study the impact of the cooperation factor in the dynamics and provide rigorous conditions under which increasing the Allee effect strength stabilizes or destabilizes population dynamics, promotes or prevents population extinction, and increases or decreases population size. Our theoretical results also include new global stability criteria and a description of the possible bifurcations.
Climatic and density influences on recruitment in an irruptive population of Roosevelt elk
Starns, Heath D.; Ricca, Mark A.; Duarte, Adam; Weckerly, Floyd W.
2014-01-01
Current paradigms of ungulate population ecology recognize that density-dependent and independent mechanisms are not always mutually exclusive. Long-term data sets are necessary to assess the relative strength of each mechanism, especially when populations display irruptive dynamics. Using an 18-year time series of population abundances of Roosevelt elk (Cervus elaphus roosevelti) inhabiting Redwood National Park in northwestern California we assessed the influence of population size and climatic variation on elk recruitment and whether irruptive dynamics occurred. An information-theoretic model selection analysis indicated that abundance lagged 2 years and neither climatic factors nor a mix of abundance and climatic factors influenced elk recruitment. However, density-dependent recruitment differed between when the population was declining and when the population increased and then stabilized at an abundance lower than at the start of the decline. The population displayed irruptive dynamics.
Jacobson, Bailey; Grant, James W A; Peres-Neto, Pedro R
2015-07-01
How individuals within a population distribute themselves across resource patches of varying quality has been an important focus of ecological theory. The ideal free distribution predicts equal fitness amongst individuals in a 1 : 1 ratio with resources, whereas resource defence theory predicts different degrees of monopolization (fitness variance) as a function of temporal and spatial resource clumping and population density. One overlooked landscape characteristic is the spatial distribution of resource patches, altering the equitability of resource accessibility and thereby the effective number of competitors. While much work has investigated the influence of morphology on competitive ability for different resource types, less is known regarding the phenotypic characteristics conferring relative ability for a single resource type, particularly when exploitative competition predominates. Here we used young-of-the-year rainbow trout (Oncorhynchus mykiss) to test whether and how the spatial distribution of resource patches and population density interact to influence the level and variance of individual growth, as well as if functional morphology relates to competitive ability. Feeding trials were conducted within stream channels under three spatial distributions of nine resource patches (distributed, semi-clumped and clumped) at two density levels (9 and 27 individuals). Average trial growth was greater in high-density treatments with no effect of resource distribution. Within-trial growth variance had opposite patterns across resource distributions. Here, variance decreased at low-population, but increased at high-population densities as patches became increasingly clumped as the result of changes in the levels of interference vs. exploitative competition. Within-trial growth was related to both pre- and post-trial morphology where competitive individuals were those with traits associated with swimming capacity and efficiency: larger heads/bodies/caudal fins and less angled pectoral fins. The different degrees of within-population growth variance at the same density level found here, as a function of spatial resource distribution, provide an explanation for the inconsistencies in within-site growth variance and population regulation often noted with regard to density dependence in natural landscapes. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
The dynamics of zooxanthellae populations: A long-term study in the field
Fagoonee; Wilson; Hassell; Turner
1999-02-05
Coral bleaching characterized by the expulsion of symbiotic algae (zooxanthellae) is an increasing problem worldwide. Global warming has been implicated as one cause, but the phenomenon cannot be fully comprehended without an understanding of the variability of zooxanthellae populations in field conditions. Results from a 6-year field study are presented, providing evidence of density regulation but also of large variability in the zooxanthellae population with regular episodes of very low densities. These bleaching events are likely to be part of a constant variability in zooxanthellae density caused by environmental fluctuations superimposed on a strong seasonal cycle in abundance.
Sustainable Skyscrapers: Designing the Net Zero Energy Building of the Future
NASA Astrophysics Data System (ADS)
Kothari, S.; Bartsch, A.
2016-12-01
Cities of the future will need to increase population density in order to keep up with the rising populations in the limited available land area. In order to provide sufficient power as the population grows, cities must become more energy efficient. Fossil fuels and grid energy will continue to become more expensive as nonrenewable resources deplete. The obvious solution to increase population density while decreasing the reliance on fossil fuels is to build taller skyscrapers that are energy neutral, i.e. self-sustaining. However, current skyscrapers are not energy efficient, and therefore cannot provide a sustainable solution to the problem of increasing population density in the face of depleting energy resources. The design of a net zero energy building that includes both residential and commercial space is presented. Alternative energy systems such as wind turbines, photovoltaic cells, and a waste-to-fuel conversion plant have been incorporated into the design of a 50 story skyscraper that is not reliant on fossil fuels and has a payback time of about six years. Although the current building was designed to be located in San Francisco, simple modifications to the design would allow this building to fit the needs of any city around the world.
Prigge, Vanessa; Melchinger, Albrecht E; Dhillon, Baldev S; Frisch, Matthias
2009-06-01
Expenses for marker assays are the major costs in marker-assisted backcrossing programs for the transfer of target genes from a donor into the genetic background of a recipient genotype. Our objectives were to (1) investigate the effect of employing sequentially increasing marker densities over backcross generations on the recurrent parent genome (RPG) recovery and the number of marker data points (MDP) required, and (2) determine optimum designs for attaining RPG thresholds of 93-98% with a minimum number of MDP. We simulated the introgression of one dominant target gene for genome models of sugar beet (Beta vulgaris L.) and maize (Zea mays L.) with varying marker distances of 5-80 cM and population sizes of 30-250 plants across BC(1) to BC(3) generations. Employing less dense maps in early backcross generations resulted in savings of over 50% in the number of required MDP compared with using a constant set of markers and was accompanied only by small reductions in the attained RPG values. The optimum designs were characterized by increasing marker densities and increasing population sizes in advanced generations for both genome models. We conclude that increasing simultaneously the marker density and the population size from early to advanced backcross generations results in gene introgression with a minimum number of required MDP.
Hirao, Ayako; Ehlers, Ralf-Udo
2010-01-01
For improvement of mass production of the rhabditid biocontrol nematodes Steinernema carpocapsae and Steinernema feltiae in monoxenic liquid culture with their bacterial symbionts Xenorhabdus nematophila and Xenorhabdus bovienii, respectively, the effect of the initial nematode inoculum density on population development and final concentration of dauer juveniles (DJs) was investigated. Symbiotic bacterial cultures are pre-incubated for 1 day prior to inoculation of DJs. DJs are developmentally arrested and recover development as a reaction to food signals provided by their symbionts. After development to adults, the nematodes produce DJ offspring. Inoculum density ranged from 1 to 10 x 10(3) DJ per milliliter for S. carpocapsae and 1 to 8 x 10(3) DJs per milliliter for S. feltiae. No significant influence of the inoculum density on the final DJ yields in both nematode species was recorded, except for S. carpocapsae cultures with a parental female density <2 x 10(3) DJs per milliliter, in which the yields increased with increasing inoculation density. A strong negative response of the parental female fecundity to increasing DJ inoculum densities was recorded for both species with a maximum offspring number per female of >300 for S. carpocapsae and almost 200 for S. feltiae. The compensative adaptation of fecundity to nematode population density is responsible for the lack of an inoculum (or parental female) density effect on DJ yields. At optimal inoculation density of S. carpocapsae, offspring were produced by the parental female population, whereas S. feltiae always developed a F1 female population, which contributed to the DJ yields and was the reason for a more scattered distribution of the yields. The F1 female generation was accompanied by a second peak in X. bovienii density. The optimal DJ inoculum density for S. carpocapsae is 3-6 x 10(3) DJs per milliliter in order to obtain >10(3) parental females per milliliter. Density-dependent effects were neither observed on the DJ recovery nor on the sex ratio in the parental adult generation. As recovery varied between different batches, assessment of the recovery of inoculum DJ batches is recommended. S. feltiae was less variable in DJ recovery usually reaching >90%. The recommended DJ inoculum density is >5 x 10(3) DJs per milliliter to reach >2 x 10(3) parental females per milliliter. The mean yield recorded for S. carpocapsae was 135 x 10(3) and 105 x 10(3) per mililiter for S. feltiae.
Grech, Amanda Lee; Rangan, Anna; Allman-Farinelli, Margaret
2017-12-01
It is hypothesized that the observed proliferation of energy-dense, nutrient-poor foods globally is an important contributing factor to the development of the obesity epidemic. However, evidence that the population's dietary energy density has increased is sparse. The World Cancer Research Fund recommends that dietary energy density be <1.25 kcal/g to prevent weight gain. The aim of this research was to determine whether the dietary energy density of the Australian population has changed between 1995 and 2012. A secondary analysis of two cross-sectional Australian national nutrition surveys from 1995 and 2011/2012 was conducted. Participants of the surveys included adults aged 18 years and older (1995 n=10,986 and 2011/2012 n=9,435) completing 24-hour dietary recalls, including a second recall for a subset of the population (10.4% in 1995 and 64.6% in 2011/2012). Outcome measures included the change in dietary energy density (calculated as energy/weight of food [kcal/g] for food only) between surveys. The National Cancer Institute method for "estimating ratios of two dietary components that are consumed nearly every day" was used to determine the usual distribution and the percentage of participants reporting energy density <1.25 kcal/g. The mean (standard deviation) dietary energy density was 1.59 (0.26) kcal/g and 1.64 (0.32) kcal/g (P<0.0001) in 1995 and 2011/2012, respectively, with 13% and 5% (P<0.0001) of the population meeting dietary energy-density recommendations. For those aged 70 years and older, the percentage with energy density <1.25 kcal/g decreased from 22% to 6% (P<0.0001) for men and from 33% to 11% (P<0.0001) for women in 1995 and 2011/2012, respectively. Among those aged 18 to 29 years, 1% of men in both surveys (P=0.8) and 4% of women in 1995 and 2% in 2011/2012 (P=0.01) reported energy density <1.25 kcal/g. Dietary energy density has increased between the two surveys and few people consumed low energy-dense diets in line with recommendations. The change was largely due to increased energy density of older adult's diets, while young adults had high dietary energy density at both time points. These data suggest efforts now focus on the evaluation of the role of modifying energy density of the diet to reduce the risk of weight gain in adults. Copyright © 2017 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
MADIMENOS, FELICIA C.; LIEBERT, MELISSA A.; CEPON-ROBINS, TARA J.; SNODGRASS, J. JOSH; SUGIYAMA, LAWRENCE S.
2014-01-01
Objective Low bone density and osteoporosis prevalence, while well-documented in wealthy nations, are poorly studied in rural, non-clinical contexts in economically-developing regions such as Latin America. This study contributes preliminary osteoporosis risk data for a rural Colono (mestizo) population from Amazonian Ecuador. Methods Anthropometrics were collected for 119 adult participants (74 females, 45 males [50–90 years old]). Heel bone density and T-scores were recorded using calcaneal ultrasonometry Results Approximately 33.6% of the participants had low bone density and were at high-risk for osteoporosis. Four times as many females as males were considered high-risk. Consistent with epidemiological literature, advancing age was significantly associated with lower bone density values (p=0.001). Conclusions Low bone density and osteoporosis prevalence are expected to increase in this and other economically-transitioning populations, yet infrastructure to monitor this changing epidemiological landscape is almost non-existent. Human biologists are uniquely positioned to contribute data from remote populations, a critical step towards initiating increased resource allocation for diagnosis and prevention. PMID:25242164
High-density marker imputation accuracy in sixteen French cattle breeds.
Hozé, Chris; Fouilloux, Marie-Noëlle; Venot, Eric; Guillaume, François; Dassonneville, Romain; Fritz, Sébastien; Ducrocq, Vincent; Phocas, Florence; Boichard, Didier; Croiseau, Pascal
2013-09-03
Genotyping with the medium-density Bovine SNP50 BeadChip® (50K) is now standard in cattle. The high-density BovineHD BeadChip®, which contains 777,609 single nucleotide polymorphisms (SNPs), was developed in 2010. Increasing marker density increases the level of linkage disequilibrium between quantitative trait loci (QTL) and SNPs and the accuracy of QTL localization and genomic selection. However, re-genotyping all animals with the high-density chip is not economically feasible. An alternative strategy is to genotype part of the animals with the high-density chip and to impute high-density genotypes for animals already genotyped with the 50K chip. Thus, it is necessary to investigate the error rate when imputing from the 50K to the high-density chip. Five thousand one hundred and fifty three animals from 16 breeds (89 to 788 per breed) were genotyped with the high-density chip. Imputation error rates from the 50K to the high-density chip were computed for each breed with a validation set that included the 20% youngest animals. Marker genotypes were masked for animals in the validation population in order to mimic 50K genotypes. Imputation was carried out using the Beagle 3.3.0 software. Mean allele imputation error rates ranged from 0.31% to 2.41% depending on the breed. In total, 1980 SNPs had high imputation error rates in several breeds, which is probably due to genome assembly errors, and we recommend to discard these in future studies. Differences in imputation accuracy between breeds were related to the high-density-genotyped sample size and to the genetic relationship between reference and validation populations, whereas differences in effective population size and level of linkage disequilibrium showed limited effects. Accordingly, imputation accuracy was higher in breeds with large populations and in dairy breeds than in beef breeds. More than 99% of the alleles were correctly imputed if more than 300 animals were genotyped at high-density. No improvement was observed when multi-breed imputation was performed. In all breeds, imputation accuracy was higher than 97%, which indicates that imputation to the high-density chip was accurate. Imputation accuracy depends mainly on the size of the reference population and the relationship between reference and target populations.
High-density marker imputation accuracy in sixteen French cattle breeds
2013-01-01
Background Genotyping with the medium-density Bovine SNP50 BeadChip® (50K) is now standard in cattle. The high-density BovineHD BeadChip®, which contains 777 609 single nucleotide polymorphisms (SNPs), was developed in 2010. Increasing marker density increases the level of linkage disequilibrium between quantitative trait loci (QTL) and SNPs and the accuracy of QTL localization and genomic selection. However, re-genotyping all animals with the high-density chip is not economically feasible. An alternative strategy is to genotype part of the animals with the high-density chip and to impute high-density genotypes for animals already genotyped with the 50K chip. Thus, it is necessary to investigate the error rate when imputing from the 50K to the high-density chip. Methods Five thousand one hundred and fifty three animals from 16 breeds (89 to 788 per breed) were genotyped with the high-density chip. Imputation error rates from the 50K to the high-density chip were computed for each breed with a validation set that included the 20% youngest animals. Marker genotypes were masked for animals in the validation population in order to mimic 50K genotypes. Imputation was carried out using the Beagle 3.3.0 software. Results Mean allele imputation error rates ranged from 0.31% to 2.41% depending on the breed. In total, 1980 SNPs had high imputation error rates in several breeds, which is probably due to genome assembly errors, and we recommend to discard these in future studies. Differences in imputation accuracy between breeds were related to the high-density-genotyped sample size and to the genetic relationship between reference and validation populations, whereas differences in effective population size and level of linkage disequilibrium showed limited effects. Accordingly, imputation accuracy was higher in breeds with large populations and in dairy breeds than in beef breeds. More than 99% of the alleles were correctly imputed if more than 300 animals were genotyped at high-density. No improvement was observed when multi-breed imputation was performed. Conclusion In all breeds, imputation accuracy was higher than 97%, which indicates that imputation to the high-density chip was accurate. Imputation accuracy depends mainly on the size of the reference population and the relationship between reference and target populations. PMID:24004563
Miller, Tom E X
2007-07-01
1. It is widely accepted that density-dependent processes play an important role in most natural populations. However, persistent challenges in our understanding of density-dependent population dynamics include evaluating the shape of the relationship between density and demographic rates (linear, concave, convex), and identifying extrinsic factors that can mediate this relationship. 2. I studied the population dynamics of the cactus bug Narnia pallidicornis on host plants (Opuntia imbricata) that varied naturally in relative reproductive effort (RRE, the proportion of meristems allocated to reproduction), an important plant quality trait. I manipulated per-plant cactus bug densities, quantified subsequent dynamics, and fit stage-structured models to the experimental data to ask if and how density influences demographic parameters. 3. In the field experiment, I found that populations with variable starting densities quickly converged upon similar growth trajectories. In the model-fitting analyses, the data strongly supported a model that defined the juvenile cactus bug retention parameter (joint probability of surviving and not dispersing) as a nonlinear decreasing function of density. The estimated shape of this relationship shifted from concave to convex with increasing host-plant RRE. 4. The results demonstrate that host-plant traits are critical sources of variation in the strength and shape of density dependence in insects, and highlight the utility of integrated experimental-theoretical approaches for identifying processes underlying patterns of change in natural populations.
Evidence-based control of canine rabies: a critical review of population density reduction.
Morters, Michelle K; Restif, Olivier; Hampson, Katie; Cleaveland, Sarah; Wood, James L N; Conlan, Andrew J K
2013-01-01
Control measures for canine rabies include vaccination and reducing population density through culling or sterilization. Despite the evidence that culling fails to control canine rabies, efforts to reduce canine population density continue in many parts of the world. The rationale for reducing population density is that rabies transmission is density-dependent, with disease incidence increasing directly with host density. This may be based, in part, on an incomplete interpretation of historical field data for wildlife, with important implications for disease control in dog populations. Here, we examine historical and more recent field data, in the context of host ecology and epidemic theory, to understand better the role of density in rabies transmission and the reasons why culling fails to control rabies. We conclude that the relationship between host density, disease incidence and other factors is complex and may differ between species. This highlights the difficulties of interpreting field data and the constraints of extrapolations between species, particularly in terms of control policies. We also propose that the complex interactions between dogs and people may render culling of free-roaming dogs ineffective irrespective of the relationship between host density and disease incidence. We conclude that vaccination is the most effective means to control rabies in all species. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Population Dynamics of Belonolaimus longicaudatusin a Cotton Production System
Crow, W. T.; Weingartner, D. P.; McSorley, R.; Dickson, D. W.
2000-01-01
Belonolaimus longicaudatus is a recognized pathogen of cotton (Gossypium hirsutum), but insufficient information is available on the population dynamics and economic thresholds of B. longicaudatus in cotton production. In this study, data collected from a field in Florida were used to develop models predicting population increases of B. longicaudatus on cotton and population declines under clean fallow. Population densities of B. longicaudatus increased on cotton, reaching a carrying capacity of 139 nematodes/130 cm³ of soil, but decreased exponentially during periods of bare fallow. The model indicated that population densities should decrease each year of monocropped cotton, if an alternate host is not present between sequential cotton crops. Economic thresholds derived from published damage functions and current prices for cotton and nematicides varied from 2 to 5 B. longicaudatus/130 cm³ of soil, depending on the nematicide used. PMID:19270968
Island Economic Vulnerability to Natural Disasters—the case of Changdao
NASA Astrophysics Data System (ADS)
Zhang, Z.
2016-12-01
The paper take Changdao County as sample to analyze differentiated impacts of natural disasters on island counties. The result shows that under increased population densities, small islands quickly face binding size limitations and suffer diminished per-capita resources from sustained population increases. The isolated, high-risk geography of small islands exacerbate the scale of a natural disaster shock, rendering many risk-pooling local mechanisms ineffective; disaster assistance flows were also shown to be ineffective in this study. In an environment of increasing weather hazards and resources at risk, it is imperative to understand the determinants of natural disaster vulnerability towards future loss mitigation. Importantly, disaster-thwarting polices must consider perverse implications of economic development measures, such as per-capita income, and infrastructure investments interacting with increased population densities.
Dey, Snigdhadip; Bose, Joy; Joshi, Amitabh
2012-05-01
Density-dependent selection is expected to lead to population stability, especially if r and K tradeoff. Yet, there is no empirical evidence of adaptation to crowding leading to the evolution of stability. We show that populations of Drosophila ananassae selected for adaptation to larval crowding have higher K and lower r, and evolve greater stability than controls. We also show that increased population growth rates at high density can enhance stability, even in the absence of a decrease in r, by ensuring that the crowding adapted populations do not fall to very low sizes. We discuss our results in the context of traits known to have diverged between the selected and control populations, and compare our results with previous work on the evolution of stability in D. melanogaster. Overall, our results suggest that density-dependent selection may be an important factor promoting the evolution of relatively stable dynamics in natural populations.
Vincenzi, Simone; Crivelli, Alain J; Jesensek, Dusan; De Leo, Giulio A
2008-06-01
Theoretical and empirical models of populations dynamics have paid little attention to the implications of density-dependent individual growth on the persistence and regulation of small freshwater salmonid populations. We have therefore designed a study aimed at testing our hypothesis that density-dependent individual growth is a process that enhances population recovery and reduces extinction risk in salmonid populations in a variable environment subject to disturbance events. This hypothesis was tested in two newly introduced marble trout (Salmo marmoratus) populations living in Slovenian streams (Zakojska and Gorska) subject to severe autumn floods. We developed a discrete-time stochastic individual-based model of population dynamics for each population with demographic parameters and compensatory responses tightly calibrated on data from individually tagged marble trout. The occurrence of severe flood events causing population collapses was explicitly accounted for in the model. We used the model in a population viability analysis setting to estimate the quasi-extinction risk and demographic indexes of the two marble trout populations when individual growth was density-dependent. We ran a set of simulations in which the effect of floods on population abundance was explicitly accounted for and another set of simulations in which flood events were not included in the model. These simulation results were compared with those of scenarios in which individual growth was modelled with density-independent Von Bertalanffy growth curves. Our results show how density-dependent individual growth may confer remarkable resilience to marble trout populations in case of major flood events. The resilience to flood events shown by the simulation results can be explained by the increase in size-dependent fecundity as a consequence of the drop in population size after a severe flood, which allows the population to quickly recover to the pre-event conditions. Our results suggest that density-dependent individual growth plays a potentially powerful role in the persistence of freshwater salmonids living in streams subject to recurrent yet unpredictable flood events.
Sink populations in carnivore management: cougar demography and immigration in a hunted population.
Robinson, Hugh S; Wielgus, Robert B; Cooley, Hilary S; Cooley, Skye W
2008-06-01
Carnivores are widely hunted for both sport and population control, especially where they conflict with human interests. It is widely believed that sport hunting is effective in reducing carnivore populations and related human-carnivore conflicts, while maintaining viable populations. However, the way in which carnivore populations respond to harvest can vary greatly depending on their social structure, reproductive strategies, and dispersal patterns. For example, hunted cougar (Puma concolor) populations have shown a great degree of resiliency. Although hunting cougars on a broad geographic scale (> 2000 km2) has reduced densities, hunting of smaller areas (i.e., game management units, < 1000 km2), could conceivably fail because of increased immigration from adjacent source areas. We monitored a heavily hunted population from 2001 to 2006 to test for the effects of hunting at a small scale (< 1000 km2) and to gauge whether population control was achieved (lambda < or = 1.0) or if hunting losses were negated by increased immigration allowing the population to remain stable or increase (lambda > or = 1.0). The observed growth rate of 1.00 was significantly higher than our predicted survival/fecundity growth rates (using a Leslie matrix) of 0.89 (deterministic) and 0.84 (stochastic), with the difference representing an 11-16% annual immigration rate. We observed no decline in density of the total population or the adult population, but a significant decrease in the average age of independent males. We found that the male component of the population was increasing (observed male population growth rate, lambda(OM) = 1.09), masking a decrease in the female component (lambda(OF) = 0.91). Our data support the compensatory immigration sink hypothesis; cougar removal in small game management areas (< 1000 km2) increased immigration and recruitment of younger animals from adjacent areas, resulting in little or no reduction in local cougar densities and a shift in population structure toward younger animals. Hunting in high-quality habitats may create an attractive sink, leading to misinterpretation of population trends and masking population declines in the sink and surrounding source areas.
Heymann, R; Weitmann, K; Weiss, S; Thierfelder, D; Flessa, S; Hoffmann, W
2009-07-01
This study examines and compares the frequency of home visits by general practitioners in regions with a lower population density and regions with a higher population density. The discussion centres on the hypothesis whether the number of home visits in rural and remote areas with a low population density is, in fact, higher than in urbanised areas with a higher population density. The average age of the population has been considered in both cases. The communities of Mecklenburg West-Pomerania were aggregated into postal code regions. The analysis is based on these postal code regions. The average frequency of home visits per 100 inhabitants/km2 has been calculated via a bivariate, linear regression model with the population density and the average age for the postal code region as independent variables. The results are based on billing data of the year 2006 as provided by the Association of Statutory Health Insurance Physicians of Mecklenburg-Western Pomerania. In a second step a variable which clustered the postal codes of urbanised areas was added to a multivariate model. The hypothesis of a negative correlation between the frequency of home visits and the population density of the areas examined cannot be confirmed for Mecklenburg-Western Pomerania. Following the dichotomisation of the postal code regions into sparsely and densely populated areas, only the very sparsely populated postal code regions (less than 100 inhabitants/km2) show a tendency towards a higher frequency of home visits. Overall, the frequency of home visits in sparsely populated postal code regions is 28.9% higher than in the densely populated postal code regions (more than 100 inhabitants/km2), although the number of general practitioners is approximately the same in both groups. In part this association seems to be confirmed by a positive correlation between the average age in the individual postal code regions and the number of home visits carried out in the area. As calculated on the basis of the data at hand, only the very sparsely populated areas with a still gradually decreasing population show a tendency towards a higher frequency of home visits. According to the data of 2006, the number of home visits remains high in sparsely populated areas. It may increase in the near future as the number of general practitioners in these areas will gradually decrease while the number of immobile and older inhabitants will increase.
Hixson, Mark; Mahmud, Abdullah; Hu, Jianlin; Kleeman, Michael J
2012-05-01
The effectiveness of emissions control programs designed to reduce concentrations of airborne particulate matter with an aerodynamic diameter < 2.5 microm (PM2.5) in California's San Joaquin Valley was studied in the year 2030 under three growth scenarios: low, medium, and high population density. Base-case inventories for each choice of population density were created using a coupled emissions modeling system that simultaneously considered interactions between land use and transportation, area source, and point source emissions. The ambient PM2.5 response to each combination of population density and emissions control was evaluated using a regional chemical transport model over a 3-week winter stagnation episode. Comparisons between scenarios were based on regional average and population-weighted PM2.5 concentrations. In the absence of any emissions control program, population-weighted concentrations of PM2.5 in the future San Joaquin Valley are lowest undergrowth scenarios that emphasize low population density. A complete ban on wood burning and a 90% reduction in emissions from food cooking operations and diesel engines must occur before medium- to high-density growth scenarios result in lower population-weighted concentrations of PM2.5. These trends partly reflect the fact that existing downtown urban cores that naturally act as anchor points for new high-density growth in the San Joaquin Valley are located close to major transportation corridors for goods movement. Adding growth buffers around transportation corridors had little impact in the current analysis, since the 8-km resolution of the chemical transport model already provided an artificial buffer around major emissions sources. Assuming that future emissions controls will greatly reduce or eliminate emissions from residential wood burning, food cooking, and diesel engines, the 2030 growth scenario using "as-planned" (medium) population density achieves the lowest population-weighted average PM2.5 concentration in the future San Joaquin Valley during a severe winter stagnation event. The San Joaquin Valley is one of the most heavily polluted air basins in the United States that are projected to experience strong population growth in the coming decades. The best plan to improve air quality in the region combines medium- or high-density population growth with rigorous emissions controls. In the absences of controls, high-density growth leads to increased population exposure to PM2.5 compared with low-density growth scenarios (urban sprawl).
Increasing leaf vein density by mutagenesis: laying the foundations for C4 rice.
Feldman, Aryo B; Murchie, Erik H; Leung, Hei; Baraoidan, Marietta; Coe, Robert; Yu, Su-May; Lo, Shuen-Fang; Quick, William P
2014-01-01
A high leaf vein density is both an essential feature of C4 photosynthesis and a foundation trait to C4 evolution, ensuring the optimal proportion and proximity of mesophyll and bundle sheath cells for permitting the rapid exchange of photosynthates. Two rice mutant populations, a deletion mutant library with a cv. IR64 background (12,470 lines) and a T-DNA insertion mutant library with a cv. Tainung 67 background (10,830 lines), were screened for increases in vein density. A high throughput method with handheld microscopes was developed and its accuracy was supported by more rigorous microscopy analysis. Eight lines with significantly increased leaf vein densities were identified to be used as genetic stock for the global C4 Rice Consortium. The candidate population was shown to include both shared and independent mutations and so more than one gene controlled the high vein density phenotype. The high vein density trait was found to be linked to a narrow leaf width trait but the linkage was incomplete. The more genetically robust narrow leaf width trait was proposed to be used as a reliable phenotypic marker for finding high vein density variants in rice in future screens.
Kanamori, Tomoko; Kuze, Noko; Bernard, Henry; Malim, Titol Peter; Kohshima, Shiro
2017-01-01
We investigated the population density of Bornean orangutans (Pongo pygmaeus morio) and fruit availability for 10 years (2005-2014), in primary lowland dipterocarp forests in the Danum Valley, Sabah, Malaysia. During the research period, two mast fruitings and three other peak fruiting events of different scales occurred in the study area. The orangutan population density, estimated every 2 months by the marked nest count method, changed between 0.3 and 4.4 ind/km 2 and the mean population density was 1.3 ind/km 2 ± SE 0.1 (n = 56). The population density increased markedly during mast and peak fruiting periods. A significant positive correlation was observed between the population density and fruit availability in the study period (Spearman, R = 0.3, P < 0.01, n = 56). During non-fruiting periods, however, no significant correlation was observed between them. These results suggest that the spatial difference in fruit availability during mast and peak fruiting periods was larger than during non-fruiting periods, and many orangutans temporarily moved to the study site from the surrounding areas seeking fruit.
Sæther, Bernt-Erik; Visser, Marcel E; Grøtan, Vidar; Engen, Steinar
2016-04-27
Understanding the variation in selection pressure on key life-history traits is crucial in our rapidly changing world. Density is rarely considered as a selective agent. To study its importance, we partition phenotypic selection in fluctuating environments into components representing the population growth rate at low densities and the strength of density dependence, using a new stochastic modelling framework. We analysed the number of eggs laid per season in a small song-bird, the great tit, and found balancing selection favouring large clutch sizes at small population densities and smaller clutches in years with large populations. A significant interaction between clutch size and population size in the regression for the Malthusian fitness reveals that those females producing large clutch sizes at small population sizes also are those that show the strongest reduction in fitness when population size is increased. This provides empirical support for ongoing r- and K-selection in this population, favouring phenotypes with large growth rates r at small population sizes and phenotypes with high competitive skills when populations are close to the carrying capacity K This selection causes long-term fluctuations around a stable mean clutch size caused by variation in population size, implying that r- and K-selection is an important mechanism influencing phenotypic evolution in fluctuating environments. This provides a general link between ecological dynamics and evolutionary processes, operating through a joint influence of density dependence and environmental stochasticity on fluctuations in population size. © 2016 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, R.R.; Paul, H.G.
1996-09-01
Larval densities of the western spruce budworm (Choristoneura occidentalis Freeman) were monitored for 12 years (1984-95) on permanent sample plots in northeastern Oregon. The time series spanned a period of general budworm infestations when populations increased rapidly from low densities, plateaued for a time at high-outbreak densities, and then declind suddenly. Midway through the period (1988), an area with half of the sample plots was sprayed with the microbial insecticide Bacillus thuringiensis (B.t.) in an operational suppression project. The other sample plots were part of an untreated area. In the treated area, B.t. spray reduced numbers of larvae by moremore » than 90 percent; however, populations returned to an outbreak density within 3 years. In the untreated area, populations remained at outbreak densities and continued to fluctuate due to natural feedback processes. Natural decline of the population (1992-95) in the monitored area was largely unexplained and coincided with an overall collapse of the budworm outbreak in the Blue Mountains.« less
NASA Technical Reports Server (NTRS)
Kessler, Donald J.
1988-01-01
The probable amount, sizes, and relative velocities of debris are discussed, giving examples of the damage caused by debris, and focusing on the use of mathematical models to forecast the debris environment and solar activity now and in the future. Most debris are within 2,000 km of the earth's surface. The average velocity of spacecraft-debris collisions varies from 9 km/sec at 30 degrees of inclination to 13 km/sec near polar orbits. Mathematical models predict a 5 percent per year increase in the large-fragment population, producing a small-fragment population increase of 10 percent per year until the year 2060, the time of critical density. A 10 percent increase in the large population would cause the critical density to be reached around 2025.
Camera traps and activity signs to estimate wild boar density and derive abundance indices.
Massei, Giovanna; Coats, Julia; Lambert, Mark Simon; Pietravalle, Stephane; Gill, Robin; Cowan, Dave
2018-04-01
Populations of wild boar and feral pigs are increasing worldwide, in parallel with their significant environmental and economic impact. Reliable methods of monitoring trends and estimating abundance are needed to measure the effects of interventions on population size. The main aims of this study, carried out in five English woodlands were: (i) to compare wild boar abundance indices obtained from camera trap surveys and from activity signs; and (ii) to assess the precision of density estimates in relation to different densities of camera traps. For each woodland, we calculated a passive activity index (PAI) based on camera trap surveys, rooting activity and wild boar trails on transects, and estimated absolute densities based on camera trap surveys. PAIs obtained using different methods showed similar patterns. We found significant between-year differences in abundance of wild boar using PAIs based on camera trap surveys and on trails on transects, but not on signs of rooting on transects. The density of wild boar from camera trap surveys varied between 0.7 and 7 animals/km 2 . Increasing the density of camera traps above nine per km 2 did not increase the precision of the estimate of wild boar density. PAIs based on number of wild boar trails and on camera trap data appear to be more sensitive to changes in population size than PAIs based on signs of rooting. For wild boar densities similar to those recorded in this study, nine camera traps per km 2 are sufficient to estimate the mean density of wild boar. © 2017 Crown copyright. Pest Management Science © 2017 Society of Chemical Industry. © 2017 Crown copyright. Pest Management Science © 2017 Society of Chemical Industry.
Ramesh, Tharmalingam; Kalle, Riddhika; Rosenlund, Havard; Downs, Colleen T
2017-03-01
Identifying the primary causes affecting population densities and distribution of flagship species are necessary in developing sustainable management strategies for large carnivore conservation. We modeled drivers of spatial density of the common leopard ( Panthera pardus ) using a spatially explicit capture-recapture-Bayesian approach to understand their population dynamics in the Maputaland Conservation Unit, South Africa. We camera-trapped leopards in four protected areas (PAs) of varying sizes and disturbance levels covering 198 camera stations. Ours is the first study to explore the effects of poaching level, abundance of prey species (small, medium, and large), competitors (lion Panthera leo and spotted hyenas Crocuta crocuta ), and habitat on the spatial distribution of common leopard density. Twenty-six male and 41 female leopards were individually identified and estimated leopard density ranged from 1.6 ± 0.62/100 km 2 (smallest PA-Ndumo) to 8.4 ± 1.03/100 km 2 (largest PA-western shores). Although dry forest thickets and plantation habitats largely represented the western shores, the plantation areas had extremely low leopard density compared to native forest. We found that leopard density increased in areas when low poaching levels/no poaching was recorded in dry forest thickets and with high abundance of medium-sized prey, but decreased with increasing abundance of lion. Because local leopard populations are vulnerable to extinction, particularly in smaller PAs, the long-term sustainability of leopard populations depend on developing appropriate management strategies that consider a combination of multiple factors to maintain their optimal habitats.
Newman, Amy E M; Edmunds, Nicholas B; Ferraro, Shannon; Heffell, Quentin; Merritt, Gillian M; Pakkala, Jesse J; Schilling, Cory R; Schorno, Sarah
2015-03-15
Conspecific density is widely recognized as an important ecological factor across the animal kingdom; however, the physiological impacts are less thoroughly described. In fact, population density is rarely mentioned as a factor in physiological studies on captive animals and, when it is infrequently addressed, the animals used are reared and housed at densities far above those in nature, making the translation of results from the laboratory to natural systems difficult. We survey the literature to highlight this important ecophysiological gap and bring attention to the possibility that conspecific density prior to experimentation may be a critical factor influencing results. Across three taxa: mammals, birds, and fish, we present evidence from ecology that density influences glucocorticoid levels, immune function, and body condition with the intention of stimulating discussion and increasing consideration of population density in physiology studies. We conclude with several directives to improve the applicability of insights gained in the laboratory to organisms in the natural environment. Copyright © 2015 the American Physiological Society.
Linking vital rates to invasiveness of a perennial herb.
Ramula, Satu
2014-04-01
Invaders generally show better individual performance than non-invaders and, therefore, vital rates (survival, growth, fecundity) could potentially be used to predict species invasiveness outside their native range. Comparative studies have usually correlated vital rates with the invasiveness status of species, while few studies have investigated them in relation to population growth rate. Here, I examined the influence of five vital rates (plant establishment, survival, growth, flowering probability, seed production) and their variability (across geographic regions, habitat types, population sizes and population densities) on population growth rate (λ) using data from 37 populations of an invasive, iteroparous herb (Lupinus polyphyllus) in a part of its invaded range in Finland. Variation in vital rates was often related to habitat type and population density. The performance of the populations varied from declining to rapidly increasing independently of habitat type, population size or population density, but differed between regions. The population growth rate increased linearly with plant establishment, and with the survival and growth of vegetative individuals, while the survival of flowering individuals and annual seed production were not related to λ. The vital rates responsible for rapid population growth varied among populations. These findings highlight the importance of both regional and local conditions to plant population dynamics, demonstrating that individual vital rates do not necessarily correlate with λ. Therefore, to understand the role of individual vital rates in a species ability to invade, it is necessary to quantify their effect on population growth rate.
Specific non-monotonous interactions increase persistence of ecological networks.
Yan, Chuan; Zhang, Zhibin
2014-03-22
The relationship between stability and biodiversity has long been debated in ecology due to opposing empirical observations and theoretical predictions. Species interaction strength is often assumed to be monotonically related to population density, but the effects on stability of ecological networks of non-monotonous interactions that change signs have not been investigated previously. We demonstrate that for four kinds of non-monotonous interactions, shifting signs to negative or neutral interactions at high population density increases persistence (a measure of stability) of ecological networks, while for the other two kinds of non-monotonous interactions shifting signs to positive interactions at high population density decreases persistence of networks. Our results reveal a novel mechanism of network stabilization caused by specific non-monotonous interaction types through either increasing stable equilibrium points or reducing unstable equilibrium points (or both). These specific non-monotonous interactions may be important in maintaining stable and complex ecological networks, as well as other networks such as genes, neurons, the internet and human societies.
NASA Astrophysics Data System (ADS)
Li, Chen; Niu, Cuijuan
2015-03-01
Sexual reproduction adversely affects the population growth of cyclic parthenogenetic animals. The density-dependent sexual reproduction of a superior competitor could mediate the coexistence. However, the cost of sex may make the inferior competitor more vulnerable. To investigate the effect of sexual reproduction on the inferior competitor, we experimentally paired the competition of one Brachionus angularis clone against three Brachionus calyciflorus clones. One of the B. calyciflorus clones showed a low propensity for sexual reproduction, while the other two showed high propensities. The results show that all B. calyciflorus clones were excluded in the competition for resources at low food level. The increased food level promoted the competition persistence, but the clones did not show a clear pattern. Both the cumulative population density and resting egg production increased with the food level. The cumulative population density decreased with the mixis investment, while the resting egg production increased with the mixis investment. A trade-off between the population growth and sexual reproduction was observed in this research. The results indicate that although higher mixis investment resulted in a lower population density, it would not determinately accelerate the exclusion process of the inferior competitor. On the contrary, higher mixis investment promoted resting egg production before being excluded and thus promised a long-term benefit. In conclusion, our results suggest that mixis investment, to some extent, favored the excluded inferior competitor under fierce competition or some other adverse conditions.
Kiffney, P.M.; Pess, G.R.; Anderson, J.H.; Faulds, P.; Burton, Kenneth; Riley, S.C.
2009-01-01
Migration barriers are a major reason for species loss and population decline of freshwater organisms. Significant efforts have been made to remove or provide passage around these barriers; however, our understanding of the ecological effects of these efforts is minimal. Installation of a fish passage facility at the Landsburg Dam, WA, USA provided migratory fish access to habitat from which they had been excluded for over 100 years. Relying on voluntary recruitment, we examined the effectiveness of this facility in restoring coho (Oncorhynchus kisutch) salmon populations above the diversion, and whether reintroduction of native anadromous species affected the distribution and abundance of resident trout (O. mykiss and O. clarki). Before the ladder, late summer total salmonid (trout only) density increased with distance from the dam. This pattern was reversed after the ladder was opened, as total salmonid density (salmon {thorn} trout) approximately doubled in the three reaches closest to the dam. These changes were primarily due to the addition of coho, but small trout density also increased in lower reaches and decreased in upper reaches. A nearby source population, dispersal by adults and juveniles, low density of resident trout and high quality habitat above the barrier likely promoted rapid colonization of targeted species. Our results suggest that barrier removal creates an opportunity for migratory species to re-establish populations leading to range expansion and potentially to increased population size. ?? 2008 John Wiley & Sons, Ltd.
Application of adaptive cluster sampling to low-density populations of freshwater mussels
Smith, D.R.; Villella, R.F.; Lemarie, D.P.
2003-01-01
Freshwater mussels appear to be promising candidates for adaptive cluster sampling because they are benthic macroinvertebrates that cluster spatially and are frequently found at low densities. We applied adaptive cluster sampling to estimate density of freshwater mussels at 24 sites along the Cacapon River, WV, where a preliminary timed search indicated that mussels were present at low density. Adaptive cluster sampling increased yield of individual mussels and detection of uncommon species; however, it did not improve precision of density estimates. Because finding uncommon species, collecting individuals of those species, and estimating their densities are important conservation activities, additional research is warranted on application of adaptive cluster sampling to freshwater mussels. However, at this time we do not recommend routine application of adaptive cluster sampling to freshwater mussel populations. The ultimate, and currently unanswered, question is how to tell when adaptive cluster sampling should be used, i.e., when is a population sufficiently rare and clustered for adaptive cluster sampling to be efficient and practical? A cost-effective procedure needs to be developed to identify biological populations for which adaptive cluster sampling is appropriate.
Van Eldere, Johan; Mera, Robertino M; Miller, Linda A; Poupard, James A; Amrine-Madsen, Heather
2007-10-01
We investigated the impact of the usage of antibiotics in ambulatory patients in Belgium in 147 defined geographical circumscriptions and at the individual isolate level. The study included 14,448 Streptococcus pneumoniae strains collected by the Belgium national reference lab from 1994 to 2004. Additional risk factors for resistance, such as population density/structure and day care attendance, were investigated for the same time-space window. A statistical model that included resistance to two or more antimicrobial classes offered the best fit for measuring the changes in nonsusceptibility to penicillin, macrolides, and tetracycline over time and place in Belgium. Analysis at the geographic level identified antimicrobial consumption with a 1-year lag (0.5% increase per additional defined daily dose) and population density as independent predictors of multiple resistance. Independent risk factors at the isolate level were age (odds ratio [OR], 1.55 for children aged <5 years), population density (7% increase in multiple resistance per 100 inhabitants/km(2)), conjugate 7-valent vaccine serotype (OR, 14.3), location (OR, 1.55 for regions bordering high-resistance France), and isolate source (OR, 1.54 for ear isolates). The expansion of multiple-resistant strains explains most of the overall twofold increase and subsequent decrease in single antimicrobial resistance between 1994 and 2004. We conclude that factors in addition to antibiotic use, such as high population density and proximity to high-resistance regions, favor multiple resistance. Regional resistance rates are not linearly related to actual antibiotic use but are linked to past antibiotic use plus a combination of demographic and geographic factors.
Nicolas, Xavier; Djebli, Nassim; Rauch, Clémence; Brunet, Aurélie; Hurbin, Fabrice; Martinez, Jean-Marie; Fabre, David
2018-05-03
Alirocumab, a human monoclonal antibody against proprotein convertase subtilisin/kexin type 9 (PCSK9), significantly lowers low-density lipoprotein cholesterol levels. This analysis aimed to develop and qualify a population pharmacokinetic/pharmacodynamic model for alirocumab based on pooled data obtained from 13 phase I/II/III clinical trials. From a dataset of 2799 individuals (14,346 low-density lipoprotein-cholesterol values), individual pharmacokinetic parameters from the population pharmacokinetic model presented in Part I of this series were used to estimate alirocumab concentrations. As a second step, we then developed the current population pharmacokinetic/pharmacodynamic model using an indirect response model with a Hill coefficient, parameterized with increasing low-density lipoprotein cholesterol elimination, to relate alirocumab concentrations to low-density lipoprotein cholesterol values. The population pharmacokinetic/pharmacodynamic model allowed the characterization of the pharmacokinetic/pharmacodynamic properties of alirocumab in the target population and estimation of individual low-density lipoprotein cholesterol levels and derived pharmacodynamic parameters (the maximum decrease in low-density lipoprotein cholesterol values from baseline and the difference between baseline low-density lipoprotein cholesterol and the pre-dose value before the next alirocumab dose). Significant parameter-covariate relationships were retained in the model, with a total of ten covariates (sex, age, weight, free baseline PCSK9, total time-varying PCSK9, concomitant statin administration, total baseline PCSK9, co-administration of high-dose statins, disease status) included in the final population pharmacokinetic/pharmacodynamic model to explain between-subject variability. Nevertheless, the high number of covariates included in the model did not have a clinically meaningful impact on model-derived pharmacodynamic parameters. This model successfully allowed the characterization of the population pharmacokinetic/pharmacodynamic properties of alirocumab in its target population and the estimation of individual low-density lipoprotein cholesterol levels.
Good, J M; Murphy, W S; Brodie, B B
1973-04-01
During a 6-year study of 1-, 2-, and 3-year crop rotations, population densities of Pratylenchus brachyurus, Trichodorus christiei, and Meloidogyne incognita were significantly affected by the choice of crops but not by length of crop rotation. The density of P. brachyurus and T. christiei increased rapidly on milo (Sorghum vulgate). In addition, populations of P. brachyurus increased significantly in cropping systems that involved crotalaria (C. rnucronata), millet (Setaria italica), and sudangrass (Sorghum sudanense). Lowest numbers of P. brachyurus occurred where okra (Hibiscus esculentus) was grown or where land was fallow. The largest increase in populations of T. christiei occurred in cropping systems that involved millet, sudangrass, and okra whereas the smallest increase occurred in cropping systems that involved crotalaria or fallow. A winter cover of rye (Secale cereale) had no distinguishable effect on population densities of P. brachyurus or T. christiei. Meloidogyne incognita was detected during the fourth year in both newly cleared and old agricultural land when okra was included in the cropping system. Detectable populations of M. incognita did not develop in any of the other cropping systems. Yields of tomato transplants were higher on the newly cleared land than on the old land. Highest yields were obtained when crotalaria was included in the cropping system. Lowest yields were obtained when milo, or fallow were included in the cropping system. Length of rotation had no distinguishable effect on yields of tomato transplants.
Population Growth and a Sustainable Environment.
ERIC Educational Resources Information Center
Mortimore, Michael; Tiffen, Mary
1994-01-01
Provides a history of farming practices in a densely populated area of Kenya where a recent study of the resource management practices showed positive, not negative, influences of increasing population density on both environmental conservation and productivity. (LZ)
Density effect on great tit (Parus major) clutch size intensifies in a polluted environment.
Eeva, Tapio; Lehikoinen, Esa
2013-12-01
Long-term data on a great tit (Parus major) population breeding in a metal-polluted zone around a copper-nickel smelter indicate that, against expectations, the clutch size of this species is decreasing even though metal emissions in the area have decreased considerably over the past two decades. Here, we document long-term population-level changes in the clutch size of P. major and explore if changes in population density, population numbers of competing species, timing of breeding, breeding habitat, or female age distribution can explain decreasing clutch sizes. Clutch size of P. major decreased by one egg in the polluted zone during the past 21 years, while there was no significant change in clutch size in the unpolluted reference zone over this time period. Density of P. major nests was similar in both environments but increased threefold during the study period in both areas (from 0.8 to 2.4 nest/ha). In the polluted zone, clutch size has decreased as a response to a considerable increase in population density, while a corresponding density change in the unpolluted zone did not have such an effect. The other factors studied did not explain the clutch size trend. Fledgling numbers in the polluted environment have been relatively low since the beginning of the study period, and they do not show a corresponding decrease to that noted for the clutch size over the same time period. Our study shows that responses of commonly measured life-history parameters to anthropogenic pollution depend on the structure of the breeding population. Interactions between pollution and intrinsic population characters should therefore be taken into account in environmental studies.
Trends in snag populations in Northern Arizona mixed-conifer and ponderosa pine forests, 1997-2012
J. L. Ganey; S. C. Vojta
2014-01-01
We monitored snag populations in drought-stressed mixed-conifer and ponderosa pine (Pinus ponderosa) forests, northern Arizona, at 5-yr intervals from 1997-2012. Snag density increased from 1997-2007 in both forest types, with accelerated change due to drought-related tree mortality during the period 2002-2007. Snag density declined non-significantly from 2007-2012,...
Madsen, Henry; Stauffer, Jay R
2011-06-01
From the mid-1980s, we recorded a significant increase in urinary schistosomiasis infection rate and transmission among inhabitants of lakeshore communities in the southern part of Lake Malaŵi, particularly on Nankumba peninsula in Mangochi District. We suggested that the increase was due to over-fishing, which reduced the density of snail-eating fishes, thereby allowing schistosome intermediate host snails to increase to higher densities. In this article, we collected data to test this hypothesis. The density of both Bulinus nyassanus, the intermediate host of Schistosoma haematobium, and Melanoides spp. was negatively related to density of Trematocranus placodon, the most common of the snail-eating fishes in the shallow water of Lake Malaŵi. Both these snails are consumed by T. placodon. Transmission of S. haematobium through B. nyassanus only occurs in the southern part of the lake and only at villages where high density of the intermediate host is found relatively close to the shore. Thus, we believe that implementation of an effective fish ban up to 100-m offshore along these specific shorelines in front of villages would allow populations of T. placodon to increase in density and this would lead to reduced density of B. nyassanus and possibly schistosome transmission. To reduce dependence on natural fish populations in the lake and still maintain a source of high quality food, culture of indigenous fishes may be a viable alternative.
Determinants of the Transmission Variation of Hand, Foot and Mouth Disease in China
Li, Xinmin
2016-01-01
Severe outbreaks of hand, foot and mouth disease (HFMD) have occurred in China for decades. Our understanding of the HFMD transmission process and its determinants is still limited. In this paper, factors that affect the local variation of HFMD transmission process were studied. Three classes of factors, including meteorological, demographic and public health intervention factors, were carefully selected and their effects on HFMD transmission were investigated with Pearson’s correlation coefficient and multiple linear regression models. The determining factors for the variation of HFMD transmission were different for the southeastern and the northwestern regions of China. In the northwest, fadeouts occurred yearly, and the average age at infection and the fadeout were negatively correlated with the population density. In the southeast, HFMD transmission was governed by the combined effects of the birth rate, the relative humidity and the interaction of the Health System Performance and the log of the population density. When the Health System Performance was low, HFMD transmission increased with the population density, but when the Health System Performance was high, the better health performance counteracted the transmission increase due to the higher population density. PMID:27701445
NASA Astrophysics Data System (ADS)
Kahn, Amanda S.; Ruhl, Henry A.; Smith, Kenneth L.
2012-12-01
Density and average size of two species of abyssal sponges were analyzed at Station M (∼4100 m depth) over an 18-year time-series (1989-2006) using camera sled transects. Both sponge taxa share a similar plate-like morphology despite being within different families, and both showed similar variations in density and average body size over time, suggesting that the same factors may control the demographics of both species. Peaks in significant cross correlations between increases in particulate organic carbon flux and corresponding increases in sponge density occurred with a time lag of 13 months. Sponge density also fluctuated with changes in two climate indices: the NOI with a time lag of 18 months and NPGO with a time lag of 15 months. The results support previous suggestions that increased particulate organic carbon flux may induce recruitment or regeneration in deep-sea sponges. It is unknown whether the appearance of young individuals results from recruitment, regeneration, or both, but the population responses to seasonal and inter-annual changes in food supply demonstrate that sponge populations are dynamic and are capable of responding to inter-annual changes despite being sessile and presumably slow-growing.
Hypsographic demography: The distribution of human population by altitude
Cohen, Joel E.; Small, Christopher
1998-01-01
The global distribution of the human population by elevation is quantified here. As of 1994, an estimated 1.88 × 109 people, or 33.5% of the world’s population, lived within 100 vertical meters of sea level, but only 15.6% of all inhabited land lies below 100 m elevation. The median person lived at an elevation of 194 m above sea level. Numbers of people decreased faster than exponentially with increasing elevation. The integrated population density (IPD, the number of people divided by the land area) within 100 vertical meters of sea level was significantly larger than that of any other range of elevations and represented far more people. A significant percentage of the low-elevation population lived at moderate population densities rather than at the highest densities of central large cities. Assessments of coastal hazards that focus only on large cities may substantially underestimate the number of people who could be affected. PMID:9826643
Resource selection by black-footed ferrets in South Dakota and Montana
Jachowski, D.S.; Millspaugh, J.J.; Biggins, D.E.; Livieri, T.M.; Matchett, M.R.; Rittenhouse, C.D.
2011-01-01
The black-footed ferret (Mustela nigripes), once extinct in the wild, remains one of the most critically endangered mammals in North America despite 18 years of reintroduction attempts. Because black-footed ferrets are specialized predators of prairie dogs (Cynomys sp.), a better understanding of how black-footed ferrets select resources might provide insight into how best to identify and manage reintroduction sites. We monitored ferret resource selection at two reintroduction sites with different densities of prairie dog populations-one that contained a high density of prairie dogs (Conata Basin, South Dakota) and one that was lower (UL Bend, Montana). We evaluated support for hypotheses about ferret resource selection as related to the distribution of active burrows used by black-tailed prairie dogs (Cynomys ludovicianus), interactions between ferrets, and habitat edge effects. We found support for all three factors within both populations; however, they affected ferret resource selection differently at each site. Ferrets at Conata Basin tended to select areas with high prairie dog burrow density, closer to the colony edge, and that overlapped other ferret ranges. In contrast, ferrets at UL Bend tended not to select areas of high active prairie dog burrow density, avoided areas close to edge habitat, and females avoided areas occupied by other ferrets. The differences observed between the two sites might be best explained by prairie dog densities, which were higher at Conata Basin (119.3 active burrows per ha) than at UL Bend (44.4 active burrows per ha). Given the positive growth of ferret populations at Conata Basin, management that increases the density of prairie dogs might enhance ferret success within natural areas. To achieve long-term recovery of ferrets in the wild, conservationists should increasingly work across and outside natural area boundaries to increase prairie dog populations.
Why are some animal populations unaffected or positively affected by roads?
Rytwinski, Trina; Fahrig, Lenore
2013-11-01
In reviews on effects of roads on animal population abundance we found that most effects are negative; however, there are also many neutral and positive responses [Fahrig and Rytwinski (Ecol Soc 14:21, 2009; Rytwinski and Fahrig (Biol Conserv 147:87-98, 2012)]. Here we use an individual-based simulation model to: (1) confirm predictions from the existing literature of the combinations of species traits and behavioural responses to roads that lead to negative effects of roads on animal population abundance, and (2) improve prediction of the combinations of species traits and behavioural responses to roads that lead to neutral and positive effects of roads on animal population abundance. Simulations represented a typical situation in which road mitigation is contemplated, i.e. rural landscapes containing a relatively low density (up to 1.86 km/km(2)) of high-traffic roads, with continuous habitat between the roads. In these landscapes, the simulations predict that populations of species with small territories and movement ranges, and high reproductive rates, i.e. many small mammals and birds, should not be reduced by roads. Contrary to previous suggestions, the results also predict that populations of species that obtain a resource from roads (e.g. vultures) do not increase with increasing road density. In addition, our simulations support the predation release hypothesis for positive road effects on prey (both small- and large-bodied prey), whereby abundance of a prey species increased with increasing road density due to reduced predation by generalist road-affected predators. The simulations also predict an optimal road density for the large-bodied prey species if it avoids roads or traffic emissions. Overall, the simulation results suggest that in rural landscapes containing high-traffic roads, there are many species for which road mitigation may not be necessary; mitigation efforts should be tailored to the species that show negative population responses to roads.
Emerging landscape degradation trends in the East African Horn
NASA Astrophysics Data System (ADS)
Pricope, N. G.; Michaelsen, J.; Husak, G. J.; Funk, C. C.; Lopez-Carr, D.
2012-12-01
Increasing climate variability along with declining trends in rainfall represent major risk factors affecting food security in many regions of the world. We identify Africa-wide regions where significant rainfall decreases from 1979-2011 are coupled with significant human population density increases. The rangelands of the East African Horn remain one of the world's most food insecure regions with significantly increasing human populations predominantly dependent on pastoralist and agro-pastoralist livelihoods. Widespread vegetation degradation is occurring, adversely impacting fragile ecosystems and human livelihoods. Using MODIS land cover and normalized difference vegetation index (NDVI) data collected since 2000, we observe significant changes in vegetation patterns and productivity over the last decade across the East African Horn and demonstrate that these two products can be used concurrently at large spatial scales to monitor vegetation dynamics at decadal time scales. Results demonstrate that a near doubling of the population in pastoral regions is linked with hotspots of degradation in vegetation condition. The most significant land cover change and browning trends are observed in areas experiencing drying precipitation trends in addition to increasing population pressures. These findings have serious implications for current and future regional food security monitoring and forecasting and for mitigation and adaptation strategies in a region where population is expected to continue increasing against a backdrop of drying climate trends.Fig.1(a)Change in standardized precipitation index in Africa between 1979-2010 (b)Change in population density at continental scale using the GRUMPv1 1990 and 2000 and AfriPop 2010 population density datasets Fig.2 Land cover change trajectories based on 2001-2009 MOD12Q1 Land Cover product for the East African Horn overlaid over aggregated FEWS Net Livelihoods Zones.
Chang, David C; Eastman, Brent; Talamini, Mark A; Osen, Hayley B; Tran Cao, Hop S; Coimbra, Raul
2011-05-01
The concept of surgery and public health has been introduced in recent years, highlighting the impact of surgeons on improving public health outcomes, a relationship that has traditionally been ascribed to general practitioners. The purpose of this study is to quantify the effect of surgeon availability on deaths from motor vehicle crashes (MVC). Retrospective analysis of the Area Resource File from 2006 was performed. The primary outcome variable was the three-year (2001-2003) average in MVC deaths per 1 million population for each county. The primary independent variable was the density of surgeons per 1 million population in year 2003. Multiple linear regression analysis was performed, adjusting for density of general practitioners, urbanicity of the county, and socioeconomic status of the county. A total of 3,225 counties were analyzed. The median number of MVC deaths per million population was 226 (IQR 158-320). The median number of surgeon per million population was 55 (IQR 0-105), while the median number of general practitioners per million population was 424 (IQR 274-620). On unadjusted analysis, each increase of one surgeon per million population was associated with 0.38 fewer MVC deaths per million population (p < 0.001). On multivariate analysis, each increase of one surgeon per million population was significantly associated with 0.16 fewer MVC deaths per million population (p < 0.001). Rural location, persistent poverty, and low educational level were all associated with significant increases in MVC deaths. Higher density of surgeons is associated with significant reduction in deaths from MVCs. This highlights the need for 1) consideration of surgery as primary care and 2) development of inclusive surgical systems designed to provide care commensurate with patients' degree of injury. Copyright © 2011 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Rodríguez-Pastor, Ruth; Escudero, Raquel; Vidal, Dolors; Mougeot, François; Arroyo, Beatriz; Lambin, Xavier; Vila-Coro, Ave Maria; Rodríguez-Moreno, Isabel; Anda, Pedro
2017-01-01
Tularemia in humans in northwestern Spain is associated with increases in vole populations. Prevalence of infection with Francisella tularensis in common voles increased to 33% during a vole population fluctuation. This finding confirms that voles are spillover agents for zoonotic outbreaks. Ecologic interactions associated with tularemia prevention should be considered. PMID:28726608
Silva, Farley W S; Elliot, Simon L
2016-06-01
Temperature and crowding are key environmental factors mediating the transmission and epizooty of infectious disease in ectotherm animals. The host physiology may be altered in a temperature-dependent manner and thus affects the pathogen development and course of diseases within an individual and host population, or the transmission rates (or infectivity) of pathogens shift linearly with the host population density. To our understanding, the knowledge of interactive and synergistic effects of temperature and population density on the host-pathogen system is limited. Here, we tested the interactional effects of these environmental factors on phenotypic plasticity, immune defenses, and disease resistance in the velvetbean caterpillar Anticarsia gemmatalis . Upon egg hatching, caterpillars were reared in thermostat-controlled chambers in a 2 × 4 factorial design: density (1 or 8 caterpillars/pot) and temperature (20, 24, 28, or 32°C). Of the immune defenses assessed, encapsulation response was directly affected by none of the environmental factors; capsule melanization increased with temperature in both lone- and group-reared caterpillars, although the lone-reared ones presented the most evident response, and hemocyte numbers decreased with temperature regardless of the population density. Temperature, but not population density, affected considerably the time from inoculation to death of velvetbean caterpillar. Thus, velvetbean caterpillars succumbed to Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) more quickly at higher temperatures than at lower temperatures. As hypothesized, temperature likely affected caterpillars' movement rates, and thus the contact between conspecifics, which in turn affected the phenotypic expression of group-reared caterpillars. Our results suggest that environmental factors, mainly temperature, strongly affect both the course of disease in velvetbean caterpillar population and its defenses against pathogens. As a soybean pest, velvetbean caterpillar may increase its damage on soybean fields under a scenario of global warming as caterpillars may reach the developmental resistance faster, and thus decrease their susceptibility to biological control by AgMNPV.
Correlates of Harlequin Duck densities during winter in Prince William Sound, Alaska
Esler, Daniel N.; Bowman, Timothy D.; Dean, T.A.; O'Clair, Charles E.; Jewett, S.C.; McDonald, L.L.
2000-01-01
We evaluated relationships of Harlequin Duck (Histrionicus histrionicus) densities to habitat attributes, history of habitat contamination by the 1989 Exxon Valdez oil spill, and prey biomass density and abundance during winters 1995-1997 in Prince William Sound, Alaska. Habitat features that explained variation in duck densities included distance to streams and reefs, degree of exposure to wind and wave action, and dominant substrate type. After accounting for these effects, densities were lower in oiled than unoiled areas, suggesting that population recovery from the oil spill was not complete, due either to lack of recovery from initial oil spill effects or continuing deleterious effects. Prey biomass density and abundance were not strongly related to duck densities after accounting for habitat and area effects. Traits of Harlequin Ducks that reflect their affiliation with naturally predictable winter habitats, such as strong site fidelity and intolerance of increased energy costs, may make their populations particularly vulnerable to chronic oil spill effects and slow to recover from population reductions, which may explain lower densities than expected on oiled areas nearly a decade following the oil spill.
Population status of chimpanzees in the Masito-Ugalla Ecosystem, Tanzania.
Piel, Alex K; Cohen, Naomi; Kamenya, Shadrack; Ndimuligo, Sood A; Pintea, Lilian; Stewart, Fiona A
2015-10-01
More than 75 percent of Tanzania's chimpanzees live at low densities on land outside national parks. Chimpanzees are one of the key conservation targets in the region and long-term monitoring of these populations is essential for assessing the overall status of ecosystem health and the success of implemented conservation strategies. We aimed to assess change in chimpanzee density within the Masito-Ugalla Ecosystem (MUE) by comparing results of re-walking the same line transects in 2007 and 2014. We further used published remote sensing data derived from Landsat satellites to assess forest cover change within a 5 km buffer of these transects over that same period. We detected no statistically significant decline in chimpanzee density across the surveyed areas of MUE between 2007 and 2014, although the overall mean density of chimpanzees declined from 0.09 individuals/km(2) in 2007 to 0.05 individuals/km(2) in 2014. Whether this change is biologically meaningful cannot be determined due to small sample sizes and large, entirely overlapping error margins. It is therefore possible that the MUE chimpanzee population has been stable over this period and indeed in some areas (Issa Valley, Mkanga, Kamkulu) even showed an increase in chimpanzee density. Variation in chimpanzee habitat preference for ranging or nesting could explain variation in density at some of the survey sites between 2007 and 2014. We also found a relationship between increasing habitat loss and lower mean chimpanzee density. Future surveys will need to ensure a larger sample size, broader geographic effort, and random survey design, to more precisely determine trends in MUE chimpanzee density and population size over time. © 2015 Wiley Periodicals, Inc.
Ong, Song-Quan; Ahmad, Hamdan; Jaal, Zairi; Rus, Adanan; Fadzlah, Fadhlina Hazwani Mohd
2017-01-01
Determining the control threshold for a pest is common prior to initiating a pest control program; however, previous studies related to the house fly control threshold for a poultry farm are insufficient for determining such a threshold. This study aimed to predict the population changes of house fly population by comparing the intrinsic rate of increase (r m ) for different house fly densities in a simulated system. This study first defined the knee points of a known population growth curve as a control threshold by comparing the r m of five densities of house flies in a simulated condition. Later, to understand the interactions between the larval and adult populations, the correlation between larval and adult capacity rate (r c ) was studied. The r m values of 300- and 500-fly densities were significantly higher compared with the r m values at densities of 50 and 100 flies. This result indicated their representative indices as candidates for a control threshold. The r c of larval and adult populations were negatively correlated with densities of fewer than 300 flies; this implicated adult populations with fewer than 300 flies as declining while the larval population was growing; therefore, control approaches should focus on the immature stages. The results in the present study suggest a control threshold for house fly populations. Future works should focus on calibrating the threshold indices in field conditions. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Subalpine bumble bee foraging distances and densities in relation to flower availability.
Elliott, Susan E
2009-06-01
Bees feed almost exclusively on nectar and pollen from flowers. However, little is known about how food availability limits bee populations, especially in high elevation areas. Foraging distances and relationships between forager densities and resource availability can provide insights into the potential for food limitation in mobile consumer populations. For example, if floral resources are limited, bee consumers should fly farther to forage, and they should be more abundant in areas with more flowers. I estimated subalpine bumble bee foraging distances by calculating forager recapture probabilities at increasing distances from eight marking locations. I measured forager and flower densities over the flowering season in six half-hectare plots. Because subalpine bumble bees have little time to build their colonies, they may forage over short distances and forager density may not be constrained by flower density. However, late in the season, when floral resources dwindle, foraging distances may increase, and there may be stronger relationships between forager and flower densities. Throughout the flowering season, marked bees were primarily found within 100 m (and never >1,000 m) from their original marking location, suggesting that they typically did not fly far to forage. Although the density of early season foraging queens increased with early-season flower density, the density of mid- and late-season workers and males did not vary with flower density. Short foraging distances and no relationships between mid- and late-season forager and flower densities suggest that high elevation bumble bees may have ample floral resources for colony growth reproduction.
DENSITY-DEPENDENT SELECTION ON CONTINUOUS CHARACTERS: A QUANTITATIVE GENETIC MODEL.
Tanaka, Yoshinari
1996-10-01
A quantitative genetic model of density-dependent selection is presented and analysed with parameter values obtained from laboratory selection experiments conducted by Mueller and his coworkers. The ecological concept of r- and K-selection is formulated in terms of selection gradients on underlying phenotypic characters that influence the density-dependent measure of fitness. Hence the selection gradients on traits are decomposed into two components, one that changes in the direction to increase r, and one that changes in the direction to increase K. The relative importance of the two components is determined by temporal fluctuations in population density. The evolutionary rate of r and K (per-generation changes in r and K due to the genetic responses of the underlying traits) is also formulated. Numerical simulation has shown that with moderate genetic variances of the underlying characters, r and K can evolve rapidly and the evolutionary rate is influenced by synergistic interaction between characters that contribute to r and K. But strong r-selection can occur only with severe and continuous disturbances of populations so that the population density is kept low enough to prevent K-selection. © 1996 The Society for the Study of Evolution.
Dotta, G; Phalan, B; Silva, T W; Green, R; Balmford, A
2016-06-01
Globally, agriculture is the greatest source of threat to biodiversity, through both ongoing conversion of natural habitat and intensification of existing farmland. Land sparing and land sharing have been suggested as alternative approaches to reconcile this threat with the need for land to produce food. To examine which approach holds most promise for grassland species, we examined how bird population densities changed with farm yield (production per unit area) in the Campos of Brazil and Uruguay. We obtained information on biodiversity and crop yields from 24 sites that differed in agricultural yield. Density-yield functions were fitted for 121 bird species to describe the response of population densities to increasing farm yield, measured in terms of both food energy and profit. We categorized individual species according to how their population changed across the yield gradient as being positively or negatively affected by farming and according to whether the species' total population size was greater under land-sparing, land-sharing, or an intermediate strategy. Irrespective of the yield, most species were negatively affected by farming. Increasing yields reduced densities of approximately 80% of bird species. We estimated land sparing would result in larger populations than other sorts of strategies for 67% to 70% of negatively affected species, given current production levels, including three threatened species. This suggests that increasing yields in some areas while reducing grazing to low levels elsewhere may be the best option for bird conservation in these grasslands. Implementing such an approach would require conservation and production policies to be explicitly linked to support yield increases in farmed areas and concurrently guarantee that larger areas of lightly grazed natural grasslands are set aside for conservation. © 2015 Society for Conservation Biology.
Sumatran tiger survival threatened by deforestation despite increasing densities in parks.
Luskin, Matthew Scott; Albert, Wido Rizki; Tobler, Mathias W
2017-12-05
The continuing development of improved capture-recapture (CR) modeling techniques used to study apex predators has also limited robust temporal and cross-site analyses due to different methods employed. We develop an approach to standardize older non-spatial CR and newer spatial CR density estimates and examine trends for critically endangered Sumatran tigers (Panthera tigris sumatrae) using a meta-regression of 17 existing densities and new estimates from our own fieldwork. We find that tiger densities were 47% higher in primary versus degraded forests and, unexpectedly, increased 4.9% per yr from 1996 to 2014, likely indicating a recovery from earlier poaching. However, while tiger numbers may have temporarily risen, the total potential island-wide population declined by 16.6% from 2000 to 2012 due to forest loss and degradation and subpopulations are significantly more fragmented. Thus, despite increasing densities in smaller parks, we conclude that there are only two robust populations left with >30 breeding females, indicating Sumatran tigers still face a high risk of extinction unless deforestation can be controlled.
Veerman, J Lennert; Zapata-Diomedi, Belen; Gunn, Lucy; McCormack, Gavin R; Cobiac, Linda J; Mantilla Herrera, Ana Maria; Giles-Corti, Billie; Shiell, Alan
2016-01-01
Background Studies consistently find that supportive neighbourhood built environments increase physical activity by encouraging walking and cycling. However, evidence on the cost-effectiveness of investing in built environment interventions as a means of promoting physical activity is lacking. In this study, we assess the cost-effectiveness of increasing sidewalk availability as one means of encouraging walking. Methods Using data from the RESIDE study in Perth, Australia, we modelled the cost impact and change in health-adjusted life years (HALYs) of installing additional sidewalks in established neighbourhoods. Estimates of the relationship between sidewalk availability and walking were taken from a previous study. Multistate life table models were used to estimate HALYs associated with changes in walking frequency and duration. Sensitivity analyses were used to explore the impact of variations in population density, discount rates, sidewalk costs and the inclusion of unrelated healthcare costs in added life years. Results Installing and maintaining an additional 10 km of sidewalk in an average neighbourhood with 19 000 adult residents was estimated to cost A$4.2 million over 30 years and gain 24 HALYs over the lifetime of an average neighbourhood adult resident population. The incremental cost-effectiveness ratio was A$176 000/HALY. However, sensitivity results indicated that increasing population densities improves cost-effectiveness. Conclusions In low-density cities such as in Australia, installing sidewalks in established neighbourhoods as a single intervention is unlikely to cost-effectively improve health. Sidewalks must be considered alongside other complementary elements of walkability, such as density, land use mix and street connectivity. Population density is particularly important because at higher densities, more residents are exposed and this improves the cost-effectiveness. Health gain is one of many benefits of enhancing neighbourhood walkability and future studies might consider a more comprehensive assessment of its social value (eg, social cohesion, safety and air quality). PMID:27650762
Neighbourhood walkability, road density and socio-economic status in Sydney, Australia.
Cowie, Christine T; Ding, Ding; Rolfe, Margaret I; Mayne, Darren J; Jalaludin, Bin; Bauman, Adrian; Morgan, Geoffrey G
2016-04-27
Planning and transport agencies play a vital role in influencing the design of townscapes, travel modes and travel behaviors, which in turn impact on the walkability of neighbourhoods and residents' physical activity opportunities. Optimising neighbourhood walkability is desirable in built environments, however, the population health benefits of walkability may be offset by increased exposure to traffic related air pollution. This paper describes the spatial distribution of neighbourhood walkability and weighted road density, a marker for traffic related air pollution, in Sydney, Australia. As exposure to air pollution is related to socio-economic status in some cities, this paper also examines the spatial distribution of weighted road density and walkability by socio-economic status (SES). We calculated walkability, weighted road density (as a measure of traffic related air pollution) and SES, using predefined and validated measures, for 5858 Sydney neighbourhoods, representing 3.6 million population. We overlaid tertiles of walkability and weighted road density to define "sweet-spots" (high walkability-low weighted road density), and "sour- spots" (low walkability-high weighted road density) neighbourhoods. We also examined the distribution of walkability and weighted road density by SES quintiles. Walkability and weighted road density showed a clear east-west gradient across the region. Our study found that only 4 % of Sydney's population lived in sweet-spot" neighbourhoods with high walkability and low weighted road density (desirable), and these tended to be located closer to the city centre. A greater proportion of neighbourhoods had health limiting attributes of high weighted road density or low walkability (about 20 % each), and over 5 % of the population lived in "sour-spot" neighbourhoods with low walkability and high weighted road density (least desirable). These neighbourhoods were more distant from the city centre and scattered more widely. There were no linear trends between walkability/weighted road density and neighbourhood SES. Our walkability and weighted road density maps and associated analyses by SES can help identify neighbourhoods with inequalities in health-promoting or health-limiting environments. Planning agencies should seek out opportunities for increased neighbourhood walkability through improved urban development and transport planning, which simultaneously minimizes exposure to traffic related air pollution.
Ehlers Smith, David A; Ehlers Smith, Yvette C
2013-08-01
Because of the large-scale destruction of Borneo's rainforests on mineral soils, tropical peat-swamp forests (TPSFs) are increasingly essential for conserving remnant biodiversity, particularly in the lowlands where the majority of habitat conversion has occurred. Consequently, effective strategies for biodiversity conservation are required, which rely on accurate population density and distribution estimates as a baseline. We sought to establish the first population density estimates of the endemic red langur (Presbytis rubicunda) in Sabangau TPSF, the largest remaining contiguous lowland forest-block on Borneo. Using Distance sampling principles, we conducted line transect surveys in two of Sabangau's three principle habitat sub-classes and calculated group density at 2.52 groups km⁻² (95% CI 1.56-4.08) in the mixed-swamp forest sub-class. Based on an average recorded group size of 6.95 individuals, population density was 17.51 ind km⁻², the second highest density recorded in this species. The accessible area of the tall-interior forest, however, was too disturbed to yield density estimates representative of the entire sub-class, and P. rubicunda was absent from the low-pole forest, likely as a result of the low availability of the species' preferred foods. This absence in 30% of Sabangau's total area indicates the importance of in situ population surveys at the habitat-specific level for accurately informing conservation strategies. We highlight the conservation value of TPSFs for P. rubicunda given the high population density and large areas remaining, and recommend 1) quantifying the response of P. rubicunda to the logging and burning of its habitats; 2) surveying degraded TPSFs for viable populations, and 3) effectively delineating TPSF sub-class boundaries from remote imagery to facilitate population estimates across the wider peat landscape, given the stark contrast in densities found across the habitat sub-classes of Sabangau. © 2013 Wiley Periodicals, Inc.
Osteoporosis screening is unjustifiably low in older African-American women.
Wilkins, Consuelo H.; Goldfeder, Jason S.
2004-01-01
BACKGROUND: More than one million Americans suffer osteoporotic fractures yearly, resulting in a marked increase in morbidity and mortality. Despite a decrease in bone mineral density with increasing age in all ethnic groups and both genders, preventative and therapeutics efforts in osteoporosis have been focused on caucasian and Asian women. This study assesses the osteoporosis screening practices and the frequency of low bone density in a primarily African-American population of older women. METHODS: Medical records of 252 women at risk for osteoporosis were reviewed for the diagnosis of osteoporosis, prior osteoporosis screening, prior breast cancer screening, and the use of calcium, vitamin D or estrogen. Subsequently, 128 women were assessed for risk factors for osteoporosis, and their bone mineral density was measured using a peripheral bone densitometer. RESULTS: Osteoporosis screening had been performed in 11.5% of the subjects. Of the women evaluated by peripheral bone densitometry, 44.5% of all women, 40.4% of African-American women, and 53.3% of caucasian women had abnormally low bone density measurements. The frequency of abnormal bone density increased with both increasing age and decreasing body mass index. CONCLUSIONS: Although few women in this population were previously screened for osteoporosis, low bone density occurred in African-American women at substantial rates. Increasing age and low body mass are important risk factors for low bone density in African-American women. Ethnicity should not be used as an exclusion criterion for screening for osteoporosis. PMID:15101666
Deepwater sculpin status and recovery in Lake Ontario
Weidel, Brian C.; Walsh, Maureen; Connerton, Michael J.; Lantry, Brian F.; Lantry, Jana R.; Holden, Jeremy P.; Yuille, Michael J.; Hoyle, James A.
2017-01-01
Deepwater sculpin are important in oligotrophic lakes as one of the few fishes that use deep profundal habitats and link invertebrates in those habitats to piscivores. In Lake Ontario the species was once abundant, however drastic declines in the mid-1900s led some to suggest the species had been extirpated and ultimately led Canadian and U.S. agencies to elevate the species' conservation status. Following two decades of surveys with no captures, deepwater sculpin were first caught in low numbers in 1996 and by the early 2000s there were indications of population recovery. We updated the status of Lake Ontario deepwater sculpin through 2016 to inform resource management and conservation. Our data set was comprised of 8431 bottom trawls sampled from 1996 to 2016, in U.S. and Canadian waters spanning depths from 5 to 225 m. Annual density estimates generally increased from 1996 through 2016, and an exponential model estimated the rate of population increase was ~ 59% per year. The mean total length and the proportion of fish greater than the estimated length at maturation (~ 116 mm) generally increased until a peak in 2013. In addition, the mean length of all deepwater sculpin captured in a trawl significantly increased with depth. Across all years examined, deepwater sculpin densities generally increased with depth, increasing sharply at depths > 150 m. Bottom trawl observations suggest the Lake Ontario deepwater sculpin population has recovered and current densities and biomass densities may now be similar to the other Great Lakes.
Effective Ice Particle Densities for Cold Anvil Cirrus
NASA Technical Reports Server (NTRS)
Heymsfield, Andrew J.; Schmitt, Carl G.; Bansemer, Aaron; Baumgardner, Darrel; Weinstock, Elliot M.; Smith, Jessica
2002-01-01
This study derives effective ice particle densities from data collected from the NASA WB-57F aircraft near the tops of anvils during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) in southern Florida in July 2002. The effective density, defined as the ice particle mass divided by the volume of an equivalent diameter liquid sphere, is obtained for particle populations and single sizes containing mixed particle habits using measurements of condensed water content and particle size distributions. The mean effective densities for populations decrease with increasing slopes of the gamma size distributions fitted to the size distributions. The population-mean densities range from near 0.91 g/cu m to 0.15 g/cu m. Effective densities for single sizes obey a power-law with an exponent of about -0.55, somewhat less steep than found from earlier studies. Our interpretations apply to samples where particle sizes are generally below 200-300 microns in maximum dimension because of probe limitations.
NASA Astrophysics Data System (ADS)
Polyanskaya, L. M.; Ivanov, K. E.; Zvyagintsev, D. G.
2012-10-01
The role has been studied of Gram-negative bacteria in the destruction of polymers widely spread in soils: chitin and cellulose. The introduction of chitin had no positive effect on the population density of Gram-negative bacteria, but it advanced the date of their appearance: the maximum population density of Gram-negative bacteria was recorded not on the 7th-15th day as in the control but much earlier, on the 3rd-7th day of the experiment. Consequently, the introduction of chitin as an additional source of nutrition promoted revealing of the Gram-negative bacteria already at the early stages of the succession. In the course of the succession, when the fungal mycelium begins to die off, the actinomycetic mycelium increases in length, i.e., Gram-negative bacteria are replaced at this stage with Gram-positive ones, the leading role among which belongs to actinomycetes. The growth rate of Gram-negative bacteria is higher than that of actinomycetes, so they start chitin utilization at the early stages of the succession, whereas actinomycetes dominate at the late stages. The population density of Gram-negative bacteria was lower under the anaerobic conditions as compared with that in the aerobic ones. The population density of Gram-negative bacteria in the lower layer of the A horizon and in the B horizon was slightly higher only in the case of the chitin introduction. When cellulose was introduced into the soil under aerobic conditions, the population density of Gram-negative bacteria in all the layers of the A horizon was maximal from the 14th to the 22nd day of the experiment. Cellulose was utilized in the soil mostly by fungi, and this was suggested by the increase of the length of the fungal mycelium. Simultaneously, an increase in the length of the actinomycetal mycelium was observed, as these organisms also perform cellulose hydrolysis in soils. The Gram-negative bacteria began to develop at the stage of the fungal mycelium destruction, which indirectly confirmed the chitinolytic activity of these bacteria.
Schmidt, Wolf-Peter; Suzuki, Motoi; Thiem, Vu Dinh; White, Richard G; Tsuzuki, Ataru; Yoshida, Lay-Myint; Yanai, Hideki; Haque, Ubydul; Tho, Le Huu; Anh, Dang Duc; Ariyoshi, Koya
2011-08-01
Aedes aegypti, the major vector of dengue viruses, often breeds in water storage containers used by households without tap water supply, and occurs in high numbers even in dense urban areas. We analysed the interaction between human population density and lack of tap water as a cause of dengue fever outbreaks with the aim of identifying geographic areas at highest risk. We conducted an individual-level cohort study in a population of 75,000 geo-referenced households in Vietnam over the course of two epidemics, on the basis of dengue hospital admissions (n = 3,013). We applied space-time scan statistics and mathematical models to confirm the findings. We identified a surprisingly narrow range of critical human population densities between around 3,000 to 7,000 people/km² prone to dengue outbreaks. In the study area, this population density was typical of villages and some peri-urban areas. Scan statistics showed that areas with a high population density or adequate water supply did not experience severe outbreaks. The risk of dengue was higher in rural than in urban areas, largely explained by lack of piped water supply, and in human population densities more often falling within the critical range. Mathematical modeling suggests that simple assumptions regarding area-level vector/host ratios may explain the occurrence of outbreaks. Rural areas may contribute at least as much to the dissemination of dengue fever as cities. Improving water supply and vector control in areas with a human population density critical for dengue transmission could increase the efficiency of control efforts. Please see later in the article for the Editors' Summary.
Schmidt, Wolf-Peter; Suzuki, Motoi; Dinh Thiem, Vu; White, Richard G.; Tsuzuki, Ataru; Yoshida, Lay-Myint; Yanai, Hideki; Haque, Ubydul; Huu Tho, Le; Anh, Dang Duc; Ariyoshi, Koya
2011-01-01
Background Aedes aegypti, the major vector of dengue viruses, often breeds in water storage containers used by households without tap water supply, and occurs in high numbers even in dense urban areas. We analysed the interaction between human population density and lack of tap water as a cause of dengue fever outbreaks with the aim of identifying geographic areas at highest risk. Methods and Findings We conducted an individual-level cohort study in a population of 75,000 geo-referenced households in Vietnam over the course of two epidemics, on the basis of dengue hospital admissions (n = 3,013). We applied space-time scan statistics and mathematical models to confirm the findings. We identified a surprisingly narrow range of critical human population densities between around 3,000 to 7,000 people/km2 prone to dengue outbreaks. In the study area, this population density was typical of villages and some peri-urban areas. Scan statistics showed that areas with a high population density or adequate water supply did not experience severe outbreaks. The risk of dengue was higher in rural than in urban areas, largely explained by lack of piped water supply, and in human population densities more often falling within the critical range. Mathematical modeling suggests that simple assumptions regarding area-level vector/host ratios may explain the occurrence of outbreaks. Conclusions Rural areas may contribute at least as much to the dissemination of dengue fever as cities. Improving water supply and vector control in areas with a human population density critical for dengue transmission could increase the efficiency of control efforts. Please see later in the article for the Editors' Summary PMID:21918642
The role of demographic compensation theory in incidental take assessments for endangered species
McGowan, Conor P.; Ryan, Mark R.; Runge, Michael C.; Millspaugh, Joshua J.; Cochrane, Jean Fitts
2011-01-01
Many endangered species laws provide exceptions to legislated prohibitions through incidental take provisions as long as take is the result of unintended consequences of an otherwise legal activity. These allowances presumably invoke the theory of demographic compensation, commonly applied to harvested species, by allowing limited harm as long as the probability of the species' survival or recovery is not reduced appreciably. Demographic compensation requires some density-dependent limits on survival or reproduction in a species' annual cycle that can be alleviated through incidental take. Using a population model for piping plovers in the Great Plains, we found that when the population is in rapid decline or when there is no density dependence, the probability of quasi-extinction increased linearly with increasing take. However, when the population is near stability and subject to density-dependent survival, there was no relationship between quasi-extinction probability and take rates. We note however, that a brief examination of piping plover demography and annual cycles suggests little room for compensatory capacity. We argue that a population's capacity for demographic compensation of incidental take should be evaluated when considering incidental allowances because compensation is the only mechanism whereby a population can absorb the negative effects of take without incurring a reduction in the probability of survival in the wild. With many endangered species there is probably little known about density dependence and compensatory capacity. Under these circumstances, using multiple system models (with and without compensation) to predict the population's response to incidental take and implementing follow-up monitoring to assess species response may be valuable in increasing knowledge and improving future decision making.
Terrestrial bird population trends on Aguiguan (Goat Island), Mariana Islands
Amidon, Fred; Camp, Richard J.; Marshall, Ann P.; Pratt, Thane K.; Williams, Laura; Radley, Paul; Cruz, Justine B.
2014-01-01
The island of Aguiguan is part of the Mariana archipelago and currently supports populations of four endemic species, including one endemic genus, Cleptornis. Bird population trends since 1982 were recently assessed on the neighbouring islands of Saipan, Tinian, and Rota indicating declines in some native species. Point-transect surveys were conducted in 2008 by the U.S. Fish and Wildlife Service to assess population densities and trends on Aguiguan. Densities for six of the nine native birds—White-throated Ground-dove Gallicolumba xanthonura, Collared Kingfisher Todiramphus chloris, Rufous Fantail Rhipidura rufifrons, Golden White-eye Cleptornis marchei, Bridled White-eye Zosterops conspicillatus and Micronesian Starling Aplonis opaca—and the non-native bird—Island Collared-dove Streptopelia bitorquata—were significantly greater in 2008 than in 1982. No differences in densities were detected among the surveys for Mariana Fruit-dove Ptilinopus roseicapilla, and Micronesian MyzomelaMyzomela rubratra. Three federally and locally listed endangered birds—Nightingale Reed-warbler Acrocephalus luscinius, Mariana Swiftlet Collocalia bartschi, and Micronesian Megapode Megapodius laperous)—were either not detected during the point-transect counts, the surveys were not appropriate for the species, or the numbers of birds detected were too small to estimate densities. The factors behind the increasing trends for some species are unknown but may be related to increased forest cover on the island since 1982. With declining trends for some native species on neighbouring islands, the increasing and stable trends on Aguiguan is good news for forest bird populations in the region, as Aguiguan populations can help support conservation efforts on other islands in the archipelago.
Population-regulating processes during the adult phase in flatfish
NASA Astrophysics Data System (ADS)
Rijnsdorp, A. D.
Flatfish support major fisheries and the study of regulatory processes are of paramount importance for evaluating the resilience of the resource to exploitation. This paper reviews the evidence for processes operating during the adult phase that may 1. generate interannual variability in recruitment; 2. contribute to population regulation through density-dependent growth, density-dependent ripening of adults and density-dependent egg production. With regard to (1), there is evidence that in the adult phase processes do occur that may generate recruitment variability through variation in size-specific fecundity, contraction of spawning season, reduction in egg quality, change in sex ratio and size composition of the adult population. However, time series of recruitment do not provide support for this hypothesis. With regard to (2), there is ample evidence that exploitation of flatfish coincides with an increase in growth, although the mechanisms involved are not always clear. The presence of density-dependent growth in the adult phase of unexploited populations appears to be the most likely explanation in some cases. From the early years of exploitation of flatfish stocks inhabiting cold waters, evidence exists that adult fish do not spawn each year. Fecundity schedules show annual variations, but the available information suggests that size-specific fecundity is stable over a broad range of population abundance and may only decrease at high population abundance. The analysis is complicated by the possibility of a trade-off between egg numbers and egg size. Nevertheless, a density-dependent decrease in growth will automatically result in a decrease in absolute fecundity because of the reduced body size. The potential contribution of these regulatory effects on population regulation is explored. Results indicate that density-dependent ripening and absolute fecundity, mediated through density-dependent growth, may control recruitment at high levels of population abundance. The effect of a density-dependent decrease in size-specific fecundity seems to play a minor role, although this role may become important at extremely high levels of population abundance.
Eager, Eric Alan; Haridas, Chirakkal V; Pilson, Diana; Rebarber, Richard; Tenhumberg, Brigitte
2013-08-01
Seed banks are critically important for disturbance specialist plants because seeds of these species germinate only in disturbed soil. Disturbance and seed depth affect the survival and germination probability of seeds in the seed bank, which in turn affect population dynamics. We develop a density-dependent stochastic integral projection model to evaluate the effect of stochastic soil disturbances on plant population dynamics with an emphasis on mimicking how disturbances vertically redistribute seeds within the seed bank. We perform a simulation analysis of the effect of the frequency and mean depth of disturbances on the population's quasi-extinction probability, as well as the long-term mean and variance of the total density of seeds in the seed bank. We show that increasing the frequency of disturbances increases the long-term viability of the population, but the relationship between the mean depth of disturbance and the long-term viability of the population are not necessarily monotonic for all parameter combinations. Specifically, an increase in the probability of disturbance increases the long-term viability of the total seed bank population. However, if the probability of disturbance is too low, a shallower mean depth of disturbance can increase long-term viability, a relationship that switches as the probability of disturbance increases. However, a shallow disturbance depth is beneficial only in scenarios with low survival in the seed bank.
Turcotte, Martin M; Reznick, David N; Hare, J Daniel
2011-11-01
Rapid evolution challenges the assumption that evolution is too slow to impact short-term ecological dynamics. This insight motivates the study of 'Eco-Evolutionary Dynamics' or how evolution and ecological processes reciprocally interact on short time scales. We tested how rapid evolution impacts concurrent population dynamics using an aphid (Myzus persicae) and an undomesticated host (Hirschfeldia incana) in replicated wild populations. We manipulated evolvability by creating non-evolving (single clone) and potentially evolving (two-clone) aphid populations that contained genetic variation in intrinsic growth rate. We observed significant evolution in two-clone populations whether or not they were exposed to predators and competitors. Evolving populations grew up to 42% faster and attained up to 67% higher density, compared with non-evolving control populations but only in treatments exposed to competitors and predators. Increased density also correlates with relative fitness of competing clones suggesting a full eco-evolutionary dynamic cycle defined as reciprocal interactions between evolution and density. © 2011 Blackwell Publishing Ltd/CNRS.
Takada, Mayura B; Miyashita, Tadashi
2014-09-01
Landscapes in nature can be viewed as a continuum of small total habitable area with high fragmentation to widely spreading habitats. The dispersal-mediated rescue effect predominates in the former landscapes, while classical density-dependent processes generally prevail in widely spread habitats. A similar principle should be applied to populations of organisms utilizing microhabitats in limited supply. To test this hypothesis, we examined the population dynamics of a web spider, Neriene brongersmai, in 16 populations with varying degrees of microhabitat availability, and we explored whether: (i) high microhabitat availability improves survival rate during density-independent movement, while the resultant high density reduces survival rate in a density-dependent manner; and (ii) temporal population stability increases with microhabitat availability at the population level. Furthermore, we conducted two types of field experiments to verify whether high microhabitat availability actually reduces mortality associated with web-site movement. Field observations revealed that demographic change in N. brongersmai populations was affected by three factors at different stages, namely the microhabitat limitation from the early to late juvenile stages, the density dependence from the late juvenile to adult stages and the food limitation from the adult to the next early juvenile stages. In addition, there was a tendency for a positive association between population stability and microhabitat availability at the population level. A small-scale experiment, where the frequency of spider web relocation was equalized artificially, revealed that high microhabitat availability elevated the survival rate during a movement event between web-sites. The larger spatiotemporal scale experiment also revealed an improved spider survival rate following treatment with high microhabitat availability, even though spider density was kept at a relatively low level. The population dynamics of N. brongersmai can be determined primarily by density-independent processes based on web-site fragmentation and density-dependent processes driven by interference competition. We conclude that depending on the amount of habitat resources, the relative importance of the two contrasting paradigms-equilibrium and non-equilibrium-appears to vary, even within a particular system. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
[Latin America: reasons for hope].
Orrego, F
1993-08-01
According to official figures, Latin America is almost an empty continent. The low population density, the decrease in population growth, the low use of the land and the improvement in the availability of food, health and education indexes, point to the fact that restrictive politics in population growth are not of interest to this region. On the contrary, an increase in population density is important in the development of this new civilization. In order to avoid the defects found in some industrialized countries, the anthropocetrism has to be linked to reality which is transcendent and has God as his foundation.
Kyogoku, Daisuke; Sota, Teiji
2017-05-17
Interspecific mating interactions, or reproductive interference, can affect population dynamics, species distribution and abundance. Previous population dynamics models have assumed that the impact of frequency-dependent reproductive interference depends on the relative abundances of species. However, this assumption could be an oversimplification inappropriate for making quantitative predictions. Therefore, a more general model to forecast population dynamics in the presence of reproductive interference is required. Here we developed a population dynamics model to describe the absolute density dependence of reproductive interference, which appears likely when encounter rate between individuals is important. Our model (i) can produce diverse shapes of isoclines depending on parameter values and (ii) predicts weaker reproductive interference when absolute density is low. These novel characteristics can create conditions where coexistence is stable and independent from the initial conditions. We assessed the utility of our model in an empirical study using an experimental pair of seed beetle species, Callosobruchus maculatus and Callosobruchus chinensis. Reproductive interference became stronger with increasing total beetle density even when the frequencies of the two species were kept constant. Our model described the effects of absolute density and showed a better fit to the empirical data than the existing model overall.
Fei, Lei; Wang, Zu-guo; Yao, Yao; Xu, Xiang-ming; Gu, Pin-qiang
2015-02-01
We analyzed the changes of rodent population from 1988 to 2013 in Fengxian District, Shanghai, and discussed the relevance of rodent population dynamics and climate, and ecological factors. Results showed that the average rat density was 1.3% from 1988 to 2013, and the dominant species was Apodemus agrarius. There was little change of density between years. The average composition ratio was 97.5%. The peak of rodent density appeared from February to May, highest in March. Average density and peak decreased obviously year after year. Numbers of adult rodents of 1st group were positively correlated, while that of adult rodents of 2nd group and elderly group negatively correlated with years. Rat age presented a shortened trend annually. Rodent density and temperature factors were negatively correlated except in January. Extreme warmth in February had a lagged, positive effect on the rat density. Precipitation factors had no significant correlation with the density of rodents. Relative humidity was positively correlated with the density, mostly. Planting structure adjustment and reduction of planting acreage were significantly correlated with the reduction of rodent density. Increased deratization rate was also correlated with the reduction.
Using spatial mark-recapture for conservation monitoring of grizzly bear populations in Alberta.
Boulanger, John; Nielsen, Scott E; Stenhouse, Gordon B
2018-03-26
One of the challenges in conservation is determining patterns and responses in population density and distribution as it relates to habitat and changes in anthropogenic activities. We applied spatially explicit capture recapture (SECR) methods, combined with density surface modelling from five grizzly bear (Ursus arctos) management areas (BMAs) in Alberta, Canada, to assess SECR methods and to explore factors influencing bear distribution. Here we used models of grizzly bear habitat and mortality risk to test local density associations using density surface modelling. Results demonstrated BMA-specific factors influenced density, as well as the effects of habitat and topography on detections and movements of bears. Estimates from SECR were similar to those from closed population models and telemetry data, but with similar or higher levels of precision. Habitat was most associated with areas of higher bear density in the north, whereas mortality risk was most associated (negatively) with density of bears in the south. Comparisons of the distribution of mortality risk and habitat revealed differences by BMA that in turn influenced local abundance of bears. Combining SECR methods with density surface modelling increases the resolution of mark-recapture methods by directly inferring the effect of spatial factors on regulating local densities of animals.
Agetsuma, Naoki; Koda, Ryosuke; Tsujino, Riyou; Agetsuma-Yanagihara, Yoshimi
2015-02-01
Population densities of wildlife species tend to be correlated with resource productivity of habitats. However, wildlife density has been greatly modified by increasing human influences. For effective conservation, we must first identify the significant factors that affect wildlife density, and then determine the extent of the areas in which the factors should be managed. Here, we propose a protocol that accomplishes these two tasks. The main threats to wildlife are thought to be habitat alteration and hunting, with increases in alien carnivores being a concern that has arisen recently. Here, we examined the effect of these anthropogenic disturbances, as well as natural factors, on the local density of Yakushima macaques (Macaca fuscata yakui). We surveyed macaque densities at 30 sites across their habitat using data from 403 automatic cameras. We quantified the effect of natural vegetation (broad-leaved forest, mixed coniferous/broad-leaved forest, etc.), altered vegetation (forestry area and agricultural land), hunting pressure, and density of feral domestic dogs (Canis familiaris). The effect of each vegetation type was analyzed at numerous spatial scales (between 150 and 3,600-m radii from the camera locations) to determine the best scale for explaining macaque density (effective spatial scale). A model-selection procedure (generalized linear mixed model) was used to detect significant factors affecting macaque density. We detected that the most effective spatial scale was 400 m in radius, a scale that corresponded to group range size of the macaques. At this scale, the amount of broad-leaved forest was selected as a positive factor, whereas mixed forest and forestry area were selected as negative factors for macaque density. This study demonstrated the importance of the simultaneous evaluation of all possible factors of wildlife population density at the appropriate spatial scale. © 2014 Wiley Periodicals, Inc.
Zhang, Qian; Xu, Liming; Tang, Jianjun; Bai, Minge; Chen, Xin
2011-05-01
The biomass-density relationship (whereby the biomass of individual plants decreases as plant density increases) has generally been explained by competition for resources. Arbuscular mycorrhizal fungi (AMF) are able to affect plant interactions by mediating resource utilization, but whether this AMF-mediated interaction will change the biomass-density relationship is unclear. We conducted an experiment to test the hypothesis that AMF will shift the biomass-density relationship by affecting intraspecific competition. Four population densities (10, 100, 1,000, or 10,000 seedlings per square meter) of Medicago sativa L. were planted in field plots. Water application (1,435 or 327.7 mm/year) simulated precipitation in wet areas (sufficient water) and arid areas (insufficient water). The fungicide benomyl was applied to suppress AMF in some plots ("low-AMF" treatment) and not in others ("high-AMF" treatment). The effect of the AMF treatment on the biomass-density relationship depended on water conditions. High AMF enhanced the decrease of individual biomass with increasing density (the biomass-density line had a steeper slope) when water was sufficient but not when water was insufficient. AMF treatment did not affect plant survival rate or population size but did affect absolute competition intensity (ACI). When water was sufficient, ACI was significantly higher in the high-AMF treatment than in the low-AMF treatment, but ACI was unaffected by AMF treatment when water was insufficient. Our results suggest that AMF status did not impact survival rate and population size but did shift the biomass-density relationship via effects on intraspecific competition. This effect of AMF on the biomass-density relationship depended on the availability of water.
Daenen, S; Huiges, W; Modderman, E; Halie, M R
1993-01-01
Studies with synchronized or exponentially growing bacteria and mammalian cell lines are not able to demonstrate small changes in buoyant density during the cell cycle. Flowcytometric analysis of density separated acute myeloid leukemia cells, a system not dependent on time-related variables, shows that the cellular buoyant density increases slightly with up to 0.008 g/ml during the S-phase, at least in cryo-preserved cells used in this study. This contrasts with the generally accepted belief that S-phase cells have a lower or constant buoyant density. A practical implication is that separation of cell (sub)populations based on differences in buoyant density could be flawed to the extent that these populations contain S-phase cells.
Sun, Yunfei; Wang, Yuanyuan; Lei, Jin; Qian, Chenchen; Zhu, Xuexia; Akbar, Siddiq; Huang, Yuan; Yang, Zhou
2018-07-01
Due to sea water eutrophication and global warming, the harmful Phaeocystis blooms outbreak frequently in coastal waters, which cause a serious threat to marine ecosystem. The application of rotifer to control the harmful alga is a promising way. To investigate the influence of initial rotifer density and temperature on the ability of rotifer Brachionus plicatilis to eliminate Phaeocystis globosa population, we cultured P. globosa with different initial rotifer densities (1, 3, 5 inds mL -1 ) at 19, 22, 25, 28, and 31 °C for 9-16 d. Results showed that the population of rotifer feeding on Phaeocystis increased rapidly and higher temperatures favored the growth of P. globosa and B. plicatilis. With increased initial rotifer density and temperature, both the clearance rate of rotifer and the reduction rate of P. globosa increased, and thus P. globosa were eliminated earlier. Both temperature and initial rotifer density had significant effects on clearance rate of rotifer and the time to Phaeocystis extinction, and there was a significant interaction between the two factors on the two parameters, i.e., the effect of initial rotifer density on eliminating Phaeocystis decreased with increasing temperature. The rotifer in 5 inds mL -1 at 28 °C eliminated P. globosa in 4 d, whereas the rotifer in 1 ind mL -1 at 19 °C spent about 16 d on eliminating P. globosa. In conclusion, higher temperature and bigger initial rotifer density promote rotifer to eliminate the harmful P. globosa, and the optimal temperature for rotifer to clear P. globosa is 28 °C. Copyright © 2018 Elsevier Ltd. All rights reserved.
Shostak, Allen W.
2014-01-01
Population regulation results from an interplay of numerous intrinsic and external factors, and for many insects cannibalism is such a factor. This study confirms a previously-reported observation that sublethal exposure to the fossilized remains of diatoms (i.e. diatomaceous earth) increases net fecundity (eggs produced minus eggs destroyed/day) of flour beetles, Tribolium confusum. The aim was to experimentally test two non-mutually-exclusive ecological mechanisms potentially responsible for the increased net fecundity: higher egg production and lower egg cannibalism. Adult T. confusum were maintained at low or high density in medium containing sublethal (0–4%) diatomaceous earth. Net fecundity increased up to 2.1× control values during diatomaceous earth exposure, and returned to control levels following removal from diatomaceous earth. Cannibalism assays on adults showed that diatomaceous earth reduced the number of eggs produced to 0.7× control values at low density and to 0.8× controls at high density, and also reduced egg cannibalism rates of adults to as little as 0.4× control values, but at high density only. Diatomaceous earth also reduced cannibalism by larvae on eggs to 0.3× control values. So, while the presence of diatomaceous earth reduced egg production, net fecundity increased as a result of strong suppression of the normal egg cannibalism by adults and larvae that occurs at high beetle density. Undisturbed cultures containing sublethal diatomaceous earth concentrations reached higher population densities than diatomaceous earth-free controls. Cohort studies on survival from egg to adult indicated that this population increase was due largely to decreased egg cannibalism by adult females. This is the first report of inhibition of egg cannibalism by diatomaceous earth on larval or adult insects. The ability of diatomaceous earth to alter cannibalism behavior without causing mortality makes it an ideal investigative tool for cannibalism studies. PMID:24516665
Shostak, Allen W
2014-01-01
Population regulation results from an interplay of numerous intrinsic and external factors, and for many insects cannibalism is such a factor. This study confirms a previously-reported observation that sublethal exposure to the fossilized remains of diatoms (i.e. diatomaceous earth) increases net fecundity (eggs produced minus eggs destroyed/day) of flour beetles, Tribolium confusum. The aim was to experimentally test two non-mutually-exclusive ecological mechanisms potentially responsible for the increased net fecundity: higher egg production and lower egg cannibalism. Adult T. confusum were maintained at low or high density in medium containing sublethal (0-4%) diatomaceous earth. Net fecundity increased up to 2.1× control values during diatomaceous earth exposure, and returned to control levels following removal from diatomaceous earth. Cannibalism assays on adults showed that diatomaceous earth reduced the number of eggs produced to 0.7× control values at low density and to 0.8× controls at high density, and also reduced egg cannibalism rates of adults to as little as 0.4× control values, but at high density only. Diatomaceous earth also reduced cannibalism by larvae on eggs to 0.3× control values. So, while the presence of diatomaceous earth reduced egg production, net fecundity increased as a result of strong suppression of the normal egg cannibalism by adults and larvae that occurs at high beetle density. Undisturbed cultures containing sublethal diatomaceous earth concentrations reached higher population densities than diatomaceous earth-free controls. Cohort studies on survival from egg to adult indicated that this population increase was due largely to decreased egg cannibalism by adult females. This is the first report of inhibition of egg cannibalism by diatomaceous earth on larval or adult insects. The ability of diatomaceous earth to alter cannibalism behavior without causing mortality makes it an ideal investigative tool for cannibalism studies.
Ricca, Mark A.; Van Vuren, Dirk H.; Weckerly, Floyd W.; Williams, Jeffrey C.; Miles, A. Keith
2014-01-01
Large mammalian herbivores introduced to islands without predators are predicted to undergo irruptive population and spatial dynamics, but only a few well-documented case studies support this paradigm. We used the Riney-Caughley model as a framework to test predictions of irruptive population growth and spatial expansion of caribou (Rangifer tarandus granti) introduced to Adak Island in the Aleutian archipelago of Alaska in 1958 and 1959. We utilized a time series of spatially explicit counts conducted on this population intermittently over a 54-year period. Population size increased from 23 released animals to approximately 2900 animals in 2012. Population dynamics were characterized by two distinct periods of irruptive growth separated by a long time period of relative stability, and the catalyst for the initial irruption was more likely related to annual variation in hunting pressure than weather conditions. An unexpected pattern resembling logistic population growth occurred between the peak of the second irruption in 2005 and the next survey conducted seven years later in 2012. Model simulations indicated that an increase in reported harvest alone could not explain the deceleration in population growth, yet high levels of unreported harvest combined with increasing density-dependent feedbacks on fecundity and survival were the most plausible explanation for the observed population trend. No studies of introduced island Rangifer have measured a time series of spatial use to the extent described in this study. Spatial use patterns during the post-calving season strongly supported Riney-Caughley model predictions, whereby high-density core areas expanded outwardly as population size increased. During the calving season, caribou displayed marked site fidelity across the full range of population densities despite availability of other suitable habitats for calving. Finally, dispersal and reproduction on neighboring Kagalaska Island represented a new dispersal front for irruptive dynamics and a new challenge for resource managers. The future demography of caribou on both islands is far from certain, yet sustained and significant hunting pressure should be a vital management tool.
Berry, Kristin H.; Yee, Julie L.; Coble, Ashley A.; Perry, William M.; Shields, Timothy A.
2013-01-01
Numerous factors have contributed to declines in populations of the federally threatened Agassiz's Desert Tortoise (Gopherus agassizii) and continue to limit recovery. In 2010, we surveyed a low-density population on a military test facility in the northwestern Mojave Desert of California, USA, to evaluate population status and identify potential factors contributing to distribution and low densities. Estimated densities of live tortoises ranged spatially from 1.2/km2 to 15.1/km2. Although only one death of a breeding-age tortoise was recorded for the 4-yr period prior to the survey, remains of 16 juvenile and immature tortoises were found, and most showed signs of predation by Common Ravens (Corvus corax) and mammals. Predation may have limited recruitment of young tortoises into the adult size classes. To evaluate the relative importance of different types of impacts to tortoises, we developed predictive models for spatially explicit densities of tortoise sign and live tortoises using topography (i.e., slope), predators (Common Raven, signs of mammalian predators), and anthropogenic impacts (distances from paved road and denuded areas, density of ordnance fragments) as covariates. Models suggest that densities of tortoise sign increased with slope and signs of mammalian predators and decreased with Common Ravens, while also varying based on interaction effects involving these predictors as well as distances from paved roads, denuded areas, and ordnance. Similarly, densities of live tortoises varied by interaction effects among distances to denuded areas and paved roads, density of ordnance fragments, and slope. Thus multiple factors predict the densities and distribution of this population.
Balanovskiĭ, O P; Koshel', S M; Zaporozhchenko, V V; Pshenichnov, A S; Frolova, S A; Kuznetsova, M A; Baranova, E E; Teuchezh, I E; Kuznetsova, A A; Romashkina, M V; Utevskaia, O M; Churnosov, M I; Villems, R; Balanovskaia, E V
2011-11-01
Yu. P. Altukhov suggested that heterozygosity is an indicator of the state of the gene pool. The idea and a linked concept of genetic ecological monitoring were applied to a new dataset on mtDNA variation in East European ethnic groups. Haplotype diversity (an analog of the average heterozygosity) was shown to gradually decrease northwards. Since a similar trend is known for population density, interlinked changes were assumed for a set of parameters, which were ordered to form a causative chain: latitude increases, land productivity decreases, population density decreases, effective population size decreases, isolation of subpopulations increases, genetic drift increases, and mtDNA haplotype diversity decreases. An increase in genetic drift increases the random inbreeding rate and, consequently, the genetic load. This was confirmed by a significant correlation observed between the incidence of autosomal recessive hereditary diseases and mtDNA haplotype diversity. Based on the findings, mtDNA was assumed to provide an informative genetic system for genetic ecological monitoring; e.g., analyzing the ecology-driven changes in the gene pool.
Bottomley, Peter J.; Dughri, Muktar H.
1989-01-01
Bacterial cells small enough to pass through 0.4-μm-pore-size filters made up 5 to 9% of the indigenous bacterial population in 0- to 20-cm-depth samples of Abiqua silty clay loam. Within the same soil samples, cells of a similar dimension were stained with fluorescent antibodies specific to each of four antigenically distinct indigenous serogroups of Rhizobium leguminosarum bv. trifolii and made up 22 to 34% of the soil population of the four serogroups. Despite the extensive contribution of small cells to these soil populations, no evidence of their being capable of either growth or nodulation was obtained. The density of soil bacteria which could be cultured ranged between 0.5 and 8.5% of the >0.4-μm direct count regardless of media, season of sampling, or soil depth. In the same soil samples, the viable nodulating populations of biovar trifolii determined by the plant infection soil dilution technique ranged between 1 and 10% of the >0.4-μm direct-immunofluorescence count of biovar trifolii. The <0.4-μm cell populations of both total soil bacteria and biovar trifolii changed abruptly between the 10- to 15-cm and 15- to 20-cm soil depth increments, increasing from 5 to 20% and from 20 to 50%, respectively, of their direct-count totals. The increase in density of the small-cell population corresponded to a significant increase in soil bulk density (1.07 to 1.21 g cm−3). The percent contribution of the <0.4-μm direct count to individual serogroup totals increased with soil depth by approximately 2-fold (39 to 87%) for serogroups 17 and 21 and by 12-fold (6 to 75%) for serogroups 6 and 36. PMID:16347896
Zhang, Pei-Feng; Hu, Yuan-Man; Xiong, Zai-Ping; Liu, Miao
2011-02-01
Based on the 1:10000 aerial photo in 1997 and the three QuickBird images in 2002, 2005, and 2008, and by using Barista software and GIS and RS techniques, the three-dimensional information of the residential community in Tiexi District of Shenyang was extracted, and the variation pattern of the three-dimensional landscape in the district during its reconstruction in 1997-2008 and related affecting factors were analyzed with the indices, ie. road density, greening rate, average building height, building height standard deviation, building coverage rate, floor area rate, building shape coefficient, population density, and per capita GDP. The results showed that in 1997-2008, the building area for industry decreased, that for commerce and other public affairs increased, and the area for residents, education, and medical cares basically remained stable. The building number, building coverage rate, and building shape coefficient decreased, while the floor area rate, average building height, height standard deviation, road density, and greening rate increased. Within the limited space of residential community, the containing capacity of population and economic activity increased, and the environment quality also improved to some extent. The variation degree of average building height increased, but the building energy consumption decreased. Population growth and economic development had positive correlations with floor area rate, road density, and greening rate, but negative correlation with building coverage rate.
Multiscale habitat selection by Ruffed Grouse at low population densities
Zimmerman, G.S.; Gutierrez, R.J.; Thogmartin, W.E.; Banerjee, S.
2009-01-01
Theory suggests habitats should be chosen according to their relative evolutionary benefits and costs. It has been hypothesized that aspen (Populus spp.) forests provide optimal habitat for Ruffed Grouse (Bonasa umbellus). We used the low phase of a grouse population's cycle to assess the prediction that grouse should occupy aspen and avoid other forest types at low population density because of the presumptive fitness benefits of aspen. On the basis of our observations, we predict how the Ruffed Grouse population will increase in different forest types during the next cycle. In conifer (Pinus spp., Abies balsamea, Picea spp.)-dominated and mixed aspen-conifer landscapes, grouse densities were highest where forest types were evenly distributed. Within these landscapes, male Ruffed Grouse selected young aspen stands that were large and round or square. Although Ruffed Grouse selected young aspen stands strongly, contrary to prediction, they also used other forest types even when young aspen stands remained unoccupied. The relative densities of Ruffed Grouse in aspen and conifer forests indicated that the aspen forest's carrying capacities for grouse was higher than the conifer forest's at least during the low and declining phases of the grouse's cycle. On the basis of our observations, we predict that Ruffed Grouse populations in aspen-dominated landscapes will have higher population densities and fluctuate more than will populations in conifer-dominated landscapes. We suggest that studies of avian habitat selection would benefit from knowledge about the relative densities among habitats at differing population sizes because this information could provide insight into the role of habitat in regulating populations and clarify inferences from studies about habitat quality for birds. ?? 2009 by The Cooper Ornithological Society. All rights reserved.
Life and death of a sewage treatment plant recorded in a coral skeleton δ15N record.
Duprey, Nicolas N; Wang, Xingchen T; Thompson, Philip D; Pleadwell, Jeffrey E; Raymundo, Laurie J; Kim, Kiho; Sigman, Daniel M; Baker, David M
2017-07-15
We investigated the potential of coral skeleton δ 15 N (CS-δ 15 N) records for tracking anthropogenic-N sources in coral reef ecosystems. We produced a 56yr-long CS-δ 15 N record (1958-2014) from a reef flat in Guam that has been exposed to varying 1) levels of sewage treatment 2) population density, and 3) land use. Increasing population density (from <30 to 300ind·km -2 ) and land use changes in the watershed resulted in a ~1‰ enrichment of the CS-δ 15 N record until a sewage treatment plant (STP) started operation in 1975. Then, CS-δ 15 N stabilized, despite continued population density and land use changes. Based on population and other considerations, a continued increase in the sewage footprint might have been expected over this time. The stability of CS-δ 15 N, either contradicts this expectation, or indicates that the impacts on the outer reef at the coring site were buffered by the mixing of reef water with the open ocean. Copyright © 2017 Elsevier Ltd. All rights reserved.
Carlson, Jane E.; Adams, Christopher A.; Holsinger, Kent E.
2016-01-01
Background and Aims Trait–environment relationships are commonly interpreted as evidence for local adaptation in plants. However, even when selection analyses support this interpretation, the mechanisms underlying differential benefits are often unknown. This study addresses this gap in knowledge using the broadly distributed South African shrub Protea repens. Specifically, the study examines whether broad-scale patterns of trait variation are consistent with spatial differences in selection and ecophysiology in the wild. Methods In a common garden study of plants sourced from 19 populations, associations were measured between five morphological traits and three axes describing source climates. Trait–trait and trait–environment associations were analysed in a multi-response model. Within two focal populations in the wild, selection and path analyses were used to test associations between traits, fecundity and physiological performance. Key Results Across 19 populations in a common garden, stomatal density increased with the source population’s mean annual temperature and decreased with its average amount of rainfall in midsummer. Concordantly, selection analysis in two natural populations revealed positive selection on stomatal density at the hotter, drier site, while failing to detect selection at the cooler, moister site. Dry-site plants with high stomatal density also had higher stomatal conductances, cooler leaf temperatures and higher light-saturated photosynthetic rates than those with low stomatal density, but no such relationships were present among wet-site plants. Leaf area, stomatal pore index and specific leaf area in the garden also co-varied with climate, but within-population differences were not associated with fitness in either wild population. Conclusions The parallel patterns of broad-scale variation, differences in selection and differences in trait–ecophysiology relationships suggest a mechanism for adaptive differentiation in stomatal density. Densely packed stomata may improve performance by increasing transpiration and cooling, but predominately in drier, hotter climates. This study uniquely shows context-dependent benefits of stomatal density – a trait rarely linked to local adaptation in plants. PMID:26424782
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, G.C.
1989-03-01
The hypothesis of compensatory mortality is critical to understanding population dynamics of wildlife species. This knowledge is vital regardless of whether populations are managed for recreational hunting or habitats are altered via energy development projects. This research tested for compensatory mortality in the juvenile (fawn) portion of a mule deer population. Two experimental manipulations were used employing radio-collared deer. In this study, /approximately/20% of the population was moved from a treatment area and fawn survival rates compared to those on the control area. In the pasture study, deer were stocked in pastures at 3 densities of 44, 89, and 139more » deer/km/sup 2/. Lowering of density in the field portion of the study did not appear to affect fawn survival. This is attributed to not removing enough animals for existing range conditions that have been imparted by high deer densities during the last 3 decades. Also, the effect of removal was tempered by an increase in yearling males brought about by antler-point restrictions during the harvest. Deer removed from the treatment area were used to stock 3 large pastures at low, medium, and high densities of 44, 89, and 139 deer/km/sup 2/, respectively. Fawn survival was significantly different between densities (P < 0.001), with the low density pasture showing the highest survival and the high density pasture showing the lowest survival. The main cause of death was starvation suggesting that food supplies were limiting. A strong compensatory mortality process is operating in this mule deer population as evidenced by the pasture data. We did not detect this process in the field portion of the study because the removal of /approximately/20% of the population was insufficient to allow an immediate improvement in fawn nutrition. The density-dependent survival response in the controlled pasture study demonstrated that compensatory mortality is operating in this population. 57 refs., 7 figs., 6 tabs.« less
Predation and fragmentation portrayed in the statistical structure of prey time series
Hendrichsen, Ditte K; Topping, Chris J; Forchhammer, Mads C
2009-01-01
Background Statistical autoregressive analyses of direct and delayed density dependence are widespread in ecological research. The models suggest that changes in ecological factors affecting density dependence, like predation and landscape heterogeneity are directly portrayed in the first and second order autoregressive parameters, and the models are therefore used to decipher complex biological patterns. However, independent tests of model predictions are complicated by the inherent variability of natural populations, where differences in landscape structure, climate or species composition prevent controlled repeated analyses. To circumvent this problem, we applied second-order autoregressive time series analyses to data generated by a realistic agent-based computer model. The model simulated life history decisions of individual field voles under controlled variations in predator pressure and landscape fragmentation. Analyses were made on three levels: comparisons between predated and non-predated populations, between populations exposed to different types of predators and between populations experiencing different degrees of habitat fragmentation. Results The results are unambiguous: Changes in landscape fragmentation and the numerical response of predators are clearly portrayed in the statistical time series structure as predicted by the autoregressive model. Populations without predators displayed significantly stronger negative direct density dependence than did those exposed to predators, where direct density dependence was only moderately negative. The effects of predation versus no predation had an even stronger effect on the delayed density dependence of the simulated prey populations. In non-predated prey populations, the coefficients of delayed density dependence were distinctly positive, whereas they were negative in predated populations. Similarly, increasing the degree of fragmentation of optimal habitat available to the prey was accompanied with a shift in the delayed density dependence, from strongly negative to gradually becoming less negative. Conclusion We conclude that statistical second-order autoregressive time series analyses are capable of deciphering interactions within and across trophic levels and their effect on direct and delayed density dependence. PMID:19419539
Rayan, D Mark; Mohamad, Shariff Wan; Dorward, Leejiah; Aziz, Sheema Abdul; Clements, Gopalasamy Reuben; Christopher, Wong Chai Thiam; Traeholt, Carl; Magintan, David
2012-12-01
The endangered Asian tapir (Tapirus indicus) is threatened by large-scale habitat loss, forest fragmentation and increased hunting pressure. Conservation planning for this species, however, is hampered by a severe paucity of information on its ecology and population status. We present the first Asian tapir population density estimate from a camera trapping study targeting tigers in a selectively logged forest within Peninsular Malaysia using a spatially explicit capture-recapture maximum likelihood based framework. With a trap effort of 2496 nights, 17 individuals were identified corresponding to a density (standard error) estimate of 9.49 (2.55) adult tapirs/100 km(2) . Although our results include several caveats, we believe that our density estimate still serves as an important baseline to facilitate the monitoring of tapir population trends in Peninsular Malaysia. Our study also highlights the potential of extracting vital ecological and population information for other cryptic individually identifiable animals from tiger-centric studies, especially with the use of a spatially explicit capture-recapture maximum likelihood based framework. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.
Functional and numerical responses of shrews to competition vary with mouse density.
Eckrich, Carolyn A; Flaherty, Elizabeth A; Ben-David, Merav
2018-01-01
For decades, ecologists have debated the importance of biotic interactions (e.g., competition) and abiotic factors in regulating populations. Competition can influence patterns of distribution, abundance, and resource use in many systems but remains difficult to measure. We quantified competition between two sympatric small mammals, Keen's mice (Peromyscus keeni) and dusky shrews (Sorex monticolus), in four habitat types on Prince of Wales Island in Southeast Alaska. We related shrew density to that of mice using standardized regression models while accounting for habitat variables in each year from 2010-2012, during which mice populations peaked (2011) and then crashed (2012). Additionally, we measured dietary overlap and segregation using stable isotope analysis and kernel utilization densities and estimated the change in whole community energy consumption among years. We observed an increase in densities of dusky shrews after mice populations crashed in 2012 as expected under competitive release. In addition, competition coefficients revealed that the influence of Keen's mice was dependent on their density. Also in 2012, shrew diets shifted, indicating that they were able to exploit resources previously used by mice. Nonetheless, increases in shrew numbers only partially compensated for the community energy consumption because, as insectivores, they are unlikely to utilize all food types consumed by their competitors. In pre-commercially thinned stands, which exhibit higher diversity of resources compared to other habitat types, shrew populations were less affected by changes in mice densities. These spatially and temporally variable interactions between unlikely competitors, observed in a relatively simple, high-latitude island ecosystem, highlight the difficulty in assessing the role of biotic factors in structuring communities.
Gately, Conor K; Hutyra, Lucy R; Wing, Ian Sue; Brondfield, Max N
2013-03-05
On-road transportation is responsible for 28% of all U.S. fossil-fuel CO2 emissions. Mapping vehicle emissions at regional scales is challenging due to data limitations. Existing emission inventories use spatial proxies such as population and road density to downscale national or state-level data. Such procedures introduce errors where the proxy variables and actual emissions are weakly correlated, and limit analysis of the relationship between emissions and demographic trends at local scales. We develop an on-road emission inventory product for Massachusetts-based on roadway-level traffic data obtained from the Highway Performance Monitoring System (HPMS). We provide annual estimates of on-road CO2 emissions at a 1 × 1 km grid scale for the years 1980 through 2008. We compared our results with on-road emissions estimates from the Emissions Database for Global Atmospheric Research (EDGAR), with the Vulcan Product, and with estimates derived from state fuel consumption statistics reported by the Federal Highway Administration (FHWA). Our model differs from FHWA estimates by less than 8.5% on average, and is within 5% of Vulcan estimates. We found that EDGAR estimates systematically exceed FHWA by an average of 22.8%. Panel regression analysis of per-mile CO2 emissions on population density at the town scale shows a statistically significant correlation that varies systematically in sign and magnitude as population density increases. Population density has a positive correlation with per-mile CO2 emissions for densities below 2000 persons km(-2), above which increasing density correlates negatively with per-mile emissions.
The relationship between population density and cancer mortality in Taiwan.
Yang, C Y; Hsieh, Y L
1998-04-01
Many investigators have examined urbanization gradients in cancer rates. The purpose of this report was to identify urban-rural trends in cancer mortality rates (1982-1991) for municipalities in Taiwan. For this purpose, Taiwan's municipalities were classified as rural, suburban, urban, or metropolitan, using population density as an ordinal indicator of the degree of urbanization. Average annual age-adjusted, site-specific cancer mortality rates were calculated for both sexes within each population density group. Significant increasing trends with more urbanization were observed in mortality rates for cancers of the lung, pancreas, and kidney among both males and females, as well as male prostate cancer, and female breast and ovary cancer. In addition, this study revealed a significant rural excess for nonmelanoma skin cancer among both males and females, as well as male non-Hodgkin's lymphoma, and cancers of the female bone, and female connective tissue. Analytic studies for sites with consistent urban-rural trends may be fruitful in identifying the aspect of population density, or other unmeasured factors, that contribute to these trends.
Duffy, Stephen W; Morrish, Oliver W E; Allgood, Prue C; Black, Richard; Gillan, Maureen G C; Willsher, Paula; Cooke, Julie; Duncan, Karen A; Michell, Michael J; Dobson, Hilary M; Maroni, Roberta; Lim, Yit Y; Purushothaman, Hema N; Suaris, Tamara; Astley, Susan M; Young, Kenneth C; Tucker, Lorraine; Gilbert, Fiona J
2018-01-01
Mammographic density has been shown to be a strong independent predictor of breast cancer and a causative factor in reducing the sensitivity of mammography. There remain questions as to the use of mammographic density information in the context of screening and risk management, and of the association with cancer in populations known to be at increased risk of breast cancer. To assess the association of breast density with presence of cancer by measuring mammographic density visually as a percentage, and with two automated volumetric methods, Quantra™ and VolparaDensity™. The TOMosynthesis with digital MammographY (TOMMY) study of digital breast tomosynthesis in the Breast Screening Programme of the National Health Service (NHS) of the United Kingdom (UK) included 6020 breast screening assessment cases (of whom 1158 had breast cancer) and 1040 screened women with a family history of breast cancer (of whom two had breast cancer). We assessed the association of each measure with breast cancer risk in these populations at enhanced risk, using logistic regression adjusted for age and total breast volume as a surrogate for body mass index (BMI). All density measures showed a positive association with presence of cancer and all declined with age. The strongest effect was seen with Volpara absolute density, with a significant 3% (95% CI 1-5%) increase in risk per 10 cm 3 of dense tissue. The effect of Volpara volumetric density on risk was stronger for large and grade 3 tumours. Automated absolute breast density is a predictor of breast cancer risk in populations at enhanced risk due to either positive mammographic findings or family history. In the screening context, density could be a trigger for more intensive imaging. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Tryon, Christian A.; Faith, J. Tyler
2016-01-01
Increased population density is among the proposed drivers of the behavioural changes culminating in the Middle to Later Stone Age (MSA–LSA) transition and human dispersals from East Africa, but reliable archaeological measures of demographic change are lacking. We use Late Pleistocene–Holocene lithic and faunal data from Nasera rockshelter (Tanzania) to show progressive declines in residential mobility—a variable linked to population density—and technological shifts, the latter associated with environmental changes. These data suggest that the MSA–LSA transition is part of a long-term pattern of changes in residential mobility and technology that reflect human responses to increased population density, with dispersals potentially marking a complementary response to larger populations. This article is part of the themed issue ‘Major transitions in human evolution’. PMID:27298469
Persson, Lennart; Elliott, J Malcolm
2013-05-01
The theory of cannibal dynamics predicts a link between population dynamics and individual life history. In particular, increased individual growth has, in both modeling and empirical studies, been shown to result from a destabilization of population dynamics. We used data from a long-term study of the dynamics of two leech (Erpobdella octoculata) populations to test the hypothesis that maximum size should be higher in a cycling population; one of the study populations exhibited a delayed feedback cycle while the other population showed no sign of cyclicity. A hump-shaped relationship between individual mass of 1-year-old leeches and offspring density the previous year was present in both populations. As predicted from the theory, the maximum mass of individuals was much larger in the fluctuating population. In contrast to predictions, the higher growth rate was not related to energy extraction from cannibalism. Instead, the higher individual mass is suggested to be due to increased availability of resources due to a niche widening with increased individual body mass. The larger individual mass in the fluctuating population was related to a stronger correlation between the densities of 1-year-old individuals and 2-year-old individuals the following year in this population. Although cannibalism was the major mechanism regulating population dynamics, its importance was negligible in terms of providing cannibalizing individuals with energy subsequently increasing their fecundity. Instead, the study identifies a need for theoretical and empirical studies on the largely unstudied interplay between ontogenetic niche shifts and cannibalistic population dynamics.
Population viability of the Snake River chinook salmon (Oncorhynchus tshawytscha)
Emlen, John M.
1995-01-01
In the presence of historical data, population viability models of intermediate complexity can be parameterized and utilized to project the consequences of various management actions for endangered species. A general stochastic population dynamics model with density feedback, age structure, and autocorrelated environmental fluctuations was constructed and parameterized for best fit over 36 years of spring chinook salmon (Oncorhynchus tshawytscha) redd count data in five Idaho index streams. Simulations indicate that persistence of the Snake River spring chinook salmon population depends primarily on density-independent mortality. Improvement of rearing habitat, predator control, reduced fishing pressure, and improved dam passage all would alleviate density-independent mortality. The current value of the Ricker α should provide for a continuation of the status quo. A recovery of the population to 1957–1961 levels within 100 years would require an approximately 75% increase in survival and (or) fecundity. Manipulations of the Ricker β are likely to have little or no effect on persistence versus extinction, but considerable influence on population size.
Population cycles: generalities, exceptions and remaining mysteries
2018-01-01
Population cycles are one of nature's great mysteries. For almost a hundred years, innumerable studies have probed the causes of cyclic dynamics in snowshoe hares, voles and lemmings, forest Lepidoptera and grouse. Even though cyclic species have very different life histories, similarities in mechanisms related to their dynamics are apparent. In addition to high reproductive rates and density-related mortality from predators, pathogens or parasitoids, other characteristics include transgenerational reduced reproduction and dispersal with increasing-peak densities, and genetic similarity among populations. Experiments to stop cyclic dynamics and comparisons of cyclic and noncyclic populations provide some understanding but both reproduction and mortality must be considered. What determines variation in amplitude and periodicity of population outbreaks remains a mystery. PMID:29563267
Association Between Increased Vascular Density and Loss of Protective RAS in Early-stage NPDR
NASA Technical Reports Server (NTRS)
Radhakrishnan, Krishnan; Raghunandan, Sneha; Vyas, Ruchi J.; Vu, Amanda C.; Bryant, Douglas; Yaqian, Duan; Knecht, Brenda E.; Grant, Maria B.; Chalam, K. V.; Parsons-Wingerter, Patricia
2016-01-01
Our hypothesis predicts that retinal blood vessels increase in density during early-stage progression to moderate nonproliferative diabetic retinopathy (NPDR). The renin-angiotensin system (RAS) is implicated in the pathogenesis of DR and in the function of circulating angiogenic cells (CACs), a critical bone marrow-derived population that is instrumental in vascular repair.
Wayne A. Freimund; David N. Cole
2001-01-01
Recent increases in demand have revitalized interest and controversy surrounding use limits and the effect of visitor density on wilderness experiences. A workshop held in Missoula, Montana, in June of 2000 addressed the potential for social science to contribute to understanding and managing increasingly populated wilderness conditions. Scientists identified progress...
Estimating population density and connectivity of American mink using spatial capture-recapture
Fuller, Angela K.; Sutherland, Christopher S.; Royle, Andy; Hare, Matthew P.
2016-01-01
Estimating the abundance or density of populations is fundamental to the conservation and management of species, and as landscapes become more fragmented, maintaining landscape connectivity has become one of the most important challenges for biodiversity conservation. Yet these two issues have never been formally integrated together in a model that simultaneously models abundance while accounting for connectivity of a landscape. We demonstrate an application of using capture–recapture to develop a model of animal density using a least-cost path model for individual encounter probability that accounts for non-Euclidean connectivity in a highly structured network. We utilized scat detection dogs (Canis lupus familiaris) as a means of collecting non-invasive genetic samples of American mink (Neovison vison) individuals and used spatial capture–recapture models (SCR) to gain inferences about mink population density and connectivity. Density of mink was not constant across the landscape, but rather increased with increasing distance from city, town, or village centers, and mink activity was associated with water. The SCR model allowed us to estimate the density and spatial distribution of individuals across a 388 km2 area. The model was used to investigate patterns of space usage and to evaluate covariate effects on encounter probabilities, including differences between sexes. This study provides an application of capture–recapture models based on ecological distance, allowing us to directly estimate landscape connectivity. This approach should be widely applicable to provide simultaneous direct estimates of density, space usage, and landscape connectivity for many species.
Estimating population density and connectivity of American mink using spatial capture-recapture.
Fuller, Angela K; Sutherland, Chris S; Royle, J Andrew; Hare, Matthew P
2016-06-01
Estimating the abundance or density of populations is fundamental to the conservation and management of species, and as landscapes become more fragmented, maintaining landscape connectivity has become one of the most important challenges for biodiversity conservation. Yet these two issues have never been formally integrated together in a model that simultaneously models abundance while accounting for connectivity of a landscape. We demonstrate an application of using capture-recapture to develop a model of animal density using a least-cost path model for individual encounter probability that accounts for non-Euclidean connectivity in a highly structured network. We utilized scat detection dogs (Canis lupus familiaris) as a means of collecting non-invasive genetic samples of American mink (Neovison vison) individuals and used spatial capture-recapture models (SCR) to gain inferences about mink population density and connectivity. Density of mink was not constant across the landscape, but rather increased with increasing distance from city, town, or village centers, and mink activity was associated with water. The SCR model allowed us to estimate the density and spatial distribution of individuals across a 388 km² area. The model was used to investigate patterns of space usage and to evaluate covariate effects on encounter probabilities, including differences between sexes. This study provides an application of capture-recapture models based on ecological distance, allowing us to directly estimate landscape connectivity. This approach should be widely applicable to provide simultaneous direct estimates of density, space usage, and landscape connectivity for many species.
How can mortality increase population size? A test of two mechanistic hypotheses.
McIntire, Kristina M; Juliano, Steven A
2018-05-03
Overcompensation occurs when added mortality increases survival to the next life-cycle stage. Overcompensation can contribute to the Hydra Effect, wherein added mortality increases equilibrium population size. One hypothesis for overcompensation is that added mortality eases density-dependence, increasing survival to adulthood ("temporal separation of mortality and density dependence"). Mortality early in the life cycle is therefore predicted to cause overcompensation, whereas mortality later in the life cycle is not. Another hypothesis for overcompensation is that threat of mortality (e.g., from predation) causes behavioral changes that reduce overexploitation of resources, allowing resource recovery, and increasing production of adults ("prudent resource exploitation"). Behaviorally active predation cues alone are therefore predicted to cause overcompensation. We tested these predictions in two experiments with larvae of two species of Aedes. As predicted, early mortality yielded greater production of adults, and of adult females, and greater estimated rate of population increase than did later mortality. Addition of water-borne predation cues usually reduced browsing on surfaces in late-stage larvae, but contrary to prediction, resulted in neither significantly greater production of adult mosquitoes nor significantly greater estimated rate of increase. Thus we have strong evidence that timing of mortality contributes to overcompensation and the Hydra effect in mosquitoes. Evidence that predation cues alone can result in overcompensation via prudent resource exploitation is lacking. We expect the overcompensation in response to early mortality will be common in organisms with complex life cycles, density dependence among juveniles, and developmental control of populations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Naugle, R.E.; Rutberg, A.T.; Underwood, H.B.; Turner, J.W.; Liu, I.K.; Kirkpatrick, J.F.; Lasley, B.L.; Allen, W.R.; Doberska, C.
2002-01-01
Application of contraception for the control of suburban populations of white-tailed deer (Odocoileus virginianus) has been much debated, but few data are available on field applications and even fewer on population effects. Between 1993 and 1997, 74-164 individually known female deer living on Fire Island, New York, USA, were treated remotely with an initial shot of 65 microg porcine zona pellucida (PZP) in Freund's complete adjuvant followed by booster injections of 65 microg PZP in Freund's incomplete adjuvant. Starting in 1996, progressively increasing numbers of deer were treated with vaccinating/marking darts. Estimates of population density and composition, using distance sampling methods, began in 1995 in selected portions of the study area. Between 1993 and 1997, fawning rates among individually known, treated adult females decreased by 78.9% from pretreatment rates. Population density in the most heavily treated area increased by 11% per year from 1995 to March 1998 and then decreased at 23% per year to October 2000. In 1999-2000 surveys, fawns comprised 13-14% of the total population in the most heavily treated area, versus 16-33% in nearby untreated areas. These results show that PZP can be delivered effectively to sufficient deer to affect population density and composition in some environments, but that technical and logistical improvements are needed before contraception can be used widely to manage suburban deer populations.
The influence of predation on the chronic response of Artemia sp. populations to a toxicant
BEKETOV, MIKHAIL A; LIESS, MATTHIAS
2006-01-01
Environmental risk assessment of contaminants is conventionally based on toxic effects assessed in organism-level test systems. We suggest that, for the prediction of toxicant effects, population- and community-level effects should be considered. The aim of this study was to investigate how predation could alter a prey population's response to a toxicant to reveal effects at population and community levels.Populations of the brine shrimp Artemia sp. were maintained in the laboratory with and without simulated predation. Individuals were exposed for 1 h to the pyrethroid insecticide esfenvalerate (0, 0·01, 0·04 and 0·08 µg L−1) and subsequently observed for 6 weeks.Unpredated exposed populations showed a reduced population density compared with the control. However, even at the highest concentration of insecticide, populations were sustained until the end of the experiment. The lower density in the exposed populations led to reduced competition and subsequently to enhanced development of surviving individuals and an increased proportion of young individuals. In contrast, the combination of predation and short-term toxicant exposure at concentrations of 0·04 and 0·08 µg L−1 produced extinction of the populations after 39 and 32 days of exposure, respectively.Synthesis and applications. The response of populations of brine shrimp to toxicants at the community level may be stronger when predation is present than the response of populations without predation pressure, as the regulation capacity of the population (measured as an increased production of offspring at reduced population densities) is exhausted when predation is present. Future ecotoxicological risk assessment schemes should consider relevant community characteristics such as predation as part of an environmental risk assessment. PMID:18784796
Webb, R.E.; Leslie, David M.; Lochmiller, R.L.; Masters, R.E.
2005-01-01
Considerable research supports the tenet that quantity and quality of food limit vertebrate populations. We evaluated predictions that increased availabilities of food and the essential amino acid methionine were related to population limitation of the hispid cotton rat (Sigmodon hispidus). Effects of supplemental food and methionine on density, survival, and reproductive parameters of wild cotton rats were assessed in north-central Oklahoma in 1998-1999. Twelve enclosed groups of 16 adult cotton rats each (8 male, 8 female) were randomly assigned to either no supplementation (control), supplementation with a mixed ration that had methionine at slightly below maintenance levels (0.20%), or a methionine-enhanced mixed ration (1.20%). In general, densities of cotton rats were twice as high and were sustained longer with dietary supplementation, and methionine-supplemented populations maintained the highest densities. Treatment effects on survival depended on time of year, with higher survival in supplemented enclosures in October and November. Per capita recruitment was highest with methionine-enhanced food. Treatment effects on proportions of overall and female cotton rats in reproductive condition depended on sampling date, but males were most reproductively active with methionine supplementation. Methionine supplementation resulted in an earlier and longer reproductive season. Density-dependent and density-independent factors no doubt interplay to determine population dynamics of cotton rats, but our results suggest that methionine plays a role in the population dynamics of wild cotton rats, apparently by enhancing overall density, recruitment, and reproductive activity of males.
Managing the Cayo Santiago rhesus macaque population: The role of density.
Hernandez-Pacheco, Raisa; Delgado, Diana L; Rawlins, Richard G; Kessler, Matthew J; Ruiz-Lambides, Angelina V; Maldonado, Elizabeth; Sabat, Alberto M
2016-01-01
Cayo Santiago is the oldest continuously operating free-ranging rhesus monkey colony in the world. Population control of this colony has historically been carried out by periodic live capture and removal of animals. However, the effect of such a strategy on the size, growth rate, age structure, and sex ratio of the population has not been analyzed. This study reviews past removal data and uses a population projection model to simulate the effects of different removal schemes based on Cayo Santiago demographic data from 2000-2012. The model incorporates negative density-dependence in female fertility, as well as male and female survival rates, to determine the population-level effects of selective removal by age and sex. Modeling revealed that removal of sexually immature individuals has negligible effects on the population dynamics explaining why with an initial population of 1309 in 2000 and annual removals of immature monkeys a mean annual population growth rate of 12% and a final population size of ∼1,435 individuals by 2012 (∼0.009 animal/m(2) ) was observed. With no removals, the population is expected to exhibit dampened oscillations until reaching equilibrium at ∼1,690 individuals (∼0.0111 animal/m(2) ) in 2,100. In contrast, removal of adult females (≥4 yrs) would significantly reduce the population size, but would also promote an increase in population growth rate due to density feedback. A maximum annual production of 275 births is expected when 550 adult females are present in the population. Sensitivity analyses showed that removing females, in contrast to controlling their fertility through invasive treatments would contribute the most to changes in population growth rate. Given the density compensation on fertility, stabilizing the population would require removing ∼80% of the current population of adult females. This study highlights the importance of addressing the population-level density effects, as well as sensitivity analyses, to optimize management strategies. © 2016 Wiley Periodicals, Inc.
Native intra- and inter-specific reactions may cause the paradox of pest control with harvesting.
Seno, Hiromi
2010-05-01
We analyse a general time-discrete mathematical model of host-parasite population dynamics with harvesting, in which the host can be regarded as a pest. We harvest a portion of the host population at a moment in each year. Our model involves the density effect on the host population. We investigate the condition in which the harvesting of the host results in a paradoxical increase of its equilibrium population size. Our results imply that for a family of pest-enemy systems, the paradox of pest control could be caused essentially by the interspecific relationship and the intraspecific density effect.
Double Exposure and the Climate Gap: Changing demographics and extreme heat in Ciudad Juárez, Mexico
Collins, Timothy W.; McDonald, Yolanda J.; Aldouri, Raed; Aboargob, Faraj; Eldeb, Abdelatif; Aguilar, María de Lourdes Romo; Velázquez-Angulo, Juárez Gilberto
2013-01-01
Scholars have recognized a climate gap, wherein poor communities face disproportionate impacts of climate change. Others have noted that climate change and economic globalization may mutually affect a region or social group, leading to double exposure. This paper investigates how current and changing patterns of neighborhood demographics are associated with extreme heat in the border city of Juárez, Mexico. Many Juárez neighborhoods are at-risk to triple exposures, in which residents suffer due to the conjoined effects of the global recession, drug war violence, and extreme heat. Due to impacts of the recession on maquiladora employment and the explosion of drug violence (since 2008), over 75% of neighborhoods experienced decreasing population density between 2000 and 2010 and the average neighborhood saw a 40% increase in the proportion of older adults. Neighborhoods with greater drops in population density and increases in the proportion of older residents over the decade are at significantly higher risk to extreme heat, as are neighborhoods with lower population density and lower levels of education. In this context, triple exposures are associated with a climate gap that most endangers lower socioeconomic status and increasingly older aged populations remaining in neighborhoods from which high proportions of residents have departed. PMID:25642135
Grineski, Sara E; Collins, Timothy W; McDonald, Yolanda J; Aldouri, Raed; Aboargob, Faraj; Eldeb, Abdelatif; Aguilar, María de Lourdes Romo; Velázquez-Angulo, Juárez Gilberto
2015-02-01
Scholars have recognized a climate gap, wherein poor communities face disproportionate impacts of climate change. Others have noted that climate change and economic globalization may mutually affect a region or social group, leading to double exposure. This paper investigates how current and changing patterns of neighborhood demographics are associated with extreme heat in the border city of Juárez, Mexico. Many Juárez neighborhoods are at-risk to triple exposures, in which residents suffer due to the conjoined effects of the global recession, drug war violence, and extreme heat. Due to impacts of the recession on maquiladora employment and the explosion of drug violence (since 2008), over 75% of neighborhoods experienced decreasing population density between 2000 and 2010 and the average neighborhood saw a 40% increase in the proportion of older adults. Neighborhoods with greater drops in population density and increases in the proportion of older residents over the decade are at significantly higher risk to extreme heat, as are neighborhoods with lower population density and lower levels of education. In this context, triple exposures are associated with a climate gap that most endangers lower socioeconomic status and increasingly older aged populations remaining in neighborhoods from which high proportions of residents have departed.
Pafilis, Panayiotis; Meiri, Shai; Foufopoulos, Johannes; Valakos, Efstratios
2009-09-01
Resource availability, competition, and predation commonly drive body size evolution. We assess the impact of high food availability and the consequent increased intraspecific competition, as expressed by tail injuries and cannibalism, on body size in Skyros wall lizards (Podarcis gaigeae). Lizard populations on islets surrounding Skyros (Aegean Sea) all have fewer predators and competitors than on Skyros but differ in the numbers of nesting seabirds. We predicted the following: (1) the presence of breeding seabirds (providing nutrients) will increase lizard population densities; (2) dense lizard populations will experience stronger intraspecific competition; and (3) such aggression, will be associated with larger average body size. We found a positive correlation between seabird and lizard densities. Cannibalism and tail injuries were considerably higher in dense populations. Increases in cannibalism and tail loss were associated with large body sizes. Adult cannibalism on juveniles may select for rapid growth, fuelled by high food abundance, setting thus the stage for the evolution of gigantism.
Demay, Stephanie M; Becker, Penny A; Waits, Lisette P; Johnson, Timothy R; Rachlow, Janet L
2016-04-01
Understanding reproduction and mating systems is important for managers tasked with conserving vulnerable species. Genetic tools allow biologists to investigate reproduction and mating systems with high resolution and are particularly useful for species that are otherwise difficult to study in their natural environments. We conducted parentage analyses using 19 nuclear DNA microsatellite loci to assess the influence of population density, genetic diversity, and ancestry on reproduction, and to examine the mating system of pygmy rabbits (Brachylagus idahoensis) bred in large naturalized enclosures for the reintroduction and recovery of the endangered distinct population in central Washington, USA. Reproductive output for females and males decreased as population density and individual homozygosity increased. We identified an interaction indicating that male reproductive output decreased as genetic diversity declined at high population densities, but there was no effect at low densities. Males with high amounts (> 50%) of Washington ancestry had higher reproductive output than the other ancestry groups, while reproductive output was decreased for males with high northern Utah/Wyoming ancestry and females with high Oregon/Nevada ancestry. Females and males bred with an average of 3.8 and 3.6 mates per year, respectively, and we found no evidence of positive or negative assortative mating with regards to ancestry. Multiple paternity was confirmed in 81% of litters, and we report the first documented cases of juvenile breeding by pygmy rabbits. This study demonstrates how variation in population density, genetic diversity, and ancestry impact fitness for an endangered species being bred for conservation. Our results advance understanding of basic life history characteristics for a cryptic species that is difficult to study in the wild and provide lessons for managing populations of vulnerable species in captive and free-ranging populations.
Effects of temporal variation in temperature and density dependence on insect population dynamics
USDA-ARS?s Scientific Manuscript database
Understanding effects of environmental variation on insect populations is important in light of predictions about increasing future climatic variability. In order to understand the effects of changing environmental variation on population dynamics and life history evolution in insects one would need...
Tveraa, Torkild; Stien, Audun; Brøseth, Henrik; Yoccoz, Nigel G
2014-01-01
A major challenge in biodiversity conservation is to facilitate viable populations of large apex predators in ecosystems where they were recently driven to ecological extinction due to resource conflict with humans. Monetary compensation for losses of livestock due to predation is currently a key instrument to encourage human–carnivore coexistence. However, a lack of quantitative estimates of livestock losses due to predation leads to disagreement over the practice of compensation payments. This disagreement sustains the human–carnivore conflict. The level of depredation on year-round, free-ranging, semi-domestic reindeer by large carnivores in Fennoscandia has been widely debated over several decades. In Norway, the reindeer herders claim that lynx and wolverine cause losses of tens of thousands of animals annually and cause negative population growth in herds. Conversely, previous research has suggested that monetary predator compensation can result in positive population growth in the husbandry, with cascading negative effects of high grazer densities on the biodiversity in tundra ecosystems. We utilized a long-term, large-scale data set to estimate the relative importance of lynx and wolverine predation and density-dependent and climatic food limitation on claims for losses, recruitment and population growth rates in Norwegian reindeer husbandry. Claims of losses increased with increasing predator densities, but with no detectable effect on population growth rates. Density-dependent and climatic effects on claims of losses, recruitment and population growth rates were much stronger than the effects of variation in lynx and wolverine densities. Synthesis and applications. Our analysis provides a quantitative basis for predator compensation and estimation of the costs of reintroducing lynx and wolverine in areas with free-ranging semi-domestic reindeer. We outline a potential path for conflict management which involves adaptive monitoring programmes, open access to data, herder involvement and development of management strategy evaluation (MSE) models to disentangle complex responses including multiple stakeholders and individual harvester decisions. PMID:25558085
Lewis, Jesse S; Logan, Kenneth A; Alldredge, Mat W; Bailey, Larissa L; VandeWoude, Sue; Crooks, Kevin R
2015-10-01
Urbanization is a primary driver of landscape conversion, with far-reaching effects on landscape pattern and process, particularly related to the population characteristics of animals. Urbanization can alter animal movement and habitat quality, both of which can influence population abundance and persistence. We evaluated three important population characteristics (population density, site occupancy, and species detection probability) of a medium-sized and a large carnivore across varying levels of urbanization. Specifically, we studied bobcat and puma populations across wildland, exurban development, and wildland-urban interface (WUI) sampling grids to test hypotheses evaluating how urbanization affects wild felid populations and their prey. Exurban development appeared to have a greater impact on felid populations than did habitat adjacent to a major urban area (i.e., WUI); estimates of population density for both bobcats and pumas were lower in areas of exurban development compared to wildland areas, whereas population density was similar between WUI and wildland habitat. Bobcats and pumas were less likely to be detected in habitat as the amount of human disturbance associated with residential development increased at a site, which was potentially related to reduced habitat quality resulting from urbanization. However, occupancy of both felids was similar between grids in both study areas, indicating that this population metric was less sensitive than density. At the scale of the sampling grid, detection probability for bobcats in urbanized habitat was greater than in wildland areas, potentially due to restrictive movement corridors and funneling of animal movements in landscapes influenced by urbanization. Occupancy of important felid prey (cottontail rabbits and mule deer) was similar across levels of urbanization, although elk occupancy was lower in urbanized areas. Our study indicates that the conservation of medium- and large-sized felids associated with urbanization likely will be most successful if large areas of wildland habitat are maintained, even in close proximity to urban areas, and wildland habitat is not converted to low-density residential development.
NASA Technical Reports Server (NTRS)
Provancha, J. A.; Provancha, M. J.
1988-01-01
Four aerial survey projects were conducted between 1977 and 1986 to determine the abundance, density and distribution of West Indian manatees (Trichechus manatus), in the northern Banana River, Kennedy Space Center, Florida. Manatee density and distribution within selected portions of the 78.5 sq km study area were determined. Peak numbers of manatees occurred in spring of each year. The maximum counts increased from 56 in 1978 to 297 in 1986. Manatee abundance was lowest in the winter of each year. Mean density per flight increased from 0.52 manatees/sq km in 1977-78 to 2.73/sq km in 1984-86. This increase may reflect increases in the east coast population or shifts in the population distribution. Distributional changes were observed in the study area through time, with a lower percentage of manatees occurring in industrial areas and a correspondingly higher percentage of manatees in nonindustrial areas by 1985.
1981-01-01
Data are included on territory and population in Czechoslovakia; population development, 1869-1980; resident population by sex, 1970 and 1980; population by broad age group, 1970 and 1980; population by nationality, 1980; economic activity; housing; population density; natural increase, 1971-1980; number of women aged 15-29, 1978-1980; marriage and divorce, 1978-1980; abortion, live births, and reproduction rate, 1978-1980; population over age 60, 1978-1980; mortality and life expectancy, 1978-1980; infant and neonatal mortality, 1978-1980; mortality and causes of death, 1979-1980; infant mortality by cause, 1979-1980; internal and international migration, 1978-1980; sex ratio, 1978-1980; and natural increase, 1975-1981.
Barber-Meyer, Shannon; Ryan, Daniel; Grosshuesch, David; Catton, Timothy; Malick-Wahls, Sarah
2018-01-01
core areas and averaged 52.3 (SD=8.3, range=43-59) during 2015-2017 in the larger core areas. We found no evidence for a decrease or increase in abundance during either period. Lynx density estimates were approximately 7-10 times lower than densities of lynx in northern populations at the low of the snowshoe hare (Lepus americanus) population cycle. To our knowledge, our results are the first attempt to estimate abundance, trend and density of lynx in Minnesota using non-invasive genetic capture-mark-recapture. Estimates such as ours provide useful benchmarks for future comparisons by providing a context with which to assess 1) potential changes in forest management that may affect lynx recovery and conservation, and 2) possible effects of climate change on the depth, density, and duration of annual snow cover and correspondingly, potential effects on snowshoe hares as well.
Impact of deer bait sites on Peromyscus mice in southern Illinois
Madeleine Pfaff; Marie I. Tosa; Matthew T. Springer; Eric M. Schauber; Clayton K. Nielsen
2014-01-01
Wildlife populations are heavily influenced by food availability and predation rates. Changing the distribution of high quality food sources can often alter the distribution of wildlife populations. In particular, increases in food abundance can result in immigration; earlier breeding; and increased productivity, survival, and density of wildlife (Morris et al. 2011)....
NASA Astrophysics Data System (ADS)
Alves, Renata M. S.; Vanaverbeke, Jan; Bouma, Tjeerd J.; Guarini, Jean-Marc; Vincx, Magda; Van Colen, Carl
2017-03-01
Ecosystem engineers contribute to ecosystem functioning by regulating key environmental attributes, such as habitat availability and sediment biogeochemistry. While autogenic engineers can increase habitat complexity passively and provide physical protection to other species, allogenic engineers can regulate sediment oxygenation and biogeochemistry through bioturbation and/or bioirrigation. Their effects rely on the physical attributes of the engineer and/or its biogenic constructs, such as abundance and/or size. The present study focused on tube aggregations of a sessile, tube-building polychaete that engineers marine sediments, Lanice conchilega. Its tube aggregations modulate water flow by dissipating energy, influencing sedimentary processes and increasing particle retention. These effects can be influenced by temporal fluctuations in population demographic processes. Presently, we investigated the relationship between population processes and ecosystem engineering through an in-situ survey (1.5 years) of L. conchilega aggregations at the sandy beach of Boulogne-sur-Mer (France). We (1) evaluated temporal patterns in population structure, and (2) investigated how these are related to the ecosystem engineering of L. conchilega on marine sediments. During our survey, we assessed tube density, demographic structure, and sediment properties (surficial chl-a, EPS, TOM, median and mode grain size, sorting, and mud and water content) on a monthly basis for 12 intertidal aggregations. We found that the population was mainly composed by short-lived (6-10 months), small-medium individuals. Mass mortality severely reduced population density during winter. However the population persisted, likely due to recruits from other populations, which are associated to short- and long-term population dynamics. Two periods of recruitment were identified: spring/summer and autumn. Population density was highest during the spring recruitment and significantly affected several environmental properties (i.e. EPS, TOM, mode grain size, mud and water content), suggesting that demographic processes may be responsible for periods of pronounced ecosystem engineering with densities of approx. 30 000 ind·m-2.
Carlson, Jane E; Adams, Christopher A; Holsinger, Kent E
2016-01-01
Trait-environment relationships are commonly interpreted as evidence for local adaptation in plants. However, even when selection analyses support this interpretation, the mechanisms underlying differential benefits are often unknown. This study addresses this gap in knowledge using the broadly distributed South African shrub Protea repens. Specifically, the study examines whether broad-scale patterns of trait variation are consistent with spatial differences in selection and ecophysiology in the wild. In a common garden study of plants sourced from 19 populations, associations were measured between five morphological traits and three axes describing source climates. Trait-trait and trait-environment associations were analysed in a multi-response model. Within two focal populations in the wild, selection and path analyses were used to test associations between traits, fecundity and physiological performance. Across 19 populations in a common garden, stomatal density increased with the source population's mean annual temperature and decreased with its average amount of rainfall in midsummer. Concordantly, selection analysis in two natural populations revealed positive selection on stomatal density at the hotter, drier site, while failing to detect selection at the cooler, moister site. Dry-site plants with high stomatal density also had higher stomatal conductances, cooler leaf temperatures and higher light-saturated photosynthetic rates than those with low stomatal density, but no such relationships were present among wet-site plants. Leaf area, stomatal pore index and specific leaf area in the garden also co-varied with climate, but within-population differences were not associated with fitness in either wild population. The parallel patterns of broad-scale variation, differences in selection and differences in trait-ecophysiology relationships suggest a mechanism for adaptive differentiation in stomatal density. Densely packed stomata may improve performance by increasing transpiration and cooling, but predominately in drier, hotter climates. This study uniquely shows context-dependent benefits of stomatal density--a trait rarely linked to local adaptation in plants. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Martinez, Jeannette C; Caprio, Michael A; Friedenberg, Nicholas A
2018-02-09
It has long been recognized that pest population dynamics can affect the durability of a pesticide, but dose remains the primary component of insect resistance management (IRM). For transgenic pesticidal traits such as Bt (Bacillus thuringiensis Berliner (Bacillales: Bacillaceae)), dose (measured as the mortality of susceptibles caused by a toxin) is a relatively fixed characteristic and often falls below the standard definition of high dose. Hence, it is important to understand how pest population dynamics modify durability and what targets they present for IRM. We used a deterministic model of a generic arthropod pest to examine how timing and strength of density dependence interacted with population growth rate and Bt mortality to affect time to resistance. As in previous studies, durability typically reached a minimum at intermediate doses. However, high population growth rates could eliminate benefits of high dose. The timing of density dependence had a more subtle effect. If density dependence operated simultaneously with Bt mortality, durability was insensitive to its strengths. However, if density dependence was driven by postselection densities, decreasing its strength could increase durability. The strength of density dependence could affect durability of both single traits and pyramids, but its influence depended on the timing of density dependence and size of the refuge. Our findings suggest the utility of a broader definition of high dose, one that incorporates population-dynamic context. That maximum growth rates and timing and strength of interactions causing density dependent mortality can all affect durability, also highlights the need for ecologically integrated approaches to IRM research. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Density dependence in group dynamics of a highly social mongoose, Suricata suricatta.
Bateman, Andrew W; Ozgul, Arpat; Coulson, Tim; Clutton-Brock, Tim H
2012-05-01
1. For social species, the link between individual behaviour and population dynamics is mediated by group-level demography. 2. Populations of obligate cooperative breeders are structured into social groups, which may be subject to inverse density dependence (Allee effects) that result from a dependence on conspecific helpers, but evidence for population-wide Allee effects is rare. 3. We use field data from a long-term study of cooperative meerkats (Suricata suricatta; Schreber, 1776) - a species for which local Allee effects are not reflected in population-level dynamics - to empirically model interannual group dynamics. 4. Using phenomenological population models, modified to incorporate environmental conditions and potential Allee effects, we first investigate overall patterns of group dynamics and find support only for conventional density dependence that increases after years of low rainfall. 5. To explain the observed patterns, we examine specific demographic rates and assess their contributions to overall group dynamics. Although per-capita meerkat mortality is subject to a component Allee effect, it contributes relatively little to observed variation in group dynamics, and other (conventionally density dependent) demographic rates - especially emigration - govern group dynamics. 6. Our findings highlight the need to consider demographic processes and density dependence in subpopulations before drawing conclusions about how behaviour affects population processes in socially complex systems. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
Cheyne, Susan M; Thompson, Claire J H; Phillips, Abigail C; Hill, Robyn M C; Limin, Suwido H
2008-01-01
We demonstrate that although auditory sampling is a useful tool, this method alone will not provide a truly accurate indication of population size, density and distribution of gibbons in an area. If auditory sampling alone is employed, we show that data collection must take place over a sufficient period to account for variation in calling patterns across seasons. The population of Hylobates albibarbis in the Sabangau catchment, Central Kalimantan, Indonesia, was surveyed from July to December 2005 using methods established previously. In addition, auditory sampling was complemented by detailed behavioural data on six habituated groups within the study area. Here we compare results from this study to those of a 1-month study conducted in 2004. The total population of the Sabangau catchment is estimated to be about in the tens of thousands, though numbers, distribution and density for the different forest subtypes vary considerably. We propose that future density surveys of gibbons must include data from all forest subtypes where gibbons are found and that extrapolating from one forest subtype is likely to yield inaccurate density and population estimates. We also propose that auditory census be carried out by using at least three listening posts (LP) in order to increase the area sampled and the chances of hearing groups. Our results suggest that the Sabangau catchment contains one of the largest remaining contiguous populations of Bornean agile gibbon.
Rêgo, Adriano S; Teodoro, Adenir V; Maciel, Anilde G S; Sarmento, Renato A
2013-08-01
The cassava green mite, Mononychellus tanajoa, is a key pest of cassava, Manihot esculenta Crantz (Euphorbiaceae), and it may be kept in check by naturally occurring predatory mites of the family Phytoseiidae. In addition to predatory mites, abiotic factors may also contribute to regulate pest mite populations in the field. Here, we evaluated the population densities of both M. tanajoa and the generalist predatory mite Euseius ho DeLeon (Acari: Phytoseiidae) over the cultivation cycle (11 months) of cassava in four study sites located around the city of Miranda do Norte, Maranhão, Brazil. The abiotic variables rainfall, temperature and relative humidity were also recorded throughout the cultivation cycle of cassava. We determined the relative importance of biotic (density of E. ho) and abiotic (rainfall, temperature and relative humidity) factors to the density of M. tanajoa. The density of M. tanajoa increased whereas the density of E. ho remained constant throughout time. A hierarchical partitioning analysis revealed that most of the variance for the density of M. tanajoa was explained by rainfall and relative humidity followed by E. ho density and temperature. We conclude that abiotic factors, especially rainfall, were the main mechanisms driving M. tanajoa densities.
Jones, Christopher; Kammen, Daniel M
2014-01-21
Which municipalities and locations within the United States contribute the most to household greenhouse gas emissions, and what is the effect of population density and suburbanization on emissions? Using national household surveys, we developed econometric models of demand for energy, transportation, food, goods, and services that were used to derive average household carbon footprints (HCF) for U.S. zip codes, cities, counties, and metropolitan areas. We find consistently lower HCF in urban core cities (∼ 40 tCO2e) and higher carbon footprints in outlying suburbs (∼ 50 tCO2e), with a range from ∼ 25 to >80 tCO2e in the 50 largest metropolitan areas. Population density exhibits a weak but positive correlation with HCF until a density threshold is met, after which range, mean, and standard deviation of HCF decline. While population density contributes to relatively low HCF in the central cities of large metropolitan areas, the more extensive suburbanization in these regions contributes to an overall net increase in HCF compared to smaller metropolitan areas. Suburbs alone account for ∼ 50% of total U.S. HCF. Differences in the size, composition, and location of household carbon footprints suggest the need for tailoring of greenhouse gas mitigation efforts to different populations.
Wildhaber, M.L.; Tabor, V.M.; Whitaker, J.E.; Allert, A.L.; Mulhern, D.W.; Lamberson, Peter J.; Powell, K.L.
2000-01-01
Ictalurid populations, including those of the Neosho madtom Noturus placidus, have been monitored in the Neosho River basin since the U.S. Fish and Wildlife Service listed the Neosho madtom as threatened in 1991. The Neosho madtom presently occurs only in the Neosho River basin, whose hydrologic regime, physical habitat, and water quality have been altered by the construction and operation of reservoirs. Our objective was to assess changes in ictalurid densities, habitat, water quality, and hydrology in relation to the presence of a main-stem reservoir in the Neosho River basin. Study sites were characterized using habitat quality as measured by substrate size, water quality as measured by standard physicochemical measures, and indicators of hydrologic alteration (IHA) as calculated from stream gauge information from the U.S. Geological Survey. Site estimates of ictalurid densities were collected by the U.S. Fish and Wildlife Service annually from 1991 to 1998, with the exception of 1993. Water quality and habitat measurements documented reduced turbidity and altered substrate composition in the Neosho River basin below John Redmond Dam. The effects of the dam on flow were indicated by changes in the short- and long-term minimum and maximum flows. Positive correlations between observed Neosho madtom densities and increases in minimum flow suggest that increased minimum flows could be used to enhance Neosho madtom populations. Positive correlations between Neosho madtom densities and increased flows in the winter and spring months as well as the date of the 1-d annual minimum flow indicate the potential importance of the timing of increased flows to Neosho madtoms. Because of the positive relationships that we found between the densities of Neosho madtoms and those of channel catfish Ictalurus punctatus, stonecats Noturus flavus, and other catfishes, alterations in flow that benefit Neosho madtom populations will probably benefit other members of the benthic fish community of the Neosho River.
Population challenges for Bangladesh in the coming decades.
Streatfield, Peter Kim; Karar, Zunaid Ahsan
2008-09-01
Bangladesh currently has a population approaching 150 million and will add another 100 million before stabilizing, unless fertility can soon drop below replacement level. This level of fertility decline will require a change in marriage patterns, which have been minimal so far, even with increasing female schooling. It would also benefit from a long-awaited shift to long-term contraception. In addition to the consequence of huge population size, the density of population is already five times that of any other 'mega' country (> 100 million), a very challenging situation for an agricultural society. Most of the future growth will be urban, increasingly in slums. Numbers of young people will not increase, but numbers of older people will increase 10-fold this century, creating a large burden on the health system, especially for chronic illnesses. High density of population means that agricultural land is virtually saturated, with very limited capacity to expand food production. Climate change may have dramatic impacts on agriculture, through flooding and drought resulting from weather changes and geopolitical influences on transborder rivers. Rising sea-levels and consequent salinity will affect crops and require shifts to alternative land use. Serious long-term planning is needed for meeting the growing needs of the population, both for distribution and consumption.
Population Challenges for Bangladesh in the Coming Decades
Streatfield, Peter Kim; Karar, Zunaid Ahsan
2008-01-01
Bangladesh currently has a population approaching 150 million and will add another 100 million before stabilizing, unless fertility can soon drop below replacement level. This level of fertility decline will require a change in marriage patterns, which have been minimal so far, even with increasing female schooling. It would also benefit from a long-awaited shift to long-term contraception. In addition to the consequence of huge population size, the density of population is already five times that of any other ‘mega’ country (>100 million), a very challenging situation for an agricultural society. Most of the future growth will be urban, increasingly in slums. Numbers of young people will not increase, but numbers of older people will increase 10-fold this century, creating a large burden on the health system, especially for chronic illnesses. High density of population means that agricultural land is virtually saturated, with very limited capacity to expand food production. Climate change may have dramatic impacts on agriculture, through flooding and drought resulting from weather changes and geopolitical influences on transborder rivers. Rising sea-levels and consequent salinity will affect crops and require shifts to alternative land use. Serious long-term planning is needed for meeting the growing needs of the population, both for distribution and consumption. PMID:18831223
Mitchell, Toby; Alton, Lesley A; White, Craig R; Franklin, Craig E
2012-12-01
Global increases in ultraviolet-B radiation (UVBR) associated with stratospheric ozone depletion are potentially contributing to the decline of numerous amphibian species around the world. Exposure to UVBR alone reduces survival and induces a range of sublethal effects in embryonic and larval amphibians. When additional environmental stressors are present, UVBR can have compounding negative effects. Thus, examination of the effects of UVBR in the absence of other stressors may substantially underestimate its potential to affect amphibians in natural habitats. We examined the independent and interactive effects of increased UVBR and high conspecific density would have embryonic and larval striped marsh frogs (Limnodynastes peronii). We exposed individuals to a factorial combination of low and high UVBR levels and low, medium, and high densities of striped marsh frog tadpoles. The response variables were time to hatching, hatching success, posthatch survival, burst-swimming performance of tadpoles (maximum instantaneous swim speed following an escape response), and size and morphology of tadpoles. Consistent with results of previous studies, we found that exposure to UVBR alone increased the time to hatching of embryos and reduced the burst-swimming performance and size of tadpoles. Similarly, increasing conspecific density increased the time to hatching of embryos and reduced the size of tadpoles, but had no effect on burst-swimming performance. The negative effect of UVBR on tadpole size was not apparent at high densities of tadpoles. This result suggests that tadpoles living at higher densities may invest relatively less energy in growth and thus have more energy to repair UVBR-induced damage. Lower densities of conspecifics increased the negative effects of UVBR on developing amphibians. Thus, low-density populations, which may include declining populations, may be particularly susceptible to the detrimental effects of increased UVBR and thus may be driven toward extinction faster than might be expected on the basis of results from single-factor studies. ©2012 Society for Conservation Biology.
Determinants of the Egyptian labour migration.
Kandil, M; Metwally, M
1992-03-01
The objective is to summarize the pattern of Egyptian migration to Arab oil-producing countries (AOPC), to review some factors that are important determinants of labor movement based on theory, and to empirically model the migration rate to AOPC and to Saudi Arabia. Factors are differentiated as to their relative importance. Push factors are the low wages, high inflation rate, and high population density in Egypt; pull factors are higher wages. It is predicted that an increase in income from destination countries has a significant positive impact on the migration rate. An increase in population density stimulates migration. An increase in inflation acts to increase out-migration with a 2-year lag, which accommodates departure preparation. Egypt's experience with labor migration is described for the pre-oil boom, and the post-oil boom. Several estimates of labor migration are given. Government policy toward migration is positive. Theory postulates migration to be determined by differences in the availability of labor, labor rewards between destination and origin, and the cost of migration. In the empirical model, push factors are population density, the current inflation rate, and the ratio of income/capita in AOPC to Egypt. The results indicate that the ratio of income/capita had a strong pull impact and population density had a strong push impact. The inflation rate has a positive impact with a lag estimated at 2 years. Prior to the Camp David Accord, there was a significant decrease in the number of Egyptian migrants due to political tension. The findings support the classical theory of factor mobility. The consequences of migration on the Egyptian economy have been adverse. Future models should disaggregate data because chronic shortages exist in some parts of the labor market. Manpower needs assessment would be helpful for policy makers.
Quantifying changes and influences on mottled duck density in Texas
Ross, Beth; Haukos, David A.; Walther, Patrick
2018-01-01
Understanding the relative influence of environmental and intrinsic effects on populations is important for managing and conserving harvested species, especially those species inhabiting changing environments. Additionally, climate change can increase the uncertainty associated with management of species in these changing environments, making understanding factors affecting their populations even more important. Coastal ecosystems are particularly threatened by climate change; the combined effects of increasing severe weather events, sea level rise, and drought will likely have non-linear effects on coastal marsh wildlife species and their associated habitats. A species of conservation concern that persists in these coastal areas is the mottled duck (Anas fulvigula). Mottled ducks in the western Gulf Coast are approximately 50% below target abundance numbers established by the Gulf Coast Joint Venture for Texas and Louisiana, USA. Although evidence for declines in mottled duck abundance is apparent, specific causes of the decrease remain unknown. Our goals were to determine where the largest declines in mottled duck population were occurring along the system of Texas Gulf Coast National Wildlife Refuges and quantify the relative contribution of environmental and intrinsic effects on changes to relative population density. We modeled aerial survey data of mottled duck density along the Texas Gulf Coast from 1986–2015 to quantify effects of extreme weather events on an index to mottled duck density using the United States Climate Extremes Index and Palmer Drought Severity Index. Our results indicate that decreases in abundance are best described by an increase in days with extreme 1-day precipitation from June to November (hurricane season) and an increase in drought severity. Better understanding those portions of the life cycle affected by environmental conditions, and how to manage mottled duck habitat in conjunction with these events will likely be key to persistence of the species under future environmental conditions.
Normal and abnormal evolution of argon metastable density in high-density plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, B. H.; Kim, J. H., E-mail: jhkim86@kriss.re.kr; You, S. J., E-mail: sjyou@cnu.ac.kr
2015-05-15
A controversial problem on the evolution of Ar metastable density as a function of electron density (increasing trend versus decreasing trend) was resolved by discovering the anomalous evolution of the argon metastable density with increasing electron density (discharge power), including both trends of the metastable density [Daltrini et al., Appl. Phys. Lett. 92, 061504 (2008)]. Later, by virtue of an adequate physical explanation based on a simple global model, both evolutions of the metastable density were comprehensively understood as part of the abnormal evolution occurring at low- and high-density regimes, respectively, and thus the physics behind the metastable evolution hasmore » seemed to be clearly disclosed. In this study, however, a remarkable result for the metastable density behavior with increasing electron density was observed: even in the same electron density regime, there are both normal and abnormal evolutions of metastable-state density with electron density depending on the measurement position: The metastable density increases with increasing electron density at a position far from the inductively coupled plasma antenna but decreases at a position close to the antenna. The effect of electron temperature, which is spatially nonuniform in the plasma, on the electron population and depopulation processes of Argon metastable atoms with increasing electron density is a clue to understanding the results. The calculated results of the global model, including multistep ionization for the argon metastable state and measured electron temperature, are in a good agreement with the experimental results.« less
Exposing extinction risk analysis to pathogens: Is disease just another form of density dependence?
Gerber, L.R.; McCallum, H.; Lafferty, K.D.; Sabo, J.L.; Dobson, A.
2005-01-01
In the United States and several other countries, the development of population viability analyses (PVA) is a legal requirement of any species survival plan developed for threatened and endangered species. Despite the importance of pathogens in natural populations, little attention has been given to host-pathogen dynamics in PVA. To study the effect of infectious pathogens on extinction risk estimates generated from PVA, we review and synthesize the relevance of host-pathogen dynamics in analyses of extinction risk. We then develop a stochastic, density-dependent host-parasite model to investigate the effects of disease on the persistence of endangered populations. We show that this model converges on a Ricker model of density dependence under a suite of limiting assumptions, including a high probability that epidemics will arrive and occur. Using this modeling framework, we then quantify: (1) dynamic differences between time series generated by disease and Ricker processes with the same parameters; (2) observed probabilities of quasi-extinction for populations exposed to disease or self-limitation; and (3) bias in probabilities of quasi-extinction estimated by density-independent PVAs when populations experience either form of density dependence. Our results suggest two generalities about the relationships among disease, PVA, and the management of endangered species. First, disease more strongly increases variability in host abundance and, thus, the probability of quasi-extinction, than does self-limitation. This result stems from the fact that the effects and the probability of occurrence of disease are both density dependent. Second, estimates of quasi-extinction are more often overly optimistic for populations experiencing disease than for those subject to self-limitation. Thus, although the results of density-independent PVAs may be relatively robust to some particular assumptions about density dependence, they are less robust when endangered populations are known to be susceptible to disease. If potential management actions involve manipulating pathogens, then it may be useful to model disease explicitly. ?? 2005 by the Ecological Society of America.
Density, distribution, and genetic structure of grizzly bears in the Cabinet-Yaak Ecosystem
Macleod, Amy C.; Boyd, Kristina L.; Boulanger, John; Royle, J. Andrew; Kasworm, Wayne F.; Paetkau, David; Proctor, Michael F.; Annis, Kim; Graves, Tabitha A.
2016-01-01
The conservation status of the 2 threatened grizzly bear (Ursus arctos) populations in the Cabinet-Yaak Ecosystem (CYE) of northern Montana and Idaho had remained unchanged since designation in 1975; however, the current demographic status of these populations was uncertain. No rigorous data on population density and distribution or analysis of recent population genetic structure were available to measure the effectiveness of conservation efforts. We used genetic detection data from hair corral, bear rub, and opportunistic sampling in traditional and spatial capture–recapture models to generate estimates of abundance and density of grizzly bears in the CYE. We calculated mean bear residency on our sampling grid from telemetry data using Huggins and Pledger models to estimate the average number of bears present and to correct our superpopulation estimates for lack of geographic closure. Estimated grizzly bear abundance (all sex and age classes) in the CYE in 2012 was 48–50 bears, approximately half the population recovery goal. Grizzly bear density in the CYE (4.3–4.5 grizzly bears/1,000 km2) was among the lowest of interior North American populations. The sizes of the Cabinet (n = 22–24) and Yaak (n = 18–22) populations were similar. Spatial models produced similar estimates of abundance and density with comparable precision without requiring radio-telemetry data to address assumptions of geographic closure. The 2 populations in the CYE were demographically and reproductively isolated from each other and the Cabinet population was highly inbred. With parentage analysis, we documented natural migrants to the Cabinet and Yaak populations by bears born to parents in the Selkirk and Northern Continental Divide populations. These events supported data from other sources suggesting that the expansion of neighboring populations may eventually help sustain the CYE populations. However, the small size, isolation, and inbreeding documented by this study demonstrate the need for comprehensive management designed to support CYE population growth and increased connectivity and gene flow with other populations.
Density vs. disease: Crustaceans in a temperate marine protected area
NASA Astrophysics Data System (ADS)
Davies, C. E.; Johnson, A. F.; Wootton, E. C.; Greenwood, S.; Clark, K. F.; Vogan, C. L.; Rowley, A. F.
2016-02-01
Since the move towards an ecosystem-based approach in fisheries management, marine protected areas (MPAs) have become increasingly popular. Implementation, however, is somewhat contentious and as a result of their short history, effects are still widely unknown and understudied. Here, we investigated the health of brown crab Cancer pagurus and European lobster Homarus gammarus populations in the Lundy Island MPA after 7 years of no-take protection. Population parameters (size, sex, abundance), disease (shell disease, Hematodinium spp., gaffkaemia) and injury presence (a known precursor to disease) were assessed over two years in both an un-fished no-take zone (NTZ) and a fished refuge zone (RZ). There was a higher lobster density and larger lobsters in the NTZ compared with the RZ, but an opposite trend for crabs. The probability of shell disease increased notably in lobsters over the minimum landing size (MLS), in those displaying injury, and in males. Injury presence was higher in lobsters in the NTZ compared with the RZ and in those above the MLS. Gaffkaemia was detected in <1% of lobsters. The number of injured crabs increased significantly over the two years surveyed (12%), as did the prevalence of shell disease (15%). The probability of shell disease increased significantly for male crabs and for those missing limbs. Crabs below the MLS had an increased probability of being injured. Overall, the study demonstrates both positive and potentially negative effects of long-term NTZs. Recovering populations in NTZs may be more susceptible to disease as a result of increased injury through density-dependent interaction. This in turn may lead to increased disease infection. The findings highlight the necessity for long-term MPA management to include monitoring of population abundance, as well as secondary community change effects such as disease increase, both before and after implementation.
Multi-species coexistence in Lotka-Volterra competitive systems with crowding effects.
Gavina, Maica Krizna A; Tahara, Takeru; Tainaka, Kei-Ichi; Ito, Hiromu; Morita, Satoru; Ichinose, Genki; Okabe, Takuya; Togashi, Tatsuya; Nagatani, Takashi; Yoshimura, Jin
2018-01-19
Classical Lotka-Volterra (LV) competition equation has shown that coexistence of competitive species is only possible when intraspecific competition is stronger than interspecific competition, i.e., the species inhibit their own growth more than the growth of the other species. Note that density effect is assumed to be linear in a classical LV equation. In contrast, in wild populations we can observed that mortality rate often increases when population density is very high, known as crowding effects. Under this perspective, the aggregation models of competitive species have been developed, adding the additional reduction in growth rates at high population densities. This study shows that the coexistence of a few species is promoted. However, an unsolved question is the coexistence of many competitive species often observed in natural communities. Here, we build an LV competition equation with a nonlinear crowding effect. Our results show that under a weak crowding effect, stable coexistence of many species becomes plausible, unlike the previous aggregation model. An analysis indicates that increased mortality rate under high density works as elevated intraspecific competition leading to the coexistence. This may be another mechanism for the coexistence of many competitive species leading high species diversity in nature.
Sex allocation promotes the stable co-occurrence of competitive species
NASA Astrophysics Data System (ADS)
Kobayashi, Kazuya
2017-03-01
Biodiversity has long been a source of wonder and scientific curiosity. Theoretically, the co-occurrence of competitive species requires niche differentiation, and such differences are well known; however, the neutral theory, which assumes the equivalence of all individuals regardless of the species in a biological community, has successfully recreated observed patterns of biodiversity. In this research, the evolution of sex allocation is demonstrated to be the key to resolving why the neutral theory works well, despite the observed species differences. The sex allocation theory predicts that female-biased allocation evolves in species in declining density and that this allocation improves population growth, which should lead to an increase in density. In contrast, when the density increases, a less biased allocation evolves, which reduces the population growth rate and leads to decreased density. Thus, sex allocation provides a buffer against species differences in population growth. A model incorporating this mechanism demonstrates that hundreds of species can co-occur over 10,000 generations, even in homogeneous environments, and reproduces the observed patterns of biodiversity. This study reveals the importance of evolutionary processes within species for the sustainability of biodiversity. Integrating the entire biological process, from genes to community, will open a new era of ecology.
Vonesh, James R; De la Cruz, Omar
2002-11-01
In the last decade there has been increasing evidence of amphibian declines from relatively pristine areas. Some declines are hypothesized to be the result of egg mortality caused by factors such as elevated solar UV-B irradiation, chemical pollutants, pathogenic fungi, and climate change. However, the population-level consequences of egg mortality have not been examined explicitly, and may be complicated by density dependence in intervening life-history stages. Here we develop a demographic model for two amphibians with contrasting life-history strategies, Bufo boreas and Ambystoma macrodactylum. We then use the complementary approaches of elasticity and limitation to examine the relationships among stage-specific survival rates, larval-stage density dependence and amphibian population dynamics. Elasticity analyses showed that for a range of density dependence scenarios both species were more sensitive to changes in post-embryonic survival parameters, particularly juvenile survival, than to egg survival, suggesting that mortality of later stages may play an important role in driving declines. Limitation analyses revealed that larval density dependence can dramatically alter the consequences of early mortality, reducing or even reversing the expected population-level effects of egg mortality. Thus, greater focus on later life stages and density dependence is called for to accurately assess how stressors are likely to affect amphibian populations of conservation concern.
Cooperation in the dark: signalling and collective action in quorum-sensing bacteria.
Brown, S P; Johnstone, R A
2001-05-07
The study of quorum-sensing bacteria has revealed a widespread mechanism of coordinating bacterial gene expression with cell density. By monitoring a constitutively produced signal molecule, individual bacteria can limit their expression of group-beneficial phenotypes to cell densities that guarantee an effective group outcome. In this paper, we attempt to move away from a commonly expressed view that these impressive feats of coordination are examples of multicellularity in prokaryotic populations. Here, we look more closely at the individual conflict underlying this cooperation, illustrating that, even under significant levels of genetic conflict, signalling and resultant cooperative behaviour can stably exist. A predictive two-trait model of signal strength and of the extent of cooperation is developed as a function of relatedness (reflecting multiplicity of infection) and basic population demographic parameters. The model predicts that the strength of quorum signalling will increase as conflict (multiplicity of infecting strains) increases, as individuals attempt to coax more cooperative contributions from their competitors, leading to a devaluation of the signal as an indicator of density. Conversely, as genetic conflict increases, the model predicts that the threshold density for cooperation will increase and the subsequent strength of group cooperation will be depressed.
Nichols, Gordon L; Richardson, Judith F; Sheppard, Samuel K; Lane, Chris; Sarran, Christophe
2012-01-01
To review Campylobacter cases in England and Wales over 2 decades and examine the main factors/mechanisms driving the changing epidemiology. A descriptive study of Campylobacter patients between 1989 and 2011. Cases over 3 years were linked anonymously to postcode, population density, deprivation indices and census data. Cases over 5 years were anonymously linked to local weather exposure estimates. Patients were from general practice, hospital and environmental health investigations through primary diagnostic laboratories across England and Wales. There were 1 109 406 cases. Description of changes in Campylobacter epidemiology over 23 years and how the main drivers may influence these. There was an increase in Campylobacter cases over the past 23 years, with the largest increase in people over 50 years. Changes in the underlying population have contributed to this, including the impacts of population increases after World War I, World War II and the 'baby boom' of the 1960s. A recent increase in risk or ascertainment within this population has caused an increase in cases in all age groups from 2004 to 2011. The seasonal increase in cases between weeks 18 (Early May) and 22 (Early June) was consistent across ages, years and regions and was most marked in children and in more rural regions. Campylobacter prevalence by week in each region correlated with temperature 2 weeks before. There were higher prevalences in areas with a low population density, low deprivation and lower percentage of people of ethnic origin. Data from sero-phage and multilocus sequence typing show a few common types and many uncommon types. The drivers/mechanisms influencing seasonality, age distribution, population density, socioeconomic and long-term differences are diverse and their relative contributions remain to be established. Surveillance and typing provide insights into Campylobacter epidemiology and sources of infection, providing a sound basis for targeted interventions.
Veerman, J Lennert; Zapata-Diomedi, Belen; Gunn, Lucy; McCormack, Gavin R; Cobiac, Linda J; Mantilla Herrera, Ana Maria; Giles-Corti, Billie; Shiell, Alan
2016-09-20
Studies consistently find that supportive neighbourhood built environments increase physical activity by encouraging walking and cycling. However, evidence on the cost-effectiveness of investing in built environment interventions as a means of promoting physical activity is lacking. In this study, we assess the cost-effectiveness of increasing sidewalk availability as one means of encouraging walking. Using data from the RESIDE study in Perth, Australia, we modelled the cost impact and change in health-adjusted life years (HALYs) of installing additional sidewalks in established neighbourhoods. Estimates of the relationship between sidewalk availability and walking were taken from a previous study. Multistate life table models were used to estimate HALYs associated with changes in walking frequency and duration. Sensitivity analyses were used to explore the impact of variations in population density, discount rates, sidewalk costs and the inclusion of unrelated healthcare costs in added life years. Installing and maintaining an additional 10 km of sidewalk in an average neighbourhood with 19 000 adult residents was estimated to cost A$4.2 million over 30 years and gain 24 HALYs over the lifetime of an average neighbourhood adult resident population. The incremental cost-effectiveness ratio was A$176 000/HALY. However, sensitivity results indicated that increasing population densities improves cost-effectiveness. In low-density cities such as in Australia, installing sidewalks in established neighbourhoods as a single intervention is unlikely to cost-effectively improve health. Sidewalks must be considered alongside other complementary elements of walkability, such as density, land use mix and street connectivity. Population density is particularly important because at higher densities, more residents are exposed and this improves the cost-effectiveness. Health gain is one of many benefits of enhancing neighbourhood walkability and future studies might consider a more comprehensive assessment of its social value (eg, social cohesion, safety and air quality). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Makundi, Rhodes H; Massawe, Apia W; Mulungu, Loth S
2007-12-01
The multimammate rat, Mastomys natalensis Smith 1834, is a dominant species in agro-ecosystems in Sub-Saharan Africa, but adapts quickly to changes in non-agricultural landscape, particularly woodlands and forests. In this study we report on reproduction and population dynamics of M. natalensis in deforested high elevation localities in the Usambara Mountains, north-east Tanzania. We conducted Capture-Mark-Recapture studies in 2002-2004, and established that reproduction of M. natalensis takes place in the extended wet season between February and June, and the population density peaks in June-August. Reproduction cease in July to January and population density drops from July onwards. Reproduction and population density fluctuations are linked to the duration and amount of rainfall. In years when rainfall was below average and the wet season was short, the population density was significantly lower (below 10 animals/ha and 60 animals/ha in 2003 and 2004 respectively, compared to >100 animals/ha in 2002 when rainfall was above the seasonal average) (F(df 2,13)= 9.092, p < 0.01 for in between years variations and F(df 12,15)= 5.389, p < 0.01 for effect of cumulative annual rainfall on population density). These densities were much lower than in the lowland savannah habitats in central and southwest Tanzania. A comparison between the farmland/fallow mosaic fields and agro-forestry areas showed higher population densities in the former, which have similarities to the preferred habitats in the lowland savannahs. The increasing abundance of M. natalensis in the Usambara could have some consequences: M. natalensis is major pest and is involved in the plague cycle in the western Usambara Mountains. Mastomys natalensis is also a strong competitor and the impact on endemic rodent species, e.g. Lophuromys flavopunctatus and Praomys delectorum is unknown.
The fine-scale genetic structure of the two-spotted spider mite in a commercial greenhouse.
Uesugi, R; Kunimoto, Y; Osakabe, Mh
2009-02-01
The fine-scale genetic structure of Tetranychus urticae Koch was studied to estimate local gene flow within a rose tree habitat in a commercial greenhouse using seven microsatellite markers. Two beds of rose trees with different population densities were selected and 18 consecutive quadrats of 1.2 m length were sequentially established in each bed. Heterozygote deficiency was positive within quadrats, which was most likely a result of the Wahlund effect because the mites usually form small breeding colonies. Low population density and frequent inbreeding could also accelerate genetic differentiation among the breeding colonies. A short-range (2.4-3.6 m) positive autocorrelation and clear genetic cline among quadrat populations was detected within a bed. This suggests that gene flow was limited to a short range even if population density was substantially increased. Therefore, large-scale dispersal such as aerial dispersal contributed very little to gene flow in the greenhouse.
Luc, John E; Pang, Wenjing; Crow, William T; Giblin-Davis, Robin M
2010-06-01
The effect of nematode population density at the time of application and formulations of in vitro-produced Pasteuria spp. endospores on the final population density of Belonolaimus longicaudatus was studied in an 84-d-long pot bioassay. The experiment utilized a factorial design consisting of 30 or 300 B. longicaudatus /100 cm(3) of sandy soil and three formulations of in vitro-produced Pasteuria spp. endospores (nontreated, granular, or liquid). No differences were observed in percent endospore attachment between nematode inoculum levels during either trial. Granular and liquid formulations of in vitro-produced endospores suppressed nematode population densities by 22% and 59% in the first trial and 20% and 63% in the second, respectively compared with the nontreated control. The liquid formulation increased percent endospore attachment by 147% and 158%, respectively, compared with the granular formulation. The greatest root retention by the host plant was observed at the lower B. longicaudatus inoculation level following application of the liquid formulation. While both the granular and liquid formulations reduced B. longicaudatus population densities in the soil, the liquid spore suspension was most effective.
Luc, John E.; Pang, Wenjing; Crow, William T.; Giblin-Davis, Robin M.
2010-01-01
The effect of nematode population density at the time of application and formulations of in vitro-produced Pasteuria spp. endospores on the final population density of Belonolaimus longicaudatus was studied in an 84-d-long pot bioassay. The experiment utilized a factorial design consisting of 30 or 300 B. longicaudatus /100 cm3 of sandy soil and three formulations of in vitro-produced Pasteuria spp. endospores (nontreated, granular, or liquid). No differences were observed in percent endospore attachment between nematode inoculum levels during either trial. Granular and liquid formulations of in vitro-produced endospores suppressed nematode population densities by 22% and 59% in the first trial and 20% and 63% in the second, respectively compared with the nontreated control. The liquid formulation increased percent endospore attachment by 147% and 158%, respectively, compared with the granular formulation. The greatest root retention by the host plant was observed at the lower B. longicaudatus inoculation level following application of the liquid formulation. While both the granular and liquid formulations reduced B. longicaudatus population densities in the soil, the liquid spore suspension was most effective. PMID:22736843
Hanley, Quentin S; Lewis, Dan; Ribeiro, Haroldo V
2016-01-01
Urban population scaling of resource use, creativity metrics, and human behaviors has been widely studied. These studies have not looked in detail at the full range of human environments which represent a continuum from the most rural to heavily urban. We examined monthly police crime reports and property transaction values across all 573 Parliamentary Constituencies in England and Wales, finding that scaling models based on population density provided a far superior framework to traditional population scaling. We found four types of scaling: i) non-urban scaling in which a single power law explained the relationship between the metrics and population density from the most rural to heavily urban environments, ii) accelerated scaling in which high population density was associated with an increase in the power-law exponent, iii) inhibited scaling where the urban environment resulted in a reduction in the power-law exponent but remained positive, and iv) collapsed scaling where transition to the high density environment resulted in a negative scaling exponent. Urban scaling transitions, when observed, took place universally between 10 and 70 people per hectare. This study significantly refines our understanding of urban scaling, making clear that some of what has been previously ascribed to urban environments may simply be the high density portion of non-urban scaling. It also makes clear that some metrics undergo specific transitions in urban environments and these transitions can include negative scaling exponents indicative of collapse. This study gives promise of far more sophisticated scale adjusted metrics and indicates that studies of urban scaling represent a high density subsection of overall scaling relationships which continue into rural environments.
Hanley, Quentin S.; Lewis, Dan; Ribeiro, Haroldo V.
2016-01-01
Urban population scaling of resource use, creativity metrics, and human behaviors has been widely studied. These studies have not looked in detail at the full range of human environments which represent a continuum from the most rural to heavily urban. We examined monthly police crime reports and property transaction values across all 573 Parliamentary Constituencies in England and Wales, finding that scaling models based on population density provided a far superior framework to traditional population scaling. We found four types of scaling: i) non-urban scaling in which a single power law explained the relationship between the metrics and population density from the most rural to heavily urban environments, ii) accelerated scaling in which high population density was associated with an increase in the power-law exponent, iii) inhibited scaling where the urban environment resulted in a reduction in the power-law exponent but remained positive, and iv) collapsed scaling where transition to the high density environment resulted in a negative scaling exponent. Urban scaling transitions, when observed, took place universally between 10 and 70 people per hectare. This study significantly refines our understanding of urban scaling, making clear that some of what has been previously ascribed to urban environments may simply be the high density portion of non-urban scaling. It also makes clear that some metrics undergo specific transitions in urban environments and these transitions can include negative scaling exponents indicative of collapse. This study gives promise of far more sophisticated scale adjusted metrics and indicates that studies of urban scaling represent a high density subsection of overall scaling relationships which continue into rural environments. PMID:26886219
Wildlife disease ecology in changing landscapes: Mesopredator release and toxoplasmosis
Hollings, Tracey; Jones, Menna; Mooney, Nick; McCallum, Hamish
2013-01-01
Changing ecosystem dynamics are increasing the threat of disease epidemics arising in wildlife populations. Several recent disease outbreaks have highlighted the critical need for understanding pathogen dynamics, including the role host densities play in disease transmission. In Australia, introduced feral cats are of immense concern because of the risk they pose to native wildlife through predation and competition. They are also the only known definitive host of the coccidian parasite, Toxoplasma gondii, the population-level impacts of which are unknown in any species. Australia’s native wildlife have not evolved in the presence of cats or their parasites, and feral cats may be linked with several native mammal declines and extinctions. In Tasmania there is emerging evidence that feral cat populations are increasing following wide-ranging and extensive declines in the apex predator, the Tasmanian devil, from a consistently fatal transmissible cancer. We assess whether feral cat density is associated with the seroprevalence of T. gondii in native wildlife to determine whether an increasing population of feral cats may correspond to an increased level of risk to naive native intermediate hosts. We found evidence that seroprevalence of T. gondii in Tasmanian pademelons was lower in the north-west of Tasmania than in the north-east and central regions where cat density was higher. Also, samples obtained from road-killed animals had significantly higher seroprevalence of T. gondii than those from culled individuals, suggesting there may be behavioural differences associated with infection. In addition, seroprevalence in different trophic levels was assessed to determine whether position in the food-web influences exposure risk. Higher order carnivores had significantly higher seroprevalence than medium-sized browser species. The highest seroprevalence observed in an intermediate host was 71% in spotted-tailed quolls (Dasyurus maculatus), the largest mammalian mesopredator, in areas of low cat density. Mesopredator release of cats may be a significant issue for native species conservation, potentially affecting the population viability of many endangered species. PMID:24533323
Population cycles: generalities, exceptions and remaining mysteries.
Myers, Judith H
2018-03-28
Population cycles are one of nature's great mysteries. For almost a hundred years, innumerable studies have probed the causes of cyclic dynamics in snowshoe hares, voles and lemmings, forest Lepidoptera and grouse. Even though cyclic species have very different life histories, similarities in mechanisms related to their dynamics are apparent. In addition to high reproductive rates and density-related mortality from predators, pathogens or parasitoids, other characteristics include transgenerational reduced reproduction and dispersal with increasing-peak densities, and genetic similarity among populations. Experiments to stop cyclic dynamics and comparisons of cyclic and noncyclic populations provide some understanding but both reproduction and mortality must be considered. What determines variation in amplitude and periodicity of population outbreaks remains a mystery. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Li, Bing-Wei; Cao, Xiao-Zhi; Fu, Chenbo
2017-12-01
Many biological and chemical systems could be modeled by a population of oscillators coupled indirectly via a dynamical environment. Essentially, the environment by which the individual element communicates with each other is heterogeneous. Nevertheless, most of previous works considered the homogeneous case only. Here we investigated the dynamical behaviors in a population of spatially distributed chaotic oscillators immersed in a heterogeneous environment. Various dynamical synchronization states (such as oscillation death, phase synchronization, and complete synchronized oscillation) as well as their transitions were explored. In particular, we uncovered a non-traditional quorum sensing transition: increasing the population density leaded to a transition from oscillation death to synchronized oscillation at first, but further increasing the density resulted in degeneration from complete synchronization to phase synchronization or even from phase synchronization to desynchronization. The underlying mechanism of this finding was attributed to the dual roles played by the population density. What's more, by treating the environment as another component of the oscillator, the full system was then effectively equivalent to a locally coupled system. This fact allowed us to utilize the master stability functions approach to predict the occurrence of complete synchronization oscillation, which agreed with that from the direct numerical integration of the system. The potential candidates for the experimental realization of our model were also discussed.
York, Larry M.; Galindo-Castañeda, Tania; Schussler, Jeffrey R.; Lynch, Jonathan P.
2015-01-01
Increasing the nitrogen use efficiency of maize is an important goal for food security and agricultural sustainability. In the past 100 years, maize breeding has focused on yield and above-ground phenes. Over this period, maize cultivation has changed from low fertilizer inputs and low population densities to intensive fertilization and dense populations. The authors hypothesized that through indirect selection the maize root system has evolved phenotypes suited to more intense competition for nitrogen. Sixteen maize varieties representing commercially successful lines over the past century were planted at two nitrogen levels and three planting densities. Root systems of the most recent material were 7 º more shallow, had one less nodal root per whorl, had double the distance from nodal root emergence to lateral branching, and had 14% more metaxylem vessels, but total mextaxylem vessel area remained unchanged because individual metaxylem vessels had 12% less area. Plasticity was also observed in cortical phenes such as aerenchyma, which increased at greater population densities. Simulation modelling with SimRoot demonstrated that even these relatively small changes in root architecture and anatomy could increase maize shoot growth by 16% in a high density and high nitrogen environment. The authors concluded that evolution of maize root phenotypes over the past century is consistent with increasing nitrogen use efficiency. Introgression of more contrasting root phene states into the germplasm of elite maize and determination of the functional utility of these phene states in multiple agronomic conditions could contribute to future yield gains. PMID:25795737
Darban, Daim Ali; Pathan, Mumtaz Ali; Bhatti, Abdul Ghaffar; Maitelo, Sultan Ahmed
2005-02-01
Pasteuria penetrans will build-up faster where there is a high initial nematode density and can suppress root-knot nematode populations in the roots of tomato plants. The effect of different initial densities of nematode (Meloidogyne javanica) (150, 750, 1500, 3000) and P. penetrans infected females (F1, F3) densities (F0=control and AC=absolute control without nematode or P. penetrans inoculum) on the build-up of Pasteuria population was investigated over four crop cycles. Two major points of interest were highlighted. First, that within a confined soil volume, densities of P. penetrans can increase >100 times within 2 or 3 crop cycles. Second, from a relatively small amount of spore inoculum, infection of the host is very high. There were more infected females in the higher P. penetrans doses. The root growth data confirms the greater number of females in the controls particularly at the higher inoculum densities in the third and fourth crops. P. penetrans generally caused the fresh root weights to be higher than those in the control. P. penetrans has shown greater reduction of egg masses per plant at most densities. The effects of different initial densities of M. javanica and P. penetrans on the development of the pest and parasite populations were monitored. And no attempt was made to return the P. penetrans spores to the pots after each crop so the build-up in actual numbers of infected females and spores under natural conditions may be underestimated.
Ginsberg, H.S.; Butler, M.; Zhioua, E.
2002-01-01
The effects of deer exclusion on northern populations of lone star ticks, Amblyomma americanum, were tested at the Lighthouse Tract, Fire Island, NY, USA, where densities of this species have increased recently. Game fencing was erected to exclude deer from two sites of roughly one ha each, and populations of nymphal and adult A. americanum within were compared with those at control sites outside the exclosures. Percent control of nymphs within vs. outside the exclosures averaged 48.4% in the four years post-treatment, compared to pretreatment values. Percent control varied markedly in different years, suggesting that factors in addition to deer densities had strong effects on population densities of A. americanum. Exclosures of this size did not control adult A. americanum. Effects of deer exclusion in this recently expanded northern population of A. americanum were similar to those that have been reported for southern populations of this species.
Aeby, Greta S.; Williams, Gareth J.; Franklin, Erik C.; Haapkyla, Jessica; Harvell, C. Drew; Neale, Stephen; Page, Cathie A.; Raymundo, Laurie; Vargas-Angel, Bernardo; Willis, Bette L.; Work, Thierry M.; Davy, Simon K.
2011-01-01
Growth anomalies (GAs) are common, tumor-like diseases that can cause significant morbidity and decreased fecundity in the major Indo-Pacific reef-building coral genera, Acropora and Porites. GAs are unusually tractable for testing hypotheses about drivers of coral disease because of their pan-Pacific distributions, relatively high occurrence, and unambiguous ease of identification. We modeled multiple disease-environment associations that may underlie the prevalence of Acropora growth anomalies (AGA) (n = 304 surveys) and Porites growth anomalies (PGA) (n = 602 surveys) from across the Indo-Pacific. Nine predictor variables were modeled, including coral host abundance, human population size, and sea surface temperature and ultra-violet radiation anomalies. Prevalence of both AGAs and PGAs were strongly host density-dependent. PGAs additionally showed strong positive associations with human population size. Although this association has been widely posited, this is one of the first broad-scale studies unambiguously linking a coral disease with human population size. These results emphasize that individual coral diseases can show relatively distinct patterns of association with environmental predictors, even in similar diseases (growth anomalies) found on different host genera (Acropora vs. Porites). As human densities and environmental degradation increase globally, the prevalence of coral diseases like PGAs could increase accordingly, halted only perhaps by declines in host density below thresholds required for disease establishment.
Franklin, Erik C.; Haapkyla, Jessica; Harvell, C. Drew; Neale, Stephen; Page, Cathie A.; Raymundo, Laurie; Vargas-Ángel, Bernardo; Willis, Bette L.; Work, Thierry M.; Davy, Simon K.
2011-01-01
Growth anomalies (GAs) are common, tumor-like diseases that can cause significant morbidity and decreased fecundity in the major Indo-Pacific reef-building coral genera, Acropora and Porites. GAs are unusually tractable for testing hypotheses about drivers of coral disease because of their pan-Pacific distributions, relatively high occurrence, and unambiguous ease of identification. We modeled multiple disease-environment associations that may underlie the prevalence of Acropora growth anomalies (AGA) (n = 304 surveys) and Porites growth anomalies (PGA) (n = 602 surveys) from across the Indo-Pacific. Nine predictor variables were modeled, including coral host abundance, human population size, and sea surface temperature and ultra-violet radiation anomalies. Prevalence of both AGAs and PGAs were strongly host density-dependent. PGAs additionally showed strong positive associations with human population size. Although this association has been widely posited, this is one of the first broad-scale studies unambiguously linking a coral disease with human population size. These results emphasize that individual coral diseases can show relatively distinct patterns of association with environmental predictors, even in similar diseases (growth anomalies) found on different host genera (Acropora vs. Porites). As human densities and environmental degradation increase globally, the prevalence of coral diseases like PGAs could increase accordingly, halted only perhaps by declines in host density below thresholds required for disease establishment. PMID:21365011
Fatal disease and demographic Allee effect: population persistence and extinction.
Friedman, Avner; Yakubu, Abdul-Aziz
2012-01-01
If a healthy stable host population at the disease-free equilibrium is subject to the Allee effect, can a small number of infected individuals with a fatal disease cause the host population to go extinct? That is, does the Allee effect matter at high densities? To answer this question, we use a susceptible-infected epidemic model to obtain model parameters that lead to host population persistence (with or without infected individuals) and to host extinction. We prove that the presence of an Allee effect in host demographics matters even at large population densities. We show that a small perturbation to the disease-free equilibrium can eventually lead to host population extinction. In addition, we prove that additional deaths due to a fatal infectious disease effectively increase the Allee threshold of the host population demographics.
Ecological Modeling of Aedes aegypti (L.) Pupal Production in Rural Kamphaeng Phet, Thailand
Aldstadt, Jared; Koenraadt, Constantianus J. M.; Fansiri, Thanyalak; Kijchalao, Udom; Richardson, Jason; Jones, James W.; Scott, Thomas W.
2011-01-01
Background Aedes aegypti (L.) is the primary vector of dengue, the most important arboviral infection globally. Until an effective vaccine is licensed and rigorously administered, Ae. aegypti control remains the principal tool in preventing and curtailing dengue transmission. Accurate predictions of vector populations are required to assess control methods and develop effective population reduction strategies. Ae. aegypti develops primarily in artificial water holding containers. Release recapture studies indicate that most adult Ae. aegypti do not disperse over long distances. We expect, therefore, that containers in an area of high development site density are more likely to be oviposition sites and to be more frequently used as oviposition sites than containers that are relatively isolated from other development sites. After accounting for individual container characteristics, containers more frequently used as oviposition sites are likely to produce adult mosquitoes consistently and at a higher rate. To this point, most studies of Ae. aegypti populations ignore the spatial density of larval development sites. Methodology Pupal surveys were carried out from 2004 to 2007 in rural Kamphaeng Phet, Thailand. In total, 84,840 samples of water holding containers were used to estimate model parameters. Regression modeling was used to assess the effect of larval development site density, access to piped water, and seasonal variation on container productivity. A varying-coefficients model was employed to account for the large differences in productivity between container types. A two-part modeling structure, called a hurdle model, accounts for the large number of zeroes and overdispersion present in pupal population counts. Findings The number of suitable larval development sites and their density in the environment were the primary determinants of the distribution and abundance of Ae. aegypti pupae. The productivity of most container types increased significantly as habitat density increased. An ecological approach, accounting for development site density, is appropriate for predicting Ae. aegypti population levels and developing efficient vector control programs. PMID:21267055
Zhang, Tao; Yang, Xue; Guo, Rui; Guo, Jixun
2016-01-01
To examine the influence of elevated temperature and nitrogen (N) addition on species composition and development of arbuscular mycorrhizal fungi (AMF) and the effect of AMF on plant community structure and aboveground productivity, we conducted a 5-year field experiment in a temperate meadow in northeast China and a subsequent greenhouse experiment. In the field experiment, N addition reduced spore population diversity and richness of AMF and suppressed the spore density and the hyphal length density (HLD). Elevated temperature decreased spore density and diameter and increased the HLD, but did not affect AMF spore population composition. In the greenhouse experiment, AMF altered plant community composition and increased total aboveground biomass in both elevated temperature and N addition treatments; additionally, AMF also increased the relative abundance and aboveground biomass of the grasses Leymus chinensis (Poaceae) and Setaria viridis (Gramineae) and significantly reduced the relative abundance and aboveground biomass of the Suaeda corniculata (Chenopodiaceae). Although elevated temperature and N addition can affect species composition or suppress the development of AMF, AMF are likely to play a vital role in increasing plant diversity and productivity. Notably, AMF might reduce the threat of climate change induced degradation of temperate meadow ecosystems. PMID:27098761
NASA Astrophysics Data System (ADS)
Zhang, Tao; Yang, Xue; Guo, Rui; Guo, Jixun
2016-04-01
To examine the influence of elevated temperature and nitrogen (N) addition on species composition and development of arbuscular mycorrhizal fungi (AMF) and the effect of AMF on plant community structure and aboveground productivity, we conducted a 5-year field experiment in a temperate meadow in northeast China and a subsequent greenhouse experiment. In the field experiment, N addition reduced spore population diversity and richness of AMF and suppressed the spore density and the hyphal length density (HLD). Elevated temperature decreased spore density and diameter and increased the HLD, but did not affect AMF spore population composition. In the greenhouse experiment, AMF altered plant community composition and increased total aboveground biomass in both elevated temperature and N addition treatments; additionally, AMF also increased the relative abundance and aboveground biomass of the grasses Leymus chinensis (Poaceae) and Setaria viridis (Gramineae) and significantly reduced the relative abundance and aboveground biomass of the Suaeda corniculata (Chenopodiaceae). Although elevated temperature and N addition can affect species composition or suppress the development of AMF, AMF are likely to play a vital role in increasing plant diversity and productivity. Notably, AMF might reduce the threat of climate change induced degradation of temperate meadow ecosystems.
NASA Astrophysics Data System (ADS)
Semenova, T. A.; Golovchenko, A. V.
2017-07-01
The population density and taxonomic structure of micromycetes were monitored for six months in a model experiment with natural and mechanically fragmented (fine and coarse) samples of sphagnum. Sphagnum fragmentation favored an increase in the number of micromycetes only during the first week of the experiment. On the average, the number of micromycetes in fine-fragmented samples was two times greater than that in the coarse-fragmented samples. The diversity of micromycetes increased in the fragmented samples of sphagnum owing to the activation of some species, which remained in the inactive state as spores in the peat before fragmentation.
On the effects of nonlinear boundary conditions in diffusive logistic equations on bounded domains
NASA Astrophysics Data System (ADS)
Cantrell, Robert Stephen; Cosner, Chris
We study a diffusive logistic equation with nonlinear boundary conditions. The equation arises as a model for a population that grows logistically inside a patch and crosses the patch boundary at a rate that depends on the population density. Specifically, the rate at which the population crosses the boundary is assumed to decrease as the density of the population increases. The model is motivated by empirical work on the Glanville fritillary butterfly. We derive local and global bifurcation results which show that the model can have multiple equilibria and in some parameter ranges can support Allee effects. The analysis leads to eigenvalue problems with nonstandard boundary conditions.
Alkhenizan, Abdullah; Mahmoud, Ahmed; Hussain, Aneela; Gabr, Alia; Alsoghayer, Suad; Eldali, Abdelmoneim
2017-01-01
Vitamin D deficiency has been linked to an increased risk of osteoporosis. Vitamin D deficiency has reached high levels in the Saudi population, but there is conflicting evidence both in the Saudi population, and worldwide, regarding the existence of a correlation between these low vitamin D levels and reduced BMD (bone mineral density), or osteoporosis. The objective of this study was primarily to determine whether there was a correlation between vitamin D deficiency and osteoporosis in the Saudi population. We aimed to investigate whether the high levels of vitamin D deficiency and insufficiency would translate to higher prevalence of osteoporosis, and whether there is a correlation between vitamin D levels and bone mineral density. This was a community based cross sectional study conducted in the Family Medicine Clinics at King Faisal Specialist Hospital and Research Centre in Riyadh, Saudi Arabia. Electronic records of 1723 patients were reviewed. Laboratory and radiology results were collected, including vitamin D levels, calcium levels, and bone mineral density scan results. Among the whole population, 61.5% had moderate to severe vitamin D deficiency with levels less than 50nmol/L. 9.1% of the population had osteoporosis, and 38.6% had osteopenia. Among the whole population, there was no significant correlation between spine or total femoral BMD and serum 25(OH) D. Vitamin D deficiency is prevalent in the Saudi population. However, no correlation has been found between vitamin D deficiency and reduced bone mineral density in any age group, in males or females, Saudis or Non-Saudis, in our population in Riyadh, Saudi Arabia.
Density estimates of monarch butterflies overwintering in central Mexico
Diffendorfer, Jay E.; López-Hoffman, Laura; Oberhauser, Karen; Pleasants, John; Semmens, Brice X.; Semmens, Darius; Taylor, Orley R.; Wiederholt, Ruscena
2017-01-01
Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L.) under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There is, however, considerable variation in published estimates of overwintering density, ranging from 6.9–60.9 million ha−1. We develop a probability distribution for overwinter density of monarch butterflies from six published density estimates. The mean density among the mixture of the six published estimates was ∼27.9 million butterflies ha−1 (95% CI [2.4–80.7] million ha−1); the mixture distribution is approximately log-normal, and as such is better represented by the median (21.1 million butterflies ha−1). Based upon assumptions regarding the number of milkweed needed to support monarchs, the amount of milkweed (Asclepias spp.) lost (0.86 billion stems) in the northern US plus the amount of milkweed remaining (1.34 billion stems), we estimate >1.8 billion stems is needed to return monarchs to an average population size of 6 ha. Considerable uncertainty exists in this required amount of milkweed because of the considerable uncertainty occurring in overwinter density estimates. Nevertheless, the estimate is on the same order as other published estimates. The studies included in our synthesis differ substantially by year, location, method, and measures of precision. A better understanding of the factors influencing overwintering density across space and time would be valuable for increasing the precision of conservation recommendations. PMID:28462031
Density estimates of monarch butterflies overwintering in central Mexico
Thogmartin, Wayne E.; Diffendorfer, James E.; Lopez-Hoffman, Laura; Oberhauser, Karen; Pleasants, John M.; Semmens, Brice X.; Semmens, Darius J.; Taylor, Orley R.; Wiederholt, Ruscena
2017-01-01
Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L.) under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There is, however, considerable variation in published estimates of overwintering density, ranging from 6.9–60.9 million ha−1. We develop a probability distribution for overwinter density of monarch butterflies from six published density estimates. The mean density among the mixture of the six published estimates was ∼27.9 million butterflies ha−1 (95% CI [2.4–80.7] million ha−1); the mixture distribution is approximately log-normal, and as such is better represented by the median (21.1 million butterflies ha−1). Based upon assumptions regarding the number of milkweed needed to support monarchs, the amount of milkweed (Asclepias spp.) lost (0.86 billion stems) in the northern US plus the amount of milkweed remaining (1.34 billion stems), we estimate >1.8 billion stems is needed to return monarchs to an average population size of 6 ha. Considerable uncertainty exists in this required amount of milkweed because of the considerable uncertainty occurring in overwinter density estimates. Nevertheless, the estimate is on the same order as other published estimates. The studies included in our synthesis differ substantially by year, location, method, and measures of precision. A better understanding of the factors influencing overwintering density across space and time would be valuable for increasing the precision of conservation recommendations.
Effects of urbanization on benthic macroinvertebrate communities in streams, Anchorage, Alaska
Ourso, Robert T.
2001-01-01
The effect of urbanization on stream macroinvertebrate communities was examined by using data gathered during a 1999 reconnaissance of 14 sites in the Municipality of Anchorage, Alaska. Data collected included macroinvertebrate abundance, water chemistry, and trace elements in bed sediments. Macroinvertebrate relative-abundance data were edited and used in metric and index calculations. Population density was used as a surrogate for urbanization. Cluster analysis (unweighted-paired-grouping method) using arithmetic means of macroinvertebrate presence-absence data showed a well-defined separation between urbanized and nonurbanized sites as well as extracted sites that did not cleanly fall into either category. Water quality in Anchorage generally declined with increasing urbanization (population density). Of 59 variables examined, 31 correlated with urbanization. Local regression analysis extracted 11 variables that showed a significant impairment threshold response and 6 that showed a significant linear response. Significant biological variables for determining the impairment threshold in this study were the Margalef diversity index, Ephemeroptera-Plecoptera-Trichoptera taxa richness, and total taxa richness. Significant thresholds were observed in the water-chemistry variables conductivity, dissolved organic carbon, potassium, and total dissolved solids. Significant thresholds in trace elements in bed sediments included arsenic, iron, manganese, and lead. Results suggest that sites in Anchorage that have ratios of population density to road density greater than 70, storm-drain densities greater than 0.45 miles per square mile, road densities greater than 4 miles per square mile, or population densities greater than 125-150 persons per square mile may require further monitoring to determine if the stream has become impaired. This population density is far less than the 1,000 persons per square mile used by the U.S. Census Bureau to define an urban area.
The eco-evolutionary responses of a generalist consumer to resource competition.
Abrams, Peter A
2012-10-01
This article explores the combined evolutionary and ecological responses of resource uptake abilities in a generalist consumer to exploitative competition for one resource using a simple 2-resource model. It compares the sizes of ecologically and evolutionarily caused changes in population densities in cases where the original consumer has a strong or a weak trade-off in its abilities to consume the two resources. The analysis also compares the responses of the original species to competition when the competitor's population size is or is not limited by the shared resource. Although divergence in resource use traits in the resident generalist consumer is expected under all scenarios when resources are substitutable, the changes in population densities of the resources and resident consumer frequently differ between scenarios. The population of the original consumer often decreases as a result of its own adaptive divergence, and this decrease is often much greater than the initial ecological decrease. If the evolving consumer has a strong trade-off, the overlapped resource increases in equilibrium population density in response to being consumed by a generalist competitor. Some of these predictions differ qualitatively in alternative scenarios involving sustained variation in population densities or nutritionally essential resources. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Drinking, driving, and crashing: a traffic-flow model of alcohol-related motor vehicle accidents.
Gruenewald, Paul J; Johnson, Fred W
2010-03-01
This study examined the influence of on-premise alcohol-outlet densities and of drinking-driver densities on rates of alcohol-related motor vehicle crashes. A traffic-flow model is developed to represent geographic relationships between residential locations of drinking drivers, alcohol outlets, and alcohol-related motor vehicle crashes. Cross-sectional and time-series cross-sectional spatial analyses were performed using data collected from 144 geographic units over 4 years. Data were obtained from archival and survey sources in six communities. Archival data were obtained within community areas and measured activities of either the resident population or persons visiting these communities. These data included local and highway traffic flow, locations of alcohol outlets, population density, network density of the local roadway system, and single-vehicle nighttime (SVN) crashes. Telephone-survey data obtained from residents of the communities were used to estimate the size of the resident drinking and driving population. Cross-sectional analyses showed that effects relating on-premise densities to alcohol-related crashes were moderated by highway trafficflow. Depending on levels of highway traffic flow, 10% greater densities were related to 0% to 150% greater rates of SVN crashes. Time-series cross-sectional analyses showed that changes in the population pool of drinking drivers and on-premise densities interacted to increase SVN crash rates. A simple traffic-flow model can assess the effects of on-premise alcohol-outlet densities and of drinking-driver densities as they vary across communities to produce alcohol-related crashes. Analyses based on these models can usefully guide policy decisions on the sitting of on-premise alcohol outlets.
NASA Astrophysics Data System (ADS)
Harborne, A. R.; Renaud, P. G.; Tyler, E. H. M.; Mumby, P. J.
2009-09-01
Disease has dramatically reduced populations of the herbivorous urchin Diadema antillarum Philippi on Caribbean reefs, contributing to an increased abundance of macroalgae and reduction of coral cover. Therefore, recovery of D. antillarum populations is critically important, but densities are still low on many reefs. Among the many potential factors limiting these densities, the focus of this study is on predation pressure by fishes. Marine reserves provide opportunities to examine large-scale manipulations of predator-prey interactions and, therefore, D. antillarum densities were compared inside and outside a reserve in The Bahamas (Exuma Cays Land and Sea Park; ECLSP). Urchins and their fish predators were surveyed at nine sites inside and outside the ECLSP. Because of lower fishing effort, the total biomass of urchin predators, weighted by their dietary preferences for urchins, was significantly higher inside the ECLSP. Furthermore, fish community structure was significantly different inside the Park because of the increased biomass of the majority of species. No urchins were seen inside the ECLSP and this was significantly lower than the density of 0.04 urchin m-2 outside the Park. Regression analysis indicated that the relationship between the biomass of urchin predators and the proportion of transects containing urchins was non-linear, suggesting that small increases in fish biomass dramatically reduce urchin abundances. The link between lower density of urchins and higher density of their predators inside the ECLSP is strengthened by discounting five alternative primary mechanisms (variations in macroalgal cover, larval supply, environmental setting, density of other urchin species and abundance of predators not surveyed). Caribbean marine reserves have an important conservation role, but increased fish predation appears to reduce densities of D. antillarum. Urchins currently have limited functional significance on Bahamian reefs, but any future recovery of D. antillarum is likely to be limited in reserves, with potentially important ecological consequences.
The Relationship between Population Density and Cancer Mortality in Taiwan
Hsieh, Ya‐Lun
1998-01-01
Many investigators have examined urbanization gradients in cancer rates. The purpose of this report was to identify urban‐rural trends in cancer mortality rates (1982–1991) for municipalities in Taiwan. For this purpose, Taiwan's municipalities were classified as rural, suburban, urban, or metropolitan, using population density as an ordinal indicator of the degree of urbanization. Average annual age‐adjusted, site‐specific cancer mortality rates were calculated for both sexes within each population density group. Significant increasing trends with more urbanization were observed in mortality rates for cancers of the lung, pancreas, and kidney among both males and females, as well as male prostate cancer, and female breast and ovary cancer. In addition, this study revealed a significant rural excess for nonmelanoma skin cancer among both males and females, as well as male non‐Hodgkin's lymphoma, and cancers of the female bone, and female connective tissue. Analytic studies for sites with consistent urban‐rural trends may be fruitful in identifying the aspect of population density, or other unmeasured factors, that contribute to these trends. PMID:9617339
Johnson, Tamara L; Symonds, Matthew R E; Elgar, Mark A
2017-11-15
Developmental plasticity provides individuals with a distinct advantage when the reproductive environment changes dramatically. Variation in population density, in particular, can have profound effects on male reproductive success. Females may be easier to locate in dense populations, but there may be a greater risk of sperm competition. Thus, males should invest in traits that enhance fertilization success over traits that enhance mate location. Conversely, males in less dense populations should invest more in structures that will facilitate mate location. In Lepidoptera, this may result in the development of larger antennae to increase the likelihood of detecting female sex pheromones, and larger wings to fly more efficiently. We explored the effects of larval density on adult morphology in the gum-leaf skeletonizer moth, Uraba lugens , by manipulating both the number of larvae and the size of the rearing container. This experimental arrangement allowed us to reveal the cues used by larvae to assess whether absolute number or density influences adult responses. Male investment in testes size depended on the number of individuals, while male investment in wings and antennae depended upon larval density. By contrast, the size of female antennae and wings were influenced by an interaction of larval number and container size. This study demonstrates that male larvae are sensitive to cues that may reveal adult population density, and adjust investment in traits associated with fertilization success and mate detection accordingly. © 2017 The Author(s).
Shah, P S; Deoshatwar, A; Karad, S; Mhaske, S; Singh, A; Bachal, R V; Alagarasu, K; Padbidri, V S; Cecilia, D
2017-01-01
Dengue is highly prevalent in tropical and subtropical regions. The prevalence of dengue is influenced by number of factors, i.e. host, vector, virus and environmental conditions including urbanization and population density. A cross sectional study was undertaken to determine the seroprevalence of dengue in two selected villages that differed in the level of their urbanization and population density. Two villages with demographically well-defined populations close to Pune, a metropolitan city of western India, were selected for the study. Age stratified serosurvey was carried out during February to May 2011 in the two villages-a rural village A, located 6 km from the national highway with a population density of 159/km2 ; and an urbanized village B, located along the highway with a population density of 779/km2 . Assuming a low seroposi- tivity of 10%, 702 serum samples were collected from village A. Sample size for village B was calculated on the basis of seropositivity obtained in village A, and 153 samples were collected. Serum samples were tested for the presence of dengue virus (DENV)-specific IgG. Simple proportional analyses were used to calculate and compare the seroprevalence. Of the 702 samples collected from village A, 42.8% were found positive for anti-DENV IgG. A significantly higher seropositivity for DENV (58.8%) was found in village B. In village A, there was an age dependent increase in seroprevalence; whereas, in village B, there was a steep increase from 17% positivity in 0-10 yr age group to 72% in the 11-20 yr age group. The seroprevalence was almost similar in the older age groups. The observations suggested that prevalence of dengue is probably associated with urbanization and host population density. Areas that are in the process of urbanization needs to be monitored for prevalence of dengue and its vector, and appropriate vector control measures may be implemented.
Modelling the effect of pyrethroid use intensity on mite population density for walnuts.
Zhan, Yu; Fan, Siqi; Zhang, Minghua; Zalom, Frank
2015-01-01
Published studies relating pyrethroid use and subsequent mite outbreaks have largely been based on laboratory and field experiments, with some inferring a result of increased miticide use. The present study derived a mathematical model proposed to quantify the effect of pyrethroid use intensity on mite population density. The model was validated against and parameterized with actual field-level pyrethroid and miticide use data from 1995 to 2009 for California walnuts, where the miticide use intensity was a proxy of the mite population density. The parameterized model was MI = 1.61 - 0.89 · exp(-93.31PI) (RMSE = 0.13; R(2) = 0.69; P < 0.01), where PI and MI are the average pyrethroid and miticide use intensity in small intervals respectively. A three-range scheme was presented to quantify pesticide applications based on the change rate of MI to PI. Specific for California walnuts, the PI range of 0-0.025 kg ha(-1) was identified as the rapidly increasing range where MI increased vastly when PI increased. Results confirmed that more miticide was used, presumably to prevent or control mite resurgence when pyrethroids were applied, a practice that is not only costly but might be expected to aggravate mite resistance to miticides and increase risk associated with these chemicals to the environment and human health. © 2014 Society of Chemical Industry.
Sea otter population declines in the Aleutian Archipelago
Doroff, Angela M.; Estes, James A.; Tinker, M. Tim; Burn, Douglas M.; Evans, Thomas J.
2003-01-01
Sea otter (Enhydra lutris) populations were exploited to near extinction and began to recover after the cessation of commercial hunting in 1911. Remnant colonies of sea otters in the Aleutian archipelago were among the first to recover; they continued to increase through the 1980s but declined abruptly during the 1990s. We conducted an aerial survey of the Aleutian archipelago in 2000 and compared results with similar surveys conducted in 1965 and 1992. The number of sea otters counted decreased by 75% between 1965 and 2000; 88% for islands at equilibrial density in 1965. The population decline likely began in the mid-1980s and declined at a rate of 17.5%/year in the 1990s. The minimal population estimate was 8,742 sea otters in 2000. The population declined to a uniformly low density in the archipelago, suggesting a common and geographically widespread cause. These data are in general agreement with the hypothesis of increased predation on sea otters. These data chronicle one of the most widespread and precipitous population declines for a mammalian carnivore in recorded history.
Analysing the natural population growth of a large marine mammal after a depletive harvest.
Romero, M A; Grandi, M F; Koen-Alonso, M; Svendsen, G; Ocampo Reinaldo, M; García, N A; Dans, S L; González, R; Crespo, E A
2017-07-13
An understanding of the underlying processes and comprehensive history of population growth after a harvest-driven depletion is necessary when assessing the long-term effectiveness of management and conservation strategies. The South American sea lion (SASL), Otaria flavescens, is the most conspicuous marine mammal along the South American coasts, where it has been heavily exploited. As a consequence of this exploitation, many of its populations were decimated during the early 20th century but currently show a clear recovery. The aim of this study was to assess SASL population recovery by applying a Bayesian state-space modelling framework. We were particularly interested in understanding how the population responds at low densities, how human-induced mortality interplays with natural mechanisms, and how density-dependence may regulate population growth. The observed population trajectory of SASL shows a non-linear relationship with density, recovering with a maximum increase rate of 0.055. However, 50 years after hunting cessation, the population still represents only 40% of its pre-exploitation abundance. Considering that the SASL population in this region represents approximately 72% of the species abundance within the Atlantic Ocean, the present analysis provides insights into the potential mechanisms regulating the dynamics of SASL populations across the global distributional range of the species.
Wong, Sarah N P; Sicotte, Pascale
2006-05-01
The Boabeng-Fiema Monkey Sanctuary (BFMS) is inhabited by a growing population of Ursine colobus (Colobus vellerosus), a species that is listed as vulnerable. Smaller, degraded forest fragments that surround the BFMS also contain C. vellerosus and may provide an important habitat for the monkeys. Our objectives were to 1) determine the current population size and density of C. vellerosus at BFMS and in five surrounding fragments, 2) examine the differences in demographics between the fragments and BFMS, and 3) determine whether a relationship exists between population density and fragment size and isolation distance from BFMS. The census was a complete count and was conducted for 1 month (July 2003) by S.W. and trained research assistants. Seven census routes were walked simultaneously on 13 days. The 2003 population estimate of C. vellerosus at BFMS was 217-241 individuals (15 groups), a slight increase from the 2000 census. Numbers in the fragments (58-62, six groups) have remained stable since 1997, when the only other census of these fragments was conducted. Mean group size did not differ between the fragments and BFMS. Larger fragments had larger numbers of colobus, but there was no relationship between fragment size and colobus density. Isolation distance had no effect on population density. Our data suggest that colobus probably travel between fragments. Conservation efforts should focus on treating the small forests and their connecting areas as a single conservation unit. 2005 Wiley-Liss, Inc.
Bender, L.C.; Weisenberger, M.E.
2005-01-01
Understanding the determinants of population size and performance for desert bighorn sheep (Ovis canadensis mexicana) is critical to develop effective recovery and management strategies. In arid environments, plant communities and consequently herbivore populations are strongly dependent upon precipitation, which is highly variable seasonally and annually. We conducted a retrospective exploratory analysis of desert bighorn sheep population dynamics on San Andres National Wildlife Refuge (SANWR), New Mexico, 1941-1976, by modeling sheep population size as a function of previous population sizes and precipitation. Population size and trend of desert bighorn were best and well described (R 2=0.89) by a model that included only total annual precipitation as a covariate. Models incorporating density-dependence, delayed density-dependence, and combinations of density and precipitation were less informative than the model containing precipitation alone (??AlCc=8.5-22.5). Lamb:female ratios were positively related to precipitation (current year: F1,34=7.09, P=0.012; previous year: F1,33=3.37, P=0.075) but were unrelated to population size (current year. F1,34=0.04, P=0.843; previous year: F1,33 =0.14, P=0.715). Instantaneous population rate of increase (r) was related to population size (F1,33=5.55; P=0.025). Precipitation limited populations of desert bighorn sheep on SANWR primarily in a density-independent manner by affecting production or survival of lambs, likely through influences on forage quantity and quality. Habitat evaluations and recovery plans for desert bighorn sheep need to consider fundamental influences on desert bighorn populations such as precipitation and food, rather than focus solely on proximate issues such as security cover, predation, and disease. Moreover, the concept of carrying capacity for desert bighorn sheep may need re-evaluation in respect to highly variable (CV =35.6%) localized precipitation patterns. On SANWR carrying capacity for desert bighorn sheep was zero when total annual precipitation was <28.2 cm.
Cubaynes, Sarah; MacNulty, Daniel R; Stahler, Daniel R; Quimby, Kira A; Smith, Douglas W; Coulson, Tim
2014-11-01
Understanding the population dynamics of top-predators is essential to assess their impact on ecosystems and to guide their management. Key to this understanding is identifying the mechanisms regulating vital rates. Determining the influence of density on survival is necessary to understand the extent to which human-caused mortality is compensatory or additive. In wolves (Canis lupus), empirical evidence for density-dependent survival is lacking. Dispersal is considered the principal way in which wolves adjust their numbers to prey supply or compensate for human exploitation. However, studies to date have primarily focused on exploited wolf populations, in which density-dependent mechanisms are likely weak due to artificially low wolf densities. Using 13 years of data on 280 collared wolves in Yellowstone National Park, we assessed the effect of wolf density, prey abundance and population structure, as well as winter severity, on age-specific survival in two areas (prey-rich vs. prey-poor) of the national park. We further analysed cause-specific mortality and explored the factors driving intraspecific aggression in the prey-rich northern area of the park. Overall, survival rates decreased during the study. In northern Yellowstone, density dependence regulated adult survival through an increase in intraspecific aggression, independent of prey availability. In the interior of the park, adult survival was less variable and density-independent, despite reduced prey availability. There was no effect of prey population structure in northern Yellowstone, or of winter severity in either area. Survival was similar among yearlings and adults, but lower for adults older than 6 years. Our results indicate that density-dependent intraspecific aggression is a major driver of adult wolf survival in northern Yellowstone, suggesting intrinsic density-dependent mechanisms have the potential to regulate wolf populations at high ungulate densities. When low prey availability or high removal rates maintain wolves at lower densities, limited inter-pack interactions may prevent density-dependent survival, consistent with our findings in the interior of the park. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Probable causes of increasing brucellosis in free-ranging elk of the Greater Yellowstone Ecosystem
Cross, P.C.; Cole, E.K.; Dobson, A.P.; Edwards, W.H.; Hamlin, K.L.; Luikart, G.; Middleton, A.D.; Scurlock, B.M.; White, P.J.
2010-01-01
While many wildlife species are threatened, some populations have recovered from previous overexploitation, and data linking these population increases with disease dynamics are limited. We present data suggesting that free-ranging elk (Cervus elaphus) are a maintenance host for Brucella abortus in new areas of the Greater Yellowstone Ecosystem (GYE). Brucellosis seroprevalence in free-ranging elk increased from 0-7% in 1991-1992 to 8-20% in 2006-2007 in four of six herd units around the GYE. These levels of brucellosis are comparable to some herd units where elk are artificially aggregated on supplemental feeding grounds. There are several possible mechanisms for this increase that we evaluated using statistical and population modeling approaches. Simulations of an age-structured population model suggest that the observed levels of seroprevalence are unlikely to be sustained by dispersal from supplemental feeding areas with relatively high seroprevalence or an older age structure. Increases in brucellosis seroprevalence and the total elk population size in areas with feeding grounds have not been statistically detectable. Meanwhile, the rate of seroprevalence increase outside the feeding grounds was related to the population size and density of each herd unit. Therefore, the data suggest that enhanced elk-to-elk transmission in free-ranging populations may be occurring due to larger winter elk aggregations. Elk populations inside and outside of the GYE that traditionally did not maintain brucellosis may now be at risk due to recent population increases. In particular, some neighboring populations of Montana elk were 5-9 times larger in 2007 than in the 1970s, with some aggregations comparable to the Wyoming feeding-ground populations. Addressing the unintended consequences of these increasing populations is complicated by limited hunter access to private lands, which places many ungulate populations out of administrative control. Agency-landowner hunting access partnerships and the protection of large predators are two management strategies that may be used to target high ungulate densities in private refuges and reduce the current and future burden of disease. ?? 2010 by the Ecological Society of America.
Re-creating missing population baselines for Pacific reef sharks.
Nadon, Marc O; Baum, Julia K; Williams, Ivor D; McPherson, Jana M; Zgliczynski, Brian J; Richards, Benjamin L; Schroeder, Robert E; Brainard, Russell E
2012-06-01
Sharks and other large predators are scarce on most coral reefs, but studies of their historical ecology provide qualitative evidence that predators were once numerous in these ecosystems. Quantifying density of sharks in the absence of humans (baseline) is, however, hindered by a paucity of pertinent time-series data. Recently researchers have used underwater visual surveys, primarily of limited spatial extent or nonstandard design, to infer negative associations between reef shark abundance and human populations. We analyzed data from 1607 towed-diver surveys (>1 ha transects surveyed by observers towed behind a boat) conducted at 46 reefs in the central-western Pacific Ocean, reefs that included some of the world's most pristine coral reefs. Estimates of shark density from towed-diver surveys were substantially lower (<10%) than published estimates from surveys along small transects (<0.02 ha), which is not consistent with inverted biomass pyramids (predator biomass greater than prey biomass) reported by other researchers for pristine reefs. We examined the relation between the density of reef sharks observed in towed-diver surveys and human population in models that accounted for the influence of oceanic primary productivity, sea surface temperature, reef area, and reef physical complexity. We used these models to estimate the density of sharks in the absence of humans. Densities of gray reef sharks (Carcharhinus amblyrhynchos), whitetip reef sharks (Triaenodon obesus), and the group "all reef sharks" increased substantially as human population decreased and as primary productivity and minimum sea surface temperature (or reef area, which was highly correlated with temperature) increased. Simulated baseline densities of reef sharks under the absence of humans were 1.1-2.4/ha for the main Hawaiian Islands, 1.2-2.4/ha for inhabited islands of American Samoa, and 0.9-2.1/ha for inhabited islands in the Mariana Archipelago, which suggests that density of reef sharks has declined to 3-10% of baseline levels in these areas. ©2012 Society for Conservation Biology No claim to original US government works.
Characterizing Cometary Electrons with Kappa Distributions
NASA Technical Reports Server (NTRS)
Broiles, T. W.; Livadiotis, G.; Burch, J. L.; Chae, K.; Clark, G.; Cravens, T. E.; Davidson, R.; Eriksson, A.; Frahm, R. A.; Fuselier, S. A.;
2016-01-01
The Rosetta spacecraft has escorted comet 67P/Churyumov-Gerasimenko since 6 August 2014 and has offered an unprecedented opportunity to study plasma physics in the coma. We have used this opportunity to make the first characterization of cometary electrons with kappa distributions. Two three-dimensional kappa functions were fit to the observations, which we interpret as two populations of dense and warm (density 10 cubic centimeters, temperature 2 times 10 (sup 5) degrees Kelvin, invariant kappa index 10 to 1000), and rarefied and hot (density equals 0.005 cubic centimeters, temperature 5 times 10 (sup 5) degrees Kelvin, invariant kappa index equals 1 to 10) electrons. We fit the observations on 30 October 2014 when Rosetta was 20 kilometers from 67P, and 3 Astronomical Units from the Sun. We repeated the analysis on 15 August 2015 when Rosetta was 300 kilometers from the comet and 1.3 Astronomical Units from the Sun. Comparing the measurements on both days gives the first comparison of the cometary electron environment between a nearly inactive comet far from the Sun and an active comet near perihelion. We find that the warm population density increased by a factor of 3, while the temperature cooled by a factor of 2, and the invariant kappa index was unaffected. We find that the hot population density increased by a factor of 10, while the temperature and invariant kappa index were unchanged. We conclude that the hot population is likely the solar wind halo electrons in the coma. The warm population is likely of cometary origin, but its mechanism for production is not known.
Donner, D.M.; Ribic, C.A.; Probst, J.R.
2009-01-01
Forest planners must evaluate how spatiotemporal changes in habitat amount and configuration across the landscape as a result of timber management will affect species' persistence. However, there are few long-term programs available for evaluation. We investigated the response of male Kirtland's Warbler (Dendroica kirtlandii) to 26 years of changing patch and landscape structure during a large, 26-year forestry-habitat restoration program within the warbler's primary breeding range. We found that the average density of male Kirtland's Warblers was related to a different combination of patch and landscape attributes depending on the species' regional population level and habitat amounts on the landscape (early succession jack pine (Pinus banksiana) forests; 15-42% habitat cover). Specifically, patch age and habitat regeneration type were important at low male population and total habitat amounts, while patch age and distance to an occupied patch were important at relatively high population and habitat amounts. Patch age and size were more important at increasing population levels and an intermediate amount of habitat. The importance of patch age to average male density during all periods reflects the temporal buildup and decline of male numbers as habitat suitability within the patch changed with succession. Habitat selection (i.e., preference for wildfire-regenerated habitat) and availability may explain the importance of habitat type and patch size during lower population and habitat levels. The relationship between male density and distance when there was the most habitat on the landscape and the male population was large and still increasing may be explained by the widening spatial dispersion of the increasing male population at the regional scale. Because creating or preserving habitat is not a random process, management efforts would benefit from more investigations of managed population responses to changes in spatial structure that occur through habitat gain rather than habitat loss to further our empirical understanding of general principles of the fragmentation process and habitat cover threshold effects within dynamic landscapes.
Myhre, F; Klepaker, T
2009-11-01
Several factors related to buoyancy were compared between one marine and two freshwater populations of three-spined stickleback Gasterosteus aculeatus. Fish from all three populations had buoyancy near to neutral to the ambient water. This showed that neither marine nor freshwater G. aculeatus used swimming and hydrodynamic lift to prevent sinking. Comparing the swimbladder volumes showed that freshwater completely plated G. aculeatus had a significantly larger swimbladder volume than both completely plated marine and low-plated freshwater G. aculeatus. Furthermore, body tissue density was lower in low-plated G. aculeatus than in the completely plated marine and freshwater fish. The results show that G. aculeatus either reduce tissue density or increase swimbladder volume to adapt to lower water density. Mass measurements of lateral plates and pelvis showed that loss of body armour in low-plated G. aculeatus could explain the tissue density difference between low-plated and completely plated G. aculeatus. This suggests that the common occurrence of plate and armour reduction in freshwater G. aculeatus populations can be an adaptation to a lower water density.
Duan, Jian J; Larson, Kristi; Watt, Tim; Gould, Juli; Lelito, Jonathan P
2013-12-01
Competition for food, mates, and space among different individuals of the same insect species can affect density-dependent regulation of insect abundance or population dynamics. The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a serious invasive pest of North American ash (Fraxinus spp.) trees, with its larvae feeding in serpentine galleries between the interface of sapwood and phloem tissues of ash trees. Using artificial infestation of freshly cut logs of green ash (Fraxinus pennsylvanica Marshall) and tropical ash (Fraxinus uhdei [Wenzig] Lingelsh) with a series of egg densities, we evaluated the mechanism and outcome of intraspecific competition in larvae of A. planipennis in relation to larval density and host plant species. Results from our study showed that as the egg densities on each log (1.5-6.5 cm in diameter and 22-25 cm in length) increased from 200 to 1,600 eggs per square meter of surface area, larval survivorship declined from ≍68 to 10% for the green ash logs, and 86 to 55% for tropical ash logs. Accordingly, larval mortality resulting from cannibalism, starvation, or both, significantly increased as egg density increased, and the biomass of surviving larvae significantly decreased on both ash species. When larval density was adjusted to the same level, however, larval mortality from intraspecific competition was significantly higher and mean biomasses of surviving larvae was significantly lower in green ash than in tropical ash. The role of intraspecific competition of A. planipennis larvae in density-dependent regulation of its natural population dynamics is discussed.
Fukaya, Keiichi; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi
2014-11-01
Explanations for why population dynamics vary across the range of a species reflect two contrasting hypotheses: (i) temporal variability of populations is larger in the centre of the range compared to the margins because overcompensatory density dependence destabilizes population dynamics and (ii) population variability is larger near the margins, where populations are more susceptible to environmental fluctuations. In both of these hypotheses, positions within the range are assumed to affect population variability. In contrast, the fact that population variability is often related to mean population size implies that the spatial structure of the population size within the range of a species may also be a useful predictor of the spatial variation in temporal variability of population size over the range of the species. To explore how population temporal variability varies spatially and the underlying processes responsible for the spatial variation, we focused on the intertidal barnacle Chthamalus dalli and examined differences in its population dynamics along the tidal levels it inhabits. Changes in coverage of barnacle populations were monitored for 10.5 years at 25 plots spanning the elevational range of this species. Data were analysed by fitting a population dynamics model to estimate the effects of density-dependent and density-independent processes on population growth. We also examined the temporal mean-variance relationship of population size with parameters estimated from the population dynamics model. We found that the relative variability of populations tended to increase from the centre of the elevational range towards the margins because of an increase in the magnitude of stochastic fluctuations of growth rates. Thus, our results supported hypothesis (2). We also found that spatial variations in temporal population variability were well characterized by Taylor's power law, the relative population variability being inversely related to the mean population size. Results suggest that understanding the population dynamics of a species over its range may be facilitated by taking the spatial structure of population size into account as well as by considering changes in population processes as a function of position within the range of the species. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
The UK population: how does it compare?
Matheson, Jil
2010-01-01
This is the fourth demographic report for the UK, providing an overview of the latest statistics on the population. This year's article compares the UK with other European countries and a range of nations from around the world. Statistical comparisons are made for fertility, mortality, ageing, migration and population density. The UK has an ageing population, but one that is not ageing as rapidly as some other countries such as Germany, Italy and Japan. Although life expectation in the UK is improving in line with most western European countries, relatively high levels of fertility ensure that the proportion of the population that is young remains high. Around one in ten residents of the UK are foreign born, a lower proportion than many developed countries. UK population density has increased steadily and is the fourth highest in the EU.
Positive feedback in the transition from sexual reproduction to parthenogenesis.
Schwander, Tanja; Vuilleumier, Séverine; Dubman, Janie; Crespi, Bernard J
2010-05-07
Understanding how new phenotypes evolve is challenging because intermediate stages in transitions from ancestral to derived phenotypes often remain elusive. Here we describe and evaluate a new mechanism facilitating the transition from sexual reproduction to parthenogenesis. In many sexually reproducing species, a small proportion of unfertilized eggs can hatch spontaneously ('tychoparthenogenesis') and develop into females. Using an analytical model, we show that if females are mate-limited, tychoparthenogenesis can result in the loss of males through a positive feedback mechanism whereby tychoparthenogenesis generates female-biased sex ratios and increasing mate limitation. As a result, the strength of selection for tychoparthenogenesis increases in concert with the proportion of tychoparthenogenetic offspring in the sexual population. We then tested the hypothesis that mate limitation selects for tychoparthenogenesis and generates female-biased sex ratios, using data from natural populations of sexually reproducing Timema stick insects. Across 41 populations, both the tychoparthenogenesis rates and the proportions of females increased exponentially as the density of individuals decreased, consistent with the idea that low densities of individuals result in mate limitation and selection for reproductive insurance through tychoparthenogenesis. Our model and data from Timema populations provide evidence for a simple mechanism through which parthenogenesis can evolve rapidly in a sexual population.
Mo, Solveig Sølverød; Urdahl, Anne Margrete; Madslien, Knut; Sunde, Marianne; Nesse, Live L; Slettemeås, Jannice Schau; Norström, Madelaine
2018-01-01
The objective of this study was to estimate and compare the occurrence of AMR in wild red foxes in relation to human population densities. Samples from wild red foxes (n = 528) included in the Norwegian monitoring programme on antimicrobial resistance in bacteria from food, feed and animals were included. All samples were divided into three different groups based on population density in the municipality where the foxes were hunted. Of the 528 samples included, 108 (20.5%), 328 (62.1%) and 92 (17.4%) originated from areas with low, medium and high population density, respectively. A single faecal swab was collected from each fox. All samples were plated out on a selective medium for Enterobacteriaceae for culturing followed by inclusion and susceptibility testing of one randomly selected Escherichia coli to assess the overall occurrence of AMR in the Gram-negative bacterial population. Furthermore, the samples were subjected to selective screening for detection of E. coli displaying resistance towards extended-spectrum cephalosporins and fluoroquinolones. In addition, a subset of samples (n = 387) were subjected to selective culturing to detect E. coli resistant to carbapenems and colistin, and enterococci resistant to vancomycin. Of these, 98 (25.3%), 200 (51.7%) and 89 (23.0%) originated from areas with low, medium and high population density, respectively. Overall, the occurrence of AMR in indicator E. coli from wild red foxes originating from areas with different human population densities in Norway was low to moderate (8.8%). The total occurrence of AMR was significantly higher; χ2 (1,N = 336) = 6.53, p = 0.01 in areas with high population density compared to areas with medium population density. Similarly, the occurrence of fluoroquinolone resistant E. coli isolated using selective detection methods was low in areas with low population density and more common in areas with medium or high population density. In conclusion, we found indications that occurrence of AMR in wild red foxes in Norway is associated with human population density. Foxes living in urban areas are more likely to be exposed to AMR bacteria and resistance drivers from food waste, garbage, sewage, waste water and consumption of contaminated prey compared to foxes living in remote areas. The homerange of red fox has been shown to be limited thereby the red fox constitutes a good sentinel for monitoring antimicrobial resistance in the environment. Continuous monitoring on the occurrence of AMR in different wild species, ecological niches and geographical areas can facilitate an increased understanding of the environmental burden of AMR in the environment. Such information is needed to further assess the impact for humans, and enables implementation of possible control measures for AMR in humans, animals and the environment in a true "One Health" approach.
Effects of egg and hatchling harvest on American alligators in Florida
Rice, K.G.; Percival, H.F.; Woodward, A.R.; Jennings, Michael L.
1999-01-01
Harvest of crocodilian eggs and young for captive rearing (ranching) has been used worldwide as an option for producing crocodilian skins and meat from wild stock. The long-term effects of harvesting a certain proportion of early age class, wild American alligators (Alligator mississippiensis) without repatriation is unknown. We removed an estimated 50% of annual production of alligators on Lakes Griffin and Jesup in central Florida over an 11-year period and monitored population levels via night-light counts. Densities of the total alligator population increased (P 0.117), and subadult (122-182 cm TL) alligators increased (P < 0.011) on harvest areas. The density of juveniles on the control area increased (P = 0.006), and the density of subadults showed some evidence of increasing (P = 0.088). No changes were detected in size distributions on the treatment areas. Nest production, as observed from aerial helicopter surveys, increased (P < 0.039) on Lake Woodruff NWR and Lake Jesup and showed some evidence of an increase on Lake Griffin (P = 0.098) during 1983-91. A 50% harvest rate of eggs or hatchlings did not adversely affect recruitment into the subadult or adult size classes.
Spatio-Temporal Variability of Urban Heat Island and Urban Mobility
NASA Astrophysics Data System (ADS)
Kar, B.; Omitaomu, O.
2017-12-01
A 2016 report by the U.S. Census stated that while the rural areas cover 97% of the U.S. landmass, these areas house only 19.7% of the nation's population. Given that the U.S. coastal counties are home to more than 50% of the U.S. population, these urban areas are clustered along the coast that is susceptible to sea level rise induced impacts. In light of increasing climate variability and extreme events, it is pertinent to understand the Urban Heat Island (UHI) effect that results from increasing population density and mobility in the urban areas, and that contributes to increased energy consumption and temperature as well as unmitigated flooding events. For example, in Illinois, warmer summers contribute to heavy precipitation that overwhelms the region's drainage capacity. This study focuses on understanding the spatio-temporal variability of the relationship between population density and mobility distribution, and creation of UHI due to temperature change in selected cities across the U.S. This knowledge will help us understand the role of UHI in energy-water nexus in urban areas, specifically, energy consumption.
García-Jiménez, W L; Fernández-Llario, P; Benítez-Medina, J M; Cerrato, R; Cuesta, J; García-Sánchez, A; Gonçalves, P; Martínez, R; Risco, D; Salguero, F J; Serrano, E; Gómez, L; Hermoso-de-Mendoza, J
2013-07-01
Research on management of bovine tuberculosis (bTB) in wildlife reservoir hosts is crucial for the implementation of effective disease control measures and the generation of practical bTB management recommendations. Among the management methods carried out on wild species to reduce bTB prevalence, the control of population density has been frequently used, with hunting pressure a practical strategy to reduce bTB prevalence. However, despite the number of articles about population density control in different bTB wildlife reservoirs, there is little information regarding the application of such measures on the Eurasian wild boar (Sus scrofa), which is considered the main bTB wildlife reservoir within Mediterranean ecosystems. This study shows the effects of a management measure leading to a radical decrease in wild boar population density at a large hunting estate in Central Spain, in order to assess the evolution of bTB prevalence in both the wild boar population and the sympatric fallow deer population. The evolution of bTB prevalence was monitored in populations of the two wild ungulate species over a 5-year study period (2007-2012). The results showed that bTB prevalence decreased in fallow deer, corresponding to an important reduction in the wild boar population. However, this decrease was not homogeneous: in the last season of study there was an increase in bTB-infected male animals. Moreover, bTB prevalence remained high in the remnant wild boar population. Copyright © 2013 Elsevier B.V. All rights reserved.
Density-dependent natural selection and trade-offs in life history traits.
Mueller, L D; Guo, P Z; Ayala, F J
1991-07-26
Theories of density-dependent natural selection state that at extreme population densities evolution produces alternative life histories due to trade-offs. The trade-offs are presumed to arise because those genotypes with highest fitness at high population densities will not also have high fitness at low density and vice-versa. These predictions were tested by taking samples from six populations of Drosophila melanogaster kept at low population densities (r-populations) for nearly 200 generations and placing them in crowded cultures (K-populations). After 25 generations in the crowded cultures, the derived K-populations showed growth rate and productivity that at high densities were elevated relative to the controls, but at low density were depressed.
Géa-Horta, Tatiane; Beinner, Mark Anthony; Gazzinelli, Andrea; Mendes, Mariana Santos Felisbino; Velasquez-Melendez, Gustavo
2018-05-01
This article aims to evaluate associations between anthropometric changes in five years with lipid and blood pressure levels in Brazilian rural population. This longitudinal study evaluated 387 individuals aged 18 to 75 residents of two rural communities. Demographic, lifestyle, anthropometric, biochemical and hemodynamic characteristics were assessed in 2004 and repeated in 2009. Multivariate linear regression was used. Positive change in BMI was associated with increased diastolic blood pressure (DBP) (β = 0.07; 95%CI: 0.03-0.11), low-density lipoprotein (LDL-C) (increase of 0.01% to 10%: β = 0.08; 95%CI: 0.02-0.14, more than 10% increase: β = 0.09; 95%CI: 0.01-0.16) and low density lipoprotein/high density lipoprotein cholesterol ratio (LDL-C/HDL-C) (increase of 0.01% to 10%: β = 0.15; 95%CI: 0.06-0.25, more than 10% increase: β = 0.14; 95%CI: 0.02-0.25). Our results showed no association between positive changes in WC and lipid levels increase, only with blood pressure levels increase (SBP: β = 0.06; CI95%:0.02-0.10; DBP: β = 0.09; CI95%: 0.04;0.13). Positive changes in BMI are independent predictors of increased lipid and blood pressure levels and positive changes in WC of increased blood pressure.
Inter-decadal patterns of population and dietary change in sea otters at Amchitka Island, Alaska
Watt, J.; Siniff, D.B.; Estes, J.A.
2000-01-01
After having been hunted to near-extinction in the Pacific maritime fur trade, the sea otter population at Amchitka Island, Alaska increased from very low numbers in the early 1900s to near equilibrium density by the 1940s. The population persisted at or near equilibrium through the 1980s, but declined sharply in the 1990s in apparent response to increased killer whale predation. Sea otter diet and foraging behavior were studied at Amchitka from August 1992 to March 1994 and the data compared with similar information obtained during several earlier periods. In contrast with dietary patterns in the 1960s and 1970s, when the sea otter population was at or near equilibrium density and kelp-forest fishes were the dietary mainstay, these fishes were rarely eaten in the 1990s. Benthic invertebrates, particularly sea urchins, dominated the otter's diet from early summer to midwinter, then decreased in importance during late winter and spring when numerous Pacific smooth lumpsuckers (a large and easily captured oceanic fish) were eaten. The occurrence of spawning lumpsuckers in coastal waters apparently is episodic on a scale of years to decades. The otters' recent dietary shift away from kelp-forest fishes is probably a response to the increased availability of lumpsuckers and sea urchins (both high-preference prey). Additionally, increased urchin densities have reduced kelp beds, thus further reducing the availability of kelp-forest fishes. Our findings suggest that dietary patterns reflect changes in population status and show how an ecosystem normally under top-down control and limited by coastal zone processes can be significantly perturbed by exogenous events.
Vogelmann, James E.
1995-01-01
Spatial patterns and rates of forest fragmentation were assessed using digital remote sensing data for a region in southern New England that included 157 townships in southern New Hampshire and northeastern Massachusetts. The study area has undergone marked population increases over the last several decades. Following classification of 1973 and 1988 Landsat Multispectral Scanner data into forest and nonforest classes, data were incorporated into a geographic information system. The natural logarithms of forest area to perimeter ratios, referred to as the forest continuity index, were used to assess patterns and trends of forest fragmentation across the region Forest continuity index values were extracted from each township for both data sets and compared with population data. Forest continuity index values were found to decrease with increasing population density until about 200 persons per square kilometer, after which the relationship stabilized. With slight population increases at low densities forest continuity index values declined sharply, implying abrupt increases in forest fragmentation. Results from the study indicated good negative correlations (r2 values of 0.81 and 0.77) between the Multispectral Scanner-derived forest continuity index and natural logs of township population density. Socioeconomic indicators such as affluence and commuting patterns did not appear to correlate well with forest fragmentation estimates. Decreases in forest continuity index values occurred throughout much of the study region between 1973 and 1988, suggesting that forest fragmentation is occurring over large regions within the eastern United States. It is technologically feasible to assess patterns and rates of forest fragmentation across much larger areas than analyzed in this study; such analyses would provide useful overviews enabling objective assessment of the magnitude of forest fragmentation.
Hansen, Michael J.; Hansen, Barry S; Beauchamp, David A.
2016-01-01
Non-native lake trout Salvelinus namaycush displaced native bull trout Salvelinus confluentus in Flathead Lake, Montana, USA, after 1984, when Mysis diluviana became abundant following its introduction in upstream lakes in 1968–1976. We developed a simulation model to determine the fishing mortality rate on lake trout that would enable bull trout recovery. Model simulations indicated that suppression of adult lake trout by 75% from current abundance would reduce predation on bull trout by 90%. Current removals of lake trout through incentivized fishing contests has not been sufficient to suppress lake trout abundance estimated by mark-recapture or indexed by stratified-random gill netting. In contrast, size structure, body condition, mortality, and maturity are changing consistent with a density-dependent reduction in lake trout abundance. Population modeling indicated total fishing effort would need to increase 3-fold to reduce adult lake trout population density by 75%. We conclude that increased fishing effort would suppress lake trout population density and predation on juvenile bull trout, and thereby enable higher abundance of adult bull trout in Flathead Lake and its tributaries.
Maximizing the potential of cropping systems for nematode management.
Noe, J P; Sasser, J N; Imbriani, J L
1991-07-01
Quantitative techniques were used to analyze and determine optimal potential profitability of 3-year rotations of cotton, Gossypium hirsutum cv. Coker 315, and soybean, Glycine max cv. Centennial, with increasing population densities of Hoplolaimus columbus. Data collected from naturally infested on-farm research plots were combined with economic information to construct a microcomputer spreadsheet analysis of the cropping system. Nonlinear mathematical functions were fitted to field data to represent damage functions and population dynamic curves. Maximum yield losses due to H. columbus were estimated to be 20% on cotton and 42% on soybean. Maximum at-harvest population densities were calculated to be 182/100 cm(3) soil for cotton and 149/100 cm(3) soil for soybean. Projected net incomes ranged from a $17.74/ha net loss for the soybean-cotton-soybean sequence to a net profit of $46.80/ha for the cotton-soybean-cotton sequence. The relative profitability of various rotations changed as nematode densities increased, indicating economic thresholds for recommending alternative crop sequences. The utility and power of quantitative optimization was demonstrated for comparisons of rotations under different economic assumptions and with other management alternatives.
NASA Technical Reports Server (NTRS)
Plank, L. D.; Kunze, M. E.; Todd, P. W.
1985-01-01
Cultured mouse leukemia cells line L5178Y were subjected to upward electrophoresis in a density gradient and the slower migrating cell populations were enriched in G2 cells. It is indicated that this cell line does not change electrophoretic mobility through the cell cycle. The possibility that increased sedimentation downward on the part of the larger G2 cells caused this separation was explored. Two different cell populations were investigated. The log phase population was found to migrate upward faster than the G2 population, and a similar difference between their velocities and calculated on the basis of a 1 um diameter difference between the two cell populations. The G2 and G1 enriched populations were isolated by Ficoll density gradient sedimentation. The bottom fraction was enriched in G2 cells and the top fraction was enriched with G1 cells, especially when compared with starting materials. The electrophoretic mobilities of these two cell populations did not differ significantly from one another. Cell diameter dependent migration curves were calculated and were found to be different. Families of migration curves that differ when cell size is considered as a parameter are predicted.
NASA Astrophysics Data System (ADS)
Everaert, Gert; Deschutter, Yana; De Troch, Marleen; Janssen, Colin R.; De Schamphelaere, Karel
2018-05-01
The effect of multiple stressors on marine ecosystems remains poorly understood and most of the knowledge available is related to phytoplankton. To partly address this knowledge gap, we tested if combining multimodel inference with generalized additive modelling could quantify the relative contribution of environmental variables on the population dynamics of a zooplankton species in the Belgian part of the North Sea. Hence, we have quantified the relative contribution of oceanographic variables (e.g. water temperature, salinity, nutrient concentrations, and chlorophyll a concentrations) and anthropogenic chemicals (i.e. polychlorinated biphenyls) to the density of Acartia clausi. We found that models with water temperature and chlorophyll a concentration explained ca. 73% of the population density of the marine copepod. Multimodel inference in combination with regression-based models are a generic way to disentangle and quantify multiple stressor-induced changes in marine ecosystems. Future-oriented simulations of copepod densities suggested increased copepod densities under predicted environmental changes.
Smith, D.R.
2007-01-01
Because the Delaware Bay horseshoe crab (Limulus polyphemus) population is managed to provide for dependent species, such as migratory shorebirds, there is a need to understand the process of egg exhumation and to predict eggs available to foraging shorebirds. A simple spatial model was used to simulate horseshoe crab spawning that would occur on a typical Delaware Bay beach during spring tide cycles to quantify density-dependent nest disturbance. At least 20% of nests and eggs were disturbed for levels of spawning greater than one third of the average density in Delaware Bay during 2004. Nest disturbance increased approximately linearly as spawning density increased from one half to twice the 2004 level. As spawning density increased further, the percentage of eggs that were disturbed reached an asymptote of 70% for densities up to 10 times the density in 2004. Nest disturbance was heaviest in the mid beach zone. Nest disturbance precedes entrainment and begins the process of exhumation of eggs to surface sediments. Model predictions were combined with observations from egg surveys to estimate a snap-shot exhumation rate of 5-9% of disturbed eggs. Because an unknown quantity of eggs were exhumed and removed from the beach prior to the survey, cumulative exhumation rate was likely to have been higher than the snap-shot estimate. Because egg exhumation is density-dependent, in addition to managing for a high population size, identification and conservation of beaches where spawning horseshoe crabs concentrate in high densities (i.e., hot spots) are important steps toward providing a reliable food supply for migratory shorebirds. ?? 2007 Estuarine Research Federation.
Functional response of wolves preying on barren-ground caribou in a multiple-prey ecosystem
Dale, B.W.; Adams, Layne G.; Bowyer, R.T.
1994-01-01
1. We investigated the functional response of wolves (Canis lupus) to varying abundance of ungulate prey to test the hypothesis that switching from alternate prey to preferred prey results in regulation of a caribou (Rangifer tarandus) population at low densities. 2. We determined prey selection, kill rates, and prey abundance for four wolf packs during three 30-day periods in March 1989, March 1990, November 1990, and created a simple discrete model to evaluate the potential for the expected numerical and observed functional responses of wolves to regulate caribou populations. 3. We observed a quickly decelerating type II functional response that, in the absence of numerical response, implicates an anti-regulatory effect of wolf predation on barren-ground caribou dynamics. 4. There was little potential for regulation caused by the multiplicative effect of increasing functional and numerical responses because of presence of alternative prey. This resulted in high wolf:caribou ratios at low prey densities which precluded the effects of an increasing functional response. 5. Inversely density-dependent predation by other predators, such as bears, reduces the potential for predators to regulate caribou populations at low densities, and small reductions in predation by one predator may have disproportionately large effects on the total predation rate.
York, Larry M; Galindo-Castañeda, Tania; Schussler, Jeffrey R; Lynch, Jonathan P
2015-04-01
Increasing the nitrogen use efficiency of maize is an important goal for food security and agricultural sustainability. In the past 100 years, maize breeding has focused on yield and above-ground phenes. Over this period, maize cultivation has changed from low fertilizer inputs and low population densities to intensive fertilization and dense populations. The authors hypothesized that through indirect selection the maize root system has evolved phenotypes suited to more intense competition for nitrogen. Sixteen maize varieties representing commercially successful lines over the past century were planted at two nitrogen levels and three planting densities. Root systems of the most recent material were 7 º more shallow, had one less nodal root per whorl, had double the distance from nodal root emergence to lateral branching, and had 14% more metaxylem vessels, but total mextaxylem vessel area remained unchanged because individual metaxylem vessels had 12% less area. Plasticity was also observed in cortical phenes such as aerenchyma, which increased at greater population densities. Simulation modelling with SimRoot demonstrated that even these relatively small changes in root architecture and anatomy could increase maize shoot growth by 16% in a high density and high nitrogen environment. The authors concluded that evolution of maize root phenotypes over the past century is consistent with increasing nitrogen use efficiency. Introgression of more contrasting root phene states into the germplasm of elite maize and determination of the functional utility of these phene states in multiple agronomic conditions could contribute to future yield gains. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
NASA Astrophysics Data System (ADS)
Magnano, Andrea L.; Nanni, Analía S.; Krug, Pamela; Astrada, Elizabeth; Vicari, Ricardo; Quintana, Rubén D.
2018-01-01
In Argentina, the intensification of soybean production has displaced a substantial proportion of cattle ranching to fluvial wetlands such as those in the Delta of the Paraná River. Cattle grazing affects structure and dynamics of native forage plants but there is little information on this impact in populations from fluvial wetlands. This study addresses the effect of cattle ranching on density, survival, mean life-span and aerial biomass of Hymenachne pernambucense (Poaceae), an important forage species in the region. The study was carried out monthly for one year in permanents plots subject to continuous grazing and plots excluded from grazing in the Middle Delta of the Paraná River. In plots excluded from grazing, tillers showed significantly higher population density and survival, and a two-fold increase in mean life-span, while continuous grazing decreased survival of cohorts. The largest contribution to tiller density in ungrazed and grazed populations was made by spring and summer cohorts, respectively. Total and green biomass were significantly higher in the ungrazed population, with highest differences in late spring-early summer. Cattle grazing affected the relationship between tiller density and green biomass suggesting that cattle prefer sprouts because they are more palatable and nutritious than older tissue.
2D motility tracking of Pseudomonas putida KT2440 in growth phases using video microscopy
Davis, Michael L.; Mounteer, Leslie C.; Stevens, Lindsey K.; Miller, Charles D.; Zhou, Anhong
2011-01-01
Pseudomonas putida KT2440 is a gram negative motile soil bacterium important in bioremediation and biotechnology. Thus, it is important to understand its motility characteristics as individuals and in populations. Population characteristics were determined using a modified Gompertz model. Video microscopy and imaging software were utilized to analyze two dimensional (2D) bacteria movement tracks to quantify individual bacteria behavior. It was determined that inoculum density increased the lag time as seeding densities decreased, and that the maximum specific growth rate decreased as seeding densities increased. Average bacterial velocity remained relatively similar throughout exponential growth phase (~20.9 µm/sec), while maximum velocities peak early in exponential growth phase at a velocity of 51.2 µm/sec. Pseudomonas putida KT2440 also favor smaller turn angles indicating they often continue in the same direction after a change in flagella rotation throughout the exponential growth phase. PMID:21334971
Zhao, Z P; Ai, H H; Li, Y C; Wang, L M; Yin, P; Zhang, M; Deng, Q; Huang, Z J; Liu, J M; Liu, Y N; Gao, Y J; Zhou, M G
2016-09-06
Objective: To identify cause-specific death and attributed burden of low bone mineral density in China among population aged ≥40 years old , 1990 and 2013. Methods: By using data from Global Burden of Disease(GBD)2013, this study analyzed death caused by low mineral density, and disability-adjusted life years(DALY)among population aged 40 and above in China(not including Taiwan, China). This study also analyzed DALY by composition of injury which due to low bone mineral density. It also analyzed changes in DALY by provinces in China, 1990 and 2013. An average world population age-structure for the period 2000- 2025 was adopted to calculate the age standardized rates. Results: In 2013, there were 38.1 thousands male and 30.7 thousands female who aged 40 and above dead due to low bone mineral density in China. The burden of injury caused by low bone mineral density was more sever in male than female, which accounted for 1.525 million DALY in male and 0.873 million DALY in female. In 1990, low bone mineral density attributed transportation and accidental injury caused 0.794 million and 0.567 million DALY losses, respectively. In 2013, low bone mineral density attributed transportation and accidental injury caused 1.421 million and 0.951 million DALY losses, respectively. Compared to 1990, DALY losses caused by transportation and accidental injury, increased by 79.1% and 67.6%, respectively. In 1990, DALY rate losses due to low bone mineral density attributed transportation and accidental injury were 68.1 per 100 000 and 48.7 per 100 000, respectively. In 2013, DALY rate losses due to low bone mineral density attributed transportation and accidental injury were 102.0 per 100 000 and 68.2 per 100 000, respectively. Compared to 1990, DALY rates which caused by transportation and accidental injury, increased by 49.8% and 40.2%, respectively. According to the ranking of standardized DALY rate in 2013 by provinces, the top 3 provinces, which standardized DALYs attributed to low bone mineral density lost the most, were Zhejiang Province(2.6 per 100 000), Jiangsu Province(2.4 per 100 000), and Fujian Province(2.2 per 100 000). Compared to 1990, the standardized rate of DALY decreased in 27 provinces, while the DALY rate increased in only 6 provinces which included Ningxia Hui Autonomous Region, Qinghai Province, Hebei Province, Guangxi Zhuang Autonomous Region, and Henan Province and Xinjiang Uygur Autonomous Region. Conclusion: This study found that the burden of health losses attributed to it was higher in men than in women. Compared to 1990, DALY rates decreased in most of the provinces, however, the rates of losses of DALY which caused by transportation and accidental injury were still increasing.
Haglund, Justin M.; Isermann, Daniel A.; Sass, Greg G.
2016-01-01
Implementing harvest regulations to eliminate or substantially reduce (≥90%) the exploitation of Walleyes Sander vitreus in recreational fisheries may increase population size structure, but these measures also could reduce angler effort because many Walleye anglers are harvest oriented. We analyzed data collected during 1995–2015 to determine whether Walleye population and fishery metrics in Escanaba Lake, Wisconsin, changed after a minimum TL limit of 71 cm with a one-fish daily bag limit was implemented in 2003. This change eliminated the legal harvest of Walleyes after several decades during which annual exploitation averaged 34%. We detected a significant increase in the loge density of adult females after the regulation change, but the loge density of all adults and adult males did not differ between periods. Mean TL of adult males was significantly greater after the regulation change, but the mean TL of females and the proportional size distribution of preferred-length fish (≥51 cm TL) were similar between periods. Sex-specific mean TLs at age 5 did not differ between periods. Loge density of age-0 Walleyes did not change after 2003, but variation in age-0 density was lower. Total angler effort and the effort for anglers targeting Walleyes were significantly lower (35% and 60% declines, respectively) after the regulation change, whereas catch rates for both angler categories did not differ between periods. Our results suggest that implementing highly restrictive regulations that greatly reduce or eliminate legal harvest will not always increase angler catch rates and population size structure. Highly restrictive regulations may also deter anglers from using a fishery when many other fisheries are available. Our findings are useful for fishery managers who may work with anglers holding the belief that lower exploitation is a potential remedy for low Walleye size structure, even when density and growth suggest that there is limited potential for improvement.
Allee effect and the uncertainty of population recovery.
Kuparinen, Anna; Keith, David M; Hutchings, Jeffrey A
2014-06-01
Recovery of depleted populations is fundamentally important for conservation biology and sustainable resource harvesting. At low abundance, population growth rate, a primary determinant of population recovery, is generally assumed to be relatively fast because competition is low (i.e., negative density dependence). But population growth can be limited in small populations by an Allee effect. This is particularly relevant for collapsed populations or species that have not recovered despite large reductions in, or elimination of, threats. We investigated how an Allee effect can influence the dynamics of recovery. We used Atlantic cod (Gadus morhua) as the study organism and an empirically quantified Allee effect for the species to parameterize our simulations. We simulated recovery through an individual-based mechanistic simulation model and then compared recovery among scenarios incorporating an Allee effect, negative density dependence, and an intermediate scenario. Although an Allee effect significantly slowed recovery, such that population increase could be negligible even after 100 years or more, it also made the time required for biomass rebuilding much less predictable. Our finding that an Allee effect greatly increased the uncertainty in recovery time frames provides an empirically based explanation for why the removal of threat does not always result in the recovery of depleted populations or species. © 2014 Society for Conservation Biology.
Ultra-low-density genotype panels for breed assignment of Angus and Hereford cattle.
Judge, M M; Kelleher, M M; Kearney, J F; Sleator, R D; Berry, D P
2017-06-01
Angus and Hereford beef is marketed internationally for apparent superior meat quality attributes; DNA-based breed authenticity could be a useful instrument to ensure consumer confidence on premium meat products. The objective of this study was to develop an ultra-low-density genotype panel to accurately quantify the Angus and Hereford breed proportion in biological samples. Medium-density genotypes (13 306 single nucleotide polymorphisms (SNPs)) were available on 54 703 commercial and 4042 purebred animals. The breed proportion of the commercial animals was generated from the medium-density genotypes and this estimate was regarded as the gold-standard breed composition. Ten genotype panels (100 to 1000 SNPs) were developed from the medium-density genotypes; five methods were used to identify the most informative SNPs and these included the Delta statistic, the fixation (F st) statistic and an index of both. Breed assignment analyses were undertaken for each breed, panel density and SNP selection method separately with a programme to infer population structure using the entire 13 306 SNP panel (representing the gold-standard measure). Breed assignment was undertaken for all commercial animals (n=54 703), animals deemed to contain some proportion of Angus based on pedigree (n=5740) and animals deemed to contain some proportion of Hereford based on pedigree (n=5187). The predicted breed proportion of all animals from the lower density panels was then compared with the gold-standard breed prediction. Panel density, SNP selection method and breed all had a significant effect on the correlation of predicted and actual breed proportion. Regardless of breed, the Index method of SNP selection numerically (but not significantly) outperformed all other selection methods in accuracy (i.e. correlation and root mean square of prediction) when panel density was ⩾300 SNPs. The correlation between actual and predicted breed proportion increased as panel density increased. Using 300 SNPs (selected using the global index method), the correlation between predicted and actual breed proportion was 0.993 and 0.995 in the Angus and Hereford validation populations, respectively. When SNP panels optimised for breed prediction in one population were used to predict the breed proportion of a separate population, the correlation between predicted and actual breed proportion was 0.034 and 0.044 weaker in the Hereford and Angus populations, respectively (using the 300 SNP panel). It is necessary to include at least 300 to 400 SNPs (per breed) on genotype panels to accurately predict breed proportion from biological samples.
Sass, G.G.; Hewett, S.W.; Beard, T.D.; Fayram, A.H.; Kitchell, J.F.
2004-01-01
We assessed density-related changes in growth of walleye Sander vitreus in the ceded territory of northern Wisconsin from 1977 to 1999. We used asymptotic length (Lz), growth rate near t0 (??), and body condition as measures of walleye growth to determine the relationship between growth and density. Among lakes, there was weak evidence of density-dependent growth: adult density explained only 0-6% of the variability in the growth metrics. Within lakes, growth was density dependent. Lz, ??, and body condition of walleyes changing with density for 69, 28, and 62% of the populations examined, respectively. Our results suggest that walleye growth was density dependent within individual lakes. However, growth was not coherently density dependent among lakes, which was possibly due to inherent differences in the productivity, surface area, forage base, landscape position, species composition, and management regime of lakes in the ceded territory. Densities of adult walleyes averaged 8.3 fish/ha and did not change significantly during 1990-1999. Mean Lz and body condition of walleyes were signilicantly higher before 1990 than after 1990, which may indicate an increase in density due to changes in management regimes. The observed growth changes do not appear to be a consequence of the statewide 15-in minimum size limit adopted in 1990 but rather a response to the treaty rights management regime. We conclude that walleye growth has the potential to predict regional-scale adult walleye densities if lake-specific variables are included in a model to account for regional-scale differences among walleye populations and lakes.
Sakai, Rie; Fink, Günther; Wang, Wei; Kawachi, Ichiro
2015-01-01
Background In industrialized countries, assessment of the causal effect of physician supply on population health has yielded mixed results. Since the scope of child vaccination is an indicator of preventive health service utilization, this study investigates the correlation between vaccination coverage and pediatrician supply as a reflection of overall pediatric health during a time of increasing pediatrician numbers in Japan. Methods Cross-sectional data were collected from publicly available sources for 2010. Dependent variables were vaccination coverage for measles and diphtheria, pertussis, and tetanus (DPT) by region. The primary predictor of interest was number of pediatricians per 10 000-child population (pediatrician density) at the municipality level. Multivariate logistic regression models were used to estimate associations of interest, conditional on a large range of demographic and infrastructure-related factors as covariates, including non-pediatric physician density, total population, per capita income, occupation, unemployment rate, prevalence of single motherhood, number of hospital beds per capita, length of roads, crime rate, accident rate, and metropolitan area code as urban/rural status. The percentage of the population who completed college-level education or higher in 2010 was included in the model as a proxy for education level. Results Pediatrician density was positively and significantly associated with vaccination coverage for both vaccine series. On average, each unit of pediatrician density increased odds by 1.012 for measles (95% confidence interval, 1.010–1.015) and 1.019 for DPT (95% confidence interval, 1.016–1.022). Conclusions Policies increasing pediatrician supply contribute to improved preventive healthcare services utilization, such as immunizations, and presumably improved child health status in Japan. PMID:25817986
Kit fox population trends at the Naval Petroleum Reserves in California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, T.T.; Scrivner, J.H.; Warrick, G.
The San Joaquin kit fox was listed as an endangered subspecies following passage of the Endangered Species Protection Act of 1966, and further classified as rare under the California Endangered Species Act of 1970. The San Joaquin kit fox occurs on the Naval Petroleum Reserves in California administered by the Department of Energy (DOE). A long term kit fox population monitoring program was initiated as part of DOE's mitigation strategy to comply with the Endangered Species Act. In addition to monitoring kit fox populations, the program includes assessments of kit fox prey density and assessments of predator abundance. The objectivesmore » of this study were to: describe the long term changes in the kit fox population on the Reserves and assess the roles of coyotes and lagomorphs in kit fox population dynamics. When the fox population on NPR-1 declined between 1980 and 1984, it appeared to have been negatively impacted by a declining prey base (lagomorphs) and an increasing coyote population. Declining lagomorph densities may have been a more important factor because as coyote numbers declined between 1985 and 1990, the kit fox population remained stable. The fox population on NPR-2 remained at a higher and more stable level than the population on NPR-1. The factors determining the higher densities and greater stability of the fox population on NPR-2 are unknown.« less
Joshi, Aditya; Vaidyanathan, Srinivas; Mondol, Samrat; Edgaonkar, Advait; Ramakrishnan, Uma
2013-01-01
Today, most wild tigers live in small, isolated Protected Areas within human dominated landscapes in the Indian subcontinent. Future survival of tigers depends on increasing local population size, as well as maintaining connectivity between populations. While significant conservation effort has been invested in increasing tiger population size, few initiatives have focused on landscape-level connectivity and on understanding the effect different landscape elements have on maintaining connectivity. We combined individual-based genetic and landscape ecology approaches to address this issue in six protected areas with varying tiger densities and separation in the Central Indian tiger landscape. We non-invasively sampled 55 tigers from different protected areas within this landscape. Maximum-likelihood and Bayesian genetic assignment tests indicate long-range tiger dispersal (on the order of 650 km) between protected areas. Further geo-spatial analyses revealed that tiger connectivity was affected by landscape elements such as human settlements, road density and host-population tiger density, but not by distance between populations. Our results elucidate the importance of landscape and habitat viability outside and between protected areas and provide a quantitative approach to test functionality of tiger corridors. We suggest future management strategies aim to minimize urban expansion between protected areas to maximize tiger connectivity. Achieving this goal in the context of ongoing urbanization and need to sustain current economic growth exerts enormous pressure on the remaining tiger habitats and emerges as a big challenge to conserve wild tigers in the Indian subcontinent. PMID:24223132
Joshi, Aditya; Vaidyanathan, Srinivas; Mondol, Samrat; Edgaonkar, Advait; Ramakrishnan, Uma
2013-01-01
Today, most wild tigers live in small, isolated Protected Areas within human dominated landscapes in the Indian subcontinent. Future survival of tigers depends on increasing local population size, as well as maintaining connectivity between populations. While significant conservation effort has been invested in increasing tiger population size, few initiatives have focused on landscape-level connectivity and on understanding the effect different landscape elements have on maintaining connectivity. We combined individual-based genetic and landscape ecology approaches to address this issue in six protected areas with varying tiger densities and separation in the Central Indian tiger landscape. We non-invasively sampled 55 tigers from different protected areas within this landscape. Maximum-likelihood and Bayesian genetic assignment tests indicate long-range tiger dispersal (on the order of 650 km) between protected areas. Further geo-spatial analyses revealed that tiger connectivity was affected by landscape elements such as human settlements, road density and host-population tiger density, but not by distance between populations. Our results elucidate the importance of landscape and habitat viability outside and between protected areas and provide a quantitative approach to test functionality of tiger corridors. We suggest future management strategies aim to minimize urban expansion between protected areas to maximize tiger connectivity. Achieving this goal in the context of ongoing urbanization and need to sustain current economic growth exerts enormous pressure on the remaining tiger habitats and emerges as a big challenge to conserve wild tigers in the Indian subcontinent.
A regional assessment of white-tailed deer effects on plant invasion
Mortensen, David A; Smithwick, Erica A H; Kalisz, Susan; McShea, William J; Bourg, Norman A; Parker, John D; Royo, Alejandro A; Abrams, Marc D; Apsley, David K; Blossey, Bernd; Boucher, Douglas H; Caraher, Kai L; DiTommaso, Antonio; Johnson, Sarah E; Masson, Robert; Nuzzo, Victoria A
2018-01-01
Abstract Herbivores can profoundly influence plant species assembly, including plant invasion, and resulting community composition. Population increases of native herbivores, e.g. white-tailed deer (Odocoileus virginianus), combined with burgeoning plant invasions raise concerns for native plant diversity and forest regeneration. While individual researchers typically test for the impact of deer on plant invasion at a few sites, the overarching influence of deer on plant invasion across regional scales is unclear. We tested the effects of deer on the abundance and diversity of introduced and native herbaceous and woody plants across 23 white-tailed deer research sites distributed across the east-central and north-eastern USA and representing a wide range of deer densities and invasive plant abundance and identity. Deer access/exclusion or deer population density did not affect introduced plant richness or community-level abundance. Native and total plant species richness, abundance (cover and stem density) and Shannon diversity were lower in deer-access vs. deer-exclusion plots. Among deer-access plots, native species richness, native and total cover, and Shannon diversity (cover) declined as deer density increased. Deer access increased the proportion of introduced species cover (but not of species richness or stem density). As deer density increased, the proportion of introduced species richness, cover and stem density all increased. Because absolute abundance of introduced plants was unaffected by deer, the increase in proportion of introduced plant abundance is likely an indirect effect of deer reducing native cover. Indicator species analysis revealed that deer access favoured three introduced plant species, including Alliaria petiolata and Microstegium vimineum, as well as four native plant species. In contrast, deer exclusion favoured three introduced plant species, including Lonicera japonica and Rosa multiflora, and 15 native plant species. Overall, native deer reduced community diversity, lowering native plant richness and abundance, and benefited certain invasive plants, suggesting pervasive impacts of this keystone herbivore on plant community composition and ecosystem services in native forests across broad swathes of the eastern USA. PMID:29340133
DOE Office of Scientific and Technical Information (OSTI.GOV)
Averill, Kristine M.; Mortensen, David A.; Smithwick, Erica A. H.
Herbivores can profoundly influence plant species assembly, including plant invasion, and resulting community composition. Population increases of native herbivores, e.g., white-tailed deer (Odocoileus virginianus), combined with burgeoning plant invasions raise concerns for native plant diversity and forest regeneration. While individual researchers typically test for the impact of deer on plant invasion at a few sites, the overarching influence of deer on plant invasion across regional scales is unclear. We tested the effects of deer on the abundance and diversity of introduced and native herbaceous and woody plants across 23 white-tailed deer research sites distributed across the east central and northeasternmore » United States and representing a wide range of deer densities and invasive plant abundance and identity. Deer access/exclusion or deer population density did not affect introduced plant richness or community-level abundance. Native and total plant species richness, abundance (cover and stem density), and Shannon diversity were lower in deer-access vs. deer-exclusion plots. Among deer access plots, native species richness, native and total cover, and Shannon diversity (cover) declined as deer density increased. Deer access increased the proportion of introduced species cover (but not of species richness or stem density). As deer density increased, the proportion of introduced species richness, cover, and stem density all increased. Because absolute abundance of introduced plants was unaffected by deer, the increase in proportion of introduced plant abundance is likely an indirect effect of deer reducing native cover. Indicator species analysis revealed that deer access favored three introduced plant species, including Alliaria petiolata and Microstegium vimineum, as well as four native plant species. In contrast, deer exclusion favored three introduced plant species, including Lonicera japonica and Rosa multiflora, and fifteen native plant species. Overall, native deer reduced community diversity, lowering native plant richness and abundance, and benefited certain invasive plants, suggesting pervasive impacts of this keystone herbivore on plant community composition and ecosystem services in native forests across broad swathes of the eastern US.« less
A regional assessment of white-tailed deer effects on plant invasion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Averill, Kristine M.; Mortensen, David A.; Smithwick, Erica A. H.
Herbivores can profoundly influence plant species assembly, including plant invasion, and resulting community composition. Population increases of native herbivores, e.g., white-tailed deer ( Odocoileus virginianus), combined with burgeoning plant invasions raise concerns for native plant diversity and forest regeneration. While individual researchers typically test for the impact of deer on plant invasion at a few sites, the overarching influence of deer on plant invasion across regional scales is unclear. We tested the effects of deer on the abundance and diversity of introduced and native herbaceous and woody plants across 23 white-tailed deer research sites distributed across the east central andmore » northeastern United States and representing a wide range of deer densities and invasive plant abundance and identity. Deer access/exclusion or deer population density did not affect introduced plant richness or community-level abundance. Native and total plant species richness, abundance (cover and stem density), and Shannon diversity were lower in deer-access vs. deer-exclusion plots. Among deer access plots, native species richness, native and total cover, and Shannon diversity (cover) declined as deer density increased. Deer access increased the proportion of introduced species cover (but not of species richness or stem density). As deer density increased, the proportion of introduced species richness, cover, and stem density all increased. Because absolute abundance of introduced plants was unaffected by deer, the increase in proportion of introduced plant abundance is likely an indirect effect of deer reducing native cover. Indicator species analysis revealed that deer access favored three introduced plant species, including Alliaria petiolata and Microstegium vimineum, as well as four native plant species. In contrast, deer exclusion favored three introduced plant species, including Lonicera japonica and Rosa multiflora, and fifteen native plant species. Altogether, native deer reduced community diversity, lowering native plant richness and abundance, and benefited certain invasive plants, suggesting pervasive impacts of this keystone herbivore on plant community composition and ecosystem services in native forests across broad swathes of the eastern US.« less
A regional assessment of white-tailed deer effects on plant invasion
Averill, Kristine M.; Mortensen, David A.; Smithwick, Erica A. H.; ...
2017-12-07
Herbivores can profoundly influence plant species assembly, including plant invasion, and resulting community composition. Population increases of native herbivores, e.g., white-tailed deer ( Odocoileus virginianus), combined with burgeoning plant invasions raise concerns for native plant diversity and forest regeneration. While individual researchers typically test for the impact of deer on plant invasion at a few sites, the overarching influence of deer on plant invasion across regional scales is unclear. We tested the effects of deer on the abundance and diversity of introduced and native herbaceous and woody plants across 23 white-tailed deer research sites distributed across the east central andmore » northeastern United States and representing a wide range of deer densities and invasive plant abundance and identity. Deer access/exclusion or deer population density did not affect introduced plant richness or community-level abundance. Native and total plant species richness, abundance (cover and stem density), and Shannon diversity were lower in deer-access vs. deer-exclusion plots. Among deer access plots, native species richness, native and total cover, and Shannon diversity (cover) declined as deer density increased. Deer access increased the proportion of introduced species cover (but not of species richness or stem density). As deer density increased, the proportion of introduced species richness, cover, and stem density all increased. Because absolute abundance of introduced plants was unaffected by deer, the increase in proportion of introduced plant abundance is likely an indirect effect of deer reducing native cover. Indicator species analysis revealed that deer access favored three introduced plant species, including Alliaria petiolata and Microstegium vimineum, as well as four native plant species. In contrast, deer exclusion favored three introduced plant species, including Lonicera japonica and Rosa multiflora, and fifteen native plant species. Altogether, native deer reduced community diversity, lowering native plant richness and abundance, and benefited certain invasive plants, suggesting pervasive impacts of this keystone herbivore on plant community composition and ecosystem services in native forests across broad swathes of the eastern US.« less
Svanfeldt, Karin; Monro, Keyne; Marshall, Dustin J
2017-05-01
Population density affects individual performance, though its effects are often mixed. For sessile species, increases in population density typically reduce performance. Still, cases of positive density-dependence do occur in sessile systems and demand explanation. The stress gradient hypothesis (SGH) predicts that under stressful conditions, positive effects of facilitation may outweigh the negative effects of competition. While some elements of the SGH are well studied, its potential to explain intraspecific facilitation has received little attention. Further, there have been questions regarding whether the SGH holds if the stressor is a resource. Most studies of interactions between the environment and intraspecific facilitation have relied on natural environmental gradients; manipulative studies are much rarer. To test the effects of intraspecific density and resources, we manipulated resource availability over natural population densities for the marine bryozoan Watersipora subtorquata. We found negative effects of density on colony performance in low resource environments, but mainly positive density-dependence in high resource environments. By adding resources, competition effects were reduced and the positive effects of facilitation were revealed. Our results suggest that resource availability mediates the relative strength of competition and facilitation in our system. We also suggest that intraspecific facilitation is more common than may be appreciated and that environmental variation may mediate the balance between negative and positive density-dependence. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Conservation of wildlife populations: factoring in incremental disturbance.
Stewart, Abbie; Komers, Petr E
2017-06-01
Progressive anthropogenic disturbance can alter ecosystem organization potentially causing shifts from one stable state to another. This potential for ecosystem shifts must be considered when establishing targets and objectives for conservation. We ask whether a predator-prey system response to incremental anthropogenic disturbance might shift along a disturbance gradient and, if it does, whether any disturbance thresholds are evident for this system. Development of linear corridors in forested areas increases wolf predation effectiveness, while high density of development provides a safe-haven for their prey. If wolves limit moose population growth, then wolves and moose should respond inversely to land cover disturbance. Using general linear model analysis, we test how the rate of change in moose ( Alces alces ) density and wolf ( Canis lupus ) harvest density are influenced by the rate of change in land cover and proportion of land cover disturbed within a 300,000 km 2 area in the boreal forest of Alberta, Canada. Using logistic regression, we test how the direction of change in moose density is influenced by measures of land cover change. In response to incremental land cover disturbance, moose declines occurred where <43% of land cover was disturbed; in such landscapes, there were high rates of increase in linear disturbance and wolf density increased. By contrast, moose increases occurred where >43% of land cover was disturbed and wolf density declined. Wolves and moose appeared to respond inversely to incremental disturbance with the balance between moose decline and wolf increase shifting at about 43% of land cover disturbed. Conservation decisions require quantification of disturbance rates and their relationships to predator-prey systems because ecosystem responses to anthropogenic disturbance shift across disturbance gradients.
High population density enhances recruitment and survival of a harvested coral reef fish.
Wormald, Clare L; Steele, Mark A; Forrester, Graham E
2013-03-01
A negative relationship between population growth and population density (direct density dependence) is necessary for population regulation and is assumed in most models of harvested populations. Experimental tests for density dependence are lacking for large-bodied, harvested fish because of the difficulty of manipulating population density over large areas. We studied a harvested coral reef fish, Lutjanus apodus (schoolmaster snapper), using eight large, isolated natural reefs (0.4-1.6 ha) in the Bahamas as replicates. An initial observational test for density dependence was followed by a manipulation of population density. The manipulation weakened an association between density and shelter-providing habitat features and revealed a positive effect of population density on recruitment and survival (inverse density dependence), but no effect of density on somatic growth. The snappers on an individual reef were organized into a few shoals, and we hypothesize that large shoals on high-density reefs were less vulnerable to large piscivores (groupers and barracudas) than the small shoals on low-density reefs. Reductions in predation risk for individuals in large social groups are well documented, but because snapper shoals occupied reefs the size of small marine reserves, these ecological interactions may influence the outcome of management actions.
NASA Astrophysics Data System (ADS)
Cao, Lina
Sin Nombre virus (SNV), a strain of hantavirus, causes hantavirus pulmonary syndrome (HPS) in humans, a deadly disease with high mortality rate (>50%). The primary virus host is deer mice, and greater deer mice abundance has been shown to increase the human risk of HPS. There is a great need in understanding the nature of the virus host, its temporal and spatial dynamics, and its relation to the human population with the purpose of predicting human risk of the disease. This research studies SNV dynamics in deer mice in the Great Basin Desert of central Utah, USA using multiyear field data and integrated geospatial approaches including remote sensing, Geographic Information System (GIS), and a spatially explicit agent-based model. The goal is to advance our understanding of the important ecological and demographic factors that affect the dynamics of deer mouse population and SNV prevalence. The primary research question is how climate, habitat disturbance, and deer mouse demographics affect deer mouse population density, its movement, and SNV prevalence in the sagebrush habitat. The results show that the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) can be good predictors of deer mouse density and the number of infected deer mice with a time lag of 1.0 to 1.3 years. This information can be very useful in predicting mouse abundance and SNV risk. The results also showed that climate, mouse density, sex, mass, and SNV infection had significant effects on deer mouse movement. The effect of habitat disturbance on mouse movement varies according to climate conditions with positive relationship in predrought condition and negative association in postdrought condition. The heavier infected deer mice moved the most. Season and disturbance alone had no significant effects. The spatial agent-based model (SABM) simulation results show that prevalence was negatively related to the disturbance levels and the sensitivity analysis showed that population density was one of the most important parameters affecting the SNV dynamics. The results also indicated that habitat disturbance could increase hantavirus transmission likely by increasing the movement and consequently contact rates. However, the model suggested that habitat disturbance had a much stronger effect on prevalence by decreasing population density than by increasing mice movement. Therefore, overall habitat disturbance reduces SNV prevalence.
NASA Astrophysics Data System (ADS)
Daud, Syarifah Nadiah Syed Mat; Ghani, Idris Abd.
2016-11-01
The pollinating weevil, Elaedobius kamerunicus (EK) has been known to be the most efficient insect pollinator of oil palm, and has successfully improved the oil palm pollination and increased the yield. Its introduction has greatly reduced the need for assisted pollination. The purpose of this study was to identify the population density of oil palm pollinator weevil EK using the concept of pollinator force and to relate the population density with the seasonal effect and the age of oil palm at Lekir Oil Palm Plantation Batu 14, Perak, Peninsular Malaysia. The pollinator force of the weevil was sustained at a range between 3095.2 to 19126.1 weevils per ha. The overall mean of weevil per spikelet shows that the range of weevil was between 13.51 and 54.06 per spikelet. There was no correlation between rainfall and population density of EK. However, positive correlation was obtained between weevil density and the number of anthesising female inflorescence of oil palm (r= 0.938, p< 0.05). Results of t-test show that the 6-year old oil palm stands had significantly different population density than that of a 8-year old oil palm stand. The information of this study should be useful as a baseline data to investigate why there is such a wide range of weevils per ha or spikelet. Further study should also be done to relate the number pollinator force per spikelete and the Fresh fruit Bunch (FFB), fruit set or fruit to bunch ratio.
Smith, G S; Roncadori, R W; Hussey, R S
1986-04-01
Microplot and field experiments were conducted to determine the effects of two vesicular-arbuscular mycorrhizal (VAM) fungi, Glomus intraradices (Gi) and Gigaspora margarita (Gm), and dicalcium phosphate (P) on Meloidogyne incognita (Mi) reproduction and seed cotton yield of the Mi-susceptible cotton cultivar, Stoneville 213. In 1983 population densities of Mi juveniles were significantly lower 60 and 90 days after planting in microplots receiving Gi. Mycorrhizal fungi reduced the severity of yield losses to Mi, whereas P fertilization increased yield losses to Mi. In 1984 microplot yields were reduced linearly as nematode inoculum densities increased in treatments of Mi alone, Gm, or P, but the response was curvilinear with Gi. Yield suppressions in the 1984 field experiment occurred only in plots infested with Mi alone. In the 1984 microplots, numbers of Mi juveniles penetrating seedling roots increased Iinearly with increasing nematode inoculum densities and was favored when mycorrhizal fungi or superphosphate were added. Juvenile penetration of roots was negatively correlated with yields in all treatments (r = -0.54 to -0.81) except Gm and with number of bolls in Mi alone (r = -0.85) and P (r = -0.81) treatments. Mycorrhizal fungi can increase host tolerance to M. incognita in field conditions and may function as important biological control agents in soils infested with high population densities of efficient VAM species.
Response of a cotton rat population to increased density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bigler, W.J.; Lebetkin, E.H.; Cumbie, P.M.
Experiments were conducted in old-field enclosures to define some of the responses of a confined, nonreproducing cotton rat population to increases in density. Successive groups of alien animals were randomly added to a monitored resident population on two occasions. Aliens exhibited high rates of mortality and weight loss. The alien males were particularly affected, only 18 percent surviving the experiment. Residents could not be accounted for by trapping as easily as aliens. Residents concentrated in discrete areas of preferred habitat yet ranged over the entire enclosure, while aliens stayed in heavy ground cover close to the walls. Analysis of themore » average distance between captures of each group on a daily basis revealed increases in resident movements and corresponding decreases in alien movements. Changes in spatial distribution, movement patterns, sex ratio and rats of mortality due to trap deaths and predation in the alien groups reflected behavioral interactions that operate as a form of social exclusion.« less
Bécares, Laia; Nazroo, James; Jackson, James; Heuvelman, Hein
2015-01-01
Studies indicate an ethnic density effect, whereby an increase in the proportion of racial/ethnic minority people in an area is associated with reduced morbidity among its residents, though evidence is varied. Discrepancies may arise due to differences in the reasons for and periods of migration, and socioeconomic profiles of the racial/ethnic groups and the places where they live. It is important to increase our understanding of how these factors might promote or mitigate ethnic density effects. Cross-national comparative analyses might help in this respect, as they provide greater heterogeneity in historical and contemporary characteristics in the populations of interest, and it is when we consider this heterogeneity in the contexts of peoples’ lives that we can more fully understand how social conditions and neighbourhood environments influence the health of migrant and racial/ethnic minority populations. This study analysed two cross-sectional nationally representative surveys, in the US and in England, to explore and contrast the association between two ethnic density measures (black and Caribbean ethnic density) and health and experienced racism among Caribbean people. Results of multilevel logistic regressions show that nominally similar measures of ethnic density perform differently across health outcomes and measures of experienced racism in the two countries. In the US, increased Caribbean ethnic density was associated with improved health and decreased experienced racism, but the opposite was observed in England. On the other hand, increased black ethnic density was associated with improved health and decreased experienced racism of Caribbean English (results not statistically significant), but not of Caribbean Americans. By comparing mutually adjusted Caribbean and black ethnic density effects in the US and England, this study examined the social construction of race and ethnicity as it depends on the racialised and stigmatised meaning attributed to it, and the association that these different racialised identities have on health. PMID:22591822
Bécares, Laia; Nazroo, James; Jackson, James; Heuvelman, Hein
2012-12-01
Studies indicate an ethnic density effect, whereby an increase in the proportion of racial/ethnic minority people in an area is associated with reduced morbidity among its residents, though evidence is varied. Discrepancies may arise due to differences in the reasons for and periods of migration, and socioeconomic profiles of the racial/ethnic groups and the places where they live. It is important to increase our understanding of how these factors might promote or mitigate ethnic density effects. Cross-national comparative analyses might help in this respect, as they provide greater heterogeneity in historical and contemporary characteristics in the populations of interest, and it is when we consider this heterogeneity in the contexts of peoples' lives that we can more fully understand how social conditions and neighbourhood environments influence the health of migrant and racial/ethnic minority populations. This study analysed two cross-sectional nationally representative surveys, in the US and in England, to explore and contrast the association between two ethnic density measures (black and Caribbean ethnic density) and health and experienced racism among Caribbean people. Results of multilevel logistic regressions show that nominally similar measures of ethnic density perform differently across health outcomes and measures of experienced racism in the two countries. In the US, increased Caribbean ethnic density was associated with improved health and decreased experienced racism, but the opposite was observed in England. On the other hand, increased black ethnic density was associated with improved health and decreased experienced racism of Caribbean English (results not statistically significant), but not of Caribbean Americans. By comparing mutually adjusted Caribbean and black ethnic density effects in the US and England, this study examined the social construction of race and ethnicity as it depends on the racialised and stigmatised meaning attributed to it, and the association that these different racialised identities have on health. Copyright © 2012 Elsevier Ltd. All rights reserved.
Richard-Davis, Gloria; Whittemore, Brianna; Disher, Anthony; Rice, Valerie Montgomery; Lenin, Rathinasamy B; Dollins, Camille; Siegel, Eric R; Eswaran, Hari
2018-01-01
Increased mammographic breast density is a well-established risk factor for breast cancer development, regardless of age or ethnic background. The current gold standard for categorizing breast density consists of a radiologist estimation of percent density according to the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS) criteria. This study compares paired qualitative interpretations of breast density on digital mammograms with quantitative measurement of density using Hologic's Food and Drug Administration-approved R2 Quantra volumetric breast density assessment tool. Our goal was to find the best cutoff value of Quantra-calculated breast density for stratifying patients accurately into high-risk and low-risk breast density categories. Screening digital mammograms from 385 subjects, aged 18 to 64 years, were evaluated. These mammograms were interpreted by a radiologist using the ACR's BI-RADS density method, and had quantitative density measured using the R2 Quantra breast density assessment tool. The appropriate cutoff for breast density-based risk stratification using Quantra software was calculated using manually determined BI-RADS scores as a gold standard, in which scores of D3/D4 denoted high-risk densities and D1/D2 denoted low-risk densities. The best cutoff value for risk stratification using Quantra-calculated breast density was found to be 14.0%, yielding a sensitivity of 65%, specificity of 77%, and positive and negative predictive values of 75% and 69%, respectively. Under bootstrap analysis, the best cutoff value had a mean ± SD of 13.70% ± 0.89%. Our study is the first to publish on a North American population that assesses the accuracy of the R2 Quantra system at breast density stratification. Quantitative breast density measures will improve accuracy and reliability of density determination, assisting future researchers to accurately calculate breast cancer risks associated with density increase.
Seahorse (Hippocampinae) population fluctuations in the Ria Formosa Lagoon, south Portugal.
Correia, M; Caldwell, I R; Koldewey, H J; Andrade, J P; Palma, J
2015-09-01
Comparisons of three sets of surveys in the Ria Formosa Lagoon, Portugal, over a 13 year period (2001-2002, 2008-2009 and 2010-2013) revealed significant population fluctuations in at least one of the two seahorse (Hippocampinae) species living there, and that those fluctuations were potentially associated with habitat changes in the lagoon. After a significant decline between the first two survey periods (2001-2002 v. 2008-2009), long-snouted seahorse Hippocampus guttulatus populations increased significantly between 2008-2009 surveys and new 2010-2013 surveys. There were no significant differences in H. guttulatus populations between the 2001-2002 and 2010-2013 surveys. In contrast, there were no significant differences in short-snouted seahorse Hippocampus hippocampus densities among the 16 sites surveyed throughout the three sampling periods, although the ability to detect any change was hampered by the low densities of this species in all time periods. Fluctuations in H. guttulatus densities were positively correlated with the percentage of holdfast coverage, but with none of the other environmental variables tested. These results highlight the importance of holdfast availability in maintaining stable seahorse populations. While population fluctuations are certainly more promising than a consistent downward decline, such extreme fluctuations observed for seahorses in the Ria Formosa Lagoon could still leave these two species vulnerable to any additional stressors, particularly during low density periods. © 2015 The Fisheries Society of the British Isles.
Tropical insular fish assemblages are resilient to flood disturbance
Smith, William E.; Kwak, Thomas J.
2015-01-01
Periods of stable environmental conditions, favoring development of ecological communities regulated by density-dependent processes, are interrupted by random periods of disturbance that may restructure communities. Disturbance may affect populations via habitat alteration, mortality, or displacement. We quantified fish habitat conditions, density, and movement before and after a major flood disturbance in a Caribbean island tropical river using habitat surveys, fish sampling and population estimates, radio telemetry, and passively monitored PIT tags. Native stream fish populations showed evidence of acute mortality and downstream displacement of surviving fish. All fish species were reduced in number at most life stages after the disturbance, but populations responded with recruitment and migration into vacated upstream habitats. Changes in density were uneven among size classes for most species, indicating altered size structures. Rapid recovery processes at the population level appeared to dampen effects at the assemblage level, as fish assemblage parameters (species richness and diversity) were unchanged by the flooding. The native fish assemblage appeared resilient to flood disturbance, rapidly compensating for mortality and displacement with increased recruitment and recolonization of upstream habitats.
Zimmermann, Fabian; Ricard, Daniel; Heino, Mikko
2018-05-01
Population regulation is a central concept in ecology, yet in many cases its presence and the underlying mechanisms are difficult to demonstrate. The current paradigm maintains that marine fish populations are predominantly regulated by density-dependent recruitment. While it is known that density-dependent somatic growth can be present too, its general importance remains unknown and most practical applications neglect it. This study aimed to close this gap by for the first time quantifying and comparing density dependence in growth and recruitment over a large set of fish populations. We fitted density-dependent models to time-series data on population size, recruitment and age-specific weight from commercially exploited fish populations in the Northeast Atlantic Ocean and the Baltic Sea. Data were standardized to enable a direct comparison within and among populations, and estimated parameters were used to quantify the impact of density regulation on population biomass. Statistically significant density dependence in recruitment was detected in a large proportion of populations (70%), whereas for density dependence in somatic growth the prevalence of density dependence depended heavily on the method (26% and 69%). Despite age-dependent variability, the density dependence in recruitment was consistently stronger among age groups and between alternative approaches that use weight-at-age or weight increments to assess growth. Estimates of density-dependent reduction in biomass underlined these results: 97% of populations with statistically significant parameters for growth and recruitment showed a larger impact of density-dependent recruitment on population biomass. The results reaffirm the importance of density-dependent recruitment in marine fishes, yet they also show that density dependence in somatic growth is not uncommon. Furthermore, the results are important from an applied perspective because density dependence in somatic growth affects productivity and catch composition, and therefore the benefits of maintaining fish populations at specific densities. © 2018 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Hill, Jason M.; Diefenbach, Duane R.
2014-01-01
Organisms can be affected by processes in the surrounding landscape outside the boundary of habitat areas and by local vegetation characteristics. There is substantial interest in understanding how these processes affect populations of grassland birds, which have experienced substantial population declines. Much of our knowledge regarding patterns of occupancy and density stem from prairie systems, whereas relatively little is known regarding how occurrence and abundance of grassland birds vary in reclaimed surface mine grasslands. Using distance sampling and single-season occupancy models, we investigated how the occupancy probability of Grasshopper (Ammodramus savannarum) and Henslow's Sparrows (A. henslowii) on 61 surface mine grasslands (1591 ha) in Pennsylvania changed from 2002 through 2011 in response to landscape, grassland, and local vegetation characteristics . A subset (n = 23; 784 ha) of those grasslands were surveyed in 2002, and we estimated changes in sparrow density and vegetation across 10 years. Grasshopper and Henslow's Sparrow populations declined 72% and 49%, respectively from 2002 to 2011, whereas overall woody vegetation density increased 2.6 fold. Henslow's Sparrows avoided grasslands with perimeter–area ratios ≥0.141 km/ha and woody shrub densities ≥0.04 shrubs/m2. Both species occupied grasslands ≤13 ha, but occupancy probability declined with increasing grassland perimeter–area ratio and woody shrub density. Grassland size, proximity to nearest neighboring grassland ( = 0.2 km), and surrounding landscape composition at 0.5, 1.5, and 3.0 km were not parsimonious predictors of occupancy probability for either species. Our results suggest that reclaimed surface mine grasslands, without management intervention, are ephemeral habitats for Grasshopper and Henslow's Sparrows. Given the forecasted decline in surface coal production for Pennsylvania, it is likely that both species will continue to decline in our study region for the foreseeable future.
Erfmeier, Alexandra; Hantsch, Lydia; Bruelheide, Helge
2013-01-01
Genetic diversity is supposed to support the colonization success of expanding species, in particular in situations where microsite availability is constrained. Addressing the role of genetic diversity in plant invasion experimentally requires its manipulation independent of propagule pressure. To assess the relative importance of these components for the invasion of Senecio vernalis, we created propagule mixtures of four levels of genotype diversity by combining seeds across remote populations, across proximate populations, within single populations and within seed families. In a first container experiment with constant Festuca rupicola density as matrix, genotype diversity was crossed with three levels of seed density. In a second experiment, we tested for effects of establishment limitation and genotype diversity by manipulating Festuca densities. Increasing genetic diversity had no effects on abundance and biomass of S. vernalis but positively affected the proportion of large individuals to small individuals. Mixtures composed from proximate populations had a significantly higher proportion of large individuals than mixtures composed from within seed families only. High propagule pressure increased emergence and establishment of S. vernalis but had no effect on individual growth performance. Establishment was favoured in containers with Festuca, but performance of surviving seedlings was higher in open soil treatments. For S. vernalis invasion, we found a shift in driving factors from density dependence to effects of genetic diversity across life stages. While initial abundance was mostly linked to the amount of seed input, genetic diversity, in contrast, affected later stages of colonization probably via sampling effects and seemed to contribute to filtering the genotypes that finally grew up. In consequence, when disentangling the mechanistic relationships of genetic diversity, seed density and microsite limitation in colonization of invasive plants, a clear differentiation between initial emergence and subsequent survival to juvenile and adult stages is required.
NASA Technical Reports Server (NTRS)
Horack, J. M.; Emslie, A. G.; Hartmann, D. H.
1995-01-01
In this work, we explore the effects of burst rate density evolution on the observed brightness distribution of cosmological gamma-ray bursts. Although the brightness distribution of gamma-ray bursts observed by the BATSE experiment has been shown to be consistent with a nonevolving source population observed to redshifts of order unity, evolution of some form is likely to be present in the gamma-ray bursts. Additionally, nonevolving models place significant constraints on the range of observed burst luminosities, which are relaxed if evolution of the burst population is present. In this paper, three analytic forms of density evolution are examined. In general, forms of evolution with densities that increase monotonically with redshift require that the BATSE data correspond to bursts at larger redshifts, or to incorporate a wider range of burst luminosities, or both. Independent estimates of the maximum observed redshift in the BATSE data and/or the range of luminosity from which a large fraction of the observed bursts are drawn therefore allow for constraints to be placed on the amount of evolution that may be present in the burst population. Specifically, if recent measurements obtained from analysis of the BATSE duration distribution of the actual limiting redshift in the BATSE data at z(sub lim) = 2 are correct, the BATSE N(P) distribution in a Lambda = 0 universe is inconsistent at a level of approximately 3 alpha with nonevolving gamma-ray bursts and some form of evolution in the population is required. The sense of this required source evolution is to provide a higher density, larger luminosities, or both with increasing redshift.
NASA Astrophysics Data System (ADS)
Moorhead, Althea V.; Blaauw, Rhiannon C.; Moser, Danielle E.; Campbell-Brown, Margaret D.; Brown, Peter G.; Cooke, William J.
2017-12-01
The bulk density of a meteoroid affects its dynamics in space, its ablation in the atmosphere, and the damage it does to spacecraft and lunar or planetary surfaces. Meteoroid bulk densities are also notoriously difficult to measure, and we are typically forced to assume a density or attempt to measure it via a proxy. In this paper, we construct a density distribution for sporadic meteoroids based on existing density measurements. We considered two possible proxies for density: the KB parameter introduced by Ceplecha and Tisserand parameter, TJ. Although KB is frequently cited as a proxy for meteoroid material properties, we find that it is poorly correlated with ablation-model-derived densities. We therefore follow the example of Kikwaya et al. in associating density with the Tisserand parameter. We fit two density distributions to meteoroids originating from Halley-type comets (TJ < 2) and those originating from all other parent bodies (TJ > 2); the resulting two-population density distribution is the most detailed sporadic meteoroid density distribution justified by the available data. Finally, we discuss the implications for meteoroid environment models and spacecraft risk assessments. We find that correcting for density increases the fraction of meteoroid-induced spacecraft damage produced by the helion/antihelion source.
Uncovering the nonadiabatic response of geosynchronous electrons to geomagnetic disturbance
Gannon, Jennifer; Elkington, Scot R.; Onsager, Terrance G.
2012-01-01
We describe an energy spectrum method for scaling electron integral flux, which is measured at a constant energy, to phase space density at a constant value of the first adiabatic invariant which removes much of the variation due to reversible adiabatic effects. Applying this method to nearly a solar cycle (1995 - 2006) of geosynchronous electron integral flux (E>2.0MeV) from the GOES satellites, we see that much of the diurnal variation in electron phase space density at constant energy can be removed by the transformation to phase space density at constant μ (4000 MeV/G). This allows us a clearer picture of underlying non-adiabatic electron population changes due to geomagnetic activity. Using scaled phase space density, we calculate the percentage of geomagnetic storms resulting in an increase, decrease or no change in geosynchronous electrons as 38%, 7%, and 55%, respectively. We also show examples of changes in the electron population that may be different than the unscaled fluxes alone suggest. These examples include sudden electron enhancements during storms which appear during the peak of negative Dst for μ-scaled phase space density, contrary to the slow increase seen during the recovery phase for unscaled phase space density for the same event.
[Effects of population density and culture volume on the growth and reproduction of Moina irrasa].
Chen, Li-Na; Li, Yu-Ying; Deng, Dao-Gui; Jin, Xian-Wen; Ge, Qian; Wang, Shao-Qin
2012-07-01
A laboratory experiment was conducted to study the effects of different population density (D1 : 100 ind x L(-1), D2 : 150 ind x L(-1), D3 : 300 ind x L(-1)) and culture volume (V1: 50 mL, V2 : 100 mL, V3 : 400 mL) on the growth and reproduction of Moina irrasa at 25 degrees C. At the same culture density, the body length of the M. irrasa females at their first pregnancy, the first brood, and the total offsprings per female decreased with the increase of culture volumes, while the sex ratio (male/female) of the offsprings was in adverse. At the same culture volumes, the total offsprings per female decreased with the increase of culture density. At D1 V1, the body length of the females at their first pregnancy (0.95 +/- 0.10 mm) and the total offsprings (171.3 +/- 19.8 ind) per female were the maximum. At D3V2, the sex ratio was the maximum (0.54 +/- 0.05). Culture density, culture volume, and their interactions significantly affected the total offsprings per female and the sex ratio (P < 0.001).
Jiao, Jichao; Li, Fei; Deng, Zhongliang; Ma, Wenjing
2017-03-28
Considering the installation cost and coverage, the received signal strength indicator (RSSI)-based indoor positioning system is widely used across the world. However, the indoor positioning performance, due to the interference of wireless signals that are caused by the complex indoor environment that includes a crowded population, cannot achieve the demands of indoor location-based services. In this paper, we focus on increasing the signal strength estimation accuracy considering the population density, which is different to the other RSSI-based indoor positioning methods. Therefore, we propose a new wireless signal compensation model considering the population density, distance, and frequency. First of all, the number of individuals in an indoor crowded scenario can be calculated by our convolutional neural network (CNN)-based human detection approach. Then, the relationship between the population density and the signal attenuation is described in our model. Finally, we use the trilateral positioning principle to realize the pedestrian location. According to the simulation and tests in the crowded scenarios, the proposed model increases the accuracy of the signal strength estimation by 1.53 times compared to that without considering the human body. Therefore, the localization accuracy is less than 1.37 m, which indicates that our algorithm can improve the indoor positioning performance and is superior to other RSSI models.
The phenology of space: Spatial aspects of bison density dependence in Yellowstone National Park
Taper, M.L.; Meagher, M.; Jerde, C.L.
2000-01-01
The Yellowstone bison represent the only bison population in the United States that survived in the wild the near-extermination of the late 1800's. This paper capitalizes on a unique opportunity provided by the record of the bison population of Yellowstone National Park (YNP). This population has been intensely monitored for almost four decades. The analysis of long-term spatio-temporal data from 1970-1997 supports the following conclusions. 1) Even though the Yellowstone bison herd exhibits an extended period of what appears to be linear growth, this pattern can be explained with classical density dependent dynamics if one realizes that perhaps the primary response of the herd to increased density is range expansion. 2) Several spatial aspects of social behavior in the YNP bison may be behavioral adaptations by the bison to environmental changes. These behavioral strategies may buffer, temporarily at least, bison population dynamics from the immediate repercussions of possible environmental stress and habitat deterioration. 3) Bison ecological carrying capacity for YNP is on the order of 2800 to 3200 animals. 4) There do appear to be indications of changes in the bison dynamics that are associated with increasing use of sections of the interior road system in winter. 5) The possibility of habitat degradation is indicated.
Impact of obesity and body fat distribution on cardiovascular risk factors in Hong Kong Chinese.
Thomas, G Neil; Ho, Sai-Yin; Lam, Karen S L; Janus, Edward D; Hedley, Anthony J; Lam, Tai Hing
2004-11-01
Body fat distribution has been reported to differentially contribute to the development of cardiovascular risk. We report the relative associations between general and central obesity and risk factors in 2893 Chinese subjects recruited from the Hong Kong population. Anthropometric parameters [waist circumference (WC) and BMI], surrogate measures of insulin resistance (fasting plasma glucose and insulin, oral glucose tolerance test, 2 hours glucose and insulin), fasting lipids (total, low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol, and triglycerides) and systolic and diastolic blood pressure were measured. General obesity was classified as BMI > or =25.0 kg/m(2) and central obesity as a WC > or =80 or > or =90 cm in women and men, respectively. A total of 39.2% of the population was found to be obese. Obesity per se increased the levels of the risk factors, but central adiposity contributed to a greater extent to adverse high-density lipoprotein-cholesterol, triglyceride, and insulin resistance levels. There was a continuous relationship between increasing obesity, both general and central, and cardiovascular risk, with lowest risk associated with the lowest indices of obesity. In the 1759 nonobese subjects divided into quartiles of BMI or WC, the levels of the cardiovascular risk factors still significantly increased with increasing quartiles of adiposity. Central adiposity appears to contribute to a greater extent than general adiposity to the development of cardiovascular risk in this population. The relationship between obesity parameters and risk is a continuum, with risk factors significantly increasing even at levels usually considered nonobese. These observations support the proposed redefinition of overweight and obesity in Asian populations using lower cut-off points.
Richard-Davis, Gloria; Whittemore, Brianna; Disher, Anthony; Rice, Valerie Montgomery; Lenin, Rathinasamy B; Dollins, Camille; Siegel, Eric R; Eswaran, Hari
2018-01-01
Objective: Increased mammographic breast density is a well-established risk factor for breast cancer development, regardless of age or ethnic background. The current gold standard for categorizing breast density consists of a radiologist estimation of percent density according to the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS) criteria. This study compares paired qualitative interpretations of breast density on digital mammograms with quantitative measurement of density using Hologic’s Food and Drug Administration–approved R2 Quantra volumetric breast density assessment tool. Our goal was to find the best cutoff value of Quantra-calculated breast density for stratifying patients accurately into high-risk and low-risk breast density categories. Methods: Screening digital mammograms from 385 subjects, aged 18 to 64 years, were evaluated. These mammograms were interpreted by a radiologist using the ACR’s BI-RADS density method, and had quantitative density measured using the R2 Quantra breast density assessment tool. The appropriate cutoff for breast density–based risk stratification using Quantra software was calculated using manually determined BI-RADS scores as a gold standard, in which scores of D3/D4 denoted high-risk densities and D1/D2 denoted low-risk densities. Results: The best cutoff value for risk stratification using Quantra-calculated breast density was found to be 14.0%, yielding a sensitivity of 65%, specificity of 77%, and positive and negative predictive values of 75% and 69%, respectively. Under bootstrap analysis, the best cutoff value had a mean ± SD of 13.70% ± 0.89%. Conclusions: Our study is the first to publish on a North American population that assesses the accuracy of the R2 Quantra system at breast density stratification. Quantitative breast density measures will improve accuracy and reliability of density determination, assisting future researchers to accurately calculate breast cancer risks associated with density increase. PMID:29511356
Investigating the anatomy of magnetosheath jets - MMS observations
NASA Astrophysics Data System (ADS)
Karlsson, Tomas; Plaschke, Ferdinand; Hietala, Heli; Archer, Martin; Blanco-Cano, Xóchitl; Kajdič, Primož; Lindqvist, Per-Arne; Marklund, Göran; Gershman, Daniel J.
2018-04-01
We use Magnetosphere Multiscale (MMS) mission data to investigate a small number of magnetosheath jets, which are localized and transient increases in dynamic pressure, typically due to a combined increase in plasma velocity and density. For two approximately hour-long intervals in November, 2015 we found six jets, which are of two distinct types. (a) Two of the jets are associated with the magnetic field discontinuities at the boundary between the quasi-parallel and quasi-perpendicular magnetosheath. Straddling the boundary, the leading part of these jets contains an ion population similar to the quasi-parallel magnetosheath, while the trailing part contains ion populations similar to the quasi-perpendicular magnetosheath. Both populations are, however, cooler than the surrounding ion populations. These two jets also have clear increases in plasma density and magnetic field strength, correlated with a velocity increase. (b) Three of the jets are found embedded within the quasi-parallel magnetosheath. They contain ion populations similar to the surrounding quasi-parallel magnetosheath, but with a lower temperature. Out of these three jets, two have a simple structure. For these two jets, the increases in density and magnetic field strength are correlated with the dynamic pressure increases. The other jet has a more complicated structure, and no clear correlations between density, magnetic field strength and dynamic pressure. This jet has likely interacted with the magnetosphere, and contains ions similar to the jets inside the quasi-parallel magnetosheath, but shows signs of adiabatic heating. All jets are associated with emissions of whistler, lower hybrid, and broadband electrostatic waves, as well as approximately 10 s period electromagnetic waves with a compressional component. The latter have a Poynting flux of up to 40 µW m-2 and may be energetically important for the evolution of the jets, depending on the wave excitation mechanism. Only one of the jets is likely to have modified the surrounding magnetic field into a stretched configuration, as has recently been reported in other studies. None of the jets are associated with clear signatures of either magnetic or thermal pressure gradient forces acting on them. The different properties of the two types also point to different generation mechanisms, which are discussed here. Their different properties and origins suggest that the two types of jets need to be separated in future statistical and simulation studies.
Quinn, Thomas P; Cunningham, Curry J; Randall, Jessica; Hilborn, Ray
2014-10-01
It has long been recognized that, as populations increase in density, ecological processes affecting growth and survival reduce per capita recruitment in the next generation. In contrast to the evidence for such "compensatory" density dependence, the alternative "depensatory" process (reduced per capita recruitment at low density) has proven more difficult to demonstrate in the field. To test for such depensation, we measured the spawner-recruit relationship over five decades for a sockeye salmon (Oncorhynchus nerka) population in Alaska breeding in high-quality, unaltered habitat. Twenty-five years of detailed estimates of predation by brown bears, Ursus arctos, revealed strong density dependence in predation rate; the bears killed ca. 80% of the salmon in years of low salmon spawning abundance. Nevertheless, the reconstructed spawner-recruit relationship, adjusted to include salmon intercepted in the commercial fishery, provided no evidence of demographic depensation. That is, in years when few salmon returned and the great majority were killed by bears, the few that spawned were successful enough that the population remained highly productive, even when those killed by bears were included as potential spawners. We conclude that the high quality of breeding habitat at this site and the productive nature of semelparous Pacific salmon allowed this population to avoid the hypothesized depressed recruitment from depensatory processes expected at low density. The observed lack of demographic depensation is encouraging from a conservation standpoint because it implies that depleted populations may have the potential to rebound successfully given suitable spawning and rearing habitat, even in the presence of strong predation pressure.
Influences on Bythotrephes longimanus life-history characteristics in the Great Lakes
Pothoven, Steven A.; Vanderploeg, Henry A.; Warner, David M.; Schaeffer, Jeffrey S.; Ludsin, Stuart A.; Claramunt, Randall M.; Nalepa, Thomas F.
2012-01-01
We compared Bythotrephes population demographics and dynamics to predator (planktivorous fish) and prey (small-bodied crustacean zooplankton) densities at a site sampled through the growing season in Lakes Michigan, Huron, and Erie. Although seasonal average densities of Bythotrephes were similar across lakes (222/m2 Erie, 247/m2 Huron, 162/m2 Michigan), temporal trends in abundance differed among lakes. In central Lake Erie where Bythotrephes' prey assemblage was dominated by small individuals (60%), where planktivorous fish densities were high (14,317/ha), and where a shallow water column limited availability of a deepwater refuge, the Bythotrephes population was characterized by a small mean body size, large broods with small neonates, allocation of length increases mainly to the spine rather than to the body, and a late summer population decline. By contrast, in Lake Michigan where Bythotrephes' prey assemblage was dominated by large individuals (72%) and planktivorous fish densities were lower (5052/ha), the Bythotrephes population was characterized by a large mean body size (i.e., 37–55% higher than in Erie), small broods with large neonates, nearly all growth in body length occurring between instars 1 and 2, and population persistence into fall. Life-history characteristics in Lake Huron tended to be intermediate to those found in Lakes Michigan and Erie, reflecting lower overall prey and predator densities (1224/ha) relative to the other lakes. Because plasticity in life history can affect interactions with other species, our findings point to the need to understand life-history variation among Great Lakes populations to improve our ability to model the dynamics of these ecosystems.
Piertney, Stuart B; Lambin, Xavier; Maccoll, Andrew D C; Lock, Kerry; Bacon, Philip J; Dallas, John F; Leckie, Fiona; Mougeot, Francois; Racey, Paul A; Redpath, Steve; Moss, Robert
2008-05-01
Populations of red grouse (Lagopus lagopus scoticus) undergo regular multiannual cycles in abundance. The 'kinship hypothesis' posits that such cycles are caused by changes in kin structure among territorial males producing delayed density-dependent changes in aggressiveness, which in turn influence recruitment and regulate density. The kinship hypothesis makes several specific predictions about the levels of kinship, aggressiveness and recruitment through a population cycle: (i) kin structure will build up during the increase phase of a cycle, but break down prior to peak density; (ii) kin structure influences aggressiveness, such that there will be a negative relationship between kinship and aggressiveness over the years; (iii) as aggressiveness regulates recruitment and density, there will be a negative relationship between aggressiveness in one year and both recruitment and density in the next; (iv) as kin structure influences recruitment via an affect on aggressiveness, there will be a positive relationship between kinship in one year and recruitment the next. Here we test these predictions through the course of an 8-year cycle in a natural population of red grouse in northeast Scotland, using microsatellite DNA markers to resolve changing patterns of kin structure, and supra-orbital comb height of grouse as an index of aggressiveness. Both kin structure and aggressiveness were dynamic through the course of the cycle, and changing patterns were entirely consistent with the expectations of the kinship hypothesis. Results are discussed in relation to potential drivers of population regulation and implications of dynamic kin structure for population genetics.
Effects of distance from cattle water developments on grassland birds
Fontaine, A.L.; Kennedy, P.L.; Johnson, D.H.
2004-01-01
Many North American grassland bird populations appear to be declining, which may be due to changes in grazing regimes on their breeding areas. Establishment of water developments and confining cattle (Bos taurus L.) to small pastures often minimizes spatial heterogeneity of cattle forage consumption, which may lead to uniformity in vegetative structure. This increased uniformity may provide suitable habitat for some bird species but not others. We assessed how cattle use, vegetative structure, and bird population densities varied with increasing distance from water developments (0DS800 m) on the Little Missouri National Grassland (LMNG) in North Dakota. Lark buntings (Calamospiza melancorys Stejneger), which are typically associated with low vegetative cover, decreased with increasing distance from water developments. Horned larks (Eremophila alpestris L.), also a low-cover associate, followed a similar but weaker trend. Densities of another low-cover associate as well as moderate- and high-cover associates were not related to distance from water. Vegetative height-density and litter depth increased by 50 and 112%, respectively, while cowpie cover and structural variability decreased by 51 and 24%, respectively, with distance from water. Confidence interval overlap was common among all measures, showing substantial variability among study sites. Our results indicate cattle use is higher closer to water developments, and this pattern may positively affect the densities of lark buntings and horned larks. The absence of density gradients in the other bird species may be due to the paucity of locations > 800 m from water on the LMNG.
Effects of distance from cattle water developments on grassland birds
Fontaine, A.L.; Kennedy, P.L.; Johnson, D.H.
2004-01-01
Many North American grassland bird populations appear to be declining, which may be due to changes in grazing regimes on their breeding areas. Establishment of water developments and confining cattle (Bos taurus L.) to small pastures often minimizes spatial heterogeneity of cattle forage consumption, which may lead to uniformity in vegetative structure. This increased uniformity may provide suitable habitat for some bird species but not others. We assessed how cattle use, vegetative structure, and bird population densities varied with increasing distance from water developments (0-800 m) on the Little Missouri National Grassland (LMNG) in North Dakota. Lark buntings (Calamospiza melancorys Stejneger), which are typically associated with low vegetative cover, decreased with increasing distance from water developments. Horned larks (Eremophila alpestris L.), also a low-cover associate, followed a similar but weaker trend. Densities of another low-cover associate as well as moderate- and high-cover associates were not related to distance from water. Vegetative height-density and litter depth increased by 50 and 112%, respectively, while cowpie cover and structural variability decreased by 51 and 24%, respectively, with distance from water. Confidence interval overlap was common among all measures, showing substantial variability among study sites. Our results indicate cattle use is higher closer to water developments, and this pattern may positively affect the densities of lark buntings and horned larks. The absence of density gradients in the other bird species may be due to the paucity of locations > 800 m from water on the LMNG.
Fincel, Mark J.; Chipps, Steven R.; Graeb, Brian D. S.; Edwards, Kris R.
2013-01-01
Gizzard shad, Dorosoma cepedianum, have generally been restricted to the lower Missouri River impoundments in South Dakota. In recent years, gizzard shad numbers have increased in Lake Oahe, marking the northern-most natural population. These increases could potentially affect recreational fishes. Specifically, questions arise about larval gizzard shad growth dynamics and if age-0 gizzard shad in Lake Oahe will exhibit fast or slow growth, both of which can have profound effects on piscivore populations in this reservoir. In this study, we evaluated larval gizzard shad hatch timing, growth, and density in Lake Oahe. We collected larval gizzard shad from six sites from May to July 2008 and used sagittal otoliths to estimate the growth and back-calculate the hatch date. We found that larval gizzard shad hatched earlier in the upper part of the reservoir compared to the lower portion and that hatch date appeared to correspond to warming water temperatures. The peak larval gizzard shad density ranged from 0.6 to 33.6 (#/100 m3) and varied significantly among reservoir sites. Larval gizzard shad growth ranged from 0.24 to 0.57 (mm/d) and differed spatially within the reservoir. We found no relationship between the larval gizzard shad growth or density and small- or large-bodied zooplankton density (p > 0.05). As this population exhibits slow growth and low densities, gizzard shad should remain a suitable forage option for recreational fishes in Lake Oahe.
Reiter, Matthew E.; Andersen, David E.; Raedeke, Andrew H.; Humburg, Dale D.
2017-01-01
Inter- and intra-specific interactions are potentially important factors influencing the distribution of populations. Aerial survey data, collected during range-wide breeding population surveys for Eastern Prairie Population (EPP) Canada Geese (Branta canadensis interior), 1987–2008, were evaluated to assess factors influencing their nesting distribution. Specifically, associations between nesting Lesser Snow Geese (Chen caerulescens caerulescens) and EPP Canada Geese were quantified; and changes in the spatial distribution of EPP Canada Geese were identified. Mixed-effects Poisson regression models of EPP Canada Goose nest counts were evaluated within a cross-validation framework. The total count of EPP Canada Goose nests varied moderately among years between 1987 and 2008 with no long-term trend; however, the total count of nesting Lesser Snow Geese generally increased. Three models containing factors related to previous EPP Canada Goose nest density (representing recruitment), distance to Hudson Bay (representing brood-habitat), nesting habitat type, and Lesser Snow Goose nest density (inter-specific associations) were the most accurate, improving prediction accuracy by 45% when compared to intercept-only models. EPP Canada Goose nest density varied by habitat type, was negatively associated with distance to coastal brood-rearing areas, and suggested density-dependent intra-specific effects on recruitment. However, a non-linear relationship between Lesser Snow and EPP Canada Goose nest density suggests that as nesting Lesser Snow Geese increase, EPP Canada Geese locally decline and subsequently the spatial distribution of EPP Canada Geese on western Hudson Bay has changed.
Living on the edge: Space use of Eurasian red squirrels in marginal high-elevation habitat
NASA Astrophysics Data System (ADS)
Romeo, Claudia; Wauters, Lucas A.; Preatoni, Damiano; Tosi, Guido; Martinoli, Adriano
2010-11-01
In marginal habitats located at the edge of a species' range, environmental conditions are frequently extreme and individuals may be subject to different selective pressures compared to central populations. These so-called edge or marginal populations tend to have lower densities and reproductive rates than populations located in more suitable habitats, but little is known about local adaptations in spacing behavior. We studied space use and social organization in a population of Eurasian red squirrels ( Sciurus vulgaris) in a high-elevation marginal habitat of dwarf mountain pine ( Pinus mugo) and compared it with spacing patterns in high-quality Scots pine ( Pinus sylvestris) forest at lower-elevation. Home ranges and core areas were larger in the marginal habitat. In both habitats, males used larger home ranges than females, but sex differences in core area size were significant only in the edge population. Patterns of core area overlap were similar in both habitats with intra-sexual territoriality among adult females and higher degrees of inter-sexual overlap, typical for the species throughout its range. However, low densities in the edge population resulted in higher female by males overlap in spring-summer, suggesting males increased home ranges and core areas during mating season to augment access to estrus females. Thus, in the marginal habitat, with low food abundance and low population densities, linked with extreme winter conditions, squirrels, especially males, used large home ranges. Finally, squirrels responded more strongly to variation in food availability (inverse relation between home range size and seed abundance), and even to fluctuations in density (inverse relation between core area size and density of animals of the same sex), in the marginal than in the high-quality habitat, suggesting high behavioral plasticity to respond to the ecological constraints in marginal habitats.
Sociality, individual fitness and population dynamics of yellow-bellied marmots.
Armitage, Kenneth B
2012-02-01
Social behaviour was proposed as a density-dependent intrinsic mechanism that could regulate an animal population by affecting reproduction and dispersal. Populations of the polygynous yellow-bellied marmot (Marmota flaviventris) fluctuate widely from year to year primarily driven by the number of weaned young. The temporal variation in projected population growth rate was driven mainly by changes in the age of first reproduction and fertility, which are affected by reproductive suppression. Dispersal is unrelated to population density, or the presence of the father; hence, neither of these limits population growth or acts as an intrinsic mechanism of population regulation; overall, intrinsic regulation seems unlikely. Sociality affects the likelihood of reproduction in that the annual probability of reproducing and the lifetime number of offspring are decreased by the number of older females and by the number of same-aged females present, but are increased by the number of younger adult females present. Recruitment of a yearling female is most likely when her mother is present; recruitment of philopatric females is much more important than immigration for increasing the number of adult female residents. Predation and overwinter mortality are the major factors limiting the number of resident adults. Social behaviour is not directed towards population regulation, but is best interpreted as functioning to maximize direct fitness. © 2011 Blackwell Publishing Ltd.
Matsumoto, Masatoshi; Inoue, Kazuo; Kajii, Eiji
2010-01-01
To show the impact of changing the definition of what is "rural" on the outcomes of a rural medical education program. A cross-sectional sample of 643 graduates under obligatory rural service and 1,699 graduates after serving their obligation, all from Jichi Medical University (JMU), a binding rural education program in Japan, were used as the data source. Communities were divided into decile groups according to population density, and the cut-off for "rural/nonrural" was altered in order to study its impact on the data. The rural practice rate of obliged graduates had its peak in the decile groups with the lowest population densities, while the peak rates of postobligation graduates and non-JMU physicians were at the decile groups with the highest population densities. Rural practice rates of all of the 3 groups of physicians increased with the increase in inclusiveness of rural definition. The ratio of rural practice rate of obliged graduates to that of non-JMU physicians ("relative effectiveness") increased remarkably with the increase in exclusiveness of rural definition. The relative effectiveness of postobligation graduates did not substantially increase after the cut-off exceeded a certain point of exclusiveness. Definition of "rural" largely determined the rural practice rate and relative effectiveness of JMU graduates. The results suggest that results of past outcome studies of rural medical education programs are potentially biased depending on how rural is defined.
Ethnic density of regions and psychiatric disorders among ethnic minority individuals.
Emerson, Scott Daniel; Minh, Anita; Guhn, Martin
2018-03-01
Ethnic minorities form an increasingly large proportion of Canada's population. Living in areas of greater ethnic density may help protect mental health among ethnic minorities through psychosocial pathways such as accessibility to culturally appropriate provision of mental health care, less discrimination and a greater sense of belonging. Mood and anxiety disorders are common psychiatric disorders. This study examined whether ethnic density of regions was related to mood and anxiety disorders among ethnic minorities in Canada. Responses by ethnic minority individuals to the 2011-2014 administrations of the Canadian Community Health Survey ( n = 33,201) were linked to health region ethnic density data. Multilevel logistic regression was employed to model the odds of having mood and/or anxiety disorders associated with increasing region-level ethnic density and to examine whether sense of community belonging helped explain variance in such associations. Analyses were adjusted for individual-level demographic factors as well as region-level socio-economic factors. Higher ethnic density related to lower odds of mood and/or anxiety disorders for Canadian-born (but not foreign-born) ethnic minorities. Sense of community belonging did not help explain such associations, but independently related to lower odds of mood and/or anxiety disorders. These findings remained after adjusting for regional population density and after excluding (rural/remote) regions of very low ethnic density. Ethnic density of regions in Canada may be an important protective factor against mental illness among Canadian-born ethnic minorities. It is important to better understand how, and for which specific ethno-cultural groups, ethnic density may influence mental health.
Residual Cardiovascular Risk in Chronic Kidney Disease: Role of High-density Lipoprotein
Kon, Valentina; Yang, Haichun; Fazio, Sergio
2016-01-01
Although reducing low-density lipoprotein-cholesterol (LDL-C) levels with lipid-lowering agents (statins) decreases cardiovascular disease (CVD) risk, a substantial residual risk (up to 70% of baseline) remains after treatment in most patient populations. High-density lipoprotein (HDL) is a potential contributor to residual risk, and low HDL-cholesterol (HDL-C) is an established risk factor for CVD. However, in contrast to conventional lipid-lowering therapies, recent studies show that pharmacologic increases in HDL-C levels do not bring about clinical benefits. These observations have given rise to the concept of dysfunctional HDL where increases in serum HDL-C may not be beneficial because HDL loss of function is not corrected by or even intensified by the therapy. Chronic kidney disease (CKD) increases CVD risk, and patients whose CKD progresses to end-stage renal disease (ESRD) requiring dialysis are at the highest CVD risk of any patient type studied. The ESRD population is also unique in its lack of significant benefit from standard lipid-lowering interventions. Recent studies indicate that HDL-C levels do not predict CVD in the CKD population. Moreover, CKD profoundly alters metabolism and composition of HDL particles and impairs their protective effects on functions such as cellular cholesterol efflux, endothelial protection, and control of inflammation and oxidation. Thus, CKD-induced perturbations in HDL may contribute to the excess CVD in CKD patients. Understanding the mechanisms of vascular protection in renal disease can present new therapeutic targets for intervention in this population. PMID:26009251
Dispersal patterns of red foxes relative to population density
Allen, Stephen H.; Sargeant, Alan B.
1993-01-01
Factors affecting red fox (Vulpes vulpes) dispersal patterns are poorly understood but warranted investigation because of the role of dispersal in rebuilding depleted populations and transmission of diseases. We examined dispersal patterns of red foxes in North Dakota based on recoveries of 363 of 854 foxes tagged as pups and relative to fox density. Foxes were recovered up to 8.6 years after tagging; 79% were trapped or shot. Straight-line distances between tagging and recovery locations ranged from 0 to 302 km. Mean recovery distances increased with age and were greater for males than females, but longest individual recovery distances were by females. Dispersal distances were not related to population density for males (P = 0.36) or females (P = 0.96). The proportion of males recovered that dispersed was inversely related to population density (r = -0.94; n = 5; P = 0.02), but not the proportion of females (r = -0.49; n = 5; P = 0.40). Dispersal directions were not uniform for either males (P = 0.003) or females (P = 0.006); littermates tended to disperse in similar directions (P = 0.09). A 4-lane interstate highway altered dispersal directions (P = 0.001). Dispersal is a strong innate behavior of red foxes (especially males) that results in many individuals of both sexes traveling far from natal areas. Because dispersal distance was unaffected by fox density, populations can be rebuilt and diseases transmitted long distances regardless of fox abundance.
Density-dependent vulnerability of forest ecosystems to drought
Alessandra Bottero; Anthony W. D' Amato; Brian J. Palik; John B. Bradford; Shawn Fraver; Mike A. Battaglia; Lance A. Asherin; Harald Bugmann
2017-01-01
Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary...
Liu, Qi-Jun; Jiao, Zhen; Liu, Fu-Sheng; Liu, Zheng-Tang
2016-06-07
The effects of X-doping (X = S, Se, Te and Po) on the structural, electronic and optical properties of hexagonal CuAlO2 were studied using first-principles density functional theory. The calculated results showed the obtained lattice constants to increase with increasing atomic number, and the X-doping to be energetically more favorable under Al-rich conditions. The calculated electronic properties showed decreased bandgaps with increasing atomic number, which was due to the better covalent hybridizations after sulfuration doping. The enhanced covalency was further confirmed by calculating the Mulliken atomic populations and bond populations. The density of states indicated the increase of the contribution to antibonding from the X-p states to be a benefit for p-type conductivity. Moreover, the X-doping induced a red shift of the absorption edge.
Cannibalism in invasive, native and biocontrol populations of the harlequin ladybird.
Tayeh, Ashraf; Estoup, Arnaud; Lombaert, Eric; Guillemaud, Thomas; Kirichenko, Natalia; Lawson-Handley, Lori; De Clercq, Patrick; Facon, Benoît
2014-02-05
Cannibalism is widespread in both vertebrates and invertebrates but its extent is variable between and within species. Cannibalism depends on population density and nutritional conditions, and could be beneficial during colonisation of new environments. Empirical studies are needed to determine whether this trait might facilitate invasion of a new area in natural systems. We investigated whether the propensity for cannibalism in H. axyridis differs both between native and invasive populations and between invasive populations from the core and from the front of the invasive area in Western Europe. We also compared the propensity for cannibalism of these natural populations with that of laboratory-reared biocontrol populations. We measured the cannibalism rates of eggs by first instar larvae and adult females at two different individual densities of ladybirds from three types of population (invasive, native and biocontrol), in laboratory-controlled conditions. Cannibalism was significantly greater in larvae from invasive populations compared to native or biocontrol populations, but there was no difference in cannibalism rates between populations from the core or front of the invaded range. Cannibalism was significantly lower in larvae from biocontrol populations compared to wild (invasive and native) populations. No differences in cannibalism rates of adult females were found between any populations. While high population density significantly increased cannibalism in both larvae and adults, the norm of reaction of cannibalism to individual density did not change significantly during the invasion and/or laboratory rearing processes. This study is the first to provide evidence for a higher propensity for cannibalism in invasive populations compared to native ones. Our experiments also shed light on the difference in cannibalism evolution with respect to life stages. However, we are still at an early stage in understanding the underlying mechanisms and several different research perspectives are needed to determine whether the higher propensity for cannibalism is a general feature of the invasion process.
Cannibalism in invasive, native and biocontrol populations of the harlequin ladybird
2014-01-01
Background Cannibalism is widespread in both vertebrates and invertebrates but its extent is variable between and within species. Cannibalism depends on population density and nutritional conditions, and could be beneficial during colonisation of new environments. Empirical studies are needed to determine whether this trait might facilitate invasion of a new area in natural systems. We investigated whether the propensity for cannibalism in H. axyridis differs both between native and invasive populations and between invasive populations from the core and from the front of the invasive area in Western Europe. We also compared the propensity for cannibalism of these natural populations with that of laboratory-reared biocontrol populations. We measured the cannibalism rates of eggs by first instar larvae and adult females at two different individual densities of ladybirds from three types of population (invasive, native and biocontrol), in laboratory-controlled conditions. Results Cannibalism was significantly greater in larvae from invasive populations compared to native or biocontrol populations, but there was no difference in cannibalism rates between populations from the core or front of the invaded range. Cannibalism was significantly lower in larvae from biocontrol populations compared to wild (invasive and native) populations. No differences in cannibalism rates of adult females were found between any populations. While high population density significantly increased cannibalism in both larvae and adults, the norm of reaction of cannibalism to individual density did not change significantly during the invasion and/or laboratory rearing processes. Conclusion This study is the first to provide evidence for a higher propensity for cannibalism in invasive populations compared to native ones. Our experiments also shed light on the difference in cannibalism evolution with respect to life stages. However, we are still at an early stage in understanding the underlying mechanisms and several different research perspectives are needed to determine whether the higher propensity for cannibalism is a general feature of the invasion process. PMID:24495338
Patterns of demographic change in the Americas.
Ubelaker, D H
1992-06-01
Considerable scholarly debate has focused on the nature of demographic change in the Americas before and after 1492. Recent research on human skeletal samples and related archeological materials suggests that morbidity and mortality were increasing throughout much of the Western Hemisphere before 1492 in response to increased population density, increased sedentism, and changing subsistence. The evidence suggests that after 1492 population reduction was caused not by continental pandemics but by localized or regional epidemics augmented by social and economic disruption. The twentieth century has witnessed remarkable Native American population recovery, fueled both by improvements in health care and changing definitions of "being Indian."
Zvereva, Elena L; Hunter, Mark D; Zverev, Vitali; Kozlov, Mikhail V
2016-10-01
Understanding the mechanisms by which abiotic drivers, such as climate and pollution, influence population dynamics of animals is important for our ability to predict the population trajectories of individual species under different global change scenarios. We monitored four leaf beetle species (Coleoptera: Chrysomelidae) feeding on willows (Salix spp.) in 13 sites along a pollution gradient in subarctic forests of north-western Russia from 1993 to 2014. During a subset of years, we also measured the impacts of natural enemies and host plant quality on the performance of one of these species, Chrysomela lapponica. Spring and fall temperatures increased by 2.5-3°C during the 21-year observation period, while emissions of sulfur dioxide and heavy metals from the nickel-copper smelter at Monchegorsk decreased fivefold. However, contrary to predictions of increasing herbivory with climate warming, and in spite of discovered increase in host plant quality with increase in temperatures, none of the beetle species became more abundant during the past 20years. No directional trends were observed in densities of either Phratora vitellinae or Plagiodera versicolora, whereas densities of both C. lapponica and Gonioctena pallida showed a simultaneous rapid 20-fold decline in the early 2000s, remaining at very low levels thereafter. Time series analysis and model selection indicated that these abrupt population declines were associated with decreases in aerial emissions from the smelter. Observed declines in the population densities of C. lapponica can be explained by increases in mortality from natural enemies due to the combined action of climate warming and declining pollution. This pattern suggests that at least in some tri-trophic systems, top-down factors override bottom-up effects and govern the impacts of environmental changes on insect herbivores. Copyright © 2016 Elsevier B.V. All rights reserved.
Marcela, P; Hassan, A Abu; Hamdan, A; Dieng, H; Kumara, T K
2015-12-01
Mating behavior between Aedes aegypti and Ae. albopictus, established colony strains were examined under laboratory conditions (30-cm(3) screened cages) for 5 consecutive days. The effect of selected male densities (30, 20, 10) and female density (20) on the number of swarming, mating pairs, eggs produced, and inseminated females were evaluated. Male densities significantly increased swarming behavior, mating pairs, and egg production of heterospecific females, but female insemination was reduced. Aedes aegypti males mate more readily with heterospecific females than do Ae. albopictus males. The current study suggests that Ae. aegypti males were not species-specific in mating, and if released into the field as practiced in genetically modified mosquito techniques, they may mate with both Ae. aegypti and Ae. albopictus females, hence reducing populations of both species by producing infertile eggs.
Landscape and vegetation effects on avian reproduction on bottomland forest restorations
Twedt, Daniel J.; Somershoe, Scott G.; Hazler, Kirsten R.; Cooper, Robert J.
2010-01-01
Forest restoration has been undertaken on >200,000 ha of agricultural land in the Mississippi Alluvial Valley, USA, during the past few decades. Decisions on where and how to restore bottomland forests are complex and dependent upon landowner objectives, but for conservation of silvicolous (forest-dwelling) birds, ecologists have espoused restoration through planting a diverse mix of densely spaced seedlings that includes fast-growing species. Application of this planting strategy on agricultural tracts that are adjacent to extant forest or within landscapes that are predominately forested has been advocated to increase forest area and enhance forested landscapes, thereby benefiting area-sensitive, silvicolous birds. We measured support for these hypothesized benefits through assessments of densities of breeding birds and reproductive success of 9 species on 36 bottomland forest restoration sites. Densities of thamnic (shrub-scrub dwelling) and silvicolous birds, such as yellow-breasted chat (Icteria virens), indigo bunting (Passerina cyanea), and white-eyed vireo (Vireo griseus) were positively associated with 1) taller trees, 2) greater stem densities, and 3) a greater proportion of forest within the landscape, whereas densities of birds associated with grasslands, such as dickcissel (Spiza americana) and red-winged blackbird (Agelaius phoeniceus), were negatively associated with these variables. Vegetation structure, habitat edge, and temporal effects had greater influence on nest success than did landscape effects. Taller trees, increased density of woody stems, greater vegetation density, and more forest within the landscape were often associated with greater nest success. Nest success of grassland birds was positively related to distance from forest edge but, for thamnic birds, success was greater near edges. Moreover, nest success and estimated fecundity of thamnic species suggested their populations are self-sustaining on forest restoration sites, whereas these sites are likely population sinks for grassland and open-woodland species. We recommend restoration strategies that promote rapid development of dense forest stands within largely forested landscapes to recruit breeding populations of thamnic and silvicolous birds that have reproductive success sufficient to sustain their populations.
The density dilemma: limitations on juvenile production in threatened salmon populations
Walters, Annika W.; Copeland, Timothy; Venditti, David A.
2013-01-01
Density-dependent processes have repeatedly been shown to have a central role in salmonid population dynamics, but are often assumed to be negligible for populations at low abundances relative to historical records. Density dependence has been observed in overall spring/summer Snake River Chinook salmon Oncorhynchus tshawytscha production, but it is not clear how patterns observed at the aggregate level relate to individual populations within the basin. We used a Bayesian hierarchical modelling approach to explore the degree of density dependence in juvenile production for nine Idaho populations. Our results indicate that density dependence is ubiquitous, although its strength varies between populations. We also investigated the processes driving the population-level pattern and found density-dependent growth and mortality present for both common life-history strategies, but no evidence of density-dependent movement. Overwinter mortality, spatial clustering of redds and limited resource availability were identified as potentially important limiting factors contributing to density dependence. The ubiquity of density dependence for these threatened populations is alarming as stability at present low abundance levels suggests recovery may be difficult without major changes. We conclude that density dependence at the population level is common and must be considered in demographic analysis and management.
Population and prehistory III: food-dependent demography in variable environments.
Lee, Charlotte T; Puleston, Cedric O; Tuljapurkar, Shripad
2009-11-01
The population dynamics of preindustrial societies depend intimately on their surroundings, and food is a primary means through which environment influences population size and individual well-being. Food production requires labor; thus, dependence of survival and fertility on food involves dependence of a population's future on its current state. We use a perturbation approach to analyze the effects of random environmental variation on this nonlinear, age-structured system. We show that in expanding populations, direct environmental effects dominate induced population fluctuations, so environmental variability has little effect on mean hunger levels, although it does decrease population growth. The growth rate determines the time until population is limited by space. This limitation introduces a tradeoff between population density and well-being, so population effects become more important than the direct effects of the environment: environmental fluctuation increases mortality, releasing density dependence and raising average well-being for survivors. We discuss the social implications of these findings for the long-term fate of populations as they transition from expansion into limitation, given that conditions leading to high well-being during growth depress well-being during limitation.
Determination of the N2 recombination rate coefficient in the ionosphere
NASA Technical Reports Server (NTRS)
Orsini, N.; Torr, D. G.; Brinton, H. C.; Brace, L. H.; Hanson, W. B.; Hoffman, J. H.; Nier, A. O.
1977-01-01
Measurements of aeronomic parameters made by the Atmosphere Explorer-C satellite are used to determine the recombination rate coefficient of N2(+) in the ionosphere. The rate is found to increase significantly with decreasing electron density. Values obtained range from approximately 1.4 x 10 to the -7th to 3.8 x 10 to the -7th cu cm/sec. This variation is explained in a preliminary way in terms of an increase in the rate coefficient with vibrational excitation. Thus, high electron densities depopulate high vibrational levels reducing the effective recombination rate, whereas, low electron densities result in an enhancement in the population of high vibrational levels, thus, increasing the effective recombination rate.
NASA Astrophysics Data System (ADS)
Bau, Sébastien; Bémer, Denis; Grippari, Florence; Appert-Collin, Jean-Christophe; Thomas, Dominique
2014-10-01
Increasing numbers of workers are exposed to airborne nanoparticles, the health effects of which remain difficult to evaluate. Effective density is considered to be a key characteristic of airborne nanoparticles due to its role in particle deposition in the human respiratory tract and in the conversion of number distributions to mass distributions. Because effective density cannot be measured directly, in this study the electrical mobility and aerodynamic equivalent diameters of airborne nanoparticles were measured simultaneously (tandem DMA/ELPI). Test aerosols consisted of spherical Di-Ethyl-Hexyl-Sebacate nanoparticles produced by nebulization (PALAS AGK 2000). To take into account the presence of multiple-charged particles at the DMA outlet, a theoretical model was developed in which the successive mechanisms undergone by particles are accounted for. Using this model, it is possible to determine the proportion of each population exiting the DMA ( p = 1, 2,…,5 elementary charges) in each channel of the overall ELPI signal. Thus, particle effective density can be estimated for each population. The results indicate that using the ELPI signal alone could lead to significant misevaluation of particle effective density, with biases up to 150 %. However, when the proportion of each population is taken into account, particle effective density is determined within ±15 % of the theoretical value.
Influence of landscape-scale factors in limiting brook trout populations in Pennsylvania streams
Kocovsky, P.M.; Carline, R.F.
2006-01-01
Landscapes influence the capacity of streams to produce trout through their effect on water chemistry and other factors at the reach scale. Trout abundance also fluctuates over time; thus, to thoroughly understand how spatial factors at landscape scales affect trout populations, one must assess the changes in populations over time to provide a context for interpreting the importance of spatial factors. We used data from the Pennsylvania Fish and Boat Commission's fisheries management database to investigate spatial factors that affect the capacity of streams to support brook trout Salvelinus fontinalis and to provide models useful for their management. We assessed the relative importance of spatial and temporal variation by calculating variance components and comparing relative standard errors for spatial and temporal variation. We used binary logistic regression to predict the presence of harvestable-length brook trout and multiple linear regression to assess the mechanistic links between landscapes and trout populations and to predict population density. The variance in trout density among streams was equal to or greater than the temporal variation for several streams, indicating that differences among sites affect population density. Logistic regression models correctly predicted the absence of harvestable-length brook trout in 60% of validation samples. The r 2-value for the linear regression model predicting density was 0.3, indicating low predictive ability. Both logistic and linear regression models supported buffering capacity against acid episodes as an important mechanistic link between landscapes and trout populations. Although our models fail to predict trout densities precisely, their success at elucidating the mechanistic links between landscapes and trout populations, in concert with the importance of spatial variation, increases our understanding of factors affecting brook trout abundance and will help managers and private groups to protect and enhance populations of wild brook trout. ?? Copyright by the American Fisheries Society 2006.
The Role Of Environment In Stellar Mass Growth
NASA Astrophysics Data System (ADS)
Thomas, Daniel
2017-06-01
In this talk I give a brief summary of methods to measure galaxy environment. I then discuss the dependence of stellar population properties on environmental density: it turns out that the latter are driven by galaxy mass, and galaxy environment only plays a secondary role, mostly at late times in low-mass galaxies. I show that this evidence has now been extended to stellar population gradients using the IFU survey SDSS/MaNGA that again turn out to be independent of environment, including central-satellite classification. Finally I present results from the DES, where the dependence of the stellar mass function with redshift and environmental density is explored. It is found that the fraction of massive galaxies is larger in high density environments than in low density environments. The low density and high density components converge with increasing redshift up to z 1.0 where the shapes of the mass function components are indistinguishable. This study shows how high density structures build up around massive galaxies through cosmic time, which sets new valuable constraints on galaxy formation models.
Influence of psychotherapist density and antidepressant sales on suicide rates.
Kapusta, N D; Niederkrotenthaler, T; Etzersdorfer, E; Voracek, M; Dervic, K; Jandl-Jager, E; Sonneck, G
2009-03-01
Antidepressant sales and suicide rates have been shown to be correlated in industrialized countries. The aim was to study the possible effects of psychotherapy utilization on suicide rates. We assessed the impact of antidepressant sales and psychotherapist density on suicide rates between 1991 and 2005. To adjust for serial correlation in time series, three first-order autoregressive models adjusted for per capita alcohol consumption and unemployment rates were employed. Antidepressant sales and the density of psychotherapists in the population were negatively associated with suicide rates. This study provides evidence that decreasing suicide rates were associated with both increasing antidepressant sales and an increasing density of psychotherapists. The decrease of suicide rates could reflect a general improvement in mental health care rather than being caused by antidepressant sales or psychotherapist density alone.
Grossi, D A; Brito, L F; Jafarikia, M; Schenkel, F S; Feng, Z
2018-04-30
The uptake of genomic selection (GS) by the swine industry is still limited by the costs of genotyping. A feasible alternative to overcome this challenge is to genotype animals using an affordable low-density (LD) single nucleotide polymorphism (SNP) chip panel followed by accurate imputation to a high-density panel. Therefore, the main objective of this study was to screen incremental densities of LD panels in order to systematically identify one that balances the tradeoffs among imputation accuracy, prediction accuracy of genomic estimated breeding values (GEBVs), and genotype density (directly associated with genotyping costs). Genotypes using the Illumina Porcine60K BeadChip were available for 1378 Duroc (DU), 2361 Landrace (LA) and 3192 Yorkshire (YO) pigs. In addition, pseudo-phenotypes (de-regressed estimated breeding values) for five economically important traits were provided for the analysis. The reference population for genotyping imputation consisted of 931 DU, 1631 LA and 2103 YO animals and the remainder individuals were included in the validation population of each breed. A LD panel of 3000 evenly spaced SNPs (LD3K) yielded high imputation accuracy rates: 93.78% (DU), 97.07% (LA) and 97.00% (YO) and high correlations (>0.97) between the predicted GEBVs using the actual 60 K SNP genotypes and the imputed 60 K SNP genotypes for all traits and breeds. The imputation accuracy was influenced by the reference population size as well as the amount of parental genotype information available in the reference population. However, parental genotype information became less important when the LD panel had at least 3000 SNPs. The correlation of the GEBVs directly increased with an increase in imputation accuracy. When genotype information for both parents was available, a panel of 300 SNPs (imputed to 60 K) yielded GEBV predictions highly correlated (⩾0.90) with genomic predictions obtained based on the true 60 K panel, for all traits and breeds. For a small reference population size with no parents on reference population, it is recommended the use of a panel at least as dense as the LD3K and, when there are two parents in the reference population, a panel as small as the LD300 might be a feasible option. These findings are of great importance for the development of LD panels for swine in order to reduce genotyping costs, increase the uptake of GS and, therefore, optimize the profitability of the swine industry.
Living on the edge: roe deer (Capreolus capreolus) density in the margins of its geographical range.
Valente, Ana M; Fonseca, Carlos; Marques, Tiago A; Santos, João P; Rodrigues, Rogério; Torres, Rita Tinoco
2014-01-01
Over the last decades roe deer (Capreolus capreolus) populations have increased in number and distribution throughout Europe. Such increases have profound impacts on ecosystems, both positive and negative. Therefore monitoring roe deer populations is essential for the appropriate management of this species, in order to achieve a balance between conservation and mitigation of the negative impacts. Despite being required for an effective management plan, the study of roe deer ecology in Portugal is at an early stage, and hence there is still a complete lack of knowledge of roe deer density within its known range. Distance sampling of pellet groups coupled with production and decay rates for pellet groups provided density estimates for roe deer in northeastern Portugal (Lombada National Hunting Area--LNHA, Serra de Montesinho--SM and Serra da Nogueira--SN; LNHA and SM located in Montesinho Natural Park). The estimated roe deer density using a stratified detection function was 1.23/100 ha for LNHA, 4.87/100 ha for SM and 4.25/100 ha in SN, with 95% confidence intervals (CI) of 0.68 to 2.21, 3.08 to 7.71 and 2.25 to 8.03, respectively. For the entire area, the estimated density was about 3.51/100 ha (95% CI - 2.26-5.45). This method can provide estimates of roe deer density, which will ultimately support management decisions. However, effective monitoring should be based on long-term studies that are able to detect population fluctuations. This study represents the initial phase of roe deer monitoring at the edge of its European range and intends to fill the gap in this species ecology, as the gathering of similar data over a number of years will provide the basis for stronger inferences. Monitoring should be continued, although the study area should be increased to evaluate the accuracy of estimates and assess the impact of management actions.
Validation of candidate genes associated with cardiovascular risk factors in psychiatric patients
Windemuth, Andreas; de Leon, Jose; Goethe, John W.; Schwartz, Harold I.; Woolley, Stephen; Susce, Margaret; Kocherla, Mohan; Bogaard, Kali; Holford, Theodore R.; Seip, Richard L.; Ruaño, Gualberto
2016-01-01
The purpose of this study was to identify genetic variants predictive of cardiovascular risk factors in a psychiatric population treated with second generation antipsychotics (SGA). 924 patients undergoing treatment for severe mental illness at four US hospitals were genotyped at 1.2 million single nucleotide polymorphisms. Patients were assessed for fasting serum lipid (low density lipoprotein cholesterol [LDLc], high density lipoprotein cholesterol [HDLc], and triglycerides) and obesity phenotypes (body mass index, BMI). Thirteen candidate genes from previous studies of the same phenotypes in non-psychiatric populations were tested for association. We confirmed 8 of the 13 candidate genes at the 95% confidence level. An increased genetic effect size was observed for triglycerides in the psychiatric population compared to that in the cardiovascular population. PMID:21851846
Positive feedback in the transition from sexual reproduction to parthenogenesis
Schwander, Tanja; Vuilleumier, Séverine; Dubman, Janie; Crespi, Bernard J.
2010-01-01
Understanding how new phenotypes evolve is challenging because intermediate stages in transitions from ancestral to derived phenotypes often remain elusive. Here we describe and evaluate a new mechanism facilitating the transition from sexual reproduction to parthenogenesis. In many sexually reproducing species, a small proportion of unfertilized eggs can hatch spontaneously (‘tychoparthenogenesis’) and develop into females. Using an analytical model, we show that if females are mate-limited, tychoparthenogenesis can result in the loss of males through a positive feedback mechanism whereby tychoparthenogenesis generates female-biased sex ratios and increasing mate limitation. As a result, the strength of selection for tychoparthenogenesis increases in concert with the proportion of tychoparthenogenetic offspring in the sexual population. We then tested the hypothesis that mate limitation selects for tychoparthenogenesis and generates female-biased sex ratios, using data from natural populations of sexually reproducing Timema stick insects. Across 41 populations, both the tychoparthenogenesis rates and the proportions of females increased exponentially as the density of individuals decreased, consistent with the idea that low densities of individuals result in mate limitation and selection for reproductive insurance through tychoparthenogenesis. Our model and data from Timema populations provide evidence for a simple mechanism through which parthenogenesis can evolve rapidly in a sexual population. PMID:20071382
Marshall, Jordan M; Storer, Andrew J; Fraser, Ivich; Beachy, Jessica A; Mastro, Victor C
2009-08-01
The early detection of populations of a forest pest is important to begin initial control efforts, minimizing the risk of further spread and impact. Emerald ash borer (Agrilus planipennis Fairmaire) is an introduced pestiferous insect of ash (Fraxinus spp. L.) in North America. The effectiveness of trapping techniques, including girdled trap trees with sticky bands and purple prism traps, was tested in areas with low- and high-density populations of emerald ash borer. At both densities, large girdled trap trees (>30 cm diameter at breast height [dbh], 1.37 m in height) captured a higher rate of adult beetles per day than smaller trees. However, the odds of detecting emerald ash borer increased as the dbh of the tree increased by 1 cm for trap trees 15-25 cm dbh. Ash species used for the traps differed in the number of larvae per cubic centimeter of phloem. Emerald ash borer larvae were more likely to be detected below, compared with above, the crown base of the trap tree. While larval densities within a trap tree were related to the species of ash, adult capture rates were not. These results provide support for focusing state and regional detection programs on the detection of emerald ash borer adults. If bark peeling for larvae is incorporated into these programs, peeling efforts focused below the crown base may increase likelihood of identifying new infestations while reducing labor costs. Associating traps with larger trees ( approximately 25 cm dbh) may increase the odds of detecting low-density populations of emerald ash borer, possibly reducing the time between infestation establishment and implementing management strategies.
Density of the Waterborne Parasite Ceratomyxa shasta and Its Biological Effects on Salmon
Ray, R. Adam; Hurst, Charlene N.; Holt, Richard A.; Buckles, Gerri R.; Atkinson, Stephen D.
2012-01-01
The myxozoan parasite Ceratomyxa shasta is a significant pathogen of juvenile salmonids in the Pacific Northwest of North America and is limiting recovery of Chinook (Oncorhynchus tshawytscha) and coho (O. kisutch) salmon populations in the Klamath River. We conducted a 5-year monitoring program that comprised concurrent sentinel fish exposures and water sampling across 212 river kilometers of the Klamath River. We used percent mortality and degree-days to death to measure disease severity in fish. We analyzed water samples using quantitative PCR and Sanger sequencing, to determine total parasite density and relative abundance of C. shasta genotypes, which differ in their pathogenicity to salmonids. We detected the parasite throughout the study zone, but parasite density and genetic composition fluctuated spatially and temporally. Chinook and coho mortality increased with density of their specific parasite genotype, but mortality-density thresholds and time to death differed. A lethality threshold of 40% mortality was reached with 10 spores liter−1 for Chinook but only 5 spores liter−1 for coho. Parasite density did not affect degree-days to death for Chinook but was negatively correlated for coho, and there was wider variation among coho individuals. These differences likely reflect the different life histories and genetic heterogeneity of the salmon populations. Direct quantification of the density of host-specific parasite genotypes in water samples offers a management tool for predicting host population-level impacts. PMID:22407689
Harris, Julianne E.; Hightower, Joseph E.
2012-01-01
American shad Alosa sapidissima are in decline in their native range, and modeling possible management scenarios could help guide their restoration. We developed a density-dependent, deterministic, stage-based matrix model to predict the population-level results of transporting American shad to suitable spawning habitat upstream of dams on the Roanoke River, North Carolina and Virginia. We used data on sonic-tagged adult American shad and oxytetracycline-marked American shad fry both above and below dams on the Roanoke River with information from other systems to estimate a starting population size and vital rates. We modeled the adult female population over 30 years under plausible scenarios of adult transport, effective fecundity (egg production), and survival of adults (i.e., to return to spawn the next year) and juveniles (from spawned egg to age 1). We also evaluated the potential effects of increased survival for adults and juveniles. The adult female population size in the Roanoke River was estimated to be 5,224. With no transport, the model predicted a slow population increase over the next 30 years. Predicted population increases were highest when survival was improved during the first year of life. Transport was predicted to benefit the population only if high rates of effective fecundity and juvenile survival could be achieved. Currently, transported adults and young are less likely to successfully out-migrate than individuals below the dams, and the estimated adult population size is much smaller than either of two assumed values of carrying capacity for the lower river; therefore, transport is not predicted to help restore the stock under present conditions. Research on survival rates, density-dependent processes, and the impacts of structures to increase out-migration success would improve evaluation of the potential benefits of access to additional spawning habitat for American shad.
Takahashi, Yuma; Kagawa, Kotaro; Svensson, Erik I; Kawata, Masakado
2014-07-18
The effect of evolutionary changes in traits and phenotypic/genetic diversity on ecological dynamics has received much theoretical attention; however, the mechanisms and ecological consequences are usually unknown. Female-limited colour polymorphism in damselflies is a counter-adaptation to male mating harassment, and thus, is expected to alter population dynamics through relaxing sexual conflict. Here we show the side effect of the evolution of female morph diversity on population performance (for example, population productivity and sustainability) in damselflies. Our theoretical model incorporating key features of the sexual interaction predicts that the evolution of increased phenotypic diversity will reduce overall fitness costs to females from sexual conflict, which in turn will increase productivity, density and stability of a population. Field data and mesocosm experiments support these model predictions. Our study suggests that increased phenotypic diversity can enhance population performance that can potentially reduce extinction rates and thereby influence macroevolutionary processes.
Ferrer, Miriam M.; Good-Avila, Sara V.; Montaña, Carlos; Domínguez, César A.; Eguiarte, Luis E.
2009-01-01
Background and Aims Selection may favour a partial or complete loss of self-incompatibility (SI) if it increases the reproductive output of individuals in the presence of low mate availability. The reproductive output of individuals varying in their strength of SI may also be affected by population density via its affect on the spatial structuring and number of S-alleles in populations. Modifiers increasing levels of self-compatibility can be selected when self-compatible individuals receive reproductive compensation by, for example, increasing seed set and/or when they become associated with high fitness genotypes. Methods The effect of variation in the strength of SI and scrub density (low versus high) on seed set, seed germination and inbreeding depression in seed germination (δgerm) was investigated in the partially self-incompatible species Flourensia cernua by analysing data from self-, cross- and open-pollinated florets. Key Results Examination of 100 plants in both high and low scrub densities revealed that 51% of plants were strongly self-incompatible and 49 % varied from being self-incompatible to self-compatible. Seed set after hand cross-pollination was higher than after open-pollination for self-incompatible, partially self-incompatible and self-compatible plants but was uniformly low for strongly self-incompatible plants. Strongly self-incompatible and self-incompatible plants exhibited lower seed set, seed germination and multiplicative female fitness (floral display × seed set × seed germination) in open-pollinated florets compared with partially self-incompatible and self-compatible plants. Scrub density also had an effect on seed set and inbreeding depression: in low-density scrubs seed set was higher after open-pollination and δgerm was lower. Conclusions These data suggest that (a) plants suffered outcross pollen limitation, (b) female fitness in partially self-incompatible and self-compatible plants is enhanced by increased mate-compatibility and (c) plants in low-density scrubs received higher quality pollen via open-pollination than plants in high-density scrubs. PMID:19218580
McLeod, David V; Wild, Geoff
2013-11-01
Cooperative breeding is a system in which certain individuals facilitate the production of offspring by others. The ecological constraints hypothesis states that ecological conditions deter individuals from breeding independently, and so individuals breed cooperatively to make the best of a bad situation. Current theoretical support for the ecological constraints hypothesis is lacking. We formulate a mathematical model that emphasizes the underlying ecology of cooperative breeders. Our goal is to derive theoretical support for the ecological constraints hypothesis using an ecological model of population dynamics. We consider a population composed of two kinds of individuals, nonbreeders (auxiliaries) and breeders. We suppose that help provided by an auxiliary increases breeder fecundity, but reduces the probability with which the auxiliary becomes a breeder. Our main result is a condition that guarantees success of auxiliary help. We predict that increasing the cost of dispersal promotes helping, in agreement with verbal theory. We also predict that increasing breeder mortality can either hinder helping (at high population densities), or promote it (at low population densities). We conclude that ecological constraints can exert influence over the evolution of auxiliary help when population dynamics are considered; moreover, that influence need not coincide with direct fitness benefits as previously found. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Territoriality of feral pigs in a highly persecuted population on Fort Benning, Georgia
Sparklin, B.D.; Mitchell, M.S.; Hanson, L.B.; Jolley, D.B.; Ditchkoff, S.S.
2009-01-01
We examined home range behavior of female feral pigs (Sus scrofa) in a heavily hunted population on Fort Benning Military Reservation in west-central Georgia, USA. We used Global Positioning System location data from 24 individuals representing 18 sounders (i.e., F social groups) combined with markrecapture and camera-trap data to evaluate evidence of territorial behavior at the individual and sounder levels. Through a manipulative experiment, we examined evidence for an inverse relationship between population density and home range size that would be expected for territorial animals. Pigs from the same sounder had extensive home range overlap and did not have exclusive core areas. Sounders had nearly exclusive home ranges and had completely exclusive core areas, suggesting that female feral pigs on Fort Benning were territorial at the sounder level but not at the individual level. Lethal removal maintained stable densities of pigs in our treatment area, whereas density increased in our control area; territory size in the 2 areas was weakly and inversely related to density of pigs. Territorial behavior in feral pigs could influence population density by limiting access to reproductive space. Removal strategies that 1) match distribution of removal efforts to distribution of territories, 2) remove entire sounders instead of individuals, and 3) focus efforts where high-quality food resources strongly influence territorial behaviors may be best for long-term control of feral pigs.
[On the rational distribution of Chinese population].
Zhu, Z
1980-01-01
In 1949, the population distribution in China was characterized by the following distinct features. First, it was unbalanced, with high density in the eastern regions, in the plains, and in areas adjacent to railroads, river navigation routes and other transportation axes. Low population density was found in the western regions, mountainous regions, and areas far from transportation routes. Second, Hans were largest in number and distributed throughout the country, with major concentration in the eastern regions, while the minorities constituted about 10% of the total population and were distributed mainly in the far southwestern and northwestern areas. Third, over 89% of the 540 million of the population was distributed in rural areas while only about 10% in towns and cities, with high densities in some coastal cities. During the past 3 decades, the unbalanced nature of China's population has remained basically unchanged. This can be attributed to factors relating to natural conditions and resources, productivities, socioeconomic conditions, and technological development in different regions. In order to achieve a rational distribution of the Chinese population the following measures should be taken: 1) controlling the birth rate of the Hans and increasing the population of minorities; 2) moving the population of the dense areas to the border provinces in the western regions to develop their natural resources and to elevate the living standards; 3) modernizing the rural areas; 4) strictly controlling the industrial developments of large cities and their population growth; and 5) strictly restricting the unplanned migration of population to and from cities.
Eccard, Jana A; Rödel, Heiko G
2011-09-01
A number of short-lived, iteroparous animal species have small broods in the early breeding season and larger broods in later breeding season. Brood size affects not only offspring size, but as recent results suggest, may also affect offspring's temperament, hormonal status, and aggression as adults. Most populations of short-lived, iteroparous mammals fluctuate predictably over the season, with low densities in winter, increasing densities in summer and a population peak in late summer followed by a population breakdown. If animals live only through parts of the season, possibly such differences in density and hence also in social environments among seasons require different personality types to increase individual fitness. We present data on behavior of European rabbits from a field enclosure study. These data clearly show that aggressiveness is higher in young from smaller litters than in young from larger litters, and smaller litters are usually born during the early breeding season. Moreover, our data suggest that behavioral types of the young rabbits are stable over time, at least during their subadult life. We suggest, that changes in mean litter size over the course of the breeding season may not only be a product of mothers' age or food availability, but may also have an adaptive function by preparing offspring characteristics for adulthood in a social environment undergoing predictable density changes within the season. Copyright © 2011 Wiley Periodicals, Inc.
Land Use as a Driver of Patterns of Rodenticide Exposure in Modeled Kit Fox Populations
Nogeire, Theresa M.; Lawler, Joshua J.; Schumaker, Nathan H.; Cypher, Brian L.; Phillips, Scott E.
2015-01-01
Although rodenticides are increasingly regulated, they nonetheless cause poisonings in many non-target wildlife species. Second-generation anticoagulant rodenticide use is common in agricultural and residential landscapes. Here, we use an individual-based population model to assess potential population-wide effects of rodenticide exposures on the endangered San Joaquin kit fox (Vulpes macrotis mutica). We estimate likelihood of rodenticide exposure across the species range for each land cover type based on a database of reported pesticide use and literature. Using a spatially-explicit population model, we find that 36% of modeled kit foxes are likely exposed, resulting in a 7-18% decline in the range-wide modeled kit fox population that can be linked to rodenticide use. Exposures of kit foxes in low-density developed areas accounted for 70% of the population-wide exposures to rodenticides. We conclude that exposures of non-target kit foxes could be greatly mitigated by reducing the use of second-generation anticoagulant rodenticides in low-density developed areas near vulnerable populations. PMID:26244655
Sinks without borders: Snowshoe hare dynamics in a complex landscape
Griffin, Paul C.; Mills, L. Scott
2009-01-01
A full understanding of population dynamics of wide-ranging animals should account for the effects that movement and habitat use have on individual contributions to population growth or decline. Quantifying the per-capita, habitat-specific contribution to population growth can clarify the value of different patch types, and help to differentiate population sources from population sinks. Snowshoe hares, Lepus americanus, routinely use various habitat types in the landscapes they inhabit in the contiguous US, where managing forests for high snowshoe hare density is a priority for conservation of Canada lynx, Lynx canadensis. We estimated density and demographic rates via mark–recapture live trapping and radio-telemetry within four forest stand structure (FSS) types at three study areas within heterogeneous managed forests in western Montana. We found support for known fate survival models with time-varying individual covariates representing the proportion of locations in each of the FSS types, with survival rates decreasing as use of open young and open mature FSS types increased. The per-capita contribution to overall population growth increased with use of the dense mature or dense young FSS types and decreased with use of the open young or open mature FSS types, and relatively high levels of immigration appear to be necessary to sustain hares in the open FSS types. Our results support a conceptual model for snowshoe hares in the southern range in which sink habitats (open areas) prevent the buildup of high hare densities. More broadly, we use this system to develop a novel approach to quantify demographic sources and sinks for animals making routine movements through complex fragmented landscapes.
O'Farrell, I B; Corcoran, P; Perry, I J
2016-06-01
Numerous studies have examined the ecological relationship between suicide and area level determinants such as deprivation and social fragmentation. In Ireland, there is considerable geographic variation in the rates of suicide. However, there is a dearth of Irish studies investigating the geographic variability of suicide. The Irish Central Statistics Office (CSO) provided data relating to all deaths by suicide and deaths of undetermined intent that occurred from 2009 to 2011. Negative binomial regression was used to examine the relationship between area level suicide rates and measures of deprivation, social fragmentation and population density that were taken from the 2011 National Census. Overall deprivation had the strongest independent effect on small-area rates of suicide, with the most deprived areas showing the greatest risk of suicide (risk ratio = 2.1; 95 % CI 1.70-2.52). Low population density (rurality) was associated with an increased risk suicide in males across both age groups and among females in the older 40-64-year age group. Conversely, a weak association between high population density (urbanicity) and increased suicide risk was found among females in the 15-39-year age group. Associations with social fragmentation only became apparent in the sub group analysis. Social fragmentation was associated with an elevated risk of suicide in the older 40-64 age group, with this effect being most pronounced among females. The findings of this study demonstrate marked geographical inequalities in the distribution of suicide in Ireland and highlight the importance of targeting suicide prevention resources in the most deprived areas.
Hirsch, Jana A; Moore, Kari A; Barrientos-Gutierrez, Tonatiuh; Brines, Shannon J; Zagorski, Melissa A; Rodriguez, Daniel A; Diez Roux, Ana V
2014-11-01
To examine longitudinal associations of the neighborhood built environment with objectively measured body mass index (BMI) and waist circumference (WC) in a geographically and racial/ethnically diverse group of adults. This study used data from 5,506 adult participants in the Multi-Ethnic Study of Atherosclerosis, aged 45-84 years in 2000 (baseline). BMI and WC were assessed at baseline and four follow-up visits (median follow-up 9.1 years). Time-varying built environment measures (population density, land-use, destinations, bus access, and street characteristics) were created using Geographic Information Systems. Principal components analysis was used to derive composite scores for three built environment factors. Fixed-effects models, tightly controlling for all time-invariant characteristics, estimated associations between change in the built environment, and change in BMI and WC. Increases in the intensity of development (higher density of walking destinations and population density, and lower percent residential) were associated with less pronounced increases or decreases over time in BMI and WC. Changes in connected retail centers (higher percent retail, higher street connectivity) and public transportation (distance to bus) were not associated with changes in BMI or WC. Longitudinal changes in the built environment, particularly increased density, are associated with decreases in BMI and WC. © 2014 The Obesity Society.
Density dependence in demography and dispersal generates fluctuating invasion speeds
Li, Bingtuan; Miller, Tom E. X.
2017-01-01
Density dependence plays an important role in population regulation and is known to generate temporal fluctuations in population density. However, the ways in which density dependence affects spatial population processes, such as species invasions, are less understood. Although classical ecological theory suggests that invasions should advance at a constant speed, empirical work is illuminating the highly variable nature of biological invasions, which often exhibit nonconstant spreading speeds, even in simple, controlled settings. Here, we explore endogenous density dependence as a mechanism for inducing variability in biological invasions with a set of population models that incorporate density dependence in demographic and dispersal parameters. We show that density dependence in demography at low population densities—i.e., an Allee effect—combined with spatiotemporal variability in population density behind the invasion front can produce fluctuations in spreading speed. The density fluctuations behind the front can arise from either overcompensatory population growth or density-dependent dispersal, both of which are common in nature. Our results show that simple rules can generate complex spread dynamics and highlight a source of variability in biological invasions that may aid in ecological forecasting. PMID:28442569
Maric, D; Maric, I; Ma, W; Lahojuji, F; Somogyi, R; Wen, X; Sieghart, W; Fritschy, J M; Barker, J L
1997-03-01
Development of the CNS occurs as a complex cascade of pre-programmed events involving distinct phases of cell proliferation and differentiation. Here we show these phases correlate with cells of specific buoyant densities which can be readily accessed by density gradient fractionation. Sprague-Dawley dams were pulse-labelled with bromodeoxyuridine (BrdU) and selected regions of embryonic (E) CNS tissues at E11-22 dissociated with papain into single-cell suspensions. Proliferative cell populations were assessed by anti-BrdU and propidium iodide staining using flow cytometry. Cell differentiation was evaluated using molecular and immunocytochemical probes against mRNAs and antigens differentiating the neuroepithelial, neuronal and glial cell lineages. The results show the emergence of distinctive spatiotemporal changes in BrdU+ populations throughout the CNS during embryonic development, which were followed by corresponding changes in the cellular distributions of antigens distinguishing specific cell types. Fractionation of neocortical cells using discontinuous Percoll gradients revealed that an increasing number of cells increase their buoyancy during corticogenesis. Immunocytochemical and molecular characterization showed that the proliferative and progenitor cell populations are for the most part associated with lower buoyancy or higher specific buoyant densities (> 1.056 g/ml) whereas the post-mitotic, differentiated neurons generally separated into fractions of higher buoyancy or lower specific buoyant densities (< 1.043 g/ml). Immunostaining with antibodies against several GABAA receptor subunits (alpha 3, beta 3, gamma 2) revealed that the highest percent (70-90%) of immunopositive cells could be identified in the most buoyant, differentiating neurons found in the cortical plate/subplate regions, with the lowest percent of the immunopositive cells found in the least buoyant, proliferative and progenitor cell populations originating from the ventricular/subventricular zones. Taken together, these results indicate that buoyant density is a distinguishing characteristic of embryonic CNS cells transforming from primarily proliferative to mainly differentiating, and that fractionation of these cells according to their buoyant densities provides rapid access to the properties of specific cell lineages during the prenatal period of CNS development.
Turcotte, Martin M; Reznick, David N; Daniel Hare, J
2013-05-01
An eco-evolutionary feedback loop is defined as the reciprocal impacts of ecology on evolutionary dynamics and evolution on ecological dynamics on contemporary timescales. We experimentally tested for an eco-evolutionary feedback loop in the green peach aphid, Myzus persicae, by manipulating initial densities and evolution. We found strong evidence that initial aphid density alters the rate and direction of evolution, as measured by changes in genotype frequencies through time. We also found that evolution of aphids within only 16 days, or approximately three generations, alters the rate of population growth and predicts density compared to nonevolving controls. The impact of evolution on population dynamics also depended on density. In one evolution treatment, evolution accelerated population growth by up to 10.3% at high initial density or reduced it by up to 6.4% at low initial density. The impact of evolution on population growth was as strong as or stronger than that caused by a threefold change in intraspecific density. We found that, taken together, ecological condition, here intraspecific density, alters evolutionary dynamics, which in turn alter concurrent population growth rate (ecological dynamics) in an eco-evolutionary feedback loop. Our results suggest that ignoring evolution in studies predicting population dynamics might lead us to over- or underestimate population density and that we cannot predict the evolutionary outcome within aphid populations without considering population size.
James F. Taulman; Kimberly G. Smith
2004-01-01
Abstract After experimental harvests on 18 mature pine-hardwood stands in 6 replicated groups, flying squirrels changed from uniform pre-harvest patterns of nest box use to concentrating on protected greenbelt (GB) areas on harvested stands. Squirrel densities declined on all harvested stands as densities increased on three control stands. Fifty...
People with Mental Retardation Have an Increased Prevalence of Osteoporosis: A Population Study.
ERIC Educational Resources Information Center
Center, Jacqueline; Beange, Helen; McElduff, Aidan
1998-01-01
Prevalence of and risk factors for osteoporosis in 94 young adults with mental retardation was examined. Results showed they had lower bone mineral density when compared to controls. Factors associated with low bone mineral density included small body size, hypgonadism, and Down syndrome. Low vitamin D levels were common. (Author/CR)
Moutinho, Paulo Rufalco; Gil, Luis Herman Soares; Cruz, Rafael Bastos; Ribolla, Paulo Eduardo Martins
2011-06-24
Anopheles darlingi is the major vector of malaria in South America, and its behavior and distribution has epidemiological importance to biomedical research. In Brazil, An. darlingi is found in the northern area of the Amazon basin, where 99.5% of the disease is reported. The study area, known as Ramal do Granada, is a rural settlement inside the Amazon basin in the state of Acre. Population variations and density have been analysed by species behaviour, and molecular analysis has been measured by ND4 mitochondrial gene sequencing. The results show higher density in collections near a recent settlement, suggesting that a high level of colonization decreases the vector presence. The biting activity showed higher activity at twilight and major numbers of mosquitos in the remaining hours of the night in months of high density. From a sample of 110 individual mosquitoes, 18 different haplotypes were presented with a diversity index of 0.895, which is higher than that found in other Anopheles studies. An. darlingi depends on forested regions for their larval and adult survival. In months with higher population density, the presence of mosquitoes persisted in the second part of the night, increasing the vector capacity of the species. Despite the intra-population variation in the transition to rainy season, the seasonal distribution of haplotypes shows no change in the structure population of An. darlingi.
[Ecological Trendofthe Incidence of Tuberculosis in Mianyang City During 2004-2013].
Zhang, Wen-Hao; Xiao, Chuan; Ren, Tao; Wang, Li-Ping; Wang, Lan; Yuan, Ping
2016-09-01
To determine the trend of the incidence of tuberculosis (TB) in Mianyang City during 2004-2013 and its ecological determinants. Linear correlations between TB incidence and ecological factors were analyzed using the data collected in Mianyang City from 2004 to 2013. A multivariate linear regression model was established to determine the ecological predictors of TB incidence. The incidence of TB in Mianyang City decreased over the period of 2004-2013. Economic development and increased health resources were negatively correlated with TB incidence. Population density was positively correlated with TB incidence. A multivariate linear regression equationon TB incidence ( y ) was established with the independent variables ( x₁ to x ₁₀) forming a component (using principal component analysis) to eliminate multicollinearity: y =117.692-1.467 x ₁-1.145 x ₂-1.961 x ₃-4.777 x ₄-2.690 x ₅-6.181 x ₆+82.234 x ₇-2.721 x ₈-0.351 x ₉-0.382 x ₁₀. The incidence of TB decreased with the increases of real GDP per capita ( x ₁), average wage of workers( x ₂), per capita disposable income of urban residents ( x ₃), rural per capita net income ( x ₄), per capita consumption expenditure of urban residents ( x ₅), per capita living consumption expenditure of rural residents ( x ₆), number of licensed (assistant) physicians per thousand population ( x ₈), urbanization rate ( x ₉),and per capita housing construction area of urban ( x ₁₀),while it increased with the increase of density of population ( x ₇). Socio-economic development, health resources and population density are predictors of TB incidence.
Causes and consequences of complex population dynamics in an annual plant, Cardamine pensylvanica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crone, E.E.
1995-11-08
The relative importance of density-dependent and density-independent factors in determining the population dynamics of plants has been widely debated with little resolution. In this thesis, the author explores the effects of density-dependent population regulation on population dynamics in Cardamine pensylvanica, an annual plant. In the first chapter, she shows that experimental populations of C. pensylvanica cycled from high to low density in controlled constant-environment conditions. These cycles could not be explained by external environmental changes or simple models of direct density dependence (N{sub t+1} = f[N{sub t}]), but they could be explained by delayed density dependence (N{sub t+1} = f[N{submore » t}, N{sub t+1}]). In the second chapter, she shows that the difference in the stability properties of population growth models with and without delayed density dependence is due to the presence of Hopf as well as slip bifurcations from stable to chaotic population dynamics. She also measures delayed density dependence due to effects of parental density on offspring quality in C. pensylvanica and shows that this is large enough to be the cause of the population dynamics observed in C. pensylvanica. In the third chapter, the author extends her analyses of density-dependent population growth models to include interactions between competing species. In the final chapter, she compares the effects of fixed spatial environmental variation and variation in population size on the evolutionary response of C. pensylvanica populations.« less
Code of Federal Regulations, 2011 CFR
2011-10-01
... meet the following criteria: (1) The hospital is located in a State that, based on population density, is defined as a rural State. A rural State is one of ten States with the lowest population density... prioritized beginning with the State with the lowest population density. Population density is determined...
Code of Federal Regulations, 2010 CFR
2010-10-01
... meet the following criteria: (1) The hospital is located in a State that, based on population density, is defined as a rural State. A rural State is one of ten States with the lowest population density... prioritized beginning with the State with the lowest population density. Population density is determined...
NASA Astrophysics Data System (ADS)
Zhan, Shuiqing; Wang, Junfeng; Wang, Zhentao; Yang, Jianhong
2018-02-01
The effects of different cell design and operating parameters on the gas-liquid two-phase flows and bubble distribution characteristics under the anode bottom regions in aluminum electrolysis cells were analyzed using a three-dimensional computational fluid dynamics-population balance model. These parameters include inter-anode channel width, anode-cathode distance (ACD), anode width and length, current density, and electrolyte depth. The simulations results show that the inter-anode channel width has no significant effect on the gas volume fraction, electrolyte velocity, and bubble size. With increasing ACD, the above values decrease and more uniform bubbles can be obtained. Different effects of the anode width and length can be concluded in different cell regions. With increasing current density, the gas volume fraction and electrolyte velocity increase, but the bubble size keeps nearly the same. Increasing electrolyte depth decreased the gas volume fraction and bubble size in particular areas and the electrolyte velocity increased.
Judge, Seth W.; Camp, Richard J.; Hart, Patrick J.; Kichman, Scott T.
2018-01-01
Endangered Hawai‘i ʻĀkepas (Loxops coccineus) are endemic to Hawai‘i island, where they occur in five spatially distinct populations. Data concerning the status and population trends of these unique Hawaiian honeycreepers are crucial for assessing the effectiveness of recovery and management actions. In 2016, we used point‐transect distance sampling to estimate the abundance of Hawai‘i ʻĀkepas in portions of Hawai‘i Volcanoes National Park (HAVO) and the Kaʻū Forest Reserve (KFR) on Mauna Loa volcano. We then compiled the survey data from four other populations to provide a global population estimate. In our HAVO and KFR study area, we mapped habitat classes to determine the population densities in each habitat. Densities were highest (1.03 birds/ha) in open‐canopy montane ʻōhiʻa (Metrosideros polymorpha) woodland. In contrast, densities of the largest ʻĀkepa population on Mauna Kea volcano were highest in closed‐canopy ʻōhiʻa and koa (Acacia koa) forest where the species is dependent on nest cavities in tall (> 15 m), large (> 50‐cm diameter at breast height) trees. We surveyed potential nesting habitat in HAVO and KFR and found only one cavity in the short‐stature montane ʻōhiʻa woodland and five cavities in the tall‐stature forest. Differences in densities between the Mauna Kea and Mauna Loa populations suggest that Hawai‘i ʻĀkepas may exhibit different foraging and nesting behaviors in the two habitats. The estimated overall population density in the HAVO and KFR study area was 0.52 birds/ha, which equates to 3663 (95% CI 1725–6961) birds in their 11,377‐ha population range. We calculated a global population of 16,428 (95% CI 10,065–25,198) birds, which is similar to an estimate of 13,892 (95% CI 10,315–17,469) birds made in 1986. Our results suggest that populations are stable to increasing in the two largest populations, but the three other populations are smaller (range = 77–1443 birds) and trends for those populations are unknown.
NASA Astrophysics Data System (ADS)
Fujita, K.; Osawa, Y.; Kayanne, H.; Ide, Y.; Yamano, H.
2009-03-01
The distributions and population densities of large benthic foraminifers (LBFs) were investigated on reef flats of the Majuro Atoll, Marshall Islands. Annual sediment production by foraminifers was estimated based on population density data. Predominant LBFs were Calcarina and Amphistegina, and the population densities of these foraminifers varied with location and substratum type on reef flats. Both foraminifers primarily attached to macrophytes, particularly turf-forming algae, and were most abundant on an ocean reef flat (ORF) and in an inter-island channel near windward, sparsely populated islands. Calcarina density was higher on windward compared to leeward sides of ORFs, whereas Amphistegina density was similar on both sides of ORFs. These foraminifers were more common on the ocean side relative to the lagoon side of reef flats around a windward reef island, and both were rare or absent in nearshore zones around reef islands and on an ORF near windward, densely populated islands. Foraminiferal production rates varied with the degree to which habitats were subject to water motion and human influences. Highly productive sites (>103 g CaCO3 m-2 year-1) included an ORF and an inter-island channel near windward, sparsely populated islands, and a seaward area of a reef flat with no reef islands. Low-productivity sites (<10 g CaCO3 m-2 year-1) included generally nearshore zones of lagoonal reef flats, leeward ORFs, and a windward ORF near densely populated islands. These results suggest that the distribution and production of LBFs were largely influenced by a combination of natural environmental factors, including water motion, water depth, elevation relative to the lowest tidal level at spring tide, and the distribution of suitable substratum. The presence of reef islands may limit the distribution and production of foraminifers by altering water circulation in nearshore environments. Furthermore, increased anthropogenic factors (population and activities) may adversely affect foraminiferal distribution and production.
González-Rodríguez, Loida A; Felici-Giovanini, Marcos E; Haddock, Lillian
2013-06-01
To determine the prevalence of hypothyroidism in an adult female population in Puerto Rico and to determine the relationship between hypothyroidism, bone mineral density and vertebral and non-vertebral fractures in this population. Data from the 400 subjects' database of the Latin American Vertebral Osteoporosis Study (LAVOS), Puerto Rico site was reviewed. Patient's medical history, anthropometric data, current medications, laboratories, and DXA results was extracted. Subjects with thyroid dysfunction were identified based on their previous medical history and levels of TSH. Bone Mineral Density was classified using the World Health Organization criteria. Crude prevalence of thyroid dysfunction were estimated with a confidence of 95% and weighted by the population distribution by age, according to the distribution by age group in the 2000 census. Bone mineral densities and prevalence of vertebral and non-vertebral fractures were compared among the groups. The weighted prevalence of hyperthyroidism in this population was 0.0043% (95% CI: -0.0021%, 0.0107%). The weighted prevalence of hypothyroidism was 24.2% (95% CI: 19.9%, 28.4%). Increased prevalence of hypothyroidism was found in participants 70 years or older. The mean BMD at spine, hip and femoral neck was similar among the groups. No difference in the proportion of participants with vertebral and non-vertebral fractures was found among the groups. Our study found a high prevalence of hypothyroidism among adult postmenopausal females in Puerto Rico. No association between hypothyroidism and decreased bone mineral densities, vertebral or non-vertebral fractures was found in this population.
Bronte, Charles R.; Evrard, Lori M.; Brown, William P.; Mayo, Kathleen R.; Edwards, Andrew J.
1998-01-01
Ruffe (Gymnocephalus cernuus) have been implicated in density declines of native species through egg predation and competition for food in some European waters where they were introduced. Density estimates for ruffe and principal native fishes in the St. Louis River estuary (western Lake Superior) were developed for 1989 to 1996 to measure changes in the fish community in response to an unintentional introduction of ruffe. During the study, ruffe density increased and the densities of several native species decreased. The reductions of native stocks to the natural population dynamics of the same species from Chequamegon Bay, Lake Superior (an area with very few ruffe) were developed, where there was a 24-year record of density. Using these data, short- and long-term variations in catch and correlations among species within years were compared, and species-specific distributions were developed of observed trends in abundance of native fishes in Chequamegon Bay indexed by the slopes of densities across years. From these distributions and our observed trend-line slopes from the St. Louis River, probabilities of measuring negative change at the magnitude observed in the St. Louis River were estimated. Compared with trends in Chequamegon Bay, there was a high probability of obtaining the negative slopes measured for most species, which suggests natural population dynamics could explain, the declines rather than interactions with ruffe. Variable recruitment, which was not related to ruffe density, and associated density-dependent changes in mortality likely were responsible for density declines of native species.
A geographic analysis of population density thresholds in the influenza pandemic of 1918-19.
Chandra, Siddharth; Kassens-Noor, Eva; Kuljanin, Goran; Vertalka, Joshua
2013-02-20
Geographic variables play an important role in the study of epidemics. The role of one such variable, population density, in the spread of influenza is controversial. Prior studies have tested for such a role using arbitrary thresholds for population density above or below which places are hypothesized to have higher or lower mortality. The results of such studies are mixed. The objective of this study is to estimate, rather than assume, a threshold level of population density that separates low-density regions from high-density regions on the basis of population loss during an influenza pandemic. We study the case of the influenza pandemic of 1918-19 in India, where over 15 million people died in the short span of less than one year. Using data from six censuses for 199 districts of India (n=1194), the country with the largest number of deaths from the influenza of 1918-19, we use a sample-splitting method embedded within a population growth model that explicitly quantifies population loss from the pandemic to estimate a threshold level of population density that separates low-density districts from high-density districts. The results demonstrate a threshold level of population density of 175 people per square mile. A concurrent finding is that districts on the low side of the threshold experienced rates of population loss (3.72%) that were lower than districts on the high side of the threshold (4.69%). This paper introduces a useful analytic tool to the health geographic literature. It illustrates an application of the tool to demonstrate that it can be useful for pandemic awareness and preparedness efforts. Specifically, it estimates a level of population density above which policies to socially distance, redistribute or quarantine populations are likely to be more effective than they are for areas with population densities that lie below the threshold.
A geographic analysis of population density thresholds in the influenza pandemic of 1918–19
2013-01-01
Background Geographic variables play an important role in the study of epidemics. The role of one such variable, population density, in the spread of influenza is controversial. Prior studies have tested for such a role using arbitrary thresholds for population density above or below which places are hypothesized to have higher or lower mortality. The results of such studies are mixed. The objective of this study is to estimate, rather than assume, a threshold level of population density that separates low-density regions from high-density regions on the basis of population loss during an influenza pandemic. We study the case of the influenza pandemic of 1918–19 in India, where over 15 million people died in the short span of less than one year. Methods Using data from six censuses for 199 districts of India (n=1194), the country with the largest number of deaths from the influenza of 1918–19, we use a sample-splitting method embedded within a population growth model that explicitly quantifies population loss from the pandemic to estimate a threshold level of population density that separates low-density districts from high-density districts. Results The results demonstrate a threshold level of population density of 175 people per square mile. A concurrent finding is that districts on the low side of the threshold experienced rates of population loss (3.72%) that were lower than districts on the high side of the threshold (4.69%). Conclusions This paper introduces a useful analytic tool to the health geographic literature. It illustrates an application of the tool to demonstrate that it can be useful for pandemic awareness and preparedness efforts. Specifically, it estimates a level of population density above which policies to socially distance, redistribute or quarantine populations are likely to be more effective than they are for areas with population densities that lie below the threshold. PMID:23425498
Pitts-Singer, Theresa L; Bosch, Jordi
2010-02-01
The alfalfa leafcutting bee, Megachile rotundata (Fabricius), is used to pollinate alfalfa, Medicago sativa L., for seed production in the United States and Canada. It is difficult to reliably sustain commercial M. rotundata populations in the United States because of problems with disease, parasites, predators, and unexplained mortality. One possible explanation for early immature mortality is that, relative to floral availability, superfluous numbers of bees are released in alfalfa fields where resources quickly become limited. Our objective was to determine how M. rotundata density affects bee nesting, pollination efficiency, and reproductive success. Various numbers of bees were released into enclosures on an alfalfa field, but only 10-90% of released female bees established nests. Therefore, a "bee density index" was derived for each enclosure from the number of established females and number of open flowers over time. As the density index increased, significant reductions occurred in the number of pollinated flowers, number of nests, and number of cells produced per bee, as well as the percentage of cells that produced viable prepupae by summer's end and the percentage that produced adult bees. The percentage of cells resulting in early brood mortality (i.e., pollen balls) significantly increased as the density index increased. We conclude that bee nest establishment, pollination efficiency, and reproductive success are compromised when bee densities are high relative to floral resource availability. Open field studies are needed to determine commercial bee densities that result in sustainable bee populations and adequate pollination for profitable alfalfa seed production.
2D motility tracking of Pseudomonas putida KT2440 in growth phases using video microscopy.
Davis, Michael L; Mounteer, Leslie C; Stevens, Lindsey K; Miller, Charles D; Zhou, Anhong
2011-05-01
Pseudomonas putida KT2440 is a gram negative motile soil bacterium important in bioremediation and biotechnology. Thus, it is important to understand its motility characteristics as individuals and in populations. Population characteristics were determined using a modified Gompertz model. Video microscopy and imaging software were utilized to analyze two dimensional (2D) bacteria movement tracks to quantify individual bacteria behavior. It was determined that inoculum density increased the lag time as seeding densities decreased, and that the maximum specific growth rate decreased as seeding densities increased. Average bacterial velocity remained relatively similar throughout the exponential growth phase (~20.9 μm/s), while maximum velocities peak early in the exponential growth phase at a velocity of 51.2 μm/s. P. putida KT2440 also favors smaller turn angles indicating that they often continue in the same direction after a change in flagella rotation throughout the exponential growth phase. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Farming and the fate of wild nature.
Green, Rhys E; Cornell, Stephen J; Scharlemann, Jörn P W; Balmford, Andrew
2005-01-28
World food demand is expected to more than double by 2050. Decisions about how to meet this challenge will have profound effects on wild species and habitats. We show that farming is already the greatest extinction threat to birds (the best known taxon), and its adverse impacts look set to increase, especially in developing countries. Two competing solutions have been proposed: wildlife-friendly farming (which boosts densities of wild populations on farmland but may decrease agricultural yields) and land sparing (which minimizes demand for farmland by increasing yield). We present a model that identifies how to resolve the trade-off between these approaches. This shows that the best type of farming for species persistence depends on the demand for agricultural products and on how the population densities of different species on farmland change with agricultural yield. Empirical data on such density-yield functions are sparse, but evidence from a range of taxa in developing countries suggests that high-yield farming may allow more species to persist.
Evaluating potential conservation conflicts between two listed species: Sea otters and black abalone
Raimondi, Peter T.; Jurgens, Laura J.; Tinker, M. Tim
2015-01-01
Population consequences of endangered species interacting as predators and prey have been considered theoretically and legally, but rarely investigated in the field. We examined relationships between spatially variable populations of a predator, the California sea otter, Enhydra lutris nereis, and a prey species, the black abalone, Haliotis cracherodii. Both species are federally listed under the Endangered Species Act and co-occur along the coast of California. We compared the local abundance and habitat distribution of black abalone at 12 sites with varying densities of sea otters. All of the populations of abalone we examined were in the geographic area currently unaffected by withering disease, which has decimated populations south of the study area. Surprisingly, our findings indicate that sea otter density is positively associated with increased black abalone density. The presence of sea otters also correlated with a shift in black abalone to habitat conferring greater refuge, which could decrease illegal human harvest. These results highlight the need for a multi-species approach to conservation management of the two species, and demonstrate the importance of using field-collected data rather than simple trophic assumptions to understand relationships between jointly vulnerable predator and prey populations.
Raimondi, Peter; Jurgens, Laura J; Tinker, M Tim
2015-11-01
Population consequences of endangered species interacting as predators and prey have been considered theoretically and legally, but rarely investigated in the field. We examined relationships between spatially variable populations of a predator, the California sea otter, Enhydra lutris nereis, and a prey species, the black abalone, Haliotis cracherodii. Both species are federally listed under the Endangered Species Act and co-occur along the coast of California. We compared the local abundance and habitat distribution of black abalone at 12 sites with varying densities of sea otters. All of the populations of abalone we examined were in the geographic area currently unaffected by withering disease, which has decimated populations south of the study area. Surprisingly, our findings indicate that sea otter density is positively associated with increased black abalone density. The presence of sea otters also correlated with a shift in black abalone to habitat conferring greater refuge, which could decrease illegal human harvest. These results highlight the need for a multi-species approach to conservation management of the two species, and demonstrate the importance of using field-collected data rather than simple trophic assumptions to understand relationships between jointly vulnerable predator and prey populations.
Benzie, John A H
1986-11-01
Termite mound densities in typical guinea savanna, Detarium, and grassland (boval) habitats in northern guinea savanna were determined by random quadratting of 2-3 sites in each habitat (100, 10x10 m quadrats per habitat). Dominant species in guinea savanna were T. geminatus (46 mounds ha -1 ) and T. oeconomus (21 mounds ha -1 ), in Detarium T. geminatus (59 mounds ha -1 ) and C. curtatus (45 mounds ha -1 ) and in boval C. curtatus (72 mounds ha -1 ) and T. geminatus (22 mounds ha -1 ). Only C. curtatus densities and total densities differed significantly between sites within habitats, but all species differed significantly in abundance between habitats. The composition of each community was related to general environment but no particular environmental variable was shown to be a major determinant of termite distribution. Evidence for the limitation of termite populations was obtained from indirect evidence of competition between colonies in Detarium, and by experimental manipulation of fire regimes in the typical guinea savanna habitat. Harvester termites increased four-five fold over two years in fire-protected plots as a result of increased food supplies. Total termite densities in the fire-protected community equilibrated to the new population density (100 mounds ha -1 ) after only two-three years.
Wetland use and feeding by lesser scaup during spring migration across the upper Midwest, USA
Anteau, M.J.; Afton, A.D.
2009-01-01
Low food availability and forage quality and concomitant decreased lipid reserves of lesser scaup (Aythya affinis; hereafter scaup) during spring migration in the upper Midwest may partially explain reductions in the continental population of scaup. In springs 20042005, we examined wetland use and feeding activity of scaup on 356 randomly-selected wetlands within 6 regions in Iowa, Minnesota, and North Dakota. We examined wetland characteristics that favor high scaup use in 286 of these wetlands. We found that probabilities of wetland use and feeding by scaup increased with turbidity up to 45 and 30 NTU, respectively, but then declined at higher turbidity levels. Wetland use was positively correlated with size of open-water zone and amphipod densities, but was not correlated with chironomid densities. Feeding increased with amphipod density up to 26 m-3 and then declined at higher amphipod densities; scaup seemingly forage most efficiently at amphipod densities above 26 m -3. Wetland use was higher in North Dakota than in southern Minnesota and Iowa. Our results indicate that effective wetland restoration efforts to benefit scaup require maintaining abundant populations of amphipods (generally near 26 m-3 landscape geometric mean) in wetlands with large (> 500 m diameter) open-water zones throughout the upper Midwest, but especially within Iowa and southern Minnesota.
Human influences on trophic cascades along rocky shores
Lindberg, D.R.; Estes, J.A.; Warheit, K.I.
1998-01-01
A three-trophic-level interaction among American Black Oystercatchers (Haematopus bachmani), limpets (Lottia spp.), and erect fleshy algae in rocky intertidal communities of central and southern California was documented via manipulative and 'natural' experiments. Removal of the territorial limpet (Lottia gigantea) initially caused large increases in the percent cover of erect fleshy algae, followed by a more gradual increase in density of small limpets (Lottia spp.) and a decline in algal cover. Algal cover increased following the removal of small limpets at the sites from which L. gigantea had been removed earlier, thus demonstrating that the large and small limpets had similar inhibitory effects on plant populations. A comparison of sites with and without oyster-catchers showed that L. gigantea occupied substrate inclinations in proportion to their availability at sites where oystercatchers were rare, whereas the distribution of L. gigantea was skewed toward vertically inclined substrates where oystercatchers were common. Survival rates of limpets translocated to horizontal and vertical substrates were similar in sites lacking oystercatcher predation, but were much lower on horizontal substrates where oystercatchers were common. Our results are consistent with those from several prior studies in demonstrating that shorelines frequented by humans typically lack oystercatchers. Humans also exploit L. gigantea and reduce populations to low densities of small individuals. These findings may explain why the midlittoral zone of rocky intertidal communities in western North America are so often dominated by high population densities of small limpets.
Green neighborhoods, food retail and childhood overweight: differences by population density.
Liu, Gilbert C; Wilson, Jeffrey S; Qi, Rong; Ying, Jun
2007-01-01
This study examines relationships between overweight in children and two environmentalfactors--amount of vegetation surrounding a child's place of residence and proximity of the child's residence to various types of food retail locations. We hypothesize that living in greener neighborhoods, farther from fast food restaurants, and closer to supermarkets would be associated with lower risk of overweight. Cross-sectional study. Network of primary care pediatric clinics in Marion County, Indiana. We acquired data for 7334 subjects, ages 3 to 18 years, presenting for routine well-child care. Neighborhood vegetation and proximity to food retail were calculated using geographic information systems for each subject using circular and network buffers. Child weight status was defined using body mass index percentiles. Analysis. We used cumulative logit models to examine associations between an index of overweight, neighborhood vegetation, and food retail environment. After controlling for individual socio-demographics and neighborhood socioeconomic status, measures of vegetation and food retail significantly predicted overweight in children. Increased neighborhood vegetation was associated with decreased risk for overweight, but only for subjects residing in higher population density regions. Increased distance between a subject's residence and the nearest large brand name supermarkets was associated with increased risk of overweight, but only for subjects residing in lower population density regions. This research suggests that aspects of the built environment are determinants of child weight status, ostensibly by influencing physical activity and dietary behaviors.
Stallings, Christopher D
2009-01-01
Understanding the current status of predatory fish communities, and the effects fishing has on them, is vitally important information for management. However, data are often insufficient at region-wide scales to assess the effects of extraction in coral reef ecosystems of developing nations. Here, I overcome this difficulty by using a publicly accessible, fisheries-independent database to provide a broad scale, comprehensive analysis of human impacts on predatory reef fish communities across the greater Caribbean region. Specifically, this study analyzed presence and diversity of predatory reef fishes over a gradient of human population density. Across the region, as human population density increases, presence of large-bodied fishes declines, and fish communities become dominated by a few smaller-bodied species. Complete disappearance of several large-bodied fishes indicates ecological and local extinctions have occurred in some densely populated areas. These findings fill a fundamentally important gap in our knowledge of the ecosystem effects of artisanal fisheries in developing nations, and provide support for multiple approaches to data collection where they are commonly unavailable.
Stallings, Christopher D.
2009-01-01
Background Understanding the current status of predatory fish communities, and the effects fishing has on them, is vitally important information for management. However, data are often insufficient at region-wide scales to assess the effects of extraction in coral reef ecosystems of developing nations. Methodology/Principal Findings Here, I overcome this difficulty by using a publicly accessible, fisheries-independent database to provide a broad scale, comprehensive analysis of human impacts on predatory reef fish communities across the greater Caribbean region. Specifically, this study analyzed presence and diversity of predatory reef fishes over a gradient of human population density. Across the region, as human population density increases, presence of large-bodied fishes declines, and fish communities become dominated by a few smaller-bodied species. Conclusions/Significance Complete disappearance of several large-bodied fishes indicates ecological and local extinctions have occurred in some densely populated areas. These findings fill a fundamentally important gap in our knowledge of the ecosystem effects of artisanal fisheries in developing nations, and provide support for multiple approaches to data collection where they are commonly unavailable. PMID:19421312
Ray, Chris; Saracco, James; Holmgren, Mandy; Wilkerson, Robert; Siegel, Rodney; Jenkins, Kurt J.; Ransom, Jason I.; Happe, Patricia J.; Boetsch, John; Huff, Mark
2017-01-01
Monitoring species in National Parks facilitates inference regarding effects of climate change on population dynamics because parks are relatively unaffected by other forms of anthropogenic disturbance. Even at early points in a monitoring program, identifying climate covariates of population density can suggest vulnerabilities to future change. Monitoring landbird populations in parks during the breeding season brings the added benefit of allowing a comparative approach to inference across a large suite of species with diverse requirements. For example, comparing resident and migratory species that vary in exposure to non-park habitats can reveal the relative importance of park effects, such as those related to local climate. We monitored landbirds using breeding-season point-count data collected during 2005–2014 in three wilderness areas of the Pacific Northwest (Mount Rainier, North Cascades, and Olympic National Parks). For 39 species, we estimated recent trends in population density while accounting for individual detection probability using Bayesian hierarchical N-mixture models. Our analyses integrated several recent developments in N-mixture modeling, incorporating interval and distance sampling to estimate distinct components of detection probability while also accommodating count intervals of varying duration, annual variation in the length and number of point-count transects, spatial autocorrelation, random effects, and covariates of detection and density. As covariates of density, we considered metrics of precipitation and temperature hypothesized to affect breeding success. We also considered effects of park and elevational stratum on trend. Regardless of model structure, we estimated stable or increasing densities during 2005–2014 for most populations. Mean trends across species were positive for migrants in every park and for residents in one park. A recent snowfall deficit in this region might have contributed to the positive trend, because population density varied inversely with precipitation-as-snow for both migrants and residents. Densities varied directly but much more weakly with mean spring temperature. Our approach exemplifies an analytical framework for estimating trends from point-count data, and for assessing the role of climatic and other spatiotemporal variables in driving those trends. Understanding population trends and the factors that drive them is critical for adaptive management and resource stewardship in the context of climate change.
Managing multi-ungulate systems in disturbance-adapted forest ecosystems in North America
Martin Vavra; Robert A. Riggs
2010-01-01
Understanding how interactions among ungulate populations and their environmental dynamics play out across scales of time and space is a principal obstacle to managing ungulates in western North America. Morphological similarity, forage-base homogeneity and increasing animal density each enhance the likelihood of competitive interactions among sympatric populations....
Population of North American elk: effects on plant diversity
Kelley M. Stewart; R. Terry Bowyer; John G. Kier; Brian L. Dick; Roger W. Ruess
2009-01-01
We tested for indirect effects of population density of large herbivores on plant species richness and diversity in a montane ecosystem, where increased net aboveground primary productivity (NAPP) in response to low levels of herbivory has been reported. We documented a positive, linear relationship between plant-species diversity and richness with NAPP. Structural...
Ecological distribution and crude density of breeding birds on prairie wetlands
Kantrud, H.A.; Stewart, R.E.
1984-01-01
Breeding populations of 28 species of wetland-dwelling birds other than waterfowl (Anatidae) were censused on 1,321 wetlands lying within the prairie pothole region of North Dakota. Ecological distribution and two crude measures of relative density were calculated for the 22 commonest species using eight wetland classes. Semipermanent wetlands supported nearly two-thirds of the population and were used by all 22 species, whereas seasonal wetlands contained about one-third of the population and were used by 20 species Semipermanent, fen, and temporary wetlands contained highest bird densities on the basis of wetland area; on the basis of wetland unit, densities were highest on semipermanent, permanent, alkali, and fen wetlands. The highest ranking of semipermanent wetlands by all three measures of use was probably because these wetlands, as well as being relatively numerous and large, were vegetatively diverse. The fairly large proportion of the bird population supported by seasonal wetlands was a result of wetland abundance and moderate vegetative diversity. Increased vegetative diversity results from the development of characteristic zones of hydrophytes at sites where water persists longer during the growing season. Frequent cultivation of prairie wetlands results in the replacement of tall, robust perennials by bare soil or stands of short, weak-stemmed annuals that likely are unattractive to nesting birds.
Lewis, Jesse S.; Farnsworth, Matthew L.; Burdett, Chris L.; Theobald, David M.; Gray, Miranda; Miller, Ryan S.
2017-01-01
Biotic and abiotic factors are increasingly acknowledged to synergistically shape broad-scale species distributions. However, the relative importance of biotic and abiotic factors in predicting species distributions is unclear. In particular, biotic factors, such as predation and vegetation, including those resulting from anthropogenic land-use change, are underrepresented in species distribution modeling, but could improve model predictions. Using generalized linear models and model selection techniques, we used 129 estimates of population density of wild pigs (Sus scrofa) from 5 continents to evaluate the relative importance, magnitude, and direction of biotic and abiotic factors in predicting population density of an invasive large mammal with a global distribution. Incorporating diverse biotic factors, including agriculture, vegetation cover, and large carnivore richness, into species distribution modeling substantially improved model fit and predictions. Abiotic factors, including precipitation and potential evapotranspiration, were also important predictors. The predictive map of population density revealed wide-ranging potential for an invasive large mammal to expand its distribution globally. This information can be used to proactively create conservation/management plans to control future invasions. Our study demonstrates that the ongoing paradigm shift, which recognizes that both biotic and abiotic factors shape species distributions across broad scales, can be advanced by incorporating diverse biotic factors. PMID:28276519
Density Shock Waves in Confined Microswimmers
NASA Astrophysics Data System (ADS)
Tsang, Alan Cheng Hou; Kanso, Eva
2016-01-01
Motile and driven particles confined in microfluidic channels exhibit interesting emergent behavior, from propagating density bands to density shock waves. A deeper understanding of the physical mechanisms responsible for these emergent structures is relevant to a number of physical and biomedical applications. Here, we study the formation of density shock waves in the context of an idealized model of microswimmers confined in a narrow channel and subject to a uniform external flow. Interestingly, these density shock waves exhibit a transition from "subsonic" with compression at the back to "supersonic" with compression at the front of the population as the intensity of the external flow increases. This behavior is the result of a nontrivial interplay between hydrodynamic interactions and geometric confinement, and it is confirmed by a novel quasilinear wave model that properly captures the dependence of the shock formation on the external flow. These findings can be used to guide the development of novel mechanisms for controlling the emergent density distribution and the average population speed, with potentially profound implications on various processes in industry and biotechnology, such as the transport and sorting of cells in flow channels.
Salje, Henrik; Lessler, Justin; Maljkovic Berry, Irina; Melendrez, Melanie C; Endy, Timothy; Kalayanarooj, Siripen; A-Nuegoonpipat, Atchareeya; Chanama, Sumalee; Sangkijporn, Somchai; Klungthong, Chonticha; Thaisomboonsuk, Butsaya; Nisalak, Ananda; Gibbons, Robert V; Iamsirithaworn, Sopon; Macareo, Louis R; Yoon, In-Kyu; Sangarsang, Areerat; Jarman, Richard G; Cummings, Derek A T
2017-03-24
A fundamental mystery for dengue and other infectious pathogens is how observed patterns of cases relate to actual chains of individual transmission events. These pathways are intimately tied to the mechanisms by which strains interact and compete across spatial scales. Phylogeographic methods have been used to characterize pathogen dispersal at global and regional scales but have yielded few insights into the local spatiotemporal structure of endemic transmission. Using geolocated genotype (800 cases) and serotype (17,291 cases) data, we show that in Bangkok, Thailand, 60% of dengue cases living <200 meters apart come from the same transmission chain, as opposed to 3% of cases separated by 1 to 5 kilometers. At distances <200 meters from a case (encompassing an average of 1300 people in Bangkok), the effective number of chains is 1.7. This number rises by a factor of 7 for each 10-fold increase in the population of the "enclosed" region. This trend is observed regardless of whether population density or area increases, though increases in density over 7000 people per square kilometer do not lead to additional chains. Within Thailand these chains quickly mix, and by the next dengue season viral lineages are no longer highly spatially structured within the country. In contrast, viral flow to neighboring countries is limited. These findings are consistent with local, density-dependent transmission and implicate densely populated communities as key sources of viral diversity, with home location the focal point of transmission. These findings have important implications for targeted vector control and active surveillance. Copyright © 2017, American Association for the Advancement of Science.
2009-01-01
The endospore-forming bacterium Pasteuria penetrans is an obligate parasite of root-knot nematodes (Meloidogyne spp.). The primary objective of this study was to determine the effect of crop sequence on abundance of P. penetrans. The experiment was conducted from 2000 to 2008 at a field site naturally infested with both the bacterium and its host Meloidogyne arenaria and included the following crop sequences: continuous peanut (Arachis hypogaea) (P-P-P) and peanut rotated with either 2 years of corn (Zea mays) (C-C-P), 1 year each of cotton (Gossypium hirsutum) and corn (Ct-C-P), or 1 year each of corn and a vegetable (V-C-P). The vegetable was a double crop of sweet corn and eggplant (Solanum melongena). A bioassay with second-stage juveniles (J2) of M. arenaria from a greenhouse (GH) population was used to estimate endospore abundance under the different crop sequences. A greater numerical increase in endospore densities was expected in the P-P-P and V-C-P sequences than in the other sequences because both peanut and eggplant are good hosts for M. arenaria. However, endospore densities, as determined by bioassay, did not substantially increase in any of the sequences during the 9-year experiment. To determine whether the nematode population had developed resistance to the resident P. penetrans, five single egg-mass (SEM) lines from the field population of M. arenaria were tested alongside the GH population for acquisition of endospores from the field soil. Four of the five SEM lines acquired 9 to 14 spores/J2 whereas the GH population and one of the SEM lines acquired 3.5 and 1.8 spores/J2, respectively. Endospore densities estimated with the four receptive SEM lines were highest in the P-P-P plots (14-20 spores/J2), intermediate in the V-C-P plots (6-7 spores/J2), and lowest in the Ct-C-P plots (< 1 spore/J2). These results indicate that the field population of M. arenaria is heterogeneous for attachment of P. penetrans endospores. Moreover, spore densities increased under intensive cropping of hosts for M. arenaria, but the GH population of the nematode was not receptive to spore attachment. However, previously, the GH population was very receptive to spore acquisition from this field site. One explanation for this inconsistency is that the M. arenaria population in the field became resistant to the dominant subpopulation of P. penetrans that had been present, and this led to the selection of a different subpopulation of the bacterium that is incompatible with the GH population. PMID:22736828
Timper, Patricia
2009-12-01
The endospore-forming bacterium Pasteuria penetrans is an obligate parasite of root-knot nematodes (Meloidogyne spp.). The primary objective of this study was to determine the effect of crop sequence on abundance of P. penetrans. The experiment was conducted from 2000 to 2008 at a field site naturally infested with both the bacterium and its host Meloidogyne arenaria and included the following crop sequences: continuous peanut (Arachis hypogaea) (P-P-P) and peanut rotated with either 2 years of corn (Zea mays) (C-C-P), 1 year each of cotton (Gossypium hirsutum) and corn (Ct-C-P), or 1 year each of corn and a vegetable (V-C-P). The vegetable was a double crop of sweet corn and eggplant (Solanum melongena). A bioassay with second-stage juveniles (J2) of M. arenaria from a greenhouse (GH) population was used to estimate endospore abundance under the different crop sequences. A greater numerical increase in endospore densities was expected in the P-P-P and V-C-P sequences than in the other sequences because both peanut and eggplant are good hosts for M. arenaria. However, endospore densities, as determined by bioassay, did not substantially increase in any of the sequences during the 9-year experiment. To determine whether the nematode population had developed resistance to the resident P. penetrans, five single egg-mass (SEM) lines from the field population of M. arenaria were tested alongside the GH population for acquisition of endospores from the field soil. Four of the five SEM lines acquired 9 to 14 spores/J2 whereas the GH population and one of the SEM lines acquired 3.5 and 1.8 spores/J2, respectively. Endospore densities estimated with the four receptive SEM lines were highest in the P-P-P plots (14-20 spores/J2), intermediate in the V-C-P plots (6-7 spores/J2), and lowest in the Ct-C-P plots (< 1 spore/J2). These results indicate that the field population of M. arenaria is heterogeneous for attachment of P. penetrans endospores. Moreover, spore densities increased under intensive cropping of hosts for M. arenaria, but the GH population of the nematode was not receptive to spore attachment. However, previously, the GH population was very receptive to spore acquisition from this field site. One explanation for this inconsistency is that the M. arenaria population in the field became resistant to the dominant subpopulation of P. penetrans that had been present, and this led to the selection of a different subpopulation of the bacterium that is incompatible with the GH population.