Alexander, Helen K.; Mayer, Stephanie I.; Bonhoeffer, Sebastian
2017-01-01
Abstract Mutation rate is a crucial evolutionary parameter that has typically been treated as a constant in population genetic analyses. However, the propensity to mutate is likely to vary among co-existing individuals within a population, due to genetic polymorphisms, heterogeneous environmental influences, and random physiological fluctuations. We review the evidence for mutation rate heterogeneity and explore its consequences by extending classic population genetic models to allow an arbitrary distribution of mutation rate among individuals, either with or without inheritance. With this general new framework, we rigorously establish the effects of heterogeneity at various evolutionary timescales. In a single generation, variation of mutation rate about the mean increases the probability of producing zero or many simultaneous mutations on a genome. Over multiple generations of mutation and selection, heterogeneity accelerates the appearance of both deleterious and beneficial multi-point mutants. At mutation-selection balance, higher-order mutant frequencies are likewise boosted, while lower-order mutants exhibit subtler effects; nonetheless, population mean fitness is always enhanced. We quantify the dependencies on moments of the mutation rate distribution and selection coefficients, and clarify the role of mutation rate inheritance. While typical methods of estimating mutation rate will recover only the population mean, analyses assuming mutation rate is fixed to this mean could underestimate the potential for multi-locus adaptation, including medically relevant evolution in pathogenic and cancerous populations. We discuss the potential to empirically parameterize mutation rate distributions, which have to date hardly been quantified. PMID:27836985
High mutation rates limit evolutionary adaptation in Escherichia coli
Wagner, Andreas
2018-01-01
Mutation is fundamental to evolution, because it generates the genetic variation on which selection can act. In nature, genetic changes often increase the mutation rate in systems that range from viruses and bacteria to human tumors. Such an increase promotes the accumulation of frequent deleterious or neutral alleles, but it can also increase the chances that a population acquires rare beneficial alleles. Here, we study how up to 100-fold increases in Escherichia coli’s genomic mutation rate affect adaptive evolution. To do so, we evolved multiple replicate populations of asexual E. coli strains engineered to have four different mutation rates for 3000 generations in the laboratory. We measured the ability of evolved populations to grow in their original environment and in more than 90 novel chemical environments. In addition, we subjected the populations to whole genome population sequencing. Although populations with higher mutation rates accumulated greater genetic diversity, this diversity conveyed benefits only for modestly increased mutation rates, where populations adapted faster and also thrived better than their ancestors in some novel environments. In contrast, some populations at the highest mutation rates showed reduced adaptation during evolution, and failed to thrive in all of the 90 alternative environments. In addition, they experienced a dramatic decrease in mutation rate. Our work demonstrates that the mutation rate changes the global balance between deleterious and beneficial mutational effects on fitness. In contrast to most theoretical models, our experiments suggest that this tipping point already occurs at the modest mutation rates that are found in the wild. PMID:29702649
Experimental evolution and the dynamics of genomic mutation rate modifiers.
Raynes, Y; Sniegowski, P D
2014-11-01
Because genes that affect mutation rates are themselves subject to mutation, mutation rates can be influenced by natural selection and other evolutionary forces. The population genetics of mutation rate modifier alleles has been a subject of theoretical interest for many decades. Here, we review experimental contributions to our understanding of mutation rate modifier dynamics. Numerous evolution experiments have shown that mutator alleles (modifiers that elevate the genomic mutation rate) can readily rise to high frequencies via genetic hitchhiking in non-recombining microbial populations. Whereas these results certainly provide an explanatory framework for observations of sporadically high mutation rates in pathogenic microbes and in cancer lineages, it is nonetheless true that most natural populations have very low mutation rates. This raises the interesting question of how mutator hitchhiking is suppressed or its phenotypic effect reversed in natural populations. Very little experimental work has addressed this question; with this in mind, we identify some promising areas for future experimental investigation.
Mutation rates among RNA viruses
Drake, John W.; Holland, John J.
1999-01-01
The rate of spontaneous mutation is a key parameter in modeling the genetic structure and evolution of populations. The impact of the accumulated load of mutations and the consequences of increasing the mutation rate are important in assessing the genetic health of populations. Mutation frequencies are among the more directly measurable population parameters, although the information needed to convert them into mutation rates is often lacking. A previous analysis of mutation rates in RNA viruses (specifically in riboviruses rather than retroviruses) was constrained by the quality and quantity of available measurements and by the lack of a specific theoretical framework for converting mutation frequencies into mutation rates in this group of organisms. Here, we describe a simple relation between ribovirus mutation frequencies and mutation rates, apply it to the best (albeit far from satisfactory) available data, and observe a central value for the mutation rate per genome per replication of μg ≈ 0.76. (The rate per round of cell infection is twice this value or about 1.5.) This value is so large, and ribovirus genomes are so informationally dense, that even a modest increase extinguishes the population. PMID:10570172
Mutation rate estimation for 15 autosomal STR loci in a large population from Mainland China.
Zhao, Zhuo; Zhang, Jie; Wang, Hua; Liu, Zhi-Peng; Liu, Ming; Zhang, Yuan; Sun, Li; Zhang, Hui
2015-09-01
STR, short tandem repeats, are well known as a type of powerful genetic marker and widely used in studying human population genetics. Compared with the conventional genetic markers, the mutation rate of STR is higher. Additionally, the mutations of STR loci do not lead to genetic inconsistencies between the genotypes of parents and children; therefore, the analysis of STR mutation is more suited to assess the population mutation. In this study, we focused on 15 autosomal STR loci. DNA samples from a total of 42,416 unrelated healthy individuals (19,037 trios) from the population of Mainland China collected between Jan 2012 and May 2014 were successfully investigated. In our study, the allele frequencies, paternal mutation rates, maternal mutation rates and average mutation rates were detected. Furthermore, we also investigated the relationship between paternal ages, maternal ages, area, the time of pregnancy and average mutation rate. We found that the paternal mutation rate was higher than the maternal mutation rate and the paternal, maternal, and average mutation rates had a positive correlation with paternal age, maternal age and the time of pregnancy respectively. Additionally, the average mutation rate of coastal areas was higher than that of inland areas.
Aston, Elizabeth; Channon, Alastair; Day, Charles; Knight, Christopher G.
2013-01-01
Understanding the effect of population size on the key parameters of evolution is particularly important for populations nearing extinction. There are evolutionary pressures to evolve sequences that are both fit and robust. At high mutation rates, individuals with greater mutational robustness can outcompete those with higher fitness. This is survival-of-the-flattest, and has been observed in digital organisms, theoretically, in simulated RNA evolution, and in RNA viruses. We introduce an algorithmic method capable of determining the relationship between population size, the critical mutation rate at which individuals with greater robustness to mutation are favoured over individuals with greater fitness, and the error threshold. Verification for this method is provided against analytical models for the error threshold. We show that the critical mutation rate for increasing haploid population sizes can be approximated by an exponential function, with much lower mutation rates tolerated by small populations. This is in contrast to previous studies which identified that critical mutation rate was independent of population size. The algorithm is extended to diploid populations in a system modelled on the biological process of meiosis. The results confirm that the relationship remains exponential, but show that both the critical mutation rate and error threshold are lower for diploids, rather than higher as might have been expected. Analyzing the transition from critical mutation rate to error threshold provides an improved definition of critical mutation rate. Natural populations with their numbers in decline can be expected to lose genetic material in line with the exponential model, accelerating and potentially irreversibly advancing their decline, and this could potentially affect extinction, recovery and population management strategy. The effect of population size is particularly strong in small populations with 100 individuals or less; the exponential model has significant potential in aiding population management to prevent local (and global) extinction events. PMID:24386200
Role of epistasis on the fixation probability of a non-mutator in an adapted asexual population.
James, Ananthu
2016-10-21
The mutation rate of a well adapted population is prone to reduction so as to have a lower mutational load. We aim to understand the role of epistatic interactions between the fitness affecting mutations in this process. Using a multitype branching process, the fixation probability of a single non-mutator emerging in a large asexual mutator population is analytically calculated here. The mutator population undergoes deleterious mutations at constant, but at a much higher rate than that of the non-mutator. We find that antagonistic epistasis lowers the chances of mutation rate reduction, while synergistic epistasis enhances it. Below a critical value of epistasis, the fixation probability behaves non-monotonically with variation in the mutation rate of the background population. Moreover, the variation of this critical value of the epistasis parameter with the strength of the mutator is discussed in the appendix. For synergistic epistasis, when selection is varied, the fixation probability reduces overall, with damped oscillations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Krašovec, Rok; Richards, Huw; Gifford, Danna R; Hatcher, Charlie; Faulkner, Katy J; Belavkin, Roman V; Channon, Alastair; Aston, Elizabeth; McBain, Andrew J; Knight, Christopher G
2017-08-01
Rates of random, spontaneous mutation can vary plastically, dependent upon the environment. Such plasticity affects evolutionary trajectories and may be adaptive. We recently identified an inverse plastic association between mutation rate and population density at 1 locus in 1 species of bacterium. It is unknown how widespread this association is, whether it varies among organisms, and what molecular mechanisms of mutagenesis or repair are required for this mutation-rate plasticity. Here, we address all 3 questions. We identify a strong negative association between mutation rate and population density across 70 years of published literature, comprising hundreds of mutation rates estimated using phenotypic markers of mutation (fluctuation tests) from all domains of life and viruses. We test this relationship experimentally, determining that there is indeed density-associated mutation-rate plasticity (DAMP) at multiple loci in both eukaryotes and bacteria, with up to 23-fold lower mutation rates at higher population densities. We find that the degree of plasticity varies, even among closely related organisms. Nonetheless, in each domain tested, DAMP requires proteins scavenging the mutagenic oxidised nucleotide 8-oxo-dGTP. This implies that phenotypic markers give a more precise view of mutation rate than previously believed: having accounted for other known factors affecting mutation rate, controlling for population density can reduce variation in mutation-rate estimates by 93%. Widespread DAMP, which we manipulate genetically in disparate organisms, also provides a novel trait to use in the fight against the evolution of antimicrobial resistance. Such a prevalent environmental association and conserved mechanism suggest that mutation has varied plastically with population density since the early origins of life.
Gifford, Danna R.; Hatcher, Charlie; Faulkner, Katy J.; Belavkin, Roman V.; Channon, Alastair; Aston, Elizabeth; McBain, Andrew J.
2017-01-01
Rates of random, spontaneous mutation can vary plastically, dependent upon the environment. Such plasticity affects evolutionary trajectories and may be adaptive. We recently identified an inverse plastic association between mutation rate and population density at 1 locus in 1 species of bacterium. It is unknown how widespread this association is, whether it varies among organisms, and what molecular mechanisms of mutagenesis or repair are required for this mutation-rate plasticity. Here, we address all 3 questions. We identify a strong negative association between mutation rate and population density across 70 years of published literature, comprising hundreds of mutation rates estimated using phenotypic markers of mutation (fluctuation tests) from all domains of life and viruses. We test this relationship experimentally, determining that there is indeed density-associated mutation-rate plasticity (DAMP) at multiple loci in both eukaryotes and bacteria, with up to 23-fold lower mutation rates at higher population densities. We find that the degree of plasticity varies, even among closely related organisms. Nonetheless, in each domain tested, DAMP requires proteins scavenging the mutagenic oxidised nucleotide 8-oxo-dGTP. This implies that phenotypic markers give a more precise view of mutation rate than previously believed: having accounted for other known factors affecting mutation rate, controlling for population density can reduce variation in mutation-rate estimates by 93%. Widespread DAMP, which we manipulate genetically in disparate organisms, also provides a novel trait to use in the fight against the evolution of antimicrobial resistance. Such a prevalent environmental association and conserved mechanism suggest that mutation has varied plastically with population density since the early origins of life. PMID:28837573
Anaerobically Grown Escherichia coli Has an Enhanced Mutation Rate and Distinct Mutational Spectra
Shewaramani, Sonal; Finn, Thomas J.; Kassen, Rees; Rainey, Paul B.
2017-01-01
Oxidative stress is a major cause of mutation but little is known about how growth in the absence of oxygen impacts the rate and spectrum of mutations. We employed long-term mutation accumulation experiments to directly measure the rates and spectra of spontaneous mutation events in Escherichia coli populations propagated under aerobic and anaerobic conditions. To detect mutations, whole genome sequencing was coupled with methods of analysis sufficient to identify a broad range of mutational classes, including structural variants (SVs) generated by movement of repetitive elements. The anaerobically grown populations displayed a mutation rate nearly twice that of the aerobic populations, showed distinct asymmetric mutational strand biases, and greater insertion element activity. Consistent with mutation rate and spectra observations, genes for transposition and recombination repair associated with SVs were up-regulated during anaerobic growth. Together, these results define differences in mutational spectra affecting the evolution of facultative anaerobes. PMID:28103245
Stochastic demography and the neutral substitution rate in class-structured populations.
Lehmann, Laurent
2014-05-01
The neutral rate of allelic substitution is analyzed for a class-structured population subject to a stationary stochastic demographic process. The substitution rate is shown to be generally equal to the effective mutation rate, and under overlapping generations it can be expressed as the effective mutation rate in newborns when measured in units of average generation time. With uniform mutation rate across classes the substitution rate reduces to the mutation rate.
Fixation probability of a nonmutator in a large population of asexual mutators.
Jain, Kavita; James, Ananthu
2017-11-21
In an adapted population of mutators in which most mutations are deleterious, a nonmutator that lowers the mutation rate is under indirect selection and can sweep to fixation. Using a multitype branching process, we calculate the fixation probability of a rare nonmutator in a large population of asexual mutators. We show that when beneficial mutations are absent, the fixation probability is a nonmonotonic function of the mutation rate of the mutator: it first increases sublinearly and then decreases exponentially. We also find that beneficial mutations can enhance the fixation probability of a nonmutator. Our analysis is relevant to an understanding of recent experiments in which a reduction in the mutation rates has been observed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bonhoeffer, Sebastian
2018-01-01
The stress-induced mutagenesis hypothesis postulates that in response to stress, bacteria increase their genome-wide mutation rate, in turn increasing the chances that a descendant is able to better withstand the stress. This has implications for antibiotic treatment: exposure to subinhibitory doses of antibiotics has been reported to increase bacterial mutation rates and thus probably the rate at which resistance mutations appear and lead to treatment failure. More generally, the hypothesis posits that stress increases evolvability (the ability of a population to generate adaptive genetic diversity) and thus accelerates evolution. Measuring mutation rates under stress, however, is problematic, because existing methods assume there is no death. Yet subinhibitory stress levels may induce a substantial death rate. Death events need to be compensated by extra replication to reach a given population size, thus providing more opportunities to acquire mutations. We show that ignoring death leads to a systematic overestimation of mutation rates under stress. We developed a system based on plasmid segregation that allows us to measure death and division rates simultaneously in bacterial populations. Using this system, we found that a substantial death rate occurs at the tested subinhibitory concentrations previously reported to increase mutation rate. Taking this death rate into account lowers and sometimes removes the signal for stress-induced mutagenesis. Moreover, even when antibiotics increase mutation rate, we show that subinhibitory treatments do not increase genetic diversity and evolvability, again because of effects of the antibiotics on population dynamics. We conclude that antibiotic-induced mutagenesis is overestimated because of death and that understanding evolvability under stress requires accounting for the effects of stress on population dynamics as much as on mutation rate. Our goal here is dual: we show that population dynamics and, in particular, the numbers of cell divisions are crucial but neglected parameters in the evolvability of a population, and we provide experimental and computational tools and methods to study evolvability under stress, leading to a reassessment of the magnitude and significance of the stress-induced mutagenesis paradigm. PMID:29750784
Frenoy, Antoine; Bonhoeffer, Sebastian
2018-05-01
The stress-induced mutagenesis hypothesis postulates that in response to stress, bacteria increase their genome-wide mutation rate, in turn increasing the chances that a descendant is able to better withstand the stress. This has implications for antibiotic treatment: exposure to subinhibitory doses of antibiotics has been reported to increase bacterial mutation rates and thus probably the rate at which resistance mutations appear and lead to treatment failure. More generally, the hypothesis posits that stress increases evolvability (the ability of a population to generate adaptive genetic diversity) and thus accelerates evolution. Measuring mutation rates under stress, however, is problematic, because existing methods assume there is no death. Yet subinhibitory stress levels may induce a substantial death rate. Death events need to be compensated by extra replication to reach a given population size, thus providing more opportunities to acquire mutations. We show that ignoring death leads to a systematic overestimation of mutation rates under stress. We developed a system based on plasmid segregation that allows us to measure death and division rates simultaneously in bacterial populations. Using this system, we found that a substantial death rate occurs at the tested subinhibitory concentrations previously reported to increase mutation rate. Taking this death rate into account lowers and sometimes removes the signal for stress-induced mutagenesis. Moreover, even when antibiotics increase mutation rate, we show that subinhibitory treatments do not increase genetic diversity and evolvability, again because of effects of the antibiotics on population dynamics. We conclude that antibiotic-induced mutagenesis is overestimated because of death and that understanding evolvability under stress requires accounting for the effects of stress on population dynamics as much as on mutation rate. Our goal here is dual: we show that population dynamics and, in particular, the numbers of cell divisions are crucial but neglected parameters in the evolvability of a population, and we provide experimental and computational tools and methods to study evolvability under stress, leading to a reassessment of the magnitude and significance of the stress-induced mutagenesis paradigm.
Epistasis increases the rate of conditionally neutral substitution in an adapting population.
Draghi, Jeremy A; Parsons, Todd L; Plotkin, Joshua B
2011-04-01
Kimura observed that the rate of neutral substitution should equal the neutral mutation rate. This classic result is central to our understanding of molecular evolution, and it continues to influence phylogenetics, genomics, and the interpretation of evolution experiments. By demonstrating that neutral mutations substitute at a rate independent of population size and selection at linked sites, Kimura provided an influential justification for the idea of a molecular clock and emphasized the importance of genetic drift in shaping molecular evolution. But when epistasis among sites is common, as numerous empirical studies suggest, do neutral mutations substitute according to Kimura's expectation? Here we study simulated, asexual populations of RNA molecules, and we observe that conditionally neutral mutations--i.e., mutations that do not alter the fitness of the individual in which they arise, but that may alter the fitness effects of subsequent mutations--substitute much more often than expected while a population is adapting. We quantify these effects using a simple population-genetic model that elucidates how the substitution rate at conditionally neutral sites depends on the population size, mutation rate, strength of selection, and prevalence of epistasis. We discuss the implications of these results for our understanding of the molecular clock, and for the interpretation of molecular variation in laboratory and natural populations.
Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations
Good, Benjamin H.; Rouzine, Igor M.; Balick, Daniel J.; Hallatschek, Oskar; Desai, Michael M.
2012-01-01
When large asexual populations adapt, competition between simultaneously segregating mutations slows the rate of adaptation and restricts the set of mutations that eventually fix. This phenomenon of interference arises from competition between mutations of different strengths as well as competition between mutations that arise on different fitness backgrounds. Previous work has explored each of these effects in isolation, but the way they combine to influence the dynamics of adaptation remains largely unknown. Here, we describe a theoretical model to treat both aspects of interference in large populations. We calculate the rate of adaptation and the distribution of fixed mutational effects accumulated by the population. We focus particular attention on the case when the effects of beneficial mutations are exponentially distributed, as well as on a more general class of exponential-like distributions. In both cases, we show that the rate of adaptation and the influence of genetic background on the fixation of new mutants is equivalent to an effective model with a single selection coefficient and rescaled mutation rate, and we explicitly calculate these effective parameters. We find that the effective selection coefficient exactly coincides with the most common fixed mutational effect. This equivalence leads to an intuitive picture of the relative importance of different types of interference effects, which can shift dramatically as a function of the population size, mutation rate, and the underlying distribution of fitness effects. PMID:22371564
Evolutionary rescue of a parasite population by mutation rate evolution.
Greenspoon, Philip B; Mideo, Nicole
2017-10-01
The risk of antibiotic resistance evolution in parasites is a major problem for public health. Identifying factors which promote antibiotic resistance evolution is thus a priority in evolutionary medicine. The rate at which new mutations enter the parasite population is one important predictor; however, mutation rate is not necessarily a fixed quantity, as is often assumed, but can itself evolve. Here we explore the possible impacts of mutation rate evolution on the fate of a disease circulating in a host population, which is being treated with drugs, the use of which varies over time. Using an evolutionary rescue framework, we find that mutation rate evolution provides a dramatic increase in the probability that a parasite population survives treatment in only a limited region, while providing little or no advantage in other regions. Both epidemiological features, such as the virulence of infection, and population genetic parameters, such as recombination rate, play important roles in determining the probability of evolutionary rescue and whether mutation rate evolution enhances the probability of evolutionary rescue or not. While efforts to curtail mutation rate evolution in parasites may be worthwhile under some circumstances, our results suggest that this need not always be the case. Copyright © 2017 Elsevier Inc. All rights reserved.
Kay, Chris; Collins, Jennifer A; Wright, Galen E B; Baine, Fiona; Miedzybrodzka, Zosia; Aminkeng, Folefac; Semaka, Alicia J; McDonald, Cassandra; Davidson, Mark; Madore, Steven J; Gordon, Erynn S; Gerry, Norman P; Cornejo-Olivas, Mario; Squitieri, Ferdinando; Tishkoff, Sarah; Greenberg, Jacquie L; Krause, Amanda; Hayden, Michael R
2018-04-01
Huntington disease (HD) is the most common monogenic neurodegenerative disorder in populations of European ancestry, but occurs at lower prevalence in populations of East Asian or black African descent. New mutations for HD result from CAG repeat expansions of intermediate alleles (IAs), usually of paternal origin. The differing prevalence of HD may be related to the rate of new mutations in a population, but no comparative estimates of IA frequency or the HD new mutation rate are available. In this study, we characterize IA frequency and the CAG repeat distribution in fifteen populations of diverse ethnic origin. We estimate the HD new mutation rate in a series of populations using molecular IA expansion rates. The frequency of IAs was highest in Hispanic Americans and Northern Europeans, and lowest in black Africans and East Asians. The prevalence of HD correlated with the frequency of IAs by population and with the proportion of IAs found on the HD-associated A1 haplotype. The HD new mutation rate was estimated to be highest in populations with the highest frequency of IAs. In European ancestry populations, one in 5,372 individuals from the general population and 7.1% of individuals with an expanded CAG repeat in the HD range are estimated to have a molecular new mutation. Our data suggest that the new mutation rate for HD varies substantially between populations, and that IA frequency and haplotype are closely linked to observed epidemiological differences in the prevalence of HD across major ancestry groups in different countries. © 2018 Wiley Periodicals, Inc.
The mutation-drift balance in spatially structured populations.
Schneider, David M; Martins, Ayana B; de Aguiar, Marcus A M
2016-08-07
In finite populations the action of neutral mutations is balanced by genetic drift, leading to a stationary distribution of alleles that displays a transition between two different behaviors. For small mutation rates most individuals will carry the same allele at equilibrium, whereas for high mutation rates of the alleles will be randomly distributed with frequencies close to one half for a biallelic gene. For well-mixed haploid populations the mutation threshold is μc=1/2N, where N is the population size. In this paper we study how spatial structure affects this mutation threshold. Specifically, we study the stationary allele distribution for populations placed on regular networks where connected nodes represent potential mating partners. We show that the mutation threshold is sensitive to spatial structure only if the number of potential mates is very small. In this limit, the mutation threshold decreases substantially, increasing the diversity of the population at considerably low mutation rates. Defining kc as the degree of the network for which the mutation threshold drops to half of its value in well-mixed populations we show that kc grows slowly as a function of the population size, following a power law. Our calculations and simulations are based on the Moran model and on a mapping between the Moran model with mutations and the voter model with opinion makers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Konrad, Anke; Thompson, Owen; Waterston, Robert H; Moerman, Donald G; Keightley, Peter D; Bergthorsson, Ulfar; Katju, Vaishali
2017-06-01
Mitochondrial genomes of metazoans, given their elevated rates of evolution, have served as pivotal markers for phylogeographic studies and recent phylogenetic events. In order to determine the dynamics of spontaneous mitochondrial mutations in small populations in the absence and presence of selection, we evolved mutation accumulation (MA) lines of Caenorhabditis elegans in parallel over 409 consecutive generations at three varying population sizes of N = 1, 10, and 100 hermaphrodites. The N =1 populations should have a minimal influence of natural selection to provide the spontaneous mutation rate and the expected rate of neutral evolution, whereas larger population sizes should experience increasing intensity of selection. New mutations were identified by Illumina paired-end sequencing of 86 mtDNA genomes across 35 experimental lines and compared with published genomes of natural isolates. The spontaneous mitochondrial mutation rate was estimated at 1.05 × 10-7/site/generation. A strong G/C→A/T mutational bias was observed in both the MA lines and the natural isolates. This suggests that the low G + C content at synonymous sites is the product of mutation bias rather than selection as previously proposed. The mitochondrial effective population size per worm generation was estimated to be 62. Although it was previously concluded that heteroplasmy was rare in C. elegans, the vast majority of mutations in this study were heteroplasmic despite an experimental regime exceeding 400 generations. The frequencies of frameshift and nonsynonymous mutations were negatively correlated with population size, which suggests their deleterious effects on fitness and a potent role for selection in their eradication. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Frequency-dependent selection can lead to evolution of high mutation rates.
Rosenbloom, Daniel I S; Allen, Benjamin
2014-05-01
Theoretical and experimental studies have shown that high mutation rates can be advantageous, especially in novel or fluctuating environments. Here we examine how frequency-dependent competition may lead to fluctuations in trait frequencies that exert upward selective pressure on mutation rates. We use a mathematical model to show that cyclical trait dynamics generated by "rock-paper-scissors" competition can cause the mutation rate in a population to converge to a high evolutionarily stable mutation rate, reflecting a trade-off between generating novelty and reproducing past success. Introducing recombination lowers the evolutionarily stable mutation rate but allows stable coexistence between mutation rates above and below the evolutionarily stable rate. Even considering strong mutational load and ignoring the costs of faithful replication, evolution favors positive mutation rates if the selective advantage of prevailing in competition exceeds the ratio of recombining to nonrecombining offspring. We discuss a number of genomic mechanisms that may meet our theoretical requirements for the adaptive evolution of mutation. Overall, our results suggest that local mutation rates may be higher on genes influencing cyclical competition and that global mutation rates in asexual species may be higher in populations subject to strong cyclical competition.
Zhang, Xiufeng; Liu, Linlin; Xie, Runfang; Wang, Guiyi; Shi, Yuan; Gu, Tao; Hu, Liping; Nie, Shengjie
2018-07-01
The genetic polymorphisms of 20 autosomal short tandem repeat (STR) loci included in the PowerPlex® 21 kit were evaluated from 2068 unrelated, healthy individuals from the Chinese Han population of Yunnan Province in southwest China. All of the loci reached Hardy-Weinberg equilibrium. These loci were examined to determine allele frequencies and forensic statistical parameters. The genetic relationships among the Yunnan Han and other Chinese populations were also estimated. The combined discrimination power and probability of excluding paternity of the 20 STR loci were 0.99999999999999999999999126 and 0.999999975, respectively. In addition, mutation rates from 4363 parentage cases (2215 trios and 2148 duos) were investigated in this study. A total of 164 mutations were observed in 6578 meioses from the 20 loci. The highest mutation rate was observed in D12S391 (0.30%), and the lowest mutation rates were observed in D13S317 (0.03%) and TPOX (0.03%). The average mutation rate for the 20 loci was estimated to be 1.246 × 10 -3 per meiosis. The mutations were primarily single-step and paternal mutations.
Assaf, Zoe June; Tilk, Susanne; Park, Jane; Siegal, Mark L; Petrov, Dmitri A
2017-12-01
Mutations provide the raw material of evolution, and thus our ability to study evolution depends fundamentally on having precise measurements of mutational rates and patterns. We generate a data set for this purpose using (1) de novo mutations from mutation accumulation experiments and (2) extremely rare polymorphisms from natural populations. The first, mutation accumulation (MA) lines are the product of maintaining flies in tiny populations for many generations, therefore rendering natural selection ineffective and allowing new mutations to accrue in the genome. The second, rare genetic variation from natural populations allows the study of mutation because extremely rare polymorphisms are relatively unaffected by the filter of natural selection. We use both methods in Drosophila melanogaster , first generating our own novel data set of sequenced MA lines and performing a meta-analysis of all published MA mutations (∼2000 events) and then identifying a high quality set of ∼70,000 extremely rare (≤0.1%) polymorphisms that are fully validated with resequencing. We use these data sets to precisely measure mutational rates and patterns. Highlights of our results include: a high rate of multinucleotide mutation events at both short (∼5 bp) and long (∼1 kb) genomic distances, showing that mutation drives GC content lower in already GC-poor regions, and using our precise context-dependent mutation rates to predict long-term evolutionary patterns at synonymous sites. We also show that de novo mutations from independent MA experiments display similar patterns of single nucleotide mutation and well match the patterns of mutation found in natural populations. © 2017 Assaf et al.; Published by Cold Spring Harbor Laboratory Press.
Epistasis Increases the Rate of Conditionally Neutral Substitution in an Adapting Population
Draghi, Jeremy A.; Parsons, Todd L.; Plotkin, Joshua B.
2011-01-01
Kimura observed that the rate of neutral substitution should equal the neutral mutation rate. This classic result is central to our understanding of molecular evolution, and it continues to influence phylogenetics, genomics, and the interpretation of evolution experiments. By demonstrating that neutral mutations substitute at a rate independent of population size and selection at linked sites, Kimura provided an influential justification for the idea of a molecular clock and emphasized the importance of genetic drift in shaping molecular evolution. But when epistasis among sites is common, as numerous empirical studies suggest, do neutral mutations substitute according to Kimura's expectation? Here we study simulated, asexual populations of RNA molecules, and we observe that conditionally neutral mutations—i.e., mutations that do not alter the fitness of the individual in which they arise, but that may alter the fitness effects of subsequent mutations—substitute much more often than expected while a population is adapting. We quantify these effects using a simple population-genetic model that elucidates how the substitution rate at conditionally neutral sites depends on the population size, mutation rate, strength of selection, and prevalence of epistasis. We discuss the implications of these results for our understanding of the molecular clock, and for the interpretation of molecular variation in laboratory and natural populations. PMID:21288876
Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process
Iijima, Leo; Suzuki, Shingo; Hashimoto, Tomomi; Oyake, Ayana; Kobayashi, Hisaka; Someya, Yuki; Narisawa, Dai; Yomo, Tetsuya
2015-01-01
The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution. PMID:26177190
Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process.
Kishimoto, Toshihiko; Ying, Bei-Wen; Tsuru, Saburo; Iijima, Leo; Suzuki, Shingo; Hashimoto, Tomomi; Oyake, Ayana; Kobayashi, Hisaka; Someya, Yuki; Narisawa, Dai; Yomo, Tetsuya
2015-07-01
The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution.
Mutation-selection equilibrium in games with multiple strategies.
Antal, Tibor; Traulsen, Arne; Ohtsuki, Hisashi; Tarnita, Corina E; Nowak, Martin A
2009-06-21
In evolutionary games the fitness of individuals is not constant but depends on the relative abundance of the various strategies in the population. Here we study general games among n strategies in populations of large but finite size. We explore stochastic evolutionary dynamics under weak selection, but for any mutation rate. We analyze the frequency dependent Moran process in well-mixed populations, but almost identical results are found for the Wright-Fisher and Pairwise Comparison processes. Surprisingly simple conditions specify whether a strategy is more abundant on average than 1/n, or than another strategy, in the mutation-selection equilibrium. We find one condition that holds for low mutation rate and another condition that holds for high mutation rate. A linear combination of these two conditions holds for any mutation rate. Our results allow a complete characterization of nxn games in the limit of weak selection.
Cabanillas, Laura; Arribas, María; Lázaro, Ester
2013-01-16
When beneficial mutations present in different genomes spread simultaneously in an asexual population, their fixation can be delayed due to competition among them. This interference among mutations is mainly determined by the rate of beneficial mutations, which in turn depends on the population size, the total error rate, and the degree of adaptation of the population. RNA viruses, with their large population sizes and high error rates, are good candidates to present a great extent of interference. To test this hypothesis, in the current study we have investigated whether competition among beneficial mutations was responsible for the prolonged presence of polymorphisms in the mutant spectrum of an RNA virus, the bacteriophage Qβ, evolved during a large number of generations in the presence of the mutagenic nucleoside analogue 5-azacytidine. The analysis of the mutant spectra of bacteriophage Qβ populations evolved at artificially increased error rate shows a large number of polymorphic mutations, some of them with demonstrated selective value. Polymorphisms distributed into several evolutionary lines that can compete among them, making it difficult the emergence of a defined consensus sequence. The presence of accompanying deleterious mutations, the high degree of recurrence of the polymorphic mutations, and the occurrence of epistatic interactions generate a highly complex interference dynamics. Interference among beneficial mutations in bacteriophage Qβ evolved at increased error rate permits the coexistence of multiple adaptive pathways that can provide selective advantages by different molecular mechanisms. In this way, interference can be seen as a positive factor that allows the exploration of the different local maxima that exist in rugged fitness landscapes.
Lineage dynamics and mutation-selection balance in non-adapting asexual populations
NASA Astrophysics Data System (ADS)
Pénisson, Sophie; Sniegowski, Paul D.; Colato, Alexandre; Gerrish, Philip J.
2013-02-01
In classical population genetics, mutation-selection balance refers to the equilibrium frequency of a deleterious allele established and maintained under two opposing forces: recurrent mutation, which tends to increase the frequency of the allele; and selection, which tends to decrease its frequency. In a haploid population, if μ denotes the per capita rate of production of the deleterious allele by mutation and s denotes the selective disadvantage of carrying the allele, then the classical mutation-selection balance frequency of the allele is approximated by μ/s. This calculation assumes that lineages carrying the mutant allele in question—the ‘focal allele’—do not accumulate deleterious mutations linked to the focal allele. In principle, indirect selection against the focal allele caused by such additional mutations can decrease the frequency of the focal allele below the classical mutation-selection balance. This effect of indirect selection will be strongest in an asexual population, in which the entire genome is in linkage. Here, we use an approach based on a multitype branching process to investigate this effect, analyzing lineage dynamics under mutation, direct selection, and indirect selection in a non-adapting asexual population. We find that the equilibrium balance between recurrent mutation to the focal allele and the forces of direct and indirect selection against the focal allele is closely approximated by γμ/(s + U) (s = 0 if the focal allele is neutral), where γ ≈ eθθ-(ω+θ)(ω + θ)(Γ(ω + θ) - Γ(ω + θ,θ)), \\theta =U/\\tilde {s}, and \\omega =s/\\tilde {s}; U denotes the genomic deleterious mutation rate and \\tilde {s} denotes the geometric mean selective disadvantage of deleterious mutations elsewhere on the genome. This mutation-selection balance for asexual populations can remain surprisingly invariant over wide ranges of the mutation rate.
Sugarman, Elaine A; Rohlfs, Elizabeth M; Silverman, Lawrence M; Allitto, Bernice A
2004-01-01
We reviewed CFTR mutation distribution among Hispanic and African American individuals referred for CF carrier screening and compared mutation frequencies to those derived from CF patient samples. Results from CFTR mutation analyses received from January 2001 through September 2003, were analyzed for four populations: Hispanic individuals with a CF diagnosis (n = 159) or carrier screening indication (n = 15,333) and African American individuals with a CF diagnosis (n = 108) or carrier screening indication (n = 8,973). All samples were tested for the same 87 mutation panel. In the Hispanic population, 42 mutations were identified: 30 in the patient population (77.5% detection rate) and 33 among carrier screening referrals. Five mutations not included in the ACMG/ACOG carrier screening panel (3876delA, W1089X, R1066C, S549N, 1949del84) accounted for 7.55% detection in patients and 5.58% among carriers. Among African American referrals, 33 different mutations were identified: 21 in the patient population (74.4% detection) and 23 in the carrier screening population. Together, A559T and 711+5G>A were observed at a detection rate of 3.71% in CF patients and 6.38% in carriers. The mutation distribution seen in both the carrier screening populations reflected an increased frequency of mutations with variable expression such as D1152H, R117H, and L206W. A detailed analysis of CFTR mutation distribution in the Hispanic and African American patient and carrier screening populations demonstrates that a diverse group of mutations is most appropriate for diagnostic and carrier screening in these populations. To best serve the increasingly diverse U.S. population, ethnic-specific mutations should be included in mutation panels.
Mutation rate evolution in replicator dynamics.
Allen, Benjamin; Rosenbloom, Daniel I Scholes
2012-11-01
The mutation rate of an organism is itself evolvable. In stable environments, if faithful replication is costless, theory predicts that mutation rates will evolve to zero. However, positive mutation rates can evolve in novel or fluctuating environments, as analytical and empirical studies have shown. Previous work on this question has focused on environments that fluctuate independently of the evolving population. Here we consider fluctuations that arise from frequency-dependent selection in the evolving population itself. We investigate how the dynamics of competing traits can induce selective pressure on the rates of mutation between these traits. To address this question, we introduce a theoretical framework combining replicator dynamics and adaptive dynamics. We suppose that changes in mutation rates are rare, compared to changes in the traits under direct selection, so that the expected evolutionary trajectories of mutation rates can be obtained from analysis of pairwise competition between strains of different rates. Depending on the nature of frequency-dependent trait dynamics, we demonstrate three possible outcomes of this competition. First, if trait frequencies are at a mutation-selection equilibrium, lower mutation rates can displace higher ones. Second, if trait dynamics converge to a heteroclinic cycle-arising, for example, from "rock-paper-scissors" interactions-mutator strains succeed against non-mutators. Third, in cases where selection alone maintains all traits at positive frequencies, zero and nonzero mutation rates can coexist indefinitely. Our second result suggests that relatively high mutation rates may be observed for traits subject to cyclical frequency-dependent dynamics.
Al-Shamsi, Humaid O.; Jones, Jeremy; Fahmawi, Yazan; Dahbour, Ibrahim; Tabash, Aziz; Abdel-Wahab, Reham; Abousamra, Ahmed O. S.; Shaw, Kenna R.; Xiao, Lianchun; Hassan, Manal M.; Kipp, Benjamin R.; Kopetz, Scott; Soliman, Amr S.; McWilliams, Robert R.; Wolff, Robert A.
2016-01-01
Background The frequency rates of mutations such as KRAS, NRAS, BRAF, and PIK3CA in colorectal cancer (CRC) differ among populations. The aim of this study was to assess mutation frequencies in the Arab population and determine their correlations with certain clinicopathological features. Methods Arab patients from the Arab Gulf region and a population of age- and sex-matched Western patients with CRC whose tumors were evaluated with next-generation sequencing (NGS) were identified and retrospectively reviewed. The mutation rates of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC were recorded, along with clinicopathological features. Other somatic mutation and their rates were also identified. Fisher’s exact test was used to determine the association between mutation status and clinical features. Results A total of 198 cases were identified; 99 Arab patients and 99 Western patients. Fifty-two point seven percent of Arab patients had stage IV disease at initial presentation, 74.2% had left-sided tumors. Eighty-nine point two percent had tubular adenocarcinoma and 10.8% had mucinous adenocarcinoma. The prevalence rates of KRAS, NRAS, BRAF, PIK3CA, TP53, APC, SMAD, FBXW7 mutations in Arab population were 44.4%, 4%, 4%, 13.1%, 52.5%, 27.3%, 2% and 3% respectively. Compared to 48.4%, 4%, 4%, 12.1%, 47.5%, 24.2%, 11.1% and 0% respectively in matched Western population. Associations between these mutations and patient clinicopathological features were not statistically significant. Conclusions This is the first study to report comprehensive hotspot mutations using NGS in Arab patients with CRC. The frequency of KRAS, NRAS, BRAF, TP53, APC and PIK3CA mutations were similar to reported frequencies in Western population except SMAD4 that had a lower frequency and higher frequency of FBXW7 mutation. PMID:28078112
Experimental Estimation of Mutation Rates in a Wheat Population With a Gene Genealogy Approach
Raquin, Anne-Laure; Depaulis, Frantz; Lambert, Amaury; Galic, Nathalie; Brabant, Philippe; Goldringer, Isabelle
2008-01-01
Microsatellite markers are extensively used to evaluate genetic diversity in natural or experimental evolving populations. Their high degree of polymorphism reflects their high mutation rates. Estimates of the mutation rates are therefore necessary when characterizing diversity in populations. As a complement to the classical experimental designs, we propose to use experimental populations, where the initial state is entirely known and some intermediate states have been thoroughly surveyed, thus providing a short timescale estimation together with a large number of cumulated meioses. In this article, we derived four original gene genealogy-based methods to assess mutation rates with limited bias due to relevant model assumptions incorporating the initial state, the number of new alleles, and the genetic effective population size. We studied the evolution of genetic diversity at 21 microsatellite markers, after 15 generations in an experimental wheat population. Compared to the parents, 23 new alleles were found in generation 15 at 9 of the 21 loci studied. We provide evidence that they arose by mutation. Corresponding estimates of the mutation rates ranged from 0 to 4.97 × 10−3 per generation (i.e., year). Sequences of several alleles revealed that length polymorphism was only due to variation in the core of the microsatellite. Among different microsatellite characteristics, both the motif repeat number and an independent estimation of the Nei diversity were correlated with the novel diversity. Despite a reduced genetic effective size, global diversity at microsatellite markers increased in this population, suggesting that microsatellite diversity should be used with caution as an indicator in biodiversity conservation issues. PMID:18689900
Experimental estimation of mutation rates in a wheat population with a gene genealogy approach.
Raquin, Anne-Laure; Depaulis, Frantz; Lambert, Amaury; Galic, Nathalie; Brabant, Philippe; Goldringer, Isabelle
2008-08-01
Microsatellite markers are extensively used to evaluate genetic diversity in natural or experimental evolving populations. Their high degree of polymorphism reflects their high mutation rates. Estimates of the mutation rates are therefore necessary when characterizing diversity in populations. As a complement to the classical experimental designs, we propose to use experimental populations, where the initial state is entirely known and some intermediate states have been thoroughly surveyed, thus providing a short timescale estimation together with a large number of cumulated meioses. In this article, we derived four original gene genealogy-based methods to assess mutation rates with limited bias due to relevant model assumptions incorporating the initial state, the number of new alleles, and the genetic effective population size. We studied the evolution of genetic diversity at 21 microsatellite markers, after 15 generations in an experimental wheat population. Compared to the parents, 23 new alleles were found in generation 15 at 9 of the 21 loci studied. We provide evidence that they arose by mutation. Corresponding estimates of the mutation rates ranged from 0 to 4.97 x 10(-3) per generation (i.e., year). Sequences of several alleles revealed that length polymorphism was only due to variation in the core of the microsatellite. Among different microsatellite characteristics, both the motif repeat number and an independent estimation of the Nei diversity were correlated with the novel diversity. Despite a reduced genetic effective size, global diversity at microsatellite markers increased in this population, suggesting that microsatellite diversity should be used with caution as an indicator in biodiversity conservation issues.
Dynamic of mutational events in variable number tandem repeats of Escherichia coli O157:H7.
Bustamante, A V; Sanso, A M; Segura, D O; Parma, A E; Lucchesi, P M A
2013-01-01
VNTRs regions have been successfully used for bacterial subtyping; however, the hypervariability in VNTR loci is problematic when trying to predict the relationships among isolates. Since few studies have examined the mutation rate of these markers, our aim was to estimate mutation rates of VNTRs specific for verotoxigenic E. coli O157:H7. The knowledge of VNTR mutational rates and the factors affecting them would make MLVA more effective for epidemiological or microbial forensic investigations. For this purpose, we analyzed nine loci performing parallel, serial passage experiments (PSPEs) on 9 O157:H7 strains. The combined 9 PSPE population rates for the 8 mutating loci ranged from 4.4 × 10(-05) to 1.8 × 10(-03) mutations/generation, and the combined 8-loci mutation rate was of 2.5 × 10(-03) mutations/generation. Mutations involved complete repeat units, with only one point mutation detected. A similar proportion between single and multiple repeat changes was detected. Of the 56 repeat mutations, 59% were insertions and 41% were deletions, and 72% of the mutation events corresponded to O157-10 locus. For alleles with up to 13 UR, a constant and low mutation rate was observed; meanwhile longer alleles were associated with higher and variable mutation rates. Our results are useful to interpret data from microevolution and population epidemiology studies and particularly point out that the inclusion or not of O157-10 locus or, alternatively, a differential weighting data according to the mutation rates of loci must be evaluated in relation with the objectives of the proposed study.
Mutation rates at 42 Y chromosomal short tandem repeats in Chinese Han population in Eastern China.
Wu, Weiwei; Ren, Wenyan; Hao, Honglei; Nan, Hailun; He, Xin; Liu, Qiuling; Lu, Dejian
2018-01-31
Mutation analysis of 42 Y chromosomal short tandem repeats (Y-STRs) loci was performed using a sample of 1160 father-son pairs from the Chinese Han population in Eastern China. The results showed that the average mutation rate across the 42 Y-STR loci was 0.0041 (95% CI 0.0036-0.0047) per locus per generation. The locus-specific mutation rates varied from 0.000 to 0.0190. No mutation was found at DYS388, DYS437, DYS448, DYS531, and GATA_H4. DYS627, DYS570, DYS576, and DYS449 could be classified as rapidly mutating Y-STRs, with mutation rates higher than 1.0 × 10 -2 . DYS458, DYS630, and DYS518 were moderately mutating Y-STRs, with mutation rates ranging from 8 × 10 -3 to 1 × 10 -2 . Although the characteristics of the Y-STR mutations were consistent with those in previous studies, mutation rate differences between our data and previous published data were found at some rapidly mutating Y-STRs. The single-copy loci located on the short arm of the Y chromosome (Yp) showed relatively higher mutation rates more frequently than the multi-copy loci. These results will not only extend the data for Y-STR mutations but also be important for kinship analysis, paternal lineage identification, and family relationship reconstruction in forensic Y-STR analysis.
Bottleneck Effect on Evolutionary Rate in the Nearly Neutral Mutation Model
Araki, H.; Tachida, H.
1997-01-01
Variances of evolutionary rates among lineages in some proteins are larger than those expected from simple Poisson processes. This phenomenon is called overdispersion of the molecular clock. If population size N is constant, the overdispersion is observed only in a limited range of 2Nσ under the nearly neutral mutation model, where σ represents the standard deviation of selection coefficients of new mutants. In this paper, we investigated effects of changing population size on the evolutionary rate by computer simulations assuming the nearly neutral mutation model. The size was changed cyclically between two numbers, N(1) and N(2) (N(1) > N(2)), in the simulations. The overdispersion is observed if 2N(2)σ is less than two and the state of reduced size (bottleneck state) continues for more than ~0.1/u generations, where u is the mutation rate. The overdispersion results mainly because the average fitnesses of only a portion of populations go down when the population size is reduced and only in these populations subsequent advantageous substitutions occur after the population size becomes large. Since the fitness reduction after the bottleneck is stochastic, acceleration of the evolutionary rate does not necessarily occur uniformly among loci. From these results, we argue that the nearly neutral mutation model is a candidate mechanism to explain the overdispersed molecular clock. PMID:9335622
The rate and character of spontaneous mutation in an RNA virus.
Malpica, José M; Fraile, Aurora; Moreno, Ignacio; Obies, Clara I; Drake, John W; García-Arenal, Fernando
2002-01-01
Estimates of spontaneous mutation rates for RNA viruses are few and uncertain, most notably due to their dependence on tiny mutation reporter sequences that may not well represent the whole genome. We report here an estimate of the spontaneous mutation rate of tobacco mosaic virus using an 804-base cognate mutational target, the viral MP gene that encodes the movement protein (MP). Selection against newly arising mutants was countered by providing MP function from a transgene. The estimated genomic mutation rate was on the lower side of the range previously estimated for lytic animal riboviruses. We also present the first unbiased riboviral mutational spectrum. The proportion of base substitutions is the same as that in a retrovirus but is lower than that in most DNA-based organisms. Although the MP mutant frequency was 0.02-0.05, 35% of the sequenced mutants contained two or more mutations. Therefore, the mutation process in populations of TMV and perhaps of riboviruses generally differs profoundly from that in populations of DNA-based microbes and may be strongly influenced by a subpopulation of mutator polymerases. PMID:12524327
Experiments on the role of deleterious mutations as stepping stones in adaptive evolution
Covert, Arthur W.; Lenski, Richard E.; Wilke, Claus O.; Ofria, Charles
2013-01-01
Many evolutionary studies assume that deleterious mutations necessarily impede adaptive evolution. However, a later mutation that is conditionally beneficial may interact with a deleterious predecessor before it is eliminated, thereby providing access to adaptations that might otherwise be inaccessible. It is unknown whether such sign-epistatic recoveries are inconsequential events or an important factor in evolution, owing to the difficulty of monitoring the effects and fates of all mutations during experiments with biological organisms. Here, we used digital organisms to compare the extent of adaptive evolution in populations when deleterious mutations were disallowed with control populations in which such mutations were allowed. Significantly higher fitness levels were achieved over the long term in the control populations because some of the deleterious mutations served as stepping stones across otherwise impassable fitness valleys. As a consequence, initially deleterious mutations facilitated the evolution of complex, beneficial functions. We also examined the effects of disallowing neutral mutations, of varying the mutation rate, and of sexual recombination. Populations evolving without neutral mutations were able to leverage deleterious and compensatory mutation pairs to overcome, at least partially, the absence of neutral mutations. Substantially raising or lowering the mutation rate reduced or eliminated the long-term benefit of deleterious mutations, but introducing recombination did not. Our work demonstrates that deleterious mutations can play an important role in adaptive evolution under at least some conditions. PMID:23918358
Experiments on the role of deleterious mutations as stepping stones in adaptive evolution.
Covert, Arthur W; Lenski, Richard E; Wilke, Claus O; Ofria, Charles
2013-08-20
Many evolutionary studies assume that deleterious mutations necessarily impede adaptive evolution. However, a later mutation that is conditionally beneficial may interact with a deleterious predecessor before it is eliminated, thereby providing access to adaptations that might otherwise be inaccessible. It is unknown whether such sign-epistatic recoveries are inconsequential events or an important factor in evolution, owing to the difficulty of monitoring the effects and fates of all mutations during experiments with biological organisms. Here, we used digital organisms to compare the extent of adaptive evolution in populations when deleterious mutations were disallowed with control populations in which such mutations were allowed. Significantly higher fitness levels were achieved over the long term in the control populations because some of the deleterious mutations served as stepping stones across otherwise impassable fitness valleys. As a consequence, initially deleterious mutations facilitated the evolution of complex, beneficial functions. We also examined the effects of disallowing neutral mutations, of varying the mutation rate, and of sexual recombination. Populations evolving without neutral mutations were able to leverage deleterious and compensatory mutation pairs to overcome, at least partially, the absence of neutral mutations. Substantially raising or lowering the mutation rate reduced or eliminated the long-term benefit of deleterious mutations, but introducing recombination did not. Our work demonstrates that deleterious mutations can play an important role in adaptive evolution under at least some conditions.
Population-Scale Sequencing Data Enable Precise Estimates of Y-STR Mutation Rates
Willems, Thomas; Gymrek, Melissa; Poznik, G. David; Tyler-Smith, Chris; Erlich, Yaniv
2016-01-01
Short tandem repeats (STRs) are mutation-prone loci that span nearly 1% of the human genome. Previous studies have estimated the mutation rates of highly polymorphic STRs by using capillary electrophoresis and pedigree-based designs. Although this work has provided insights into the mutational dynamics of highly mutable STRs, the mutation rates of most others remain unknown. Here, we harnessed whole-genome sequencing data to estimate the mutation rates of Y chromosome STRs (Y-STRs) with 2–6 bp repeat units that are accessible to Illumina sequencing. We genotyped 4,500 Y-STRs by using data from the 1000 Genomes Project and the Simons Genome Diversity Project. Next, we developed MUTEA, an algorithm that infers STR mutation rates from population-scale data by using a high-resolution SNP-based phylogeny. After extensive intrinsic and extrinsic validations, we harnessed MUTEA to derive mutation-rate estimates for 702 polymorphic STRs by tracing each locus over 222,000 meioses, resulting in the largest collection of Y-STR mutation rates to date. Using our estimates, we identified determinants of STR mutation rates and built a model to predict rates for STRs across the genome. These predictions indicate that the load of de novo STR mutations is at least 75 mutations per generation, rivaling the load of all other known variant types. Finally, we identified Y-STRs with potential applications in forensics and genetic genealogy, assessed the ability to differentiate between the Y chromosomes of father-son pairs, and imputed Y-STR genotypes. PMID:27126583
Cystic fibrosis carrier screening in a North American population.
Zvereff, Val V; Faruki, Hawazin; Edwards, Marcia; Friedman, Kenneth J
2014-07-01
The aim of this study was to compare the mutation frequency distribution for a 32-mutation panel and a 69-mutation panel used for cystic fibrosis carrier screening. Further aims of the study were to examine the race-specific detection rates provided by both panels and to assess the performance of extended panels in large-scale, population-based cystic fibrosis carrier screening. Although genetic screening for the most common CFTR mutations allows detection of nearly 90% of cystic fibrosis carriers, the large number of other mutations, and their distribution within different ethnic groups, limits the utility of general population screening. Patients referred for cystic fibrosis screening from January 2005 through December 2010 were tested using either a 32-mutation panel (n = 1,601,308 individuals) or a 69-mutation panel (n = 109,830). The carrier frequencies observed for the 69-mutation panel study population (1/36) and Caucasian (1/27) and African-American individuals (1/79) agree well with published cystic fibrosis carrier frequencies; however, a higher carrier frequency was observed for Hispanic-American individuals (1/48) using the 69-mutation panel as compared with the 32-mutation panel (1/69). The 69-mutation panel detected ~20% more mutations than the 32-mutation panel for both African-American and Hispanic-American individuals. Expanded panels using race-specific variants can improve cystic fibrosis carrier detection rates within specific populations. However, it is important that the pathogenicity and the relative frequency of these variants are confirmed.
Dynamic of Mutational Events in Variable Number Tandem Repeats of Escherichia coli O157:H7
Bustamante, A. V.; Sanso, A. M.; Segura, D. O.; Parma, A. E.; Lucchesi, P. M. A.
2013-01-01
VNTRs regions have been successfully used for bacterial subtyping; however, the hypervariability in VNTR loci is problematic when trying to predict the relationships among isolates. Since few studies have examined the mutation rate of these markers, our aim was to estimate mutation rates of VNTRs specific for verotoxigenic E. coli O157:H7. The knowledge of VNTR mutational rates and the factors affecting them would make MLVA more effective for epidemiological or microbial forensic investigations. For this purpose, we analyzed nine loci performing parallel, serial passage experiments (PSPEs) on 9 O157:H7 strains. The combined 9 PSPE population rates for the 8 mutating loci ranged from 4.4 × 10−05 to 1.8 × 10−03 mutations/generation, and the combined 8-loci mutation rate was of 2.5 × 10−03 mutations/generation. Mutations involved complete repeat units, with only one point mutation detected. A similar proportion between single and multiple repeat changes was detected. Of the 56 repeat mutations, 59% were insertions and 41% were deletions, and 72% of the mutation events corresponded to O157-10 locus. For alleles with up to 13 UR, a constant and low mutation rate was observed; meanwhile longer alleles were associated with higher and variable mutation rates. Our results are useful to interpret data from microevolution and population epidemiology studies and particularly point out that the inclusion or not of O157-10 locus or, alternatively, a differential weighting data according to the mutation rates of loci must be evaluated in relation with the objectives of the proposed study. PMID:24093095
Hu, Xin-Sheng; Yeh, Francis C; Hu, Yang; Deng, Li-Ting; Ennos, Richard A; Chen, Xiaoyang
2017-02-22
Copy-number-variable (CNV) loci differ from single nucleotide polymorphic (SNP) sites in size, mutation rate, and mechanisms of maintenance in natural populations. It is therefore hypothesized that population genetic divergence at CNV loci will differ from that found at SNP sites. Here, we test this hypothesis by analysing 856 CNV loci from the genomes of 1184 healthy individuals from 11 HapMap populations with a wide range of ancestry. The results show that population genetic divergence at the CNV loci is generally more than three times lower than at genome-wide SNP sites. Populations generally exhibit very small genetic divergence (G st = 0.05 ± 0.049). The smallest divergence is among African populations (G st = 0.0081 ± 0.0025), with increased divergence among non-African populations (G st = 0.0217 ± 0.0109) and then among African and non-African populations (G st = 0.0324 ± 0.0064). Genetic diversity is high in African populations (~0.13), low in Asian populations (~0.11), and intermediate in the remaining 11 populations. Few significant linkage disequilibria (LDs) occur between the genome-wide CNV loci. Patterns of gametic and zygotic LDs indicate the absence of epistasis among CNV loci. Mutation rate is about twice as large as the migration rate in the non-African populations, suggesting that the high mutation rates play dominant roles in producing the low population genetic divergence at CNV loci.
Faster-X evolution: Theory and evidence from Drosophila.
Charlesworth, Brian; Campos, José L; Jackson, Benjamin C
2018-02-12
A faster rate of adaptive evolution of X-linked genes compared with autosomal genes can be caused by the fixation of recessive or partially recessive advantageous mutations, due to the full expression of X-linked mutations in hemizygous males. Other processes, including recombination rate and mutation rate differences between X chromosomes and autosomes, may also cause faster evolution of X-linked genes. We review population genetics theory concerning the expected relative values of variability and rates of evolution of X-linked and autosomal DNA sequences. The theoretical predictions are compared with data from population genomic studies of several species of Drosophila. We conclude that there is evidence for adaptive faster-X evolution of several classes of functionally significant nucleotides. We also find evidence for potential differences in mutation rates between X-linked and autosomal genes, due to differences in mutational bias towards GC to AT mutations. Many aspects of the data are consistent with the male hemizygosity model, although not all possible confounding factors can be excluded. © 2018 John Wiley & Sons Ltd.
Fitness of RNA virus decreased by Muller's ratchet
NASA Astrophysics Data System (ADS)
Chao, Lin
1990-11-01
WHY sex exists remains an unsolved problem in biology1-3. If mutations are on the average deleterious, a high mutation rate can account for the evolution of sex4. One form of this mutational hypothesis is Muller's ratchet5,6. If the mutation rate is high, mutation-free individuals become rare and they can be lost by genetic drift in small populations. In asexual populations, as Muller5 noted, the loss is irreversible and the load of deleterious mutations increases in a ratchet-like manner with the successive loss of the least-mutated individuals. Sex can be advantageous because it increases the fitness of sexual populations by re-creating mutation-free individuals from mutated individuals and stops (or slows) Muller's ratchet. Although Muller's ratchet is an appealing hypothesis, it has been investigated and documented experimentally in only one group of organisms-ciliated protozoa2. I initiated a study to examine the role of Muller's ratchet on the evolution of sex in RNA viruses and report here a significant decrease in fitness due to Muller's ratchet in 20 lineages of the RNA bacteriophage Φ6. These results show that deleterious mutations are generated at a sufficiently high rate to advance Muller's ratchet in an RNA virus and that beneficial, backward and compensatory mutations cannot stop the ratchet in the observed range of fitness decrease.
Determining Mutation Rates in Bacterial Populations
Rosche, William A.; Foster, Patricia L.
2010-01-01
When properly determined, spontaneous mutation rates are a more accurate and biologically meaningful reflection of the underlying mutagenic mechanism than are mutation frequencies. Because bacteria grow exponentially and mutations arise stochastically, methods to estimate mutation rates depend on theoretical models that describe the distribution of mutant numbers among parallel cultures, as in the original Luria-Delbrück fluctuation analysis. An accurate determination of mutation rate depends on understanding the strengths and limitations of these methods, and how to design fluctuation assays to optimize a given method. In this paper we describe a number of methods to estimate mutation rates, give brief accounts of their derivations, and discuss how they behave under various experimental conditions. PMID:10610800
Adaptations of an RNA virus to increasing thermal stress
Singhal, Sonia; Leon Guerrero, Cierra M.; Whang, Stella G.; McClure, Erin M.; Busch, Hannah G.; Kerr, Benjamin
2017-01-01
Environments can change in incremental fashions, where a shift from one state to another occurs over multiple organismal generations. The rate of the environmental change is expected to influence how and how well populations adapt to the final environmental state. We used a model system, the lytic RNA bacteriophage Φ6, to investigate this question empirically. We evolved viruses for thermostability by exposing them to heat shocks that increased to a maximum temperature at different rates. We observed increases in the ability of many heat-shocked populations to survive high temperature heat shocks. On their first exposure to the highest temperature, populations that experienced a gradual increase in temperature had higher average survival than populations that experienced a rapid temperature increase. However, at the end of the experiment, neither the survival of populations at the highest temperature nor the number of mutations per population varied significantly according to the rate of thermal change. We also evaluated mutations from the endpoint populations for their effects on viral thermostability and growth. As expected, some mutations did increase viral thermostability. However, other mutations decreased thermostability but increased growth rate, suggesting that benefits of an increased replication rate may have sometimes outweighed the benefits of enhanced thermostability. Our study highlights the importance of considering the effects of multiple selective pressures, even in environments where a single factor changes. PMID:29267297
Stress-induced mutagenesis: Stress diversity facilitates the persistence of mutator genes
2017-01-01
Mutator strains are expected to evolve when the availability and effect of beneficial mutations are high enough to counteract the disadvantage from deleterious mutations that will inevitably accumulate. As the population becomes more adapted to its environment, both availability and effect of beneficial mutations necessarily decrease and mutation rates are predicted to decrease. It has been shown that certain molecular mechanisms can lead to increased mutation rates when the organism finds itself in a stressful environment. While this may be a correlated response to other functions, it could also be an adaptive mechanism, raising mutation rates only when it is most advantageous. Here, we use a mathematical model to investigate the plausibility of the adaptive hypothesis. We show that such a mechanism can be mantained if the population is subjected to diverse stresses. By simulating various antibiotic treatment schemes, we find that combination treatments can reduce the effectiveness of second-order selection on stress-induced mutagenesis. We discuss the implications of our results to strategies of antibiotic therapy. PMID:28719607
Mutator dynamics in sexual and asexual experimental populations of yeast.
Raynes, Yevgeniy; Gazzara, Matthew R; Sniegowski, Paul D
2011-06-07
In asexual populations, mutators may be expected to hitchhike with associated beneficial mutations. In sexual populations, recombination is predicted to erode such associations, inhibiting mutator hitchhiking. To investigate the effect of recombination on mutators experimentally, we compared the frequency dynamics of a mutator allele (msh2Δ) in sexual and asexual populations of Saccharomyces cerevisiae. Mutator strains increased in frequency at the expense of wild-type strains in all asexual diploid populations, with some approaching fixation in 150 generations of propagation. Over the same period of time, mutators declined toward loss in all corresponding sexual diploid populations as well as in haploid populations propagated asexually. We report the first experimental investigation of mutator dynamics in sexual populations. We show that a strong mutator quickly declines in sexual populations while hitchhiking to high frequency in asexual diploid populations, as predicted by theory. We also show that the msh2Δ mutator has a high and immediate realized cost that is alone sufficient to explain its decline in sexual populations. We postulate that this cost is indirect; namely, that it is due to a very high rate of recessive lethal or strongly deleterious mutation. However, we cannot rule out the possibility that msh2Δ also has unknown directly deleterious effects on fitness, and that these effects may differ between haploid asexual and sexual populations. Despite these reservations, our results prompt us to speculate that the short-term cost of highly deleterious recessive mutations can be as important as recombination in preventing mutator hitchhiking in sexual populations.
Pauly, Matthew D.; Lyons, Daniel M.; Fitzsimmons, William J.
2017-01-01
ABSTRACT Lethal mutagenesis is a broad-spectrum antiviral strategy that employs mutagenic nucleoside analogs to exploit the high mutation rate and low mutational tolerance of many RNA viruses. Studies of mutagen-resistant viruses have identified determinants of replicative fidelity and the importance of mutation rate to viral population dynamics. We have previously demonstrated the effective lethal mutagenesis of influenza A virus using three nucleoside analogs as well as the virus’s high genetic barrier to mutagen resistance. Here, we investigate the mutagen-resistant phenotypes of mutations that were enriched in drug-treated populations. We find that PB1 T123A has higher replicative fitness than the wild type, PR8, and maintains its level of genome production during 5-fluorouracil (2,4-dihydroxy-5-fluoropyrimidine) treatment. Surprisingly, this mutagen-resistant variant also has an increased baseline rate of C-to-U and G-to-A mutations. A second drug-selected mutation, PA T97I, interacts epistatically with PB1 T123A to mediate high-level mutagen resistance, predominantly by limiting the inhibitory effect of nucleosides on polymerase activity. Consistent with the importance of epistatic interactions in the influenza virus polymerase, our data suggest that nucleoside analog resistance and replication fidelity are strain dependent. Two previously identified ribavirin {1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1H-1,2,4-triazole-3-carboxamide} resistance mutations, PB1 V43I and PB1 D27N, do not confer drug resistance in the PR8 background, and the PR8-PB1 V43I polymerase exhibits a normal baseline mutation rate. Our results highlight the genetic complexity of the influenza A virus polymerase and demonstrate that increased replicative capacity is a mechanism by which an RNA virus can counter the negative effects of elevated mutation rates. IMPORTANCE RNA viruses exist as genetically diverse populations. This standing genetic diversity gives them the potential to adapt rapidly, evolve resistance to antiviral therapeutics, and evade immune responses. Viral mutants with altered mutation rates or mutational tolerance have provided insights into how genetic diversity arises and how it affects the behavior of RNA viruses. To this end, we identified variants within the polymerase complex of influenza virus that are able to tolerate drug-mediated increases in viral mutation rates. We find that drug resistance is highly dependent on interactions among mutations in the polymerase complex. In contrast to other viruses, influenza virus counters the effect of higher mutation rates primarily by maintaining high levels of genome replication. These findings suggest the importance of maintaining large population sizes for viruses with high mutation rates and show that multiple proteins can affect both mutation rate and genome synthesis. PMID:28815216
Mutation rates for 20 STR loci in a population from São Paulo state, Southeast, Brazil.
Martinez, Juliana; Braganholi, Danilo Faustino; Ambrósio, Isabela Brunelli; Polverari, Fernanda Silva; Cicarelli, Regina Maria Barretto
2017-11-01
Short tandem repeats (STRs) are genetic markers largely employed in forensic analysis and paternity investigation cases. When an inconsistency between the parent and child is considered as a possible mutation, the mutation rate should be incorporated into paternity index calculations to give a robust result and to reduce the chance of misinterpretation. The aim of this study was to estimate the mutation rates of 20 autosomal STRs loci used for paternity tests. In these loci we analysed 29,831 parent-child allelic transfers from 929 duo or trio paternity tests carried out during 2012?2016 from São Paulo State, Brazil. We identified 35 mutations in 16 loci, and they were more frequent in the paternal germline compared to the maternal germline. The loci with the highest rate were vWA and FGA and the ones with the lowest rate were PENTA E, PENTA D, D21S11, D7S820 and D6S1043. We did not identified any mutation in D2S1338, TH01, TPOX and D16S539 loci. All mutations consisted of losses or gains of one repeat unit. Mutation rates found in the São Paulo population have peculiarities, which justifies the use of regional databases in laboratories.
Estoup, Arnaud; Jarne, Philippe; Cornuet, Jean-Marie
2002-09-01
Homoplasy has recently attracted the attention of population geneticists, as a consequence of the popularity of highly variable stepwise mutating markers such as microsatellites. Microsatellite alleles generally refer to DNA fragments of different size (electromorphs). Electromorphs are identical in state (i.e. have identical size), but are not necessarily identical by descent due to convergent mutation(s). Homoplasy occurring at microsatellites is thus referred to as size homoplasy. Using new analytical developments and computer simulations, we first evaluate the effect of the mutation rate, the mutation model, the effective population size and the time of divergence between populations on size homoplasy at the within and between population levels. We then review the few experimental studies that used various molecular techniques to detect size homoplasious events at some microsatellite loci. The relationship between this molecularly accessible size homoplasy size and the actual amount of size homoplasy is not trivial, the former being considerably influenced by the molecular structure of microsatellite core sequences. In a third section, we show that homoplasy at microsatellite electromorphs does not represent a significant problem for many types of population genetics analyses realized by molecular ecologists, the large amount of variability at microsatellite loci often compensating for their homoplasious evolution. The situations where size homoplasy may be more problematic involve high mutation rates and large population sizes together with strong allele size constraints.
Fixation of slightly beneficial mutations: effects of life history.
Vindenes, Yngvild; Lee, Aline Magdalena; Engen, Steinar; Saether, Bernt-Erik
2010-04-01
Recent studies of rates of evolution have revealed large systematic differences among organisms with different life histories, both within and among taxa. Here, we consider how life history may affect the rate of evolution via its influence on the fixation probability of slightly beneficial mutations. Our approach is based on diffusion modeling for a finite, stage-structured population with stochastic population dynamics. The results, which are verified by computer simulations, demonstrate that even with complex population structure just two demographic parameters are sufficient to give an accurate approximation of the fixation probability of a slightly beneficial mutation. These are the reproductive value of the stage in which the mutation first occurs and the demographic variance of the population. The demographic variance also determines what influence population size has on the fixation probability. This model represents a substantial generalization of earlier models, covering a large range of life histories.
Direct estimate of the spontaneous germ line mutation rate in African green monkeys.
Pfeifer, Susanne P
2017-12-01
Here, I provide the first direct estimate of the spontaneous mutation rate in an Old World monkey, using a seven individual, three-generation pedigree of African green monkeys. Eight de novo mutations were identified within ∼1.5 Gbp of accessible genome, corresponding to an estimated point mutation rate of 0.94 × 10 -8 per site per generation, suggesting an effective population size of ∼12000 for the species. This estimation represents a significant improvement in our knowledge of the population genetics of the African green monkey, one of the most important nonhuman primate models in biomedical research. Furthermore, by comparing mutation rates in Old World monkeys with the only other direct estimates in primates to date-humans and chimpanzees-it is possible to uniquely address how mutation rates have evolved over longer time scales. While the estimated spontaneous mutation rate for African green monkeys is slightly lower than the rate of 1.2 × 10 -8 per base pair per generation reported in chimpanzees, it is similar to the lower range of rates of 0.96 × 10 -8 -1.28 × 10 -8 per base pair per generation recently estimated from whole genome pedigrees in humans. This result suggests a long-term constraint on mutation rate that is quite different from similar evidence pertaining to recombination rate evolution in primates. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
The Equilibrium Allele Frequency Distribution for a Population with Reproductive Skew
Der, Ricky; Plotkin, Joshua B.
2014-01-01
We study the population genetics of two neutral alleles under reversible mutation in a model that features a skewed offspring distribution, called the Λ-Fleming–Viot process. We describe the shape of the equilibrium allele frequency distribution as a function of the model parameters. We show that the mutation rates can be uniquely identified from this equilibrium distribution, but the form of the offspring distribution cannot itself always be so identified. We introduce an estimator for the mutation rate that is consistent, independent of the form of reproductive skew. We also introduce a two-allele infinite-sites version of the Λ-Fleming–Viot process, and we use it to study how reproductive skew influences standing genetic diversity in a population. We derive asymptotic formulas for the expected number of segregating sites as a function of sample size and offspring distribution. We find that the Wright–Fisher model minimizes the equilibrium genetic diversity, for a given mutation rate and variance effective population size, compared to all other Λ-processes. PMID:24473932
Rates of spontaneous mutation among RNA viruses.
Drake, J W
1993-01-01
Simple methods are presented to estimate rates of spontaneous mutation from mutant frequencies and population parameters in RNA viruses. Published mutant frequencies yield a wide range of mutation rates per genome per replication, mainly because mutational targets have usually been small and, thus, poor samples of the mutability of the average base. Nevertheless, there is a clear central tendency for lytic RNA viruses (bacteriophage Q beta, poliomyelitis, vesicular stomatitis, and influenza A) to display rates of spontaneous mutation of approximately 1 per genome per replication. This rate is some 300-fold higher than previously reported for DNA-based microbes. Lytic RNA viruses thus mutate at a rate close to the maximum value compatible with viability. Retroviruses (spleen necrosis, murine leukemia, Rous sarcoma), however, mutate at an average rate about an order of magnitude lower than lytic RNA viruses. PMID:8387212
Sample features associated with success rates in population-based EGFR mutation testing.
Shiau, Carolyn J; Babwah, Jesse P; da Cunha Santos, Gilda; Sykes, Jenna R; Boerner, Scott L; Geddie, William R; Leighl, Natasha B; Wei, Cuihong; Kamel-Reid, Suzanne; Hwang, David M; Tsao, Ming-Sound
2014-07-01
Epidermal growth factor receptor (EGFR) mutation testing has become critical in the treatment of patients with advanced non-small-cell lung cancer. This study involves a large cohort and epidemiologically unselected series of EGFR mutation testing for patients with nonsquamous non-small-cell lung cancer in a North American population to determine sample-related factors that influence success in clinical EGFR testing. Data from consecutive cases of Canadian province-wide testing at a centralized diagnostic laboratory for a 24-month period were reviewed. Samples were tested for exon-19 deletion and exon-21 L858R mutations using a validated polymerase chain reaction method with 1% to 5% detection sensitivity. From 2651 samples submitted, 2404 samples were tested with 2293 samples eligible for analysis (1780 histology and 513 cytology specimens). The overall test-failure rate was 5.4% with overall mutation rate of 20.6%. No significant differences in the failure rate, mutation rate, or mutation type were found between histology and cytology samples. Although tumor cellularity was significantly associated with test-success or mutation rates in histology and cytology specimens, respectively, mutations could be detected in all specimen types. Significant rates of EGFR mutation were detected in cases with thyroid transcription factor (TTF)-1-negative immunohistochemistry (6.7%) and mucinous component (9.0%). EGFR mutation testing should be attempted in any specimen, whether histologic or cytologic. Samples should not be excluded from testing based on TTF-1 status or histologic features. Pathologists should report the amount of available tumor for testing. However, suboptimal samples with a negative EGFR mutation result should be considered for repeat testing with an alternate sample.
Fast stochastic algorithm for simulating evolutionary population dynamics
NASA Astrophysics Data System (ADS)
Tsimring, Lev; Hasty, Jeff; Mather, William
2012-02-01
Evolution and co-evolution of ecological communities are stochastic processes often characterized by vastly different rates of reproduction and mutation and a coexistence of very large and very small sub-populations of co-evolving species. This creates serious difficulties for accurate statistical modeling of evolutionary dynamics. In this talk, we introduce a new exact algorithm for fast fully stochastic simulations of birth/death/mutation processes. It produces a significant speedup compared to the direct stochastic simulation algorithm in a typical case when the total population size is large and the mutation rates are much smaller than birth/death rates. We illustrate the performance of the algorithm on several representative examples: evolution on a smooth fitness landscape, NK model, and stochastic predator-prey system.
Theories of Lethal Mutagenesis: From Error Catastrophe to Lethal Defection.
Tejero, Héctor; Montero, Francisco; Nuño, Juan Carlos
2016-01-01
RNA viruses get extinct in a process called lethal mutagenesis when subjected to an increase in their mutation rate, for instance, by the action of mutagenic drugs. Several approaches have been proposed to understand this phenomenon. The extinction of RNA viruses by increased mutational pressure was inspired by the concept of the error threshold. The now classic quasispecies model predicts the existence of a limit to the mutation rate beyond which the genetic information of the wild type could not be efficiently transmitted to the next generation. This limit was called the error threshold, and for mutation rates larger than this threshold, the quasispecies was said to enter into error catastrophe. This transition has been assumed to foster the extinction of the whole population. Alternative explanations of lethal mutagenesis have been proposed recently. In the first place, a distinction is made between the error threshold and the extinction threshold, the mutation rate beyond which a population gets extinct. Extinction is explained from the effect the mutation rate has, throughout the mutational load, on the reproductive ability of the whole population. Secondly, lethal defection takes also into account the effect of interactions within mutant spectra, which have been shown to be determinant for the understanding the extinction of RNA virus due to an augmented mutational pressure. Nonetheless, some relevant issues concerning lethal mutagenesis are not completely understood yet, as so survival of the flattest, i.e. the development of resistance to lethal mutagenesis by evolving towards mutationally more robust regions of sequence space, or sublethal mutagenesis, i.e., the increase of the mutation rate below the extinction threshold which may boost the adaptability of RNA virus, increasing their ability to develop resistance to drugs (including mutagens). A better design of antiviral therapies will still require an improvement of our knowledge about lethal mutagenesis.
Hongdan, Wang; Bing, Kang; Ning, Su; Miao, He; Bo, Zhang; Yuxin, Guo; Bofeng, Zhu; Shixiu, Liao; Zhaoshu, Zeng
2017-01-01
At present, the Han nationality is China's main ethnic group and also the most populous nation in the world. This is a great resource to study microsatellite mutations and for the study of ethnogeny. The aim of this study is to investigate the genetic polymorphisms and mutations of 22 autosomal STR loci in 2475 individuals from Henan province, China. DNA is amplified and genotyped using PowerPlex™24 system. The gene frequencies, forensic parameters, and the mutation rate of the 22 STR loci are analyzed. A total of 295 alleles are observed in this Henan Han population, and the allelic frequencies ranged from 0.0003 to 0.5036. In order to investigate the genetic relationships between the Henan Han and the other 14 different populations, our present data were compared with previously published data for the same 15 STR loci. The results indicated that the Henan Han had closer genetic relationships the groups including Minnan Han, Maonan, Yi and Guangdong Han groups while the South morocco population, the Moroccan population, the Malay group, and the Uigur stand away from Henan Han. Except of D2S441, D13S317, PentaE, D2S1338, D5S818, TPOX and D19S433, the mutation events are found in the other 15 STR loci. A total of 40 mutation events are observed in the 15 STR loci. The mutation rates are ranged from 0 to 4.85 × 10 -3 . In this study, 39 mutations are single-step mutations, and only one at FGA comprised two steps. STR mutation is commonly existed in paternity testing, while there are no STR mutation studies of the 22 STR loci in the Henan Han population. It is of great importance in forensic individual discrimination and paternal testing.
Rare beneficial mutations can halt Muller's ratchet
NASA Astrophysics Data System (ADS)
Balick, Daniel; Goyal, Sidhartha; Jerison, Elizabeth; Neher, Richard; Shraiman, Boris; Desai, Michael
2012-02-01
In viral, bacterial, and other asexual populations, the vast majority of non-neutral mutations are deleterious. This motivates the application of models without beneficial mutations. Here we show that the presence of surprisingly few compensatory mutations halts fitness decay in these models. Production of deleterious mutations is balanced by purifying selection, stabilizing the fitness distribution. However, stochastic vanishing of fitness classes can lead to slow fitness decay (i.e. Muller's ratchet). For weakly deleterious mutations, production overwhelms purification, rapidly decreasing population fitness. We show that when beneficial mutations are introduced, a stable steady state emerges in the form of a dynamic mutation-selection balance. We argue this state is generic for all mutation rates and population sizes, and is reached as an end state as genomes become saturated by either beneficial or deleterious mutations. Assuming all mutations have the same magnitude selective effect, we calculate the fraction of beneficial mutations necessary to maintain the dynamic balance. This may explain the unexpected maintenance of asexual genomes, as in mitochondria, in the presence of selection. This will affect in the statistics of genetic diversity in these populations.
Allen, Benjamin; Sample, Christine; Dementieva, Yulia; Medeiros, Ruben C.; Paoletti, Christopher; Nowak, Martin A.
2015-01-01
Over time, a population acquires neutral genetic substitutions as a consequence of random drift. A famous result in population genetics asserts that the rate, K, at which these substitutions accumulate in the population coincides with the mutation rate, u, at which they arise in individuals: K = u. This identity enables genetic sequence data to be used as a “molecular clock” to estimate the timing of evolutionary events. While the molecular clock is known to be perturbed by selection, it is thought that K = u holds very generally for neutral evolution. Here we show that asymmetric spatial population structure can alter the molecular clock rate for neutral mutations, leading to either Ku. Our results apply to a general class of haploid, asexually reproducing, spatially structured populations. Deviations from K = u occur because mutations arise unequally at different sites and have different probabilities of fixation depending on where they arise. If birth rates are uniform across sites, then K ≤ u. In general, K can take any value between 0 and Nu. Our model can be applied to a variety of population structures. In one example, we investigate the accumulation of genetic mutations in the small intestine. In another application, we analyze over 900 Twitter networks to study the effect of network topology on the fixation of neutral innovations in social evolution. PMID:25719560
Allen, Benjamin; Sample, Christine; Dementieva, Yulia; Medeiros, Ruben C; Paoletti, Christopher; Nowak, Martin A
2015-02-01
Over time, a population acquires neutral genetic substitutions as a consequence of random drift. A famous result in population genetics asserts that the rate, K, at which these substitutions accumulate in the population coincides with the mutation rate, u, at which they arise in individuals: K = u. This identity enables genetic sequence data to be used as a "molecular clock" to estimate the timing of evolutionary events. While the molecular clock is known to be perturbed by selection, it is thought that K = u holds very generally for neutral evolution. Here we show that asymmetric spatial population structure can alter the molecular clock rate for neutral mutations, leading to either Ku. Our results apply to a general class of haploid, asexually reproducing, spatially structured populations. Deviations from K = u occur because mutations arise unequally at different sites and have different probabilities of fixation depending on where they arise. If birth rates are uniform across sites, then K ≤ u. In general, K can take any value between 0 and Nu. Our model can be applied to a variety of population structures. In one example, we investigate the accumulation of genetic mutations in the small intestine. In another application, we analyze over 900 Twitter networks to study the effect of network topology on the fixation of neutral innovations in social evolution.
Evolutionary rescue from extinction is contingent on a lower rate of environmental change.
Lindsey, Haley A; Gallie, Jenna; Taylor, Susan; Kerr, Benjamin
2013-02-28
The extinction rate of populations is predicted to rise under increasing rates of environmental change. If a population experiencing increasingly stressful conditions lacks appropriate phenotypic plasticity or access to more suitable habitats, then genetic change may be the only way to avoid extinction. Evolutionary rescue from extinction occurs when natural selection enriches a population for more stress-tolerant genetic variants. Some experimental studies have shown that lower rates of environmental change lead to more adapted populations or fewer extinctions. However, there has been little focus on the genetic changes that underlie evolutionary rescue. Here we demonstrate that some evolutionary trajectories are contingent on a lower rate of environmental change. We allowed hundreds of populations of Escherichia coli to evolve under variable rates of increase in concentration of the antibiotic rifampicin. We then genetically engineered all combinations of mutations from isolates evolved under lower rates of environmental change. By assessing fitness of these engineered strains across a range of drug concentrations, we show that certain genotypes are evolutionarily inaccessible under rapid environmental change. Rapidly deteriorating environments not only limit mutational opportunities by lowering population size, but they can also eliminate sets of mutations as evolutionary options. As anthropogenic activities are leading to environmental change at unprecedented rapidity, it is critical to understand how the rate of environmental change affects both demographic and genetic underpinnings of evolutionary rescue.
Zhang, Jie; He, Jing; Zeng, Xiao-Hong; Su, Jie; Chen, Hong; Xu, Yong-Mei; Pu, Jian; Zhu, Bao-Sheng
2016-02-01
To investigate the gene mutation spectrum of β-thalassemia in Dai ethnic population of 2 border region in Chinese Yunnan Province. The patients with β-thalassemia in Dai ethnic population of Dehong and Xishuangbanna autonamic prefecture were screened by using blood routine detection and capillary electrophoresis. The β-globin gene mutation in patients with β-thalassemia were detected by using PCR reverse dot-blot hybridization (PCR-RDB), the constitutive rate of gene mutation in patients with β-thalassemia of Dai ethnic population in two border regions was analyzed and compared. A total of 186 patients with gene mutation of β-thalassemia were confirmed. Among them, 10 gene mutation were found, and the 5 main gene mutations were CD26 (62.56%), CD41-42 (18.97%), CD17 (14.36%), CD71-72 (2.05%) and IVS-II-654 (1.54%). Among Dai ethinic population in Dehong region, 4 gene mutations were found including CD26 (80.31%), CD17 (11.02%), CD41-42 (6.30%) and CD71-72 (2.36%). Among Dai ethinic population in Xishuangbanna region, 6 gene mutations were found, out of them the more common gene mutations were CD41-42 (42.64%), CD26 (29.41%) and CD17 (20.59%). The gene mutations of β-thalassemia in Dai ethinic population of Yunnan province has been confirmed to be more genetic heterogenicity, the spectrums of β-thalassemia mutations in Dai ethinic population of different regions were significant different.
High mitochondrial mutation rates estimated from deep-rooting Costa Rican pedigrees
Madrigal, Lorena; Melendez-Obando, Mauricio; Villegas-Palma, Ramon; Barrantes, Ramiro; Raventos, Henrieta; Pereira, Reynaldo; Luiselli, Donata; Pettener, Davide; Barbujani, Guido
2012-01-01
Estimates of mutation rates for the noncoding hypervariable Region I (HVR-I) of mitochondrial DNA (mtDNA) vary widely, depending on whether they are inferred from phylogenies (assuming that molecular evolution is clock-like) or directly from pedigrees. All pedigree-based studies so far were conducted on populations of European origin. In this paper we analyzed 19 deep-rooting pedigrees in a population of mixed origin in Costa Rica. We calculated two estimates of the HVR-I mutation rate, one considering all apparent mutations, and one disregarding changes at sites known to be mutational hot spots and eliminating genealogy branches which might be suspected to include errors, or unrecognized adoptions along the female lines. At the end of this procedure, we still observed a mutation rate equal to 1.24 × 10−6, per site per year, i.e., at least three-fold as high as estimates derived from phylogenies. Our results confirm that mutation rates observed in pedigrees are much higher than estimated assuming a neutral model of long-term HVRI evolution. We argue that, until the cause of these discrepancies will be fully understood, both lower estimates (i.e., those derived from phylogenetic comparisons) and higher, direct estimates such as those obtained in this study, should be considered when modeling evolutionary and demographic processes. PMID:22460349
Zhou, Aifen; Hillesland, Kristina L.; He, Zhili; ...
2015-04-07
To investigate the genetic basis of microbial evolutionary adaptation to salt (NaCl) stress, populations of Desulfovibrio vulgaris Hildenborough (DvH), a sulfate-reducing bacterium important for the biogeochemical cycling of sulfur, carbon and nitrogen, and potentially the bioremediation of toxic heavy metals and radionuclides, were propagated under salt stress or non-stress conditions for 1200 generations. Whole-genome sequencing revealed 11 mutations in salt stress-evolved clone ES9-11 and 14 mutations in non-stress-evolved clone EC3-10. Whole-population sequencing data suggested the rapid selective sweep of the pre-existing polymorphisms under salt stress within the first 100 generations and the slow fixation of new mutations. Population genotyping datamore » demonstrated that the rapid selective sweep of pre-existing polymorphisms was common in salt stress-evolved populations. In contrast, the selection of pre-existing polymorphisms was largely random in EC populations. Consistently, at 100 generations, stress-evolved population ES9 showed improved salt tolerance, namely increased growth rate (2.0-fold), higher biomass yield (1.8-fold) and shorter lag phase (0.7-fold) under higher salinity conditions. The beneficial nature of several mutations was confirmed by site-directed mutagenesis. All four tested mutations contributed to the shortened lag phases under higher salinity condition. In particular, compared with the salt tolerance improvement in ES9-11, a mutation in a histidine kinase protein gene lytS contributed 27% of the growth rate increase and 23% of the biomass yield increase while a mutation in hypothetical gene DVU2472 contributed 24% of the biomass yield increase. In conclusion, our results suggested that a few beneficial mutations could lead to dramatic improvements in salt tolerance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Aifen; Hillesland, Kristina L.; He, Zhili
To investigate the genetic basis of microbial evolutionary adaptation to salt (NaCl) stress, populations of Desulfovibrio vulgaris Hildenborough (DvH), a sulfate-reducing bacterium important for the biogeochemical cycling of sulfur, carbon and nitrogen, and potentially the bioremediation of toxic heavy metals and radionuclides, were propagated under salt stress or non-stress conditions for 1200 generations. Whole-genome sequencing revealed 11 mutations in salt stress-evolved clone ES9-11 and 14 mutations in non-stress-evolved clone EC3-10. Whole-population sequencing data suggested the rapid selective sweep of the pre-existing polymorphisms under salt stress within the first 100 generations and the slow fixation of new mutations. Population genotyping datamore » demonstrated that the rapid selective sweep of pre-existing polymorphisms was common in salt stress-evolved populations. In contrast, the selection of pre-existing polymorphisms was largely random in EC populations. Consistently, at 100 generations, stress-evolved population ES9 showed improved salt tolerance, namely increased growth rate (2.0-fold), higher biomass yield (1.8-fold) and shorter lag phase (0.7-fold) under higher salinity conditions. The beneficial nature of several mutations was confirmed by site-directed mutagenesis. All four tested mutations contributed to the shortened lag phases under higher salinity condition. In particular, compared with the salt tolerance improvement in ES9-11, a mutation in a histidine kinase protein gene lytS contributed 27% of the growth rate increase and 23% of the biomass yield increase while a mutation in hypothetical gene DVU2472 contributed 24% of the biomass yield increase. In conclusion, our results suggested that a few beneficial mutations could lead to dramatic improvements in salt tolerance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Aifen; Hillesland, Kristina L.; He, Zhili
To investigate the genetic basis of microbial evolutionary adaptation to salt (NaCl) stress, populations of Desulfovibrio vulgaris Hildenborough (DvH), a sulfate-reducing bacterium important for the biogeochemical cycling of sulfur, carbon and nitrogen, and potentially the bioremediation of toxic heavy metals and radionuclides, were propagated under salt stress or non-stress conditions for 1200 generations. Whole-genome sequencing revealed 11 mutations in salt stress-evolved clone ES9-11 and 14 mutations in non-stress-evolved clone EC3-10. Whole-population sequencing data suggested the rapid selective sweep of the pre-existing polymorphisms under salt stress within the first 100 generations and the slow fixation of new mutations. Population genotyping datamore » demonstrated that the rapid selective sweep of pre-existing polymorphisms was common in salt stress-evolved populations. In contrast, the selection of pre-existing polymorphisms was largely random in EC populations. Consistently, at 100 generations, stress-evolved population ES9 showed improved salt tolerance, namely increased growth rate (2.0-fold), higher biomass yield (1.8-fold) and shorter lag phase (0.7-fold) under higher salinity conditions. The beneficial nature of several mutations was confirmed by site-directed mutagenesis. All four tested mutations contributed to the shortened lag phases under higher salinity condition. In particular, compared with the salt tolerance improvement in ES9-11, a mutation in a histidine kinase protein gene lytS contributed 27% of the growth rate increase and 23% of the biomass yield increase while a mutation in hypothetical gene DVU2472 contributed 24% of the biomass yield increase. Our results suggested that a few beneficial mutations could lead to dramatic improvements in salt tolerance.« less
Zhou, Aifen; Hillesland, Kristina L; He, Zhili; Schackwitz, Wendy; Tu, Qichao; Zane, Grant M; Ma, Qiao; Qu, Yuanyuan; Stahl, David A; Wall, Judy D; Hazen, Terry C; Fields, Matthew W; Arkin, Adam P; Zhou, Jizhong
2015-11-01
To investigate the genetic basis of microbial evolutionary adaptation to salt (NaCl) stress, populations of Desulfovibrio vulgaris Hildenborough (DvH), a sulfate-reducing bacterium important for the biogeochemical cycling of sulfur, carbon and nitrogen, and potentially the bioremediation of toxic heavy metals and radionuclides, were propagated under salt stress or non-stress conditions for 1200 generations. Whole-genome sequencing revealed 11 mutations in salt stress-evolved clone ES9-11 and 14 mutations in non-stress-evolved clone EC3-10. Whole-population sequencing data suggested the rapid selective sweep of the pre-existing polymorphisms under salt stress within the first 100 generations and the slow fixation of new mutations. Population genotyping data demonstrated that the rapid selective sweep of pre-existing polymorphisms was common in salt stress-evolved populations. In contrast, the selection of pre-existing polymorphisms was largely random in EC populations. Consistently, at 100 generations, stress-evolved population ES9 showed improved salt tolerance, namely increased growth rate (2.0-fold), higher biomass yield (1.8-fold) and shorter lag phase (0.7-fold) under higher salinity conditions. The beneficial nature of several mutations was confirmed by site-directed mutagenesis. All four tested mutations contributed to the shortened lag phases under higher salinity condition. In particular, compared with the salt tolerance improvement in ES9-11, a mutation in a histidine kinase protein gene lytS contributed 27% of the growth rate increase and 23% of the biomass yield increase while a mutation in hypothetical gene DVU2472 contributed 24% of the biomass yield increase. Our results suggested that a few beneficial mutations could lead to dramatic improvements in salt tolerance.
Zhou, Aifen; Hillesland, Kristina L; He, Zhili; Schackwitz, Wendy; Tu, Qichao; Zane, Grant M; Ma, Qiao; Qu, Yuanyuan; Stahl, David A; Wall, Judy D; Hazen, Terry C; Fields, Matthew W; Arkin, Adam P; Zhou, Jizhong
2015-01-01
To investigate the genetic basis of microbial evolutionary adaptation to salt (NaCl) stress, populations of Desulfovibrio vulgaris Hildenborough (DvH), a sulfate-reducing bacterium important for the biogeochemical cycling of sulfur, carbon and nitrogen, and potentially the bioremediation of toxic heavy metals and radionuclides, were propagated under salt stress or non-stress conditions for 1200 generations. Whole-genome sequencing revealed 11 mutations in salt stress-evolved clone ES9-11 and 14 mutations in non-stress-evolved clone EC3-10. Whole-population sequencing data suggested the rapid selective sweep of the pre-existing polymorphisms under salt stress within the first 100 generations and the slow fixation of new mutations. Population genotyping data demonstrated that the rapid selective sweep of pre-existing polymorphisms was common in salt stress-evolved populations. In contrast, the selection of pre-existing polymorphisms was largely random in EC populations. Consistently, at 100 generations, stress-evolved population ES9 showed improved salt tolerance, namely increased growth rate (2.0-fold), higher biomass yield (1.8-fold) and shorter lag phase (0.7-fold) under higher salinity conditions. The beneficial nature of several mutations was confirmed by site-directed mutagenesis. All four tested mutations contributed to the shortened lag phases under higher salinity condition. In particular, compared with the salt tolerance improvement in ES9-11, a mutation in a histidine kinase protein gene lytS contributed 27% of the growth rate increase and 23% of the biomass yield increase while a mutation in hypothetical gene DVU2472 contributed 24% of the biomass yield increase. Our results suggested that a few beneficial mutations could lead to dramatic improvements in salt tolerance. PMID:25848870
Programming adaptive control to evolve increased metabolite production.
Chou, Howard H; Keasling, Jay D
2013-01-01
The complexity inherent in biological systems challenges efforts to rationally engineer novel phenotypes, especially those not amenable to high-throughput screens and selections. In nature, increased mutation rates generate diversity in a population that can lead to the evolution of new phenotypes. Here we construct an adaptive control system that increases the mutation rate in order to generate diversity in the population, and decreases the mutation rate as the concentration of a target metabolite increases. This system is called feedback-regulated evolution of phenotype (FREP), and is implemented with a sensor to gauge the concentration of a metabolite and an actuator to alter the mutation rate. To evolve certain novel traits that have no known natural sensors, we develop a framework to assemble synthetic transcription factors using metabolic enzymes and construct four different sensors that recognize isopentenyl diphosphate in bacteria and yeast. We verify FREP by evolving increased tyrosine and isoprenoid production.
2013-01-01
Background Given that hearing loss occurs in 1 to 3 of 1,000 live births and approximately 90 to 95 percent of them are born into hearing families, it is of importance and necessity to get better understanding about the carrier rate and mutation spectrum of genes associated with hearing impairment in the general population. Methods 7,263 unrelated women of childbearing age with normal hearing and without family history of hearing loss were tested with allele-specific PCR-based universal array. Further genetic testing were provided to the spouses of the screened carriers. For those couples at risk, multiple choices were provided, including prenatal diagnosis. Results Among the 7,263 normal hearing participants, 303 subjects carried pathogenic mutations included in the screening chip, which made the carrier rate 4.17%. Of the 303 screened carriers, 282 harbored heterozygous mutated genes associated with autosomal recessive hearing loss, and 95 spouses took further genetic tests. 8 out of the 9 couples harbored deafness-causing mutations in the same gene received prenatal diagnosis. Conclusions Given that nearly 90 to 95 percent of deaf and hard-of-hearing babies are born into hearing families, better understanding about the carrier rate and mutation spectrum of genes associated with hearing impairment in the female population of childbearing age may be of importance in carrier screening and genetic counseling. PMID:23718755
Yin, Aihua; Liu, Chang; Zhang, Yan; Wu, Jing; Mai, Mingqin; Ding, Hongke; Yang, Jiexia; Zhang, Xiaozhuang
2013-05-29
Given that hearing loss occurs in 1 to 3 of 1,000 live births and approximately 90 to 95 percent of them are born into hearing families, it is of importance and necessity to get better understanding about the carrier rate and mutation spectrum of genes associated with hearing impairment in the general population. 7,263 unrelated women of childbearing age with normal hearing and without family history of hearing loss were tested with allele-specific PCR-based universal array. Further genetic testing were provided to the spouses of the screened carriers. For those couples at risk, multiple choices were provided, including prenatal diagnosis. Among the 7,263 normal hearing participants, 303 subjects carried pathogenic mutations included in the screening chip, which made the carrier rate 4.17%. Of the 303 screened carriers, 282 harbored heterozygous mutated genes associated with autosomal recessive hearing loss, and 95 spouses took further genetic tests. 8 out of the 9 couples harbored deafness-causing mutations in the same gene received prenatal diagnosis. Given that nearly 90 to 95 percent of deaf and hard-of-hearing babies are born into hearing families, better understanding about the carrier rate and mutation spectrum of genes associated with hearing impairment in the female population of childbearing age may be of importance in carrier screening and genetic counseling.
How Large Asexual Populations Adapt
NASA Astrophysics Data System (ADS)
Desai, Michael
2007-03-01
We often think of beneficial mutations as being rare, and of adaptation as a sequence of selected substitutions: a beneficial mutation occurs, spreads through a population in a selective sweep, then later another beneficial mutation occurs, and so on. This simple picture is the basis for much of our intuition about adaptive evolution, and underlies a number of practical techniques for analyzing sequence data. Yet many large and mostly asexual populations -- including a wide variety of unicellular organisms and viruses -- live in a very different world. In these populations, beneficial mutations are common, and frequently interfere or cooperate with one another as they all attempt to sweep simultaneously. This radically changes the way these populations adapt: rather than an orderly sequence of selective sweeps, evolution is a constant swarm of competing and interfering mutations. I will describe some aspects of these dynamics, including why large asexual populations cannot evolve very quickly and the character of the diversity they maintain. I will explain how this changes our expectations of sequence data, how sex can help a population adapt, and the potential role of ``mutator'' phenotypes with abnormally high mutation rates. Finally, I will discuss comparisons of these predictions with evolution experiments in laboratory yeast populations.
Patterson, Melissa N; Maxwell, Patrick H
2014-10-16
Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For instance, measurements of yeast replicative lifespan through micromanipulation involve very small populations of cells, which prohibit detection of rare mutations. Genetic methods to enrich for mother cells in populations by inducing death of daughter cells have been developed, but population sizes are still limited by the frequency with which random mutations that compromise the selection systems occur. The current protocol takes advantage of magnetic sorting of surface-labeled yeast mother cells to obtain large enough populations of aging mother cells to quantify rare mutations through phenotypic selections. Mutation rates, measured through fluctuation tests, and mutation frequencies are first established for young cells and used to predict the frequency of mutations in mother cells of various replicative ages. Mutation frequencies are then determined for sorted mother cells, and the age of the mother cells is determined using flow cytometry by staining with a fluorescent reagent that detects bud scars formed on their cell surfaces during cell division. Comparison of predicted mutation frequencies based on the number of cell divisions to the frequencies experimentally observed for mother cells of a given replicative age can then identify whether there are age-related changes in the rate of accumulating mutations. Variations of this basic protocol provide the means to investigate the influence of alterations in specific gene functions or specific environmental conditions on mutation accumulation to address mechanisms underlying genome instability during replicative aging.
Effective lethal mutagenesis of influenza virus by three nucleoside analogs.
Pauly, Matthew D; Lauring, Adam S
2015-04-01
Lethal mutagenesis is a broad-spectrum antiviral strategy that exploits the high mutation rate and low mutational tolerance of many RNA viruses. This approach uses mutagenic drugs to increase viral mutation rates and burden viral populations with mutations that reduce the number of infectious progeny. We investigated the effectiveness of lethal mutagenesis as a strategy against influenza virus using three nucleoside analogs, ribavirin, 5-azacytidine, and 5-fluorouracil. All three drugs were active against a panel of seasonal H3N2 and laboratory-adapted H1N1 strains. We found that each drug increased the frequency of mutations in influenza virus populations and decreased the virus' specific infectivity, indicating a mutagenic mode of action. We were able to drive viral populations to extinction by passaging influenza virus in the presence of each drug, indicating that complete lethal mutagenesis of influenza virus populations can be achieved when a sufficient mutational burden is applied. Population-wide resistance to these mutagenic agents did not arise after serial passage of influenza virus populations in sublethal concentrations of drug. Sequencing of these drug-passaged viral populations revealed genome-wide accumulation of mutations at low frequency. The replicative capacity of drug-passaged populations was reduced at higher multiplicities of infection, suggesting the presence of defective interfering particles and a possible barrier to the evolution of resistance. Together, our data suggest that lethal mutagenesis may be a particularly effective therapeutic approach with a high genetic barrier to resistance for influenza virus. Influenza virus is an RNA virus that causes significant morbidity and mortality during annual epidemics. Novel therapies for RNA viruses are needed due to the ease with which these viruses evolve resistance to existing therapeutics. Lethal mutagenesis is a broad-spectrum strategy that exploits the high mutation rate and the low mutational tolerance of most RNA viruses. It is thought to possess a higher barrier to resistance than conventional antiviral strategies. We investigated the effectiveness of lethal mutagenesis against influenza virus using three different drugs. We showed that influenza virus was sensitive to lethal mutagenesis by demonstrating that all three drugs induced mutations and led to an increase in the generation of defective viral particles. We also found that it may be difficult for resistance to these drugs to arise at a population-wide level. Our data suggest that lethal mutagenesis may be an attractive anti-influenza strategy that warrants further investigation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
RNA Recombination Enhances Adaptability and Is Required for Virus Spread and Virulence.
Xiao, Yinghong; Rouzine, Igor M; Bianco, Simone; Acevedo, Ashley; Goldstein, Elizabeth Faul; Farkov, Mikhail; Brodsky, Leonid; Andino, Raul
2016-04-13
Mutation and recombination are central processes driving microbial evolution. A high mutation rate fuels adaptation but also generates deleterious mutations. Recombination between two different genomes may resolve this paradox, alleviating effects of clonal interference and purging deleterious mutations. Here we demonstrate that recombination significantly accelerates adaptation and evolution during acute virus infection. We identified a poliovirus recombination determinant within the virus polymerase, mutation of which reduces recombination rates without altering replication fidelity. By generating a panel of variants with distinct mutation rates and recombination ability, we demonstrate that recombination is essential to enrich the population in beneficial mutations and purge it from deleterious mutations. The concerted activities of mutation and recombination are key to virus spread and virulence in infected animals. These findings inform a mathematical model to demonstrate that poliovirus adapts most rapidly at an optimal mutation rate determined by the trade-off between selection and accumulation of detrimental mutations. Copyright © 2016 Elsevier Inc. All rights reserved.
Winbo, Annika; Fosdal, Inger; Lindh, Maria; Diamant, Ulla-Britt; Persson, Johan; Wettrell, Göran; Rydberg, Annika
2015-08-01
Early diagnosis and risk stratification is of clinical importance in the long QT syndrome (LQTS), however, little genotype-specific data are available regarding fetal LQTS. We investigate third trimester fetal heart rate, routinely recorded within public maternal health care, as a possible marker for LQT1 genotype and phenotype. This retrospective study includes 184 fetuses from 2 LQT1 founder populations segregating p.Y111C and p.R518X (74 noncarriers and 110 KCNQ1 mutation carriers, whereof 13 double mutation carriers). Pedigree-based measured genotype analysis revealed significant associations between fetal heart rate, genotype, and phenotype; mean third trimester prelabor fetal heart rates obtained from obstetric records (gestational week 29-41) were lower per added mutation (no mutation, 143±5 beats per minute; single mutation, 134±8 beats per minute; double mutations, 111±6 beats per minute; P<0.0001), and lower in symptomatic versus asymptomatic mutation carriers (122±10 versus 137±9 beats per minute; P<0.0001). Strong correlations between fetal heart rate and neonatal heart rate (r=0.700; P<0.001), and postnatal QTc (r=-0.762; P<0.001) were found. In a multivariable model, fetal genotype explained the majority of variance in fetal heart rate (-10 beats per minute per added mutation; P<1.0×10(-23)). Arrhythmia symptoms and intrauterine β-blocker exposure each predicted -7 beats per minute, P<0.0001. In this study including 184 fetuses from 2 LQT1 founder populations, third trimester fetal heart rate discriminated between fetal genotypes and correlated with severity of postnatal cardiac phenotype. This finding strengthens the role of fetal heart rate in the early detection and risk stratification of LQTS, particularly for fetuses with double mutations, at high risk of early life-threatening arrhythmias. © 2015 American Heart Association, Inc.
The population genetics of human disease: The case of recessive, lethal mutations
Gao, Ziyue; Baker, Zachary; Diesel, José Francisco; Simons, Yuval B.; Haque, Imran S.; Pickrell, Joseph; Przeworski, Molly
2017-01-01
Do the frequencies of disease mutations in human populations reflect a simple balance between mutation and purifying selection? What other factors shape the prevalence of disease mutations? To begin to answer these questions, we focused on one of the simplest cases: recessive mutations that alone cause lethal diseases or complete sterility. To this end, we generated a hand-curated set of 417 Mendelian mutations in 32 genes reported to cause a recessive, lethal Mendelian disease. We then considered analytic models of mutation-selection balance in infinite and finite populations of constant sizes and simulations of purifying selection in a more realistic demographic setting, and tested how well these models fit allele frequencies estimated from 33,370 individuals of European ancestry. In doing so, we distinguished between CpG transitions, which occur at a substantially elevated rate, and three other mutation types. Intriguingly, the observed frequency for CpG transitions is slightly higher than expectation but close, whereas the frequencies observed for the three other mutation types are an order of magnitude higher than expected, with a bigger deviation from expectation seen for less mutable types. This discrepancy is even larger when subtle fitness effects in heterozygotes or lethal compound heterozygotes are taken into account. In principle, higher than expected frequencies of disease mutations could be due to widespread errors in reporting causal variants, compensation by other mutations, or balancing selection. It is unclear why these factors would have a greater impact on disease mutations that occur at lower rates, however. We argue instead that the unexpectedly high frequency of disease mutations and the relationship to the mutation rate likely reflect an ascertainment bias: of all the mutations that cause recessive lethal diseases, those that by chance have reached higher frequencies are more likely to have been identified and thus to have been included in this study. Beyond the specific application, this study highlights the parameters likely to be important in shaping the frequencies of Mendelian disease alleles. PMID:28957316
Mutations, mutation rates, and evolution at the hypervariable VNTR loci of Yersinia pestis.
Vogler, Amy J; Keys, Christine E; Allender, Christopher; Bailey, Ira; Girard, Jessica; Pearson, Talima; Smith, Kimothy L; Wagner, David M; Keim, Paul
2007-03-01
VNTRs are able to discriminate among closely related isolates of recently emerged clonal pathogens, including Yersinia pestis the etiologic agent of plague, because of their great diversity. Diversity is driven largely by mutation but little is known about VNTR mutation rates, factors affecting mutation rates, or the mutational mechanisms. The molecular epidemiological utility of VNTRs will be greatly enhanced when this foundational knowledge is available. Here, we measure mutation rates for 43 VNTR loci in Y. pestis using an in vitro generated population encompassing approximately 96,000 generations. We estimate the combined 43-locus rate and individual rates for 14 loci. A comparison of Y. pestis and Escherichia coli O157:H7 VNTR mutation rates and products revealed a similar relationship between diversity and mutation rate in these two species. Likewise, the relationship between repeat copy number and mutation rate is nearly identical between these species, suggesting a generalized relationship that may be applicable to other species. The single- versus multiple-repeat mutation ratios and the insertion versus deletion mutation ratios were also similar, providing support for a general model for the mutations associated with VNTRs. Finally, we use two small sets of Y. pestis isolates to show how this general model and our estimated mutation rates can be used to compare alternate phylogenies, and to evaluate the significance of genotype matches, near-matches, and mismatches found in empirical comparisons with a reference database.
Deleterious mutations can surf to high densities on the wave front of an expanding population.
Travis, Justin M J; Münkemüller, Tamara; Burton, Olivia J; Best, Alex; Dytham, Calvin; Johst, Karin
2007-10-01
There is an increasing recognition that evolutionary processes play a key role in determining the dynamics of range expansion. Recent work demonstrates that neutral mutations arising near the edge of a range expansion sometimes surf on the expanding front leading them rather than that leads to reach much greater spatial distribution and frequency than expected in stationary populations. Here, we extend this work and examine the surfing behavior of nonneutral mutations. Using an individual-based coupled-map lattice model, we confirm that, regardless of its fitness effects, the probability of survival of a new mutation depends strongly upon where it arises in relation to the expanding wave front. We demonstrate that the surfing effect can lead to deleterious mutations reaching high densities at an expanding front, even when they have substantial negative effects on fitness. Additionally, we highlight that this surfing phenomenon can occur for mutations that impact reproductive rate (i.e., number of offspring produced) as well as mutations that modify juvenile competitive ability. We suggest that these effects are likely to have important consequences for rates of spread and the evolution of spatially expanding populations.
Thailand mutation and variation database (ThaiMUT).
Ruangrit, Uttapong; Srikummool, Metawee; Assawamakin, Anunchai; Ngamphiw, Chumpol; Chuechote, Suparat; Thaiprasarnsup, Vilasinee; Agavatpanitch, Gallissara; Pasomsab, Ekawat; Yenchitsomanus, Pa-Thai; Mahasirimongkol, Surakameth; Chantratita, Wasun; Palittapongarnpim, Prasit; Uyyanonvara, Bunyarit; Limwongse, Chanin; Tongsima, Sissades
2008-08-01
With the completion of the human genome project, novel sequencing and genotyping technologies had been utilized to detect mutations. Such mutations have continually been produced at exponential rate by researchers in various communities. Based on the population's mutation spectra, occurrences of Mendelian diseases are different across ethnic groups. A proportion of Mendelian diseases can be observed in some countries at higher rates than others. Recognizing the importance of mutation effects in Thailand, we established a National and Ethnic Mutation Database (NEMDB) for Thai people. This database, named Thailand Mutation and Variation database (ThaiMUT), offers a web-based access to genetic mutation and variation information in Thai population. This NEMDB initiative is an important informatics tool for both research and clinical purposes to retrieve and deposit human variation data. The mutation data cataloged in ThaiMUT database were derived from journal articles available in PubMed and local publications. In addition to collected mutation data, ThaiMUT also records genetic polymorphisms located in drug related genes. ThaiMUT could then provide useful information for clinical mutation screening services for Mendelian diseases and pharmacogenomic researches. ThaiMUT can be publicly accessed from http://gi.biotec.or.th/thaimut.
The Red Queen and King in finite populations
Hayward, Laura K.
2017-01-01
In antagonistic symbioses, such as host–parasite interactions, one population’s success is the other’s loss. In mutualistic symbioses, such as division of labor, both parties can gain, but they might have different preferences over the possible mutualistic arrangements. The rates of evolution of the two populations in a symbiosis are important determinants of which population will be more successful: Faster evolution is thought to be favored in antagonistic symbioses (the “Red Queen effect”), but disfavored in certain mutualistic symbioses (the “Red King effect”). However, it remains unclear which biological parameters drive these effects. Here, we analyze the effects of the various determinants of evolutionary rate: generation time, mutation rate, population size, and the intensity of natural selection. Our main results hold for the case where mutation is infrequent. Slower evolution causes a long-term advantage in an important class of mutualistic interactions. Surprisingly, less intense selection is the strongest driver of this Red King effect, whereas relative mutation rates and generation times have little effect. In antagonistic interactions, faster evolution by any means is beneficial. Our results provide insight into the demographic evolution of symbionts. PMID:28630336
Padilla-Gutiérrez, Jorge Ramón; Valle, Yeminia; Quintero-Ramos, Antonio; Hernández, Guillermo; Rodarte, Katya; Ortiz, Rocío; Olivares, Norma; Rivas, Fernando
2008-11-01
Nine Y-STR (DYS19, DYS390, DYS391, DYS392, DYS446, DYS447, DYS448, DYS456 and DYS458) were analyzed in a male sample of 285 unrelated individuals from Guadalajara, Jalisco, México. The haplotype diversity (0.996) and discrimination capacity (0.986) were calculated. A family study of around 200 father/son pairs and among 1828 meiosis showed five mutational events. All mutations were single step. The overall mutation rate estimated across the nine Y-STRs was 2.7 x 10(-3) (95% CI 1.2-6.4 x 10(-3))/locus/meiosis. The results indicate that these nine loci are useful Y-linked markers for forensic applications.
Adaptive tuning of mutation rates allows fast response to lethal stress in Escherichia coli
Swings, Toon; Van den Bergh, Bram; Wuyts, Sander; Oeyen, Eline; Voordeckers, Karin; Verstrepen, Kevin J; Fauvart, Maarten; Verstraeten, Natalie; Michiels, Jan
2017-01-01
While specific mutations allow organisms to adapt to stressful environments, most changes in an organism's DNA negatively impact fitness. The mutation rate is therefore strictly regulated and often considered a slowly-evolving parameter. In contrast, we demonstrate an unexpected flexibility in cellular mutation rates as a response to changes in selective pressure. We show that hypermutation independently evolves when different Escherichia coli cultures adapt to high ethanol stress. Furthermore, hypermutator states are transitory and repeatedly alternate with decreases in mutation rate. Specifically, population mutation rates rise when cells experience higher stress and decline again once cells are adapted. Interestingly, we identified cellular mortality as the major force driving the quick evolution of mutation rates. Together, these findings show how organisms balance robustness and evolvability and help explain the prevalence of hypermutation in various settings, ranging from emergence of antibiotic resistance in microbes to cancer relapses upon chemotherapy. DOI: http://dx.doi.org/10.7554/eLife.22939.001 PMID:28460660
Darwinism for the Genomic Age: Connecting Mutation to Diversification
Hua, Xia; Bromham, Lindell
2017-01-01
A growing body of evidence suggests that rates of diversification of biological lineages are correlated with differences in genome-wide mutation rate. Given that most research into differential patterns of diversification rate have focused on species traits or ecological parameters, a connection to the biochemical processes of genome change is an unexpected observation. While the empirical evidence for a significant association between mutation rate and diversification rate is mounting, there has been less effort in explaining the factors that mediate this connection between genetic change and species richness. Here we draw together empirical studies and theoretical concepts that may help to build links in the explanatory chain that connects mutation to diversification. First we consider the way that mutation rates vary between species. We then explore how differences in mutation rates have flow-through effects to the rate at which populations acquire substitutions, which in turn influences the speed at which populations become reproductively isolated from each other due to the acquisition of genomic incompatibilities. Since diversification rate is commonly measured from phylogenetic analyses, we propose a conceptual approach for relating events of reproductive isolation to bifurcations on molecular phylogenies. As we examine each of these relationships, we consider theoretical models that might shine a light on the observed association between rate of molecular evolution and diversification rate, and critically evaluate the empirical evidence for these links, focusing on phylogenetic comparative studies. Finally, we ask whether we are getting closer to a real understanding of the way that the processes of molecular evolution connect to the observable patterns of diversification. PMID:28224003
Darwinism for the Genomic Age: Connecting Mutation to Diversification.
Hua, Xia; Bromham, Lindell
2017-01-01
A growing body of evidence suggests that rates of diversification of biological lineages are correlated with differences in genome-wide mutation rate. Given that most research into differential patterns of diversification rate have focused on species traits or ecological parameters, a connection to the biochemical processes of genome change is an unexpected observation. While the empirical evidence for a significant association between mutation rate and diversification rate is mounting, there has been less effort in explaining the factors that mediate this connection between genetic change and species richness. Here we draw together empirical studies and theoretical concepts that may help to build links in the explanatory chain that connects mutation to diversification. First we consider the way that mutation rates vary between species. We then explore how differences in mutation rates have flow-through effects to the rate at which populations acquire substitutions, which in turn influences the speed at which populations become reproductively isolated from each other due to the acquisition of genomic incompatibilities. Since diversification rate is commonly measured from phylogenetic analyses, we propose a conceptual approach for relating events of reproductive isolation to bifurcations on molecular phylogenies. As we examine each of these relationships, we consider theoretical models that might shine a light on the observed association between rate of molecular evolution and diversification rate, and critically evaluate the empirical evidence for these links, focusing on phylogenetic comparative studies. Finally, we ask whether we are getting closer to a real understanding of the way that the processes of molecular evolution connect to the observable patterns of diversification.
Looking for the optimal rate of recombination for evolutionary dynamics
NASA Astrophysics Data System (ADS)
Saakian, David B.
2018-01-01
We consider many-site mutation-recombination models of evolution with selection. We are looking for situations where the recombination increases the mean fitness of the population, and there is an optimal recombination rate. We found two fitness landscapes supporting such nonmonotonic behavior of the mean fitness versus the recombination rate. The first case is related to the evolution near the error threshold on a neutral-network-like fitness landscape, for moderate genome lengths and large population. The more realistic case is the second one, in which we consider the evolutionary dynamics of a finite population on a rugged fitness landscape (the smooth fitness landscape plus some random contributions to the fitness). We also give the solution to the horizontal gene transfer model in the case of asymmetric mutations. To obtain nonmonotonic behavior for both mutation and recombination, we need a specially designed (ideal) fitness landscape.
Rapid evolution of the human mutation spectrum
Harris, Kelley; Pritchard, Jonathan K
2017-01-01
DNA is a remarkably precise medium for copying and storing biological information. This high fidelity results from the action of hundreds of genes involved in replication, proofreading, and damage repair. Evolutionary theory suggests that in such a system, selection has limited ability to remove genetic variants that change mutation rates by small amounts or in specific sequence contexts. Consistent with this, using SNV variation as a proxy for mutational input, we report here that mutational spectra differ substantially among species, human continental groups and even some closely related populations. Close examination of one signal, an increased TCC→TTC mutation rate in Europeans, indicates a burst of mutations from about 15,000 to 2000 years ago, perhaps due to the appearance, drift, and ultimate elimination of a genetic modifier of mutation rate. Our results suggest that mutation rates can evolve markedly over short evolutionary timescales and suggest the possibility of mapping mutational modifiers. DOI: http://dx.doi.org/10.7554/eLife.24284.001 PMID:28440220
Ness, Rob W.; Morgan, Andrew D.; Vasanthakrishnan, Radhakrishnan B.; Colegrave, Nick; Keightley, Peter D.
2015-01-01
Describing the process of spontaneous mutation is fundamental for understanding the genetic basis of disease, the threat posed by declining population size in conservation biology, and much of evolutionary biology. Directly studying spontaneous mutation has been difficult, however, because new mutations are rare. Mutation accumulation (MA) experiments overcome this by allowing mutations to build up over many generations in the near absence of natural selection. Here, we sequenced the genomes of 85 MA lines derived from six genetically diverse strains of the green alga Chlamydomonas reinhardtii. We identified 6843 new mutations, more than any other study of spontaneous mutation. We observed sevenfold variation in the mutation rate among strains and that mutator genotypes arose, increasing the mutation rate approximately eightfold in some replicates. We also found evidence for fine-scale heterogeneity in the mutation rate, with certain sequence motifs mutating at much higher rates, and clusters of multiple mutations occurring at closely linked sites. There was little evidence, however, for mutation rate heterogeneity between chromosomes or over large genomic regions of 200 kbp. We generated a predictive model of the mutability of sites based on their genomic properties, including local GC content, gene expression level, and local sequence context. Our model accurately predicted the average mutation rate and natural levels of genetic diversity of sites across the genome. Notably, trinucleotides vary 17-fold in rate between the most and least mutable sites. Our results uncover a rich heterogeneity in the process of spontaneous mutation both among individuals and across the genome. PMID:26260971
Dahl, Christopher R.; Bickham, John W.; Wickliffe, Jeffery K.; Custer, Thomas W.
2001-01-01
DNA sequence analysis of a 215 base-pair region of the mitochondrial cytochrome b gene was used to examine genetic variation and search for evidence of an increased mutation rate in black-crowned night-herons. We examined five populations exposed to environmental contamination (primarily PAHs and PCBs) and one reference population from the eastern U.S. There was no evidence of a high mutation rate even within populations previously shown to exhibit increased variation in DNA content among somatic cells as a result of petroleum exposure. Three haplotypes were observed among 99 individuals. The low level of variability could be evidence for a genetic bottleneck, or that cytochrome b is too conservative for use in population genetic studies of this species. With the exception of one population from Louisiana, pair-wise Phist estimates were very low, indicative of little population structure and potentially high rates of effective migration among populations.
Effect of repeat copy number on variable-number tandem repeat mutations in Escherichia coli O157:H7.
Vogler, Amy J; Keys, Christine; Nemoto, Yoshimi; Colman, Rebecca E; Jay, Zack; Keim, Paul
2006-06-01
Variable-number tandem repeat (VNTR) loci have shown a remarkable ability to discriminate among isolates of the recently emerged clonal pathogen Escherichia coli O157:H7, making them a very useful molecular epidemiological tool. However, little is known about the rates at which these sequences mutate, the factors that affect mutation rates, or the mechanisms by which mutations occur at these loci. Here, we measure mutation rates for 28 VNTR loci and investigate the effects of repeat copy number and mismatch repair on mutation rate using in vitro-generated populations for 10 E. coli O157:H7 strains. We find single-locus rates as high as 7.0 x 10(-4) mutations/generation and a combined 28-locus rate of 6.4 x 10(-4) mutations/generation. We observed single- and multirepeat mutations that were consistent with a slipped-strand mispairing mutation model, as well as a smaller number of large repeat copy number mutations that were consistent with recombination-mediated events. Repeat copy number within an array was strongly correlated with mutation rate both at the most mutable locus, O157-10 (r2= 0.565, P = 0.0196), and across all mutating loci. The combined locus model was significant whether locus O157-10 was included (r2= 0.833, P < 0.0001) or excluded (r2= 0.452, P < 0.0001) from the analysis. Deficient mismatch repair did not affect mutation rate at any of the 28 VNTRs with repeat unit sizes of >5 bp, although a poly(G) homomeric tract was destabilized in the mutS strain. Finally, we describe a general model for VNTR mutations that encompasses insertions and deletions, single- and multiple-repeat mutations, and their relative frequencies based upon our empirical mutation rate data.
Zhivotovsky, Lev A.; Underhill, Peter A.; Cinnioğlu, Cengiz; Kayser, Manfred; Morar, Bharti; Kivisild, Toomas; Scozzari, Rosaria; Cruciani, Fulvio; Destro-Bisol, Giovanni; Spedini, Gabriella; Chambers, Geoffrey K.; Herrera, Rene J.; Yong, Kiau Kiun; Gresham, David; Tournev, Ivailo; Feldman, Marcus W.; Kalaydjieva, Luba
2004-01-01
We estimate an effective mutation rate at an average Y chromosome short-tandem repeat locus as 6.9×10-4 per 25 years, with a standard deviation across loci of 5.7×10-4, using data on microsatellite variation within Y chromosome haplogroups defined by unique-event polymorphisms in populations with documented short-term histories, as well as comparative data on worldwide populations at both the Y chromosome and various autosomal loci. This value is used to estimate the times of the African Bantu expansion, the divergence of Polynesian populations (the Maoris, Cook Islanders, and Samoans), and the origin of Gypsy populations from Bulgaria. PMID:14691732
Zhou, Zhan; Zou, Yangyun; Liu, Gangbiao; Zhou, Jingqi; Wu, Jingcheng; Zhao, Shimin; Su, Zhixi; Gu, Xun
2017-08-29
Human genes exhibit different effects on fitness in cancer and normal cells. Here, we present an evolutionary approach to measure the selection pressure on human genes, using the well-known ratio of the nonsynonymous to synonymous substitution rate in both cancer genomes ( C N / C S ) and normal populations ( p N / p S ). A new mutation-profile-based method that adopts sample-specific mutation rate profiles instead of conventional substitution models was developed. We found that cancer-specific selection pressure is quite different from the selection pressure at the species and population levels. Both the relaxation of purifying selection on passenger mutations and the positive selection of driver mutations may contribute to the increased C N / C S values of human genes in cancer genomes compared with the p N / p S values in human populations. The C N / C S values also contribute to the improved classification of cancer genes and a better understanding of the onco-functionalization of cancer genes during oncogenesis. The use of our computational pipeline to identify cancer-specific positively and negatively selected genes may provide useful information for understanding the evolution of cancers and identifying possible targets for therapeutic intervention.
Analysis and implications of mutational variation.
Keightley, Peter D; Halligan, Daniel L
2009-06-01
Variation from new mutations is important for several questions in quantitative genetics. Key parameters are the genomic mutation rate and the distribution of effects of mutations (DEM), which determine the amount of new quantitative variation that arises per generation from mutation (V(M)). Here, we review methods and empirical results concerning mutation accumulation (MA) experiments that have shed light on properties of mutations affecting quantitative traits. Surprisingly, most data on fitness traits from laboratory assays of MA lines indicate that the DEM is platykurtic in form (i.e., substantially less leptokurtic than an exponential distribution), and imply that most variation is produced by mutations of moderate to large effect. This finding contrasts with results from MA or mutagenesis experiments in which mutational changes to the DNA can be assayed directly, which imply that the vast majority of mutations have very small phenotypic effects, and that the distribution has a leptokurtic form. We compare these findings with recent approaches that attempt to infer the DEM for fitness based on comparing the frequency spectra of segregating nucleotide polymorphisms at putatively neutral and selected sites in population samples. When applied to data for humans and Drosophila, these analyses also indicate that the DEM is strongly leptokurtic. However, by combining the resultant estimates of parameters of the DEM with estimates of the mutation rate per nucleotide, the predicted V(M) for fitness is only a tiny fraction of V(M) observed in MA experiments. This discrepancy can be explained if we postulate that a few deleterious mutations of large effect contribute most of the mutational variation observed in MA experiments and that such mutations segregate at very low frequencies in natural populations, and effectively are never seen in population samples.
Edelaar, Pim; Björklund, Mats
2011-05-01
The comparison between neutral genetic differentiation (F(ST) ) and quantitative genetic differentiation (Q(ST) ) is commonly used to test for signatures of selection in population divergence. However, there is an ongoing discussion about what F(ST) actually measures, even resulting in some alternative metrics to express neutral genetic differentiation. If there is a problem with F(ST) , this could have repercussions for its comparison with Q(ST) as well. We show that as the mutation rate of the neutral marker increases, F(ST) decreases: a higher within-population heterozygosity (He) yields a lower F(ST) value. However, the same is true for Q(ST) : a higher mutation rate for the underlying QTL also results in a lower Q(ST) estimate. The effect of mutation rate is equivalent in Q(ST) and F(ST) . Hence, the comparison between Q(ST) and F(ST) remains valid, if one uses neutral markers whose mutation rates are not too high compared to those of quantitative traits. Usage of highly variable neutral markers such as hypervariable microsatellites can lead to serious biases and the incorrect inference that divergent selection has acted on populations. Much of the discussion on F(ST) seems to stem from the misunderstanding that it measures the differentiation of populations, whereas it actually measures the fixation of alleles. In their capacity as measures of population differentiation, Hedrick's G'(ST) and Jost's D reach their maximum value of 1 when populations do not share alleles even when there remains variation within populations, which invalidates them for comparisons with Q(ST) . © 2011 Blackwell Publishing Ltd.
Maruyama, Takeo; Kimura, Motoo
1980-01-01
If a population (species) consists of n haploid lines (subpopulations) which reproduce asexually and each of which is subject to random extinction and subsequent replacement, it is shown that, at equilibrium in which mutational production of new alleles and their random extinction balance each other, the genetic diversity (1 minus the sum of squares of allelic frequencies) is given by 2Nev/(1 + 2Nev), where [Formula: see text] in which Ñ is the harmonic mean of the population size per line, n is the number of lines (assumed to be large), λ is the rate of line extinction, and v is the mutation rate (assuming the infinite neutral allele model). In a diploid population (species) consisting of n colonies, if migration takes place between colonies at the rate m (the island model) in addition to extinction and recolonization of colonies, it is shown that effective population size is [Formula: see text] If the rate of colony extinction (λ) is much larger than the migration rate of individuals, the effective population size is greatly reduced compared with the case in which no colony extinctions occur (in which case Ne = nÑ). The stepping-stone type of recolonization scheme is also considered. Bearing of these results on the interpretation of the level of genetic variability at the enzyme level observed in natural populations is discussed from the standpoint of the neutral mutation-random drift hypothesis. PMID:16592920
Razeto-Barry, Pablo; Díaz, Javier; Vásquez, Rodrigo A
2012-06-01
The general theories of molecular evolution depend on relatively arbitrary assumptions about the relative distribution and rate of advantageous, deleterious, neutral, and nearly neutral mutations. The Fisher geometrical model (FGM) has been used to make distributions of mutations biologically interpretable. We explored an FGM-based molecular model to represent molecular evolutionary processes typically studied by nearly neutral and selection models, but in which distributions and relative rates of mutations with different selection coefficients are a consequence of biologically interpretable parameters, such as the average size of the phenotypic effect of mutations and the number of traits (complexity) of organisms. A variant of the FGM-based model that we called the static regime (SR) represents evolution as a nearly neutral process in which substitution rates are determined by a dynamic substitution process in which the population's phenotype remains around a suboptimum equilibrium fitness produced by a balance between slightly deleterious and slightly advantageous compensatory substitutions. As in previous nearly neutral models, the SR predicts a negative relationship between molecular evolutionary rate and population size; however, SR does not have the unrealistic properties of previous nearly neutral models such as the narrow window of selection strengths in which they work. In addition, the SR suggests that compensatory mutations cannot explain the high rate of fixations driven by positive selection currently found in DNA sequences, contrary to what has been previously suggested. We also developed a generalization of SR in which the optimum phenotype can change stochastically due to environmental or physiological shifts, which we called the variable regime (VR). VR models evolution as an interplay between adaptive processes and nearly neutral steady-state processes. When strong environmental fluctuations are incorporated, the process becomes a selection model in which evolutionary rate does not depend on population size, but is critically dependent on the complexity of organisms and mutation size. For SR as well as VR we found that key parameters of molecular evolution are linked by biological factors, and we showed that they cannot be fixed independently by arbitrary criteria, as has usually been assumed in previous molecular evolutionary models.
Senra, Marcus V X; Sung, Way; Ackerman, Matthew; Miller, Samuel F; Lynch, Michael; Soares, Carlos Augusto G
2018-03-01
Mutations contribute to genetic variation in all living systems. Thus, precise estimates of mutation rates and spectra across a diversity of organisms are required for a full comprehension of evolution. Here, a mutation-accumulation (MA) assay was carried out on the endosymbiotic bacterium Teredinibacter turnerae. After ∼3,025 generations, base-pair substitutions (BPSs) and insertion-deletion (indel) events were characterized by whole-genome sequencing analysis of 47 independent MA lines, yielding a BPS rate of 1.14 × 10-9 per site per generation and indel rate of 1.55 × 10-10 events per site per generation, which are among the highest within free-living and facultative intracellular bacteria. As in other endosymbionts, a significant bias of BPSs toward A/T and an excess of deletion mutations over insertion mutations are observed for these MA lines. However, even with a deletion bias, the genome remains relatively large (∼5.2 Mb) for an endosymbiotic bacterium. The estimate of the effective population size (Ne) in T. turnerae is quite high and comparable to free-living bacteria (∼4.5 × 107), suggesting that the heavy bottlenecking associated with many endosymbiotic relationships is not prevalent during the life of this endosymbiont. The efficiency of selection scales with increasing Ne and such strong selection may have been operating against the deletion bias, preventing genome erosion. The observed mutation rate in this endosymbiont is of the same order of magnitude of those with similar Ne, consistent with the idea that population size is a primary determinant of mutation-rate evolution within endosymbionts, and that not all endosymbionts have low Ne.
Evolution on neutral networks accelerates the ticking rate of the molecular clock.
Manrubia, Susanna; Cuesta, José A
2015-01-06
Large sets of genotypes give rise to the same phenotype, because phenotypic expression is highly redundant. Accordingly, a population can accept mutations without altering its phenotype, as long as the genotype mutates into another one on the same set. By linking every pair of genotypes that are mutually accessible through mutation, genotypes organize themselves into neutral networks (NNs). These networks are known to be heterogeneous and assortative, and these properties affect the evolutionary dynamics of the population. By studying the dynamics of populations on NNs with arbitrary topology, we analyse the effect of assortativity, of NN (phenotype) fitness and of network size. We find that the probability that the population leaves the network is smaller the longer the time spent on it. This progressive 'phenotypic entrapment' entails a systematic increase in the overdispersion of the process with time and an acceleration in the fixation rate of neutral mutations. We also quantify the variation of these effects with the size of the phenotype and with its fitness relative to that of neighbouring alternatives. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Evolution on neutral networks accelerates the ticking rate of the molecular clock
Manrubia, Susanna; Cuesta, José A.
2015-01-01
Large sets of genotypes give rise to the same phenotype, because phenotypic expression is highly redundant. Accordingly, a population can accept mutations without altering its phenotype, as long as the genotype mutates into another one on the same set. By linking every pair of genotypes that are mutually accessible through mutation, genotypes organize themselves into neutral networks (NNs). These networks are known to be heterogeneous and assortative, and these properties affect the evolutionary dynamics of the population. By studying the dynamics of populations on NNs with arbitrary topology, we analyse the effect of assortativity, of NN (phenotype) fitness and of network size. We find that the probability that the population leaves the network is smaller the longer the time spent on it. This progressive ‘phenotypic entrapment’ entails a systematic increase in the overdispersion of the process with time and an acceleration in the fixation rate of neutral mutations. We also quantify the variation of these effects with the size of the phenotype and with its fitness relative to that of neighbouring alternatives. PMID:25392402
How mutation affects evolutionary games on graphs
Allen, Benjamin; Traulsen, Arne; Tarnita, Corina E.; Nowak, Martin A.
2011-01-01
Evolutionary dynamics are affected by population structure, mutation rates and update rules. Spatial or network structure facilitates the clustering of strategies, which represents a mechanism for the evolution of cooperation. Mutation dilutes this effect. Here we analyze how mutation influences evolutionary clustering on graphs. We introduce new mathematical methods to evolutionary game theory, specifically the analysis of coalescing random walks via generating functions. These techniques allow us to derive exact identity-by-descent (IBD) probabilities, which characterize spatial assortment on lattices and Cayley trees. From these IBD probabilities we obtain exact conditions for the evolution of cooperation and other game strategies, showing the dual effects of graph topology and mutation rate. High mutation rates diminish the clustering of cooperators, hindering their evolutionary success. Our model can represent either genetic evolution with mutation, or social imitation processes with random strategy exploration. PMID:21473871
Inference of directional selection and mutation parameters assuming equilibrium.
Vogl, Claus; Bergman, Juraj
2015-12-01
In a classical study, Wright (1931) proposed a model for the evolution of a biallelic locus under the influence of mutation, directional selection and drift. He derived the equilibrium distribution of the allelic proportion conditional on the scaled mutation rate, the mutation bias and the scaled strength of directional selection. The equilibrium distribution can be used for inference of these parameters with genome-wide datasets of "site frequency spectra" (SFS). Assuming that the scaled mutation rate is low, Wright's model can be approximated by a boundary-mutation model, where mutations are introduced into the population exclusively from sites fixed for the preferred or unpreferred allelic states. With the boundary-mutation model, inference can be partitioned: (i) the shape of the SFS distribution within the polymorphic region is determined by random drift and directional selection, but not by the mutation parameters, such that inference of the selection parameter relies exclusively on the polymorphic sites in the SFS; (ii) the mutation parameters can be inferred from the amount of polymorphic and monomorphic preferred and unpreferred alleles, conditional on the selection parameter. Herein, we derive maximum likelihood estimators for the mutation and selection parameters in equilibrium and apply the method to simulated SFS data as well as empirical data from a Madagascar population of Drosophila simulans. Copyright © 2015 Elsevier Inc. All rights reserved.
Fungal Infection Increases the Rate of Somatic Mutation in Scots Pine (Pinus sylvestris L.).
Ranade, Sonali Sachin; Ganea, Laura-Stefana; Razzak, Abdur M; García Gil, M R
2015-01-01
Somatic mutations are transmitted during mitosis in developing somatic tissue. Somatic cells bearing the mutations can develop into reproductive (germ) cells and the somatic mutations are then passed on to the next generation of plants. Somatic mutations are a source of variation essential to evolve new defense strategies and adapt to the environment. Stem rust disease in Scots pine has a negative effect on wood quality, and thus adversely affects the economy. It is caused by the 2 most destructive fungal species in Scandinavia: Peridermium pini and Cronartium flaccidum. We studied nuclear genome stability in Scots pine under biotic stress (fungus-infected, 22 trees) compared to a control population (plantation, 20 trees). Stability was assessed as accumulation of new somatic mutations in 10 microsatellite loci selected for genotyping. Microsatellites are widely used as molecular markers in population genetics studies of plants, and are particularly used for detection of somatic mutations as their rate of mutation is of a much higher magnitude when compared with other DNA markers. We report double the rate of somatic mutation per locus in the fungus-infected trees (4.8×10(-3) mutations per locus), as compared to the controls (2.0×10(-3) mutations per locus) when individual samples were analyzed at 10 different microsatellite markers. Pearson's chi-squared test indicated a significant effect of the fungal infection which increased the number of mutations in the fungus-infected trees (χ(2) = 12.9883, df = 1, P = 0.0003134). © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Currier, Robert J; Sciortino, Stan; Liu, Ruiling; Bishop, Tracey; Alikhani Koupaei, Rasoul; Feuchtbaum, Lisa
2017-10-01
PurposeThe purpose of this study was to model the performance of several known two-tier, predefined mutation panels and three-tier algorithms for cystic fibrosis (CF) screening utilizing the ethnically diverse California population.MethodsThe cystic fibrosis transmembrane conductance regulator (CFTR) mutations identified among the 317 CF cases in California screened between 12 August 2008 and 18 December 2012 were used to compare the expected CF detection rates for several two- and three-tier screening approaches, including the current California approach, which consists of a population-specific 40-mutation panel followed by third-tier sequencing when indicated.ResultsThe data show that the strategy of using third-tier sequencing improves CF detection following an initial elevated immunoreactive trypsinogen and detection of only one mutation on a second-tier panel.ConclusionIn a diverse population, the use of a second-tier panel followed by third-tier CFTR gene sequencing provides a better detection rate for CF, compared with the use of a second-tier approach alone, and is an effective way to minimize the referrals of CF carriers for sweat testing. Restricting screening to a second-tier testing to predefined mutation panels, even broad ones, results in some missed CF cases and demonstrates the limited utility of this approach in states that have diverse multiethnic populations.
Determination of EGFR and KRAS mutational status in Greek non-small-cell lung cancer patients
PAPADOPOULOU, EIRINI; TSOULOS, NIKOLAOS; TSIRIGOTI, ANGELIKI; APESSOS, ANGELA; AGIANNITOPOULOS, KONSTANTINOS; METAXA-MARIATOU, VASILIKI; ZAROGOULIDIS, KONSTANTINOS; ZAROGOULIDIS, PAVLOS; KASARAKIS, DIMITRIOS; KAKOLYRIS, STYLIANOS; DAHABREH, JUBRAIL; VLASTOS, FOTIS; ZOUBLIOS, CHARALAMPOS; RAPTI, AGGELIKI; PAPAGEORGIOU, NIKI GEORGATOU; VELDEKIS, DIMITRIOS; GAGA, MINA; ARAVANTINOS, GERASIMOS; KARAVASILIS, VASILEIOS; KARAGIANNIDIS, NAPOLEON; NASIOULAS, GEORGE
2015-01-01
It has been reported that certain patients with non-small-cell lung cancer (NSCLC) that harbor activating somatic mutations within the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene may be effectively treated using targeted therapy. The use of EGFR inhibitors in patient therapy has been demonstrated to improve response and survival rates; therefore, it was suggested that clinical screening for EGFR mutations should be performed for all patients. Numerous clinicopathological factors have been associated with EGFR and Kirsten-rat sarcoma oncogene homolog (KRAS) mutational status including gender, smoking history and histology. In addition, it was reported that EGFR mutation frequency in NSCLC patients was ethnicity-dependent, with an incidence rate of ~30% in Asian populations and ~15% in Caucasian populations. However, limited data has been reported on intra-ethnic differences throughout Europe. The present study aimed to investigate the frequency and spectrum of EGFR mutations in 1,472 Greek NSCLC patients. In addition, KRAS mutation analysis was performed in patients with known smoking history in order to determine the correlation of type and mutation frequency with smoking. High-resolution melting curve (HRM) analysis followed by Sanger sequencing was used to identify mutations in exons 18–21 of the EGFR gene and in exon 2 of the KRAS gene. A sensitive next-generation sequencing (NGS) technology was also employed to classify samples with equivocal results. The use of sensitive mutation detection techniques in a large study population of Greek NSCLC patients in routine diagnostic practice revealed an overall EGFR mutation frequency of 15.83%. This mutation frequency was comparable to that previously reported in other European populations. Of note, there was a 99.8% concordance between the HRM method and Sanger sequencing. NGS was found to be the most sensitive method. In addition, female non-smokers demonstrated a high prevalence of EGFR mutations. Furthermore, KRAS mutation analysis in patients with a known smoking history revealed no difference in mutation frequency according to smoking status; however, a different mutation spectrum was observed. PMID:26622815
RATES OF FITNESS DECLINE AND REBOUND SUGGEST PERVASIVE EPISTASIS
Perfeito, L; Sousa, A; Bataillon, T; Gordo, I
2014-01-01
Unraveling the factors that determine the rate of adaptation is a major question in evolutionary biology. One key parameter is the effect of a new mutation on fitness, which invariably depends on the environment and genetic background. The fate of a mutation also depends on population size, which determines the amount of drift it will experience. Here, we manipulate both population size and genotype composition and follow adaptation of 23 distinct Escherichia coli genotypes. These have previously accumulated mutations under intense genetic drift and encompass a substantial fitness variation. A simple rule is uncovered: the net fitness change is negatively correlated with the fitness of the genotype in which new mutations appear—a signature of epistasis. We find that Fisher's geometrical model can account for the observed patterns of fitness change and infer the parameters of this model that best fit the data, using Approximate Bayesian Computation. We estimate a genomic mutation rate of 0.01 per generation for fitness altering mutations, albeit with a large confidence interval, a mean fitness effect of mutations of −0.01, and an effective number of traits nine in mutS− E. coli. This framework can be extended to confront a broader range of models with data and test different classes of fitness landscape models. PMID:24372601
Feliziani, Sofía; Moyano, Alejandro J.; Di Rienzo, Julio A.; Krogh Johansen, Helle; Molin, Søren; Smania, Andrea M.
2014-01-01
The advent of high-throughput sequencing techniques has made it possible to follow the genomic evolution of pathogenic bacteria by comparing longitudinally collected bacteria sampled from human hosts. Such studies in the context of chronic airway infections by Pseudomonas aeruginosa in cystic fibrosis (CF) patients have indicated high bacterial population diversity. Such diversity may be driven by hypermutability resulting from DNA mismatch repair system (MRS) deficiency, a common trait evolved by P. aeruginosa strains in CF infections. No studies to date have utilized whole-genome sequencing to investigate within-host population diversity or long-term evolution of mutators in CF airways. We sequenced the genomes of 13 and 14 isolates of P. aeruginosa mutator populations from an Argentinian and a Danish CF patient, respectively. Our collection of isolates spanned 6 and 20 years of patient infection history, respectively. We sequenced 11 isolates from a single sample from each patient to allow in-depth analysis of population diversity. Each patient was infected by clonal populations of bacteria that were dominated by mutators. The in vivo mutation rate of the populations was ∼100 SNPs/year–∼40-fold higher than rates in normo-mutable populations. Comparison of the genomes of 11 isolates from the same sample showed extensive within-patient genomic diversification; the populations were composed of different sub-lineages that had coexisted for many years since the initial colonization of the patient. Analysis of the mutations identified genes that underwent convergent evolution across lineages and sub-lineages, suggesting that the genes were targeted by mutation to optimize pathogenic fitness. Parallel evolution was observed in reduction of overall catabolic capacity of the populations. These findings are useful for understanding the evolution of pathogen populations and identifying new targets for control of chronic infections. PMID:25330091
The Rate of Beneficial Mutations Surfing on the Wave of a Range Expansion
Lehe, Rémi; Hallatschek, Oskar; Peliti, Luca
2012-01-01
Many theoretical and experimental studies suggest that range expansions can have severe consequences for the gene pool of the expanding population. Due to strongly enhanced genetic drift at the advancing frontier, neutral and weakly deleterious mutations can reach large frequencies in the newly colonized regions, as if they were surfing the front of the range expansion. These findings raise the question of how frequently beneficial mutations successfully surf at shifting range margins, thereby promoting adaptation towards a range-expansion phenotype. Here, we use individual-based simulations to study the surfing statistics of recurrent beneficial mutations on wave-like range expansions in linear habitats. We show that the rate of surfing depends on two strongly antagonistic factors, the probability of surfing given the spatial location of a novel mutation and the rate of occurrence of mutations at that location. The surfing probability strongly increases towards the tip of the wave. Novel mutations are unlikely to surf unless they enjoy a spatial head start compared to the bulk of the population. The needed head start is shown to be proportional to the inverse fitness of the mutant type, and only weakly dependent on the carrying capacity. The precise location dependence of surfing probabilities is derived from the non-extinction probability of a branching process within a moving field of growth rates. The second factor is the mutation occurrence which strongly decreases towards the tip of the wave. Thus, most successful mutations arise at an intermediate position in the front of the wave. We present an analytic theory for the tradeoff between these factors that allows to predict how frequently substitutions by beneficial mutations occur at invasion fronts. We find that small amounts of genetic drift increase the fixation rate of beneficial mutations at the advancing front, and thus could be important for adaptation during species invasions. PMID:22479175
The maintenance of sex: Ronald Fisher meets the Red Queen.
Green, David; Mason, Chris
2013-08-21
Sex in higher diploids carries a two-fold cost of males that should reduce its fitness relative to cloning, and result in its extinction. Instead, sex is widespread and clonal species face early obsolescence. One possible reason is that sex is an adaptation that allows organisms to respond more effectively to endless changes in their environment. The purpose of this study was to model mutation and selection in a diploid organism in an evolving environment and ascertain their support for sex. We used a computational approach to model finite populations where a haploid environment subjects a diploid host to endlessly evolving change. Evolution in both populations is primarily through adoption of novel advantageous mutations within a large allele space. Sex outcompetes cloning by two complementary mechanisms. First, sexual diploids adopt advantageous homozygous mutations more rapidly than clonal ones under conditions of lag load (the gap between the actual adaptation of the diploid population and its theoretical optimum). This rate advantage can offset the higher fecundity of cloning. Second, a relative advantage to sex emerges where populations are significantly polymorphic, because clonal polymorphism runs the risk of clonal interference caused by selection on numerous lines of similar adaptation. This interference extends allele lifetime and reduces the rate of adaptation. Sex abolishes the interference, making selection faster and elevating population fitness. Differences in adaptation between sexual and clonal populations increase markedly with the number of loci under selection, the rate of mutation in the host, and a rapidly evolving environment. Clonal interference in these circumstances leads to conditions where the greater fecundity of clones is unable to offset their poor adaptation. Sexual and clonal populations then either co-exist, or sex emerges as the more stable evolutionary strategy. Sex can out-compete clones in a rapidly evolving environment, such as that characterized by pathogens, where clonal interference reduces the adaptation of clonal populations and clones adopt advantageous mutations more slowly. Since all organisms carry parasitic loads, the model is of potentially general applicability.
Kaburagi, Takayuki; Kiyoshima, Moriyuki; Nawa, Takeshi; Ichimura, Hideo; Saito, Takefumi; Hayashihara, Kenji; Yamada, Hideyasu; Satoh, Hiroaki; Endo, Takeo; Inage, Yoshihisa; Saito, Kazuhito; Inagaki, Masaharu; Hizawa, Nobuyuki; Sato, Yukio; Ishikawa, Hiroichi; Sakai, Mitsuaki; Kamiyama, Koichi; Kikuchi, Norihiro; Nakamura, Hiroyuki; Furukawa, Kinya; Kodama, Takahide; Yamashita, Takaaki; Nomura, Akihiro; Yoshida, Susumu
2018-05-01
To describe the prevalence and determinants of acquired epidermal growth factor receptor (EGFR) T790M gene mutation in a clinical practice setting. We performed a retrospective chart review study between January 2013 and November 2017 across multiple institutes, covering a population of 3 million people. We reviewed the charts of 233 patients non-small cell lung cancer with EGFR mutations. Of them, 99 (42.5%) patients had acquired T790M mutations in EGFR. Patients ≥75 years old and patients with an exon 19 deletion had higher rates of acquired T790M mutation than did younger patients and those with an exon 21 L858R mutation. In 75 patients treated with afatinib, 34 (45.3%) patients had acquired T790M mutation. The sensitivity of T790M mutation detection was lower in plasma specimens than in biopsy specimens. This population-based study confirms previous studies and highlights potential determinants of acquired T790M mutation to be considered in clinical practice. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Evolution of the rate of biological aging using a phenotype based computational model.
Kittas, Aristotelis
2010-10-07
In this work I introduce a simple model to study how natural selection acts upon aging, which focuses on the viability of each individual. It is able to reproduce the Gompertz law of mortality and can make predictions about the relation between the level of mutation rates (beneficial/deleterious/neutral), age at reproductive maturity and the degree of biological aging. With no mutations, a population with low age at reproductive maturity R stabilizes at higher density values, while with mutations it reaches its maximum density, because even for large pre-reproductive periods each individual evolves to survive to maturity. Species with very short pre-reproductive periods can only tolerate a small number of detrimental mutations. The probabilities of detrimental (P(d)) or beneficial (P(b)) mutations are demonstrated to greatly affect the process. High absolute values produce peaks in the viability of the population over time. Mutations combined with low selection pressure move the system towards weaker phenotypes. For low values in the ratio P(d)/P(b), the speed at which aging occurs is almost independent of R, while higher values favor significantly species with high R. The value of R is critical to whether the population survives or dies out. The aging rate is controlled by P(d) and P(b) and the amount of the viability of each individual is modified, with neutral mutations allowing the system more "room" to evolve. The process of aging in this simple model is revealed to be fairly complex, yielding a rich variety of results. 2010 Elsevier Ltd. All rights reserved.
Accelerated Mutation Accumulation in Asexual Lineages of a Freshwater Snail
Neiman, Maurine; Hehman, Gery; Miller, Joseph T.; Logsdon, John M.; Taylor, Douglas R.
2010-01-01
Sexual reproduction is both extremely costly and widespread relative to asexual reproduction, meaning that it must also confer profound advantages in order to persist. One theorized benefit of sex is that it facilitates the clearance of harmful mutations, which would accumulate more rapidly in the absence of recombination. The extent to which ineffective purifying selection and mutation accumulation are direct consequences of asexuality and whether the accelerated buildup of harmful mutations in asexuals can occur rapidly enough to maintain sex within natural populations, however, remain as open questions. We addressed key components of these questions by estimating the rate of mutation accumulation in the mitochondrial genomes of multiple sexual and asexual representatives of Potamopyrgus antipodarum, a New Zealand snail characterized by mixed sexual/asexual populations. We found that increased mutation accumulation is associated with asexuality and occurs rapidly enough to be detected in recently derived asexual lineages of P. antipodarum. Our results demonstrate that increased mutation accumulation in asexuals can differentially affect coexisting and ecologically similar sexual and asexual lineages. The accelerated rate of mutation accumulation observed in asexual P. antipodarum provides some of the most direct evidence to date for a link between asexuality and mutation accumulation and implies that mutational buildup could be rapid enough to contribute to the short-term evolutionary mechanisms that favor sexual reproduction. PMID:19995828
Payen, Celia; Di Rienzi, Sara C; Ong, Giang T; Pogachar, Jamie L; Sanchez, Joseph C; Sunshine, Anna B; Raghuraman, M K; Brewer, Bonita J; Dunham, Maitreya J
2014-03-20
Population adaptation to strong selection can occur through the sequential or parallel accumulation of competing beneficial mutations. The dynamics, diversity, and rate of fixation of beneficial mutations within and between populations are still poorly understood. To study how the mutational landscape varies across populations during adaptation, we performed experimental evolution on seven parallel populations of Saccharomyces cerevisiae continuously cultured in limiting sulfate medium. By combining quantitative polymerase chain reaction, array comparative genomic hybridization, restriction digestion and contour-clamped homogeneous electric field gel electrophoresis, and whole-genome sequencing, we followed the trajectory of evolution to determine the identity and fate of beneficial mutations. During a period of 200 generations, the yeast populations displayed parallel evolutionary dynamics that were driven by the coexistence of independent beneficial mutations. Selective amplifications rapidly evolved under this selection pressure, in particular common inverted amplifications containing the sulfate transporter gene SUL1. Compared with single clones, detailed analysis of the populations uncovers a greater complexity whereby multiple subpopulations arise and compete despite a strong selection. The most common evolutionary adaptation to strong selection in these populations grown in sulfate limitation is determined by clonal interference, with adaptive variants both persisting and replacing one another.
Payen, Celia; Di Rienzi, Sara C.; Ong, Giang T.; Pogachar, Jamie L.; Sanchez, Joseph C.; Sunshine, Anna B.; Raghuraman, M. K.; Brewer, Bonita J.; Dunham, Maitreya J.
2014-01-01
Population adaptation to strong selection can occur through the sequential or parallel accumulation of competing beneficial mutations. The dynamics, diversity, and rate of fixation of beneficial mutations within and between populations are still poorly understood. To study how the mutational landscape varies across populations during adaptation, we performed experimental evolution on seven parallel populations of Saccharomyces cerevisiae continuously cultured in limiting sulfate medium. By combining quantitative polymerase chain reaction, array comparative genomic hybridization, restriction digestion and contour-clamped homogeneous electric field gel electrophoresis, and whole-genome sequencing, we followed the trajectory of evolution to determine the identity and fate of beneficial mutations. During a period of 200 generations, the yeast populations displayed parallel evolutionary dynamics that were driven by the coexistence of independent beneficial mutations. Selective amplifications rapidly evolved under this selection pressure, in particular common inverted amplifications containing the sulfate transporter gene SUL1. Compared with single clones, detailed analysis of the populations uncovers a greater complexity whereby multiple subpopulations arise and compete despite a strong selection. The most common evolutionary adaptation to strong selection in these populations grown in sulfate limitation is determined by clonal interference, with adaptive variants both persisting and replacing one another. PMID:24368781
Experimental evolution in budding yeast
NASA Astrophysics Data System (ADS)
Murray, Andrew
2012-02-01
I will discuss our progress in analyzing evolution in the budding yeast, Saccharomyces cerevisiae. We take two basic approaches. The first is to try and examine quantitative aspects of evolution, for example by determining how the rate of evolution depends on the mutation rate and the population size or asking whether the rate of mutation is uniform throughout the genome. The second is to try to evolve qualitatively novel, cell biologically interesting phenotypes and track the mutations that are responsible for the phenotype. Our efforts include trying to alter cell morphology, evolve multicellularity, and produce a biological oscillator.
Drummond, Alexei J; Nicholls, Geoff K; Rodrigo, Allen G; Solomon, Wiremu
2002-01-01
Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences. PMID:12136032
Drummond, Alexei J; Nicholls, Geoff K; Rodrigo, Allen G; Solomon, Wiremu
2002-07-01
Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences.
Evolution of cooperation in a multidimensional phenotype space.
Kroumi, Dhaker; Lessard, Sabin
2015-06-01
The emergence of cooperation in populations of selfish individuals is a fascinating topic that has inspired much theoretical work. An important model to study cooperation is the phenotypic model, where individuals are characterized by phenotypic properties that are visible to others. The phenotype of an individual can be represented for instance by a vector x = (x1,…,xn), where x1,…,xn are integers. The population can be well mixed in the sense that everyone is equally likely to interact with everyone else, but the behavioral strategies of the individuals can depend on their distance in the phenotype space. A cooperator can choose to help other individuals exhibiting the same phenotype and defects otherwise. Cooperation is said to be favored by selection if it is more abundant than defection in the stationary state. This means that the average frequency of cooperators in the stationary state strictly exceeds 1/2. Antal et al. (2009c) found conditions that ensure that cooperation is more abundant than defection in a one-dimensional (i.e. n = 1) and an infinite-dimensional (i.e. n = ∞) phenotype space in the case of the Prisoner's Dilemma under weak selection. However, reality lies between these two limit cases. In this paper, we derive the corresponding condition in the case of a phenotype space of any finite dimension. This is done by applying a perturbation method to study a mutation-selection equilibrium under weak selection. This condition is obtained in the limit of a large population size by using the ancestral process. The best scenario for cooperation to be more likely to evolve is found to be a high population-scaled phenotype mutation rate, a low population-scaled strategy mutation rate and a high phenotype space dimension. The biological intuition is that a high population-scaled phenotype mutation rate reduces the quantity of interactions between cooperators and defectors, while a high population-scaled strategy mutation rate introduces newly mutated defectors that invade groups of cooperators. Finally it is easier for cooperation to evolve in a phenotype space of higher dimension because it becomes more difficult for a defector to migrate to a group of cooperators. The difference is significant from n = 1 to n = 2 and from n = 2 to n = 3, but becomes small as soon as n ≥ 3. Copyright © 2015 Elsevier Inc. All rights reserved.
Population turnover and adaptation in heterogeneous environments
NASA Astrophysics Data System (ADS)
Campos, Paulo R. A.; de Oliveira, Viviane M.
2012-02-01
We study adaptive dynamics in a structured population model of asexual individuals which takes into account environmental heterogeneity among the subpopulations. The key purpose of the present work is to address how population turnovers, i.e. extinction events followed by recolonization, affect the rate of fixation of advantageous mutations. This model is a generalization of our previous model to address the interplay between environmental correlation and evolutionary forces on the adaptive process. The incorporation of population turnovers into the model enables us to make a direct correspondence between the model and host-parasite dynamics (epidemiological models). Strikingly, contrary to the intuitive and usual deleterious effect associated to extinction events, it is observed that population turnovers can in fact speed up adaptation as heterogeneity rises. On the other side, in nearly homogeneous population turnovers have a neutral effect on fixation rates, but a detrimental outcome is also achieved when extinction events become very common. In resume, population turnover outcomes on fixation rates of advantageous mutations are strongly influenced by the selective correlation among the subpopulations (demes).
Effect of Repeat Copy Number on Variable-Number Tandem Repeat Mutations in Escherichia coli O157:H7
Vogler, Amy J.; Keys, Christine; Nemoto, Yoshimi; Colman, Rebecca E.; Jay, Zack; Keim, Paul
2006-01-01
Variable-number tandem repeat (VNTR) loci have shown a remarkable ability to discriminate among isolates of the recently emerged clonal pathogen Escherichia coli O157:H7, making them a very useful molecular epidemiological tool. However, little is known about the rates at which these sequences mutate, the factors that affect mutation rates, or the mechanisms by which mutations occur at these loci. Here, we measure mutation rates for 28 VNTR loci and investigate the effects of repeat copy number and mismatch repair on mutation rate using in vitro-generated populations for 10 E. coli O157:H7 strains. We find single-locus rates as high as 7.0 × 10−4 mutations/generation and a combined 28-locus rate of 6.4 × 10−4 mutations/generation. We observed single- and multirepeat mutations that were consistent with a slipped-strand mispairing mutation model, as well as a smaller number of large repeat copy number mutations that were consistent with recombination-mediated events. Repeat copy number within an array was strongly correlated with mutation rate both at the most mutable locus, O157-10 (r2 = 0.565, P = 0.0196), and across all mutating loci. The combined locus model was significant whether locus O157-10 was included (r2 = 0.833, P < 0.0001) or excluded (r2 = 0.452, P < 0.0001) from the analysis. Deficient mismatch repair did not affect mutation rate at any of the 28 VNTRs with repeat unit sizes of >5 bp, although a poly(G) homomeric tract was destabilized in the mutS strain. Finally, we describe a general model for VNTR mutations that encompasses insertions and deletions, single- and multiple-repeat mutations, and their relative frequencies based upon our empirical mutation rate data. PMID:16740932
Coiana, Alessandra; Faa', Valeria; Carta, Daniela; Puddu, Rosalba; Cao, Antonio; Rosatelli, Maria Cristina
2011-05-01
In Sardinia the mutational spectrum of CFTR gene is well defined. A mutation detection rate of 94% can be achieved by screening for 15 CFTR mutations with a frequency higher than 0.5%. The efficiency of this molecular test suggests that Sardinians may represent a suitable population for a preconceptional screening. Five hundred couples of Sardinia descent were screened for 38 mutations using a semi-automated reverse-dot blot and PCR-gel electrophoresis assays. This mutation panel included the 15 most frequent CF alleles in Sardinia. We identified 38 CF carriers, revealing an overall frequency of 1/25 (4%). The most common CF allele was the p.Thr338Ile (T338I) (65%), followed by the p.Phe508del (F508del) (22.5%). We also identified one couple at risk and an asymptomatic female homozygote for the p.Thr338Ile allele. In spite of the low number of the couples tested, the results herein reported demonstrate the efficacy and efficiency of the preconceptional screening program and the high participation rate of the Sardinian population (99%). Copyright © 2010 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Farhadifar, Reza; Ponciano, José Miguel; Andersen, Erik C.; Needleman, Daniel J.; Baer, Charles F.
2016-01-01
Different types of phenotypic traits consistently exhibit different levels of genetic variation in natural populations. There are two potential explanations: Either mutation produces genetic variation at different rates or natural selection removes or promotes genetic variation at different rates. Whether mutation or selection is of greater general importance is a longstanding unresolved question in evolutionary genetics. We report mutational variances (VM) for 19 traits related to the first mitotic cell division in Caenorhabditis elegans and compare them to the standing genetic variances (VG) for the same suite of traits in a worldwide collection C. elegans. Two robust conclusions emerge. First, the mutational process is highly repeatable: The correlation between VM in two independent sets of mutation accumulation lines is ∼0.9. Second, VM for a trait is a good predictor of VG for that trait: The correlation between VM and VG is ∼0.9. This result is predicted for a population at mutation–selection balance; it is not predicted if balancing selection plays a primary role in maintaining genetic variation. PMID:27334268
Ohta, T.
1992-01-01
There are several unsolved problems concerning the model of nearly neutral mutations. One is the interaction of subdivided population structure and weak selection that spatially fluctuates. The model of nearly neutral mutations whose selection coefficient spatially fluctuates has been studied by adopting the island model with periodic extinction-recolonization. Both the number of colonies and the migration rate play significant roles in determining mutants' behavior, and selection is ineffective when the extinction-recolonization is frequent with low migration rate. In summary, the number of mutant substitutions decreases and the polymorphism increases by increasing the total population size, and/or decreasing the extinction-recolonization rate. However, by increasing the total size of the population, the mutant substitution rate does not become as low when compared with that in panmictic populations, because of the extinction-recolonization, especially when the migration rate is limited. It is also found that the model satisfactorily explains the contrasting patterns of molecular polymorphisms observed in sibling species of Drosophila, including heterozygosity, proportion of polymorphism and fixation index. PMID:1582566
Exploring the fitness landscape of poliovirus
NASA Astrophysics Data System (ADS)
Bianco, Simone; Acevedo, Ashely; Andino, Raul; Tang, Chao
2012-02-01
RNA viruses are known to display extraordinary adaptation capabilities to different environments, due to high mutation rates. Their very dynamical evolution is captured by the quasispecies concept, according to which the viral population forms a swarm of genetic variants linked through mutation, which cooperatively interact at a functional level and collectively contribute to the characteristics of the population. The description of the viral fitness landscape becomes paramount towards a more thorough understanding of the virus evolution and spread. The high mutation rate, together with the cooperative nature of the quasispecies, makes it particularly challenging to explore its fitness landscape. I will present an investigation of the dynamical properties of poliovirus fitness landscape, through both the adoption of new experimental techniques and theoretical models.
Founder mutations in Tunisia: implications for diagnosis in North Africa and Middle East
2012-01-01
Background Tunisia is a North African country of 10 million inhabitants. The native background population is Berber. However, throughout its history, Tunisia has been the site of invasions and migratory waves of allogenic populations and ethnic groups such as Phoenicians, Romans, Vandals, Arabs, Ottomans and French. Like neighbouring and Middle Eastern countries, the Tunisian population shows a relatively high rate of consanguinity and endogamy that favor expression of recessive genetic disorders at relatively high rates. Many factors could contribute to the recurrence of monogenic morbid trait expression. Among them, founder mutations that arise in one ancestral individual and diffuse through generations in isolated communities. Method We report here on founder mutations in the Tunisian population by a systematic review of all available data from PubMed, other sources of the scientific literature as well as unpublished data from our research laboratory. Results We identified two different classes of founder mutations. The first includes founder mutations so far reported only among Tunisians that are responsible for 30 genetic diseases. The second group represents founder haplotypes described in 51 inherited conditions that occur among Tunisians and are also shared with other North African and Middle Eastern countries. Several heavily disabilitating diseases are caused by recessive founder mutations. They include, among others, neuromuscular diseases such as congenital muscular dystrophy and spastic paraglegia and also severe genodermatoses such as dystrophic epidermolysis bullosa and xeroderma pigmentosa. Conclusion This report provides informations on founder mutations for 73 genetic diseases either specific to Tunisians or shared by other populations. Taking into account the relatively high number and frequency of genetic diseases in the region and the limited resources, screening for these founder mutations should provide a rapid and cost effective tool for molecular diagnosis. Indeed, our report should help designing appropriate measures for carrier screening, better evaluation of diseases burden and setting up of preventive measures at the regional level. PMID:22908982
Nielsen, Camilla; Bojesen, Stig E.; Nordestgaard, Børge G.; Kofoed, Klaus F.; Birgens, Henrik S.
2014-01-01
Clinical significance of the JAK2V617F mutation in patients with a myeloproliferative neoplasm has been the target of intensive research in recent years. However, there is considerably uncertainty about prognosis in JAK2V617F positive individuals without overt signs of myeloproliferative disease. In this study, we tested the hypothesis that increased JAK2V617F somatic mutation burden is associated with myeloproliferative neoplasm progression rate in the general population. Among 49,488 individuals from the Copenhagen General Population Study, 63 (0.1%) tested positive for the JAK2V617F mutation in the time period 2003–2008. Of these, 48 were available for re-examination in 2012. Level of JAK2V617F mutation burden was associated with myeloproliferative neoplasm progression rate, consistent with a biological continuum of increasing JAK2V617F mutation burden across increasing severity of myeloproliferative neoplasm from no disease (n=8 at re-examination) through essential thrombocythemia (n=20) and polycythemia vera (n=13) to primary myelofibrosis (n=7). Among those diagnosed with a myeloproliferative neoplasm only at re-examination in 2012, in the preceding years JAK2V617F mutation burden increased by 0.55% per year, erythrocyte volume fraction increased by 1.19% per year, and erythrocyte mean corpuscular volume increased by 1.25% per year, while there was no change in platelet count or erythropoietin levels. Furthermore, we established a JAK2V617F mutation burden cut-off point of 2% indicative of disease versus no disease; however, individuals with a mutation burden below 2% may suffer from a latent form of myeloproliferative disease revealed by a slightly larger spleen and/or slightly higher lactic acid dehydrogenase concentration compared to controls. Of all 63 JAK2V617F positive individuals, 48 were eventually diagnosed with a myeloproliferative neoplasm. PMID:24907356
Hu, Qiang; Yan, Li; Liu, Biao; Ambrosone, Christine B.; Wang, Jianmin; Liu, Song
2016-01-01
The incidence rate of hepatocellular carcinoma (HCC) is higher in populations of Asian ancestry than European ancestry (EA). We sought to investigate HCC mutational differences between the two populations, which may reflect differences in the prevalence of etiological factors. We compared HCC somatic mutations in patients of self-reported Asian American and EA from The Cancer Genome Atlas (TCGA), and assessed associations of tumor mutations with established HCC risk factors. Although the average mutation burden was similar, TP53 and RB1 were mutated at a much higher frequency in Asian Americans than in EAs (TP53: 43% vs. 21%; RB1: 19% vs. 2%). Three putative oncogenic genes, including TRPM3, SAGE1, and ADAMTS7, were mutated exclusively in Asians. In addition, VEGF binding pathway, a druggable target by tyrosine kinase inhibitors such as sorafenib, was mutated at a higher frequency among Asians (13% vs. 2%); while the negative regulation of IL17 production, involved in inflammation and autoimmunity, was mutated only in EAs (12% vs. 0). Accounting for HCC risk factors had little impact on any of the mutational differences. In conclusion, we demonstrated here mutational differences in important cancer genes and pathways between Asian and European ancestries. These differences may have implications for the prevention and treatment of HCC. PMID:27246981
Yao, Song; Johnson, Christopher; Hu, Qiang; Yan, Li; Liu, Biao; Ambrosone, Christine B; Wang, Jianmin; Liu, Song
2016-06-28
The incidence rate of hepatocellular carcinoma (HCC) is higher in populations of Asian ancestry than European ancestry (EA). We sought to investigate HCC mutational differences between the two populations, which may reflect differences in the prevalence of etiological factors. We compared HCC somatic mutations in patients of self-reported Asian American and EA from The Cancer Genome Atlas (TCGA), and assessed associations of tumor mutations with established HCC risk factors. Although the average mutation burden was similar, TP53 and RB1 were mutated at a much higher frequency in Asian Americans than in EAs (TP53: 43% vs. 21%; RB1: 19% vs. 2%). Three putative oncogenic genes, including TRPM3, SAGE1, and ADAMTS7, were mutated exclusively in Asians. In addition, VEGF binding pathway, a druggable target by tyrosine kinase inhibitors such as sorafenib, was mutated at a higher frequency among Asians (13% vs. 2%); while the negative regulation of IL17 production, involved in inflammation and autoimmunity, was mutated only in EAs (12% vs. 0). Accounting for HCC risk factors had little impact on any of the mutational differences. In conclusion, we demonstrated here mutational differences in important cancer genes and pathways between Asian and European ancestries. These differences may have implications for the prevention and treatment of HCC.
A resolution of the mutation load paradox in humans.
Lesecque, Yann; Keightley, Peter D; Eyre-Walker, Adam
2012-08-01
Current information on the rate of mutation and the fraction of sites in the genome that are subject to selection suggests that each human has received, on average, at least two new harmful mutations from its parents. These mutations were subsequently removed by natural selection through reduced survival or fertility. It has been argued that the mutation load, the proportional reduction in population mean fitness relative to the fitness of an idealized mutation-free individual, allows a theoretical prediction of the proportion of individuals in the population that fail to reproduce as a consequence of these harmful mutations. Application of this theory to humans implies that at least 88% of individuals should fail to reproduce and that each female would need to have more than 16 offspring to maintain population size. This prediction is clearly at odds with the low reproductive excess of human populations. Here, we derive expressions for the fraction of individuals that fail to reproduce as a consequence of recurrent deleterious mutation () for a model in which selection occurs via differences in relative fitness, such as would occur through competition between individuals. We show that is much smaller than the value predicted by comparing fitness to that of a mutation-free genotype. Under the relative fitness model, we show that depends jointly on U and the selective effects of new deleterious mutations and that a species could tolerate 10's or even 100's of new deleterious mutations per genome each generation.
Long-range dispersal moved Francisella tularensis into Western Europe from the East.
Dwibedi, Chinmay; Birdsell, Dawn; Lärkeryd, Adrian; Myrtennäs, Kerstin; Öhrman, Caroline; Nilsson, Elin; Karlsson, Edvin; Hochhalter, Christian; Rivera, Andrew; Maltinsky, Sara; Bayer, Brittany; Keim, Paul; Scholz, Holger C; Tomaso, Herbert; Wittwer, Matthias; Beuret, Christian; Schuerch, Nadia; Pilo, Paola; Hernández Pérez, Marta; Rodriguez-Lazaro, David; Escudero, Raquel; Anda, Pedro; Forsman, Mats; Wagner, David M; Larsson, Pär; Johansson, Anders
2016-12-01
For many infections transmitting to humans from reservoirs in nature, disease dispersal patterns over space and time are largely unknown. Here, a reversed genomics approach helped us understand disease dispersal and yielded insight into evolution and biological properties of Francisella tularensis , the bacterium causing tularemia. We whole-genome sequenced 67 strains and characterized by single-nucleotide polymorphism assays 138 strains, collected from individuals infected 1947-2012 across Western Europe. We used the data for phylogenetic, population genetic and geographical network analyses. All strains ( n =205) belonged to a monophyletic population of recent ancestry not found outside Western Europe. Most strains ( n =195) throughout the study area were assigned to a star-like phylogenetic pattern indicating that colonization of Western Europe occurred via clonal expansion. In the East of the study area, strains were more diverse, consistent with a founder population spreading from east to west. The relationship of genetic and geographic distance within the F. tularensis population was complex and indicated multiple long-distance dispersal events. Mutation rate estimates based on year of isolation indicated null rates; in outbreak hotspots only, there was a rate of 0.4 mutations/genome/year. Patterns of nucleotide substitution showed marked AT mutational bias suggestive of genetic drift. These results demonstrate that tularemia has moved from east to west in Europe and that F. tularensis has a biology characterized by long-range geographical dispersal events and mostly slow, but variable, replication rates. The results indicate that mutation-driven evolution, a resting survival phase, genetic drift and long-distance geographical dispersal events have interacted to generate genetic diversity within this species.
Razeto-Barry, Pablo; Díaz, Javier; Vásquez, Rodrigo A.
2012-01-01
The general theories of molecular evolution depend on relatively arbitrary assumptions about the relative distribution and rate of advantageous, deleterious, neutral, and nearly neutral mutations. The Fisher geometrical model (FGM) has been used to make distributions of mutations biologically interpretable. We explored an FGM-based molecular model to represent molecular evolutionary processes typically studied by nearly neutral and selection models, but in which distributions and relative rates of mutations with different selection coefficients are a consequence of biologically interpretable parameters, such as the average size of the phenotypic effect of mutations and the number of traits (complexity) of organisms. A variant of the FGM-based model that we called the static regime (SR) represents evolution as a nearly neutral process in which substitution rates are determined by a dynamic substitution process in which the population’s phenotype remains around a suboptimum equilibrium fitness produced by a balance between slightly deleterious and slightly advantageous compensatory substitutions. As in previous nearly neutral models, the SR predicts a negative relationship between molecular evolutionary rate and population size; however, SR does not have the unrealistic properties of previous nearly neutral models such as the narrow window of selection strengths in which they work. In addition, the SR suggests that compensatory mutations cannot explain the high rate of fixations driven by positive selection currently found in DNA sequences, contrary to what has been previously suggested. We also developed a generalization of SR in which the optimum phenotype can change stochastically due to environmental or physiological shifts, which we called the variable regime (VR). VR models evolution as an interplay between adaptive processes and nearly neutral steady-state processes. When strong environmental fluctuations are incorporated, the process becomes a selection model in which evolutionary rate does not depend on population size, but is critically dependent on the complexity of organisms and mutation size. For SR as well as VR we found that key parameters of molecular evolution are linked by biological factors, and we showed that they cannot be fixed independently by arbitrary criteria, as has usually been assumed in previous molecular evolutionary models. PMID:22426879
NASA Astrophysics Data System (ADS)
Noirel, Josselin; Simonson, Thomas
2008-11-01
Following Kimura's neutral theory of molecular evolution [M. Kimura, The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge, 1983) (reprinted in 1986)], it has become common to assume that the vast majority of viable mutations of a gene confer little or no functional advantage. Yet, in silico models of protein evolution have shown that mutational robustness of sequences could be selected for, even in the context of neutral evolution. The evolution of a biological population can be seen as a diffusion on the network of viable sequences. This network is called a "neutral network." Depending on the mutation rate μ and the population size N, the biological population can evolve purely randomly (μN ≪1) or it can evolve in such a way as to select for sequences of higher mutational robustness (μN ≫1). The stringency of the selection depends not only on the product μN but also on the exact topology of the neutral network, the special arrangement of which was named "superfunnel." Even though the relation between mutation rate, population size, and selection was thoroughly investigated, a study of the salient topological features of the superfunnel that could affect the strength of the selection was wanting. This question is addressed in this study. We use two different models of proteins: on lattice and off lattice. We compare neutral networks computed using these models to random networks. From this, we identify two important factors of the topology that determine the stringency of the selection for mutationally robust sequences. First, the presence of highly connected nodes ("hubs") in the network increases the selection for mutationally robust sequences. Second, the stringency of the selection increases when the correlation between a sequence's mutational robustness and its neighbors' increases. The latter finding relates a global characteristic of the neutral network to a local one, which is attainable through experiments or molecular modeling.
Noirel, Josselin; Simonson, Thomas
2008-11-14
Following Kimura's neutral theory of molecular evolution [M. Kimura, The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge, 1983) (reprinted in 1986)], it has become common to assume that the vast majority of viable mutations of a gene confer little or no functional advantage. Yet, in silico models of protein evolution have shown that mutational robustness of sequences could be selected for, even in the context of neutral evolution. The evolution of a biological population can be seen as a diffusion on the network of viable sequences. This network is called a "neutral network." Depending on the mutation rate mu and the population size N, the biological population can evolve purely randomly (muN<1) or it can evolve in such a way as to select for sequences of higher mutational robustness (muN>1). The stringency of the selection depends not only on the product muN but also on the exact topology of the neutral network, the special arrangement of which was named "superfunnel." Even though the relation between mutation rate, population size, and selection was thoroughly investigated, a study of the salient topological features of the superfunnel that could affect the strength of the selection was wanting. This question is addressed in this study. We use two different models of proteins: on lattice and off lattice. We compare neutral networks computed using these models to random networks. From this, we identify two important factors of the topology that determine the stringency of the selection for mutationally robust sequences. First, the presence of highly connected nodes ("hubs") in the network increases the selection for mutationally robust sequences. Second, the stringency of the selection increases when the correlation between a sequence's mutational robustness and its neighbors' increases. The latter finding relates a global characteristic of the neutral network to a local one, which is attainable through experiments or molecular modeling.
Vogl, Claus; Clemente, Florian
2012-05-01
We analyze a decoupled Moran model with haploid population size N, a biallelic locus under mutation and drift with scaled forward and backward mutation rates θ(1)=μ(1)N and θ(0)=μ(0)N, and directional selection with scaled strength γ=sN. With small scaled mutation rates θ(0) and θ(1), which is appropriate for single nucleotide polymorphism data in highly recombining regions, we derive a simple approximate equilibrium distribution for polymorphic alleles with a constant of proportionality. We also put forth an even simpler model, where all mutations originate from monomorphic states. Using this model we derive the sojourn times, conditional on the ancestral and fixed allele, and under equilibrium the distributions of fixed and polymorphic alleles and fixation rates. Furthermore, we also derive the distribution of small samples in the diffusion limit and provide convenient recurrence relations for calculating this distribution. This enables us to give formulas analogous to the Ewens-Watterson estimator of θ for biased mutation rates and selection. We apply this theory to a polymorphism dataset of fourfold degenerate sites in Drosophila melanogaster. Copyright © 2012 Elsevier Inc. All rights reserved.
The population genetics of mutations: good, bad and indifferent
Loewe, Laurence; Hill, William G.
2010-01-01
Population genetics is fundamental to our understanding of evolution, and mutations are essential raw materials for evolution. In this introduction to more detailed papers that follow, we aim to provide an oversight of the field. We review current knowledge on mutation rates and their harmful and beneficial effects on fitness and then consider theories that predict the fate of individual mutations or the consequences of mutation accumulation for quantitative traits. Many advances in the past built on models that treat the evolution of mutations at each DNA site independently, neglecting linkage of sites on chromosomes and interactions of effects between sites (epistasis). We review work that addresses these limitations, to predict how mutations interfere with each other. An understanding of the population genetics of mutations of individual loci and of traits affected by many loci helps in addressing many fundamental and applied questions: for example, how do organisms adapt to changing environments, how did sex evolve, which DNA sequences are medically important, why do we age, which genetic processes can generate new species or drive endangered species to extinction, and how should policy on levels of potentially harmful mutagens introduced into the environment by humans be determined? PMID:20308090
Novel population genetics in ciliates due to life cycle and nuclear dimorphism.
Morgens, David W; Stutz, Timothy C; Cavalcanti, Andre R O
2014-08-01
Our understanding of population genetics comes primarily from studies of organisms with canonical life cycles and nuclear organization, either haploid or diploid, sexual, or asexual. Although this template yields satisfactory results for the study of animals and plants, the wide variety of genomic organizations and life cycles of unicellular eukaryotes can make these organisms behave differently in response to mutation, selection, and drift than predicted by traditional population genetic models. In this study, we show how each of these unique features of ciliates affects their evolutionary parameters in mutation-selection, selection-drift, and mutation-selection-drift situations. In general, ciliates are less efficient in eliminating deleterious mutations-these mutations linger longer and at higher frequencies in ciliate populations than in sexual populations--and more efficient in selecting beneficial mutations. Approaching this problem via analytical techniques and simulation allows us to make specific predictions about the nature of ciliate evolution, and we discuss the implications of these results with respect to the high levels of polymorphism and high rate of protein evolution reported for ciliates. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Environmental factors that impact population sizes, migration rates, mutation rates or selective forces can leave lasting genetic imprints on patterns of intraspecific genetic variation. This suggests that measures of genetic diversity may be useful indicators of the condition o...
SMART – Sunflower Mutant population And Reverse genetic Tool for crop improvement
2013-01-01
Background Sunflower (Helianthus annuus L.) is an important oilseed crop grown widely in various areas of the world. Classical genetic studies have been extensively undertaken for the improvement of this particular oilseed crop. Pertaining to this endeavor, we developed a “chemically induced mutated genetic resource for detecting SNP by TILLING” in sunflower to create new traits. Results To optimize the EMS mutagenesis, we first conducted a “kill curve” analysis with a range of EMS dose from 0.5% to 3%. Based on the observed germination rate, a 50% survival rate i.e. LD50, treatment with 0.6% EMS for 8 hours was chosen to generate 5,000 M2 populations, out of which, 4,763 M3 plants with fertile seed set. Phenotypic characterization of the 5,000 M2 mutagenised lines were undertaken to assess the mutagenesis quality and to identify traits of interest. In the M2 population, about 1.1% of the plants showed phenotypic variations. The sunflower TILLING platform was setup using Endo-1-nuclease as mismatch detection system coupled with an eight fold DNA pooling strategy. As proof-of-concept, we screened the M2 population for induced mutations in two genes related to fatty acid biosynthesis, FatA an acyl-ACP thioesterase and SAD the stearoyl-ACP desaturase and identified a total of 26 mutations. Conclusion Based on the TILLING of FatA and SAD genes, we calculated the overall mutation rate to one mutation every 480 kb, similar to other report for this crop so far. As sunflower is a plant model for seed oil biosynthesis, we anticipate that the developed genetic resource will be a useful tool to identify novel traits for sunflower crop improvement. PMID:23496999
Thirthagiri, E; Lee, S Y; Kang, P; Lee, D S; Toh, G T; Selamat, S; Yoon, S-Y; Taib, N A Mohd; Thong, M K; Yip, C H; Teo, S H
2008-01-01
The cost of genetic testing and the limited knowledge about the BRCA1 and BRCA2 genes in different ethnic groups has limited its availability in medium- and low-resource countries, including Malaysia. In addition, the applicability of many risk-assessment tools, such as the Manchester Scoring System and BOADICEA (Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm) which were developed based on mutation rates observed primarily in Caucasian populations using data from multiplex families, and in populations where the rate of breast cancer is higher, has not been widely tested in Asia or in Asians living elsewhere. Here, we report the results of genetic testing for mutations in the BRCA1 or BRCA2 genes in a series of families with breast cancer in the multi-ethnic population (Malay, Chinese and Indian) of Malaysia. A total of 187 breast cancer patients with either early-onset breast cancer (at age = 40 years) or a personal and/or family history of breast or ovarian cancer were comprehensively tested by full sequencing of both BRCA1 and BRCA2. Two algorithms to predict the presence of mutations, the Manchester Scoring System and BOADICEA, were evaluated. Twenty-seven deleterious mutations were detected (14 in BRCA1 and 13 in BRCA2), only one of which was found in two unrelated individuals (BRCA2 490 delCT). In addition, 47 variants of uncertain clinical significance were identified (16 in BRCA1 and 31 in BRCA2). Notably, many mutations are novel (13 of the 30 BRCA1 mutations and 24 of the 44 BRCA2). We report that while there were an equal proportion of BRCA1 and BRCA2 mutations in the Chinese population in our study, there were significantly more BRCA2 mutations among the Malays. In addition, we show that the predictive power of the BOADICEA risk-prediction model and the Manchester Scoring System was significantly better for BRCA1 than BRCA2, but that the overall sensitivity, specificity and positive-predictive value was lower in this population than has been previously reported in Caucasian populations. Our study underscores the need for larger collaborative studies among non-Caucasian populations to validate the role of genetic testing and the use of risk-prediction models in ensuring that the other populations in the world may also benefit from the genomics and genetics era.
Exome-wide Sequencing Shows Low Mutation Rates and Identifies Novel Mutated Genes in Seminomas.
Cutcutache, Ioana; Suzuki, Yuka; Tan, Iain Beehuat; Ramgopal, Subhashini; Zhang, Shenli; Ramnarayanan, Kalpana; Gan, Anna; Lee, Heng Hong; Tay, Su Ting; Ooi, Aikseng; Ong, Choon Kiat; Bolthouse, Jonathan T; Lane, Brian R; Anema, John G; Kahnoski, Richard J; Tan, Patrick; Teh, Bin Tean; Rozen, Steven G
2015-07-01
Testicular germ cell tumors are the most common cancer diagnosed in young men, and seminomas are the most common type of these cancers. There have been no exome-wide examinations of genes mutated in seminomas or of overall rates of nonsilent somatic mutations in these tumors. The objective was to analyze somatic mutations in seminomas to determine which genes are affected and to determine rates of nonsilent mutations. Eight seminomas and matched normal samples were surgically obtained from eight patients. DNA was extracted from tissue samples and exome sequenced on massively parallel Illumina DNA sequencers. Single-nucleotide polymorphism chip-based copy number analysis was also performed to assess copy number alterations. The DNA sequencing read data were analyzed to detect somatic mutations including single-nucleotide substitutions and short insertions and deletions. The detected mutations were validated by independent sequencing and further checked for subclonality. The rate of nonsynonymous somatic mutations averaged 0.31 mutations/Mb. We detected nonsilent somatic mutations in 96 genes that were not previously known to be mutated in seminomas, of which some may be driver mutations. Many of the mutations appear to have been present in subclonal populations. In addition, two genes, KIT and KRAS, were affected in two tumors each with mutations that were previously observed in other cancers and are presumably oncogenic. Our study, the first report on exome sequencing of seminomas, detected somatic mutations in 96 new genes, several of which may be targetable drivers. Furthermore, our results show that seminoma mutation rates are five times higher than previously thought, but are nevertheless low compared to other common cancers. Similar low rates are seen in other cancers that also have excellent rates of remission achieved with chemotherapy. We examined the DNA sequences of seminomas, the most common type of testicular germ cell cancer. Our study identified 96 new genes in which mutations occurred during seminoma development, some of which might contribute to cancer development or progression. The study also showed that the rates of DNA mutations during seminoma development are higher than previously thought, but still lower than for other common solid-organ cancers. Such low rates are also observed among other cancers that, like seminomas, show excellent rates of disease remission after chemotherapy. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Weigand, Michael R; Sundin, George W
2012-08-21
The successful growth of hypermutator strains of bacteria contradicts a clear preference for lower mutation rates observed in the microbial world. Whether by general DNA repair deficiency or the inducible action of low-fidelity DNA polymerases, the evolutionary strategies of bacteria include methods of hypermutation. Although both raise mutation rate, general and inducible hypermutation operate through distinct molecular mechanisms and therefore likely impart unique adaptive consequences. Here we compare the influence of general and inducible hypermutation on adaptation in the model organism Pseudomonas aeruginosa PAO1 through experimental evolution. We observed divergent spectra of single base substitutions derived from general and inducible hypermutation by sequencing rpoB in spontaneous rifampicin-resistant (Rif(R)) mutants. Likewise, the pattern of mutation in a draft genome sequence of a derived inducible hypermutator isolate differed from those of general hypermutators reported in the literature. However, following experimental evolution, populations of both mutator types exhibited comparable improvements in fitness across varied conditions that differed from the highly specific adaptation of nonmutators. Our results suggest that despite their unique mutation spectra, general and inducible hypermutation can analogously influence the ecology and adaptation of bacteria, significantly shaping pathogenic populations where hypermutation has been most widely observed.
Wang, Hongdan; Kang, Bing; Gao, Yue; Huo, Xiaodong; Li, Tao; Guo, Qiannan; Zhu, Bofeng; Liao, Shixiu
2017-04-10
To study the genetic polymorphisms and mutations of 20 frequently used autosomal microsatellites among ethnic Hans from Henan. Peripheral blood samples of 2604 individuals were collected. DNA was amplified and genotyped using a PowerPlex(TM) 21 system. The frequencies, forensic parameters and mutation rates of the 20 short tandem repeat (STR) loci were analyzed. A total of 323 alleles were found in this population and the allelic frequencies have ranged from 0.0003 to 0.5144. Except for D3S1358, TH01 and TPOX, mutations have been found in all of the remaining 17 STR loci, which totaled 47, with mutation rates ranging from 0 to 3.46 × 10 -3 . The 20 STR loci selected by the PowerPlex(TM) 21 system are highly polymorphic among ethnic Hans from Henan, and may be of great value in forensic and human population studies. As no similar study has been carried out previously, above results may be of great value for individual discrimination and paternal testing.
Mutation supply and the repeatability of selection for antibiotic resistance
NASA Astrophysics Data System (ADS)
van Dijk, Thomas; Hwang, Sungmin; Krug, Joachim; de Visser, J. Arjan G. M.; Zwart, Mark P.
2017-10-01
Whether evolution can be predicted is a key question in evolutionary biology. Here we set out to better understand the repeatability of evolution, which is a necessary condition for predictability. We explored experimentally the effect of mutation supply and the strength of selective pressure on the repeatability of selection from standing genetic variation. Different sizes of mutant libraries of antibiotic resistance gene TEM-1 β-lactamase in Escherichia coli, generated by error-prone PCR, were subjected to different antibiotic concentrations. We determined whether populations went extinct or survived, and sequenced the TEM gene of the surviving populations. The distribution of mutations per allele in our mutant libraries followed a Poisson distribution. Extinction patterns could be explained by a simple stochastic model that assumed the sampling of beneficial mutations was key for survival. In most surviving populations, alleles containing at least one known large-effect beneficial mutation were present. These genotype data also support a model which only invokes sampling effects to describe the occurrence of alleles containing large-effect driver mutations. Hence, evolution is largely predictable given cursory knowledge of mutational fitness effects, the mutation rate and population size. There were no clear trends in the repeatability of selected mutants when we considered all mutations present. However, when only known large-effect mutations were considered, the outcome of selection is less repeatable for large libraries, in contrast to expectations. We show experimentally that alleles carrying multiple mutations selected from large libraries confer higher resistance levels relative to alleles with only a known large-effect mutation, suggesting that the scarcity of high-resistance alleles carrying multiple mutations may contribute to the decrease in repeatability at large library sizes.
Resolving the Conflict Between Associative Overdominance and Background Selection
Zhao, Lei; Charlesworth, Brian
2016-01-01
In small populations, genetic linkage between a polymorphic neutral locus and loci subject to selection, either against partially recessive mutations or in favor of heterozygotes, may result in an apparent selective advantage to heterozygotes at the neutral locus (associative overdominance) and a retardation of the rate of loss of variability by genetic drift at this locus. In large populations, selection against deleterious mutations has previously been shown to reduce variability at linked neutral loci (background selection). We describe analytical, numerical, and simulation studies that shed light on the conditions under which retardation vs. acceleration of loss of variability occurs at a neutral locus linked to a locus under selection. We consider a finite, randomly mating population initiated from an infinite population in equilibrium at a locus under selection. With mutation and selection, retardation occurs only when S, the product of twice the effective population size and the selection coefficient, is of order 1. With S >> 1, background selection always causes an acceleration of loss of variability. Apparent heterozygote advantage at the neutral locus is, however, always observed when mutations are partially recessive, even if there is an accelerated rate of loss of variability. With heterozygote advantage at the selected locus, loss of variability is nearly always retarded. The results shed light on experiments on the loss of variability at marker loci in laboratory populations and on the results of computer simulations of the effects of multiple selected loci on neutral variability. PMID:27182952
Mutation spectrum of Chinese patients with Bartter syndrome.
Han, Yue; Lin, Yi; Sun, Qing; Wang, Shujuan; Gao, Yanxia; Shao, Leping
2017-11-24
Bartter syndrome (BS) has been rarely reported in Chinese population except for a few case reports. This investigation was aimed to analyze the mutations of the causal genes in sixteen Chinese patients with BS, and review their followup and treatment. Identify mutations by the next generation sequencing and the multiplex ligation-dependent probe amplification (MLPA). Clinical characteristics and biochemical findings at the first presentation as well as follow-up were reviewed. 15 different CLCNKB gene mutations were identified in fourteen patients with BS, including 11 novel ones. A novel missense mutation and a novel small deletion were found from SLC12A1 gene. A novel gross deletion was found in CLCNKA gene. A recurrent missense mutation was identified from BSND gene. We found that the whole gene deletion mutation of CLCNKB gene was the most frequent mutation (32%), and the rate of gross deletion was up to 50 percent in this group of Chinese patients. The present study has found 19 mutations, including 14 novel ones, which would enrich the human gene mutation database (HGMD) and provide valuable references to the genetic counseling and diagnosis of the Chinese population.
Fitness effects of advantageous mutations in evolving Escherichia coli populations
Imhof, Marianne; Schlötterer, Christian
2001-01-01
The central role of beneficial mutations for adaptive processes in natural populations is well established. Thus, there has been a long-standing interest to study the nature of beneficial mutations. Their low frequency, however, has made this class of mutations almost inaccessible for systematic studies. In the absence of experimental data, the distribution of the fitness effects of beneficial mutations was assumed to resemble that of deleterious mutations. For an experimental proof of this assumption, we used a novel marker system to trace adaptive events in an evolving Escherichia coli culture and to determine the selective advantage of those beneficial mutations. Ten parallel cultures were propagated for about 1,000 generations by serial transfer, and 66 adaptive events were identified. From this data set, we estimate the rate of beneficial mutations to be 4 × 10−9 per cell and generation. Consistent with an exponential distribution of the fitness effects, we observed a large fraction of advantageous mutations with a small effect and only few with large effect. The mean selection coefficient of advantageous mutations in our experiment was 0.02. PMID:11158603
Harding, R. M.; Boyce, A. J.; Martinson, J. J.; Flint, J.; Clegg, J. B.
1993-01-01
Extensive allelic diversity in variable numbers of tandem repeats (VNTRs) has been discovered in the human genome. For population genetic studies of VNTRs, such as forensic applications, it is important to know whether a neutral mutation-drift balance of VNTR polymorphism can be represented by the infinite alleles model. The assumption of the infinite alleles model that each new mutant is unique is very likely to be violated by unequal sister chromatid exchange (USCE), the primary process believed to generate VNTR mutants. We show that increasing both mutation rates and misalignment constraint for intrachromosomal recombination in a computer simulation model reduces simulated VNTR diversity below the expectations of the infinite alleles model. Maximal constraint, represented as slippage of single repeats, reduces simulated VNTR diversity to levels expected from the stepwise mutation model. Although misalignment rule is the more important variable, mutation rate also has an effect. At moderate rates of USCE, simulated VNTR diversity fluctuates around infinite alleles expectation. However, if rates of USCE are high, as for hypervariable VNTRs, simulated VNTR diversity is consistently lower than predicted by the infinite alleles model. This has been observed for many VNTRs and accounted for by technical problems in distinguishing alleles of neighboring size classes. We use sampling theory to confirm the intrinsically poor fit to the infinite alleles model of both simulated VNTR diversity and observed VNTR polymorphisms sampled from two Papua New Guinean populations. PMID:8293988
Harding, R M; Boyce, A J; Martinson, J J; Flint, J; Clegg, J B
1993-11-01
Extensive allelic diversity in variable numbers of tandem repeats (VNTRs) has been discovered in the human genome. For population genetic studies of VNTRs, such as forensic applications, it is important to know whether a neutral mutation-drift balance of VNTR polymorphism can be represented by the infinite alleles model. The assumption of the infinite alleles model that each new mutant is unique is very likely to be violated by unequal sister chromatid exchange (USCE), the primary process believed to generate VNTR mutants. We show that increasing both mutation rates and misalignment constraint for intrachromosomal recombination in a computer simulation model reduces simulated VNTR diversity below the expectations of the infinite alleles model. Maximal constraint, represented as slippage of single repeats, reduces simulated VNTR diversity to levels expected from the stepwise mutation model. Although misalignment rule is the more important variable, mutation rate also has an effect. At moderate rates of USCE, simulated VNTR diversity fluctuates around infinite alleles expectation. However, if rates of USCE are high, as for hypervariable VNTRs, simulated VNTR diversity is consistently lower than predicted by the infinite alleles model. This has been observed for many VNTRs and accounted for by technical problems in distinguishing alleles of neighboring size classes. We use sampling theory to confirm the intrinsically poor fit to the infinite alleles model of both simulated VNTR diversity and observed VNTR polymorphisms sampled from two Papua New Guinean populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, R.M.; Martinson, J.J.; Flint, J.
1993-11-01
Extensive allelic diversity in variable numbers of tandem repeats (VNTRs) has been discovered in the human genome. For population genetic studies of VNTRs, such as forensic applications, it is important to know whether a neutral mutation-drift balance of VNTR polymorphism can be represented by the infinite alleles model. The assumption of the infinite alleles model that each new mutant is unique is very likely to be violated by unequal sister chromatid exchange (USCE), the primary process believed to generate VNTR mutants. The authors show that increasing both mutation rates and misalignment constraint for intrachromosomal recombination in a computer simulation modelmore » reduces simulated VNTR diversity below the expectations of the infinite alleles model. Maximal constraint, represented as slippage of single repeats, reduces simulated VNTR diversity to levels expected from the stepwise mutation model. Although misalignment rule is the more important variable, mutation rate also has an effect. At moderate rates of USCE, simulated VNTR diversity fluctuates around infinite alleles expectation. However, if rates of USCE are high, as for hypervariable VNTRs, simulated VNTR diversity is consistently lower than predicted by the infinite alleles model. This has been observed for many VNTRs and accounted for by technical problems in distinguishing alleles of neighboring size classes. The authors use sampling theory to confirm the intrinsically poor fit to the infinite model of both simulated VNTR diversity and observed VNTR polymorphisms sampled from two Papua New Guinean populations. 25 refs., 20 figs., 4 tabs.« less
Hössjer, Ola; Tyvand, Peder A; Miloh, Touvia
2016-02-01
The classical Kimura solution of the diffusion equation is investigated for a haploid random mating (Wright-Fisher) model, with one-way mutations and initial-value specified by the founder population. The validity of the transient diffusion solution is checked by exact Markov chain computations, using a Jordan decomposition of the transition matrix. The conclusion is that the one-way diffusion model mostly works well, although the rate of convergence depends on the initial allele frequency and the mutation rate. The diffusion approximation is poor for mutation rates so low that the non-fixation boundary is regular. When this happens we perturb the diffusion solution around the non-fixation boundary and obtain a more accurate approximation that takes quasi-fixation of the mutant allele into account. The main application is to quantify how fast a specific genetic variant of the infinite alleles model is lost. We also discuss extensions of the quasi-fixation approach to other models with small mutation rates. Copyright © 2015 Elsevier Inc. All rights reserved.
An Upper Limit on the Functional Fraction of the Human Genome.
Graur, Dan
2017-07-01
For the human population to maintain a constant size from generation to generation, an increase in fertility must compensate for the reduction in the mean fitness of the population caused, among others, by deleterious mutations. The required increase in fertility due to this mutational load depends on the number of sites in the genome that are functional, the mutation rate, and the fraction of deleterious mutations among all mutations in functional regions. These dependencies and the fact that there exists a maximum tolerable replacement level fertility can be used to put an upper limit on the fraction of the human genome that can be functional. Mutational load considerations lead to the conclusion that the functional fraction within the human genome cannot exceed 25%, and is probably considerably lower. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Long-range dispersal moved Francisella tularensis into Western Europe from the East
Dwibedi, Chinmay; Birdsell, Dawn; Lärkeryd, Adrian; Myrtennäs, Kerstin; Öhrman, Caroline; Nilsson, Elin; Karlsson, Edvin; Hochhalter, Christian; Rivera, Andrew; Maltinsky, Sara; Bayer, Brittany; Keim, Paul; Scholz, Holger C.; Tomaso, Herbert; Wittwer, Matthias; Beuret, Christian; Schuerch, Nadia; Pilo, Paola; Hernández Pérez, Marta; Rodriguez-Lazaro, David; Escudero, Raquel; Anda, Pedro; Forsman, Mats; Wagner, David M.; Larsson, Pär
2016-01-01
For many infections transmitting to humans from reservoirs in nature, disease dispersal patterns over space and time are largely unknown. Here, a reversed genomics approach helped us understand disease dispersal and yielded insight into evolution and biological properties of Francisella tularensis, the bacterium causing tularemia. We whole-genome sequenced 67 strains and characterized by single-nucleotide polymorphism assays 138 strains, collected from individuals infected 1947-2012 across Western Europe. We used the data for phylogenetic, population genetic and geographical network analyses. All strains (n=205) belonged to a monophyletic population of recent ancestry not found outside Western Europe. Most strains (n=195) throughout the study area were assigned to a star-like phylogenetic pattern indicating that colonization of Western Europe occurred via clonal expansion. In the East of the study area, strains were more diverse, consistent with a founder population spreading from east to west. The relationship of genetic and geographic distance within the F. tularensis population was complex and indicated multiple long-distance dispersal events. Mutation rate estimates based on year of isolation indicated null rates; in outbreak hotspots only, there was a rate of 0.4 mutations/genome/year. Patterns of nucleotide substitution showed marked AT mutational bias suggestive of genetic drift. These results demonstrate that tularemia has moved from east to west in Europe and that F. tularensis has a biology characterized by long-range geographical dispersal events and mostly slow, but variable, replication rates. The results indicate that mutation-driven evolution, a resting survival phase, genetic drift and long-distance geographical dispersal events have interacted to generate genetic diversity within this species. PMID:28348839
The directed mutation controversy and neo-Darwinism.
Lenski, R E; Mittler, J E
1993-01-08
According to neo-Darwinian theory, random mutation produces genetic differences among organisms whereas natural selection tends to increase the frequency of advantageous alleles. However, several recent papers claim that certain mutations in bacteria and yeast occur at much higher rates specifically when the mutant phenotypes are advantageous. Various molecular models have been proposed that might explain these directed mutations, but the models have not been confirmed. Critics contend that studies purporting to demonstrate directed mutation lack certain controls and fail to account adequately for population dynamics. Further experiments that address these criticisms do not support the existence of directed mutations.
Invasive advance of an advantageous mutation: nucleation theory.
O'Malley, Lauren; Basham, James; Yasi, Joseph A; Korniss, G; Allstadt, Andrew; Caraco, Thomas
2006-12-01
For sedentary organisms with localized reproduction, spatially clustered growth drives the invasive advance of a favorable mutation. We model competition between two alleles where recurrent mutation introduces a genotype with a rate of local propagation exceeding the resident's rate. We capture ecologically important properties of the rare invader's stochastic dynamics by assuming discrete individuals and local neighborhood interactions. To understand how individual-level processes may govern population patterns, we invoke the physical theory for nucleation of spatial systems. Nucleation theory discriminates between single-cluster and multi-cluster dynamics. A sufficiently low mutation rate, or a sufficiently small environment, generates single-cluster dynamics, an inherently stochastic process; a favorable mutation advances only if the invader cluster reaches a critical radius. For this mode of invasion, we identify the probability distribution of waiting times until the favored allele advances to competitive dominance, and we ask how the critical cluster size varies as propagation or mortality rates vary. Increasing the mutation rate or system size generates multi-cluster invasion, where spatial averaging produces nearly deterministic global dynamics. For this process, an analytical approximation from nucleation theory, called Avrami's Law, describes the time-dependent behavior of the genotype densities with remarkable accuracy.
Neutral evolution of mutational robustness
van Nimwegen, Erik; Crutchfield, James P.; Huynen, Martijn
1999-01-01
We introduce and analyze a general model of a population evolving over a network of selectively neutral genotypes. We show that the population’s limit distribution on the neutral network is solely determined by the network topology and given by the principal eigenvector of the network’s adjacency matrix. Moreover, the average number of neutral mutant neighbors per individual is given by the matrix spectral radius. These results quantify the extent to which populations evolve mutational robustness—the insensitivity of the phenotype to mutations—and thus reduce genetic load. Because the average neutrality is independent of evolutionary parameters—such as mutation rate, population size, and selective advantage—one can infer global statistics of neutral network topology by using simple population data available from in vitro or in vivo evolution. Populations evolving on neutral networks of RNA secondary structures show excellent agreement with our theoretical predictions. PMID:10449760
Epidemiology and genetics of FTD: a door-to-door survey in Southern Italy
Colao, Rosanna; Puccio, Gianfranco; Curcio, Sabrina AM; Mirabelli, Maria; Maletta, Raffaele; Anfossi, Maria; Gallo, Maura; Geracitano, Silvana; Conidi, Maria Elena; Di Lorenzo, Raffale; Clodomiro, Alessandra; Cupidi, Chiara; Marzano, Sandra; Comito, Francesco; Valenti, Vincenzo; Zirilli, Maria Angela; Ghani, Mahdi; Xi, Zhengrui; Sato, Christine; Moreno, Danielle; Borelli, Annelisa; Leone, Rosa Anna; St George-Hyslop, Peter; Rogaeva, Ekaterina; Bruni, Amalia C.
2016-01-01
Objectives To estimate FTD prevalence, identify FTD-related mutations, correlate FTD phenotype with mutations in a Southern Italian population. Methods Study population consisting of subjects ≥50 years of age residing in the Community of Biv. on January 1, 2004. Door-to-door two-phase design. Genetic and biochemical analyses were done on samples collected from 32 patients. Results Prevalence rates were 0.6 for AD, 0.4 for VD, 3.5 for FTD, 0.2 for Parkinson Dementia and 1.2 for unspecified dementia. Three GRN (one known and two novel) mutations with reduced plasma protein levels were found associated to three distinct phenotypes (behavioural, affective and delirious type). Conclusions We report an unusually high FTD prevalence in the investigated population, but a low prevalence of AD. We confirm the heterogeneity of FTD phenotype associated with different GRN mutations. PMID:22819134
The role of weak selection and high mutation rates in nearly neutral evolution.
Lawson, Daniel John; Jensen, Henrik Jeldtoft
2009-04-21
Neutral dynamics occur in evolution if all types are 'effectively equal' in their reproductive success, where the definition of 'effectively equal' depends on the population size and the details of mutations. Empirically observed neutral genetic evolution in extremely large clonal populations can only be explained under current models if selection is completely absent. Such models typically consider the case where population dynamics occurs on a different timescale to evolution. However, this assumption is invalid when mutations are not rare in a whole population. We show that this has important consequences for the occurrence of neutral evolution in clonal populations. In highly connected type spaces, neutral dynamics can occur for all population sizes despite significant selective differences, via the forming of effectively neutral networks connecting rare neutral types. Biological implications include an explanation for the high diversity of rare types that survive in large clonal populations, and a theoretical justification for the use of neutral null models.
Gabriel, Edith; Leatherbarrow, Andrew J.H.; Cheesbrough, John; Gee, Steven; Bolton, Eric; Fox, Andrew; Hart, C. Anthony; Diggle, Peter J.; Fearnhead, Paul
2009-01-01
Responsible for the majority of bacterial gastroenteritis in the developed world, Campylobacter jejuni is a pervasive pathogen of humans and animals, but its evolution is obscure. In this paper, we exploit contemporary genetic diversity and empirical evidence to piece together the evolutionary history of C. jejuni and quantify its evolutionary potential. Our combined population genetics–phylogenetics approach reveals a surprising picture. Campylobacter jejuni is a rapidly evolving species, subject to intense purifying selection that purges 60% of novel variation, but possessing a massive evolutionary potential. The low mutation rate is offset by a large effective population size so that a mutation at any site can occur somewhere in the population within the space of a week. Recombination has a fundamental role, generating diversity at twice the rate of de novo mutation, and facilitating gene flow between C. jejuni and its sister species Campylobacter coli. We attempt to calibrate the rate of molecular evolution in C. jejuni based solely on within-species variation. The rates we obtain are up to 1,000 times faster than conventional estimates, placing the C. jejuni–C. coli split at the time of the Neolithic revolution. We weigh the plausibility of such recent bacterial evolution against alternative explanations and discuss the evidence required to settle the issue. PMID:19008526
Mutation-selection balance in mixed mating populations.
Kelly, John K
2007-05-21
An approximation to the average number of deleterious mutations per gamete, Q, is derived from a model allowing selection on both zygotes and male gametes. Progeny are produced by either outcrossing or self-fertilization with fixed probabilities. The genetic model is a standard in evolutionary biology: mutations occur at unlinked loci, have equivalent effects, and combine multiplicatively to determine fitness. The approximation developed here treats individual mutation counts with a generalized Poisson model conditioned on the distribution of selfing histories in the population. The approximation is accurate across the range of parameter sets considered and provides both analytical insights and greatly increased computational speed. Model predictions are discussed in relation to several outstanding problems, including the estimation of the genomic deleterious mutation rates (U), the generality of "selective interference" among loci, and the consequences of gametic selection for the joint distribution of inbreeding depression and mating system across species. Finally, conflicting results from previous analytical treatments of mutation-selection balance are resolved to assumptions about the life-cycle and the initial fate of mutations.
A diploid wheat TILLING resource for wheat functional genomics
2012-01-01
Background Triticum monococcum L., an A genome diploid einkorn wheat, was the first domesticated crop. As a diploid, it is attractive genetic model for the study of gene structure and function of wheat-specific traits. Diploid wheat is currently not amenable to reverse genetics approaches such as insertion mutagenesis and post-transcriptional gene silencing strategies. However, TILLING offers a powerful functional genetics approach for wheat gene analysis. Results We developed a TILLING population of 1,532 M2 families using EMS as a mutagen. A total of 67 mutants were obtained for the four genes studied. Waxy gene mutation frequencies are known to be 1/17.6 - 34.4 kb DNA in polyploid wheat TILLING populations. The T. monococcum diploid wheat TILLING population had a mutation frequency of 1/90 kb for the same gene. Lignin biosynthesis pathway genes- COMT1, HCT2, and 4CL1 had mutation frequencies of 1/86 kb, 1/92 kb and 1/100 kb, respectively. The overall mutation frequency of the diploid wheat TILLING population was 1/92 kb. Conclusion The mutation frequency of a diploid wheat TILLING population was found to be higher than that reported for other diploid grasses. The rate, however, is lower than tetraploid and hexaploid wheat TILLING populations because of the higher tolerance of polyploids to mutations. Unlike polyploid wheat, most mutants in diploid wheat have a phenotype amenable to forward and reverse genetic analysis and establish diploid wheat as an attractive model to study gene function in wheat. We estimate that a TILLING population of 5, 520 will be needed to get a non-sense mutation for every wheat gene of interest with 95% probability. PMID:23134614
Does sex speed up evolutionary rate and increase biodiversity?
Melián, Carlos J; Alonso, David; Allesina, Stefano; Condit, Richard S; Etienne, Rampal S
2012-01-01
Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity.
Dobričić, Valerija; Tomić, Aleksandra; Branković, Vesna; Kresojević, Nikola; Janković, Milena; Westenberger, Ana; Rašić, Vedrana Milić; Klein, Christine; Novaković, Ivana; Svetel, Marina; Kostić, Vladimir S
2017-12-01
GTP cyclohydrolase 1-deficient DOPA-responsive dystonia, caused by autosomal dominant mutation in the gene coding for GTP cyclohydrolase 1, is a rare disorder with a reported prevalence of 0.5 per million. A correct diagnosis of DRD is crucial, given that this is an exquisitely treatable neurogenetic disorder. Although genetic testing is now widely available, we hypothesize that DRD is still underdiagnosed and its prevalence underestimated. Molecular genetic analysis of the GCH1 gene was performed in a representative cohort of 47 Serbian patients with clinical features of DRD and in their 16 available relatives. The DRD prevalence rate in Serbia was estimated based on population size, catchment area, and the centralized Serbian referral system for rare diseases. We identified 9 different GCH1 mutations in 23 individuals from 11 families, 5 of which are novel. Patients displayed a broad range of clinical phenotypes. The estimated prevalence of GCH1-related DOPA-responsive dystonia in Serbia was 2.96 per million individuals and there was no evidence for a common founder. Our data expand the genotypic spectrum of GCH1 and confirm the broad phenotypic spectrum of DRD in the Serbian population. The number of detected mutation carriers in this sample implies that the frequency of DRD in the Serbian population is considerably higher than expected based on published prevalence rates, suggesting that the prevalence of this treatable disease should be revisited also in other populations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Somatic deleterious mutation rate in a woody plant: estimation from phenotypic data
Bobiwash, K; Schultz, S T; Schoen, D J
2013-01-01
We conducted controlled crosses in populations of the long-lived clonal shrub, Vaccinium angustifolium (lowbush blueberry) to estimate inbreeding depression and mutation parameters associated with somatic deleterious mutation. Inbreeding depression level was high, with many plants failing to set fruit after self-pollination. We also compared fruit set from autogamous pollinations (pollen collected from within the same inflorescence) with fruit set from geitonogamous pollinations (pollen collected from the same plant but from inflorescences separated by several meters of branch growth). The difference between geitonogamous versus autogamous fitness within single plants is referred to as ‘autogamy depression' (AD). AD can be caused by somatic deleterious mutation. AD was significantly different from zero for fruit set. We developed a maximum-likelihood procedure to estimate somatic mutation parameters from AD, and applied it to geitonogamous and autogamous fruit set data from this experiment. We infer that, on average, approximately three sublethal, partially dominant somatic mutations exist within the crowns of the plants studied. We conclude that somatic mutation in this woody plant results in an overall genomic deleterious mutation rate that exceeds the rate measured to date for annual plants. Some implications of this result for evolutionary biology and agriculture are discussed. PMID:23778990
Orthen, E; Lange, P; Wöhrmann, K
1984-12-01
This paper analyses the fate of artificially induced mutations and their importance to the fitness of populations of the yeast, Saccharomyces cerevisiae, an increasingly important model organism in population genetics. Diploid strains, treated with UV and EMS, were cultured asexually for approximately 540 generations and under conditions where the asexual growth was interrupted by a sexual phase. Growth rates of 100 randomly sampled diploid clones were estimated at the beginning and at the end of the experiment. After the induction of sporulation the growth rates of 100 randomly sampled spores were measured. UV and EMS treatment decreases the average growth rate of the clones significantly but increases the variability in comparison to the untreated control. After selection over approximately 540 generations, variability in growth rates was reduced to that of the untreated control. No increase in mean population fitness was observed. However, the results show that after selection there still exists a large amount of hidden genetic variability in the populations which is revealed when the clones are cultivated in environments other than those in which selection took place. A sexual phase increased the reduction of the induced variability.
COTIP: Cotton TILLING Platform, a Resource for Plant Improvement and Reverse Genetic Studies
Aslam, Usman; Cheema, Hafiza M. N.; Ahmad, Sheraz; Khan, Iqrar A.; Malik, Waqas; Khan, Asif A.
2016-01-01
Cotton is cultivated worldwide for its white fiber, of which around 90% is tetraploid upland cotton (Gossypium hirsutum L.) carrying both A and D genome. Since centuries, yield increasing efforts for the cotton crop by conventional breeding approaches have caused an extensive erosion of natural genetic variability. Mutation based improvement strategies provide an effective way of creating new allelic variations. Targeting Induced Local Lesions IN Genomes (TILLING) provides a mutation based reverse genetic strategy to create and evaluate induced genetic variability at DNA level. Here, we report development and testing of TILLING populations of allotetraploid cotton (G. hirsutum) for functional genomic studies and mutation based enrichment of cotton genetic resources. Seed of two cotton cultivars “PB-899 and PB-900” were mutagenized with 0.3 and 0.2% (v/v) ethyl methanesulfonate, respectively. The phenotyping of M1 and M2 populations presented numerous mutants regarding the branching pattern, leaf morphology, disease resistance, photosynthetic lesions and flower sterility. Molecular screening for point mutations was performed by TILLING PCR aided CEL1 mismatch cleavage. To estimate the mutation frequency in the mutant genomes, five gene classes were TILLed in 8000 M2 plants of each var. “PB-899” and “PB-900.” These include actin (GhACT), Pectin Methyl Esterase (GhPME), sucrose synthase (GhSUS), resistance gene analog, and defense response gene (DRGs). The var. PB-899 was harboring 47% higher mutation induction rate than PB-900. The highest rate of mutation frequency was identified for NAC-TF5 (EU706348) of DRGs class, ranging from 1/58 kb in PB-899 to 1/105 kb in PB-900. The mutation screening assay revealed the presence of significant proportion of induced mutations in cotton TILLING populations such as 1/153 kb and 1/326 kb in var. “PB-899” and “PB-900,” respectively. The establishment of a cotton TILLING platform (COTIP) and data obtained from the resource TILLING population suggest its effectiveness in widening the genetic bases of cotton for improvement and utilizing it for subsequent reverse genetic studies of various genes. PMID:28082993
Coevolutionary dynamics in large, but finite populations
NASA Astrophysics Data System (ADS)
Traulsen, Arne; Claussen, Jens Christian; Hauert, Christoph
2006-07-01
Coevolving and competing species or game-theoretic strategies exhibit rich and complex dynamics for which a general theoretical framework based on finite populations is still lacking. Recently, an explicit mean-field description in the form of a Fokker-Planck equation was derived for frequency-dependent selection with two strategies in finite populations based on microscopic processes [A. Traulsen, J. C. Claussen, and C. Hauert, Phys. Rev. Lett. 95, 238701 (2005)]. Here we generalize this approach in a twofold way: First, we extend the framework to an arbitrary number of strategies and second, we allow for mutations in the evolutionary process. The deterministic limit of infinite population size of the frequency-dependent Moran process yields the adjusted replicator-mutator equation, which describes the combined effect of selection and mutation. For finite populations, we provide an extension taking random drift into account. In the limit of neutral selection, i.e., whenever the process is determined by random drift and mutations, the stationary strategy distribution is derived. This distribution forms the background for the coevolutionary process. In particular, a critical mutation rate uc is obtained separating two scenarios: above uc the population predominantly consists of a mixture of strategies whereas below uc the population tends to be in homogeneous states. For one of the fundamental problems in evolutionary biology, the evolution of cooperation under Darwinian selection, we demonstrate that the analytical framework provides excellent approximations to individual based simulations even for rather small population sizes. This approach complements simulation results and provides a deeper, systematic understanding of coevolutionary dynamics.
[Chromosome as a chronicler: Genetic dating, historical events, and DNA-genealogic temptation].
Balanovsky, O P; Zaporozhchenko, V V
2016-07-01
Nonrecombinant portions of the genome, Y chromosome and mitochondrial DNA, are widely used for research on human population gene pools and reconstruction of their history. These systems allow the genetic dating of clusters of emerging haplotypes. The main method for age estimations is ρ statistics, which is an average number of mutations from founder haplotype to all modern-day haplotypes. A researcher can estimate the age of the cluster by multiplying this number by the mutation rate. The second method of estimation, ASD, is used for STR haplotypes of the Y chromosome and is based on the squared difference in the number of repeats. In addition to the methods of calculation, methods of Bayesian modeling assume a new significance. They have greater computational cost and complexity, but they allow obtaining an a posteriori distribution of the value of interest that is the most consistent with experimental data. The mutation rate must be known for both calculation methods and modeling methods. It can be determined either during the analysis of lineages or by providing calibration points based on populations with known formation time. These two approaches resulted in rate estimations for Y-chromosomal STR haplotypes with threefold difference. This contradiction was only recently refuted through the use of sequence data for the complete Y chromosome; “whole-genomic” rates of single nucleotide mutations obtained by both methods are mutually consistent and mark the area of application for different rates of STR markers. An issue even more crucial than that of the rates is correlation of the reconstructed history of the haplogroup (a cluster of haplotypes) and the history of the population. Although the need for distinguishing “lineage history” and “population history” arose in the earliest days of phylogeographic research, reconstructing the population history using genetic dating requires a number of methods and conditions. It is known that population history events leave distinct traces in the history of haplogroups only under certain demographic conditions. Direct identification of national history with the history of its occurring haplogroups is inappropriate and is avoided in population genetic studies, although because of its simplicity and attractiveness it is a constant temptation for researchers. An example of DNA genealogy, an amateur field that went beyond the borders of even citizen science and is consistently using the principle of equating haplogroup with lineage and population, which leads to absurd results (e.g., Eurasia as an origin of humankind), can serve as a warning against a simplified approach for interpretation of genetic dating results.
Mutation spectrum of Chinese patients with Bartter syndrome
Han, Yue; Lin, Yi; Sun, Qing; Wang, Shujuan; Gao, Yanxia; Shao, Leping
2017-01-01
Objective Bartter syndrome (BS) has been rarely reported in Chinese population except for a few case reports. This investigation was aimed to analyze the mutations of the causal genes in sixteen Chinese patients with BS, and review their followup and treatment. Methods Identify mutations by the next generation sequencing and the multiplex ligation-dependent probe amplification (MLPA). Clinical characteristics and biochemical findings at the first presentation as well as follow-up were reviewed. Results 15 different CLCNKB gene mutations were identified in fourteen patients with BS, including 11 novel ones. A novel missense mutation and a novel small deletion were found from SLC12A1 gene. A novel gross deletion was found in CLCNKA gene. A recurrent missense mutation was identified from BSND gene. We found that the whole gene deletion mutation of CLCNKB gene was the most frequent mutation (32%), and the rate of gross deletion was up to 50 percent in this group of Chinese patients. Conclusion The present study has found 19 mutations, including 14 novel ones, which would enrich the human gene mutation database (HGMD) and provide valuable references to the genetic counseling and diagnosis of the Chinese population. PMID:29254190
Behavioral variability in an evolutionary theory of behavior dynamics.
Popa, Andrei; McDowell, J J
2016-03-01
McDowell's evolutionary theory of behavior dynamics (McDowell, 2004) instantiates populations of behaviors (abstractly represented by integers) that evolve under the selection pressure of the environment in the form of positive reinforcement. Each generation gives rise to the next via low-level Darwinian processes of selection, recombination, and mutation. The emergent patterns can be analyzed and compared to those produced by biological organisms. The purpose of this project was to explore the effects of high mutation rates on behavioral variability in environments that arranged different reinforcer rates and magnitudes. Behavioral variability increased with the rate of mutation. High reinforcer rates and magnitudes reduced these effects; low reinforcer rates and magnitudes augmented them. These results are in agreement with live-organism research on behavioral variability. Various combinations of mutation rates, reinforcer rates, and reinforcer magnitudes produced similar high-level outcomes (equifinality). These findings suggest that the independent variables that describe an experimental condition interact; that is, they do not influence behavior independently. These conclusions have implications for the interpretation of high levels of variability, mathematical undermatching, and the matching theory. The last part of the discussion centers on a potential biological counterpart for the rate of mutation, namely spontaneous fluctuations in the brain's default mode network. © 2016 Society for the Experimental Analysis of Behavior.
Matzrafi, Maor; Gerson, Ofri; Rubin, Baruch; Peleg, Zvi
2017-01-01
Various mutations altering the herbicide target site (TS), can lead to structural modifications that decrease binding efficiency and results in herbicide resistant weed. In most cases, such a mutation will be associated with ecological fitness penalty under herbicide free environmental conditions. Here we describe the effect of various mutations, endowing resistance to acetyl-CoA carboxylase (ACCase) inhibitors, on the ecological fitness penalty of Lolium rigidum populations. The TS resistant populations, MH (substitution of isoleucine 1781 to leucine) and NO (cysteine 2088 to arginine), were examined and compared to a sensitive population (AL). Grain weight (GW) characterization of individual plants from both MH and NO populations, showed that resistant individuals had significantly lower GW compared with sensitive ones. Under high temperatures, both TS resistant populations exhibited lower germination rate as compared with the sensitive (AL) population. Likewise, early vigor of plants from both TS resistant populations was significantly lower than the one measured in plants of the sensitive population. Under crop-weed intra-species competition, we found an opposite trend in the response of plants from different populations. Relatively to inter-population competition conditions, plants of MH population were less affected and presented higher reproduction abilities compared to plants from both AL and NO populations. On the basis of our results, a non-chemical approach can be taken to favor the sensitive individuals, eventually leading to a decline in resistant individuals in the population. PMID:28690621
Carneiro, Juliana G; Couto, Patricia G; Bastos-Rodrigues, Luciana; Bicalho, Maria Aparecida C; Vidigal, Paula V; Vilhena, Alyne; Amaral, Nilson F; Bale, Allen E; Friedman, Eitan; De Marco, Luiz
2014-01-01
Lung cancer is the leading global cause of cancer-related mortality. Inter-individual variability in treatment response and prognosis has been associated with genetic polymorphisms in specific genes: EGFR, KRAS, BRAF, PTEN and TTF-1. Somatic mutations in EGFR and KRAS genes are reported at rates of 15-40% in non-small cell lung cancer (NSCLC) in ethnically diverse populations. BRAF and PTEN are commonly mutated genes in various cancer types, including NSCLC, with PTEN mutations exerting an effect on the therapeutic response of EGFR/AKT/PI3K pathway inhibitors. TTF-1 is expressed in approximately 80% of lung adenocarcinomas and its positivity correlates with higher prevalence of EGFR mutation in this cancer type. To determine molecular markers for lung cancer in Brazilian patients, the rate of the predominant EGFR, KRAS, BRAF and PTEN mutations, as well as TTF-1 expression, was assessed in 88 Brazilian NSCLC patients. EGFR exon 19 deletions (del746-750) were detected in 3/88 (3·4%) patients. Activating KRAS mutations in codons 12 and 61 were noted in five (5·7%) and two (2·3%) patients, respectively. None of the common somatic mutations were detected in either the BRAF or PTEN genes. TTF-1 was overexpressed in 40·7% of squamous-cell carcinoma (SCC). Our findings add to a growing body of data that highlights the genetic heterogeneity of the abnormal EGFR pathway in lung cancer among ethnically diverse populations.
Riis, Lene; Vind, Ida; Vermeire, Severine; Wolters, Frank; Katsanos, Kostas; Politi, Patrizia; Freitas, João; Mouzas, Ioannis A; O'Morain, Colm; Ruiz-Ochoa, Victor; Odes, Selwyn; Binder, Vibeke; Munkholm, Pia; Moum, Bjørn; Stockbrügger, Reinhold; Langholz, Ebbe
2007-01-01
The aetiology of inflammatory bowel disease (IBD) is unknown, but it has become evident that genetic factors are involved in disease susceptibility. Studies have suggested a north-south gradient in the incidence of IBD, raising the question whether this difference is caused by genetic heterogeneity. We aimed to investigate the prevalence of polymorphisms in CARD15 and TLR4 and occurrence of anti-Saccharomyces cerevisiae (ASCA) and antineutrophil cytoplasmic antibodies (pANCA) in a European population-based IBD cohort. Individuals from the incident cohort were genotyped for three mutations in CARD15 and the Asp299gly mutation in TLR4. Levels of ASCA and pANCA were assessed. Disease location and behaviour at time of diagnosis was obtained from patient files. Overall CARD15 mutation rate was 23.9% for CD and 9.6% for UC patients (P < 0.001). Mutations were less present in the Scandinavian countries (12.1%) versus the rest of Europe (32.8%) (P < 0.001). Overall population attributable risk was 11.2%. TLR4 mutation rate was 7.6% in CD, 6.7% in UC patients and 12.3% in healthy controls (HC), highest among South European CD patients and HC. ASCA was seen in 28.5% of CD patients with no north-south difference, and was associated with complicated disease. pANCA was most common in North European UC patients and not associated with disease phenotype. The prevalence of mutations in CARD15 varied across Europe, and was not correlated to the incidence of CD. There was no association between mutations in TLR4 and IBD. The prevalence of ASCA was relatively low; however related to severe CD.
Liam, Chong-Kin; Leow, Hwong-Ruey; How, Soon-Hin; Pang, Yong-Kek; Chua, Keong-Tiong; Lim, Boon-Khaw; Lai, Nai-Lang; Kuan, Yeh-Chunn; Pailoor, Jayalakshmi; Rajadurai, Pathmanathan
2014-01-01
Mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) in non- small cell lung cancer (NSCLC) are predictive of response to EGFR-targeted therapy in advanced stages of disease. This study aimed to determine the frequency of EGFR mutations in NSCLCs and to correlate their presence with clinical characteristics in multiethnic Malaysian patients. In this prospective study, EGFR mutations in exons 18, 19, 20 and 21 in formalin-fixed paraffin-embedded biopsy specimens of consecutive NSCLC patients were asessed by real-time polymerase chain reaction. EGFR mutations were detected in NSCLCs from 55 (36.4%) of a total of 151 patients, being significantly more common in females (62.5%) than in males (17.2%) [odds ratio (OR), 8.00; 95% confidence interval (CI), 3.77-16.98; p<0.001] and in never smokers (62.5%) than in ever smokers (12.7%) (OR, 11.50; 95%CI, 5.08-26.03; p<0.001). Mutations were more common in adenocarcinoma (39.4%) compared to non-adenocarcinoma NSCLCs (15.8%) (p=0.072). The mutation rates in patients of different ethnicities were not significantly different (p=0.08). Never smoking status was the only clinical feature that independently predicted the presence of EGFR mutations (adjusted OR, 5.94; 95%CI, 1.94- 18.17; p=0.002). In Malaysian patients with NSCLC, the EGFR mutation rate was similar to that in other Asian populations. EGFR mutations were significantly more common in female patients and in never smokers. Never smoking status was the only independent predictor for the presence of EGFR mutations.
Liu, Weitang; Bai, Shuang; Jia, Sisi; Guo, Wenlei; Zhang, Lele; Li, Wei; Wang, Jinxin
2017-10-01
Herbicide target-site resistance mutations may cause pleiotropic effects on plant ecology and physiology. The effect of several known (Pro197Ser, Pro197Leu Pro197Ala, and Pro197Glu) target-site resistance mutations of the ALS gene on both ALS functionality and plant vegetative growth of weed Myosoton aquaticum L. (water chickweed) have been investigated here. The enzyme kinetics of ALS from four purified water chickweed populations that each homozygous for the specific target-site resistance-endowing mutations were characterized and the effect of these mutations on plant growth was assessed via relative growth rate (RGR) analysis. Plants homozygous for Pro197Ser and Pro197Leu exhibited higher extractable ALS activity than susceptible (S) plants, while all ALS mutations with no negative change in ALS kinetics. The Pro197Leu mutation increased ALS sensitivity to isoleucine and valine, and Pro197Glu mutation slightly increased ALS sensitivity to isoleucine. RGR results indicated that none of these ALS resistance mutations impose negative pleiotropic effects on relative growth rate. However, resistant (R) seeds had a lowed germination rate than S seeds. This study provides baseline information on ALS functionality and plant growth characteristics associated with ALS inhibitor resistance-endowing mutations in water chickweed. Copyright © 2017. Published by Elsevier Inc.
Mistranslation can enhance fitness through purging of deleterious mutations
Bratulic, Sinisa; Toll-Riera, Macarena; Wagner, Andreas
2017-01-01
Phenotypic mutations are amino acid changes caused by mistranslation. How phenotypic mutations affect the adaptive evolution of new protein functions is unknown. Here we evolve the antibiotic resistance protein TEM-1 towards resistance on the antibiotic cefotaxime in an Escherichia coli strain with a high mistranslation rate. TEM-1 populations evolved in such strains endow host cells with a general growth advantage, not only on cefotaxime but also on several other antibiotics that ancestral TEM-1 had been unable to deactivate. High-throughput sequencing of TEM-1 populations shows that this advantage is associated with a lower incidence of weakly deleterious genotypic mutations. Our observations show that mistranslation is not just a source of noise that delays adaptive evolution. It could even facilitate adaptive evolution by exacerbating the effects of deleterious mutations and leading to their more efficient purging. The ubiquity of mistranslation and its effects render mistranslation an important factor in adaptive protein evolution. PMID:28524864
Koelle, Katia; Rasmussen, David A
2015-01-01
Recent phylogenetic analyses indicate that RNA virus populations carry a significant deleterious mutation load. This mutation load has the potential to shape patterns of adaptive evolution via genetic linkage to beneficial mutations. Here, we examine the effect of deleterious mutations on patterns of influenza A subtype H3N2's antigenic evolution in humans. By first analyzing simple models of influenza that incorporate a mutation load, we show that deleterious mutations, as expected, act to slow the virus's rate of antigenic evolution, while making it more punctuated in nature. These models further predict three distinct molecular pathways by which antigenic cluster transitions occur, and we find phylogenetic patterns consistent with each of these pathways in influenza virus sequences. Simulations of a more complex phylodynamic model further indicate that antigenic mutations act in concert with deleterious mutations to reproduce influenza's spindly hemagglutinin phylogeny, co-circulation of antigenic variants, and high annual attack rates. DOI: http://dx.doi.org/10.7554/eLife.07361.001 PMID:26371556
Li, Xiaodong; Liu, Yan; Xin, Shaojie; Ji, Dong; You, Shaoli; Hu, Jinhua; Zhao, Jun; Wu, Jingjing; Liao, Hao; Zhang, Xin-Xin; Xu, Dongping
2017-06-01
The study aimed to investigate the association of prevalent genotypes in China (HBV/C and HBV/B) with HBV drug-resistant mutations. A total of 13,847 nucleos(t)ide analogue (NA)-treated patients with chronic HBV infection from North China were enrolled. HBV genotypes and resistant mutations were determined by direct sequencing and confirmed by clonal sequencing if necessary. HBV/B, HBV/C, and HBV/D occupied 14.3%, 84.9%, and 0.8% across the study population, respectively. NA usage had no significant difference between HBV/B- and HBV/C-infected patients. Lamivudine-resistant mutations were more frequently detected in HBV/C-infected patients, compared with HBV/B-infected patients (31.67% vs. 25.26%, p < 0.01). Adefovir- and entecavir-resistant mutation detection rates were similar, but the mutational pattern was different between the two genotypes. For adefovir-resistant mutations, HBV/C-infected patients had a higher detection rate of rtA181 V (HBV/C 5.29% vs. HBV/B 1.36%, p < 0.01) and a lower detection rate of rtN236T (2.70% vs. 6.54%, p < 0.01). For entecavir-resistant mutations, HBV/C-infected patients had a higher detection rate of rtM204 V/I+T184 substitution or S202G/C (3.66% vs. 2.16%, p < 0.01) and a lower detection rate of rtM204 V/I+M250 V/I/L substitution (0.67% vs. 1.46%, p < 0.01). Multidrug-resistant mutations (defined as coexistence of mutation to nucleoside and nucleotide analogues) were detected in 104 patients. HBV/C-infected patients had a higher detection rate of multidrug-resistant mutation than HBV/B-infected patients (0.83% vs. 0.35%, p < 0.05). The study for the first time clarified that HBV/C-infected patients had a higher risk to develop multidrug-resistant mutations, compared with HBV/B-infected patients; and HBV/C- and HBV/B-infected patients had different inclinations in the ETV-resistant mutational pattern.
Garcia, Victor; Feldman, Marcus W.; Regoes, Roland R.
2016-01-01
During early human immunodeficiency virus (HIV) infection multiple CD8+ T cell responses are elicited almost simultaneously. These responses exert strong selective pressures on different parts of HIV’s genome, and select for mutations that escape recognition and are thus beneficial to the virus. Some studies reveal that the later these escape mutations emerge, the more slowly they go to fixation. This pattern of escape rate decrease(ERD) can arise by distinct mechanisms. In particular, in large populations with high beneficial mutation rates interference among different escape strains –an effect that can emerge in evolution with asexual reproduction and results in delayed fixation times of beneficial mutations compared to sexual reproduction– could significantly impact the escape rates of mutations. In this paper, we investigated how interference between these concurrent escape mutations affects their escape rates in systems with multiple epitopes, and whether it could be a source of the ERD pattern. To address these issues, we developed a multilocus Wright-Fisher model of HIV dynamics with selection, mutation and recombination, serving as a null-model for interference. We also derived an interference-free null model assuming initial neutral evolution before immune response elicitation. We found that interference between several equally selectively advantageous mutations can generate the observed ERD pattern. We also found that the number of loci, as well as recombination rates substantially affect ERD. These effects can be explained by the underexponential decline of escape rates over time. Lastly, we found that the observed ERD pattern in HIV infected individuals is consistent with both independent, interference-free mutations as well as interference effects. Our results confirm that interference effects should be considered when analyzing HIV escape mutations. The challenge in estimating escape rates and mutation-associated selective coefficients posed by interference effects cannot simply be overcome by improved sampling frequencies or sizes. This problem is a consequence of the fundamental shortcomings of current estimation techniques under interference regimes. Hence, accounting for the stochastic nature of competition between mutations demands novel estimation methodologies based on the analysis of HIV strains, rather than mutation frequencies. PMID:26829720
Increase of the spontaneous mutation rate in a long-term experiment with Drosophila melanogaster.
Avila, Victoria; Chavarrías, David; Sánchez, Enrique; Manrique, Antonio; López-Fanjul, Carlos; García-Dorado, Aurora
2006-05-01
In a previous experiment, the effect of 255 generations of mutation accumulation (MA) on the second chromosome viability of Drosophila melanogaster was studied using 200 full-sib MA1 lines and a large C1 control, both derived from a genetically homogeneous base population. At generation 265, one of those MA1 lines was expanded to start 150 new full-sib MA2 lines and a new C2 large control. After 46 generations, the rate of decline in mean viability in MA2 was approximately 2.5 times that estimated in MA1, while the average degree of dominance of mutations was small and nonsignificant by generation 40 and moderate by generation 80. In parallel, the inbreeding depression rate for viability and the amount of additive variance for two bristle traits in C2 were 2-3 times larger than those in C1. The results are consistent with a mutation rate in the line from which MA2 and C2 were derived about 2.5 times larger than that in MA1. The mean viability of C2 remained roughly similar to that of C1, but the rate of MA2 line extinction increased progressively, leading to mutational collapse, which can be ascribed to accelerated mutation and/or synergy after important deleterious accumulation.
Vogler, Amy J.; Nottingham, Roxanne; Busch, Joseph D.; Sahl, Jason W.; Shuey, Megan M.; Foster, Jeffrey T.; Schupp, James M.; Smith, Susan; Rocke, Tonie E.; Klein, Paul; Wagner, David M.
2016-01-01
Underlying mutation rates and other evolutionary forces shape the population structure of bacteria in nature. Although easily overlooked, similar forces are at work in the laboratory and may influence observed mutations. Here, we investigated tissue samples and Yersinia pestis isolates from a rodent laboratory challenge with strain CO92 using whole genome sequencing and multi-locus variable-number tandem repeat (VNTR) analysis (MLVA). We identified six VNTR mutations that were found to have occurred in vitro during laboratory cultivation rather than in vivo during the rodent challenge. In contrast, no single nucleotide polymorphism (SNP) mutations were observed, either in vivo or in vitro. These results were consistent with previously published mutation rates and the calculated number of Y. pestis generations that occurred during the in vitro versus the in vivo portions of the experiment. When genotyping disease outbreaks, the potential for in vitro mutations should be considered, particularly when highly variable genetic markers such as VNTRs are used.
Estimate of within population incremental selection through branch imbalance in lineage trees
Liberman, Gilad; Benichou, Jennifer I.C.; Maman, Yaakov; Glanville, Jacob; Alter, Idan; Louzoun, Yoram
2016-01-01
Incremental selection within a population, defined as limited fitness changes following mutation, is an important aspect of many evolutionary processes. Strongly advantageous or deleterious mutations are detected using the synonymous to non-synonymous mutations ratio. However, there are currently no precise methods to estimate incremental selection. We here provide for the first time such a detailed method and show its precision in multiple cases of micro-evolution. The proposed method is a novel mixed lineage tree/sequence based method to detect within population selection as defined by the effect of mutations on the average number of offspring. Specifically, we propose to measure the log of the ratio between the number of leaves in lineage trees branches following synonymous and non-synonymous mutations. The method requires a high enough number of sequences, and a large enough number of independent mutations. It assumes that all mutations are independent events. It does not require of a baseline model and is practically not affected by sampling biases. We show the method's wide applicability by testing it on multiple cases of micro-evolution. We show that it can detect genes and inter-genic regions using the selection rate and detect selection pressures in viral proteins and in the immune response to pathogens. PMID:26586802
Fluctuating Selection in the Moran
Dean, Antony M.; Lehman, Clarence; Yi, Xiao
2017-01-01
Contrary to classical population genetics theory, experiments demonstrate that fluctuating selection can protect a haploid polymorphism in the absence of frequency dependent effects on fitness. Using forward simulations with the Moran model, we confirm our analytical results showing that a fluctuating selection regime, with a mean selection coefficient of zero, promotes polymorphism. We find that increases in heterozygosity over neutral expectations are especially pronounced when fluctuations are rapid, mutation is weak, the population size is large, and the variance in selection is big. Lowering the frequency of fluctuations makes selection more directional, and so heterozygosity declines. We also show that fluctuating selection raises dn/ds ratios for polymorphism, not only by sweeping selected alleles into the population, but also by purging the neutral variants of selected alleles as they undergo repeated bottlenecks. Our analysis shows that randomly fluctuating selection increases the rate of evolution by increasing the probability of fixation. The impact is especially noticeable when the selection is strong and mutation is weak. Simulations show the increase in the rate of evolution declines as the rate of new mutations entering the population increases, an effect attributable to clonal interference. Intriguingly, fluctuating selection increases the dn/ds ratios for divergence more than for polymorphism, a pattern commonly seen in comparative genomics. Our model, which extends the classical neutral model of molecular evolution by incorporating random fluctuations in selection, accommodates a wide variety of observations, both neutral and selected, with economy. PMID:28108586
Population aging through survival of the fit and stable
NASA Astrophysics Data System (ADS)
Brotto, Tommaso; Bunin, Guy; Kurchan, Jorge
2016-03-01
Motivated by the wide range of known self-replicating systems, some far from genetics, we study a system composed by individuals having an internal dynamics with many possible states that are partially stable, with varying mutation rates. Individuals reproduce and die with a rate that is a property of each state, not necessarily related to its stability, and the offspring is born on the parent’s state. The total population is limited by resources or space, as for example in a chemostat or a Petri dish. Our aim is to show that mutation rate and fitness become more correlated, even if they are completely uncorrelated for an isolated individual, underlining the fact that the interaction induced by limitation of resources is by itself efficient for generating collective effects.
Lambert, Amaury
2011-07-01
We consider a general, neutral, dynamical model of biodiversity. Individuals have i.i.d. lifetime durations, which are not necessarily exponentially distributed, and each individual gives birth independently at constant rate λ. Thus, the population size is a homogeneous, binary Crump-Mode-Jagers process (which is not necessarily a Markov process). We assume that types are clonally inherited. We consider two classes of speciation models in this setting. In the immigration model, new individuals of an entirely new species singly enter the population at constant rate μ (e.g., from the mainland into the island). In the mutation model, each individual independently experiences point mutations in its germ line, at constant rate θ. We are interested in the species abundance distribution, i.e., in the numbers, denoted I(n)(k) in the immigration model and A(n)(k) in the mutation model, of species represented by k individuals, k = 1, 2, . . . , n, when there are n individuals in the total population. In the immigration model, we prove that the numbers (I(t)(k); k ≥ 1) of species represented by k individuals at time t, are independent Poisson variables with parameters as in Fisher's log-series. When conditioning on the total size of the population to equal n, this results in species abundance distributions given by Ewens' sampling formula. In particular, I(n)(k) converges as n → ∞ to a Poisson r.v. with mean γ/k, where γ : = μ/λ. In the mutation model, as n → ∞, we obtain the almost sure convergence of n (-1) A(n)(k) to a nonrandom explicit constant. In the case of a critical, linear birth-death process, this constant is given by Fisher's log-series, namely n(-1) A(n)(k) converges to α(k)/k, where α : = λ/(λ + θ). In both models, the abundances of the most abundant species are briefly discussed.
Leveraging Distant Relatedness to Quantify Human Mutation and Gene-Conversion Rates
Palamara, Pier Francesco; Francioli, Laurent C.; Wilton, Peter R.; Genovese, Giulio; Gusev, Alexander; Finucane, Hilary K.; Sankararaman, Sriram; Sunyaev, Shamil R.; de Bakker, Paul I.W.; Wakeley, John; Pe’er, Itsik; Price, Alkes L.
2015-01-01
The rate at which human genomes mutate is a central biological parameter that has many implications for our ability to understand demographic and evolutionary phenomena. We present a method for inferring mutation and gene-conversion rates by using the number of sequence differences observed in identical-by-descent (IBD) segments together with a reconstructed model of recent population-size history. This approach is robust to, and can quantify, the presence of substantial genotyping error, as validated in coalescent simulations. We applied the method to 498 trio-phased sequenced Dutch individuals and inferred a point mutation rate of 1.66 × 10−8 per base per generation and a rate of 1.26 × 10−9 for <20 bp indels. By quantifying how estimates varied as a function of allele frequency, we inferred the probability that a site is involved in non-crossover gene conversion as 5.99 × 10−6. We found that recombination does not have observable mutagenic effects after gene conversion is accounted for and that local gene-conversion rates reflect recombination rates. We detected a strong enrichment of recent deleterious variation among mismatching variants found within IBD regions and observed summary statistics of local sharing of IBD segments to closely match previously proposed metrics of background selection; however, we found no significant effects of selection on our mutation-rate estimates. We detected no evidence of strong variation of mutation rates in a number of genomic annotations obtained from several recent studies. Our analysis suggests that a mutation-rate estimate higher than that reported by recent pedigree-based studies should be adopted in the context of DNA-based demographic reconstruction. PMID:26581902
Chapa, Joaquin; An, Gary; Kulkarni, Swati A
2016-01-01
Breast cancer, the product of numerous rare mutational events that occur over an extended time period, presents numerous challenges to investigators interested in studying the transformation from normal breast epithelium to malignancy using traditional laboratory methods, particularly with respect to characterizing transitional and pre-malignant states. Dynamic computational modeling can provide insight into these pathophysiological dynamics, and as such we use a previously validated agent-based computational model of the mammary epithelium (the DEABM) to investigate the probabilistic mechanisms by which normal populations of ductal cells could transform into states replicating features of both pre-malignant breast lesions and a diverse set of breast cancer subtypes. The DEABM consists of simulated cellular populations governed by algorithms based on accepted and previously published cellular mechanisms. Cells respond to hormones, undergo mitosis, apoptosis and cellular differentiation. Heritable mutations to 12 genes prominently implicated in breast cancer are acquired via a probabilistic mechanism. 3000 simulations of the 40-year period of menstrual cycling were run in wild-type (WT) and BRCA1-mutated groups. Simulations were analyzed by development of hyperplastic states, incidence of malignancy, hormone receptor and HER-2 status, frequency of mutation to particular genes, and whether mutations were early events in carcinogenesis. Cancer incidence in WT (2.6%) and BRCA1-mutated (45.9%) populations closely matched published epidemiologic rates. Hormone receptor expression profiles in both WT and BRCA groups also closely matched epidemiologic data. Hyperplastic populations carried more mutations than normal populations and mutations were similar to early mutations found in ER+ tumors (telomerase, E-cadherin, TGFB, RUNX3, p < .01). ER- tumors carried significantly more mutations and carried more early mutations in BRCA1, c-MYC and genes associated with epithelial-mesenchymal transition. The DEABM generates diverse tumors that express tumor markers consistent with epidemiologic data. The DEABM also generates non-invasive, hyperplastic populations, analogous to atypia or ductal carcinoma in situ (DCIS), via mutations to genes known to be present in hyperplastic lesions and as early mutations in breast cancers. The results demonstrate that agent-based models are well-suited to studying tumor evolution through stages of carcinogenesis and have the potential to be used to develop prevention and treatment strategies.
Dillon, Marcus M; Sung, Way; Sebra, Robert; Lynch, Michael; Cooper, Vaughn S
2017-01-01
The vast diversity in nucleotide composition and architecture among bacterial genomes may be partly explained by inherent biases in the rates and spectra of spontaneous mutations. Bacterial genomes with multiple chromosomes are relatively unusual but some are relevant to human health, none more so than the causative agent of cholera, Vibrio cholerae Here, we present the genome-wide mutation spectra in wild-type and mismatch repair (MMR) defective backgrounds of two Vibrio species, the low-%GC squid symbiont V. fischeri and the pathogen V. cholerae, collected under conditions that greatly minimize the efficiency of natural selection. In apparent contrast to their high diversity in nature, both wild-type V. fischeri and V. cholerae have among the lowest rates for base-substitution mutations (bpsms) and insertion-deletion mutations (indels) that have been measured, below 10 - 3 /genome/generation. Vibrio fischeri and V. cholerae have distinct mutation spectra, but both are AT-biased and produce a surprising number of multi-nucleotide indels. Furthermore, the loss of a functional MMR system caused the mutation spectra of these species to converge, implying that the MMR system itself contributes to species-specific mutation patterns. Bpsm and indel rates varied among genome regions, but do not explain the more rapid evolutionary rates of genes on chromosome 2, which likely result from weaker purifying selection. More generally, the very low mutation rates of Vibrio species correlate inversely with their immense population sizes and suggest that selection may not only have maximized replication fidelity but also optimized other polygenic traits relative to the constraints of genetic drift. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Deleterious mutations and selection for sex in finite diploid populations.
Roze, Denis; Michod, Richard E
2010-04-01
In diploid populations, indirect benefits of sex may stem from segregation and recombination. Although it has been recognized that finite population size is an important component of selection for recombination, its effects on selection for segregation have been somewhat less studied. In this article, we develop analytical two- and three-locus models to study the effect of recurrent deleterious mutations on a modifier gene increasing sex, in a finite diploid population. The model also incorporates effects of mitotic recombination, causing loss of heterozygosity (LOH). Predictions are tested using multilocus simulations representing deleterious mutations occurring at a large number of loci. The model and simulations show that excess of heterozygosity generated by finite population size is an important component of selection for sex, favoring segregation when deleterious alleles are nearly additive to dominant. Furthermore, sex tends to break correlations in homozygosity among selected loci, which disfavors sex when deleterious alleles are either recessive or dominant. As a result, we find that it is difficult to maintain costly sex when deleterious alleles are recessive. LOH tends to favor sex when deleterious mutations are recessive, but the effect is relatively weak for rates of LOH corresponding to current estimates (of the order 10(-4)-10(-5)).
Chávez-Saldaña, Margarita; Yokoyama, Emiy; Lezana, José Luis; Carnevale, Alessandra; Macías, Miguel; Vigueras, Rosa M; López, Marisol; Orozco, Lorena
2010-01-01
Cystic fibrosis, the most common autosomal recessive disorder, is caused by defects in the CF transmembrane conductance regulator gene (CFTR) that encodes a chloride channel. To date, over 1,800 mutations have been described related to the causative gene of CF, showing a variable frequency among populations. In a previous extensive analysis of the CFTR locus in 97 Mexican patients, 34 different mutations (75% of CF alleles) were found using several strategies for mutation screening; however, 63% had at least an uncharacterized allele. Despite the combined technologies used, there are still a great number of unknown mutations in the Mexican population. Screening of the CFTR gene to provide additional evidence of the mutational wide spectrum responsible for CF in Mexican patients. In this study, the number of unrelated CF patients was increased to 230, 133 new cases and the 97 previously reported to include 63% with at least an uncharacterized allele. Additional tools were used to improve the detection rate of CF mutations, such as a commercial kit for 36 mutations plus a single chain conformational polymorphism method and DNA sequencing. By using a combination of these strategies we characterized 77.7% of all the CF alleles, resulting in a total of 46 different mutations detected, including the identification of 12 additional mutations (p.R334W, p.A455E, c.3120+1G > A, c.3272-26A > G, c.711+1G > T, p.Q552X, p.W1282X, c.IVS8-5T, p.R1162X and p.R347P, p.D1152H and p.T1036N). Although these 12 mutations have been reported in other populations, they have not yet been reported in Mexican patients. This report shows that Mexico has one of the widest spectra of CFTR mutations worldwide. The knowledge of the ethnic and geographic distribution of CFTR mutations in this population will allow the development of more effective methods for diagnosis and treatment.
Dominant lethal mutations in Drosophila melanogaster natural populations flown on board ISS.
NASA Astrophysics Data System (ADS)
Larina, Olga; Bekker, Anna
The resistance to mutagenic impacts represents an important issue of manned space missions. However the reasons of its individual variability as well as the factors which could induce mutations in space flight are not fully understood. Drosophila studies accomplished by several research teams at real space flights, revealed pronounced increase of mutations in somatic and reproductive cells, nonetheless, quite an opposite spaceflight effects also occurred, i.e., mei-41 laboratory strain showed postflight mutation rates lower than that in ground control. In order to monitor the influence of space flight on the mutational process, 4 series of space experiment with D. melanogaster wild type populations were performed at International Space Station (ISS). The appliance “Drosophila-2” used for breeding of drosophila in spaceflight conditions, enabled to conduct synchronous studies with two samples of fly populations. First instar drosophila larvae were placed into the experimental appliance 12 hours before the start of transport spacecraft. The duration of experiments was 7.9 through 19.7 days. In 19.7-day experiment, two generations of the flies were raised during the space flight, and then delivered to the earth. The frequency of dominant lethal mutations (DLM) was evaluated as the percentage of embryonic death in the progeny of experimental drosophila samples. DLM tests in VV-09 and Chas-09 natural populations, performed after the exposure to 10.9-day flight, showed the increase of DLM rate in Chas-09 (0.077 in flight series vs. 0.43 in earth-based control) while post-flight DLM value in VV-09 did not diverge from on-earth sample (0.025 and 0.027 correspondingly). The same results for VV-09 were obtained after the 14.7-day and 7.9-day flights with the only exception: 7.9-day flight experiment employed DLM measurements in two VV-09 spaceflight samples, differing by the age of the flies, and the above DLM rates were detected in “younger” VV-09 sample only. DLM in the “elder” sample which returned to the earth at the late pupae stage (0.049) was 2 times higher than in both “young” flight and ground control series. To elucidate the factors underlying these discrepancies, DLM evaluation after the subsequent, 19.6-day flight experiment, was performed in three fractions of second in-flight VV-09 generation, each of them comprised imagoes with definite hatching date (postflight days 2, 3, and 5). The results revealed a gradual decrease of the proportion of embryonic death in the progeny of the second in-flight generation from 0.113 to 0.032 (which is close to baseline values). The ionizing radiation at low Earth orbits alone could not produce considerable impact on mutational frequency. By the return to the earth the flies of the first fractions had attained the pre-imaginal ontogenetic stages which display decreased tolerance to unfavourable environmental conditions, which could probably affect the mutation rate. The results obtained show that native D. melanogaster populations display different susceptibility to mutagenic impacts of space flight. Mutation rate depends on the stage of ontogenetic development and thus could present the source of discrepancies in the results of space experiments.
Familial dysautonomia: History, genotype, phenotype and translational research.
Norcliffe-Kaufmann, Lucy; Slaugenhaupt, Susan A; Kaufmann, Horacio
2017-05-01
Familial dysautonomia (FD) is a rare neurological disorder caused by a splice mutation in the IKBKAP gene. The mutation arose in the 1500s within the small Jewish founder population in Eastern Europe and became prevalent during the period of rapid population expansion within the Pale of Settlement. The carrier rate is 1:32 in Jews descending from this region. The mutation results in a tissue-specific deficiency in IKAP, a protein involved in the development and survival of neurons. Patients homozygous for the mutations are born with multiple lesions affecting mostly sensory (afferent) fibers, which leads to widespread organ dysfunction and increased mortality. Neurodegenerative features of the disease include progressive optic atrophy and worsening gait ataxia. Here we review the progress made in the last decade to better understand the genotype and phenotype. We also discuss the challenges of conducting controlled clinical trials in this rare medically fragile population. Meanwhile, the search for better treatments as well as a neuroprotective agent is ongoing. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Red Queen model of recombination hot-spot evolution: a theoretical investigation.
Latrille, Thibault; Duret, Laurent; Lartillot, Nicolas
2017-12-19
In humans and many other species, recombination events cluster in narrow and short-lived hot spots distributed across the genome, whose location is determined by the Zn-finger protein PRDM9. To explain these fast evolutionary dynamics, an intra-genomic Red Queen model has been proposed, based on the interplay between two antagonistic forces: biased gene conversion, mediated by double-strand breaks, resulting in hot-spot extinction, followed by positive selection favouring new PRDM9 alleles recognizing new sequence motifs. Thus far, however, this Red Queen model has not been formalized as a quantitative population-genetic model, fully accounting for the intricate interplay between biased gene conversion, mutation, selection, demography and genetic diversity at the PRDM9 locus. Here, we explore the population genetics of the Red Queen model of recombination. A Wright-Fisher simulator was implemented, allowing exploration of the behaviour of the model (mean equilibrium recombination rate, diversity at the PRDM9 locus or turnover rate) as a function of the parameters (effective population size, mutation and erosion rates). In a second step, analytical results based on self-consistent mean-field approximations were derived, reproducing the scaling relations observed in the simulations. Empirical fit of the model to current data from the mouse suggests both a high mutation rate at PRDM9 and strong biased gene conversion on its targets.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'. © 2017 The Authors.
The Red Queen model of recombination hot-spot evolution: a theoretical investigation
Latrille, Thibault; Duret, Laurent
2017-01-01
In humans and many other species, recombination events cluster in narrow and short-lived hot spots distributed across the genome, whose location is determined by the Zn-finger protein PRDM9. To explain these fast evolutionary dynamics, an intra-genomic Red Queen model has been proposed, based on the interplay between two antagonistic forces: biased gene conversion, mediated by double-strand breaks, resulting in hot-spot extinction, followed by positive selection favouring new PRDM9 alleles recognizing new sequence motifs. Thus far, however, this Red Queen model has not been formalized as a quantitative population-genetic model, fully accounting for the intricate interplay between biased gene conversion, mutation, selection, demography and genetic diversity at the PRDM9 locus. Here, we explore the population genetics of the Red Queen model of recombination. A Wright–Fisher simulator was implemented, allowing exploration of the behaviour of the model (mean equilibrium recombination rate, diversity at the PRDM9 locus or turnover rate) as a function of the parameters (effective population size, mutation and erosion rates). In a second step, analytical results based on self-consistent mean-field approximations were derived, reproducing the scaling relations observed in the simulations. Empirical fit of the model to current data from the mouse suggests both a high mutation rate at PRDM9 and strong biased gene conversion on its targets. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109226
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yagishita, Shigehiro; Horinouchi, Hidehito, E-mail: hhorinou@ncc.go.jp; Katsui Taniyama, Tomoko
Purpose: To determine the frequency and clinical significance of epidermal growth factor receptor (EGFR) mutations in patients with potentially curable stage III non–small-cell lung cancer (NSCLC) who are eligible for definitive chemoradiotherapy (CRT). Patients and Methods: Between January 2001 and December 2010, we analyzed the EGFR mutational status in consecutive NSCLC patients who were treated by CRT. The response rate, relapse-free survival, 2-year relapse-free rate, initial relapse sites, and overall survival of the patients were investigated. Results: A total of 528 patients received CRT at our hospital during the study period. Of these, 274 were diagnosed as having nonsquamous NSCLC. Sufficientmore » specimens for mutational analyses could be obtained from 198 of these patients. The proportion of patients with EGFR activating mutations was 17%. In addition to the well-known characteristics of patients carrying EGFR mutations (female, adenocarcinoma, and never/light smoker), the proportion of cases with smaller primary lesions (T1/2) was found to be higher in patients with EGFR mutations than in those with wild-type EGFR. Patients with EGFR mutations showed similar response rate, relapse-free survival, and 2-year relapse-free rates as compared to patients with wild-type EGFR. Local relapses as the site of initial relapse occurred significantly less frequently in patients with EGFR mutation (4% vs 21%; P=.045). Patients with EGFR mutations showed longer local control (adjusted hazard ratio 0.49; P=.043). After disease progression, a majority of the patients with EGFR mutations received EGFR tyrosine kinase inhibitors (62%), and these patients showed longer postprogression survival than those with wild-type EGFR. Conclusions: Our study is the first to show radiosensitive biology of EGFR-mutated tumors in definitive CRT with curative intent. This finding could serve as a credible baseline estimate of EGFR-mutated population in stage III nonsquamous NSCLC.« less
The rate and potential relevance of new mutations in a colonizing plant lineage
Schuenemann, Verena J.; Reiter, Ella; Setzer, Claudia; Slovak, Radka; Brachi, Benjamin; Hagmann, Jörg; Grimm, Dominik G.; Chen, Jiahui; Ness, Rob W.
2018-01-01
By following the evolution of populations that are initially genetically homogeneous, much can be learned about core biological principles. For example, it allows for detailed studies of the rate of emergence of de novo mutations and their change in frequency due to drift and selection. Unfortunately, in multicellular organisms with generation times of months or years, it is difficult to set up and carry out such experiments over many generations. An alternative is provided by “natural evolution experiments” that started from colonizations or invasions of new habitats by selfing lineages. With limited or missing gene flow from other lineages, new mutations and their effects can be easily detected. North America has been colonized in historic times by the plant Arabidopsis thaliana, and although multiple intercrossing lineages are found today, many of the individuals belong to a single lineage, HPG1. To determine in this lineage the rate of substitutions—the subset of mutations that survived natural selection and drift–, we have sequenced genomes from plants collected between 1863 and 2006. We identified 73 modern and 27 herbarium specimens that belonged to HPG1. Using the estimated substitution rate, we infer that the last common HPG1 ancestor lived in the early 17th century, when it was most likely introduced by chance from Europe. Mutations in coding regions are depleted in frequency compared to those in other portions of the genome, consistent with purifying selection. Nevertheless, a handful of mutations is found at high frequency in present-day populations. We link these to detectable phenotypic variance in traits of known ecological importance, life history and growth, which could reflect their adaptive value. Our work showcases how, by applying genomics methods to a combination of modern and historic samples from colonizing lineages, we can directly study new mutations and their potential evolutionary relevance. PMID:29432421
Weinreich, D M; Rand, D M
2000-01-01
We report that patterns of nonneutral DNA sequence evolution among published nuclear and mitochondrially encoded protein-coding loci differ significantly in animals. Whereas an apparent excess of amino acid polymorphism is seen in most (25/31) mitochondrial genes, this pattern is seen in fewer than half (15/36) of the nuclear data sets. This differentiation is even greater among data sets with significant departures from neutrality (14/15 vs. 1/6). Using forward simulations, we examined patterns of nonneutral evolution using parameters chosen to mimic the differences between mitochondrial and nuclear genetics (we varied recombination rate, population size, mutation rate, selective dominance, and intensity of germ line bottleneck). Patterns of evolution were correlated only with effective population size and strength of selection, and no single genetic factor explains the empirical contrast in patterns. We further report that in Arabidopsis thaliana, a highly self-fertilizing plant with effectively low recombination, five of six published nuclear data sets also exhibit an excess of amino acid polymorphism. We suggest that the contrast between nuclear and mitochondrial nonneutrality in animals stems from differences in rates of recombination in conjunction with a distribution of selective effects. If the majority of mutations segregating in populations are deleterious, high linkage may hinder the spread of the occasional beneficial mutation. PMID:10978302
Background Selection in Partially Selfing Populations
Roze, Denis
2016-01-01
Self-fertilizing species often present lower levels of neutral polymorphism than their outcrossing relatives. Indeed, selfing automatically increases the rate of coalescence per generation, but also enhances the effects of background selection and genetic hitchhiking by reducing the efficiency of recombination. Approximations for the effect of background selection in partially selfing populations have been derived previously, assuming tight linkage between deleterious alleles and neutral loci. However, loosely linked deleterious mutations may have important effects on neutral diversity in highly selfing populations. In this article, I use a general method based on multilocus population genetics theory to express the effect of a deleterious allele on diversity at a linked neutral locus in terms of moments of genetic associations between loci. Expressions for these genetic moments at equilibrium are then computed for arbitrary rates of selfing and recombination. An extrapolation of the results to the case where deleterious alleles segregate at multiple loci is checked using individual-based simulations. At high selfing rates, the tight linkage approximation underestimates the effect of background selection in genomes with moderate to high map length; however, another simple approximation can be obtained for this situation and provides accurate predictions as long as the deleterious mutation rate is not too high. PMID:27075726
NASA Astrophysics Data System (ADS)
Husimi, Yuzuru; Nishigaki, Koichi; Kinoshita, Yasunori; Tanaka, Toyosuke
1982-04-01
A bacteriophage is continuously cultured in the flow of the host bacterial cell under the control of a minicomputer. In the culture, the population of the noninfected cell is kept constant by the endogeneous regulation mechanism, so it is called the ''cellstat'' culture. Due to the high dilution rate of the host cell, the mutant cell cannot be selected in the cellstat. Therefore, the cellstat is suitable for the study of the mutation rate and the selection process of a bacteriophage under well-defined environmental conditions (including physiological condition of the host cell) without being interfered by host-cell mutations. Applications to coliphage fd, a secretion type phage, are shown as a measurement example. A chimera between fd and a plasmid pBR322 is cultured more than 100 h. The process of population changeovers by deletion mutants indicates that the deletion hot spots exist in this cloning vector and that this apparatus can be used also for testing instability of a recombinant DNA.
Should autism be considered a canary bird telling that Homo sapiens may be on its way to extinction?
Christophersen, Olav Albert
2012-01-01
There has been a dramatic enhancement of the reported incidence of autism in different parts of the world over the last 30 years. This can apparently not be explained only as a result of improved diagnosis and reporting, but may also reflect a real change. The causes of this change are unknown, but if we shall follow T.C. Chamberlin's principle of multiple working hypotheses, we need to take into consideration the possibility that it partly may reflect an enhancement of the average frequency of responsible alleles in large populations. If this hypothesis is correct, it means that the average germline mutation rate must now be much higher in the populations concerned, compared with the natural mutation rate in hominid ancestors before the agricultural and industrial revolutions. This is compatible with the high prevalence of impaired human semen quality in several countries and also with what is known about high levels of total exposure to several different unnatural chemical mutagens, plus some natural ones at unnaturally high levels. Moreover, dietary deficiency conditions that may lead to enhancement of mutation rates are also very widespread, affecting billions of people. However, the natural mutation rate in hominids has been found to be so high that there is apparently no tolerance for further enhancement of the germline mutation rate before the Eigen error threshold will be exceeded and our species will go extinct because of mutational meltdown. This threat, if real, should be considered far more serious than any disease causing the death only of individual patients. It should therefore be considered the first and highest priority of the best biomedical scientists in the world, of research-funding agencies and of all medical doctors to try to stop the express train carrying all humankind as passengers on board before it arrives at the end station of our civilization. PMID:23990819
Should autism be considered a canary bird telling that Homo sapiens may be on its way to extinction?
Christophersen, Olav Albert
2012-01-01
There has been a dramatic enhancement of the reported incidence of autism in different parts of the world over the last 30 years. This can apparently not be explained only as a result of improved diagnosis and reporting, but may also reflect a real change. The causes of this change are unknown, but if we shall follow T.C. Chamberlin's principle of multiple working hypotheses, we need to take into consideration the possibility that it partly may reflect an enhancement of the average frequency of responsible alleles in large populations. If this hypothesis is correct, it means that the average germline mutation rate must now be much higher in the populations concerned, compared with the natural mutation rate in hominid ancestors before the agricultural and industrial revolutions. This is compatible with the high prevalence of impaired human semen quality in several countries and also with what is known about high levels of total exposure to several different unnatural chemical mutagens, plus some natural ones at unnaturally high levels. Moreover, dietary deficiency conditions that may lead to enhancement of mutation rates are also very widespread, affecting billions of people. However, the natural mutation rate in hominids has been found to be so high that there is apparently no tolerance for further enhancement of the germline mutation rate before the Eigen error threshold will be exceeded and our species will go extinct because of mutational meltdown. This threat, if real, should be considered far more serious than any disease causing the death only of individual patients. It should therefore be considered the first and highest priority of the best biomedical scientists in the world, of research-funding agencies and of all medical doctors to try to stop the express train carrying all humankind as passengers on board before it arrives at the end station of our civilization.
Dialdestoro, Kevin; Sibbesen, Jonas Andreas; Maretty, Lasse; Raghwani, Jayna; Gall, Astrid; Kellam, Paul; Pybus, Oliver G.; Hein, Jotun; Jenkins, Paul A.
2016-01-01
Human immunodeficiency virus (HIV) is a rapidly evolving pathogen that causes chronic infections, so genetic diversity within a single infection can be very high. High-throughput “deep” sequencing can now measure this diversity in unprecedented detail, particularly since it can be performed at different time points during an infection, and this offers a potentially powerful way to infer the evolutionary dynamics of the intrahost viral population. However, population genomic inference from HIV sequence data is challenging because of high rates of mutation and recombination, rapid demographic changes, and ongoing selective pressures. In this article we develop a new method for inference using HIV deep sequencing data, using an approach based on importance sampling of ancestral recombination graphs under a multilocus coalescent model. The approach further extends recent progress in the approximation of so-called conditional sampling distributions, a quantity of key interest when approximating coalescent likelihoods. The chief novelties of our method are that it is able to infer rates of recombination and mutation, as well as the effective population size, while handling sampling over different time points and missing data without extra computational difficulty. We apply our method to a data set of HIV-1, in which several hundred sequences were obtained from an infected individual at seven time points over 2 years. We find mutation rate and effective population size estimates to be comparable to those produced by the software BEAST. Additionally, our method is able to produce local recombination rate estimates. The software underlying our method, Coalescenator, is freely available. PMID:26857628
Kodaira, Mieko; Izumi, Shizue; Takahashi, Norio; Nakamura, Nori
2004-10-01
Human minisatellites consist of tandem arrays of short repeat sequences, and some are highly polymorphic in numbers of repeats among individuals. Since these loci mutate much more frequently than coding sequences, they make attractive markers for screening populations for genetic effects of mutagenic agents. Here we report the results of our analysis of mutations at eight hypervariable minisatellite loci in the offspring (61 from exposed families in 60 of which only one parent was exposed, and 58 from unexposed parents) of atomic bomb survivors with mean doses of >1 Sv. We found 44 mutations in paternal alleles and eight mutations in maternal alleles with no indication that the high doses of acutely applied radiation had caused significant genetic effects. Our finding contrasts with those of some other studies in which much lower radiation doses, applied chronically, caused significantly increased mutation rates. Possible reasons for this discrepancy are discussed.
Ahmad, Firoz; Mandava, Swarna; Das, Bibhu Ranjan
2009-06-01
Mutations in the nucleophosmin (NPM1) gene have been recently described to occur in about one-third of acute myeloid leukaemias (AMLs) and represent the most frequent genetic alteration currently known in this subset, specially in those with normal karyotype. This study explored the prevalence and clinical profile of NPM1 mutations in a cohort of 200 Indian adult and children with AML. NPM1 mutations were observed in 19.5% of all population and 34.2% of those with normal karyotype. Adults had a significantly higher incidence of NPM1 mutations than children [38 of 161 (23.6%) vs. 1 of 39 (2.5%), p = 0.002]. NPM1 mutations were significantly associated with normal karyotype (p = 0.001), high WBC count (p = 0.034), AML-M4 subtype (p = 0.039) and a gradient increase of mutation rate with the increase in age groups. Sequence analysis of 39 mutated cases revealed typical mutations (types A, B, D, Nm and H*) as well as two novel variations (types F1 and F2). Majority of the patients had mutation type A (69.2%), followed by B (5.1%), D (15.3%), H* (2.5%) and Nm (2.5%) all involving COOH terminal of the NPM1 protein. In conclusion, this study represents the first report of NPM1 mutation from Indian population and confirms that the incidence of NPM1 mutations varies considerably globally, with slightly lower incidence in Indian population compared to western countries. The current study also served to identify two novel NPM1 mutants that add new insights into the heterogeneity of genomic insertions at exon 12. More ongoing larger studies are warranted to elucidate the molecular pathogenesis of AML that arises in this part of the world. Furthermore, we believe that in light of its high prevalence worldwide, inclusion of NPM1 mutation detection assay in diagnostic evaluations of AML may improve the efficacy of routine genetic characterization and allow assignment of patients to better-defined risk categories.
Kashiwagi, Akiko; Kadoya, Tamami; Kumasaka, Naoya; Kumagai, Tomofumi; Tsushima, Fumie Sano; Yomo, Tetsuya
2018-06-04
A population's growth rate is determined by multiple 'life history traits'. To quantitatively determine which life history traits should be improved to allow a living organism to adapt to an inhibitory environment is an important issue. Previously, we conducted thermal adaptation experiments on the RNA bacteriophage Qβ using three independent replicates and reported that all three end-point populations could grow at a temperature (43.6°C) that inhibited the growth of the ancestral strain. Even though the fitness values of the endpoint populations were almost the same, their genome sequence was not, indicating that the three thermally adapted populations may have different life history traits. In this study, we introduced each mutation observed in these three end-point populations into the cDNA of the Qβ genome and prepared three different mutants. Quantitative analysis showed that they tended to increase their fitness by increasing the adsorption rate to their host, shortening their latent period (i.e., the duration between phage infection and progeny release), and increasing the burst size (i.e., the number of progeny phages per infected cell), but all three mutants decreased their thermal stability. However, the degree to which these traits changed differed. The mutant with the least mutations showed a smaller decrease in thermal stability, the largest adsorption rate to the host, and the shortest latent period. These results indicated that several different adaptive routes exist by which Qβ can adapt to higher temperatures, even though Qβ is a simple RNA bacteriophage with a small genome size, encoding only four genes.
Increase of the Spontaneous Mutation Rate in a Long-Term Experiment With Drosophila melanogaster
Ávila, Victoria; Chavarrías, David; Sánchez, Enrique; Manrique, Antonio; López-Fanjul, Carlos; García-Dorado, Aurora
2006-01-01
In a previous experiment, the effect of 255 generations of mutation accumulation (MA) on the second chromosome viability of Drosophila melanogaster was studied using 200 full-sib MA1 lines and a large C1 control, both derived from a genetically homogeneous base population. At generation 265, one of those MA1 lines was expanded to start 150 new full-sib MA2 lines and a new C2 large control. After 46 generations, the rate of decline in mean viability in MA2 was ∼2.5 times that estimated in MA1, while the average degree of dominance of mutations was small and nonsignificant by generation 40 and moderate by generation 80. In parallel, the inbreeding depression rate for viability and the amount of additive variance for two bristle traits in C2 were 2–3 times larger than those in C1. The results are consistent with a mutation rate in the line from which MA2 and C2 were derived about 2.5 times larger than that in MA1. The mean viability of C2 remained roughly similar to that of C1, but the rate of MA2 line extinction increased progressively, leading to mutational collapse, which can be ascribed to accelerated mutation and/or synergy after important deleterious accumulation. PMID:16547099
The waiting time problem in a model hominin population.
Sanford, John; Brewer, Wesley; Smith, Franzine; Baumgardner, John
2015-09-17
Functional information is normally communicated using specific, context-dependent strings of symbolic characters. This is true within the human realm (texts and computer programs), and also within the biological realm (nucleic acids and proteins). In biology, strings of nucleotides encode much of the information within living cells. How do such information-bearing nucleotide strings arise and become established? This paper uses comprehensive numerical simulation to understand what types of nucleotide strings can realistically be established via the mutation/selection process, given a reasonable timeframe. The program Mendel's Accountant realistically simulates the mutation/selection process, and was modified so that a starting string of nucleotides could be specified, and a corresponding target string of nucleotides could be specified. We simulated a classic pre-human hominin population of at least 10,000 individuals, with a generation time of 20 years, and with very strong selection (50% selective elimination). Random point mutations were generated within the starting string. Whenever an instance of the target string arose, all individuals carrying the target string were assigned a specified reproductive advantage. When natural selection had successfully amplified an instance of the target string to the point of fixation, the experiment was halted, and the waiting time statistics were tabulated. Using this methodology we tested the effect of mutation rate, string length, fitness benefit, and population size on waiting time to fixation. Biologically realistic numerical simulations revealed that a population of this type required inordinately long waiting times to establish even the shortest nucleotide strings. To establish a string of two nucleotides required on average 84 million years. To establish a string of five nucleotides required on average 2 billion years. We found that waiting times were reduced by higher mutation rates, stronger fitness benefits, and larger population sizes. However, even using the most generous feasible parameters settings, the waiting time required to establish any specific nucleotide string within this type of population was consistently prohibitive. We show that the waiting time problem is a significant constraint on the macroevolution of the classic hominin population. Routine establishment of specific beneficial strings of two or more nucleotides becomes very problematic.
Fluctuating Selection in the Moran.
Dean, Antony M; Lehman, Clarence; Yi, Xiao
2017-03-01
Contrary to classical population genetics theory, experiments demonstrate that fluctuating selection can protect a haploid polymorphism in the absence of frequency dependent effects on fitness. Using forward simulations with the Moran model, we confirm our analytical results showing that a fluctuating selection regime, with a mean selection coefficient of zero, promotes polymorphism. We find that increases in heterozygosity over neutral expectations are especially pronounced when fluctuations are rapid, mutation is weak, the population size is large, and the variance in selection is big. Lowering the frequency of fluctuations makes selection more directional, and so heterozygosity declines. We also show that fluctuating selection raises d n / d s ratios for polymorphism, not only by sweeping selected alleles into the population, but also by purging the neutral variants of selected alleles as they undergo repeated bottlenecks. Our analysis shows that randomly fluctuating selection increases the rate of evolution by increasing the probability of fixation. The impact is especially noticeable when the selection is strong and mutation is weak. Simulations show the increase in the rate of evolution declines as the rate of new mutations entering the population increases, an effect attributable to clonal interference. Intriguingly, fluctuating selection increases the d n / d s ratios for divergence more than for polymorphism, a pattern commonly seen in comparative genomics. Our model, which extends the classical neutral model of molecular evolution by incorporating random fluctuations in selection, accommodates a wide variety of observations, both neutral and selected, with economy. Copyright © 2017 by the Genetics Society of America.
Discordance of somatic mutations between Asian and Caucasian patient populations with gastric cancer
Jia, Feifei; Teer, Jamie K.; Knepper, Todd C.; Lee, Jae K.; Zhou, Hong-Hao; He, Yi-Jing; McLeod, Howard L.
2017-01-01
Background Differences in response to cancer treatments have been observed among racially and ethnically diverse gastric cancer patient populations. In the era of targeted therapy, mutation profiling of cancer is a crucial aspect of making therapeutic decisions. Mapping driver gene mutations for the gastric cancer patient population as a whole has significant potential to advance precision therapy. Methods Gastric cancer patient cases with sequencing data (total n=473) were obtained from The Cancer Genome Atlas (TCGA; n=295), Moffitt Cancer Center Total Cancer Care™ (TCC; n=33), and three published studies (n=145). Relevant somatic mutation frequency data were obtained from cBioPortal, TCC database and in-house analysis tool, and relevant publication Results We have found somatic mutation rates of several driver genes significantly vary between gastric cancer patients of Asian and Caucasian descent, with substantial variation across different geographic regions. Non-parametric statistical tests were performed to examine significant differences in protein-altering somatic mutations between Asian and Caucasian gastric cancer patient groups. Frequencies of somatic mutations of 5 genes were APC(Asian: Caucasian 6.06% vs. 14.40%, p=0.0076) ARIDIA(20.7% vs. 32.1%, p=0.01) KMT2A(4.04% vs. 12.35%, p=0.003) PIK3CA(9.6% vs. 18.52%, p=0.01) PTEN(2.52% vs. 9.05%, p=0.008), showing significant differences between Asian and Caucasian gastric cancer patients. Conclusions Our study has found significant differences in protein-altering somatic mutation frequencies in diverse geographic populations. In particular, we found that the somatic patterns may offer better insight and important opportunities for both targeted drug development and precision therapeutic strategies between Asian and Caucasian gastric cancer patients. PMID:28039579
Jia, Feifei; Teer, Jamie K; Knepper, Todd C; Lee, Jae K; Zhou, Hong-Hao; He, Yi-Jing; McLeod, Howard L
2017-04-01
Differences in response to cancer treatments have been observed among racially and ethnically diverse gastric cancer (GC) patient populations. In the era of targeted therapy, mutation profiling of cancer is a crucial aspect of making therapeutic decisions. Mapping driver gene mutations for the GC patient population as a whole has significant potential to advance precision therapy. GC patients with sequencing data (N = 473) were obtained from The Cancer Genome Atlas (TCGA; n = 295), Moffitt Cancer Center Total Cancer Care™ (TCC; n = 33), and three published studies (n = 145). In addition, relevant somatic mutation frequency data were obtained from cBioPortal, the TCC database, and an in-house analysis tool, as well as relevant publications. We found that the somatic mutation rates of several driver genes vary significantly between GC patients of Asian and Caucasian descent, with substantial variation across different geographic regions. Non-parametric statistical tests were performed to examine the significant differences in protein-altering somatic mutations between Asian and Caucasian GC patient groups. The frequencies of somatic mutations of five genes were: APC (Asian: Caucasian 6.06 vs. 14.40%, p = 0.0076), ARIDIA (20.7 vs. 32.1%, p = 0.01), KMT2A (4.04 vs. 12.35%, p = 0.003), PIK3CA (9.6 vs. 18.52%, p = 0.01), and PTEN (2.52 vs. 9.05%, p = 0.008), showing significant differences between Asian and Caucasian GC patients. Our study found significant differences in protein-altering somatic mutation frequencies in diverse geographic populations. In particular, we found that the somatic patterns may offer better insight and important opportunities for both targeted drug development and precision therapeutic strategies between Asian and Caucasian GC patients.
Rinat, C; Wanders, R J; Drukker, A; Halle, D; Frishberg, Y
1999-11-01
Primary hyperoxaluria type 1 is an autosomal recessive inherited metabolic disease in which excessive oxalates are formed by the liver and excreted by the kidneys, causing a wide spectrum of phenotypes ranging from renal failure in infancy to mere renal stones in late adulthood. Mutations in the AGXT gene, encoding the liver-specific enzyme alanine:glyoxylate aminotransferase, are responsible for the disease. Seven mutations were detected in eight families in Israel. Four of these mutations are novel and three occur in children living in single-clan villages. The mutations are scattered along various exons (1, 4, 5, 7, 9, 10), and on different alleles comprising at least five different haplotypes. All but one of the mutations are in a homozygous pattern, reflecting the high rate of consanguinity in our patient population. Two affected brothers are homozygous for two different mutations expressed on the same allele. The patients comprise a distinct ethnic group (Israeli Arabs) residing in a confined geographic area. These results, which are supported by previous data, suggest for the first time that the phenomenon of multiple mutations in a relatively closed isolate is common and almost exclusive to the Israeli-Arab population. Potential mechanisms including selective advantage to heterozygotes, digenic inheritance, and the recent emergence of multiple mutations are discussed.
NASA Astrophysics Data System (ADS)
Basanta, David; Scott, Jacob G.; Rockne, Russ; Swanson, Kristin R.; Anderson, Alexander R. A.
2011-02-01
Recent advances in clinical medicine have elucidated two significantly different subtypes of glioblastoma which carry very different prognoses, both defined by mutations in isocitrate dehydrogenase-1 (IDH-1). The mechanistic consequences of this mutation have not yet been fully clarified, with conflicting opinions existing in the literature; however, IDH-1 mutation may be used as a surrogate marker to distinguish between primary and secondary glioblastoma multiforme (sGBM) from malignant progression of a lower grade glioma. We develop a mathematical model of IDH-1 mutated secondary glioblastoma using evolutionary game theory to investigate the interactions between four different phenotypic populations within the tumor: autonomous growth, invasive, glycolytic, and the hybrid invasive/glycolytic cells. Our model recapitulates glioblastoma behavior well and is able to reproduce two recent experimental findings, as well as make novel predictions concerning the rate of invasive growth as a function of vascularity, and fluctuations in the proportions of phenotypic populations that a glioblastoma will experience under different microenvironmental constraints.
Diminishing-returns epistasis decreases adaptability along an evolutionary trajectory.
Wünsche, Andrea; Dinh, Duy M; Satterwhite, Rebecca S; Arenas, Carolina Diaz; Stoebel, Daniel M; Cooper, Tim F
2017-03-01
Populations evolving in constant environments exhibit declining adaptability. Understanding the basis of this pattern could reveal underlying processes determining the repeatability of evolutionary outcomes. In principle, declining adaptability can be due to a decrease in the effect size of beneficial mutations, a decrease in the rate at which they occur, or some combination of both. By evolving Escherichia coli populations started from different steps along a single evolutionary trajectory, we show that declining adaptability is best explained by a decrease in the size of available beneficial mutations. This pattern reflected the dominant influence of negative genetic interactions that caused new beneficial mutations to confer smaller benefits in fitter genotypes. Genome sequencing revealed that starting genotypes that were more similar to one another did not exhibit greater similarity in terms of new beneficial mutations, supporting the view that epistasis acts globally, having a greater influence on the effect than on the identity of available mutations along an adaptive trajectory. Our findings provide support for a general mechanism that leads to predictable phenotypic evolutionary trajectories.
Evolution Models with Conditional Mutation Rates: Strange Plateaus in Population Distribution
NASA Astrophysics Data System (ADS)
Saakian, David B.
2017-08-01
Cancer is related to clonal evolution with a strongly nonlinear, collective behavior. Here we investigate a slightly advanced version of the popular Crow-Kimura evolution model, suggested recently, by simply assuming a conditional mutation rate. We investigated the steady-state solution and found a highly intriguing plateau in the distribution. There are selective and nonselective phases, with a rather narrow plateau in the distribution at the peak in the first phase, and a wide plateau for many Hamming classes (a collection of genomes with the same number of mutations from the reference genome) in the second phase. We analytically solved the steady state distribution in the selective and nonselective phases, calculating the widths of the plateaus. Numerically, we also found an intermediate phase with several plateaus in the steady-state distribution, related to large finite-genome-length corrections. We assume that the newly observed phenomena should exist in other versions of evolution dynamics when the parameters of the model are conditioned to the population distribution.
Evolutionary Dynamics and Diversity in Microbial Populations
NASA Astrophysics Data System (ADS)
Thompson, Joel; Fisher, Daniel
2013-03-01
Diseases such as flu and cancer adapt at an astonishing rate. In large part, viruses and cancers are so difficult to prevent because they are continually evolving. Controlling such ``evolutionary diseases'' requires a better understanding of the underlying evolutionary dynamics. It is conventionally assumed that adaptive mutations are rare and therefore will occur and sweep through the population in succession. Recent experiments using modern sequencing technologies have illuminated the many ways in which real population sequence data does not conform to the predictions of conventional theory. We consider a very simple model of asexual evolution and perform simulations in a range of parameters thought to be relevant for microbes and cancer. Simulation results reveal complex evolutionary dynamics typified by competition between lineages with different sets of adaptive mutations. This dynamical process leads to a distribution of mutant gene frequencies different than expected under the conventional assumption that adaptive mutations are rare. Simulated gene frequencies share several conspicuous features with data collected from laboratory-evolved yeast and the worldwide population of influenza.
Mutational dynamics of the SARS coronavirus in cell culture and human populations isolated in 2003
Vega, Vinsensius B; Ruan, Yijun; Liu, Jianjun; Lee, Wah Heng; Wei, Chia Lin; Se-Thoe, Su Yun; Tang, Kin Fai; Zhang, Tao; Kolatkar, Prasanna R; Ooi, Eng Eong; Ling, Ai Ee; Stanton, Lawrence W; Long, Philip M; Liu, Edison T
2004-01-01
Background The SARS coronavirus is the etiologic agent for the epidemic of the Severe Acute Respiratory Syndrome. The recent emergence of this new pathogen, the careful tracing of its transmission patterns, and the ability to propagate in culture allows the exploration of the mutational dynamics of the SARS-CoV in human populations. Methods We sequenced complete SARS-CoV genomes taken from primary human tissues (SIN3408, SIN3725V, SIN3765V), cultured isolates (SIN848, SIN846, SIN842, SIN845, SIN847, SIN849, SIN850, SIN852, SIN3408L), and five consecutive Vero cell passages (SIN2774_P1, SIN2774_P2, SIN2774_P3, SIN2774_P4, SIN2774_P5) arising from SIN2774 isolate. These represented individual patient samples, serial in vitro passages in cell culture, and paired human and cell culture isolates. Employing a refined mutation filtering scheme and constant mutation rate model, the mutation rates were estimated and the possible date of emergence was calculated. Phylogenetic analysis was used to uncover molecular relationships between the isolates. Results Close examination of whole genome sequence of 54 SARS-CoV isolates identified before 14th October 2003, including 22 from patients in Singapore, revealed the mutations engendered during human-to-Vero and Vero-to-human transmission as well as in multiple Vero cell passages in order to refine our analysis of human-to-human transmission. Though co-infection by different quasipecies in individual tissue samples is observed, the in vitro mutation rate of the SARS-CoV in Vero cell passage is negligible. The in vivo mutation rate, however, is consistent with estimates of other RNA viruses at approximately 5.7 × 10-6 nucleotide substitutions per site per day (0.17 mutations per genome per day), or two mutations per human passage (adjusted R-square = 0.4014). Using the immediate Hotel M contact isolates as roots, we observed that the SARS epidemic has generated four major genetic groups that are geographically associated: two Singapore isolates, one Taiwan isolate, and one North China isolate which appears most closely related to the putative SARS-CoV isolated from a palm civet. Non-synonymous mutations are centered in non-essential ORFs especially in structural and antigenic genes such as the S and M proteins, but these mutations did not distinguish the geographical groupings. However, no non-synonymous mutations were found in the 3CLpro and the polymerase genes. Conclusions Our results show that the SARS-CoV is well adapted to growth in culture and did not appear to undergo specific selection in human populations. We further assessed that the putative origin of the SARS epidemic was in late October 2002 which is consistent with a recent estimate using cases from China. The greater sequence divergence in the structural and antigenic proteins and consistent deletions in the 3' – most portion of the viral genome suggest that certain selection pressures are interacting with the functional nature of these validated and putative ORFs. PMID:15347429
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagstrom, D.J.; Snow, K.; Yuan, Z.
1994-09-01
For single gene defects in which there are a variety of mutations with significant frequencies, it is a challenge to find an efficient and sensitive method for mutation detection. For example, although 70% to 75% of CF chromosomes in a North American Caucasian population have the mutation {delta}F508, more than 400 mutations (mostly single base pair substitutions) are represented on the remaining chromosomes. SSCP analysis is a relatively straightforward procedure and therefore suitable for routine use in a clinical laboratory. However, previous reports have demonstrated suboptimal sensitivity rates in screening for mutations. We have developed a novel set of conditionsmore » which greatly enhances sensitivity and efficiency of SSCP. Our protocol incorporates multiplex PCR, stepping of wattages during electrophoresis and increased salt concentration at the anode relative to the gel. To screen for mutations in the CFTR gene, three multiplex PCR reactions are performed using identical thermocycler parameters. Sizes of PCR products range from 441 bp to 196 bp: size differences of > 30 bp are necessary to ensure separation during electrophoresis. All PCR products are separated by electrophoresis at room temperature on a single gel containing 8% (37.5:1) polyacrylamide, 5% glycerol and 1x TBE. Using an anode buffer with increased salt (2x TBE) sharpens smaller sized bands, and stepping watts from 5W to 20W during electrophoresis enhances sensitivity. Positive controls were used to demonstrate that mutations could be detected. Other mutations or polymorphisms were verified by cycle sequencing of PCR products or by alternative PCR-based assays for the more common mutations. Thus, using 3 PCR reactions per patient and one gel condition, we are able to achieve a CF mutation detection rate of approximately 90% in a North American Caucasian population.« less
NASA Astrophysics Data System (ADS)
Fierro, Annalisa; Cocozza, Sergio; Monticelli, Antonella; Scala, Giovanni; Miele, Gennaro
2017-06-01
The presence of phenomena analogous to phase transition in Statistical Mechanics has been suggested in the evolution of a polygenic trait under stabilizing selection, mutation and genetic drift. By using numerical simulations of a model system, we analyze the evolution of a population of N diploid hermaphrodites in random mating regime. The population evolves under the effect of drift, selective pressure in form of viability on an additive polygenic trait, and mutation. The analysis allows to determine a phase diagram in the plane of mutation rate and strength of selection. The involved pattern of phase transitions is characterized by a line of critical points for weak selective pressure (smaller than a threshold), whereas discontinuous phase transitions, characterized by metastable hysteresis, are observed for strong selective pressure. A finite-size scaling analysis suggests the analogy between our system and the mean-field Ising model for selective pressure approaching the threshold from weaker values. In this framework, the mutation rate, which allows the system to explore the accessible microscopic states, is the parameter controlling the transition from large heterozygosity ( disordered phase) to small heterozygosity ( ordered one).
Fractional populations in multiple gene inheritance.
Chung, Myung-Hoon; Kim, Chul Koo; Nahm, Kyun
2003-01-22
With complete knowledge of the human genome sequence, one of the most interesting tasks remaining is to understand the functions of individual genes and how they communicate. Using the information about genes (locus, allele, mutation rate, fitness, etc.), we attempt to explain population demographic data. This population evolution study could complement and enhance biologists' understanding about genes. We present a general approach to study population genetics in complex situations. In the present approach, multiple allele inheritance, multiple loci inheritance, natural selection and mutations are allowed simultaneously in order to consider a more realistic situation. A simulation program is presented so that readers can readily carry out studies with their own parameters. It is shown that the multiplicity of the loci greatly affects the demographic results of fractional population ratios. Furthermore, the study indicates that some high infant mortality rates due to congenital anomalies can be attributed to multiple loci inheritance. The simulation program can be downloaded from http://won.hongik.ac.kr/~mhchung/index_files/yapop.htm. In order to run this program, one needs Visual Studio.NET platform, which can be downloaded from http://msdn.microsoft.com/netframework/downloads/default.asp.
Gozu, Hulya; Avsar, Melike; Bircan, Rifat; Sahin, Serap; Deyneli, Oguzhan; Cirakoglu, Beyazit; Akalin, Sema
2005-10-01
Many studies have been carried out to determine G(s) alpha and TSHR mutations in autonomously functioning thyroid nodules. Variable prevalences for somatic constitutively activating TSHR mutations in hot nodules have been reported. Moreover, the increased prevalence of toxic multinodular goiters in iodine-deficient regions is well known. In Turkey, a country with high incidence rates of goiter due to iodine deficiency, the frequency of mutations in the thyrotropin receptor signal transduction pathway has not been evaluated up to now. In the present study, a part of the genes of the TSHR, G(s)alpha and the catalytic subunit of the PKA were checked for activating mutations. Thirty-five patients who underwent thyroidectomy for multinodular goiters were examined. Genomic DNAs were extracted from 58 hyperactive nodular specimens and surrounding normal thyroid tissues. Mutation screening was done by single-strand conformational polymorphism (SSCP) analysis. In those cases where a mutation was detected, the localization of the mutation was determined by automatic DNA sequencing. No G(s)alpha or PKA mutations were detected, whereas ten mutations (17%) were identified in the TSHR gene. All mutations were somatic and heterozygotic. In conclusion, the frequency of mutations in the cAMP signal transduction pathway was found to be lower than expected in the Turkish population most likely because of the use of SSCP as a screening method and sequencing only a part of TSHR exon 10.
Makhoul, N J; Wells, R S; Kaspar, H; Shbaklo, H; Taher, A; Chakar, N; Zalloua, P A
2005-01-01
Beta thalassemia is an autosomal recessive disorder characterized by reduced (beta(+)) or absent (beta(0)) beta-globin chain synthesis. In Lebanon it is the most predominant genetic defect. In this study we investigated the religious and geographic distribution of the beta-thalassemia mutations identified in Lebanon, and traced their precise origins. A total of 520 beta-globin chromosomes from patients of different religious and regional backgrounds was studied. Beta thalassemia mutations were identified using Amplification Refractory Mutation System (ARMS) PCR or direct gene sequencing. Six (IVS-I-110, IVS-I-1, IVS-I-6, IVS-II-1, cd 5 and the C > T substitution at cd 29) out of 20 beta-globin defects identified accounted for more than 86% of the total beta-thalassemia chromosomes. Sunni Muslims had the highest beta-thalassemia carrier rate and presented the greatest heterogeneity, with 16 different mutations. Shiite Muslims followed closely with 13 mutations, whereas Maronites represented 11.9% of all beta-thalassemic subjects and carried 7 different mutations. RFLP haplotype analysis showed that the observed genetic diversity originated from both new mutational events and gene flow from population migration. This study provides information about the types and distribution of beta-thalassemia mutations within each religious group and geographic region, which is essential for the implementation of screening and prevention programs.
Genotyping non-small cell lung cancer (NSCLC) in Latin America.
Arrieta, Oscar; Cardona, Andrés Felipe; Federico Bramuglia, Guillermo; Gallo, Aly; Campos-Parra, Alma D; Serrano, Silvia; Castro, Marcelo; Avilés, Alejandro; Amorin, Edgar; Kirchuk, Ricardo; Cuello, Mauricio; Borbolla, José; Riemersma, Omar; Becerra, Henry; Rosell, Rafael
2011-11-01
Frequency of mutations in EGFR and KRAS in non-small cell lung cancer (NSCLC) is different between ethnic groups; however, there is no information in Latin-American population. A total of 1150 biopsies of NSCLC patients from Latin America (Argentina, Colombia, Peru, and Mexico) were used extracting genomic DNA to perform direct sequencing of EGFR gene (exons 18 and 21) and KRAS gene in 650 samples. In Mexico, Scorpions ARMS was also used to obtain a genetic profile. We report the frequency of mutations in EGFR and KRAS genes in four Latin-American countries (n = 1150). Frequency of EGFR mutations in NSCLC was 33.2% (95% confidence interval [CI] 30.5-35.9) (Argentina 19.3%, Colombia 24.8%, Mexico 31.2%, and Peru 67%). The frequency of KRAS mutations was 16.6% (95% CI 13.8-19.4). EGFR mutations were independently associated with adenocarcinoma histology, older age, nonsmokers, and absence of KRAS mutations. Overall response rate to tyrosine kinase inhibitors in EGFR-mutated patients (n = 56) was 62.5% (95% CI 50-75) with a median overall survival of 16.5 months (95% CI 12.4-20.6). Our findings suggest that the frequency of EGFR mutations in Latin America lies between that of Asian and Caucasian populations and therefore support the genetic heterogeneity of NSCLC around the world.
Detecting and Removing Ascertainment Bias in Microsatellites from the HGDP-CEPH Panel
Eriksson, Anders; Manica, Andrea
2011-01-01
Although ascertainment bias in single nucleotide polymorphisms is a well-known problem, it is generally accepted that microsatellites have mutation rates too high for bias to be a concern. Here, we analyze in detail the large set of microsatellites typed for the Human Genetic Diversity Panel (HGDP)-CEPH panel. We develop a novel framework based on rarefaction to compare heterozygosity across markers with different mutation rates. We find that, whereas di- and tri-nucleotides show similar patterns of within- and between-population heterozygosity, tetra-nucleotides are inconsistent with the other two motifs. In addition, di- and tri-nucleotides are consistent with 16 unbiased tetra-nucleotide markers, whereas the HPGP-CEPH tetra-nucleotides are significantly different. This discrepancy is due to the HGDP-CEPH tetra-nucleotides being too homogeneous across Eurasia, even after their slower mutation rate is taken into account by rarefying the other markers. The most likely explanation for this pattern is ascertainment bias. We strongly advocate the exclusion of tetra-nucleotides from future population genetics analysis of this dataset, and we argue that other microsatellite datasets should be investigated for the presence of bias using the approach outlined in this article. PMID:22384358
van der Merwe, N C; Hamel, N; Schneider, S-R; Apffelstaedt, J P; Wijnen, J T; Foulkes, W D
2012-02-01
Founder mutations in BRCA1 and BRCA2 have been reported in many different populations. We studied 105 Coloured and 16 Black Xhosa women residing in the Western Cape of South Africa diagnosed with breast cancer. We screened these patients using our standard panel of six previously reported SA Afrikaner and Ashkenazi Jewish BRCA1/2 mutations and identified only two Afrikaner mutations. Further screening by the protein truncation test (BRCA1 exon 11, and BRCA2 exons 10 and 11) revealed an additional four deleterious mutations (BRCA1 c.1504_ 1508del,p.Leu502AlafsX2, BRCA2 c.2826_2829del,p.Ile943LysfsX16, c.6447_6448dup,p.Lys2150IlefsX19 and c.5771_5774del,p.Ile1924Argfs X38). The latter, also known in Breast Cancer Information Core nomenclature as 5999del4, was identified in 4 of 105 (3.8%) Coloureds and 4 of 16 (25%) Xhosa women, which makes it a frequent founder mutation in the Western Cape Province. Although this mutation was previously reported to occur in the Netherlands, haplotype analysis indicated two distinct origins for the Dutch and South African mutations, excluding the possibility of a common Dutch ancestor and suggesting gene flow from the indigenous tribes such as the Xhosa to the Coloured population instead. Further studies to determine the carrier rate of this variant in the Xhosa and other SA populations are warranted. © 2011 John Wiley & Sons A/S.
Stafler, Patrick; Mei-Zahav, Meir; Wilschanski, Michael; Mussaffi, Huda; Efrati, Ori; Lavie, Moran; Shoseyov, David; Cohen-Cymberknoh, Malena; Gur, Michal; Bentur, Lea; Livnat, Galit; Aviram, Micha; Alkrinawi, Soliman; Picard, Elie; Prais, Dario; Steuer, Guy; Inbar, Ori; Kerem, Eitan; Blau, Hannah
2016-07-01
Population carrier screening (PCS) has been available in Israel since 1999 and universally subsidized since 2008. We sought to evaluate its impact. A retrospective review of governmental databanks, the national CF registry and CF centers. CF rate per 100,000 live births has decreased from 14.5 in 1990 to 6 in 2011. From 2004-2011 there were 95 CF births: 22 utilized PCS; 68 (72%) had 2 known CFTR mutations; 37% were pancreatic sufficient. At diagnosis, age was 6 (0-98) months; 53/95 had respiratory symptoms, 41/95 failure to thrive and 19/95 pseudomonas. Thirty-four (36%) were Arabs and 19 (20%) orthodox Jews, compared to 20% and 8% respectively, in the general population. PCS markedly reduced CF birth rates with a shift towards milder mutations, but was often avoided for cultural reasons. As children regularly have significant disease at diagnosis, we suggest a balanced approach, utilizing both PCS and newborn screening. Copyright © 2015 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Rates of spontaneous mutation in an archaeon from geothermal environments.
Jacobs, K L; Grogan, D W
1997-01-01
To estimate the efficacy of mechanisms which may prevent or repair thermal damage to DNA in thermophilic archaea, a quantitative assay of forward mutation at extremely high temperature was developed for Sulfolobus acidocaldarius, based on the selection of pyrimidine-requiring mutants resistant to 5-fluoro-orotic acid. Maximum-likelihood analysis of spontaneous mutant distributions in wild-type cultures yielded maximal estimates of (2.8 +/- 0.7) x 10(-7) and (1.5 +/- 0.6) x 10(-7) mutational events per cell per division cycle for the pyrE and pyrF loci, respectively. To our knowledge, these results provide the first accurate measurement of the genetic fidelity maintained by archaea that populate geothermal environments. The measured rates of forward mutation at the pyrE and pyrF loci in S. acidocaldarius are close to corresponding rates reported for protein-encoding genes of Escherichia coli. The normal rate of spontaneous mutation in E. coli at 37 degrees C is known to require the functioning of several enzyme systems that repair spontaneous damage in DNA. Our results provide indirect evidence that S. acidocaldarius has cellular mechanisms, as yet unidentified, which effectively compensate for the higher chemical instability of DNA at the temperatures and pHs that prevail within growing Sulfolobus cells. PMID:9150227
Mutation-selection equilibrium in games with mixed strategies.
Tarnita, Corina E; Antal, Tibor; Nowak, Martin A
2009-11-07
We develop a new method for studying stochastic evolutionary game dynamics of mixed strategies. We consider the general situation: there are n pure strategies whose interactions are described by an nxn payoff matrix. Players can use mixed strategies, which are given by the vector (p(1),...,p(n)). Each entry specifies the probability to use the corresponding pure strategy. The sum over all entries is one. Therefore, a mixed strategy is a point in the simplex S(n). We study evolutionary dynamics in a well-mixed population of finite size. Individuals reproduce proportional to payoff. We consider the case of weak selection, which means the payoff from the game is only a small contribution to overall fitness. Reproduction can be subject to mutation; a mutant adopts a randomly chosen mixed strategy. We calculate the average abundance of every mixed strategy in the stationary distribution of the mutation-selection process. We find the crucial conditions that specify if a strategy is favored or opposed by selection. One condition holds for low mutation rate, another for high mutation rate. The result for any mutation rate is a linear combination of those two. As a specific example we study the Hawk-Dove game. We prove general statements about the relationship between games with pure and with mixed strategies.
Jolley, K A; Wilson, D J; Kriz, P; McVean, G; Maiden, M C J
2005-03-01
Patterns of genetic diversity within populations of human pathogens, shaped by the ecology of host-microbe interactions, contain important information about the epidemiological history of infectious disease. Exploiting this information, however, requires a systematic approach that distinguishes the genetic signal generated by epidemiological processes from the effects of other forces, such as recombination, mutation, and population history. Here, a variety of quantitative techniques were employed to investigate multilocus sequence information from isolate collections of Neisseria meningitidis, a major cause of meningitis and septicemia world wide. This allowed quantitative evaluation of alternative explanations for the observed population structure. A coalescent-based approach was employed to estimate the rate of mutation, the rate of recombination, and the size distribution of recombination fragments from samples from disease-associated and carried meningococci obtained in the Czech Republic in 1993 and a global collection of disease-associated isolates collected globally from 1937 to 1996. The parameter estimates were used to reject a model in which genetic structure arose by chance in small populations, and analysis of molecular variation showed that geographically restricted gene flow was unlikely to be the cause of the genetic structure. The genetic differentiation between disease and carriage isolate collections indicated that, whereas certain genotypes were overrepresented among the disease-isolate collections (the "hyperinvasive" lineages), disease-associated and carried meningococci exhibited remarkably little differentiation at the level of individual nucleotide polymorphisms. In combination, these results indicated the repeated action of natural selection on meningococcal populations, possibly arising from the coevolutionary dynamic of host-pathogen interactions.
A comprehensive evaluation of CHEK2 germline mutations in men with prostate cancer.
Wu, Yishuo; Yu, Hongjie; Zheng, S Lilly; Na, Rong; Mamawala, Mufaddal; Landis, Tricia; Wiley, Kathleen; Petkewicz, Jacqueline; Shah, Sameep; Shi, Zhuqing; Novakovic, Kristian; McGuire, Michael; Brendler, Charles B; Ding, Qiang; Helfand, Brian T; Carter, H Ballentine; Cooney, Kathleen A; Isaacs, William B; Xu, Jianfeng
2018-06-01
Germline mutations in CHEK2 have been associated with prostate cancer (PCa) risk. Our objective is to examine whether germline pathogenic CHEK2 mutations can differentiate risk of lethal from indolent PCa. A case-case study of 703 lethal PCa patients and 1455 patients with low-risk localized PCa of European, African, and Chinese origin was performed. Germline DNA samples from these patients were sequenced for CHEK2. Mutation carrier rates and their association with lethal PCa were analyzed using the Fisher exact test and Kaplan-Meier survival analysis. In the entire study population, 40 (1.85%) patients were identified as carrying one of 15 different germline CHEK2 pathogenic or likely pathogenic mutations. CHEK2 mutations were detected in 16 (2.28%) of 703 lethal PCa patients compared with 24 (1.65%) of 1455 low-risk PCa patients (P = 0.31). No association was found between CHEK2 mutation status and early-diagnosis or PCa-specific survival time. However, the most common mutation in CHEK2, c.1100delC (p.T367 fs), had a significantly higher carrier rate (1.28%) in lethal PCa patients than low-risk PCa patients of European American origin (0.16%), P = 0.0038. The estimated Odds Ratio of this mutation for lethal PCa was 7.86. The carrier rate in lethal PCa was also significantly higher than that (0.46%) in 32 461 non-Finnish European subjects from the Exome Aggregation Consortium (ExAC) (P = 0.01). While overall CHEK2 mutations were not significantly more common in men with lethal compared to low-risk PCa, the specific CHEK2 mutation, c.1100delC, appears to contribute to an increased risk of lethal PCa in European American men. © 2018 Wiley Periodicals, Inc.
Mikstiene, Violeta; Jakaitiene, Audrone; Byckova, Jekaterina; Gradauskiene, Egle; Preiksaitiene, Egle; Burnyte, Birute; Tumiene, Birute; Matuleviciene, Ausra; Ambrozaityte, Laima; Uktveryte, Ingrida; Domarkiene, Ingrida; Rancelis, Tautvydas; Cimbalistiene, Loreta; Lesinskas, Eugenijus; Kucinskas, Vaidutis; Utkus, Algirdas
2016-02-19
Congenital hearing loss (CHL) is diagnosed in 1 - 2 newborns in 1000, genetic factors contribute to two thirds of CHL cases in industrialised countries. Mutations of the GJB2 gene located in the DFNB1 locus (13q11-12) are a major cause of CHL worldwide. The aim of this cross-sectional study was to assess the contribution of the DFNB1 locus containing the GJB2 and GJB6 genes in the development of early onset hearing loss in the affected group of participants, to determine the population-specific mutational profile and DFNB1-related HL burden in Lithuanian population. Clinical data were obtained from a collection of 158 affected participants (146 unrelated probands) with early onset non-syndromic HL. GJB2 and GJB6 gene sequencing and GJB6 gene deletion testing were performed. The data of GJB2 and GJB6 gene sequencing in 98 participants in group of self-reported healthy Lithuanian inhabitants were analysed. Statistic summary, homogeneity tests, and logistic regression analysis were used for the assessment of genotype-phenotype correlation. Our findings show 57.5% of affected participants with two pathogenic GJB2 gene mutations identified. The most prevalent GJB2 mutations were c.35delG, p. (Gly12Valfs*2) (rs80338939) and c.313_326del14, p. (Lys105Glyfs*5) (rs111033253) with allele frequencies 64.7% and 28.3% respectively. GJB6 gene mutations were not identified in the affected group of participants. The statistical analysis revealed significant differences between GJB2(-) and GJB2(+) groups in disease severity (p = 0.001), and family history (p = 0.01). The probability of identification of GJB2 mutations in patients with various HL characteristics was estimated. The carrier rate of GJB2 gene mutations - 7.1% (~1 in 14) was identified in the group of healthy participants and a high frequency of GJB2-related hearing loss was estimated in our population. The results show a very high proportion of GJB2-positive individuals in the research group affected with sensorineural HL. The allele frequency of c.35delG mutation (64.7 %) is consistent with many previously published studies in groups of affected individuals of Caucasian populations. The high frequency of the c.313_326del14 (28.3 % of pathogenic alleles) mutation in affected group of participants was an unexpected finding in our study suggesting not only a high frequency of carriers of this mutation in our population but also its possible origin in Lithuanian ancestors. The high frequency of carriers of the c.313_326del14 mutation in the entire Lithuanian population is supported by it being identified twice in the ethnic Lithuanian group of healthy participants (a frequency 2.0 % of carriers in the study group). Analysis of the allele frequency of GJB2 gene mutations revealed a high proportion of c. 313_326del14 (rs111033253) mutations in the GJB2-positive group suggesting its possible origin in Lithuanian forebears. The high frequency of carriers of GJB2 gene mutations in the group of healthy participants corresponds to the substantial frequency of GJB2-associated HL in Lithuania. The observations of the study indicate the significant contribution of GJB2 gene mutations to the pathogenesis of the disorder in the Lithuanian population and will contribute to introducing principles to predict the characteristics of the disease in patients.
Allio, Remi; Donega, Stefano; Galtier, Nicolas; Nabholz, Benoit
2017-11-01
It is commonly assumed that mitochondrial DNA (mtDNA) evolves at a faster rate than nuclear DNA (nuDNA) in animals. This has contributed to the popularity of mtDNA as a molecular marker in evolutionary studies. Analyzing 121 multilocus data sets and four phylogenomic data sets encompassing 4,676 species of animals, we demonstrate that the ratio of mitochondrial over nuclear mutation rate is highly variable among animal taxa. In nonvertebrates, such as insects and arachnids, the ratio of mtDNA over nuDNA mutation rate varies between 2 and 6, whereas it is above 20, on average, in vertebrates such as scaled reptiles and birds. Interestingly, this variation is sufficient to explain the previous report of a similar level of mitochondrial polymorphism, on average, between vertebrates and nonvertebrates, which was originally interpreted as reflecting the effect of pervasive positive selection. Our analysis rather indicates that the among-phyla homogeneity in within-species mtDNA diversity is due to a negative correlation between mtDNA per-generation mutation rate and effective population size, irrespective of the action of natural selection. Finally, we explore the variation in the absolute per-year mutation rate of both mtDNA and nuDNA using a reduced data set for which fossil calibration is available, and discuss the potential determinants of mutation rate variation across genomes and taxa. This study has important implications regarding DNA-based identification methods in predicting that mtDNA barcoding should be less reliable in nonvertebrates than in vertebrates. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A regional analysis of epidermal growth factor receptor (EGFR) mutated lung cancer for HSE South.
Kelly, D; Mc Sorley, L; O'Shea, E; Mc Carthy, E; Bowe, S; Brady, C; Sui, J; Dawod, M A; O'Brien, O; Graham, D; McCarthy, J; Burke, L; Power, D; O'Reilly, S; Bambury, R M; Mahony, D O
2017-11-01
EGFR mutated lung cancer represents a subgroup with distinct clinical presentations, prognosis, and management requirements. We investigated the survival, prognostic factors, and real-world treatment of NSCLC patients with EGFR mutation in clinical practice. A retrospective review of all specimens sent for EGFR analysis from December 2009 to September 2015 was performed. Patient demographics, specimen type, EGFR mutation status/type, stage at diagnosis, treatment, response rate, and survival data were recorded. 27/334 (8%) patient specimens sent for EGFR testing tested positive for a sensitising EGFR mutation. The median age was 65 years (40-85 years). Exon 19 deletion represented the most commonly detected alteration, accounting for 39% (n = 11). First-line treatment for those with Exon 18, 19, or 21 alterations (n = 24) was with an EGFR tyrosine kinase inhibitor (TKI) in 79% (n = 19). Objective response rate among these patients was 74% and median duration of response was 13 months (range 7-35 months). The incidence of EGFR mutation in our cohort of NSCLC is 9% which is consistent with mutation incidence reported in other countries. The rate of EGFR mutation in our population is slightly below that reported internationally, but treatment outcomes are consistent with published data. Real-world patient data have important contributions to make with regard to quality measurement, incorporating patient experience into guidelines and identifying safety signals.
Strong effects of ionizing radiation from Chernobyl on mutation rates
NASA Astrophysics Data System (ADS)
Møller, Anders Pape; Mousseau, Timothy A.
2015-02-01
In this paper we use a meta-analysis to examine the relationship between radiation and mutation rates in Chernobyl across 45 published studies, covering 30 species. Overall effect size of radiation on mutation rates estimated as Pearson's product-moment correlation coefficient was very large (E = 0.67; 95% confidence intervals (CI) 0.59 to 0.73), accounting for 44.3% of the total variance in an unstructured random-effects model. Fail-safe calculations reflecting the number of unpublished null results needed to eliminate this average effect size showed the extreme robustness of this finding (Rosenberg's method: 4135 at p = 0.05). Indirect tests did not provide any evidence of publication bias. The effect of radiation on mutations varied among taxa, with plants showing a larger effect than animals. Humans were shown to have intermediate sensitivity of mutations to radiation compared to other species. Effect size did not decrease over time, providing no evidence for an improvement in environmental conditions. The surprisingly high mean effect size suggests a strong impact of radioactive contamination on individual fitness in current and future generations, with potentially significant population-level consequences, even beyond the area contaminated with radioactive material.
Strong effects of ionizing radiation from Chernobyl on mutation rates.
Møller, Anders Pape; Mousseau, Timothy A
2015-02-10
In this paper we use a meta-analysis to examine the relationship between radiation and mutation rates in Chernobyl across 45 published studies, covering 30 species. Overall effect size of radiation on mutation rates estimated as Pearson's product-moment correlation coefficient was very large (E = 0.67; 95% confidence intervals (CI) 0.59 to 0.73), accounting for 44.3% of the total variance in an unstructured random-effects model. Fail-safe calculations reflecting the number of unpublished null results needed to eliminate this average effect size showed the extreme robustness of this finding (Rosenberg's method: 4135 at p = 0.05). Indirect tests did not provide any evidence of publication bias. The effect of radiation on mutations varied among taxa, with plants showing a larger effect than animals. Humans were shown to have intermediate sensitivity of mutations to radiation compared to other species. Effect size did not decrease over time, providing no evidence for an improvement in environmental conditions. The surprisingly high mean effect size suggests a strong impact of radioactive contamination on individual fitness in current and future generations, with potentially significant population-level consequences, even beyond the area contaminated with radioactive material.
Parasitic plants have increased rates of molecular evolution across all three genomes
2013-01-01
Background Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. Results We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Conclusions Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic plants tend to be smaller than their non-parasitic relatives, which may result in more cell generations per year, thus a higher rate of mutations arising from DNA copy errors per unit time. Demonstration that adoption of a parasitic lifestyle influences the rate of genomic evolution is relevant to attempts to infer molecular phylogenies of parasitic plants and to estimate their evolutionary divergence times using sequence data. PMID:23782527
Parasitic plants have increased rates of molecular evolution across all three genomes.
Bromham, Lindell; Cowman, Peter F; Lanfear, Robert
2013-06-19
Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic plants tend to be smaller than their non-parasitic relatives, which may result in more cell generations per year, thus a higher rate of mutations arising from DNA copy errors per unit time. Demonstration that adoption of a parasitic lifestyle influences the rate of genomic evolution is relevant to attempts to infer molecular phylogenies of parasitic plants and to estimate their evolutionary divergence times using sequence data.
Brownstein, Zippora; Ben-Yosef, Tamar; Dagan, Orit; Frydman, Moshe; Abeliovich, Dvorah; Sagi, Michal; Abraham, Fabian A; Taitelbaum-Swead, Riki; Shohat, Mordechai; Hildesheimer, Minka; Friedman, Thomas B; Avraham, Karen B
2004-06-01
Usher syndrome is a frequent cause of the combination of deafness and blindness due to retinitis pigmentosa (RP). Five genes are known to underlie different forms of Usher syndrome type I (USH1). In the Ashkenazi Jewish population, the R245X mutation of the PCDH15 gene may be the most common cause of USH1 (Ben-Yosef T, Ness SL, Madeo AC, Bar-Lev A, Wolfman JH, Ahmed ZM, Desnick RK, Willner JP, Avraham KB, Ostrer H, Oddoux C, Griffith AJ, Friedman TB N Engl J Med 348: 1664-1670, 2003). To estimate what percentage of Ashkenazi Jewish children born with profound hearing loss will develop RP due to R245X, we examined the prevalence of the R245X PCDH15 mutation and its carrier rate among Ashkenazi Jews in Israel. Among probands diagnosed with nonsyndromic hearing loss not due to mutations of connexin 26 (GJB2) and/or connexin 30 (GJB6), and below the age of 10, 2 of 20 (10%) were homozygous for the R245X mutation. Among older nonsyndromic deaf individuals, no homozygotes were detected, although one individual was heterozygous for R245X. The carrier rate of the R245X mutation among the normal hearing Ashkenazi population in Israel was estimated at 1%. Ashkenazi Jewish children with profound prelingual hearing loss should be evaluated for the R245X PCDH15 mutation and undergo ophthalmologic evaluation to determine whether they will develop RP. Rehabilitation can then begin before loss of vision. Early use of cochlear implants in such cases may rescue these individuals from a dual neurosensory deficit.
Molecular evolution and thermal adaptation
NASA Astrophysics Data System (ADS)
Chen, Peiqiu
2011-12-01
In this thesis, we address problems in molecular evolution, thermal adaptation, and the kinetics of adaptation of bacteria and viruses to elevated environmental temperatures. We use a nearly neutral fitness model where the replication speed of an organism is proportional to the copy number of folded proteins. Our model reproduces the distribution of stabilities of natural proteins in excellent agreement with experiment. We find that species with high mutation rates tend to have less stable proteins compared to species with low mutation rate. We found that a broad distribution of protein stabilities observed in the model and in experiment is the key determinant of thermal response for viruses and bacteria. Our results explain most of the earlier experimental observations: striking asymmetry of thermal response curves, the absence of evolutionary trade-off which was expected but not found in experiments, correlation between denaturation temperature for several protein families and the Optimal Growth Temperature (OGT) of their carrier organisms, and proximity of bacterial or viral OGTs to their evolutionary temperatures. Our theory quantitatively and with high accuracy described thermal response curves for 35 bacterial species. The model also addresses the key to adaptation is in weak-link genes (WLG), which encode least thermodynamically stable essential proteins in the proteome. We observe, as in experiment, a two-stage adaptation process. The first stage is a Luria-Delbruck type of selection, whereby rare WLG alleles, whose proteins are more stable than WLG proteins of the majority of the population (either due to standing genetic variation or due to an early acquired mutation), rapidly rise to fixation. The second stage constitutes subsequent slow accumulation of mutations in an adapted population. As adaptation progresses, selection regime changes from positive to neutral: Selection coefficient of beneficial mutations scales as a negative power of number of generations. Diversity plays an important role in thermal adaptation: While monoclonal strains adapt via acquisition and rapid fixation of new early mutations, wild population adapt via standing genetic variations, and they are more robust against thermal shocks due to greater diversity within the initial population.
Li, Jian; Xie, Xing-Mei; Liao, Can; Li, Dong-Zhi
2014-12-01
To determine the prevalence of α-thalassaemia in β-thalassaemia individuals in a Chinese population. The standard diagnostic marker for β-thalassaemia was elevation of the Hb A2 level (>3.5%) with low mean corpuscular volume. The common α-thalassaemia mutations were studied by molecular analysis in all identified β-thalassaemia carriers. A prevalence rate of 3.3% for β-thalassaemia was found in our population; α- and β-thalassaemia interactions were found to co-exist in 17.8% of the β-thalassaemia carriers. The -SEA deletion was the most common α-thalassaemia mutation co-inherited with β-thalassaemia, followed by the -α3.7 deletion, the -α4.2 deletion, Hb Quong Sze, and Hb Constant Spring. Our results suggest that it could be valuable to study co-existing α-globin mutations in subjects with β-thalassaemia trait in a prenatal screening programme, especially in populations with a high prevalence of haemoglobinopathies. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
SELECTION DYNAMICS IN JOINT MATCHING TO RATE AND MAGNITUDE OF REINFORCEMENT
McDowell, J. J; Popa, Andrei; Calvin, Nicholas T
2012-01-01
Virtual organisms animated by a selectionist theory of behavior dynamics worked on concurrent random interval schedules where both the rate and magnitude of reinforcement were varied. The selectionist theory consists of a set of simple rules of selection, recombination, and mutation that act on a population of potential behaviors by means of a genetic algorithm. An extension of the power function matching equation, which expresses behavior allocation as a joint function of exponentiated reinforcement rate and reinforcer magnitude ratios, was fitted to the virtual organisms' data, and over a range of moderate mutation rates was found to provide an excellent description of their behavior without residual trends. The mean exponents in this range of mutation rates were 0.83 for the reinforcement rate ratio and 0.68 for the reinforcer magnitude ratio, which are values that are comparable to those obtained in experiments with live organisms. These findings add to the evidence supporting the selectionist theory, which asserts that the world of behavior we observe and measure is created by evolutionary dynamics. PMID:23008523
NASA Astrophysics Data System (ADS)
Volkova, Polina Yu.; Geras'Kin, Stanislav A.; Kazakova, Elizaveta A.
2017-02-01
Even 30 years after the Chernobyl accident, biological effects of irradiation are observed in the chronically exposed Scots pine populations. Chronic radiation exposure at dose rates above 50 mGy•yr-1 caused oxidative stress and led to the increase of antioxidants concentrations in these populations. Genetic variability was examined for 6 enzymes and 14 enzymatic loci of 6 Scots pine populations. Dose rates over 10 mGy•yr-1 caused the increased frequency of mutations and changes in genetic structure of Scots pine populations. However, the same dose rates had no effect on enzymatic activities. The results indicate that even relatively low dose rates of radiation can be considered as an ecological factor which should be taken into account for ecological management and radiation protection of biota species.
Evidence for a high mutation rate at rapidly evolving yeast centromeres.
Bensasson, Douda
2011-07-18
Although their role in cell division is essential, centromeres evolve rapidly in animals, plants and yeasts. Unlike the complex centromeres of plants and aminals, the point centromeres of Saccharomcyes yeasts can be readily sequenced to distinguish amongst the possible explanations for fast centromere evolution. Using DNA sequences of all 16 centromeres from 34 strains of Saccharomyces cerevisiae and population genomic data from Saccharomyces paradoxus, I show that centromeres in both species evolve 3 times more rapidly even than selectively unconstrained DNA. Exceptionally high levels of polymorphism seen in multiple yeast populations suggest that rapid centromere evolution does not result from the repeated selective sweeps expected under meiotic drive. I further show that there is little evidence for crossing-over or gene conversion within centromeres, although there is clear evidence for recombination in their immediate vicinity. Finally I show that the mutation spectrum at centromeres is consistent with the pattern of spontaneous mutation elsewhere in the genome. These results indicate that rapid centromere evolution is a common phenomenon in yeast species. Furthermore, these results suggest that rapid centromere evolution does not result from the mutagenic effect of gene conversion, but from a generalised increase in the mutation rate, perhaps arising from the unusual chromatin structure at centromeres in yeast and other eukaryotes.
Evidence for a high mutation rate at rapidly evolving yeast centromeres
2011-01-01
Background Although their role in cell division is essential, centromeres evolve rapidly in animals, plants and yeasts. Unlike the complex centromeres of plants and aminals, the point centromeres of Saccharomcyes yeasts can be readily sequenced to distinguish amongst the possible explanations for fast centromere evolution. Results Using DNA sequences of all 16 centromeres from 34 strains of Saccharomyces cerevisiae and population genomic data from Saccharomyces paradoxus, I show that centromeres in both species evolve 3 times more rapidly even than selectively unconstrained DNA. Exceptionally high levels of polymorphism seen in multiple yeast populations suggest that rapid centromere evolution does not result from the repeated selective sweeps expected under meiotic drive. I further show that there is little evidence for crossing-over or gene conversion within centromeres, although there is clear evidence for recombination in their immediate vicinity. Finally I show that the mutation spectrum at centromeres is consistent with the pattern of spontaneous mutation elsewhere in the genome. Conclusions These results indicate that rapid centromere evolution is a common phenomenon in yeast species. Furthermore, these results suggest that rapid centromere evolution does not result from the mutagenic effect of gene conversion, but from a generalised increase in the mutation rate, perhaps arising from the unusual chromatin structure at centromeres in yeast and other eukaryotes. PMID:21767380
Khatri, Bhavin S.; Goldstein, Richard A.
2015-01-01
Speciation is fundamental to understanding the huge diversity of life on Earth. Although still controversial, empirical evidence suggests that the rate of speciation is larger for smaller populations. Here, we explore a biophysical model of speciation by developing a simple coarse-grained theory of transcription factor-DNA binding and how their co-evolution in two geographically isolated lineages leads to incompatibilities. To develop a tractable analytical theory, we derive a Smoluchowski equation for the dynamics of binding energy evolution that accounts for the fact that natural selection acts on phenotypes, but variation arises from mutations in sequences; the Smoluchowski equation includes selection due to both gradients in fitness and gradients in sequence entropy, which is the logarithm of the number of sequences that correspond to a particular binding energy. This simple consideration predicts that smaller populations develop incompatibilities more quickly in the weak mutation regime; this trend arises as sequence entropy poises smaller populations closer to incompatible regions of phenotype space. These results suggest a generic coarse-grained approach to evolutionary stochastic dynamics, allowing realistic modelling at the phenotypic level. PMID:25936759
A robust measure of HIV-1 population turnover within chronically infected individuals.
Achaz, G; Palmer, S; Kearney, M; Maldarelli, F; Mellors, J W; Coffin, J M; Wakeley, J
2004-10-01
A simple nonparameteric test for population structure was applied to temporally spaced samples of HIV-1 sequences from the gag-pol region within two chronically infected individuals. The results show that temporal structure can be detected for samples separated by about 22 months or more. The performance of the method, which was originally proposed to detect geographic structure, was tested for temporally spaced samples using neutral coalescent simulations. Simulations showed that the method is robust to variation in samples sizes and mutation rates, to the presence/absence of recombination, and that the power to detect temporal structure is high. By comparing levels of temporal structure in simulations to the levels observed in real data, we estimate the effective intra-individual population size of HIV-1 to be between 10(3) and 10(4) viruses, which is in agreement with some previous estimates. Using this estimate and a simple measure of sequence diversity, we estimate an effective neutral mutation rate of about 5 x 10(-6) per site per generation in the gag-pol region. The definition and interpretation of estimates of such "effective" population parameters are discussed.
Carrier screening in the era of expanding genetic technology.
Arjunan, Aishwarya; Litwack, Karen; Collins, Nick; Charrow, Joel
2016-12-01
The Center for Jewish Genetics provides genetic education and carrier screening to individuals of Jewish descent. Carrier screening has traditionally been performed by targeted mutation analysis for founder mutations with an enzyme assay for Tay-Sachs carrier detection. The development of next-generation sequencing (NGS) allows for higher detection rates regardless of ethnicity. Here, we explore differences in carrier detection rates between genotyping and NGS in a primarily Jewish population. Peripheral blood samples or saliva samples were obtained from 506 individuals. All samples were analyzed by sequencing, targeted genotyping, triplet-repeat detection, and copy-number analysis; the analyses were carried out at Counsyl. Of 506 individuals screened, 288 were identified as carriers of at least 1 condition and 8 couples were carriers for the same disorder. A total of 434 pathogenic variants were identified. Three hundred twelve variants would have been detected via genotyping alone. Although no additional mutations were detected by NGS in diseases routinely screened for in the Ashkenazi Jewish population, 26.5% of carrier results and 2 carrier couples would have been missed without NGS in the larger panel. In a primarily Jewish population, NGS reveals a larger number of pathogenic variants and provides individuals with valuable information for family planning.Genet Med 18 12, 1214-1217.
Effect of mutation mechanisms on variant composition and distribution in Caenorhabditis elegans
Wang, Jiou
2017-01-01
Genetic diversity is maintained by continuing generation and removal of variants. While examining over 800,000 DNA variants in wild isolates of Caenorhabditis elegans, we made a discovery that the proportions of variant types are not constant across the C. elegans genome. The variant proportion is defined as the fraction of a specific variant type (e.g. single nucleotide polymorphism (SNP) or indel) within a broader set of variants (e.g. all variants or all non-SNPs). The proportions of most variant types show a correlation with the recombination rate. These correlations can be explained as a result of a concerted action of two mutation mechanisms, which we named Morgan and Sanger mechanisms. The two proposed mechanisms act according to the distinct components of the recombination rate, specifically the genetic and physical distance. Regression analysis was used to explore the characteristics and contributions of the two mutation mechanisms. According to our model, ~20–40% of all mutations in C. elegans wild populations are derived from programmed meiotic double strand breaks, which precede chromosomal crossovers and thus may be the point of origin for the Morgan mechanism. A substantial part of the known correlation between the recombination rate and variant distribution appears to be caused by the mutations generated by the Morgan mechanism. Mathematically integrating the mutation model with background selection model gives a more complete depiction of how the variant landscape is shaped in C. elegans. Similar analysis should be possible in other species by examining the correlation between the recombination rate and variant landscape within the context of our mutation model. PMID:28135268
Arkin, Adam P.
2015-01-01
ABSTRACT Free-living bacteria are usually thought to have large effective population sizes, and so tiny selective differences can drive their evolution. However, because recombination is infrequent, “background selection” against slightly deleterious alleles should reduce the effective population size (Ne) by orders of magnitude. For example, for a well-mixed population with 1012 individuals and a typical level of homologous recombination (r/m = 3, i.e., nucleotide changes due to recombination [r] occur at 3 times the mutation rate [m]), we predict that Ne is <107. An argument for high Ne values for bacteria has been the high genetic diversity within many bacterial “species,” but this diversity may be due to population structure: diversity across subpopulations can be far higher than diversity within a subpopulation, which makes it difficult to estimate Ne correctly. Given an estimate of Ne, standard population genetics models imply that selection should be sufficient to drive evolution if Ne × s is >1, where s is the selection coefficient. We found that this remains approximately correct if background selection is occurring or when population structure is present. Overall, we predict that even for free-living bacteria with enormous populations, natural selection is only a significant force if s is above 10−7 or so. PMID:26670382
HIV populations are large and accumulate high genetic diversity in a nonlinear fashion.
Maldarelli, Frank; Kearney, Mary; Palmer, Sarah; Stephens, Robert; Mican, JoAnn; Polis, Michael A; Davey, Richard T; Kovacs, Joseph; Shao, Wei; Rock-Kress, Diane; Metcalf, Julia A; Rehm, Catherine; Greer, Sarah E; Lucey, Daniel L; Danley, Kristen; Alter, Harvey; Mellors, John W; Coffin, John M
2013-09-01
HIV infection is characterized by rapid and error-prone viral replication resulting in genetically diverse virus populations. The rate of accumulation of diversity and the mechanisms involved are under intense study to provide useful information to understand immune evasion and the development of drug resistance. To characterize the development of viral diversity after infection, we carried out an in-depth analysis of single genome sequences of HIV pro-pol to assess diversity and divergence and to estimate replicating population sizes in a group of treatment-naive HIV-infected individuals sampled at single (n = 22) or multiple, longitudinal (n = 11) time points. Analysis of single genome sequences revealed nonlinear accumulation of sequence diversity during the course of infection. Diversity accumulated in recently infected individuals at rates 30-fold higher than in patients with chronic infection. Accumulation of synonymous changes accounted for most of the diversity during chronic infection. Accumulation of diversity resulted in population shifts, but the rates of change were low relative to estimated replication cycle times, consistent with relatively large population sizes. Analysis of changes in allele frequencies revealed effective population sizes that are substantially higher than previous estimates of approximately 1,000 infectious particles/infected individual. Taken together, these observations indicate that HIV populations are large, diverse, and slow to change in chronic infection and that the emergence of new mutations, including drug resistance mutations, is governed by both selection forces and drift.
Pathways to extinction: beyond the error threshold.
Manrubia, Susanna C; Domingo, Esteban; Lázaro, Ester
2010-06-27
Since the introduction of the quasispecies and the error catastrophe concepts for molecular evolution by Eigen and their subsequent application to viral populations, increased mutagenesis has become a common strategy to cause the extinction of viral infectivity. Nevertheless, the high complexity of virus populations has shown that viral extinction can occur through several other pathways apart from crossing an error threshold. Increases in the mutation rate enhance the appearance of defective forms and promote the selection of mechanisms that are able to counteract the accelerated appearance of mutations. Current models of viral evolution take into account more realistic scenarios that consider compensatory and lethal mutations, a highly redundant genotype-to-phenotype map, rough fitness landscapes relating phenotype and fitness, and where phenotype is described as a set of interdependent traits. Further, viral populations cannot be understood without specifying the characteristics of the environment where they evolve and adapt. Altogether, it turns out that the pathways through which viral quasispecies go extinct are multiple and diverse.
Genetic architecture of artemisinin-resistant Plasmodium falciparum
Miotto, Olivo; Amato, Roberto; Ashley, Elizabeth A; MacInnis, Bronwyn; Almagro-Garcia, Jacob; Amaratunga, Chanaki; Lim, Pharath; Mead, Daniel; Oyola, Samuel O; Dhorda, Mehul; Imwong, Mallika; Woodrow, Charles; Manske, Magnus; Stalker, Jim; Drury, Eleanor; Campino, Susana; Amenga-Etego, Lucas; Thanh, Thuy-Nhien Nguyen; Tran, Hien Tinh; Ringwald, Pascal; Bethell, Delia; Nosten, Francois; Phyo, Aung Pyae; Pukrittayakamee, Sasithon; Chotivanich, Kesinee; Chuor, Char Meng; Nguon, Chea; Suon, Seila; Sreng, Sokunthea; Newton, Paul N; Mayxay, Mayfong; Khanthavong, Maniphone; Hongvanthong, Bouasy; Htut, Ye; Han, Kay Thwe; Kyaw, Myat Phone; Faiz, Md Abul; Fanello, Caterina I; Onyamboko, Marie; Mokuolu, Olugbenga A; Jacob, Christopher G; Takala-Harrison, Shannon; Plowe, Christopher V; Day, Nicholas P; Dondorp, Arjen M; Spencer, Chris C A; McVean, Gilean; Fairhurst, Rick M; White, Nicholas J; Kwiatkowski, Dominic P
2015-01-01
We report a large multicenter genome-wide association study of Plasmodium falciparum resistance to artemisinin, the frontline antimalarial drug. Across 15 locations in Southeast Asia, we identified at least 20 mutations in kelch13 (PF3D7_1343700) affecting the encoded propeller and BTB/POZ domains, which were associated with a slow parasite clearance rate after treatment with artemisinin derivatives. Nonsynonymous polymorphisms in fd (ferredoxin), arps10 (apicoplast ribosomal protein S10), mdr2 (multidrug resistance protein 2) and crt (chloroquine resistance transporter) also showed strong associations with artemisinin resistance. Analysis of the fine structure of the parasite population showed that the fd, arps10, mdr2 and crt polymorphisms are markers of a genetic background on which kelch13 mutations are particularly likely to arise and that they correlate with the contemporary geographical boundaries and population frequencies of artemisinin resistance. These findings indicate that the risk of new resistance-causing mutations emerging is determined by specific predisposing genetic factors in the underlying parasite population. PMID:25599401
Yang, Meng; Topaloglu, Umit; Petty, W Jeffrey; Pagni, Matthew; Foley, Kristie L; Grant, Stefan C; Robinson, Mac; Bitting, Rhonda L; Thomas, Alexandra; Alistar, Angela T; Desnoyers, Rodwige J; Goodman, Michael; Albright, Carol; Porosnicu, Mercedes; Vatca, Mihaela; Qasem, Shadi A; DeYoung, Barry; Kytola, Ville; Nykter, Matti; Chen, Kexin; Levine, Edward A; Staren, Edgar D; D'Agostino, Ralph B; Petro, Robin M; Blackstock, William; Powell, Bayard L; Abraham, Edward; Pasche, Boris; Zhang, Wei
2017-05-04
Solid tumors residing in tissues and organs leave footprints in circulation through circulating tumor cells (CTCs) and circulating tumor DNAs (ctDNA). Characterization of the ctDNA portraits and comparison with tumor DNA mutational portraits may reveal clinically actionable information on solid tumors that is traditionally achieved through more invasive approaches. We isolated ctDNAs from plasma of patients of 103 lung cancer and 74 other solid tumors of different tissue origins. Deep sequencing using the Guardant360 test was performed to identify mutations in 73 clinically actionable genes, and the results were associated with clinical characteristics of the patient. The mutation profiles of 37 lung cancer cases with paired ctDNA and tumor genomic DNA sequencing were used to evaluate clonal representation of tumor in circulation. Five lung cancer cases with longitudinal ctDNA sampling were monitored for cancer progression or response to treatments. Mutations in TP53, EGFR, and KRAS genes are most prevalent in our cohort. Mutation rates of ctDNA are similar in early (I and II) and late stage (III and IV) cancers. Mutation in DNA repair genes BRCA1, BRCA2, and ATM are found in 18.1% (32/177) of cases. Patients with higher mutation rates had significantly higher mortality rates. Lung cancer of never smokers exhibited significantly higher ctDNA mutation rates as well as higher EGFR and ERBB2 mutations than ever smokers. Comparative analysis of ctDNA and tumor DNA mutation data from the same patients showed that key driver mutations could be detected in plasma even when they were present at a minor clonal population in the tumor. Mutations of key genes found in the tumor tissue could remain in circulation even after frontline radiotherapy and chemotherapy suggesting these mutations represented resistance mechanisms. Longitudinal sampling of five lung cancer cases showed distinct changes in ctDNA mutation portraits that are consistent with cancer progression or response to EGFR drug treatment. This study demonstrates that ctDNA mutation rates in the key tumor-associated genes are clinical parameters relevant to smoking status and mortality. Mutations in ctDNA may serve as an early detection tool for cancer. This study quantitatively confirms the hypothesis that ctDNAs in circulation is the result of dissemination of aggressive tumor clones and survival of resistant clones. This study supports the use of ctDNA profiling as a less-invasive approach to monitor cancer progression and selection of appropriate drugs during cancer evolution.
OncoSimulR: genetic simulation with arbitrary epistasis and mutator genes in asexual populations.
Diaz-Uriarte, Ramon
2017-06-15
OncoSimulR implements forward-time genetic simulations of biallelic loci in asexual populations with special focus on cancer progression. Fitness can be defined as an arbitrary function of genetic interactions between multiple genes or modules of genes, including epistasis, restrictions in the order of accumulation of mutations, and order effects. Mutation rates can differ among genes, and can be affected by (anti)mutator genes. Also available are sampling from simulations (including single-cell sampling), plotting the genealogical relationships of clones and generating and plotting fitness landscapes. Implemented in R and C ++, freely available from BioConductor for Linux, Mac and Windows under the GNU GPL license. Version 2.5.9 or higher available from: http://www.bioconductor.org/packages/devel/bioc/html/OncoSimulR.html . GitHub repository at: https://github.com/rdiaz02/OncoSimul. ramon.diaz@iib.uam.es. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
Akiyama, M
2010-03-01
Filaggrin is a key protein involved in skin barrier function. Mutations in the gene encoding filaggrin (FLG) have been identified as the cause of ichthyosis vulgaris and have been shown to be major predisposing factors for atopic eczema (AE), initially in European populations. Subsequently, FLG mutations were identified in Japanese, Chinese, Taiwanese and Korean populations. It was demonstrated that FLG mutations are closely associated with AE in the Japanese population. Notably, the same FLG mutations identified in the European population were rarely found in Asians. These results exemplify differences in filaggrin population genetics between Europe and Asia. For mutation screening, background information needs to be obtained on prevalent FLG mutations for each geographical population. It is therefore important to establish the global population genetics maps for FLG mutations. Mutations at any site within FLG, even mutations in C-terminal imperfect filaggrin repeats, cause significant reductions in amounts of profilaggrin/filaggrin peptide in patient epidermis as the C-terminal region is essential for proper processing of profilaggrin into filaggrin. Thus, no genotype-phenotype correlation has been observed in patients with FLG mutations. A restoration of the barrier function seems a feasible and promising strategy for treatment and prevention in individuals with filaggrin deficiency.
Cieslarová, Jaroslava; Hanáček, Pavel; Fialová, Eva; Hýbl, Miroslav; Smýkal, Petr
2011-11-01
Microsatellites, or simple sequence repeats (SSRs) are widespread class of repetitive DNA sequences, used in population genetics, genetic diversity and mapping studies. In spite of the SSR utility, the genetic and evolutionary mechanisms are not fully understood. We have investigated three microsatellite loci with different position in the pea (Pisum sativum L.) genome, the A9 locus residing in LTR region of abundant retrotransposon, AD270 as intergenic and AF016458 located in 5'untranslated region of expressed gene. Comparative analysis of a 35 pair samples from seven pea varieties propagated by single-seed descent for ten generations, revealed single 4 bp mutation in 10th generation sample at AD270 locus corresponding to stepwise increase in one additional ATCT repeat unit. The estimated mutation rate was 4.76 × 10(-3) per locus per generation, with a 95% confidence interval of 1.2 × 10(-4) to 2.7 × 10(-2). The comparison of cv. Bohatýr accessions retrieved from different collections, showed intra-, inter-accession variation and differences in flanking and repeat sequences. Fragment size and sequence alternations were also found in long term in vitro organogenic culture, established at 1983, indicative of somatic mutation process. The evidence of homoplasy was detected across of unrelated pea genotypes, which adversaly affects the reliability of diversity estimates not only for diverse germplasm but also highly bred material. The findings of this study have important implications for Pisum phylogeny studies, variety identification and registration process in pea breeding where mutation rate influences the genetic diversity and the effective population size estimates.
An exactly solvable, spatial model of mutation accumulation in cancer
NASA Astrophysics Data System (ADS)
Paterson, Chay; Nowak, Martin A.; Waclaw, Bartlomiej
2016-12-01
One of the hallmarks of cancer is the accumulation of driver mutations which increase the net reproductive rate of cancer cells and allow them to spread. This process has been studied in mathematical models of well mixed populations, and in computer simulations of three-dimensional spatial models. But the computational complexity of these more realistic, spatial models makes it difficult to simulate realistically large and clinically detectable solid tumours. Here we describe an exactly solvable mathematical model of a tumour featuring replication, mutation and local migration of cancer cells. The model predicts a quasi-exponential growth of large tumours, even if different fragments of the tumour grow sub-exponentially due to nutrient and space limitations. The model reproduces clinically observed tumour growth times using biologically plausible rates for cell birth, death, and migration rates. We also show that the expected number of accumulated driver mutations increases exponentially in time if the average fitness gain per driver is constant, and that it reaches a plateau if the gains decrease over time. We discuss the realism of the underlying assumptions and possible extensions of the model.
Validity of Models for Predicting BRCA1 and BRCA2 Mutations
Parmigiani, Giovanni; Chen, Sining; Iversen, Edwin S.; Friebel, Tara M.; Finkelstein, Dianne M.; Anton-Culver, Hoda; Ziogas, Argyrios; Weber, Barbara L.; Eisen, Andrea; Malone, Kathleen E.; Daling, Janet R.; Hsu, Li; Ostrander, Elaine A.; Peterson, Leif E.; Schildkraut, Joellen M.; Isaacs, Claudine; Corio, Camille; Leondaridis, Leoni; Tomlinson, Gail; Amos, Christopher I.; Strong, Louise C.; Berry, Donald A.; Weitzel, Jeffrey N.; Sand, Sharon; Dutson, Debra; Kerber, Rich; Peshkin, Beth N.; Euhus, David M.
2008-01-01
Background Deleterious mutations of the BRCA1 and BRCA2 genes confer susceptibility to breast and ovarian cancer. At least 7 models for estimating the probabilities of having a mutation are used widely in clinical and scientific activities; however, the merits and limitations of these models are not fully understood. Objective To systematically quantify the accuracy of the following publicly available models to predict mutation carrier status: BRCAPRO, family history assessment tool, Finnish, Myriad, National Cancer Institute, University of Pennsylvania, and Yale University. Design Cross-sectional validation study, using model predictions and BRCA1 or BRCA2 mutation status of patients different from those used to develop the models. Setting Multicenter study across Cancer Genetics Network participating centers. Patients 3 population-based samples of participants in research studies and 8 samples from genetic counseling clinics. Measurements Discrimination between individuals testing positive for a mutation in BRCA1 or BRCA2 from those testing negative, as measured by the c-statistic, and sensitivity and specificity of model predictions. Results The 7 models differ in their predictions. The better-performing models have a c-statistic around 80%. BRCAPRO has the largest c-statistic overall and in all but 2 patient subgroups, although the margin over other models is narrow in many strata. Outside of high-risk populations, all models have high false-negative and false-positive rates across a range of probability thresholds used to refer for mutation testing. Limitation Three recently published models were not included. Conclusions All models identify women who probably carry a deleterious mutation of BRCA1 or BRCA2 with adequate discrimination to support individualized genetic counseling, although discrimination varies across models and populations. PMID:17909205
Genealogical evidence for epidemics of selfish genes.
Ingvarsson, Par K; Taylor, Douglas R
2002-08-20
Some genetic elements spread infectiously in populations by increasing their rate of genetic transmission at the expense of other genes in the genome. These so-called selfish genetic elements comprise a substantial portion of eukaryotic genomes and have long been viewed as a potent evolutionary force. Despite this view, little is known about the evolutionary history of selfish genetic elements in natural populations, or their genetic effects on other portions of the genome. Here we use nuclear and chloroplast gene genealogies in two species of Silene to show the historical pattern of selection on a well known selfish genetic element, cytoplasmic male sterility. We provide evidence that evolution of cytoplasmic male sterility has been characterized by frequent turnovers of mutations in natural populations, thus supporting an epidemic model for the evolution of selfish genes, where new mutations repeatedly arise and rapidly sweep through populations.
Comprehensive Molecular Screening in Chinese Usher Syndrome Patients.
Sun, Tengyang; Xu, Ke; Ren, Yanfan; Xie, Yue; Zhang, Xiaohui; Tian, Lu; Li, Yang
2018-03-01
Usher syndrome (USH) refers to a group of autosomal recessive disorders causing deafness and blindness. The objectives of this study were to determine the mutation spectrum in a cohort of Chinese patients with USH and to describe the clinical features of the patients with mutations. A total of 119 probands who were clinically diagnosed with USH were recruited for genetic analysis. All probands underwent ophthalmic examinations. A combination of molecular screening methods, including targeted next-generation sequencing, Sanger-DNA sequencing, and multiplex ligation probe amplification assay, was used to detect mutations. We found biallelic mutations in 92 probands (77.3%), monoallelic mutations in 5 patients (4.2%), and 1 hemizygous mutation in 1 patient (0.8%), resulting in an overall mutation detection rate of 78.2%. Overall, 132 distinct disease-causing mutations involving seven USH (ABHD12, CDH23, GPR98, MYO7A, PCDH15, USH1C, and USH2A) genes; 5 other retinal degeneration genes (CHM, CNGA1, EYS, PDE6B, and TULP1); and 1 nonsyndromic hearing loss gene (MYO15A) were identified, and 78 were novel. Mutations of MYOA7 were responsible for 60% of USH1 families, followed by PCDH15 (20%) and USH1C (10%). Mutations of USH2A accounted for 67.7% of USH2 families, and mutation c.8559-2A>G was the most frequent one, accounting for 19.1% of the identified USH2A alleles. Our results confirm that the mutation spectrum for each USH gene in Chinese patients differs from those of other populations. The formation of the mutation profile for the Chinese population will enable a precise genetic diagnosis for USH patients in the future.
Kaczmarek-Skamira, Elżbieta; Romańska-Gocka, Krystyna; Czajkowski, Rafał; Kałużna, Lucyna; Zegarska, Barbara
2016-01-01
Introduction The genetic background of atopic dermatitis (AD) is complex, involves many genes and their participation varies in varied populations, and depends on the intensity and course of a disease. Changes in the nucleotide sequence of the FLG gene and a reduced number or a deficit of the functional product of processed profilaggrin can be one of risk factors for atopic dermatitis. Aim To determine the prevalence of R501X and 2282del4 mutations of the FLG gene in patients with AD. Material and methods The studied group included 60 patients with clinically diagnosed AD, and the control group included 61 healthy volunteers. The study protocol included collection of biological material for tests, DNA isolation and evaluation of its quality and quantity, and PCR amplification of the isolated genetic material. Results In the studied group, both changes in the nucleotide sequence of the FLG gene were detected and in the control group no tested mutations were detected. In 18 (30%) patients with AD, 22 mutations (4 heterozygous and 1 homozygous ones of R501X and 10 heterozygous and 7 homozygous ones of 2282del4) were detected. Conclusions A high rate of mutations of the FLG gene in patients with clinically diagnosed AD and pathologically dry skin was observed in the studied population. The 2282del4 mutation occurred more often than R501X. PMID:27279822
The microbiology of mutability.
Sundin, George W; Weigand, Michael R
2007-12-01
Bacteria possessing elevated spontaneous mutation rates are prevalent in certain environments, which is a paradox because most mutations are deleterious. For example, cells with defects in the methyl-directed mismatch repair (MMR) system, termed mutators or hypermutators, are overrepresented in populations of bacterial pathogens, with the mutator trait hypothesized to be advantageous in the changing host enviroments faced during colonization and establishment of chronic infections. Error-prone DNA polymerases, such as polIV and polV, function in translesion DNA synthesis, a DNA damage response that ensures genome integrity with a cost of increased mutation. While the biochemical aspects of these mutability pathways are well understood, the biological impacts have received less attention. Here, an examination of bacterial mutability systems and specifically the ecological and evolutionary context resulting in the selection of these systems is carried out.
Life History Traits, Protein Evolution, and the Nearly Neutral Theory in Amniotes.
Figuet, Emeric; Nabholz, Benoît; Bonneau, Manon; Mas Carrio, Eduard; Nadachowska-Brzyska, Krystyna; Ellegren, Hans; Galtier, Nicolas
2016-06-01
The nearly neutral theory of molecular evolution predicts that small populations should accumulate deleterious mutations at a faster rate than large populations. The analysis of nonsynonymous (dN) versus synonymous (dS) substitution rates in birds versus mammals, however, has provided contradictory results, questioning the generality of the nearly neutral theory. Here we analyzed the impact of life history traits, taken as proxies of the effective population size, on molecular evolutionary and population genetic processes in amniotes, including the so far neglected reptiles. We report a strong effect of species body mass, longevity, and age of sexual maturity on genome-wide patterns of polymorphism and divergence across the major groups of amniotes, in agreement with the nearly neutral theory. Our results indicate that the rate of protein evolution in amniotes is determined in the first place by the efficiency of purifying selection against deleterious mutations-and this is true of both radical and conservative amino acid changes. Interestingly, the among-species distribution of dN/dS in birds did not follow this general trend: dN/dS was not higher in large, long-lived than in small, short-lived species of birds. We show that this unexpected pattern is not due to a more narrow range of life history traits, a lack of correlation between traits and Ne, or a peculiar distribution of fitness effects of mutations in birds. Our analysis therefore highlights the bird dN/dS ratio as a molecular evolutionary paradox and a challenge for future research. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Impact of Population Demography and Selection on the Genetic Architecture of Complex Traits
Lohmueller, Kirk E.
2014-01-01
Population genetic studies have found evidence for dramatic population growth in recent human history. It is unclear how this recent population growth, combined with the effects of negative natural selection, has affected patterns of deleterious variation, as well as the number, frequency, and effect sizes of mutations that contribute risk to complex traits. Because researchers are performing exome sequencing studies aimed at uncovering the role of low-frequency variants in the risk of complex traits, this topic is of critical importance. Here I use simulations under population genetic models where a proportion of the heritability of the trait is accounted for by mutations in a subset of the exome. I show that recent population growth increases the proportion of nonsynonymous variants segregating in the population, but does not affect the genetic load relative to a population that did not expand. Under a model where a mutation's effect on a trait is correlated with its effect on fitness, rare variants explain a greater portion of the additive genetic variance of the trait in a population that has recently expanded than in a population that did not recently expand. Further, when using a single-marker test, for a given false-positive rate and sample size, recent population growth decreases the expected number of significant associations with the trait relative to the number detected in a population that did not expand. However, in a model where there is no correlation between a mutation's effect on fitness and the effect on the trait, common variants account for much of the additive genetic variance, regardless of demography. Moreover, here demography does not affect the number of significant associations detected. These findings suggest recent population history may be an important factor influencing the power of association tests and in accounting for the missing heritability of certain complex traits. PMID:24875776
Orlenko, Alena; Chi, Peter B; Liberles, David A
2017-05-25
Understanding the genotype-phenotype map is fundamental to our understanding of genomes. Genes do not function independently, but rather as part of networks or pathways. In the case of metabolic pathways, flux through the pathway is an important next layer of biological organization up from the individual gene or protein. Flux control in metabolic pathways, reflecting the importance of mutation to individual enzyme genes, may be evolutionarily variable due to the role of mutation-selection-drift balance. The evolutionary stability of rate limiting steps and the patterns of inter-molecular co-evolution were evaluated in a simulated pathway with a system out of equilibrium due to fluctuating selection, population size, or positive directional selection, to contrast with those under stabilizing selection. Depending upon the underlying population genetic regime, fluctuating population size was found to increase the evolutionary stability of rate limiting steps in some scenarios. This result was linked to patterns of local adaptation of the population. Further, during positive directional selection, as with more complex mutational scenarios, an increase in the observation of inter-molecular co-evolution was observed. Differences in patterns of evolution when systems are in and out of equilibrium, including during positive directional selection may lead to predictable differences in observed patterns for divergent evolutionary scenarios. In particular, this result might be harnessed to detect differences between compensatory processes and directional processes at the pathway level based upon evolutionary observations in individual proteins. Detecting functional shifts in pathways reflects an important milestone in predicting when changes in genotypes result in changes in phenotypes.
Interactome INSIDER: a structural interactome browser for genomic studies.
Meyer, Michael J; Beltrán, Juan Felipe; Liang, Siqi; Fragoza, Robert; Rumack, Aaron; Liang, Jin; Wei, Xiaomu; Yu, Haiyuan
2018-01-01
We present Interactome INSIDER, a tool to link genomic variant information with structural protein-protein interactomes. Underlying this tool is the application of machine learning to predict protein interaction interfaces for 185,957 protein interactions with previously unresolved interfaces in human and seven model organisms, including the entire experimentally determined human binary interactome. Predicted interfaces exhibit functional properties similar to those of known interfaces, including enrichment for disease mutations and recurrent cancer mutations. Through 2,164 de novo mutagenesis experiments, we show that mutations of predicted and known interface residues disrupt interactions at a similar rate and much more frequently than mutations outside of predicted interfaces. To spur functional genomic studies, Interactome INSIDER (http://interactomeinsider.yulab.org) enables users to identify whether variants or disease mutations are enriched in known and predicted interaction interfaces at various resolutions. Users may explore known population variants, disease mutations, and somatic cancer mutations, or they may upload their own set of mutations for this purpose.
Metabolite toxicity determines the pace of molecular evolution within microbial populations.
Lilja, Elin E; Johnson, David R
2017-02-14
The production of toxic metabolites has shaped the spatial and temporal arrangement of metabolic processes within microbial cells. While diverse solutions to mitigate metabolite toxicity have evolved, less is known about how evolution itself is affected by metabolite toxicity. We hypothesized that the pace of molecular evolution should increase as metabolite toxicity increases. At least two mechanisms could cause this. First, metabolite toxicity could increase the mutation rate. Second, metabolite toxicity could increase the number of available mutations with large beneficial effects that selection could act upon (e.g., mutations that provide tolerance to toxicity), which consequently would increase the rate at which those mutations increase in frequency. We tested this hypothesis by experimentally evolving the bacterium Pseudomonas stutzeri under denitrifying conditions. The metabolite nitrite accumulates during denitrification and has pH-dependent toxic effects, which allowed us to evolve P. stutzeri at different magnitudes of nitrite toxicity. We demonstrate that increased nitrite toxicity results in an increased pace of molecular evolution. We further demonstrate that this increase is generally due to an increased number of available mutations with large beneficial effects and not to an increased mutation rate. Our results demonstrate that the production of toxic metabolites can have important impacts on the evolutionary processes of microbial cells. Given the ubiquity of toxic metabolites, they could also have implications for understanding the evolutionary histories of biological organisms.
Sex speeds adaptation by altering the dynamics of molecular evolution.
McDonald, Michael J; Rice, Daniel P; Desai, Michael M
2016-03-10
Sex and recombination are pervasive throughout nature despite their substantial costs. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation. Theory has proposed several distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect) or by separating them from deleterious load (the ruby in the rubbish effect). Previous experiments confirm that sex can increase the rate of adaptation, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here we present the first, to our knowledge, comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual Saccharomyces cerevisiae populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations.
Mutational spectrum in breast cancer associated BRCA1 and BRCA2 genes in Colombia
Gómez-Gutiérrez, Alberto; Díaz-Dussán, Natalia Andrea; Noguera-Santamaría, María Claudia; Díaz-Rincón, Diego; Casas-Gómez, María Consuelo
2017-01-01
Abstract Introduction: The risk of developing breast and ovarian cancer is higher in families that carry mutations in BRCA1 or BRCA2 genes, and timely mutation detection is critical. Objective: To identify the presence of mutations in the Colombian population and evaluate two testing strategies. Methods: From a total universe of 853 individual blood samples referred for BRCA1 and BRCA2 typing, 256 cases were analyzed by complete direct sequencing of both genes in Myriad Genetics, and the remaining 597 cases were studied by partial sequencing based on founder mutations in a PCR test designed by ourselves ("Profile Colombia"). Results: We found 107 patients carrying deleterious mutations in this group of patients, 69 (64.5%) located in BRCA1, and 38 (35.5%) in BRCA2. Overall, we detected 39 previously unreported mutations in Colombia (22 in BRCA1 and 17 in BRCA2) and only 4 out of the 6 previously reported founder mutations. Sixty four out of 597 patients (10.7%) studied by "Profile Colombia" showed mutations in BRCA1 or BRCA2, and 41/256 patients (16%) showed mutations by complete BRCA1-BRCA2 sequencing. Conclusions: The spectrum of 44 different mutations in Colombia as detected in our study is broader than the one previously reported for this country. "Profile Colombia" is a useful screening test to establish both founder and new mutations (detection rate of 10.7%) in cases with family history of breast cancer. Complete sequencing shows a detection rate of 16.0%, and should complement the study of the genetic basis of this disease. PMID:29021639
High genetic load in an old isolated butterfly population.
Mattila, Anniina L K; Duplouy, Anne; Kirjokangas, Malla; Lehtonen, Rainer; Rastas, Pasi; Hanski, Ilkka
2012-09-11
We investigated inbreeding depression and genetic load in a small (N(e) ∼ 100) population of the Glanville fritillary butterfly (Melitaea cinxia), which has been completely isolated on a small island [Pikku Tytärsaari (PT)] in the Baltic Sea for at least 75 y. As a reference, we studied conspecific populations from the well-studied metapopulation in the Åland Islands (ÅL), 400 km away. A large population in Saaremaa, Estonia, was used as a reference for estimating genetic diversity and N(e). We investigated 58 traits related to behavior, development, morphology, reproductive performance, and metabolism. The PT population exhibited high genetic load (L = 1 - W(PT)/W(ÅL)) in a range of fitness-related traits including adult weight (L = 0.12), flight metabolic rate (L = 0.53), egg viability (L = 0.37), and lifetime production of eggs in an outdoor population cage (L = 0.70). These results imply extensive fixation of deleterious recessive mutations, supported by greatly reduced diversity in microsatellite markers and immediate recovery (heterosis) of egg viability and flight metabolic rate in crosses with other populations. There was no significant inbreeding depression in most traits due to one generation of full-sib mating. Resting metabolic rate was significantly elevated in PT males, which may be related to their short lifespan (L = 0.25). The demographic history and the effective size of the PT population place it in the part of the parameter space in which models predict mutation accumulation. This population exemplifies the increasingly common situation in fragmented landscapes, in which small and completely isolated populations are vulnerable to extinction due to high genetic load.
Alleles versus genotypes: Genetic interactions and the dynamics of selection in sexual populations
NASA Astrophysics Data System (ADS)
Neher, Richard
2010-03-01
Physical interactions between amino-acids are essential for protein structure and activity, while protein-protein interactions and regulatory interactions are central to cellular function. As a consequence of these interactions, the combined effect of two mutations can differ from the sum of the individual effects of the mutations. This phenomenon of genetic interaction is known as epistasis. However, the importance of epistasis and its effects on evolutionary dynamics are poorly understood, especially in sexual populations where recombination breaks up existing combinations of alleles to produce new ones. Here, we present a computational model of selection dynamics involving many epistatic loci in a recombining population. We demonstrate that a large number of polymorphic interacting loci can, despite frequent recombination, exhibit cooperative behavior that locks alleles into favorable genotypes leading to a population consisting of a set of competing clones. As the recombination rate exceeds a certain critical value this ``genotype selection'' phase disappears in an abrupt transition giving way to ``allele selection'' - the phase where different loci are only weakly correlated as expected in sexually reproducing populations. Clustering of interacting sets of genes on a chromosome leads to the emergence of an intermediate regime, where localized blocks of cooperating alleles lock into genetic modules. Large populations attain highest fitness at a recombination rate just below critical, suggesting that natural selection might tune recombination rates to balance the beneficial aspect of exploration of genotype space with the breaking up of synergistic allele combinations.
Stenhouse, Steven A; Plernsub, Suriya; Yanola, Jintana; Lumjuan, Nongkran; Dantrakool, Anchalee; Choochote, Wej; Somboon, Pradya
2013-08-30
Resistance to pyrethroid insecticides is widespread among populations of Aedes aegypti, the main vector for the dengue virus. Several different point mutations within the voltage-gated sodium channel (VGSC) gene contribute to such resistance. A mutation at position 1016 in domain II, segment 6 of the VGSC gene in Ae. aegypti leads to a valine to glycine substitution (V1016G) that confers resistance to deltamethrin. This study developed and utilized an allele-specific PCR (AS-PCR) assay that could be used to detect the V1016G mutation. The assay was validated against a number of sequenced DNA samples of known genotype and was determined to be in complete agreement. Larvae and pupae were collected from various localities throughout Thailand. Samples were reared to adulthood and their resistance status against deltamethrin was determined by standard WHO susceptibility bioassays. Deltamethrin-resistant and susceptible insects were then genotyped for the V1016G mutation. Additionally, some samples were genotyped for a second mutation at position 1534 in domain III (F1534C) which is also known to confer pyrethroid resistance. The bioassay results revealed an overall mortality of 77.6%. Homozygous 1016G individuals survived at higher rates than either heterozygous or wild-type (1016 V) mosquitoes. The 1016G mutation was significantly and positively associated with deltamethrin resistance and was widely distributed throughout Thailand. Interestingly, wild-type 1016 V mosquitoes tested were homozygous for the 1534C mutation, and all heterozygous mosquitoes were also heterozygous for 1534C. Mutant homozygous (G/G) mosquitoes expressed the wild-type (F/F) at position 1534. However, the presence of the 1534C mutation was not associated with deltamethrin resistance. Our bioassay results indicate that all populations sampled display some degree of resistance to deltamethrin. Homozygous 1016G mosquitoes were far likelier to survive such exposure. However, resistance in some populations cannot be explained due to kdr mutations and indicates that other resistance mechanisms are operating. The presence of this mutation alone does not fully explain the resistance phenotype we see among Thai Ae. aegypti populations.
BRAF V600 mutation detection in melanoma: a comparison of two laboratory testing methods.
O'Brien, Odharnaith; Lyons, Tomas; Murphy, Sandra; Feeley, Linda; Power, Derek; Heffron, Cynthia C B B
2017-11-01
The assessment of B-raf proto-oncogene, serine/threonine kinase ( BRAF ) gene status is now standard practice in patients diagnosed with metastatic melanoma with its presence predicting a clinical response to treatment with BRAF inhibitors. The gold standard in determining BRAF status is currently by DNA-based methods. More recently, a BRAF V600E antibody has been developed. We aim to investigate whether immunohistochemical detection of BRAF mutation is a suitable alternative to molecular testing by polymerase chain reaction (PCR). We assessed the incidence of BRAF mutation in our cohort of 132 patients, as determined by PCR, as well as examining clinical and histopathological features. We investigated the sensitivity and specificity of the anti-BRAF V600E VE1 clone antibody in detecting the presence of the BRAF V600E mutation in 122 cases deemed suitable for testing. The incidence of BRAF mutation in our cohort was 28.8% (38/132). Patients with the BRAF mutation were found to be significantly younger at age of diagnosis. BRAF-mutated melanomas tended to be thinner and more mitotically active. The antibody showed a sensitivity of 86.1% with a specificity of 96.9%. The positive predictive value was 96.9%; the negative predictive value was 94.4%. The concordance rate between PCR and immunohistochemical BRAF status was 95.1% (116/122). The rate of BRAF mutation in our cohort (28.8%) was lower than international published rates of 40%-60%. This may reflect ethnic or geographic differences within population cohorts. The high concordance rate of PCR and immunohistochemical methods in determining BRAF status suggests that immunohistochemistry is potentially a viable, cost-effective alternative to PCR testing and suitable as a screening test for the BRAF mutation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ober, C.; Lester, L.A.; Mott, C.
1992-12-01
The identification of a common mutation, [Delta]F508, in the CFTR gene allowed, for the first time, the detection of cystic fibrosis (CF) carriers in the general population. Further genetic studies revealed >100 additional disease-causing mutations in this gene, few of which occur on >1% of CF chromosomes in any ethnic group. Prior to establishing counseling guidelines and carrier risk assessments, the authors sought to establish the frequencies of the CFTR mutations that are present in CF families living in the Chicago are, a region notable for its ethnic heterogeneity. Their sample included 283 unrelated CF carriers, with the following ethnicmore » composition: 78% non-Ashkenazi Caucasians, 5% Ashkenazi, 9% African-American, 3% Mexican, 0.3% Native American, and 5% mixed ancestry. When a panel of 10 mutations ([Delta]F508, [Delta]I507, G542X, G551D, R553X, S549N, R1162X, W1282X, N1303K, and 1717-1G[r arrow]A) was used, detection rates ranged from 75% in non-Ashkenazi Caucasians to 40% in African-Americans. These data suggest that the goal of screening for 90%-95% of CF mutations may be unrealistic in this and other, similar US populations. 22 refs., 1 tab.« less
Allele Surfing Promotes Microbial Adaptation from Standing Variation
Gralka, Matti; Stiewe, Fabian; Farrell, Fred; Möbius, Wolfram; Waclaw, Bartek; Hallatschek, Oskar
2016-01-01
The coupling of ecology and evolution during range expansions enables mutations to establish at expanding range margins and reach high frequencies. This phenomenon, called allele surfing, is thought to have caused revolutions in the gene pool of many species, most evidently in microbial communities. It has remained unclear, however, under which conditions allele surfing promotes or hinders adaptation. Here, using microbial experiments and simulations, we show that, starting with standing adaptive variation, range expansions generate a larger increase in mean fitness than spatially uniform population expansions. The adaptation gain results from ‘soft’ selective sweeps emerging from surfing beneficial mutations. The rate of these surfing events is shown to sensitively depend on the strength of genetic drift, which varies among strains and environmental conditions. More generally, allele surfing promotes the rate of adaptation per biomass produced, which could help developing biofilms and other resource-limited populations to cope with environmental challenges. PMID:27307400
Strategies for the Evolution of Sex
NASA Astrophysics Data System (ADS)
Erzan, Ayse
2002-03-01
Using a bit-string model of evolution we find a successful route to diploidy and sex in simple organisms, for a step-like fitness function. Assuming that an excess of deleterious mutations triggers the conversion of haploids to diploidy and sex, we find that only one pair of sexual organisms can take over a finite population, if they engage in sexual reproduction under unfavorable conditions, and otherwise perform mitosis. Then, a haploid-diploid (HD) cycle is established, with an abbreviated haploid phase, as in present day sexual reproduction. If crossover is allowed during meiosis, HD cycles of arbitrary duration can be maintained. We find that the sexual population has a higher mortality rate than asexual diploids, but also a relaxation rate that is an order of magnitude higher. As a result, sexuals have a higher adaptability and lower mutational load on the average, since they can select out the undesirable genes much faster.
An initiator codon mutation in SDE2 causes recessive embryonic lethality in Holstein cattle.
Fritz, Sébastien; Hoze, Chris; Rebours, Emmanuelle; Barbat, Anne; Bizard, Méline; Chamberlain, Amanda; Escouflaire, Clémentine; Vander Jagt, Christy; Boussaha, Mekki; Grohs, Cécile; Allais-Bonnet, Aurélie; Philippe, Maëlle; Vallée, Amélie; Amigues, Yves; Hayes, Benjamin J; Boichard, Didier; Capitan, Aurélien
2018-04-18
Researching depletions in homozygous genotypes for specific haplotypes among the large cohorts of animals genotyped for genomic selection is a very efficient strategy to map recessive lethal mutations. In this study, by analyzing real or imputed Illumina BovineSNP50 (Illumina Inc., San Diego, CA) genotypes from more than 250,000 Holstein animals, we identified a new locus called HH6 showing significant negative effects on conception rate and nonreturn rate at 56 d in at-risk versus control mating. We fine-mapped this locus in a 1.1-Mb interval and analyzed genome sequence data from 12 carrier and 284 noncarrier Holstein bulls. We report the identification of a strong candidate mutation in the gene encoding SDE2 telomere maintenance homolog (SDE2), a protein essential for genomic stability in eukaryotes. This A-to-G transition changes the initiator ATG (methionine) codon to ACG because the gene is transcribed on the reverse strand. Using RNA sequencing and quantitative reverse-transcription PCR, we demonstrated that this mutation does not significantly affect SDE2 splicing and expression level in heterozygous carriers compared with control animals. Initiation of translation at the closest in-frame methionine codon would truncate the SDE2 precursor by 83 amino acids, including the cleavage site necessary for its activation. Finally, no homozygote for the G allele was observed in a large population of nearly 29,000 individuals genotyped for the mutation. The low frequency (1.3%) of the derived allele in the French population and the availability of a diagnostic test on the Illumina EuroG10K SNP chip routinely used for genomic evaluation will enable rapid and efficient selection against this deleterious mutation. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Behar, Doron M; Inbar, Ori; Shteinberg, Michal; Gur, Michal; Mussaffi, Huda; Shoseyov, David; Ashkenazi, Moshe; Alkrinawi, Soliman; Bormans, Concetta; Hakim, Fahed; Mei-Zahav, Meir; Cohen-Cymberknoh, Malena; Dagan, Adi; Prais, Dario; Sarouk, Ifat; Stafler, Patrick; Bar Aluma, Bat El; Akler, Gidon; Picard, Elie; Aviram, Micha; Efrati, Ori; Livnat, Galit; Rivlin, Joseph; Bentur, Lea; Blau, Hannah; Kerem, Eitan; Singer, Amihood
2017-05-01
Preconception carrier screening for cystic fibrosis (CF) is usually performed using ethnically targeted panels of selected mutations. This has been recently challenged by the use of expanded, ethnically indifferent, pan-population panels. Israel is characterized by genetically heterogeneous populations carrying a wide range of CFTR mutations. To assess the potential of expanding the current Israeli preconception screening program, we sought the subset of molecularly unresolved CF patients listed in the Israeli CF data registry comprising ~650 patients. An Israeli nationwide genotyping of 152 CF cases, representing 176 patients lacking molecular diagnosis, was conducted. Molecular analysis included Sanger sequencing for all exons and splice sites, multiplex ligation probe amplification (MLPA), and next-generation sequencing of the poly-T/TG tracts. We identified 54 different mutations, of which only 16 overlapped the 22 mutations included in the Israeli preconception screening program. A total of 29/54 (53.7%) mutations were already listed as CF causing by the CFTR2 database, and only 4/54 (7.4%) were novel. Molecular diagnosis was reached in 78/152 (51.3%) cases. Prenatal diagnosis of 24/78 (30.8%) cases could have been achieved by including all CFTR2-causing mutations in the Israeli panel. Our data reveal an overwhelming hidden abundance of CFTR gene mutations suggesting that expanded preconception carrier screening might achieve higher preconception detection rates.
Plonis, J; Kalniete, D; Nakazawa-Miklasevica, M; Irmejs, A; Vjaters, E; Gardovskis, J; Miklasevics, E
2015-12-01
Our objective was to determine: 1) whether the checkpoint kinase 2 ( CHEK2 ) del5395 (g.27417113-27422508 del, NC_000022.11) is a founder mutation in the Latvian population, 2) if there is an association between CHEK2 del5395 mutation and cancer risk, and 3) and whether the CHEK2 del5395 mutation impacts cancer predisposition in Chernobyl disaster liquidators (the civil and military personnel who were called upon to deal with consequences of the 1986 nuclear disaster) as well as geriatric populations. We recruited 438 breast cancer patients, 568 colorectal cancer patients, 399 ovarian cancer patients, 419 prostate cancer patients, 526 healthy blood donors, 480 Chernobyl disaster liquidators and 444 geriatric cancer-free participants. DNA samples were isolated from blood samples and subjected to multiplex polymerase chain reaction (PCR). The truncation of del5395 was estimated by fragment size of the multiplex PCR.All groups were compared to the healthy blood donors using Fisher's exact test. All p values were two-sided and the odds ratios (OR) calculated by two-by-two table. In cancer groups, the del5395 mutation was most frequently observed in the ovarian cancer group (1.00%, OR = 1.32). In control groups, the del5395 mutation was most frequent (0.76%) in the healthy donors, which exceeded its frequency in the Chernobyl liquidators group and the geriatric group by 0.01 and 0.08%, respectively. For all groups, the OR appeared to be >1 only in ovarian cancer patients. However, OR rates showed no statistical significance in either cancer or control groups, with the p value fluctuating within the range of 0.39-1.00. The CHEK2 gene del5395 is a founder mutation in the Latvian population, which, however, does not have a direct impact on genetic predisposition toward colorectal, breast, ovarian and prostate cancer.
The risk of familial Mediterranean fever in MEFV heterozygotes: a statistical approach.
Jéru, Isabelle; Hentgen, Véronique; Cochet, Emmanuelle; Duquesnoy, Philippe; Le Borgne, Gaëlle; Grimprel, Emmanuel; Stojanovic, Katia Stankovic; Karabina, Sonia; Grateau, Gilles; Amselem, Serge
2013-01-01
Familial Mediterranean fever (FMF) is an autosomal recessive autoinflammatory disorder due to MEFV mutations and one of the most frequent Mediterranean genetic diseases. The observation of many heterozygous patients in whom a second mutated allele was excluded led to the proposal that heterozygosity could be causal. However, heterozygosity might be coincidental in many patients due to the very high rate of mutations in Mediterranean populations. To better delineate the pathogenicity of heterozygosity in order to improve genetic counselling and disease management. Complementary statistical approaches were used: estimation of FMF prevalence at population levels, genotype comparison in siblings from 63 familial forms, and genotype study in 557 patients from four Mediterranean populations. At the population level, we did not observe any contribution of heterozygosity to disease prevalence. In affected siblings of patients carrying two MEFV mutations, 92% carry two mutated alleles, whereas 4% are heterozygous with typical FMF diagnosis. We demonstrated statistically that patients are more likely to be heterozygous than healthy individuals, as shown by the higher ratio heterozygous carriers/non carriers in patients (p<10(-7)-p<0.003). The risk for heterozygotes to develop FMF was estimated between 2.1 × 10(-3) and 5.8 × 10(-3) and the relative risk, as compared to non carriers, between 6.3 and 8.1. This is the first statistical demonstration that heterozygosity is not responsible for classical Mendelian FMF per se, but constitutes a susceptibility factor for clinically-similar multifactorial forms of the disease. We also provide a first estimate of the risk for heterozygotes to develop FMF.
Jiang, Yi; Huang, Shasha; Deng, Tao; Wu, Lihua; Chen, Juan; Kang, Dongyang; Xu, Xiufeng; Li, Ruiyu; Han, Dongyi; Dai, Pu
2015-01-01
In China, approximately 30,000 babies are born with hearing impairment each year. However, the molecular factors causing congenital hearing impairment in the Xiamen area of Fujian province have not been evaluated. To provide accurate genetic testing and counseling in the Xiamen area, we investigated the molecular etiology of non-syndromic deafness in a deaf population from Xiamen. Unrelated students with hearing impairment (n = 155) who attended Xiamen Special Education School in Fujian Province were recruited for this study. Three common deafness-related genes, GJB2, SLC26A4, and mtDNA12SrRNA, were analyzed using all-exon sequencing. GJB2 mutations were detected in 27.1% (42/155) of the entire cohort. The non-syndromic hearing loss (NSHL) hotspot mutations c.109G>A (p.V37I) and c.235delC were found in this population, whereas the Caucasian hotspot mutation c.35delG was not. The allelic frequency of the c.109G>A mutation was 9.03% (28/310), slightly higher than that of c.235delC (8.39%, 26/310), which is the most common GJB2 mutation in most areas of China. The allelic frequency of the c.109G>A mutation was significantly higher in this Xiamen's deaf population than that in previously reported cohorts (P = 0.00). The SLC26A4 mutations were found in 16.77% (26/155) of this cohort. The most common pathogenic allele was c.IVS7-2A>G (6.13%, 19/310), and the second most common was the c.1079C>T (p.A360V) mutation (1.94%, 6/310) which has rarely been reported as a hotspot mutation in other studies. The mutation rate of mtDNA12SrRNA in this group was 3.87% (6/155), all being the m.A1555G mutation. These findings show the specificity of the common deaf gene-mutation spectrum in this area. According to this study, there were specific hotspot mutations in Xiamen deaf patients. Comprehensive sequencing analysis of the three common deaf genes can help portray the mutation spectrum and develop optimal testing strategies for deaf patients in this area.
Concurrent Oncogene Mutation Profile in Chinese Patients With Stage Ib Lung Adenocarcinoma
Wen, Ying-Sheng; Cai, Ling; Zhang, Xue-wen; Zhu, Jian-fei; Zhang, Zi-chen; Shao, Jian-yong; Zhang, Lan-Jun
2014-01-01
Abstract Molecular characteristics in lung cancer are associated with carcinogenesis, response to targeted therapies, and prognosis. With concurrent oncogene mutations being reported more often, the adjustment of treatment based on the driver gene mutations would improve therapy. We proposed to investigate the distribution of concurrent oncogene mutations in stage Ib lung adenocarcinoma in a Chinese population and find out the correlation between survival outcome and the most frequently mutated genes in EGFR and KRAS in Chinese population. Simultaneously, we tried to validate the Sequenom method by real time fluoresce qualification reverse transcription polymerase chain reaction (RT-PCR) in oncogene detection. One hundred fifty-six patients who underwent complete surgical resection in our hospital between 1999 and 2007 were retrospectively investigated. Using time-of-flight mass spectrometry, 238 mutation hotspots in 19 oncogenes were examined. Genetic mutations occurred in 86 of 156 patients (55.13%). EGFR was most frequently gene contained driver mutations, with a rate of 44.23%, followed by KRAS (8.33%), PIK3CA (3.84%), KIT (3.20%), BRAF (2.56%), AKT (1.28%), MET (0.64%), NRAS (0.64%), HRAS (0.64%), and ERBB2 (0.64%). No mutations were found in the RET, PDGFRA, FGFR1, FGFR3, FLT3, ABL, CDK, or JAK2 oncogenes. Thirteen patients (8.3%) were detected in multiple gene mutations. Six patients had PIK3CA mutations in addition to mutations in EGFR and KRAS. EGFR mutations can coexist with mutations in NRAS, KIT, ERBB2, and BRAF. Only one case was found to have a KRAS mutation coexisting with the EGFR T790M mutation. Otherwise, mutations in EGFR and KRAS seem to be mutually exclusive. There is no survival benefit in favor of EGFR/KRAS mutation. Several concomitant driver gene mutations were observed in our study. None of EFGR/KRAS mutation was demonstrated as a prognostic factor. Polygenic mutation testing by time-of-flight mass spectrometry was validated by RT-PCR, which can be an alternative option to test for multiple mutations and can be widely applied to clinical practice and help to guide treatment. PMID:25546673
Jänne, P A; Smith, I; McWalter, G; Mann, H; Dougherty, B; Walker, J; Orr, M C M; Hodgson, D R; Shaw, A T; Pereira, J R; Jeannin, G; Vansteenkiste, J; Barrios, C H; Franke, F A; Crinò, L; Smith, P
2015-07-14
Selumetinib (AZD6244, ARRY-142886)+docetaxel increases median overall survival (OS) and significantly improves progression-free survival (PFS) and objective response rate (ORR) compared with docetaxel alone in patients with KRAS mutant, stage IIIB/IV non-small-cell lung cancer (NSCLC; NCT00890825). Retrospective analysis of OS, PFS, ORR and change in tumour size at week 6 for different sub-populations of KRAS codon mutations. In patients receiving selumetinib+docetaxel and harbouring KRAS G12C or G12V mutations there were trends towards greater improvement in OS, PFS and ORR compared with other KRAS mutations. Different KRAS mutations in NSCLC may influence selumetinib/docetaxel sensitivity.
Ho Duy, Binh; Zhytnik, Lidiia; Maasalu, Katre; Kändla, Ivo; Prans, Ele; Reimann, Ene; Märtson, Aare; Kõks, Sulev
2016-08-12
The genetics of osteogenesis imperfecta (OI) have not been studied in a Vietnamese population before. We performed mutational analysis of the COL1A1 and COL1A2 genes in 91 unrelated OI patients of Vietnamese origin. We then systematically characterized the mutation profiles of these two genes which are most commonly related to OI. Genomic DNA was extracted from EDTA-preserved blood according to standard high-salt extraction methods. Sequence analysis and pathogenic variant identification was performed with Mutation Surveyor DNA variant analysis software. Prediction of the pathogenicity of mutations was conducted using Alamut Visual software. The presence of variants was checked against Dalgleish's osteogenesis imperfecta mutation database. The sample consisted of 91 unrelated osteogenesis imperfecta patients. We identified 54 patients with COL1A1/2 pathogenic variants; 33 with COL1A1 and 21 with COL1A2. Two patients had multiple pathogenic variants. Seventeen novel COL1A1 and 10 novel COL1A2 variants were identified. The majority of identified COL1A1/2 pathogenic variants occurred in a glycine substitution (36/56, 64.3 %), usually serine (23/36, 63.9 %). We found two pathogenic variants of the COL1A1 gene c.2461G > A (p.Gly821Ser) in four unrelated patients and one, c.2005G > A (p.Ala669Thr), in two unrelated patients. Our data showed a lower number of collagen OI pathogenic variants in Vietnamese patients compared to reported rates for Asian populations. The OI mutational profile of the Vietnamese population is unique and related to the presence of a high number of recessive mutations in non-collagenous OI genes. Further analysis of OI patients negative for collagen mutations, is required.
Tabbouche, Omar; Saker, Amer; Mountain, Harry
2014-01-01
Maple Syrup Urine Disease (MSUD) is a genetically heterogeneous metabolic disorder that is transmitted in an autosomal recessive manner. According to clinical data, MSUD prevalence in Lebanon is expected to be higher than the International prevalence because of consanguineous marriage. Novel mutations are still getting detected by using DNA sequencing for mutation analysis in MSUD patients. In the current study, we have extracted DNA from Lebanese MSUD patients in order to amplify the exonic and flanking intronic regions of the genes implicated in MSUD ( BCKDHA , BCKDHB , and DBT ) and sequenced the resultant amplified products to assess the molecular genetics of MSUD in the Lebanese population studied. All of the mutations identified occurred in the homozygous state, which reflects the high rate of consanguineous marriage in Lebanon. In the current study, we have identified one previously cited mutation and three novel mutations not previously described in the scientific literature. The identified mutations were distributed as follows: three patients (60%) had two nucleotide substitutions in the DBT gene (c.224G>A and c.1430T>G), one patient (20%) had a gross deletion in the BCKDHA gene (c.488_1167+3del), and one patient (20%) had a small deletion in the BCKDHB gene (c.92_102del). The majority of the mutations identified in the Lebanese MSUD patients occurred in the DBT gene. Consanguineous marriage is a major risk factor for the prevalence of MSUD in Lebanon.
Lada, Artem G.; Stepchenkova, Elena I.; Waisertreiger, Irina S. R.; Noskov, Vladimir N.; Dhar, Alok; Eudy, James D.; Boissy, Robert J.; Hirano, Masayuki; Rogozin, Igor B.; Pavlov, Youri I.
2013-01-01
Genetic information should be accurately transmitted from cell to cell; conversely, the adaptation in evolution and disease is fueled by mutations. In the case of cancer development, multiple genetic changes happen in somatic diploid cells. Most classic studies of the molecular mechanisms of mutagenesis have been performed in haploids. We demonstrate that the parameters of the mutation process are different in diploid cell populations. The genomes of drug-resistant mutants induced in yeast diploids by base analog 6-hydroxylaminopurine (HAP) or AID/APOBEC cytosine deaminase PmCDA1 from lamprey carried a stunning load of thousands of unselected mutations. Haploid mutants contained almost an order of magnitude fewer mutations. To explain this, we propose that the distribution of induced mutation rates in the cell population is uneven. The mutants in diploids with coincidental mutations in the two copies of the reporter gene arise from a fraction of cells that are transiently hypersensitive to the mutagenic action of a given mutagen. The progeny of such cells were never recovered in haploids due to the lethality caused by the inactivation of single-copy essential genes in cells with too many induced mutations. In diploid cells, the progeny of hypersensitive cells survived, but their genomes were saturated by heterozygous mutations. The reason for the hypermutability of cells could be transient faults of the mutation prevention pathways, like sanitization of nucleotide pools for HAP or an elevated expression of the PmCDA1 gene or the temporary inability of the destruction of the deaminase. The hypothesis on spikes of mutability may explain the sudden acquisition of multiple mutational changes during evolution and carcinogenesis. PMID:24039593
Hendry, Jolyon H.
2017-01-01
There is compelling biological data to suggest that cancer arises from a series of mutations in single target cells, resulting in defects in cell renewal and differentiation processes which lead to malignancy. Because much mutagenic damage is expressed following cell division, more-rapidly renewing tissues could be at higher risk because of the larger number of cell replications. Cairns suggested that renewing tissues may reduce cancer risk by partitioning the dividing cell populations into lineages comprising infrequently-dividing long-lived stem cells and frequently-dividing short-lived daughter transit cells. We develop generalizations of three recent cancer-induction models that account for the joint maintenance and renewal of stem and transit cells, also competing processes of partially transformed cell proliferation and differentiation/apoptosis. We are particularly interested in using these models to separately assess the probabilities of mutation and development of cancer associated with “spontaneous” processes and with those linked to a specific environmental mutagen, specifically ionizing radiation or cigarette smoking. All three models demonstrate substantial variation in cancer risks, by at least 20 orders of magnitude, depending on the assumed number of critical mutations required for cancer, and the stem-cell and transition-cell mutation rates. However, in most cases the conditional probabilities of cancer being mutagen-induced range between 7–96%. The relative risks associated with mutagen exposure compared to background rates are also stable, ranging from 1.0–16.0. Very few cancers, generally <0.5%, arise from mutations occurring solely in stem cells rather than in a combination of stem and transit cells. However, for cancers with 2 or 3 critical mutations, a substantial proportion of cancers, in some cases 100%, have at least one mutation derived from a mutated stem cell. Little difference is made to relative risks if competing processes of proliferation and differentiation in the partially transformed stem and transit cell population are allowed for, nor is any difference made if one assumes that transit cells require an extra mutation to confer malignancy from the number required by stem cells. The probability of a cancer being mutagen-induced correlates across cancer sites with the estimated cumulative number of stem cell divisions in the associated tissue (p<0.05), although in some cases there is sensitivity of findings to removal of high-leverage outliers and in some cases only modest variation in probability, but these issues do not affect the validity of the findings. There are no significant correlations (p>0.3) between lifetime cancer-site specific radiation risk and the probability of that cancer being mutagen-induced. These results do not depend on the assumed critical number of mutations leading to cancer, or on the assumed mutagen-associated mutation rate, within the generally-accepted ranges tested. However, there are borderline significant negative correlations (p = 0.08) between the smoking-associated mortality rate difference (current vs former smokers) and the probability of cancer being mutagen-induced. This is only the case where values of the critical number of mutations leading to cancer, k, is 3 or 4 and not for smaller values (1 or 2), but does not strongly depend on the assumed mutagen-associated mutation rate. PMID:28196079
Little, Mark P; Hendry, Jolyon H
2017-02-01
There is compelling biological data to suggest that cancer arises from a series of mutations in single target cells, resulting in defects in cell renewal and differentiation processes which lead to malignancy. Because much mutagenic damage is expressed following cell division, more-rapidly renewing tissues could be at higher risk because of the larger number of cell replications. Cairns suggested that renewing tissues may reduce cancer risk by partitioning the dividing cell populations into lineages comprising infrequently-dividing long-lived stem cells and frequently-dividing short-lived daughter transit cells. We develop generalizations of three recent cancer-induction models that account for the joint maintenance and renewal of stem and transit cells, also competing processes of partially transformed cell proliferation and differentiation/apoptosis. We are particularly interested in using these models to separately assess the probabilities of mutation and development of cancer associated with "spontaneous" processes and with those linked to a specific environmental mutagen, specifically ionizing radiation or cigarette smoking. All three models demonstrate substantial variation in cancer risks, by at least 20 orders of magnitude, depending on the assumed number of critical mutations required for cancer, and the stem-cell and transition-cell mutation rates. However, in most cases the conditional probabilities of cancer being mutagen-induced range between 7-96%. The relative risks associated with mutagen exposure compared to background rates are also stable, ranging from 1.0-16.0. Very few cancers, generally <0.5%, arise from mutations occurring solely in stem cells rather than in a combination of stem and transit cells. However, for cancers with 2 or 3 critical mutations, a substantial proportion of cancers, in some cases 100%, have at least one mutation derived from a mutated stem cell. Little difference is made to relative risks if competing processes of proliferation and differentiation in the partially transformed stem and transit cell population are allowed for, nor is any difference made if one assumes that transit cells require an extra mutation to confer malignancy from the number required by stem cells. The probability of a cancer being mutagen-induced correlates across cancer sites with the estimated cumulative number of stem cell divisions in the associated tissue (p<0.05), although in some cases there is sensitivity of findings to removal of high-leverage outliers and in some cases only modest variation in probability, but these issues do not affect the validity of the findings. There are no significant correlations (p>0.3) between lifetime cancer-site specific radiation risk and the probability of that cancer being mutagen-induced. These results do not depend on the assumed critical number of mutations leading to cancer, or on the assumed mutagen-associated mutation rate, within the generally-accepted ranges tested. However, there are borderline significant negative correlations (p = 0.08) between the smoking-associated mortality rate difference (current vs former smokers) and the probability of cancer being mutagen-induced. This is only the case where values of the critical number of mutations leading to cancer, k, is 3 or 4 and not for smaller values (1 or 2), but does not strongly depend on the assumed mutagen-associated mutation rate.
Exploiting the Adaptation Dynamics to Predict the Distribution of Beneficial Fitness Effects
2016-01-01
Adaptation of asexual populations is driven by beneficial mutations and therefore the dynamics of this process, besides other factors, depends on the distribution of beneficial fitness effects. It is known that on uncorrelated fitness landscapes, this distribution can only be of three types: truncated, exponential and power law. We performed extensive stochastic simulations to study the adaptation dynamics on rugged fitness landscapes, and identified two quantities that can be used to distinguish the underlying distribution of beneficial fitness effects. The first quantity studied here is the fitness difference between successive mutations that spread in the population, which is found to decrease in the case of truncated distributions, remains nearly a constant for exponentially decaying distributions and increases when the fitness distribution decays as a power law. The second quantity of interest, namely, the rate of change of fitness with time also shows quantitatively different behaviour for different beneficial fitness distributions. The patterns displayed by the two aforementioned quantities are found to hold good for both low and high mutation rates. We discuss how these patterns can be exploited to determine the distribution of beneficial fitness effects in microbial experiments. PMID:26990188
FISHER'S GEOMETRIC MODEL WITH A MOVING OPTIMUM
Matuszewski, Sebastian; Hermisson, Joachim; Kopp, Michael
2014-01-01
Fisher's geometric model has been widely used to study the effects of pleiotropy and organismic complexity on phenotypic adaptation. Here, we study a version of Fisher's model in which a population adapts to a gradually moving optimum. Key parameters are the rate of environmental change, the dimensionality of phenotype space, and the patterns of mutational and selectional correlations. We focus on the distribution of adaptive substitutions, that is, the multivariate distribution of the phenotypic effects of fixed beneficial mutations. Our main results are based on an “adaptive-walk approximation,” which is checked against individual-based simulations. We find that (1) the distribution of adaptive substitutions is strongly affected by the ecological dynamics and largely depends on a single composite parameter γ, which scales the rate of environmental change by the “adaptive potential” of the population; (2) the distribution of adaptive substitution reflects the shape of the fitness landscape if the environment changes slowly, whereas it mirrors the distribution of new mutations if the environment changes fast; (3) in contrast to classical models of adaptation assuming a constant optimum, with a moving optimum, more complex organisms evolve via larger adaptive steps. PMID:24898080
Samuels, David C.; Boys, Richard J.; Henderson, Daniel A.; Chinnery, Patrick F.
2003-01-01
We applied a hidden Markov model segmentation method to the human mitochondrial genome to identify patterns in the sequence, to compare these patterns to the gene structure of mtDNA and to see whether these patterns reveal additional characteristics important for our understanding of genome evolution, structure and function. Our analysis identified three segmentation categories based upon the sequence transition probabilities. Category 2 segments corresponded to the tRNA and rRNA genes, with a greater strand-symmetry in these segments. Category 1 and 3 segments covered the protein- coding genes and almost all of the non-coding D-loop. Compared to category 1, the mtDNA segments assigned to category 3 had much lower guanine abundance. A comparison to two independent databases of mitochondrial mutations and polymorphisms showed that the high substitution rate of guanine in human mtDNA is largest in the category 3 segments. Analysis of synonymous mutations showed the same pattern. This suggests that this heterogeneity in the mutation rate is partly independent of respiratory chain function and is a direct property of the genome sequence itself. This has important implications for our understanding of mtDNA evolution and its use as a ‘molecular clock’ to determine the rate of population and species divergence. PMID:14530452
Rozhok, Andrii I; Salstrom, Jennifer L; DeGregori, James
2014-12-01
Age-dependent tissue decline and increased cancer incidence are widely accepted to be rate-limited by the accumulation of somatic mutations over time. Current models of carcinogenesis are dominated by the assumption that oncogenic mutations have defined advantageous fitness effects on recipient stem and progenitor cells, promoting and rate-limiting somatic evolution. However, this assumption is markedly discrepant with evolutionary theory, whereby fitness is a dynamic property of a phenotype imposed upon and widely modulated by environment. We computationally modeled dynamic microenvironment-dependent fitness alterations in hematopoietic stem cells (HSC) within the Sprengel-Liebig system known to govern evolution at the population level. Our model for the first time integrates real data on age-dependent dynamics of HSC division rates, pool size, and accumulation of genetic changes and demonstrates that somatic evolution is not rate-limited by the occurrence of mutations, but instead results from aged microenvironment-driven alterations in the selective/fitness value of previously accumulated genetic changes. Our results are also consistent with evolutionary models of aging and thus oppose both somatic mutation-centric paradigms of carcinogenesis and tissue functional decline. In total, we demonstrate that aging directly promotes HSC fitness decline and somatic evolution via non-cell-autonomous mechanisms.
Molecular diagnosis of α-thalassemia in a multiethnic population.
Gilad, Oded; Shemer, Orna Steinberg; Dgany, Orly; Krasnov, Tanya; Nevo, Michal; Noy-Lotan, Sharon; Rabinowicz, Ron; Amitai, Nofar; Ben-Dor, Shifra; Yaniv, Isaac; Yacobovich, Joanne; Tamary, Hannah
2017-06-01
α-Thalassemia, one of the most common genetic diseases, is caused by deletions or point mutations affecting one to four α-globin genes. Molecular diagnosis is important to prevent the most severe forms of the disease. However, the diagnosis of α-thalassemia is complex due to a high variability of the genetic defects involved, with over 250 described mutations. We summarize herein the findings of genetic analyses of DNA samples referred to our laboratory for the molecular diagnosis of α-thalassemia, along with a detailed clinical description. We utilized a diagnostic algorithm including Gap-PCR, to detect known deletions, followed by sequencing of the α-globin gene, to identify known and novel point mutations, and multiplex ligation-dependent probe amplification (MLPA) for the diagnosis of rare or novel deletions. α-Thalassemia was diagnosed in 662 of 975 samples referred to our laboratory. Most commonly found were deletions (75.3%, including two novel deletions previously described by us); point mutations comprised 25.4% of the cases, including five novel mutations. Our population included mostly Jews (of Ashkenazi and Sephardic origin) and Muslim Arabs, who presented with a higher rate of point mutations and hemoglobin H disease. Overall, we detected 53 different genotype combinations causing a spectrum of clinical phenotypes, from asymptomatic to severe anemia. Our work constitutes the largest group of patients with α-thalassemia originating in the Mediterranean whose clinical characteristics and molecular basis have been determined. We suggest a diagnostic algorithm that leads to an accurate molecular diagnosis in multiethnic populations. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Selection Dynamics in Joint Matching to Rate and Magnitude of Reinforcement
ERIC Educational Resources Information Center
McDowell, J. J.; Popa, Andrei; Calvin, Nicholas T.
2012-01-01
Virtual organisms animated by a selectionist theory of behavior dynamics worked on concurrent random interval schedules where both the rate and magnitude of reinforcement were varied. The selectionist theory consists of a set of simple rules of selection, recombination, and mutation that act on a population of potential behaviors by means of a…
Nossek, Christel A.; Greenberg, L. Jacquie; Ramesar, Rajkumar S.
2012-01-01
Purpose Based on the previous indications of founder ATP-binding cassette sub-family A member 4 gene (ABCA4) mutations in a South African subpopulation, the purpose was to devise a mechanism for identifying common disease-causing mutations in subjects with ABCA4-associated retinopathies (AARs). Facilitating patient access to this data and determining the frequencies of the mutations in the South African population would enhance the current molecular diagnostic service offered. Methods The majority of subjects in this study were of Caucasian ancestry and affected with Stargardt macular dystrophy. The initial cohort consisted of DNA samples from 181 patients, and was screened using the ABCR400 chip. An assay was then designed to screen a secondary cohort of 72 patients for seven of the most commonly occurring ABCA4 mutations in this population. A total of 269 control individuals were also screened for the seven ABCA4 mutations. Results Microarray screening results from a cohort of 181 patients affected with AARs revealed that seven ABCA4 mutations (p.Arg152*, c.768G>T, p.Arg602Trp, p.Gly863Ala, p.Cys1490Tyr, c.5461–10T>C, and p.Leu2027Phe) occurred at a relatively high frequency. The newly designed genetic assay identified two of the seven disease-associated mutations in 28/72 patients in a secondary patient cohort. In the control cohort, 12/269 individuals were found to be heterozygotes, resulting in an estimated background frequency of these mutations in this particular population of 4.46 per 100 individuals. Conclusions The relatively high detection rate of seven ABCA4 mutations in the primary patient cohort led to the design and subsequent utility of a multiplex assay. This assay can be used as a viable screening tool and to reduce costs and laboratory time. The estimated background frequency of the seven ABCA4 mutations, together with the improved diagnostic service, could be used by counselors to facilitate clinical and genetic management of South African families with AARs. PMID:22328824
Arai, Yuuki; Maeda, Akiko; Hirami, Yasuhiko; Ishigami, Chie; Kosugi, Shinji; Mandai, Michiko; Kurimoto, Yasuo; Takahashi, Masayo
2015-01-01
The aim of this study was to gain information about disease prevalence and to identify the responsible genes for inherited retinal dystrophies (IRD) in Japanese populations. Clinical and molecular evaluations were performed on 349 patients with IRD. For segregation analyses, 63 of their family members were employed. Bioinformatics data from 1,208 Japanese individuals were used as controls. Molecular diagnosis was obtained by direct sequencing in a stepwise fashion utilizing one or two panels of 15 and 27 genes for retinitis pigmentosa patients. If a specific clinical diagnosis was suspected, direct sequencing of disease-specific genes, that is, ABCA4 for Stargardt disease, was conducted. Limited availability of intrafamily information and decreasing family size hampered identifying inherited patterns. Differential disease profiles with lower prevalence of Stargardt disease from European and North American populations were obtained. We found 205 sequence variants in 159 of 349 probands with an identification rate of 45.6%. This study found 43 novel sequence variants. In silico analysis suggests that 20 of 25 novel missense variants are pathogenic. EYS mutations had the highest prevalence at 23.5%. c.4957_4958insA and c.8868C>A were the two major EYS mutations identified in this cohort. EYS mutations are the most prevalent among Japanese patients with IRD.
Learning about evolution from sequence data
NASA Astrophysics Data System (ADS)
Dayarian, Adel; Shraiman, Boris
2012-02-01
Recent advances in sequencing and in laboratory evolution experiments have made possible to obtain quantitative data on genetic diversity of populations and on the dynamics of evolution. This dynamics is shaped by the interplay between selection acting on beneficial and deleterious mutations and recombination which reshuffles genotypes. Mounting evidence suggests that natural populations harbor extensive fitness diversity, yet most of the currently available tools for analyzing polymorphism data are based on the neutral theory. Our aim is to develop methods to analyze genomic data for populations in the presence of the above-mentioned factors. We consider different evolutionary regimes - Muller's ratchet, mutation-recombination-selection balance and positive adaption rate - and revisit a number of observables considered in the nearly-neutral theory of evolution. In particular, we examine the coalescent structure in the presence of recombination and calculate quantities such as the distribution of the coalescent times along the genome, the distribution of haplotype block sizes and the correlation between ancestors of different loci along the genome. In addition, we characterize the probability and time of fixation of mutations as a function of their fitness effect.
Excess of genomic defects in a woolly mammoth on Wrangel island
Slatkin, Montgomery
2017-01-01
Woolly mammoths (Mammuthus primigenius) populated Siberia, Beringia, and North America during the Pleistocene and early Holocene. Recent breakthroughs in ancient DNA sequencing have allowed for complete genome sequencing for two specimens of woolly mammoths (Palkopoulou et al. 2015). One mammoth specimen is from a mainland population 45,000 years ago when mammoths were plentiful. The second, a 4300 yr old specimen, is derived from an isolated population on Wrangel island where mammoths subsisted with small effective population size more than 43-fold lower than previous populations. These extreme differences in effective population size offer a rare opportunity to test nearly neutral models of genome architecture evolution within a single species. Using these previously published mammoth sequences, we identify deletions, retrogenes, and non-functionalizing point mutations. In the Wrangel island mammoth, we identify a greater number of deletions, a larger proportion of deletions affecting gene sequences, a greater number of candidate retrogenes, and an increased number of premature stop codons. This accumulation of detrimental mutations is consistent with genomic meltdown in response to low effective population sizes in the dwindling mammoth population on Wrangel island. In addition, we observe high rates of loss of olfactory receptors and urinary proteins, either because these loci are non-essential or because they were favored by divergent selective pressures in island environments. Finally, at the locus of FOXQ1 we observe two independent loss-of-function mutations, which would confer a satin coat phenotype in this island woolly mammoth. PMID:28253255
Does smoking alter the mutation profile of human papillomavirus-driven head and neck cancers?
Mirghani, Haitham; Lacroix, Ludovic; Rossoni, Caroline; Sun, Roger; Aupérin, Anne; Casiraghi, Odile; Villepelet, Aude; Lacave, Roger; Faucher, Gladwys; Marty, Virginie; Ferté, Charles; Soria, Jean Charles; Even, Caroline
2018-05-01
Human papillomavirus (HPV)-driven oropharyngeal cancer (OPC) patients are characterised by a better prognosis than their HPV-negative counterparts. However, this significant survival advantage is not homogeneous and among HPV-positive patients those with a smoking history have a significantly increased risk of oncologic failure. The reason why tobacco consumption impacts negatively the prognosis is still elusive. Tobacco might induce additional genetic alterations leading to a more aggressive phenotype. The purpose of this study was to characterise the mutational profile of HPV-positive OPCs by smoking status. We hypothesise a higher frequency of mutations affecting smokers. Targeted next-generation sequencing of 39 genes that are recurrently mutated in head and neck cancers (HNCs) caused by tobacco/alcohol consumption was performed in 62 HPV-driven OPC cases including smokers and non-smokers. The study population included 37 (60%) non-smokers and 25 (40%) smokers. Twenty (32%) patients had no mutation, 14 (23%) had 1 mutation and 28 (45%) had 2 or more mutations. The most commonly mutated genes regardless of tobacco consumption were PIK3CA (19%), MLL2 (19%), TP53 (8%), FAT 1 (15%), FBXW7 (16%), NOTCH1 (10%) and FGFR3 (10%). Mutation rate was not significantly different in smokers compared with non-smokers even when analyses focused on heavy smokers (>20 pack-years vs. <20 pack-years). Similarly, there was no significant difference in mutations patterns according to tobacco consumption. In HPV-positive patients, smoking does not increase the mutation rate of genes that are recurrently mutated in traditional HNC. Additional studies are warranted to further describe the molecular landscape of HPV-driven OPC according to tobacco consumption. Copyright © 2018 Elsevier Ltd. All rights reserved.
Artieri, Carlo G; Haerty, Wilfried; Gupta, Bhagwati P; Singh, Rama S
2008-05-01
Several hypotheses have been proposed to explain the persistence of dioecy despite the reproductive advantages conferred to hermaphrodites, including greater efficiency at purging deleterious mutations in the former. Dioecy can benefit from both mutation purging and accelerated evolution by bringing together beneficial mutations in the same individual via recombination and shuffling of genotypes. In addition, mathematical treatment has shown that sexual selection is also capable of mitigating the cost of maintaining separate sexes by increasing the overall fitness of sexual populations, and genomic comparisons have shown that sexual selection can lead to accelerated evolution. Here, we examine the advantages of dioecy versus hermaphroditism by comparing the rate of evolution in sex-related genes and the rate of accumulation of deleterious mutations using a large number of orthologs (11,493) in the dioecious Caenorhabditis remanei and the hermaphroditic Caenorhabditis briggsae. We have used this data set to estimate the deleterious mutation rate per generation, U, in both species and find that although it is significantly higher in hermaphrodites, both species are at least 2 orders of magnitude lower than the value required to explain the persistence of sex by efficiency at purging deleterious mutations alone. We also find that genes expressed in sperm are evolving rapidly in both species; however, they show a greater increase in their rate of evolution relative to genes expressed in other tissues in C. remanei, suggesting stronger sexual selection pressure acting on these genes in dioecious species. Interestingly, the persistence of a signal of rapid evolution of sperm genes in C. briggsae suggests a recent evolutionary origin of hermaphrodism in this lineage. Our results provide empirical evidence of increased sexual selection pressure in dioecious animals, supporting the possibility that sexual selection may play an important role in the maintenance of sexual reproduction.
Sharon, Dror; Banin, Eyal
2015-01-01
Nonsyndromic retinitis pigmentosa (RP) is the most common inherited retinal degeneration, and prevalence of the disease has been reported in populations of American and European origin with a relatively low consanguinity rate. Our aim was to determine the prevalence of nonsyndromic RP in the Jerusalem region, which has a population of about 1 million individuals with a high rate of consanguinity. The patients' clinical data included eye exam findings (visual acuity, anterior segment, and funduscopy) as well as electroretinographic (ERG) testing results under scotopic and photopic conditions. Mutation analysis on a subgroup of patients was performed mainly with candidate gene analysis and homozygosity mapping. We evaluated the medical records of patients with degenerative retinal diseases residing in the Jerusalem region who were examined over the past 20 years in a large tertiary medical center. A total of 453 individuals affected with nonsyndromic RP were diagnosed at our center, according to funduscopic findings and ERG testing. Based on the estimated population size of 945,000 individuals who reside in the vicinity of Jerusalem, the prevalence of nonsyndromic RP in this region is 1:2,086. The prevalence of RP was higher among Arab Muslims (1:1,798) compared to Jews (1:2,230), mainly due to consanguineous marriages that are more common in the Arab Muslim population. To identify the genetic causes of RP in our cohort, we recruited 383 patients from 183 different families for genetic analysis: 70 with autosomal recessive (AR) inheritance, 15 with autosomal dominant, 86 isolate cases, and 12 with an X-linked inheritance pattern. In 64 (35%) of the families, we identified the genetic cause of the disease, and we revised the inheritance pattern of 20 isolate cases to the AR pattern; 49% of the families in our cohort had AR inheritance. Interestingly, in 42 (66%) of the genetically identified families, the cause of disease was a founder mutation. Previous studies showed an approximate prevalence of 1:5,260 on average for nonsyndromic RP in American and European populations. We show that the prevalence in the vicinity of Jerusalem is two-and-a-half times higher due to a high rate of consanguinity and highly prevalent founder mutations within the historically semi-isolated subpopulations we serve.
Banin, Eyal
2015-01-01
Purpose Nonsyndromic retinitis pigmentosa (RP) is the most common inherited retinal degeneration, and prevalence of the disease has been reported in populations of American and European origin with a relatively low consanguinity rate. Our aim was to determine the prevalence of nonsyndromic RP in the Jerusalem region, which has a population of about 1 million individuals with a high rate of consanguinity. Methods The patients’ clinical data included eye exam findings (visual acuity, anterior segment, and funduscopy) as well as electroretinographic (ERG) testing results under scotopic and photopic conditions. Mutation analysis on a subgroup of patients was performed mainly with candidate gene analysis and homozygosity mapping. Results We evaluated the medical records of patients with degenerative retinal diseases residing in the Jerusalem region who were examined over the past 20 years in a large tertiary medical center. A total of 453 individuals affected with nonsyndromic RP were diagnosed at our center, according to funduscopic findings and ERG testing. Based on the estimated population size of 945,000 individuals who reside in the vicinity of Jerusalem, the prevalence of nonsyndromic RP in this region is 1:2,086. The prevalence of RP was higher among Arab Muslims (1:1,798) compared to Jews (1:2,230), mainly due to consanguineous marriages that are more common in the Arab Muslim population. To identify the genetic causes of RP in our cohort, we recruited 383 patients from 183 different families for genetic analysis: 70 with autosomal recessive (AR) inheritance, 15 with autosomal dominant, 86 isolate cases, and 12 with an X-linked inheritance pattern. In 64 (35%) of the families, we identified the genetic cause of the disease, and we revised the inheritance pattern of 20 isolate cases to the AR pattern; 49% of the families in our cohort had AR inheritance. Interestingly, in 42 (66%) of the genetically identified families, the cause of disease was a founder mutation. Conclusions Previous studies showed an approximate prevalence of 1:5,260 on average for nonsyndromic RP in American and European populations. We show that the prevalence in the vicinity of Jerusalem is two-and-a-half times higher due to a high rate of consanguinity and highly prevalent founder mutations within the historically semi-isolated subpopulations we serve. PMID:26261414
Genetic and ecological studies of animals in Chernobyl and Fukushima.
Mousseau, Timothy A; Møller, Anders P
2014-01-01
Recent advances in genetic and ecological studies of wild animal populations in Chernobyl and Fukushima have demonstrated significant genetic, physiological, developmental, and fitness effects stemming from exposure to radioactive contaminants. The few genetic studies that have been conducted in Chernobyl generally show elevated rates of genetic damage and mutation rates. All major taxonomic groups investigated (i.e., birds, bees, butterflies, grasshoppers, dragonflies, spiders, mammals) displayed reduced population sizes in highly radioactive parts of the Chernobyl Exclusion Zone. In Fukushima, population censuses of birds, butterflies, and cicadas suggested that abundances were negatively impacted by exposure to radioactive contaminants, while other groups (e.g., dragonflies, grasshoppers, bees, spiders) showed no significant declines, at least during the first summer following the disaster. Insufficient information exists for groups other than insects and birds to assess effects on life history at this time. The differences observed between Fukushima and Chernobyl may reflect the different times of exposure and the significance of multigenerational mutation accumulation in Chernobyl compared to Fukushima. There was considerable variation among taxa in their apparent sensitivity to radiation and this reflects in part life history, physiology, behavior, and evolutionary history. Interestingly, for birds, population declines in Chernobyl can be predicted by historical mitochondrial DNA base-pair substitution rates that may reflect intrinsic DNA repair ability. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Vendramini, Marcio F; Kasamatsu, Teresa S; Crispim, Felipe; Ferreira, Sandra R; Matioli, Sergio R; Moisés, Regina S
2009-07-01
Adiponectin is an important mediator of insulin sensitivity, encoded by the ADIPOQ gene. Here we describe two Japanese-Brazilian families with hypoadiponectinaemia due to a novel mutation in ADIPOQ. In this study, we examined the entire translated regions of adiponectin in Japanese-Brazilians, a population with one of the highest prevalence rates of diabetes worldwide. We screened 200 patients with type 2 diabetes (DM) and 240 age-matched subjects with normal glucose tolerance. A novel heterozygous T deletion at position 186 in exon 2 of ADIPOQ, causing a frameshift at codon 62 and leading to a premature termination at codon 168 (p.Gly63ValfsX106), was found in two individuals with diabetes. This mutation was not found in 240 nondiabetic control subjects. In addition, we screened the mutation in an expanded set of 100 nondiabetic subjects from the general Brazilian population, but we found no mutations. In addition, six family members of the probands were identified as mutation-carriers. Individuals who were mutation-carriers had markedly low plasma adiponectin concentrations compared with those without the mutation [DM: 0.65 (0.59-1.34) microg/ml vs. 5.30 (3.10-8.55) microg/ml, P < 0.0001; normal glucose tolerance: 0.95 (0.76-1.48) microg/ml vs. 8.50 (5.52-14.55) microg/ml, P = 0.003]. All individuals carrying the p.Gly63ValfsX106 mutation and older than 30 years were found to be diabetic. We describe for the first time a frameshift mutation in exon 2 of the ADIPOQ gene, which modulates adiponectin levels and may contribute to the genetic risk of late-onset diabetes in Japanese-Brazilians.
Ivady, Gergely; Madar, Laszlo; Nagy, Bela; Gonczi, Ferenc; Ajzner, Eva; Dzsudzsak, Erika; Dvořáková, Lenka; Gombos, Eva; Kappelmayer, Janos; Macek, Milan; Balogh, Istvan
2011-05-01
The aim of this study was characterization of an updated distribution of CFTR mutations in a representative cohort of 40 CF patients with the classical form of the disease drawn from Eastern Hungary. Due to the homogeneity of the Hungarian population our data are generally applicable to other regions of the country, including the sizeable diaspora. We utilized the recommended "cascade" CFTR mutation screening approach, initially using a commercial assay, followed by examination of the common "Slavic" deletion CFTRdele2,3(21kb). Subsequently, the entire CFTR coding region of the CFTR gene was sequenced in patients with yet unidentified mutations. The Elucigene CF29(Tm) v2 assay detected 81.25% of all CF causing mutations. An addition of the CFTRdele2,3(21kb) increased the mutation detection rate to 86.25%. DNA sequencing enabled us to identify mutations on 79/80 CF alleles. Mutations [CFTRdele2,3(21kb), p.Gln685ThrfsX4 (2184insA) were found at an unusually high frequency, each comprising 5.00% of all CF alleles. We have identified common CF causing mutations in the Hungarian population with the most common mutations (p.Phe508del, p.Asn1303Lys, CFTRdele2,3(21kb), 2184insA, p.Gly542X, and p.Leu101X), comprising over 93.75% of all CF alleles. Obtained data are applicable to the improvement of DNA diagnostics in Hungary and beyond, and are the necessary prerequisite for the introduction of a nationwide "two tier" CF newborn screening program. Copyright © 2011 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Osada, Naoki; Akashi, Hiroshi
2012-01-01
Accelerated rates of mitochondrial protein evolution have been proposed to reflect Darwinian coadaptation for efficient energy production for mammalian flight and brain activity. However, several features of mammalian mtDNA (absence of recombination, small effective population size, and high mutation rate) promote genome degradation through the accumulation of weakly deleterious mutations. Here, we present evidence for "compensatory" adaptive substitutions in nuclear DNA- (nDNA) encoded mitochondrial proteins to prevent fitness decline in primate mitochondrial protein complexes. We show that high mutation rate and small effective population size, key features of primate mitochondrial genomes, can accelerate compensatory adaptive evolution in nDNA-encoded genes. We combine phylogenetic information and the 3D structure of the cytochrome c oxidase (COX) complex to test for accelerated compensatory changes among interacting sites. Physical interactions among mtDNA- and nDNA-encoded components are critical in COX evolution; amino acids in close physical proximity in the 3D structure show a strong tendency for correlated evolution among lineages. Only nuclear-encoded components of COX show evidence for positive selection and adaptive nDNA-encoded changes tend to follow mtDNA-encoded amino acid changes at nearby sites in the 3D structure. This bias in the temporal order of substitutions supports compensatory weak selection as a major factor in accelerated primate COX evolution.
Whitehead, A.; Anderson, S.L.; Kuivila, K.M.; Roach, J.L.; May, B.
2003-01-01
Exposure to contaminants can affect survivorship, recruitment, reproductive success, mutation rates and migration, and may play a significant role in the partitioning of genetic variation among exposed and nonexposed populations. However, the application of molecular population genetic data to evaluate such influences has been uncommon and often flawed. We tested whether patterns of genetic variation among native fish populations (Sacramento sucker, Catostomus occidentalis) in the Central Valley of California were consistent with long-term pesticide exposure history, or primarily with expectations based on biogeography. Field sampling was designed to rigorously test for both geographical and contamination influences. Fine-scale structure of these interconnected populations was detected with both amplified fragment length polymorphisms (AFLP) and microsatellite markers, and patterns of variation elucidated by the two marker systems were highly concordant. Analyses indicated that biogeographical hypotheses described the data set better than hypotheses relating to common historical pesticide exposure. Downstream populations had higher genetic diversity than upstream populations, regardless of exposure history, and genetic distances showed that populations from the same river system tended to cluster together. Relatedness among populations reflected primarily directions of gene flow, rather than convergence among contaminant-exposed populations. Watershed geography accounted for significant partitioning of genetic variation among populations, whereas contaminant exposure history did not. Genetic patterns indicating contaminant-induced selection, increased mutation rates or recent bottlenecks were weak or absent. We stress the importance of testing contaminant-induced genetic change hypotheses within a biogeographical context. Strategic application of molecular markers for analysis of fine-scale structure, and for evaluating contaminant impacts on gene pools, is discussed.
Assessment of a subset of Slowly Mutating Y-STRs for forensic and evolutionary studies.
Baeta, Miriam; Núñez, Carolina; Villaescusa, Patricia; Ortueta, Urko; Ibarbia, Nerea; Herrera, Rene J; Blazquez-Caeiro, José Luis; Builes, Juan José; Jiménez-Moreno, Susana; Martínez-Jarreta, Begoña; de Pancorbo, Marian M
2018-05-01
Y-specific short tandem repeat (Y-STR) loci display different mutation rates and consequently are suitable for forensic, genealogical, and evolutionary studies that require different levels of timelines and resolution. Recent efforts have focused on implementing Rapidly Mutating (RM) Y-STRs to assess male specific profiles. However, due to their high mutation rate their use in kinship testing or in phylogenetic studies may be less reliable. In the present study, a novel Slowly Mutating Y-STR (SM) panel, including DYS388, DYS426, DYS461 (Y-GATA-A7.2), DYS485, DYS525, and DYS561, has been developed and evaluated in a sample set of 628 unrelated males from different worldwide populations. This panel is reproducible, sensitive, and robust for forensic applications and may be useful in conjunction with the common multiplexes, particularly in exclusion of kinship cases where minimal discrimination is reported employing the rapidly mutating Y-STR systems. Furthermore, SM Y-STR data may be of value in evolutionary studies to optimize the resolution of phylogenetic relationships generated with current Y-STR panel sets. In this study, we provide an extensive Y-STR allele and haplotype reference dataset for future applications. Copyright © 2018 Elsevier B.V. All rights reserved.
A New Targeted CFTR Mutation Panel Based on Next-Generation Sequencing Technology.
Lucarelli, Marco; Porcaro, Luigi; Biffignandi, Alice; Costantino, Lucy; Giannone, Valentina; Alberti, Luisella; Bruno, Sabina Maria; Corbetta, Carlo; Torresani, Erminio; Colombo, Carla; Seia, Manuela
2017-09-01
Searching for mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) is a key step in the diagnosis of and neonatal and carrier screening for cystic fibrosis (CF), and it has implications for prognosis and personalized therapy. The large number of mutations and genetic and phenotypic variability make this search a complex task. Herein, we developed, validated, and tested a laboratory assay for an extended search for mutations in CFTR using a next-generation sequencing-based method, with a panel of 188 CFTR mutations customized for the Italian population. Overall, 1426 dried blood spots from neonatal screening, 402 genomic DNA samples from various origins, and 1138 genomic DNA samples from patients with CF were analyzed. The assay showed excellent analytical and diagnostic operative characteristics. We identified and experimentally validated 159 (of 188) CFTR mutations. The assay achieved detection rates of 95.0% and 95.6% in two large-scale case series of CF patients from central and northern Italy, respectively. These detection rates are among the highest reported so far with a genetic test for CF based on a mutation panel. This assay appears to be well suited for diagnostics, neonatal and carrier screening, and assisted reproduction, and it represents a considerable advantage in CF genetic counseling. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Brandvain, Yaniv; Wade, Michael J
2009-08-01
The transfer of mitochondrial genes to the nucleus is a recurrent and consistent feature of eukaryotic genome evolution. Although many theories have been proposed to explain such transfers, little relevant data exist. The observation that clonal and self-fertilizing plants transfer more mitochondrial genes to their nuclei than do outcrossing plants contradicts predictions of major theories based on nuclear recombination and leaves a gap in our conceptual understanding how the observed pattern of gene transfer could arise. Here, with a series of deterministic and stochastic simulations, we show how epistatic selection and relative mutation rates of mitochondrial and nuclear genes influence mitochondrial-to-nuclear gene transfer. Specifically, we show that when there is a benefit to having a mitochondrial gene present in the nucleus, but absent in the mitochondria, self-fertilization dramatically increases both the rate and the probability of gene transfer. However, absent such a benefit, when mitochondrial mutation rates exceed those of the nucleus, self-fertilization decreases the rate and probability of transfer. This latter effect, however, is much weaker than the former. Our results are relevant to understanding the probabilities of fixation when loci in different genomes interact.
Nguyen, Phuong H; Sterpone, Fabio; Campanera, Josep M; Nasica-Labouze, Jessica; Derreumaux, Philippe
2016-06-15
The A2V mutation was reported to protect from Alzheimer's disease in its heterozygous form and cause an early Alzheimer's disease type dementia in its homozygous form. Experiments showed that the aggregation rate follows the order A2V > WT (wild-type) > A2V-WT. To understand the impact of this mutation, we carried out replica exchange molecular dynamics simulations of Aβ1-40 WT-A2V and A2V-A2V dimers and compared to the WT dimer. Our atomistic simulations reveal that the mean secondary structure remains constant, but there are substantial differences in the intramolecular and intermolecular conformations upon single and double A2V mutation. Upon single mutation, the intrinsic disorder is reduced, the intermolecular potential energies are reduced, the population of intramolecular three-stranded β-sheets is increased, and the number of all α dimer topologies is decreased. Taken together, these results offer an explanation for the reduced aggregation rate of the Aβ1-40 A2V-WT peptides and the protective effect of A2V in heterozygotes.
Shah, Nidhi D; Shah, Parth S; Panchal, Yash Y; Katudia, Kalpesh H; Khatri, Nikunj B; Ray, Hari Shankar P; Bhatiya, Upti R; Shah, Sandip C; Shah, Bhavini S; Rao, Mandava V
2018-01-01
Germline mutations BRCA1 and BRCA2 contribute almost equally in the causation of breast cancer (BC). The type of mutations in the Indian population that cause this condition is largely unknown. In this cohort, 79 randomized BC patients were screened for various types of BRCA1 and BRCA2 mutations including frameshift, nonsense, missense, in-frame and splice site types. The purified extracted DNA of each referral patient was subjected to Sanger gene sequencing using Codon Code Analyzer and Mutation Surveyor and next-generation sequencing (NGS) methods with Ion torrent software, after appropriate care. The data revealed that 35 cases were positive for BRCA1 or BRCA2 (35/79: 44.3%). BRCA2 mutations were higher (52.4%) than BRCA1 mutations (47.6%). Five novel mutations detected in this study were p.pro163 frameshift, p.asn997 frameshift, p.ser148 frameshift and two splice site single-nucleotide polymorphisms (SNPs). Additionally, four nonsense and one in-frame deletion were identified, which all seemed to be pathogenic. Polymorphic SNPs contributed the highest percentage of mutations (72/82: 87.8%) and contributed to pathogenic, likely pathogenic, likely benign, benign and variant of unknown significance (VUS). Young age groups (20-60 years) had a high frequency of germline mutations (62/82;75.6%) in the Indian population. This study suggested that polymorphic SNPs contributed a high percentage of mutations along with five novel types. Younger age groups are prone to having BC with a higher mutational rate. Furthermore, the SNPs detected in exons 10, 11 and 16 of BRCA1 and BRCA2 were higher than those in other exons 2, 3 and 9 polymorphic sites in two germline genes. These may be contributory for BC although missense types are known to be susceptible for cancer depending on the type of amino acid replaced in the protein and associated with pathologic events. Accordingly, appropriate counseling and treatment may be suggested.
Jänne, P A; Smith, I; McWalter, G; Mann, H; Dougherty, B; Walker, J; Orr, M C M; Hodgson, D R; Shaw, A T; Pereira, J R; Jeannin, G; Vansteenkiste, J; Barrios, C H; Franke, F A; Crinò, L; Smith, P
2015-01-01
Background: Selumetinib (AZD6244, ARRY-142886)+docetaxel increases median overall survival (OS) and significantly improves progression-free survival (PFS) and objective response rate (ORR) compared with docetaxel alone in patients with KRAS mutant, stage IIIB/IV non-small-cell lung cancer (NSCLC; NCT00890825). Methods: Retrospective analysis of OS, PFS, ORR and change in tumour size at week 6 for different sub-populations of KRAS codon mutations. Results: In patients receiving selumetinib+docetaxel and harbouring KRAS G12C or G12V mutations there were trends towards greater improvement in OS, PFS and ORR compared with other KRAS mutations. Conclusion: Different KRAS mutations in NSCLC may influence selumetinib/docetaxel sensitivity. PMID:26125448
Samara, M; Kapatou, K; Ioannou, M; Kostopoulou, Ε; Papamichali, R; Papandreou, C; Athanasiadis, A; Koukoulis, G
2015-12-14
KRAS and BRAF mutations are well-recognized molecular alterations during colorectal carcinogenesis, but there is little agreement on their effect on tumor characteristics. Therefore, we aimed to evaluate the distribution of the most common KRAS and BRAF mutations in Greek patients with colorectal cancer and their possible associations with clinical histopathological parameters. In this study, 322 and 188 colorectal carcinomas were used for the mutation analysis of KRAS (exon 2) and BRAF (exon 15) genes, respectively. The mutational status of both genes was evaluated by polymerase chain reaction and sequencing analysis. Although the overall frequency of KRAS mutations (36.6%) seemed to be similar to those reported for other populations, the rate of point mutations at codon 13 was significantly lower (12%) in Greek patients with colorectal cancer and associated with male gender (P < 0.05). Tumors with G>T codon 12 transversions and G>C transitions showed more frequent lymph node metastasis (P < 0.05, P < 0.005, respectively). The rate of KRAS mutations gradually decreased with increasing histological grade (P < 0.05), as opposed to BRAF mutations, which were strongly associated with poorly differentiated tumors (P < 0.005). Additionally, we found that the histological features of preexisting adenoma were associated with the absence of BRAF mutations, in contrast to KRAS (P < 0.05). Our data suggested that there seems to be a correlation between morphological criteria and discrete genetic pathways in colorectal carcinogenesis. Moreover, ethnic or geographic factors may have an impact on genetic background of colorectal carcinomas, and specific types of KRAS mutations may influence the metastatic potential of colorectal tumors.
Adaptive Evolution under Extreme Genetic Drift in Oxidatively Stressed Caenorhabditis elegans
Christy, Stephen F; Wernick, Riana I; Lue, Michael J; Velasco, Griselda; Howe, Dana K; Denver, Dee R
2017-01-01
Abstract A mutation-accumulation (MA) experiment with Caenorhabditis elegans nematodes was conducted in which replicate, independently evolving lines were initiated from a low-fitness mitochondrial electron transport chain mutant, gas-1. The original intent of the study was to assess the effect of electron transport chain dysfunction involving elevated reactive oxygen species production on patterns of spontaneous germline mutation. In contrast to results of standard MA experiments, gas-1 MA lines evolved slightly higher mean fitness alongside reduced among-line genetic variance compared with their ancestor. Likewise, the gas-1 MA lines experienced partial recovery to wildtype reactive oxygen species levels. Whole-genome sequencing and analysis revealed that the molecular spectrum but not the overall rate of nuclear DNA mutation differed from wildtype patterns. Further analysis revealed an enrichment of mutations in loci that occur in a gas-1-centric region of the C. elegans interactome, and could be classified into a small number of functional-genomic categories. Characterization of a backcrossed four-mutation set isolated from one gas-1 MA line revealed this combination to be beneficial on both gas-1 mutant and wildtype genetic backgrounds. Our combined results suggest that selection favoring beneficial mutations can be powerful even under unfavorable population genetic conditions, and agree with fitness landscape theory predicting an inverse relationship between population fitness and the likelihood of adaptation. PMID:29069345
Ngo, The D; Krishnan, Mahima; Boutsalis, Peter; Gill, Gurjeet; Preston, Christopher
2018-05-01
Chloris virgata is a warm-season, C 4 , annual grass weed affecting field crops in northern Australia that has become an emerging weed in southern Australia. Four populations with suspected resistance to glyphosate were collected in South Australia, Queensland and New South Wales, Australia, and compared with one susceptible (S) population to confirm glyphosate resistance and elucidate possible mechanisms of resistance. Based on the rate of glyphosate required to kill 50% of treated plants (LD 50 ), glyphosate resistance (GR) was confirmed in four populations of C. virgata (V12, V14.2, V14.16 and V15). GR plants were 2-9.7-fold more resistant and accumulated less shikimate after glyphosate treatment than S plants. GR and S plants did not differ in glyphosate absorption and translocation. Target-site EPSPS mutations corresponding to Pro-106-Leu (V14.2) and Pro-106-Ser (V15, V14.16 and V12) substitutions were found in GR populations. The population with Pro-106-Leu substitution was 2.9-4.9-fold more resistant than the three other populations with Pro-106-Ser substitution. This report confirms glyphosate resistance in C. virgata and shows that target-site EPSPS mutations confer resistance to glyphosate in this species. The evolution of glyphosate resistance in C. virgata highlights the need to identify alternative control tactics. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Nonsyndromic Retinitis Pigmentosa in the Ashkenazi Jewish Population: Genetic and Clinical Aspects.
Kimchi, Adva; Khateb, Samer; Wen, Rong; Guan, Ziqiang; Obolensky, Alexey; Beryozkin, Avigail; Kurtzman, Shoshi; Blumenfeld, Anat; Pras, Eran; Jacobson, Samuel G; Ben-Yosef, Tamar; Newman, Hadas; Sharon, Dror; Banin, Eyal
2018-05-01
To analyze the genetic and clinical findings in retinitis pigmentosa (RP) patients of Ashkenazi Jewish (AJ) descent, aiming to identify genotype-phenotype correlations. Cohort study. Retinitis pigmentosa patients from 230 families of AJ origin. Sanger sequencing was performed to detect specific founder mutations known to be prevalent in the AJ population. Ophthalmologic analysis included a comprehensive clinical examination, visual acuity (VA), visual fields, electroretinography, color vision testing, and retinal imaging by OCT, pseudocolor, and autofluorescence fundus photography. Inheritance pattern and causative mutation; retinal function as assessed by VA, visual fields, and electroretinography results; and retinal structural changes observed on clinical funduscopy as well as by pseudocolor, autofluorescence, and OCT imaging. The causative mutation was identified in 37% of families. The most prevalent RP-causing mutations are the Alu insertion (c.1297_8ins353, p.K433Rins31*) in the male germ cell-associated kinase (MAK) gene (39% of families with a known genetic cause for RP) and c.124A>G, p.K42E in dehydrodolichol diphosphate synthase (DHDDS) (33%). Additionally, disease-causing mutations were identified in 11 other genes. Analysis of clinical parameters of patients with mutations in the 2 most common RP-causing genes revealed that MAK patients had better VA and visual fields at relatively older ages in comparison with DHDDS patients. Funduscopic findings of DHDDS patients matched those of MAK patients who were 20 to 30 years older. Patients with DHDDS mutations were referred for electrophysiologic evaluation at earlier ages, and their cone responses became nondetectable at a much younger age than MAK patients. Our AJ cohort of RP patients is the largest reported to date and showed a substantial difference in the genetic causes of RP compared with cohorts of other populations, mainly a high rate of autosomal recessive inheritance and a unique composition of causative genes. The most common RP-causing genes in our cohort, MAK and DHDDS, were not described as major causative genes in other populations. The clinical data show that in general, patients with biallelic MAK mutations had a later age of onset and a milder retinal phenotype compared with patients with biallelic DHDDS mutations. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
A Ruby in the Rubbish: Beneficial Mutations, Deleterious Mutations and the Evolution of Sex
Peck, J. R.
1994-01-01
This study presents a mathematical model in which a single beneficial mutation arises in a very large population that is subject to frequent deleterious mutations. The results suggest that, if the population is sexual, then the deleterious mutations will have little effect on the ultimate fate of the beneficial mutation. However, if most offspring are produced asexually, then the probability that the beneficial mutation will be lost from the population may be greatly enhanced by the deleterious mutations. Thus, sexual populations may adapt much more quickly than populations where most reproduction is asexual. Some of the results were produced using computer simulation methods, and a technique was developed that allows treatment of arbitrarily large numbers of individuals in a reasonable amount of computer time. This technique may be of prove useful for the analysis of a wide variety of models, though there are some constraints on its applicability. For example, the technique requires that reproduction can be described by Poisson processes. PMID:8070669
Mutation exposed: a neutral explanation for extreme base composition of an endosymbiont genome.
Wernegreen, Jennifer J; Funk, Daniel J
2004-12-01
The influence of neutral mutation pressure versus selection on base composition evolution is a subject of considerable controversy. Yet the present study represents the first explicit population genetic analysis of this issue in prokaryotes, the group in which base composition variation is most dramatic. Here, we explore the impact of mutation and selection on the dynamics of synonymous changes in Buchnera aphidicola, the AT-rich bacterial endosymbiont of aphids. Specifically, we evaluated three forms of evidence. (i) We compared the frequencies of directional base changes (AT-->GC vs. GC-->AT) at synonymous sites within and between Buchnera species, to test for selective preference versus effective neutrality of these mutational categories. Reconstructed mutational changes across a robust intraspecific phylogeny showed a nearly 1:1 AT-->GC:GC-->AT ratio. Likewise, stationarity of base composition among Buchnera species indicated equal rates of AT-->GC and GC-->AT substitutions. The similarity of these patterns within and between species supported the neutral model. (ii) We observed an equivalence of relative per-site AT mutation rate and current AT content at synonymous sites, indicating that base composition is at mutational equilibrium. (iii) We demonstrated statistically greater equality in the frequency of mutational categories in Buchnera than in parallel mammalian studies that documented selection on synonymous sites. Our results indicate that effectively neutral mutational pressure, rather than selection, represents the major force driving base composition evolution in Buchnera. Thus they further corroborate recent evidence for the critical role of reduced N(e) in the molecular evolution of bacterial endosymbionts.
Somatic Mutations and Ancestry Markers in Hispanic Lung Cancer Patients.
Gimbrone, Nicholas T; Sarcar, Bhaswati; Gordian, Edna R; Rivera, Jason I; Lopez, Christian; Yoder, Sean J; Teer, Jamie K; Welsh, Eric A; Chiappori, Alberto A; Schabath, Matthew B; Reuther, Gary W; Dutil, Julie; Garcia, Miosotis; Ventosilla-Villanueva, Ronald; Vera-Valdivia, Luis; Yabar-Berrocal, Alejandro; Motta-Guerrero, Rodrigo; Santiago-Cardona, Pedro G; Muñoz-Antonia, Teresita; Cress, W Douglas
2017-12-01
To address the lack of genomic data from Hispanic/Latino (H/L) patients with lung cancer, the Latino Lung Cancer Registry was established to collect patient data and biospecimens from H/L patients. This retrospective observational study examined lung cancer tumor samples from 163 H/L patients, and tumor-derived DNA was subjected to targeted-exome sequencing (>1000 genes, including EGFR, KRAS, serine/threonine kinase 11 gene [STK11], and tumor protein p53 gene [TP53]) and ancestry analysis. Mutation frequencies in this H/L cohort were compared with those in a similar cohort of non-Hispanic white (NHW) patients and correlated with ancestry, sex, smoking status, and tumor histologic type. Of the adenocarcinomas in the H/L cohort (n = 120), 31% had EGFR mutations, versus 17% in the NHW control group (p < 0.001). KRAS (20% versus 38% [p = 0.002]) and STK11 (8% versus 16% [p = 0.065]) mutations occurred at lower frequency, and mutations in TP53 occurred at similar frequency (46% versus 40% [p = 0.355]) in H/L and NHW patients, respectively. Within the Hispanic cohort, ancestry influenced the rate of TP53 mutations (p = 0.009) and may have influenced the rate of EGFR, KRAS, and STK11 mutations. Driver mutations in H/L patients with lung adenocarcinoma differ in frequency from those in NHW patients associated with their indigenous American ancestry. The spectrum of driver mutations needs to be further assessed in the H/L population. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Lethal mutagenesis: targeting the mutator phenotype in cancer.
Fox, Edward J; Loeb, Lawrence A
2010-10-01
The evolution of cancer and RNA viruses share many similarities. Both exploit high levels of genotypic diversity to enable extensive phenotypic plasticity and thereby facilitate rapid adaptation. In order to accumulate large numbers of mutations, we have proposed that cancers express a mutator phenotype. Similar to cancer cells, many viral populations, by replicating their genomes with low fidelity, carry a substantial mutational load. As high levels of mutation are potentially deleterious, the viral mutation frequency is thresholded at a level below which viral populations equilibrate in a traditional mutation-selection balance, and above which the population is no longer viable, i.e., the population undergoes an error catastrophe. Because their mutation frequencies are fine-tuned just below this error threshold, viral populations are susceptible to further increases in mutational load and, recently this phenomenon has been exploited therapeutically by a concept that has been termed lethal mutagenesis. Here we review the application of lethal mutagenesis to the treatment of HIV and discuss how lethal mutagenesis may represent a novel therapeutic approach for the treatment of solid cancers. Copyright © 2010 Elsevier Ltd. All rights reserved.
Bougaran, Gaël; Rouxel, Catherine; Dubois, Nolwenn; Kaas, Raymond; Grouas, Sophie; Lukomska, Ewa; Le Coz, Jean-René; Cadoret, Jean-Paul
2012-11-01
Microalgae offer a high potential for energetic lipid storage as well as high growth rates. They are therefore considered promising candidates for biofuel production, with the selection of high lipid-producing strains a major objective in projects on the development of this technology. We developed a mutation-selection method aimed at increasing microalgae neutral lipid productivity. A two step method, based on UVc irradiation followed by flow cytometry selection, was applied to a set of strains that had an initial high lipid content and improvement was assessed by means of Nile-red fluorescence measurements. The method was first tested on Isochrysis affinis galbana (T-Iso). Following a first round of mutation-selection, the total fatty acid content had not increased significantly, being 262 ± 21 mgTFA (gC)-1 for the wild type (WT) and 269 ± 49 mgTFA (gC)-1 for the selected population (S1M1). Conversely, fatty acid distribution among the lipid classes was affected by the process, resulting in a 20% increase for the fatty acids in the neutral lipids and a 40% decrease in the phospholipids. After a second mutation-selection step (S2M2), the total fatty acid content reached 409 ± 64 mgTFA (gC)-1 with a fatty acid distribution similar to the S1M1 population. Growth rate remained unaffected by the process, resulting in a 80% increase for neutral lipid productivity. Copyright © 2012 Wiley Periodicals, Inc.
Kurnit, Katherine C; Kim, Grace N; Fellman, Bryan M; Urbauer, Diana L; Mills, Gordon B; Zhang, Wei; Broaddus, Russell R
2017-07-01
Although the majority of low grade, early stage endometrial cancer patients will have good survival outcomes with surgery alone, those patients who do recur tend to do poorly. Optimal identification of the subset of patients who are at high risk of recurrence and would benefit from adjuvant treatment has been difficult. The purpose of this study was to evaluate the impact of somatic tumor mutation on survival outcomes in this patient population. For this study, low grade was defined as endometrioid FIGO grades 1 or 2, while early stage was defined as endometrioid stages I or II (disease confined to the uterus). Next-generation sequencing was performed using panels comprised of 46-200 genes. Recurrence-free and overall survival was compared across gene mutational status in both univariate and multivariate analyses. In all, 342 patients were identified, 245 of which had endometrioid histology. For grades 1-2, stages I-II endometrioid endometrial cancer patients, age (HR 1.07, 95% CI 1.03-1.10), CTNNB1 mutation (HR 5.97, 95% CI 2.69-13.21), and TP53 mutation (HR 4.07, 95% CI 1.57-10.54) were associated with worse recurrence-free survival on multivariate analysis. When considering endometrioid tumors of all grades and stages, CTNNB1 mutant tumors were associated with significantly higher rates of grades 1-2 disease, lower rates of deep myometrial invasion, and lower rates of lymphatic/vascular space invasion. When both TP53 and CTNNB1 mutations were considered, presence of either TP53 mutation or CTNNB1 mutation remained a statistically significant predictor of recurrence-free survival on multivariate analysis and was associated with a more precise confidence interval (HR 4.69, 95% CI 2.38-9.24). Thus, mutational analysis of a 2 gene panel of CTNNB1 and TP53 can help to identify a subset of low grade, early stage endometrial cancer patients who are at high risk of recurrence.
A Model with Darwinian Dynamics on a Rugged Landscape
NASA Astrophysics Data System (ADS)
Brotto, Tommaso; Bunin, Guy; Kurchan, Jorge
2017-02-01
We discuss the population dynamics with selection and random diffusion, keeping the total population constant, in a fitness landscape associated with Constraint Satisfaction, a paradigm for difficult optimization problems. We obtain a phase diagram in terms of the size of the population and the diffusion rate, with a glass phase inside which the dynamics keeps searching for better configurations, and outside which deleterious `mutations' spoil the performance. The phase diagram is analogous to that of dense active matter in terms of temperature and drive.
Kono, Michihiro; Takama, Hiromichi; Hamajima, Nobuyuki; Akiyama, Masashi
2014-01-01
Mutations in LIPH cause of autosomal recessive woolly hair/hypotrichosis (ARWH), and the 2 missense mutations c.736T>A (p.Cys246Ser) and c.742C>A (p.His248Asn) are considered prevalent founder mutations for ARWH in the Japanese population. To reveal genotype/phenotype correlations in ARWH cases in Japan and the haplotypes in 14 Japanese patients from 14 unrelated Japanese families. 13 patients had woolly hair, and 1 patient had complete baldness since birth. An LIPH mutation search revealed homozygous c.736T>A mutations in 10 of the patients. Compound heterozygous c.736T>A and c.742C>A mutations were found in 3 of the patients, and homozygous c.742C>A mutation in 1 patient. The phenotype of mild hypotrichosis with woolly hair was restricted to the patients with the homozygous c.736T>A mutation. The severe phenotype of complete baldness was seen in only 1 patient with homozygous c.742C>A. Haplotype analysis revealed that the alleles containing the LIPH c.736T>A mutation had a haplotype identical to that reported previously, although 4 alleles out of 5 chromosomes containing the LIPH c.742C>A mutation had a different haplotype from the previously reported founder allele. These alleles with c.742C>A are thought to be the third founder LIPH mutation causing ARWH. To accurately determine the prevalence of the founder mutations, we investigated allele frequencies of those mutations in 819 Japanese controls. Heterozygous c.736T>A mutations were found in 13 controls (allele frequency: 0.0079; carrier rate: 0.016), and heterozygous c.742C>A mutations were found in 2 controls (allele frequency: 0.0012; carrier rate: 0.0024). In conclusion, this study confirms the more accurate allele frequencies of the pathogenic founder mutations of LIPH and shows that there is a third founder mutation in Japan. In addition, the present findings suggest that the mutation patterns of LIPH might be associated with hypotrichosis severity in ARWH. PMID:24586639
Age-related mutations and chronic myelomonocytic leukemia
Mason, CC; Khorashad, JS; Tantravahi, SK; Kelley, TW; Zabriskie, MS; Yan, D; Pomicter, AD; Reynolds, KR; Eiring, AM; Kronenberg, Z; Sherman, RL; Tyner, JW; Dalley, BK; Dao, K-H; Yandell, M; Druker, BJ; Gotlib, J; O’Hare, T; Deininger, MW
2016-01-01
Chronic myelomonocytic leukemia (CMML) is a hematologic malignancy nearly confined to the elderly. Previous studies to determine incidence and prognostic significance of somatic mutations in CMML have relied on candidate gene sequencing, although an unbiased mutational search has not been conducted. As many of the genes commonly mutated in CMML were recently associated with age-related clonal hematopoiesis (ARCH) and aged hematopoiesis is characterized by a myelomonocytic differentiation bias, we hypothesized that CMML and aged hematopoiesis may be closely related. We initially established the somatic mutation landscape of CMML by whole exome sequencing followed by gene-targeted validation. Genes mutated in ⩾ 10% of patients were SRSF2, TET2, ASXL1, RUNX1, SETBP1, KRAS, EZH2, CBL and NRAS, as well as the novel CMML genes FAT4, ARIH1, DNAH2 and CSMD1. Most CMML patients (71%) had mutations in ⩾ 2 ARCH genes and 52% had ⩾ 7 mutations overall. Higher mutation burden was associated with shorter survival. Age-adjusted population incidence and reported ARCH mutation rates are consistent with a model in which clinical CMML ensues when a sufficient number of stochastically acquired age-related mutations has accumulated, suggesting that CMML represents the leukemic conversion of the myelomonocytic-lineage-biased aged hematopoietic system. PMID:26648538
Marayati, Bahjat F; Drayton, Alena L; Tucker, James F; Huckabee, Reid H; Anderson, Alicia M; Pease, James B; Zeyl, Clifford W; Zhang, Ke
2018-05-29
A healthy individual may carry a detrimental genetic trait that is masked by another genetic mutation. Such suppressive genetic interactions, in which a mutant allele either partially or completely restores the fitness defect of a particular mutant, tend to occur between genes that have a confined functional connection. Here we investigate a self-recovery phenotype in Schizosaccharomyces pombe , mediated by suppressive genetic interactions that can be amplified during cell culture. Cells without Elf1, an AAA+ family ATPase, have severe growth defects initially, but quickly recover growth rates near to those of wild-type strains by acquiring suppressor mutations. elf1Δ cells accumulate RNAs within the nucleus and display effects of genome instability such as sensitivity to DNA damage, increased incidence of lagging chromosomes, and mini-chromosome loss. Notably, the rate of phenotypic recovery was further enhanced in elf1Δ cells when RNase H activities were abolished and significantly reduced upon overexpression of RNase H1, suggesting that loss of Elf1-related genome instability can be resolved by RNase H activities, likely through eliminating the potentially mutagenic DNA-RNA hybrids caused by RNA nuclear accumulation. Using whole genome sequencing, we mapped a few consistent suppressors of elf1Δ including mutated Cue2, Rpl2702, and SPBPJ4664.02, suggesting previously unknown functional connections between Elf1 and these proteins. Our findings describe a mechanism by which cells bearing mutations that cause fitness defects and genome instability may accelerate the fitness recovery of their population through quickly acquiring suppressors. We propose that this mechanism may be universally applicable to all microorganisms in large-population cultures. Copyright © 2018, Genetics.
Characterisation of ATM mutations in Slavic Ataxia telangiectasia patients.
Soukupova, Jana; Pohlreich, Petr; Seemanova, Eva
2011-09-01
Ataxia telangiectasia (AT) is a genomic instability syndrome characterised, among others, by progressive cerebellar degeneration, oculocutaneous telangiectases, immunodeficiency, elevated serum alpha-phetoprotein level, chromosomal breakage, hypersensitivity to ionising radiation and increased cancer risk. This autosomal recessive disorder is caused by mutations in the ataxia telangiectasia mutated (ATM) gene coding for serine/threonine protein kinase with a crucial role in response to DNA double-strand breaks. We characterised genotype and phenotype of 12 Slavic AT patients from 11 families. Mutation analysis included sequencing of the entire coding sequence, adjacent intron regions, 3'UTR and 5'UTR of the ATM gene and multiplex ligation-dependent probe amplification (MLPA) for the detection of large deletions/duplications at the ATM locus. The high incidence of new and individual mutations demonstrates a marked mutational heterogeneity of AT in the Czech Republic. Our data indicate that sequence analysis of the entire coding region of ATM is sufficient for a high detection rate of mutations in ATM and that MLPA analysis for the detection of deletions/duplications seems to be redundant in the Slavic population.
Pepin, Kim M; Samuel, Melanie A; Wichman, Holly A
2006-04-01
The relationship of genotype, fitness components, and fitness can be complicated by genetic effects such as pleiotropy and epistasis and by heterogeneous environments. However, because it is often difficult to measure genotype and fitness directly, fitness components are commonly used to estimate fitness without regard to genetic architecture. The small bacteriophage X174 enables direct evaluation of genetic and environmental effects on fitness components and fitness. We used 15 mutants to study mutation effects on attachment rate and fitness in six hosts. The mutants differed from our lab strain of X174 by only one or two amino acids in the major capsid protein (gpF, sites 101 and 102). The sites are variable in natural and experimentally evolved X174 populations and affect phage attachment rate. Within the limits of detection of our assays, all mutations were neutral or deleterious relative to the wild type; 11 mutants had decreased host range. While fitness was predictable from attachment rate in most cases, 3 mutants had rapid attachment but low fitness on most hosts. Thus, some mutations had a pleiotropic effect on a fitness component other than attachment rate. In addition, on one host most mutants had high attachment rate but decreased fitness, suggesting that pleiotropic effects also depended on host. The data highlight that even in this simple, well-characterized system, prediction of fitness from a fitness component depends on genetic architecture and environment.
Recombination and phenotype evolution dynamics of Helicobacter pylori in colonized hosts.
Shafiee, Ahmad; Amini, Massoud; Emamirad, Hassan; Abadi, Amin Talebi Bezmin
2016-07-01
The ample genetic diversity and variability of Helicobater pylori, and therefore its phenotypic evolution, relate not only to frequent mutation and selection but also to intra-specific recombination. Webb and Blaser applied a mathematical model to distinguish the role of selection and mutation for Lewis antigen phenotype evolution during long-term gastric colonization in infected animal hosts (mice and gerbils). To investigate the role of recombination in Lewis antigen phenotype evolution, we have developed a prior population dynamic by adding recombination term to the model. We simulate and interpret the new model simulation's results with a comparative analysis of biological aspects. The main conclusions are as follows: (i) the models and consequently the hosts with higher recombination rate require a longer time for stabilization; and (ii) recombination and mutation have opposite effects on the size of H. pylori populations with phenotypes in the range of the most-fit ones (i.e. those that have a selective advantage) due to natural selection, although both can increase phenotypic diversity.
Sapra, K. Tanuj; Balasubramanian, G. Prakash; Labudde, Dirk; Bowie, James U.; Muller, Daniel J.
2009-01-01
Using single-molecule force spectroscopy, we investigated the effect of single point mutations on the energy landscape and unfolding pathways of the transmembrane protein bacteriorhodopsin. We show that the unfolding energy barriers in the energy landscape of the membrane protein followed a simple two-state behavior and represent a manifestation of many converging unfolding pathways. Although the unfolding pathways of wild-type and mutant bacteriorhodopsin did not change, indicating the presence of same ensemble of structural unfolding intermediates, the free energies of the rate-limiting transition states of the bacteriorhodopsin mutants decreased as the distance of those transition states to the folded intermediate states decreased. Thus, all mutants exhibited Hammond behavior and a change in the free energies of the intermediates along the unfolding reaction coordinate and, consequently, their relative occupancies. This is the first experimental proof showing that point mutations can reshape the free energy landscape of a membrane protein and force single proteins to populate certain unfolding pathways over others. PMID:18191146
Burning phylogenies: fire, molecular evolutionary rates, and diversification.
Verdú, Miguel; Pausas, Juli G; Segarra-Moragues, José Gabriel; Ojeda, Fernando
2007-09-01
Mediterranean-type ecosystems are among the most remarkable plant biodiversity "hot spots" on the earth, and fire has traditionally been invoked as one of the evolutionary forces explaining this exceptional diversity. In these ecosystems, adult plants of some species are able to survive after fire (resprouters), whereas in other species fire kills the adults and populations are only maintained by an effective post-fire recruitment (seeders). Seeders tend to have shorter generation times than resprouters, particularly under short fire return intervals, thus potentially increasing their molecular evolutionary rates and, ultimately, their diversification. We explored whether seeder lineages actually have higher rates of molecular evolution and diversification than resprouters. Molecular evolutionary rates in different DNA regions were compared in 45 phylogenetically paired congeneric taxa from fire-prone Mediterranean-type ecosystems with contrasting seeder and resprouter life histories. Differential diversification was analyzed with both topological and chronological approaches in five genera (Banksia, Daviesia, Lachnaea, Leucadendron, and Thamnochortus) from two fire-prone regions (Australia and South Africa). We found that seeders had neither higher molecular rates nor higher diversification than resprouters. Such lack of differences in molecular rates between seeders and resprouters-which did not agree with theoretical predictions-may occur if (1) the timing of the switch from seeding to resprouting (or vice versa) occurs near the branch tip, so that most of the branch length evolves under the opposite life-history form; (2) resprouters suffer more somatic mutations and therefore counterbalancing the replication-induced mutations of seeders; and (3) the rate of mutations is not related to shorter generation times because plants do not undergo determinate germ-line replication. The absence of differential diversification is to be expected if seeders and resprouters do not differ from each other in their molecular evolutionary rate, which is the fuel for speciation. Although other factors such as the formation of isolated populations may trigger diversification, we can conclude that fire acting as a throttle for diversification is by no means the rule in fire-prone ecosystems.
Osada, Naoki; Nakagome, Shigeki; Mano, Shuhei; Kameoka, Yosuke; Takahashi, Ichiro; Terao, Keiji
2013-11-01
The ratio of genetic diversity on X chromosomes relative to autosomes in organisms with XX/XY sex chromosomes could provide fundamental insight into the process of genome evolution. Here we report this ratio for 24 cynomolgus monkeys (Macaca fascicularis) originating in Indonesia, Malaysia, and the Philippines. The average X/A diversity ratios in these samples was 0.34 and 0.20 in the Indonesian-Malaysian and Philippine populations, respectively, considerably lower than the null expectation of 0.75. A Philippine population supposed to derive from an ancestral population by founding events showed a significantly lower ratio than the parental population, suggesting a demographic effect for the reduction. Taking sex-specific mutation rate bias and demographic effect into account, expected X/A diversity ratios generated by computer simulations roughly agreed with the observed data in the intergenic regions. In contrast, silent sites in genic regions on X chromosomes showed strong reduction in genetic diversity and the observed X/A diversity ratio in the genic regions cannot be explained by mutation rate bias and demography, indicating that natural selection also reduces the level of polymorphism near genes. Whole-genome analysis of a female cynomolgus monkey also supported the notion of stronger reduction of genetic diversity near genes on the X chromosome.
Osada, Naoki; Nakagome, Shigeki; Mano, Shuhei; Kameoka, Yosuke; Takahashi, Ichiro; Terao, Keiji
2013-01-01
The ratio of genetic diversity on X chromosomes relative to autosomes in organisms with XX/XY sex chromosomes could provide fundamental insight into the process of genome evolution. Here we report this ratio for 24 cynomolgus monkeys (Macaca fascicularis) originating in Indonesia, Malaysia, and the Philippines. The average X/A diversity ratios in these samples was 0.34 and 0.20 in the Indonesian–Malaysian and Philippine populations, respectively, considerably lower than the null expectation of 0.75. A Philippine population supposed to derive from an ancestral population by founding events showed a significantly lower ratio than the parental population, suggesting a demographic effect for the reduction. Taking sex-specific mutation rate bias and demographic effect into account, expected X/A diversity ratios generated by computer simulations roughly agreed with the observed data in the intergenic regions. In contrast, silent sites in genic regions on X chromosomes showed strong reduction in genetic diversity and the observed X/A diversity ratio in the genic regions cannot be explained by mutation rate bias and demography, indicating that natural selection also reduces the level of polymorphism near genes. Whole-genome analysis of a female cynomolgus monkey also supported the notion of stronger reduction of genetic diversity near genes on the X chromosome. PMID:24026095
Genotype imputation in a coalescent model with infinitely-many-sites mutation
Huang, Lucy; Buzbas, Erkan O.; Rosenberg, Noah A.
2012-01-01
Empirical studies have identified population-genetic factors as important determinants of the properties of genotype-imputation accuracy in imputation-based disease association studies. Here, we develop a simple coalescent model of three sequences that we use to explore the theoretical basis for the influence of these factors on genotype-imputation accuracy, under the assumption of infinitely-many-sites mutation. Employing a demographic model in which two populations diverged at a given time in the past, we derive the approximate expectation and variance of imputation accuracy in a study sequence sampled from one of the two populations, choosing between two reference sequences, one sampled from the same population as the study sequence and the other sampled from the other population. We show that under this model, imputation accuracy—as measured by the proportion of polymorphic sites that are imputed correctly in the study sequence—increases in expectation with the mutation rate, the proportion of the markers in a chromosomal region that are genotyped, and the time to divergence between the study and reference populations. Each of these effects derives largely from an increase in information available for determining the reference sequence that is genetically most similar to the sequence targeted for imputation. We analyze as a function of divergence time the expected gain in imputation accuracy in the target using a reference sequence from the same population as the target rather than from the other population. Together with a growing body of empirical investigations of genotype imputation in diverse human populations, our modeling framework lays a foundation for extending imputation techniques to novel populations that have not yet been extensively examined. PMID:23079542
Defectors Can Create Conditions That Rescue Cooperation
Waite, Adam James; Cannistra, Caroline; Shou, Wenying
2015-01-01
Cooperation based on the production of costly common goods is observed throughout nature. This is puzzling, as cooperation is vulnerable to exploitation by defectors which enjoy a fitness advantage by consuming the common good without contributing fairly. Depletion of the common good can lead to population collapse and the destruction of cooperation. However, population collapse implies small population size, which, in a structured population, is known to favor cooperation. This happens because small population size increases variability in cooperator frequency across different locations. Since individuals in cooperator-dominated locations (which are most likely cooperators) will grow more than those in defector-dominated locations (which are most likely defectors), cooperators can outgrow defectors globally despite defectors outgrowing cooperators in each location. This raises the possibility that defectors can lead to conditions that sometimes rescue cooperation from defector-induced destruction. We demonstrate multiple mechanisms through which this can occur, using an individual-based approach to model stochastic birth, death, migration, and mutation events. First, during defector-induced population collapse, defectors occasionally go extinct before cooperators by chance, which allows cooperators to grow. Second, empty locations, either preexisting or created by defector-induced population extinction, can favor cooperation because they allow cooperator but not defector migrants to grow. These factors lead to the counterintuitive result that the initial presence of defectors sometimes allows better survival of cooperation compared to when defectors are initially absent. Finally, we find that resource limitation, inducible by defectors, can select for mutations adaptive to resource limitation. When these mutations are initially present at low levels or continuously generated at a moderate rate, they can favor cooperation by further reducing local population size. We predict that in a structured population, small population sizes precipitated by defectors provide a “built-in” mechanism for the persistence of cooperation. PMID:26690946
McNeill, Alisdair; Magalhaes, Joana; Shen, Chengguo; Chau, Kai-Yin; Hughes, Derralyn; Mehta, Atul; Foltynie, Tom; Cooper, J Mark; Abramov, Andrey Y; Gegg, Matthew; Schapira, Anthony H V
2014-05-01
Gaucher disease is caused by mutations in the glucocerebrosidase gene, which encodes the lysosomal hydrolase glucosylceramidase. Patients with Gaucher disease and heterozygous glucocerebrosidase mutation carriers are at increased risk of developing Parkinson's disease. Indeed, glucocerebrosidase mutations are the most frequent risk factor for Parkinson's disease in the general population. Therefore there is an urgent need to understand the mechanisms by which glucocerebrosidase mutations predispose to neurodegeneration to facilitate development of novel treatments. To study this we generated fibroblast lines from skin biopsies of five patients with Gaucher disease and six heterozygous glucocerebrosidase mutation carriers with and without Parkinson's disease. Glucosylceramidase protein and enzyme activity levels were assayed. Oxidative stress was assayed by single cell imaging of dihydroethidium. Glucosylceramidase enzyme activity was significantly reduced in fibroblasts from patients with Gaucher disease (median 5% of controls, P = 0.0001) and heterozygous mutation carriers with (median 59% of controls, P = 0.001) and without (56% of controls, P = 0.001) Parkinson's disease compared with controls. Glucosylceramidase protein levels, assessed by western blot, were significantly reduced in fibroblasts from Gaucher disease (median glucosylceramidase levels 42% of control, P < 0.001) and heterozygous mutation carriers with (median 59% of control, P < 0.001) and without (median 68% of control, P < 0.001) Parkinson's disease. Single cell imaging of dihydroethidium demonstrated increased production of cytosolic reactive oxygen species in fibroblasts from patients with Gaucher disease (dihydroethidium oxidation rate increased by a median of 62% compared to controls, P < 0.001) and heterozygous mutation carriers with (dihydroethidium oxidation rate increased by a median of 68% compared with controls, P < 0.001) and without (dihydroethidium oxidation rate increased by a median of 70% compared with controls, P < 0.001) Parkinson's disease. We hypothesized that treatment with the molecular chaperone ambroxol hydrochloride would improve these biochemical abnormalities. Treatment with ambroxol hydrochloride increased glucosylceramidase activity in fibroblasts from healthy controls, Gaucher disease and heterozygous glucocerebrosidase mutation carriers with and without Parkinson's disease. This was associated with a significant reduction in dihydroethidium oxidation rate of ∼50% (P < 0.05) in fibroblasts from controls, Gaucher disease and heterozygous mutation carriers with and without Parkinson's disease. In conclusion, glucocerebrosidase mutations are associated with reductions in glucosylceramidase activity and evidence of oxidative stress. Ambroxol treatment significantly increases glucosylceramidase activity and reduces markers of oxidative stress in cells bearing glucocerebrosidase mutations. We propose that ambroxol hydrochloride should be further investigated as a potential treatment for Parkinson's disease.
Genetic architecture and the evolution of sex.
Lohaus, Rolf; Burch, Christina L; Azevedo, Ricardo B R
2010-01-01
Theoretical investigations of the advantages of sex have tended to treat the genetic architecture of organisms as static and have not considered that genetic architecture might coevolve with reproductive mode. As a result, some potential advantages of sex may have been missed. Using a gene network model, we recently showed that recombination imposes selection for robustness to mutation and that negative epistasis can evolve as a by-product of this selection. These results motivated a detailed exploration of the mutational deterministic hypothesis, a hypothesis in which the advantage of sex depends critically on epistasis. We found that sexual populations do evolve higher mean fitness and lower genetic load than asexual populations at equilibrium, and, under moderate stabilizing selection and large population size, these equilibrium sexual populations resist invasion by asexuals. However, we found no evidence that these long- and short-term advantages to sex were explained by the negative epistasis that evolved in our experiments. The long-term advantage of sex was that sexual populations evolved a lower deleterious mutation rate, but this property was not sufficient to account for the ability of sexual populations to resist invasion by asexuals. The ability to resist asexual invasion was acquired simultaneously with an increase in recombinational robustness that minimized the cost of sex. These observations provide the first direct evidence that sexual reproduction does indeed select for conditions that favor its own maintenance. Furthermore, our results highlight the importance of considering a dynamic view of the genetic architecture to understand the evolution of sex and recombination.
Zahorakova, Daniela; Rosipal, Robert; Hadac, Jan; Zumrova, Alena; Bzduch, Vladimir; Misovicova, Nadezda; Baxova, Alice; Zeman, Jiri; Martasek, Pavel
2007-01-01
Rett syndrome (RTT), an X-linked dominant neurodevelopmental disorder in females, is caused mainly by de novo mutations in the methyl-CpG-binding protein 2 gene (MECP2). Here we report mutation analysis of the MECP2 gene in 87 patients with RTT from the Czech and Slovak Republics, and Ukraine. The patients, all girls, with classical RTT were investigated for mutations using bi-directional DNA sequencing and conformation sensitive gel electrophoresis analysis of the coding sequence and exon/intron boundaries of the MECP2 gene. Restriction fragment length polymorphism analysis was performed to confirm the mutations that cause the creation or abolition of the restriction site. Mutation-negative cases were subsequently examined by multiple ligation-dependent probe amplification (MLPA) to identify large deletions. Mutation screening revealed 31 different mutations in 68 patients and 12 non-pathogenic polymorphisms. Six mutations have not been previously published: two point mutations (323T>A, 904C>T), three deletions (189_190delGA, 816_832del17, 1069delAGC) and one deletion/inversion (1063_1236del174;1189_1231inv43). MLPA analysis revealed large deletions in two patients. The detection rate was 78.16%. Our results confirm the high frequency of MECP2 mutations in females with RTT and provide data concerning the mutation heterogeneity in the Slavic population.
Whitlock, Alexander O. B.; Peck, Kayla M.; Azevedo, Ricardo B. R.; Burch, Christina L.
2016-01-01
Sex is ubiquitous in the natural world, but the nature of its benefits remains controversial. Previous studies have suggested that a major advantage of sex is its ability to eliminate interference between selection on linked mutations, a phenomenon known as Hill–Robertson interference. However, those studies may have missed both important advantages and important disadvantages of sexual reproduction because they did not allow the distributions of mutational effects and interactions (i.e., the genetic architecture) to evolve. Here we investigate how Hill–Robertson interference interacts with an evolving genetic architecture to affect the evolutionary origin and maintenance of sex by simulating evolution in populations of artificial gene networks. We observed a long-term advantage of sex—equilibrium mean fitness of sexual populations exceeded that of asexual populations—that did not depend on population size. We also observed a short-term advantage of sex—sexual modifier mutations readily invaded asexual populations—that increased with population size, as was observed in previous studies. We show that the long- and short-term advantages of sex were both determined by differences between sexual and asexual populations in the evolutionary dynamics of two properties of the genetic architecture: the deleterious mutation rate (Ud) and recombination load (LR). These differences resulted from a combination of selection to minimize LR, which is experienced only by sexuals, and Hill–Robertson interference experienced primarily by asexuals. In contrast to the previous studies, in which Hill–Robertson interference had only a direct impact on the fitness advantages of sex, the impact of Hill–Robertson interference in our simulations was mediated additionally by an indirect impact on the efficiency with which selection acted to reduce Ud. PMID:27098911
Lynch syndrome and cervical cancer.
Antill, Yoland C; Dowty, James G; Win, Aung Ko; Thompson, Tina; Walsh, Michael D; Cummings, Margaret C; Gallinger, Steven; Lindor, Noralane M; Le Marchand, Loïc; Hopper, John L; Newcomb, Polly A; Haile, Robert W; Church, James; Tucker, Katherine M; Buchanan, Daniel D; Young, Joanne P; Winship, Ingrid M; Jenkins, Mark A
2015-12-01
Carriers of germline mutations in DNA mismatch repair (MMR) genes are at increased risk of several cancers including colorectal and gynecologic cancers (Lynch syndrome). There is no substantial evidence that these mutations are associated with an increased risk of cervical cancer. A total of 369 families with at least one carrier of a mutation in a MMR gene (133 MLH1, 174 MSH2, 35 MSH6 and 27 PMS2) were ascertained via population cancer registries or via family cancer clinics in Australia, New Zealand, Canada, and USA. Personal and family histories of cancer were obtained from participant interviews. Modified segregation analysis was used to estimate the hazard ratio (incidence rates for carriers relative to those for the general population), and age-specific cumulative risks of cervical cancer for carriers. A total of 65 cases of cervical cancer were reported (including 10 verified by pathology reports). The estimated incidence was 5.6 fold (95% CI: 2.3-13.8; p = 0.001) higher for carriers than for the general population with a corresponding cumulative risk to 80 years of 4.5% (95% CI: 1.9-10.7%) compared with 0.8% for the general population. The mean age at diagnosis was 43.1 years (95% CI: 40.0-46.2), 3.9 years younger than the reported USA population mean of 47.0 years (p = 0.02). Women with MMR gene mutations were found to have an increased risk of cervical cancer. Due to limited pathology verification we cannot be certain that a proportion of these cases were not lower uterine segment endometrial cancers involving the endocervix, a recognized cancer of Lynch syndrome. © 2015 UICC.
Linkage disequilibrium between STRPs and SNPs across the human genome.
Payseur, Bret A; Place, Michael; Weber, James L
2008-05-01
Patterns of linkage disequilibrium (LD) reveal the action of evolutionary processes and provide crucial information for association mapping of disease genes. Although recent studies have described the landscape of LD among single nucleotide polymorphisms (SNPs) from across the human genome, associations involving other classes of molecular variation remain poorly understood. In addition to recombination and population history, mutation rate and process are expected to shape LD. To test this idea, we measured associations between short-tandem-repeat polymorphisms (STRPs), which can mutate rapidly and recurrently, and SNPs in 721 regions across the human genome. We directly compared STRP-SNP LD with SNP-SNP LD from the same genomic regions in the human HapMap populations. The intensity of STRP-SNP LD, measured by the average of D', was reduced, consistent with the action of recurrent mutation. Nevertheless, a higher fraction of STRP-SNP pairs than SNP-SNP pairs showed significant LD, on both short (up to 50 kb) and long (cM) scales. These results reveal the substantial effects of mutational processes on LD at STRPs and provide important measures of the potential of STRPs for association mapping of disease genes.
An experimental evaluation of drug-induced mutational meltdown as an antiviral treatment strategy.
Bank, Claudia; Renzette, Nicholas; Liu, Ping; Matuszewski, Sebastian; Shim, Hyunjin; Foll, Matthieu; Bolon, Daniel N A; Zeldovich, Konstantin B; Kowalik, Timothy F; Finberg, Robert W; Wang, Jennifer P; Jensen, Jeffrey D
2016-11-01
The rapid evolution of drug resistance remains a critical public health concern. The treatment of influenza A virus (IAV) has proven particularly challenging, due to the ability of the virus to develop resistance against current antivirals and vaccines. Here, we evaluate a novel antiviral drug therapy, favipiravir, for which the mechanism of action in IAV involves an interaction with the viral RNA-dependent RNA polymerase resulting in an effective increase in the viral mutation rate. We used an experimental evolution framework, combined with novel population genetic method development for inference from time-sampled data, to evaluate the effectiveness of favipiravir against IAV. Evaluating whole genome polymorphism data across 15 time points under multiple drug concentrations and in controls, we present the first evidence for the ability of IAV populations to effectively adapt to low concentrations of favipiravir. In contrast, under high concentrations, we observe population extinction, indicative of mutational meltdown. We discuss the observed dynamics with respect to the evolutionary forces at play and emphasize the utility of evolutionary theory to inform drug development. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Influence of a Small Fraction of Individuals with Enhanced Mutations on a Population Genetic Pool
NASA Astrophysics Data System (ADS)
Cebrat, S.; Stauffer, D.
It has been observed that a higher mutation load could be introduced into the genomes of children conceived by assisted reproduction technology (fertilization in-vitro). This generates two effects — slightly higher mutational pressure on the whole genetic pool of population and inhomogeneity of mutation distributions in the genetic pool. Computer simulations of the Penna ageing model suggest that already a small fraction of births with enhanced number of new mutations can negatively influence the whole population.
Accumulation of neutral mutations in growing cell colonies with competition.
Sorace, Ron; Komarova, Natalia L
2012-12-07
Neutral mutations play an important role in many biological processes including cancer initiation and progression, the generation of drug resistance in bacterial and viral diseases as well as cancers, and the development of organs in multicellular organisms. In this paper we study how neutral mutants are accumulated in nonlinearly growing colonies of cells subject to growth constraints such as crowding or lack of resources. We investigate different types of growth control which range from "division-controlled" to "death-controlled" growth (and various mixtures of both). In division-controlled growth, the burden of handling overcrowding lies with the process of cell-divisions, the divisions slow down as the carrying capacity is approached. In death-controlled growth, it is death rate that increases to slow down expansion. We show that division-controlled growth minimizes the number of accumulated mutations, and death-controlled growth corresponds to the maximum number of mutants. We check that these results hold in both deterministic and stochastic settings. We further develop a general (deterministic) theory of neutral mutations and achieve an analytical understanding of the mutant accumulation in colonies of a given size in the absence of back-mutations. The long-term dynamics of mutants in the presence of back-mutations is also addressed. In particular, with equal forward- and back-mutation rates, if division-controlled and a death-controlled types are competing for space and nutrients, cells obeying division-controlled growth will dominate the population. Copyright © 2012 Elsevier Ltd. All rights reserved.
Guo, Lei; Liang, Pei; Zhou, Xuguo; Gao, Xiwu
2014-01-01
A previous study documented a glycine to glutamic acid mutation (G4946E) in ryanodine receptor (RyR) was highly correlated to diamide insecticide resistance in field populations of Plutella xylostella (Lepidoptera: Plutellidae). In this study, a field population collected in Yunnan province, China, exhibited a 2128-fold resistance to chlorantraniliprole. Sequence comparison between resistant and susceptible P. xylostella revealed three novel mutations including a glutamic acid to valine substitution (E1338D), a glutamine to leucine substitution (Q4594L) and an isoleucine to methionine substitution (I4790M) in highly conserved regions of RyR. Frequency analysis of all four mutations in this field population showed that the three new mutations showed a high frequency of 100%, while the G4946E had a frequency of 20%. Furthermore, the florescent ligand binding assay revealed that the RyR containing multiple mutations displayed a significantly lower affinity to the chlorantraniliprole. The combined results suggested that the co-existence of different combinations of the four mutations was involved in the chlorantraniliprole resistance. An allele-specific PCR based method was developed for the diagnosis of the four mutations in the field populations of P. xylostella. PMID:25377064
Ess, S M; Herrmann, C; Frick, H; Krapf, M; Cerny, T; Jochum, W; Früh, M
2017-11-01
In order to improve outcomes, identification of the epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) genes has become crucial in advanced non-small-cell lung cancer (NSCLC). The aim of the present study is to analyse time trends and frequency of testing, factors affecting testing as well as prevalence of mutations in the Swiss population. We analysed EGFR and ALK testing in a cohort of patients with newly diagnosed metastasised non-squamous NSCLC in the catchment area of the cancer registry Eastern Switzerland in the years 2008-2014. We analysed prevalence of mutations and studied clinicopathological characteristics and survival of tested and non-tested patients and of patients with and without mutations. Among 718 patients identified, 11% (51/447) harboured an EGFR mutation in the exons 18, 19 or 21 and further 12% (31/265) showed a positive test result for ALK rearrangements. In non-smokers the proportions of mutations were 31% and 23% respectively. Testing rates increased over time and reached 79% in 2014. We observed significantly lower testing rates and poorer survival in elderly, patients with limited life expectancy and patients treated at hospitals not involved in clinical research. Outcomes can be further improved in a considerable proportion of patients with advanced non-squamous NSCLC. © 2017 John Wiley & Sons Ltd.
8-oxoguanine causes spontaneous de novo germline mutations in mice.
Ohno, Mizuki; Sakumi, Kunihiko; Fukumura, Ryutaro; Furuichi, Masato; Iwasaki, Yuki; Hokama, Masaaki; Ikemura, Toshimichi; Tsuzuki, Teruhisa; Gondo, Yoichi; Nakabeppu, Yusaku
2014-04-15
Spontaneous germline mutations generate genetic diversity in populations of sexually reproductive organisms, and are thus regarded as a driving force of evolution. However, the cause and mechanism remain unclear. 8-oxoguanine (8-oxoG) is a candidate molecule that causes germline mutations, because it makes DNA more prone to mutation and is constantly generated by reactive oxygen species in vivo. We show here that endogenous 8-oxoG caused de novo spontaneous and heritable G to T mutations in mice, which occurred at different stages in the germ cell lineage and were distributed throughout the chromosomes. Using exome analyses covering 40.9 Mb of mouse transcribed regions, we found increased frequencies of G to T mutations at a rate of 2 × 10(-7) mutations/base/generation in offspring of Mth1/Ogg1/Mutyh triple knockout (TOY-KO) mice, which accumulate 8-oxoG in the nuclear DNA of gonadal cells. The roles of MTH1, OGG1, and MUTYH are specific for the prevention of 8-oxoG-induced mutation, and 99% of the mutations observed in TOY-KO mice were G to T transversions caused by 8-oxoG; therefore, we concluded that 8-oxoG is a causative molecule for spontaneous and inheritable mutations of the germ lineage cells.
Casula, Milena; Colombino, Maria; Satta, Maria P; Cossu, Antonio; Lissia, Amelia; Budroni, Mario; Simeone, Ester; Calemma, Rosa; Loddo, Cinzia; Caracò, Corrado; Mozzillo, Nicola; Daponte, Antonio; Comella, Giuseppe; Canzanella, Sergio; Guida, Michele; Castello, Giuseppe; Ascierto, Paolo A; Palmieri, Giuseppe
2007-01-01
Clinical predictors for germline mutations of candidate genes in large clinic based population of patients with cutaneous malignant melanoma (CMM) are widely awaited. Using denaturing high-performance liquid chromatography (DHPLC) analysis and DNA sequencing, 557 consecutively-collected CMM patients originating from South Italy were screened for CDKN2A germline mutations; subsets of them were screened for mutations in the BRAF and BRCA2 genes. Seven CDKN2A mutations were detected in 14 (2.5%) CMM patients. Relative risk of carrying a CDKN2A mutation for CMM patients was demonstrated to significantly increase with the presence of familial recurrence of melanoma (risk ratio (RR)=6.31; p=0.0009), multiple primary melanomas (RR=3.43; p=0.0014), and early onset age (RR=4.56; p=0.0026). All CDKN2A mutations were observed in non-Sardinian patients (14/441; 3.2%), whereas BRAF and BRCA2 genes were found mutated in Sardinian patients (3/116; 2.6%). Such indicators of the presence of CDKN2A mutations will be useful in counselling patients about undergoing genetic testing. Our findings strongly suggest that mutation rates of candidate cancer genes may deeply vary among CMM patients from different geographical areas.
Mutation load and the extinction of large populations
NASA Astrophysics Data System (ADS)
Bernardes, A. T.
1996-02-01
In the time evolution of finite populations, the accumulation of harmful mutations in further generations might lead to a temporal decay in the mean fitness of the whole population that, after sufficient time, would reduce population size and so lead to extinction. This joint action of mutation load and population reduction is called Mutational Meltdown and is usually considered only to occur in small asexual or very small sexual populations. However, the problem of extinction cannot be discussed in a proper way if one previously assumes the existence of an equilibrium state, as initially discussed in this paper. By performing simulations in a genetically inspired model for time-changing populations, we show that mutational meltdown also occurs in large asexual populations and that the mean time to extinction is a nonmonotonic function of the selection coefficient. The stochasticity of the extinction process is also discussed. The extinction of small sexual N ∼ 700 populations is shown and our results confirm the assumption that the existence of recombination might be a powerful mechanism to avoid extinction.
Paula, André E.; Pereira, Rui; Andrade, Carlos E.; Felicio, Paula S.; Souza, Cristiano P.; Mendes, Deise R.P.; Volc, Sahlua; Berardinelli, Gustavo N.; Grasel, Rebeca S.; Sabato, Cristina S.; Viana, Danilo V.; Machado, José Carlos; Costa, José Luis; Mauad, Edmundo C.; Scapulatempo-Neto, Cristovam; Arun, Banu; Reis, Rui M.; Palmero, Edenir I.
2016-01-01
Background There are very few data about the mutational profile of families at-risk for hereditary breast and ovarian cancer (HBOC) from Latin America (LA) and especially from Brazil, the largest and most populated country in LA. Results Of the 349 probands analyzed, 21.5% were BRCA1/BRCA2 mutated, 65.3% at BRCA1 and 34.7% at BRCA2 gene. The mutation c.5266dupC (former 5382insC) was the most frequent alteration, representing 36.7% of the BRCA1 mutations and 24.0% of all mutations identified. Together with the BRCA1 c.3331_3334delCAAG mutation, these mutations constitutes about 35% of the identified mutations and more than 50% of the BRCA1 pathogenic mutations. Interestingly, six new mutations were identified. Additionally, 39 out of the 44 pathogenic mutations identified were not previously reported in the Brazilian population. Besides, 36 different variants of unknown significance (VUS) were identified. Regarding ancestry, average ancestry proportions were 70.6% European, 14.5% African, 8.0% Native American and 6.8% East Asian. Materials and methods This study characterized 349 Brazilian families at-risk for HBOC regarding their germline BRCA1/BRCA2 status and genetic ancestry. Conclusions This is the largest report of BRCA1/BRCA2 assessment in an at-risk HBOC Brazilian population. We identified 21.5% of patients harboring BRCA1/BRCA2 mutations and characterized the genetic ancestry of a sample group at-risk for hereditary breast cancer showing once again how admixed is the Brazilian population. No association was found between genetic ancestry and mutational status. The knowledge of the mutational profile in a population can contribute to the definition of more cost-effective strategies for the identification of HBOC families. PMID:27741520
Nonequivalence of updating rules in evolutionary games under high mutation rates.
Kaiping, G A; Jacobs, G S; Cox, S J; Sluckin, T J
2014-10-01
Moran processes are often used to model selection in evolutionary simulations. The updating rule in Moran processes is a birth-death process, i. e., selection according to fitness of an individual to give birth, followed by the death of a random individual. For well-mixed populations with only two strategies this updating rule is known to be equivalent to selecting unfit individuals for death and then selecting randomly for procreation (biased death-birth process). It is, however, known that this equivalence does not hold when considering structured populations. Here we study whether changing the updating rule can also have an effect in well-mixed populations in the presence of more than two strategies and high mutation rates. We find, using three models from different areas of evolutionary simulation, that the choice of updating rule can change model results. We show, e. g., that going from the birth-death process to the death-birth process can change a public goods game with punishment from containing mostly defectors to having a majority of cooperative strategies. From the examples given we derive guidelines indicating when the choice of the updating rule can be expected to have an impact on the results of the model.
Rosen, Laura E.; Connell, Katelyn B.; Marqusee, Susan
2014-01-01
The molten globule, a conformational ensemble with significant secondary structure but only loosely packed tertiary structure, has been suggested to be a ubiquitous intermediate in protein folding. However, it is difficult to assess the tertiary packing of transiently populated species to evaluate this hypothesis. Escherichia coli RNase H is known to populate an intermediate before the rate-limiting barrier to folding that has long been thought to be a molten globule. We investigated this hypothesis by making mimics of the intermediate that are the ground-state conformation at equilibrium, using two approaches: a truncation to generate a fragment mimic of the intermediate, and selective destabilization of the native state using point mutations. Spectroscopic characterization and the response of the mimics to further mutation are consistent with studies on the transient kinetic intermediate, indicating that they model the early intermediate. Both mimics fold cooperatively and exhibit NMR spectra indicative of a closely packed conformation, in contrast to the hypothesis of molten tertiary packing. This result is important for understanding the nature of the subsequent rate-limiting barrier to folding and has implications for the assumption that many other proteins populate molten globule folding intermediates. PMID:25258414
Rosen, Laura E; Connell, Katelyn B; Marqusee, Susan
2014-10-14
The molten globule, a conformational ensemble with significant secondary structure but only loosely packed tertiary structure, has been suggested to be a ubiquitous intermediate in protein folding. However, it is difficult to assess the tertiary packing of transiently populated species to evaluate this hypothesis. Escherichia coli RNase H is known to populate an intermediate before the rate-limiting barrier to folding that has long been thought to be a molten globule. We investigated this hypothesis by making mimics of the intermediate that are the ground-state conformation at equilibrium, using two approaches: a truncation to generate a fragment mimic of the intermediate, and selective destabilization of the native state using point mutations. Spectroscopic characterization and the response of the mimics to further mutation are consistent with studies on the transient kinetic intermediate, indicating that they model the early intermediate. Both mimics fold cooperatively and exhibit NMR spectra indicative of a closely packed conformation, in contrast to the hypothesis of molten tertiary packing. This result is important for understanding the nature of the subsequent rate-limiting barrier to folding and has implications for the assumption that many other proteins populate molten globule folding intermediates.
Microbial community assembly and evolution in subseafloor sediment.
Starnawski, Piotr; Bataillon, Thomas; Ettema, Thijs J G; Jochum, Lara M; Schreiber, Lars; Chen, Xihan; Lever, Mark A; Polz, Martin F; Jørgensen, Bo B; Schramm, Andreas; Kjeldsen, Kasper U
2017-03-14
Bacterial and archaeal communities inhabiting the subsurface seabed live under strong energy limitation and have growth rates that are orders of magnitude slower than laboratory-grown cultures. It is not understood how subsurface microbial communities are assembled and whether populations undergo adaptive evolution or accumulate mutations as a result of impaired DNA repair under such energy-limited conditions. Here we use amplicon sequencing to explore changes of microbial communities during burial and isolation from the surface to the >5,000-y-old subsurface of marine sediment and identify a small core set of mostly uncultured bacteria and archaea that is present throughout the sediment column. These persisting populations constitute a small fraction of the entire community at the surface but become predominant in the subsurface. We followed patterns of genome diversity with depth in four dominant lineages of the persisting populations by mapping metagenomic sequence reads onto single-cell genomes. Nucleotide sequence diversity was uniformly low and did not change with age and depth of the sediment. Likewise, there was no detectable change in mutation rates and efficacy of selection. Our results indicate that subsurface microbial communities predominantly assemble by selective survival of taxa able to persist under extreme energy limitation.
Nonequivalence of updating rules in evolutionary games under high mutation rates
NASA Astrophysics Data System (ADS)
Kaiping, G. A.; Jacobs, G. S.; Cox, S. J.; Sluckin, T. J.
2014-10-01
Moran processes are often used to model selection in evolutionary simulations. The updating rule in Moran processes is a birth-death process, i. e., selection according to fitness of an individual to give birth, followed by the death of a random individual. For well-mixed populations with only two strategies this updating rule is known to be equivalent to selecting unfit individuals for death and then selecting randomly for procreation (biased death-birth process). It is, however, known that this equivalence does not hold when considering structured populations. Here we study whether changing the updating rule can also have an effect in well-mixed populations in the presence of more than two strategies and high mutation rates. We find, using three models from different areas of evolutionary simulation, that the choice of updating rule can change model results. We show, e. g., that going from the birth-death process to the death-birth process can change a public goods game with punishment from containing mostly defectors to having a majority of cooperative strategies. From the examples given we derive guidelines indicating when the choice of the updating rule can be expected to have an impact on the results of the model.
Alvarez, Carolina; Tapia, Teresa; Perez-Moreno, Elisa; Gajardo-Meneses, Patricia; Ruiz, Catalina; Rios, Mabel; Missarelli, Claudio; Silva, Mariela; Cruz, Adolfo; Matamala, Luis; Carvajal-Carmona, Luis; Camus, Mauricio; Carvallo, Pilar
2017-01-01
Identifying founder mutations in BRCA1 and BRCA2 in specific populations constitute a valuable opportunity for genetic screening. Several studies from different populations have reported recurrent and/or founder mutations representing a relevant proportion of BRCA mutation carriers. In Latin America, only few founder mutations have been described. We screened 453 Chilean patients with hereditary breast cancer for mutations in BRCA1 and BRCA2. For recurrent mutations, we genotyped 11 microsatellite markers in BRCA1 and BRCA2 in order to determine a founder effect through haplotype analysis. We found a total of 25 mutations (6 novel) in 71 index patients among which, nine are present exclusively in Chilean patients. Our analysis revealed the presence of nine founder mutations, 4 in BRCA1 and 5 in BRCA2, shared by 2 to 10 unrelated families and spread in different regions of Chile. Our panel contains the highest amount of founder mutations until today and represents the highest percentage (78%) of BRCA1 and BRCA2 mutation carriers. We suggest that the dramatic reduction of Amerindian population due to smallpox and wars with Spanish conquerors, a scarce population increase during 300 years, and the geographic position of Chile constituted a favorable scenario to establish founder genetic markers in our population. PMID:29088781
Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations.
Rebbeck, Timothy R; Friebel, Tara M; Friedman, Eitan; Hamann, Ute; Huo, Dezheng; Kwong, Ava; Olah, Edith; Olopade, Olufunmilayo I; Solano, Angela R; Teo, Soo-Hwang; Thomassen, Mads; Weitzel, Jeffrey N; Chan, T L; Couch, Fergus J; Goldgar, David E; Kruse, Torben A; Palmero, Edenir Inêz; Park, Sue Kyung; Torres, Diana; van Rensburg, Elizabeth J; McGuffog, Lesley; Parsons, Michael T; Leslie, Goska; Aalfs, Cora M; Abugattas, Julio; Adlard, Julian; Agata, Simona; Aittomäki, Kristiina; Andrews, Lesley; Andrulis, Irene L; Arason, Adalgeir; Arnold, Norbert; Arun, Banu K; Asseryanis, Ella; Auerbach, Leo; Azzollini, Jacopo; Balmaña, Judith; Barile, Monica; Barkardottir, Rosa B; Barrowdale, Daniel; Benitez, Javier; Berger, Andreas; Berger, Raanan; Blanco, Amie M; Blazer, Kathleen R; Blok, Marinus J; Bonadona, Valérie; Bonanni, Bernardo; Bradbury, Angela R; Brewer, Carole; Buecher, Bruno; Buys, Saundra S; Caldes, Trinidad; Caliebe, Almuth; Caligo, Maria A; Campbell, Ian; Caputo, Sandrine M; Chiquette, Jocelyne; Chung, Wendy K; Claes, Kathleen B M; Collée, J Margriet; Cook, Jackie; Davidson, Rosemarie; de la Hoya, Miguel; De Leeneer, Kim; de Pauw, Antoine; Delnatte, Capucine; Diez, Orland; Ding, Yuan Chun; Ditsch, Nina; Domchek, Susan M; Dorfling, Cecilia M; Velazquez, Carolina; Dworniczak, Bernd; Eason, Jacqueline; Easton, Douglas F; Eeles, Ros; Ehrencrona, Hans; Ejlertsen, Bent; Engel, Christoph; Engert, Stefanie; Evans, D Gareth; Faivre, Laurence; Feliubadaló, Lidia; Ferrer, Sandra Fert; Foretova, Lenka; Fowler, Jeffrey; Frost, Debra; Galvão, Henrique C R; Ganz, Patricia A; Garber, Judy; Gauthier-Villars, Marion; Gehrig, Andrea; Gerdes, Anne-Marie; Gesta, Paul; Giannini, Giuseppe; Giraud, Sophie; Glendon, Gord; Godwin, Andrew K; Greene, Mark H; Gronwald, Jacek; Gutierrez-Barrera, Angelica; Hahnen, Eric; Hauke, Jan; Henderson, Alex; Hentschel, Julia; Hogervorst, Frans B L; Honisch, Ellen; Imyanitov, Evgeny N; Isaacs, Claudine; Izatt, Louise; Izquierdo, Angel; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jensen, Uffe Birk; John, Esther M; Vijai, Joseph; Kaczmarek, Katarzyna; Karlan, Beth Y; Kast, Karin; Investigators, KConFab; Kim, Sung-Won; Konstantopoulou, Irene; Korach, Jacob; Laitman, Yael; Lasa, Adriana; Lasset, Christine; Lázaro, Conxi; Lee, Annette; Lee, Min Hyuk; Lester, Jenny; Lesueur, Fabienne; Liljegren, Annelie; Lindor, Noralane M; Longy, Michel; Loud, Jennifer T; Lu, Karen H; Lubinski, Jan; Machackova, Eva; Manoukian, Siranoush; Mari, Véronique; Martínez-Bouzas, Cristina; Matrai, Zoltan; Mebirouk, Noura; Meijers-Heijboer, Hanne E J; Meindl, Alfons; Mensenkamp, Arjen R; Mickys, Ugnius; Miller, Austin; Montagna, Marco; Moysich, Kirsten B; Mulligan, Anna Marie; Musinsky, Jacob; Neuhausen, Susan L; Nevanlinna, Heli; Ngeow, Joanne; Nguyen, Huu Phuc; Niederacher, Dieter; Nielsen, Henriette Roed; Nielsen, Finn Cilius; Nussbaum, Robert L; Offit, Kenneth; Öfverholm, Anna; Ong, Kai-Ren; Osorio, Ana; Papi, Laura; Papp, Janos; Pasini, Barbara; Pedersen, Inge Sokilde; Peixoto, Ana; Peruga, Nina; Peterlongo, Paolo; Pohl, Esther; Pradhan, Nisha; Prajzendanc, Karolina; Prieur, Fabienne; Pujol, Pascal; Radice, Paolo; Ramus, Susan J; Rantala, Johanna; Rashid, Muhammad Usman; Rhiem, Kerstin; Robson, Mark; Rodriguez, Gustavo C; Rogers, Mark T; Rudaitis, Vilius; Schmidt, Ane Y; Schmutzler, Rita Katharina; Senter, Leigha; Shah, Payal D; Sharma, Priyanka; Side, Lucy E; Simard, Jacques; Singer, Christian F; Skytte, Anne-Bine; Slavin, Thomas P; Snape, Katie; Sobol, Hagay; Southey, Melissa; Steele, Linda; Steinemann, Doris; Sukiennicki, Grzegorz; Sutter, Christian; Szabo, Csilla I; Tan, Yen Y; Teixeira, Manuel R; Terry, Mary Beth; Teulé, Alex; Thomas, Abigail; Thull, Darcy L; Tischkowitz, Marc; Tognazzo, Silvia; Toland, Amanda Ewart; Topka, Sabine; Trainer, Alison H; Tung, Nadine; van Asperen, Christi J; van der Hout, Annemieke H; van der Kolk, Lizet E; van der Luijt, Rob B; Van Heetvelde, Mattias; Varesco, Liliana; Varon-Mateeva, Raymonda; Vega, Ana; Villarreal-Garza, Cynthia; von Wachenfeldt, Anna; Walker, Lisa; Wang-Gohrke, Shan; Wappenschmidt, Barbara; Weber, Bernhard H F; Yannoukakos, Drakoulis; Yoon, Sook-Yee; Zanzottera, Cristina; Zidan, Jamal; Zorn, Kristin K; Hutten Selkirk, Christina G; Hulick, Peter J; Chenevix-Trench, Georgia; Spurdle, Amanda B; Antoniou, Antonis C; Nathanson, Katherine L
2018-05-01
The prevalence and spectrum of germline mutations in BRCA1 and BRCA2 have been reported in single populations, with the majority of reports focused on White in Europe and North America. The Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) has assembled data on 18,435 families with BRCA1 mutations and 11,351 families with BRCA2 mutations ascertained from 69 centers in 49 countries on six continents. This study comprehensively describes the characteristics of the 1,650 unique BRCA1 and 1,731 unique BRCA2 deleterious (disease-associated) mutations identified in the CIMBA database. We observed substantial variation in mutation type and frequency by geographical region and race/ethnicity. In addition to known founder mutations, mutations of relatively high frequency were identified in specific racial/ethnic or geographic groups that may reflect founder mutations and which could be used in targeted (panel) first pass genotyping for specific populations. Knowledge of the population-specific mutational spectrum in BRCA1 and BRCA2 could inform efficient strategies for genetic testing and may justify a more broad-based oncogenetic testing in some populations. © 2018 Wiley Periodicals, Inc.
Saya, Sibel; Killick, Emma; Thomas, Sarah; Taylor, Natalie; Bancroft, Elizabeth K; Rothwell, Jeanette; Benafif, Sarah; Dias, Alexander; Mikropoulos, Christos; Pope, Jenny; Chamberlain, Anthony; Gunapala, Ranga; Izatt, Louise; Side, Lucy; Walker, Lisa; Tomkins, Susan; Cook, Jackie; Barwell, Julian; Wiles, Vicki; Limb, Lauren; Eccles, Diana; Leach, Martin O; Shanley, Susan; Gilbert, Fiona J; Hanson, Helen; Gallagher, David; Rajashanker, Bala; Whitehouse, Richard W; Koh, Dow-Mu; Sohaib, S Aslam; Evans, D Gareth; Eeles, Rosalind A
2017-07-01
In the United Kingdom, current screening guidelines for TP53 germline mutation carriers solely recommends annual breast MRI, despite the wide spectrum of malignancies typically seen in this group. This study sought to investigate the role of one-off non-contrast whole-body MRI (WB MRI) in the screening of asymptomatic TP53 mutation carriers. 44 TP53 mutation carriers and 44 population controls were recruited. Scans were read by radiologists blinded to participant carrier status. The incidence of malignancies diagnosed in TP53 mutation carriers against general population controls was calculated. The incidences of non-malignant relevant disease and irrelevant disease were measured, as well as the number of investigations required to determine relevance of findings. In TP53 mutation carriers, 6 of 44 (13.6, 95% CI 5.2-27.4%) participants were diagnosed with cancer during the study, all of which would be considered life threatening if untreated. Two were found to have two primary cancers. Two participants with cancer had abnormalities on the MRI which were initially thought to be benign (a pericardial cyst and a uterine fibroid) but transpired to be sarcomas. No controls were diagnosed with cancer. Fifteen carriers (34.1, 95% CI 20.5-49.9%) and seven controls (15.9, 95% CI 6.7-30.1%) underwent further investigations following the WB MRI for abnormalities that transpired to be benign (p = 0.049). The cancer detection rate in this group justifies a minimum baseline non-contrast WB MRI in germline TP53 mutation carriers. This should be adopted into national guidelines for management of adult TP53 mutation carriers in addition to the current practice of contrast enhanced breast MRI imaging.
Mutation of HIV-1 genomes in a clinical population treated with the mutagenic nucleoside KP1461.
Mullins, James I; Heath, Laura; Hughes, James P; Kicha, Jessica; Styrchak, Sheila; Wong, Kim G; Rao, Ushnal; Hansen, Alexis; Harris, Kevin S; Laurent, Jean-Pierre; Li, Deyu; Simpson, Jeffrey H; Essigmann, John M; Loeb, Lawrence A; Parkins, Jeffrey
2011-01-14
The deoxycytidine analog KP1212, and its prodrug KP1461, are prototypes of a new class of antiretroviral drugs designed to increase viral mutation rates, with the goal of eventually causing the collapse of the viral population. Here we present an extensive analysis of viral sequences from HIV-1 infected volunteers from the first "mechanism validation" phase II clinical trial of a mutagenic base analog in which individuals previously treated with antiviral drugs received 1600 mg of KP1461 twice per day for 124 days. Plasma viral loads were not reduced, and overall levels of viral mutation were not increased during this short-term study, however, the mutation spectrum of HIV was altered. A large number (N = 105 per sample) of sequences were analyzed, each derived from individual HIV-1 RNA templates, after 0, 56 and 124 days of therapy from 10 treated and 10 untreated control individuals (>7.1 million base pairs of unique viral templates were sequenced). We found that private mutations, those not found in more than one viral sequence and likely to have occurred in the most recent rounds of replication, increased in treated individuals relative to controls after 56 (p = 0.038) and 124 (p = 0.002) days of drug treatment. The spectrum of mutations observed in the treated group showed an excess of A to G and G to A mutations (p = 0.01), and to a lesser extent T to C and C to T mutations (p = 0.09), as predicted by the mechanism of action of the drug. These results validate the proposed mechanism of action in humans and should spur development of this novel antiretroviral approach.
Mutation of HIV-1 Genomes in a Clinical Population Treated with the Mutagenic Nucleoside KP1461
Mullins, James I.; Heath, Laura; Hughes, James P.; Kicha, Jessica; Styrchak, Sheila; Wong, Kim G.; Rao, Ushnal; Hansen, Alexis; Harris, Kevin S.; Laurent, Jean-Pierre; Li, Deyu; Simpson, Jeffrey H.; Essigmann, John M.; Loeb, Lawrence A.; Parkins, Jeffrey
2011-01-01
The deoxycytidine analog KP1212, and its prodrug KP1461, are prototypes of a new class of antiretroviral drugs designed to increase viral mutation rates, with the goal of eventually causing the collapse of the viral population. Here we present an extensive analysis of viral sequences from HIV-1 infected volunteers from the first “mechanism validation” phase II clinical trial of a mutagenic base analog in which individuals previously treated with antiviral drugs received 1600 mg of KP1461 twice per day for 124 days. Plasma viral loads were not reduced, and overall levels of viral mutation were not increased during this short-term study, however, the mutation spectrum of HIV was altered. A large number (N = 105 per sample) of sequences were analyzed, each derived from individual HIV-1 RNA templates, after 0, 56 and 124 days of therapy from 10 treated and 10 untreated control individuals (>7.1 million base pairs of unique viral templates were sequenced). We found that private mutations, those not found in more than one viral sequence and likely to have occurred in the most recent rounds of replication, increased in treated individuals relative to controls after 56 (p = 0.038) and 124 (p = 0.002) days of drug treatment. The spectrum of mutations observed in the treated group showed an excess of A to G and G to A mutations (p = 0.01), and to a lesser extent T to C and C to T mutations (p = 0.09), as predicted by the mechanism of action of the drug. These results validate the proposed mechanism of action in humans and should spur development of this novel antiretroviral approach. PMID:21264288
Soltani, Maryam; Tabatabaiefar, Mohammad Amin; Mohsenifar, Zhaleh; Pourreza, Mohammad Reza; Moridnia, Abbas; Shariati, Laleh; Razavi, Seyyed Mohammad
2018-01-01
Ameloblastoma is a benign, slow-growing and locally invasive tumor. It is one of the most prevalent odontogenic tumors, with an incidence rate of 1% of all oral tumors and approximately 18% of odontogenic tumors. A group of genes have been investigated in patients with ameloblastoma. The BRAF V600E mutation has been implicated as the most common mutation in ameloblastoma. The presence or absence of this mutation has been associated with several clinicopathological properties, including location, age at diagnosis, histology, and prognosis. Although some populations have been investigated so far, little data are available on the Iranian population. The current research was launched to study the BRAF V600E mutation among a cohort of Iranian patients with ameloblastoma. In this clinicopathological and molecular biology study, a total of 19 formalin-fixed, paraffin-embedded tissues were studied. DNA extraction was performed, followed by PCR-sequencing of exons 10 and 15 of the BRAF gene to identify mutations. In silico analysis was performed for the identified variants. Results were analyzed by T test, Chi-square, and Fisher's exact test. Totally, 12 of 19 samples (63%) harbored the p. V600E hotspot mutation. In addition, we identified several variants, two of which were novel. The c.1769T>G (p. V590G) and c.1751C>T (p.L584F) as the novel variants showed a possible damaging effect by in silico analysis. No variant was found within exon 10. Our study confirms the role of BRAF mutations in ameloblastoma in the Iranian patients studied. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A genetic screen of the mutations in the Korean patients with early-onset Alzheimer’s disease
An, Seong Soo; Park, Sun Ah; Bagyinszky, Eva; Bae, Sun Oh; Kim, Yoon-Jeong; Im, Ji Young; Park, Kyung Won; Park, Kee Hyung; Kim, Eun-Joo; Jeong, Jee Hyang; Kim, Jong Hun; Han, Hyun Jeong; Choi, Seong Hye; Kim, SangYun
2016-01-01
Early-onset Alzheimer’s disease (EOAD) has distinct clinical characteristics in comparison to late-onset Alzheimer’s disease (LOAD). The genetic contribution is suggested to be more potent in EOAD. However, the frequency of causative mutations in EOAD could be variable depending on studies. Moreover, no mutation screening study has been performed yet employing large population in Korea. Previously, we reported that the rate of family history of dementia in EOAD patients was 18.7% in a nationwide hospital-based cohort study, the Clinical Research Center for Dementia of South Korea (CREDOS) study. This rate is much lower than in other countries and is even comparable to the frequency of LOAD patients in our country. To understand the genetic characteristics of EOAD in Korea, we screened the common Alzheimer’s disease (AD) mutations in the consecutive EOAD subjects from the CREDOS study from April 2012 to February 2014. We checked the sequence of APP (exons 16–17), PSEN1 (exons 3–12), and PSEN2 (exons 3–12) genes. We identified different causative or probable pathogenic AD mutations, PSEN1 T116I, PSEN1 L226F, and PSEN2 V214L, employing 24 EOAD subjects with a family history and 80 without a family history of dementia. PSEN1 T116I case demonstrated autosomal dominant trait of inheritance, with at least 11 affected individuals over 2 generations. However, there was no family history of dementia within first-degree relation in PSEN1 L226F and PSEN2 V214L cases. Approximately, 55.7% of the EOAD subjects had APOE ε4 allele, while none of the mutation-carrying subjects had the allele. The frequency of genetic mutation in this study is lower compared to the studies from other countries. The study design that was based on nationwide cohort, which minimizes selection bias, is thought to be one of the contributors to the lower frequency of genetic mutation. However, the possibility of the greater likeliness of earlier onset of sporadic AD in Korea cannot be excluded. We suggest early AD onset and not carrying APOE ε4 allele are more reliable factors for predicting an induced genetic mutation than the presence of the family history in Korean EOAD population. PMID:28008242
Fusco, Diana; Gralka, Matti; Kayser, Jona; Anderson, Alex; Hallatschek, Oskar
2016-01-01
The genetic diversity of growing cellular populations, such as biofilms, solid tumours or developing embryos, is thought to be dominated by rare, exceptionally large mutant clones. Yet, the emergence of these mutational jackpot events is only understood in well-mixed populations, where they stem from mutations that arise during the first few cell divisions. To study jackpot events in spatially structured populations, we track mutant clones in microbial populations using fluorescence microscopy and population sequencing. High-frequency mutations are found to be massively enriched in microbial colonies compared with well-shaken liquid cultures, as a result of late-occurring mutations surfing at the edge of range expansions. Thus, jackpot events can be generated not only when mutations arise early but also when they occur at favourable locations, which exacerbates their role in adaptation and disease. In particular, because spatial competition with the wild type keeps most mutant clones in a quiescent state, strong selection pressures that kill the wild type promote drug resistance. PMID:27694797
Fusco, Diana; Gralka, Matti; Kayser, Jona; Anderson, Alex; Hallatschek, Oskar
2016-10-03
The genetic diversity of growing cellular populations, such as biofilms, solid tumours or developing embryos, is thought to be dominated by rare, exceptionally large mutant clones. Yet, the emergence of these mutational jackpot events is only understood in well-mixed populations, where they stem from mutations that arise during the first few cell divisions. To study jackpot events in spatially structured populations, we track mutant clones in microbial populations using fluorescence microscopy and population sequencing. High-frequency mutations are found to be massively enriched in microbial colonies compared with well-shaken liquid cultures, as a result of late-occurring mutations surfing at the edge of range expansions. Thus, jackpot events can be generated not only when mutations arise early but also when they occur at favourable locations, which exacerbates their role in adaptation and disease. In particular, because spatial competition with the wild type keeps most mutant clones in a quiescent state, strong selection pressures that kill the wild type promote drug resistance.
On the origin and diffusion of BRCA1 c.5266dupC (5382insC) in European populations
Hamel, Nancy; Feng, Bing-Jian; Foretova, Lenka; Stoppa-Lyonnet, Dominique; Narod, Steven A; Imyanitov, Evgeny; Sinilnikova, Olga; Tihomirova, Laima; Lubinski, Jan; Gronwald, Jacek; Gorski, Bohdan; Hansen, Thomas v O; Nielsen, Finn C; Thomassen, Mads; Yannoukakos, Drakoulis; Konstantopoulou, Irene; Zajac, Vladimir; Ciernikova, Sona; Couch, Fergus J; Greenwood, Celia M T; Goldgar, David E; Foulkes, William D
2011-01-01
The BRCA1 mutation c.5266dupC was originally described as a founder mutation in the Ashkenazi Jewish (AJ) population. However, this mutation is also present at appreciable frequency in several European countries, which raises intriguing questions about the origins of the mutation. We genotyped 245 carrier families from 14 different population groups (Russian, Latvian, Ukrainian, Czech, Slovak, Polish, Danish, Dutch, French, German, Italian, Greek, Brazilian and AJ) for seven microsatellite markers and confirmed that all mutation carriers share a common haplotype from a single founder individual. Using a maximum likelihood method that allows for both recombination and mutational events of marker loci, we estimated that the mutation arose some 1800 years ago in either Scandinavia or what is now northern Russia and subsequently spread to the various populations we genotyped during the following centuries, including the AJ population. Age estimates and the molecular evolution profile of the most common linked haplotype in the carrier populations studied further suggest that c.5266dupC likely entered the AJ gene pool in Poland approximately 400–500 years ago. Our results illustrate that (1) BRCA1 c.5266dupC originated from a single common ancestor and was a common European mutation long before becoming an AJ founder mutation and (2) the mutation is likely present in many additional European countries where genetic screening of BRCA1 may not yet be common practice. PMID:21119707
[Occult hepatitis B virus infection in normal population, Xiamen].
He, Shuizhen; Su, Chenghao; Shen, Litong; Niu, Jianjun
2015-02-01
To investigate the prevalence of occult HBV infection in the normal population in Xiamen. 4 437 registered permanent residents, aged 1-59 years old, were selected in Xiamen using stratified random sampling method from September to October in 2006. Serum samples were obtained, the basic characteristics, inoculation of HBV vaccine, and liver disease were surveyed. The serum samples were tested five HBV seroimmunological markers. The HBsAg-negative specimens were subjected to HBV-DNA detection by nested PCR targeting for multiple gene segments. The amplified products were sequenced and the sequence was used for determination of HBV genotype and mutation analysis of amino acids located in HBsAg "a" epitope. Subjects with serum detectable HBV-DNA and negative result of HBsAg were considered as occult HBV infection. Among the 4 437 subjects, 482 individuals were observed HBsAg positive and 3 944 were observed negative. Of the 3 955 HBsAg- negative specimens, 27 occult HBV infections were determined with the positive rate of 0.68% (27/3 955). There were 16 samples with genotype B and 11 with genotype C. 3 types of amino acid (AA) mutation (M133T, T140I, G145R) that influence "a" epitope conformation were observed in 9 subjects with occult HBV infection. S region was successfully sequenced in 312 of the 482 HBsAg positive samples. In subjects with occult HBV infection, the infection rate of genotype C HBV (40.74%, 11/27), inoculation rate of HBV vaccine (62.96%, 17/27), positive rate of HBsAb (51.85%, 14/27), and mutation rate of critical amino acid of "a" epitope (33.33%, 9/27) were higher than HBsAg positive individuals (22.76% (71/312), 13.78% (43/312),0.32% (1/312),0.99% (31/312), respectively), and all the difference were significant (χ(2) = 4.29, 41.26, 156.00, 13.07, respectively, and P value = 0.038, <0.001, <0.001, <0.001, respectively). While the average age in subjects with occult HBV infection (18.3 ± 16.2) were lower than that in HBsAg positive infection (34.4 ± 11.6), and the difference was significant (t = 6.67, P < 0.001). The reactive rate of HBeAb (11.11%, 3/27) and HBcAb (62.96%, 17/27) in subjects with occult HBV infection were lower than that in HBsAg positive infection (74.36% (232/312), 98.40% (307/312)), and the difference were significant (χ(2) = 46.74, 73.78, respectively, and P value <0.001, <0.001, respectively). In normal population in Xiamen, the infection rate of genotype C, the positive rate of HBsAb, the HBV vaccination rate, and the key AA mutation rate in "a" epitope are significantly higher in occult HBV infection than in HBsAg positive infection, and the age, the positive rate of HBeAb and HBcAb are significantly lower.
Baltruškevičienė, Edita; Mickys, Ugnius; Žvirblis, Tadas; Stulpinas, Rokas; Pipirienė Želvienė, Teresė; Aleknavičius, Eduardas
2016-01-01
Background. KRAS mutation is an important predictive and prognostic factor for patients receiving anti-EGFR therapy. An expanded KRAS, NRAS, BRAF, PIK3CA mutation analysis provides additional prognostic information, but its role in predicting bevacizumab efficacy is unclear. The aim of our study was to evaluate the incidence of KRAS, NRAS, BRAF and PIK3CA mutations in metastatic colorectal cancer patients receiving first line oxaliplatin based chemotherapy with or without bevacizumab and to evaluate their prognostic and predictive significance. Methods. 55 patients with the first-time diagnosed CRC receiving FOLFOX ± bevacizumab were involved in the study. Tumour blocks were tested for KRAS mutations in exons 2, 3 and 4, NRAS mutations in exons 2, 3 and 4, BRAF mutation in exon 15 and PIK3CA mutations in exons 9 and 20. The association between mutations and clinico-pathological factors, treatment outcomes and survival was analyzed. Results. KRAS mutations were detected in 67.3% of the patients, BRAF in 1.8%, PIK3CA in 5.5% and there were no NRAS mutations. A significant association between the high CA 19–9 level and KRAS mutation was detected (mean CA 19–9 levels were 276 and 87 kIU/l, respectively, p = 0.019). There was a significantly higher response rate in the KRAS, NRAS, BRAF and PIK3CA wild type cohort receiving bevacizumab compared to any gene mutant type (100 and 60%, respectively, p = 0.030). The univariate Cox regression analysis did not confirm KRAS and other tested mutations as prognostic factors for PFS or OS. Conclusions. Our study revealed higher KRAS and lower NRAS, BRAF and PIK3CA mutation rates in the Lithuanian population than those reported in the literature. KRAS mutation was associated with the high CA 19–9 level and mucinous histology type, but did not show any predictive or prognostic significance. The expanded KRAS, NRAS, BRAF and PIK3CA mutation analysis provided additional significant predictive information. PMID:28356789
Torres, Diana
2016-01-01
Background. Numerous epidemiological factors affect the probability of developing breast or ovarian cancer, but no predictor is as determinant as inheriting a mutation in BRCA1 or BRCA2. The concept of the founder effect explains the reduced genetic variability in some populations, according to the theory that new populations can be formed from a reduced number of individuals, so the new population would carry only a small fraction of the genetic variability of the original population. The main purpose of this review is to provide an update on the state of the art in founder mutations and some recurrent mutations that have recently been described in Latin America. Methods. A literature search was performed in the electronic databases of PUBMED, EMBASE, LILACS, and BIREME using the terms BRCA1, BRCA2, founder mutation, Latin American population, and Hispanic. Sixty-two papers were identified, of which 38 were considered relevant for this review. Each result is shown per country. Results. In Latin America, clear founder effects have been reported in Mexico (BRCA1 del exons 9–12), Brazil (BRCA1 5382insC and BRCA2 c.156_157insAlu), and Colombia (BRCA1 3450del4, A1708E, and BRCA2 3034del4) and in Latinas residing in Southern California (BRCA1 185delAG, IVS5+1G>A, S955x, and R1443x). Of these, mutation BRCA1 3450del4 has also been reported in Brazil and Chile, whereas mutation BRCA2 3034del4 has been reported in Argentina and Peru. These data support the idea that although most Hispanic populations are the result of a mixture between Europeans, Africans, and Amerindians, the relative proportion of each genetic component varies throughout the Hispanic populations, making it necessary to identify the mutations characteristic of each population to generate mutation profiles adjusted to each one of them. Conclusion. In Latin American countries, and even among regions of the same country, there is great heterogeneity of ancestors. Therefore, Latinas should not be analyzed like other population groups without taking into account their genetic ancestry. The presence of founder mutations in specific population groups represents a cost-effective analysis. The importance of determining the founder mutations lies mainly in the decrease in costs. If we manage to decrease costs, screenings could be offered more widely and cover a larger number of women. Implications for Practice: Hispanic and African-American populations are four to five times less likely than other populations worldwide to receive screening for BRCA mutations, a main reason being the high costs of these tools. The present study seeks to identify the prevalent mutations and the founder effect in the BRCA gene in the Hispanic population to address specific panels for this population group in the future and develop strategies for population screening. PMID:27286788
Ossa, Carlos Andrés; Torres, Diana
2016-07-01
Numerous epidemiological factors affect the probability of developing breast or ovarian cancer, but no predictor is as determinant as inheriting a mutation in BRCA1 or BRCA2. The concept of the founder effect explains the reduced genetic variability in some populations, according to the theory that new populations can be formed from a reduced number of individuals, so the new population would carry only a small fraction of the genetic variability of the original population. The main purpose of this review is to provide an update on the state of the art in founder mutations and some recurrent mutations that have recently been described in Latin America. A literature search was performed in the electronic databases of PUBMED, EMBASE, LILACS, and BIREME using the terms BRCA1, BRCA2, founder mutation, Latin American population, and Hispanic. Sixty-two papers were identified, of which 38 were considered relevant for this review. Each result is shown per country. In Latin America, clear founder effects have been reported in Mexico (BRCA1 del exons 9-12), Brazil (BRCA1 5382insC and BRCA2 c.156_157insAlu), and Colombia (BRCA1 3450del4, A1708E, and BRCA2 3034del4) and in Latinas residing in Southern California (BRCA1 185delAG, IVS5+1G>A, S955x, and R1443x). Of these, mutation BRCA1 3450del4 has also been reported in Brazil and Chile, whereas mutation BRCA2 3034del4 has been reported in Argentina and Peru. These data support the idea that although most Hispanic populations are the result of a mixture between Europeans, Africans, and Amerindians, the relative proportion of each genetic component varies throughout the Hispanic populations, making it necessary to identify the mutations characteristic of each population to generate mutation profiles adjusted to each one of them. In Latin American countries, and even among regions of the same country, there is great heterogeneity of ancestors. Therefore, Latinas should not be analyzed like other population groups without taking into account their genetic ancestry. The presence of founder mutations in specific population groups represents a cost-effective analysis. The importance of determining the founder mutations lies mainly in the decrease in costs. If we manage to decrease costs, screenings could be offered more widely and cover a larger number of women. Hispanic and African-American populations are four to five times less likely than other populations worldwide to receive screening for BRCA mutations, a main reason being the high costs of these tools. The present study seeks to identify the prevalent mutations and the founder effect in the BRCA gene in the Hispanic population to address specific panels for this population group in the future and develop strategies for population screening. ©AlphaMed Press.
Qiao, Xiuli; Ai, Dan; Liang, Honglu; Mu, Dianbin; Guo, Qisen
2017-01-20
Molecular targeted therapy has gradually become an important treatment for lung cancer, the aim of this research is to analyze the clinicopathologic features associated with the gene mutation status of epidermal growth factor receptor (EGFR), echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK), ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) and Kirsten rat sarcoma viral oncogene (KRAS) in non-small cell lung cancer (NSCLC) patients and determine the most likely populations to benefit from molecular target therapy treatment. The mutation status of EGFR, EML4-ALK fusion gene, ROS1 and KARS gene were determined by Real-time PCR, the relationship between clinical pathologic features and concomitant gene were analyzed with χ2 test by SPSS software 19.0. A total of 514 specimens from Shandong tumor hospital were collected from NSCLC patients between January 2014 and May 2016. The total mutation rate of EGFR gene was 36.70%, major occurred in exon 19 (36.61%) and exon 21 (51.36%), respectively, and EGFR mutations usually occurred in female, non-smoking and adenocarcinoma patients (P<0.05). The total rearrangements rate of EML4-ALK fusion gene was 9.37%, EML4-ALK fusion gene usually occurred in younger age (≤60 yr) and non-smoking patients (P<0.05). Mutations were not related to gender and pathological type (P>0.05). ROS1 fusion gene was detected in 136 cases, the positive rate was 3.67%, all patients were 60 years old, and the difference was statistically significant (P<0.05). Only 23 samples were tested KARS gene mutations, two of them were positive and the positive rate was 8.70%. They all occurred in non-smoker and adenocarcinoma patients. No mutation was detected to coexist in EGFR, EML4-ALK and KARS gene mutation. EGFR, EML4-ALK, ROS1 and KRAS defines different molecular subset of NSCLC with distinct characteristic, which provides a new option for the clinical treatment of patients with NSCLC.
Mori, Hideki; Suzuki, Hidekazu; Matsuzaki, Juntaro; Tsugawa, Hitoshi; Fukuhara, Seiichiro; Miyoshi, Sawako; Hirata, Kenro; Seino, Takashi; Matsushita, Misako; Masaoka, Tatsuhiro; Kanai, Takanori
2016-08-01
Sitafloxacin-containing Helicobacter pylori eradication therapy is a promising third-line therapeutic approach, but there is no previous studies between gyrA mutation status of H. pylori strains and the efficacy of 10-day sitafloxacin-containing regimens. Here, we assessed the efficacy of 2 different 10-day sitafloxacin-containing rescue regimens. Patients who failed first- and second-line eradication therapies were enrolled. The minimum inhibitory concentrations (MICs) of sitafloxacin, amoxicillin, and metronidazole and the gyrA mutation status of the H. pylori strains were determined before treatment. The patients were randomized to receive a 10-day triple therapy containing either esomeprazole (20 mg, b.i.d.), amoxicillin (500 mg, q.i.d.), and sitafloxacin (100 mg, b.i.d.) (EAS regimen) or esomeprazole (20 mg, b.i.d.), metronidazole (250 mg, b.i.d.), and sitafloxacin (100 mg, b.i.d.) (EMS regimen). Eradication rates were evaluated by the [13C] urea breath test or the H. pylori stool antigen test. All patients with gyrA mutation-negative strains (24 in EAS and 16 in EMS) showed successful eradication, irrespective of the regimen they received. In patients with gyrA mutation-positive strains, we found eradication rates of 70.3% (26/37) and 66.7% (26/39) in the EAS and EMS groups in per-protocol population, respectively (p = .81). According to logistic regression analyses, the MICs of sitafloxacin, which were strongly associated with gyrA mutation status, were independently associated with successful eradication in both groups. This study was registered in the UMIN Clinical Trials Registry as UMIN000006483. There is no significant difference in the eradication rates between EAS and EMS, regardless of the gyrA mutation status of the H. pylori strains. GyrA mutation status was an important factor in predicting successful eradication with sitafloxacin-containing rescue therapies. © 2015 John Wiley & Sons Ltd.
Chantreau, Maxime; Grec, Sébastien; Gutierrez, Laurent; Dalmais, Marion; Pineau, Christophe; Demailly, Hervé; Paysant-Leroux, Christine; Tavernier, Reynald; Trouvé, Jean-Paul; Chatterjee, Manash; Guillot, Xavier; Brunaud, Véronique; Chabbert, Brigitte; van Wuytswinkel, Olivier; Bendahmane, Abdelhafid; Thomasset, Brigitte; Hawkins, Simon
2013-10-15
Flax (Linum usitatissimum L.) is an economically important fiber and oil crop that has been grown for thousands of years. The genome has been recently sequenced and transcriptomics are providing information on candidate genes potentially related to agronomically-important traits. In order to accelerate functional characterization of these genes we have generated a flax EMS mutant population that can be used as a TILLinG (Targeting Induced Local Lesions in Genomes) platform for forward and reverse genetics. A population of 4,894 M2 mutant seed families was generated using 3 different EMS concentrations (0.3%, 0.6% and 0.75%) and used to produce M2 plants for subsequent phenotyping and DNA extraction. 10,839 viable M2 plants (4,033 families) were obtained and 1,552 families (38.5%) showed a visual developmental phenotype (stem size and diameter, plant architecture, flower-related). The majority of these families showed more than one phenotype. Mutant phenotype data are organised in a database and can be accessed and searched at UTILLdb (http://urgv.evry.inra.fr/UTILLdb). Preliminary screens were also performed for atypical fiber and seed phenotypes. Genomic DNA was extracted from 3,515 M2 families and eight-fold pooled for subsequent mutant detection by ENDO1 nuclease mis-match cleavage. In order to validate the collection for reverse genetics, DNA pools were screened for two genes coding enzymes of the lignin biosynthesis pathway: Coumarate-3-Hydroxylase (C3H) and Cinnamyl Alcohol Dehydrogenase (CAD). We identified 79 and 76 mutations in the C3H and CAD genes, respectively. The average mutation rate was calculated as 1/41 Kb giving rise to approximately 9,000 mutations per genome. Thirty-five out of the 52 flax cad mutant families containing missense or codon stop mutations showed the typical orange-brown xylem phenotype observed in CAD down-regulated/mutant plants in other species. We have developed a flax mutant population that can be used as an efficient forward and reverse genetics tool. The collection has an extremely high mutation rate that enables the detection of large numbers of independant mutant families by screening a comparatively low number of M2 families. The population will prove to be a valuable resource for both fundamental research and the identification of agronomically-important genes for crop improvement in flax.
2013-01-01
Background Flax (Linum usitatissimum L.) is an economically important fiber and oil crop that has been grown for thousands of years. The genome has been recently sequenced and transcriptomics are providing information on candidate genes potentially related to agronomically-important traits. In order to accelerate functional characterization of these genes we have generated a flax EMS mutant population that can be used as a TILLinG (Targeting Induced Local Lesions in Genomes) platform for forward and reverse genetics. Results A population of 4,894 M2 mutant seed families was generated using 3 different EMS concentrations (0.3%, 0.6% and 0.75%) and used to produce M2 plants for subsequent phenotyping and DNA extraction. 10,839 viable M2 plants (4,033 families) were obtained and 1,552 families (38.5%) showed a visual developmental phenotype (stem size and diameter, plant architecture, flower-related). The majority of these families showed more than one phenotype. Mutant phenotype data are organised in a database and can be accessed and searched at UTILLdb (http://urgv.evry.inra.fr/UTILLdb). Preliminary screens were also performed for atypical fiber and seed phenotypes. Genomic DNA was extracted from 3,515 M2 families and eight-fold pooled for subsequent mutant detection by ENDO1 nuclease mis-match cleavage. In order to validate the collection for reverse genetics, DNA pools were screened for two genes coding enzymes of the lignin biosynthesis pathway: Coumarate-3-Hydroxylase (C3H) and Cinnamyl Alcohol Dehydrogenase (CAD). We identified 79 and 76 mutations in the C3H and CAD genes, respectively. The average mutation rate was calculated as 1/41 Kb giving rise to approximately 9,000 mutations per genome. Thirty-five out of the 52 flax cad mutant families containing missense or codon stop mutations showed the typical orange-brown xylem phenotype observed in CAD down-regulated/mutant plants in other species. Conclusions We have developed a flax mutant population that can be used as an efficient forward and reverse genetics tool. The collection has an extremely high mutation rate that enables the detection of large numbers of independant mutant families by screening a comparatively low number of M2 families. The population will prove to be a valuable resource for both fundamental research and the identification of agronomically-important genes for crop improvement in flax. PMID:24128060
NASA Astrophysics Data System (ADS)
Lee, Kyu Sang; Gill, Wonpyong
2017-11-01
The dynamic properties, such as the crossing time and time-dependence of the relative density of the four-state haploid coupled discrete-time mutation-selection model, were calculated with the assumption that μ ij = μ ji , where μ ij denotes the mutation rate between the sequence elements, i and j. The crossing time for s = 0 and r 23 = r 42 = 1 in the four-state model became saturated at a large fitness parameter when r 12 > 1, was scaled as a power law in the fitness parameter when r 12 = 1, and diverged when the fitness parameter approached the critical fitness parameter when r 12 < 1, where r ij = μ ij / μ 14.
Error catastrophe and phase transition in the empirical fitness landscape of HIV
NASA Astrophysics Data System (ADS)
Hart, Gregory R.; Ferguson, Andrew L.
2015-03-01
We have translated clinical sequence databases of the p6 HIV protein into an empirical fitness landscape quantifying viral replicative capacity as a function of the amino acid sequence. We show that the viral population resides close to a phase transition in sequence space corresponding to an "error catastrophe" beyond which there is lethal accumulation of mutations. Our model predicts that the phase transition may be induced by drug therapies that elevate the mutation rate, or by forcing mutations at particular amino acids. Applying immune pressure to any combination of killer T-cell targets cannot induce the transition, providing a rationale for why the viral protein can exist close to the error catastrophe without sustaining fatal fitness penalties due to adaptive immunity.
Christofferson, Austin; Aldrich, Jessica; Jewell, Scott; Kittles, Rick A.; Derome, Mary; Craig, David Wesley; Carpten, John D.
2017-01-01
Multiple Myeloma (MM) is a plasma cell malignancy with significantly greater incidence and mortality rates among African Americans (AA) compared to Caucasians (CA). The overall goal of this study is to elucidate differences in molecular alterations in MM as a function of self-reported race and genetic ancestry. Our study utilized somatic whole exome, RNA-sequencing, and correlated clinical data from 718 MM patients from the Multiple Myeloma Research Foundation CoMMpass study Interim Analysis 9. Somatic mutational analyses based upon self-reported race corrected for ancestry revealed significant differences in mutation frequency between groups. Of interest, BCL7A, BRWD3, and AUTS2 demonstrate significantly higher mutation frequencies among AA cases. These genes are all involved in translocations in B-cell malignancies. Moreover, we detected a significant difference in mutation frequency of TP53 and IRF4 with frequencies higher among CA cases. Our study provides rationale for interrogating diverse tumor cohorts to best understand tumor genomics across populations. PMID:29166413
A revised timescale for human evolution based on ancient mitochondrial genomes.
Fu, Qiaomei; Mittnik, Alissa; Johnson, Philip L F; Bos, Kirsten; Lari, Martina; Bollongino, Ruth; Sun, Chengkai; Giemsch, Liane; Schmitz, Ralf; Burger, Joachim; Ronchitelli, Anna Maria; Martini, Fabio; Cremonesi, Renata G; Svoboda, Jiří; Bauer, Peter; Caramelli, David; Castellano, Sergi; Reich, David; Pääbo, Svante; Krause, Johannes
2013-04-08
Recent analyses of de novo DNA mutations in modern humans have suggested a nuclear substitution rate that is approximately half that of previous estimates based on fossil calibration. This result has led to suggestions that major events in human evolution occurred far earlier than previously thought. Here, we use mitochondrial genome sequences from ten securely dated ancient modern humans spanning 40,000 years as calibration points for the mitochondrial clock, thus yielding a direct estimate of the mitochondrial substitution rate. Our clock yields mitochondrial divergence times that are in agreement with earlier estimates based on calibration points derived from either fossils or archaeological material. In particular, our results imply a separation of non-Africans from the most closely related sub-Saharan African mitochondrial DNAs (haplogroup L3) that occurred less than 62-95 kya. Though single loci like mitochondrial DNA (mtDNA) can only provide biased estimates of population divergence times, they can provide valid upper bounds. Our results exclude most of the older dates for African and non-African population divergences recently suggested by de novo mutation rate estimates in the nuclear genome. Copyright © 2013 Elsevier Ltd. All rights reserved.
Suppression of Beneficial Mutations in Dynamic Microbial Populations
NASA Astrophysics Data System (ADS)
Bittihn, Philip; Hasty, Jeff; Tsimring, Lev S.
2017-01-01
Quantitative predictions for the spread of mutations in bacterial populations are essential to interpret evolution experiments and to improve the stability of synthetic gene circuits. We derive analytical expressions for the suppression factor for beneficial mutations in populations that undergo periodic dilutions, covering arbitrary population sizes, dilution factors, and growth advantages in a single stochastic model. We find that the suppression factor grows with the dilution factor and depends nontrivially on the growth advantage, resulting in the preferential elimination of mutations with certain growth advantages. We confirm our results by extensive numerical simulations.
The Red Queen in mitochondria: cyto-nuclear co-evolution, hybrid breakdown and human disease
Chou, Jui-Yu; Leu, Jun-Yi
2015-01-01
Cyto-nuclear incompatibility, a specific form of Dobzhansky-Muller incompatibility caused by incompatible alleles between mitochondrial and nuclear genomes, has been suggested to play a critical role during speciation. Several features of the mitochondrial genome (mtDNA), including high mutation rate, dynamic genomic structure, and uniparental inheritance, make mtDNA more likely to accumulate mutations in the population. Once mtDNA has changed, the nuclear genome needs to play catch-up due to the intimate interactions between these two genomes. In two populations, if cyto-nuclear co-evolution is driven in different directions, it may eventually lead to hybrid incompatibility. Although cyto-nuclear incompatibility has been observed in a wide range of organisms, it remains unclear what type of mutations drives the co-evolution. Currently, evidence supporting adaptive mutations in mtDNA remains limited. On the other hand, it has been known that some mutations allow mtDNA to propagate more efficiently but compromise the host fitness (described as selfish mtDNA). Arms races between such selfish mtDNA and host nuclear genomes can accelerate cyto-nuclear co-evolution and lead to a phenomenon called the Red Queen Effect. Here, we discuss how the Red Queen Effect may contribute to the frequent observation of cyto-nuclear incompatibility and be the underlying driving force of some human mitochondrial diseases. PMID:26042149
Zaneveld, Jacques; Siddiqui, Sorath; Li, Huajin; Wang, Xia; Wang, Hui; Wang, Keqing; Li, Hui; Ren, Huanan; Lopez, Irma; Dorfman, Allison; Khan, Ayesha; Wang, Feng; Salvo, Jason; Gelowani, Violet; Li, Yumei; Sui, Ruifang; Koenekoop, Robert; Chen, Rui
2014-01-01
Purpose Stargardt macular dystrophy (STGD) results in early central vision loss. We sought to explain the genetic cause of STGD in a cohort of 88 patients from three different cultural backgrounds. Methods Next Generation Sequencing using a novel capture panel was used to search for disease causing mutations. Unsolved patients were clinically re-examined and tested for copy number variations (CNVs) as well as intronic mutations. Results We determined the cause of disease in 67% of our patients. Our analysis identified 35 novel ABCA4 alleles. Eleven patients had mutations in genes not previously reported to cause STGD. Finally, 45% of our unsolved patients had single deleterious mutations in ABCA4, a recessive disease gene. No likely pathogenic CNVs were identified. Conclusions This study expands our knowledge of STGD by identifying dozens of novel STGD causing alleles. The frequency of patients with single mutations in ABCA4 is higher than controls, indicating these mutations contribute to disease. Eleven patients were explained by mutations outside ABCA4 underlining the need to genotype all retinal disease genes to maximize genetic diagnostic rates. Few ABCA4 mutations were observed in our French Canadian patients. This population may contain an unidentified founder mutation. Our results indicate that CNVs are unlikely to be a major cause of STGD. PMID:25474345
McCoach, C E; Jimeno, A
2016-10-01
Oncogenic driver mutations in the epidermal growth factor receptor (EGFR) gene have provided a focus for effective targeted therapy. Unfortunately, all patients eventually develop resistance to frontline therapy with EGFR tyrosine kinase inhibitors (TKIs). The majority of patients develop a large subclonal population of tumor cells with a T790M mutation that renders these cells resistant to first-generation TKIs. Osimertinib is a third-generation EGFR TKI that was designed to overcome resistance from T790M mutations. This agent has demonstrated strong preclinical activity, and in the clinic it has demonstrated a high objective response rate and progression-free survival in patients with EGFR double mutations (L858R/T790M and exon 19 deletion/T790M). It is now approved by the FDA for patients who have a documented T790M mutation and who have progressed on a prior TKI. Osimertinib is also approved in the E.U. and Japan. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.
Genetic screens for mutations affecting development of Xenopus tropicalis.
Goda, Tadahiro; Abu-Daya, Anita; Carruthers, Samantha; Clark, Matthew D; Stemple, Derek L; Zimmerman, Lyle B
2006-06-01
We present here the results of forward and reverse genetic screens for chemically-induced mutations in Xenopus tropicalis. In our forward genetic screen, we have uncovered 77 candidate phenotypes in diverse organogenesis and differentiation processes. Using a gynogenetic screen design, which minimizes time and husbandry space expenditures, we find that if a phenotype is detected in the gynogenetic F2 of a given F1 female twice, it is highly likely to be a heritable abnormality (29/29 cases). We have also demonstrated the feasibility of reverse genetic approaches for obtaining carriers of mutations in specific genes, and have directly determined an induced mutation rate by sequencing specific exons from a mutagenized population. The Xenopus system, with its well-understood embryology, fate map, and gain-of-function approaches, can now be coupled with efficient loss-of-function genetic strategies for vertebrate functional genomics and developmental genetics.
Annealing Ant Colony Optimization with Mutation Operator for Solving TSP.
Mohsen, Abdulqader M
2016-01-01
Ant Colony Optimization (ACO) has been successfully applied to solve a wide range of combinatorial optimization problems such as minimum spanning tree, traveling salesman problem, and quadratic assignment problem. Basic ACO has drawbacks of trapping into local minimum and low convergence rate. Simulated annealing (SA) and mutation operator have the jumping ability and global convergence; and local search has the ability to speed up the convergence. Therefore, this paper proposed a hybrid ACO algorithm integrating the advantages of ACO, SA, mutation operator, and local search procedure to solve the traveling salesman problem. The core of algorithm is based on the ACO. SA and mutation operator were used to increase the ants population diversity from time to time and the local search was used to exploit the current search area efficiently. The comparative experiments, using 24 TSP instances from TSPLIB, show that the proposed algorithm outperformed some well-known algorithms in the literature in terms of solution quality.
Back to the future: revisiting HIV-1 lethal mutagenesis
Dapp, Michael J.; Patterson, Steven E.; Mansky, Louis M.
2012-01-01
The concept of eliminating HIV-1 infectivity by elevating the viral mutation rate was first proposed over a decade ago, even though the general concept had been conceived earlier for RNA viruses. Lethal mutagenesis was originally viewed as a novel chemotherapeutic approach for treating HIV-1 infection in which use of a viral mutagen would over multiple rounds of replication lead to the lethal accumulation of mutations, rendering the virus population non infectious – known as the slow mutation accumulation model. There have been limitations in obtaining good efficacy data with drug leads, leaving some doubt into clinical translation. More recent studies of the APOBEC3 proteins as well as new progress in the use of nucleoside analogs for inducing lethal mutagenesis have helped to refocus attention on rapid induction of HIV-1 lethal mutagenesis in a single or limited number of replication cycles leading to a rapid mutation accumulation model. PMID:23195922
Timing, rates and spectra of human germline mutation.
Rahbari, Raheleh; Wuster, Arthur; Lindsay, Sarah J; Hardwick, Robert J; Alexandrov, Ludmil B; Turki, Saeed Al; Dominiczak, Anna; Morris, Andrew; Porteous, David; Smith, Blair; Stratton, Michael R; Hurles, Matthew E
2016-02-01
Germline mutations are a driving force behind genome evolution and genetic disease. We investigated genome-wide mutation rates and spectra in multi-sibling families. The mutation rate increased with paternal age in all families, but the number of additional mutations per year differed by more than twofold between families. Meta-analysis of 6,570 mutations showed that germline methylation influences mutation rates. In contrast to somatic mutations, we found remarkable consistency in germline mutation spectra between the sexes and at different paternal ages. In parental germ line, 3.8% of mutations were mosaic, resulting in 1.3% of mutations being shared by siblings. The number of these shared mutations varied significantly between families. Our data suggest that the mutation rate per cell division is higher during both early embryogenesis and differentiation of primordial germ cells but is reduced substantially during post-pubertal spermatogenesis. These findings have important consequences for the recurrence risks of disorders caused by de novo mutations.
Clock-like mutational processes in human somatic cells
Alexandrov, Ludmil B.; Jones, Philip H.; Wedge, David C.; Sale, Julian E.; Campbell, Peter J.; Nik-Zainal, Serena; Stratton, Michael R.
2016-01-01
During the course of a lifetime somatic cells acquire mutations. Different mutational processes may contribute to the mutations accumulated in a cell, with each imprinting a mutational signature on the cell’s genome. Some processes generate mutations throughout life at a constant rate in all individuals and the number of mutations in a cell attributable to these processes will be proportional to the chronological age of the person. Using mutations from 10,250 cancer genomes across 36 cancer types, we investigated clock-like mutational processes that have been operating in normal human cells. Two mutational signatures show clock-like properties. Both exhibit different mutation rates in different tissues. However, their mutation rates are not correlated indicating that the underlying processes are subject to different biological influences. For one signature, the rate of cell division may influence its mutation rate. This study provides the first survey of clock-like mutational processes operative in human somatic cells. PMID:26551669
Ozturk, Onur; Arikan, Sanem; Atalay, Ayfer; Atalay, Erol O
2016-07-01
Understanding the genetic origin of the Hb D-Los Angeles hemoglobin may elucidate population interactions such as movements, migrations, and environmental effects on mutation mechanisms in human biology throughout history. Our study aimed to understand the genetic origin of Hb D-Los Angeles based on haplotype data, observed in the Denizli province of Turkey. We studied DNA samples from 40 unrelated patients with abnormal hemoglobin Hb D-Los Angeles and 59 unrelated healthy subjects from our DNA bank. Possible associated haplotypes, HWE, genetic diversity and population differentiation, population genetic structure analysis and historical-demographic analysis for the two populations were determined by Arlequin ver. 3.5. Molecular diversity results from the two populations show that both populations are genetically similar as far as development and expansion during the historical period. Historical gene flow results show high gene flow between the two populations. SSD and rg tests failed to reject the null hypothesis of population expansion which is consistent with unimodal distribution. Our estimated τ values show that the average time since the demographic expansion for normal and Hb D-Los Angeles populations ranged from approximately 42,000-38,000 ybp, respectively. Our data suggest that the Hb D-Los Angeles population originated within the normal population in Denizli, Turkey. Our results support the hypothesis that the Hb D-Los Angeles mutation may have originated in the Mediterranean area, independent from other populations such as India and China. The evaluation of such data may contribute valuable information to anthropological, paleoclimatic, archaeological, and phylogeographical approaches to human biology throughout the historical period. Am. J. Hum. Biol. 28:476-483, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Emergent Neutrality in Adaptive Asexual Evolution
Schiffels, Stephan; Szöllősi, Gergely J.; Mustonen, Ville; Lässig, Michael
2011-01-01
In nonrecombining genomes, genetic linkage can be an important evolutionary force. Linkage generates interference interactions, by which simultaneously occurring mutations affect each other’s chance of fixation. Here, we develop a comprehensive model of adaptive evolution in linked genomes, which integrates interference interactions between multiple beneficial and deleterious mutations into a unified framework. By an approximate analytical solution, we predict the fixation rates of these mutations, as well as the probabilities of beneficial and deleterious alleles at fixed genomic sites. We find that interference interactions generate a regime of emergent neutrality: all genomic sites with selection coefficients smaller in magnitude than a characteristic threshold have nearly random fixed alleles, and both beneficial and deleterious mutations at these sites have nearly neutral fixation rates. We show that this dynamic limits not only the speed of adaptation, but also a population’s degree of adaptation in its current environment. We apply the model to different scenarios: stationary adaptation in a time-dependent environment and approach to equilibrium in a fixed environment. In both cases, the analytical predictions are in good agreement with numerical simulations. Our results suggest that interference can severely compromise biological functions in an adapting population, which sets viability limits on adaptive evolution under linkage. PMID:21926305
Diploid yeast cells yield homozygous spontaneous mutations
NASA Technical Reports Server (NTRS)
Esposito, M. S.; Bruschi, C. V.; Brushi, C. V. (Principal Investigator)
1993-01-01
A leucine-requiring hybrid of Saccharomyces cerevisiae, homoallelic at the LEU1 locus (leu1-12/leu1-12) and heterozygous for three chromosome-VII genetic markers distal to the LEU1 locus, was employed to inquire: (1) whether spontaneous gene mutation and mitotic segregation of heterozygous markers occur in positive nonrandom association and (2) whether homozygous LEU1/LEU1 mutant diploids are generated. The results demonstrate that gene mutation of leu1-12 to LEU1 and mitotic segregation of heterozygous chromosome-VII markers occur in strong positive nonrandom association, suggesting that the stimulatory DNA lesion is both mutagenic and recombinogenic. In addition, genetic analysis of diploid Leu+ revertants revealed that approximately 3% of mutations of leu1-12 to LEU1 result in LEU1/LEU1 homozygotes. Red-white sectored Leu+ colonies exhibit genotypes that implicate post-replicational chromatid breakage and exchange near the site of leu1-12 reversion, chromosome loss, and subsequent restitution of diploidy, in the sequence of events leading to mutational homozygosis. By analogy, diploid cell populations can yield variants homozygous for novel recessive gene mutations at biologically significant rates. Mutational homozygosis may be relevant to both carcinogenesis and the evolution of asexual diploid organisms.
Effect of Dedifferentiation on Time to Mutation Acquisition in Stem Cell-Driven Cancers
Jilkine, Alexandra; Gutenkunst, Ryan N.
2014-01-01
Accumulating evidence suggests that many tumors have a hierarchical organization, with the bulk of the tumor composed of relatively differentiated short-lived progenitor cells that are maintained by a small population of undifferentiated long-lived cancer stem cells. It is unclear, however, whether cancer stem cells originate from normal stem cells or from dedifferentiated progenitor cells. To address this, we mathematically modeled the effect of dedifferentiation on carcinogenesis. We considered a hybrid stochastic-deterministic model of mutation accumulation in both stem cells and progenitors, including dedifferentiation of progenitor cells to a stem cell-like state. We performed exact computer simulations of the emergence of tumor subpopulations with two mutations, and we derived semi-analytical estimates for the waiting time distribution to fixation. Our results suggest that dedifferentiation may play an important role in carcinogenesis, depending on how stem cell homeostasis is maintained. If the stem cell population size is held strictly constant (due to all divisions being asymmetric), we found that dedifferentiation acts like a positive selective force in the stem cell population and thus speeds carcinogenesis. If the stem cell population size is allowed to vary stochastically with density-dependent reproduction rates (allowing both symmetric and asymmetric divisions), we found that dedifferentiation beyond a critical threshold leads to exponential growth of the stem cell population. Thus, dedifferentiation may play a crucial role, the common modeling assumption of constant stem cell population size may not be adequate, and further progress in understanding carcinogenesis demands a more detailed mechanistic understanding of stem cell homeostasis. PMID:24603301
Govorovskaya, Irina; Khromova, Elena; Suslova, Tatiana; Alexeev, Leonid; Kofiadi, Ilya
2016-12-01
The distribution of genetic variants associated with natural resistance to viral infections can vary among human ethnic groups due to evolutionary factors, defining the different epidemiologic background of world populations. The polymorphisms, defining the natural resistance to HIV-infection and the rate of progression up to AIDS, are very important since epidemic is still on rise. We have studied the distribution of allele and genotype frequencies of CCR5delta32 mutation in major populations inhabiting Chelyabinsk region of the Russian Federation. Genetic survey included the population of 509 potential blood marrow donors: Russians (N = 300), Bashkirs (N = 118) and Tatars (N = 91). The genotyping assay was performed using real-time polymerase chain reaction (real-time PCR). The genotypes were defined by melting curve analysis. The CCR5delta32 allele and CCR5delta32/delta32 genotype are presented in population of Russians in Chelyabinsk region with the frequencies of F x = 10.83% and P x = 1.67, for the CCR5delta32 allele and its homozygosity, respectively. In populations of Bashkirs and Tatars CCR5delta32 allele and CCR5delta32/delta32 genotype are presented at lower frequencies of F x = 6.36%/P x = 0.85 and F x = 7.14%/P x = 1.10, respectively. These data are consistent with the theory of northern origin of the CCR5delta32 mutation.
Clock-like mutational processes in human somatic cells
Alexandrov, Ludmil B.; Jones, Philip H.; Wedge, David C.; ...
2015-11-09
During the course of a lifetime, somatic cells acquire mutations. Different mutational processes may contribute to the mutations accumulated in a cell, with each imprinting a mutational signature on the cell's genome. Some processes generate mutations throughout life at a constant rate in all individuals, and the number of mutations in a cell attributable to these processes will be proportional to the chronological age of the person. Using mutations from 10,250 cancer genomes across 36 cancer types, we investigated clock-like mutational processes that have been operating in normal human cells. Two mutational signatures show clock-like properties. Both exhibit different mutationmore » rates in different tissues. However, their mutation rates are not correlated, indicating that the underlying processes are subject to different biological influences. For one signature, the rate of cell division may influence its mutation rate. This paper provides the first survey of clock-like mutational processes operating in human somatic cells.« less
NLGN3/NLGN4 gene mutations are not responsible for autism in the Quebec population.
Gauthier, Julie; Bonnel, Anna; St-Onge, Judith; Karemera, Liliane; Laurent, Sandra; Mottron, Laurent; Fombonne, Eric; Joober, Ridha; Rouleau, Guy A
2005-01-05
Jamain [2003: Nat Genet 34:27-29] recently reported mutations in two neuroligin genes in sib-pairs affected with autism. In order to confirm these causative mutations in our autistic population and to determine their frequency we screened 96 individuals affected with autism. We found no mutations in these X-linked genes. These results indicate that mutations in NLGN3 and NLGN4 genes are responsible for at most a small fraction of autism cases and additional screenings in other autistic populations are needed to better determine the frequency with which mutations in NLGN3 and NLGN4 occur in autism. Copyright 2004 Wiley-Liss, Inc.
Risk of population extinction from fixation of deleterious and reverse mutations.
Lande, R
1998-01-01
A model is developed for alternate fixations of mildly deleterious and wild-type alleles arising by forward and reverse mutation in a finite population. For almost all parameter values, this gives an equilibrium load that agrees closely with the general expression derived from diffusion theory. Nearly neutral mutations with selection coefficient a few times larger than 1/(2N(e)) do the most damage by increasing the equilibrium load. The model of alternate fixations facilitates dynamical analysis of the expected load and the mean time to extinction in a population that has been suddenly reduced from a very large size to a small size. Reverse mutation can substantially improve population viability, increasing the mean time to extinction by an order of magnitude or more, but because many mutations are irreversible the effects may not be large. Populations with initially high mean fitness and small effective size, N(e) below a few hundred individuals, may be at serious risk of extinction from fixation of deleterious mutations within 10(3) to 10(4) generations.
Parent-progeny sequencing indicates higher mutation rates in heterozygotes.
Yang, Sihai; Wang, Long; Huang, Ju; Zhang, Xiaohui; Yuan, Yang; Chen, Jian-Qun; Hurst, Laurence D; Tian, Dacheng
2015-07-23
Mutation rates vary within genomes, but the causes of this remain unclear. As many prior inferences rely on methods that assume an absence of selection, potentially leading to artefactual results, we call mutation events directly using a parent-offspring sequencing strategy focusing on Arabidopsis and using rice and honey bee for replication. Here we show that mutation rates are higher in heterozygotes and in proximity to crossover events. A correlation between recombination rate and intraspecific diversity is in part owing to a higher mutation rate in domains of high recombination/diversity. Implicating diversity per se as a cause, we find an ∼3.5-fold higher mutation rate in heterozygotes than in homozygotes, with mutations occurring in closer proximity to heterozygous sites than expected by chance. In a genome that is a patchwork of heterozygous and homozygous domains, mutations occur disproportionately more often in the heterozygous domains. If segregating mutations predispose to a higher local mutation rate, clusters of genes dominantly under purifying selection (more commonly homozygous) and under balancing selection (more commonly heterozygous), might have low and high mutation rates, respectively. Our results are consistent with this, there being a ten times higher mutation rate in pathogen resistance genes, expected to be under positive or balancing selection. Consequently, we do not necessarily need to evoke extremely weak selection on the mutation rate to explain why mutational hot and cold spots might correspond to regions under positive/balancing and purifying selection, respectively.
Spontaneous Mutation Rate in the Smallest Photosynthetic Eukaryotes
Krasovec, Marc; Eyre-Walker, Adam; Sanchez-Ferandin, Sophie
2017-01-01
Abstract Mutation is the ultimate source of genetic variation, and knowledge of mutation rates is fundamental for our understanding of all evolutionary processes. High throughput sequencing of mutation accumulation lines has provided genome wide spontaneous mutation rates in a dozen model species, but estimates from nonmodel organisms from much of the diversity of life are very limited. Here, we report mutation rates in four haploid marine bacterial-sized photosynthetic eukaryotic algae; Bathycoccus prasinos, Ostreococcus tauri, Ostreococcus mediterraneus, and Micromonas pusilla. The spontaneous mutation rate between species varies from μ = 4.4 × 10−10 to 9.8 × 10−10 mutations per nucleotide per generation. Within genomes, there is a two-fold increase of the mutation rate in intergenic regions, consistent with an optimization of mismatch and transcription-coupled DNA repair in coding sequences. Additionally, we show that deviation from the equilibrium GC content increases the mutation rate by ∼2% to ∼12% because of a GC bias in coding sequences. More generally, the difference between the observed and equilibrium GC content of genomes explains some of the inter-specific variation in mutation rates. PMID:28379581
Yanola, Jintana; Chamnanya, Saowanee; Lumjuan, Nongkran; Somboon, Pradya
2015-09-01
The mosquito vector Culex quinquefasciatus is known to be resistant to insecticides worldwide, including Thailand. This study was the first investigation of the insecticide resistance mechanisms, involving metabolic detoxification and target site insensitivity in C. quinquefasciatus from Thailand. Adult females reared from field-caught larvae from six provinces of northern Thailand were determined for resistant status by exposing to 0.05% deltamethrin, 0.75% permethrin and 5% malathion papers using the standard WHO susceptibility test. The overall mortality rates were 45.8%, 11.4% and 80.2%, respectively. A fragment of voltage-gated sodium channel gene was amplified and sequenced to identify the knock down resistance (kdr) mutation. The ace-1 gene mutation was determined by using PCR-RFLP. The L1014F kdr mutation was observed in all populations, but the homozygous mutant F/F1014 genotype was found only in two of the six provinces where the kdr mutation was significantly correlated with deltamethrin resistance. However, none of mosquitoes had the G119S mutation in the ace-1 gene. A laboratory deltamethrin resistant strain, Cq_CM_R, has been established showing a highly resistant level after selection for a few generations. The mutant F1014 allele frequency was significantly increased after one generation of selection. A synergist assay was performed to assess the metabolic detoxifying enzymes. Addition of bis(4-nitrophenyl)-phosphate (BNPP) and diethyl maleate (DEM), inhibitors of esterases and glutathione S-transferases (GST), respectively, into the larval bioassay of the Cq_CM strain with deltamethrin showed no significant reduction. By contrast, addition of piperonyl butoxide (PBO), an inhibitor of cytochrome P450 monooxygenases, showed a 9-fold reduction of resistance. Resistance to pyrethroids in C. quinquefasciatus is widely distributed in northern Thailand. This study reports for the first time for the detection of the L1014F kdr mutation in wild populations of C. quinquefasciatus in Thailand. At least two major mechanisms, kdr and cytochrome P450 monooxygenases, confer resistance to deltamethrin in Thai C. quinquefasciatus populations. Copyright © 2015 Elsevier B.V. All rights reserved.
Kaundun, Shiv Shankhar; Hutchings, Sarah-Jane; Dale, Richard P.; McIndoe, Eddie
2013-01-01
Background Knowledge of the mechanisms of herbicide resistance is important for designing long term sustainable weed management strategies. Here, we have used an integrated biology and molecular approach to investigate the mechanisms of resistance to acetyl-CoA carboxylase inhibiting herbicides in a UK black-grass population (BG2). Methodology/Principal Findings Comparison between BG2 phenotypes using single discriminant rates of herbicides and genotypes based on ACCase gene sequencing showed that the I1781L, a novel I1781T, but not the W2027C mutations, were associated with resistance to cycloxydim. All plants were killed with clethodim and a few individuals containing the I1781L mutation were partially resistant to tepraloxydim. Whole plant dose response assays demonstrated that a single copy of the mutant T1781 allele conferred fourfold resistance levels to cycloxydim and clodinafop-propargyl. In contrast, the impact of the I1781T mutation was low (Rf = 1.6) and non-significant on pinoxaden. BG2 was also characterised by high levels of resistance, very likely non-target site based, to the two cereal selective herbicides clodinafop-propargyl and pinoxaden and not to the poorly metabolisable cyclohexanedione herbicides. Analysis of 480 plants from 40 cycloxydim resistant black grass populations from the UK using two very effective and high throughput dCAPS assays established for detecting any amino acid changes at the 1781 ACCase codon and for positively identifying the threonine residue, showed that the occurrence of the T1781 is extremely rare compared to the L1781 allele. Conclusion/Significance This study revealed a novel mutation at ACCase codon position 1781 and adequately assessed target site and non-target site mechanisms in conferring resistance to several ACCase herbicides in a black-grass population. It highlights that over time the level of suspected non-target site resistance to some cereal selective ACCase herbicides have in some instances surpassed that of target site resistance, including the one endowed by the most commonly encountered I1781L mutation. PMID:23936046
Gomez-Mestre, Ivan; Jovani, Roger
2013-11-22
An ongoing new synthesis in evolutionary theory is expanding our view of the sources of heritable variation beyond point mutations of fixed phenotypic effects to include environmentally sensitive changes in gene regulation. This expansion of the paradigm is necessary given ample evidence for a heritable ability to alter gene expression in response to environmental cues. In consequence, single genotypes are often capable of adaptively expressing different phenotypes in different environments, i.e. are adaptively plastic. We present an individual-based heuristic model to compare the adaptive dynamics of populations composed of plastic or non-plastic genotypes under a wide range of scenarios where we modify environmental variation, mutation rate and costs of plasticity. The model shows that adaptive plasticity contributes to the maintenance of genetic variation within populations, reduces bottlenecks when facing rapid environmental changes and confers an overall faster rate of adaptation. In fluctuating environments, plasticity is favoured by selection and maintained in the population. However, if the environment stabilizes and costs of plasticity are high, plasticity is reduced by selection, leading to genetic assimilation, which could result in species diversification. More broadly, our model shows that adaptive plasticity is a common consequence of selection under environmental heterogeneity, and hence a potentially common phenomenon in nature. Thus, taking adaptive plasticity into account substantially extends our view of adaptive evolution.
Adaptation, extinction and global change
Bell, Graham; Collins, Sinéad
2008-01-01
We discuss three interlinked issues: the natural pace of environmental change and adaptation, the likelihood that a population will adapt to a potentially lethal change, and adaptation to elevated CO2, the prime mover of global change. Environmental variability is governed by power laws showing that ln difference in conditions increases with ln elapsed time at a rate of 0.3–0.4. This leads to strong but fluctuating selection in many natural populations. The effect of repeated adverse change on mean fitness depends on its frequency rather than its severity. If the depression of mean fitness leads to population decline, however, severe stress may cause extinction. Evolutionary rescue from extinction requires abundant genetic variation or a high mutation supply rate, and thus a large population size. Although natural populations can sustain quite intense selection, they often fail to adapt to anthropogenic stresses such as pollution and acidification and instead become extinct. Experimental selection lines of algae show no specific adaptation to elevated CO2, but instead lose their carbon-concentrating mechanism through mutational degradation. This is likely to reduce the effectiveness of the oceanic carbon pump. Elevated CO2 is also likely to lead to changes in phytoplankton community composition, although it is not yet clear what these will be. We emphasize the importance of experimental evolution in understanding and predicting the biological response to global change. This will be one of the main tasks of evolutionary biologists in the coming decade. PMID:25567487
Extraordinary Genetic Diversity in a Wood Decay Mushroom.
Baranova, Maria A; Logacheva, Maria D; Penin, Aleksey A; Seplyarskiy, Vladimir B; Safonova, Yana Y; Naumenko, Sergey A; Klepikova, Anna V; Gerasimov, Evgeny S; Bazykin, Georgii A; James, Timothy Y; Kondrashov, Alexey S
2015-10-01
Populations of different species vary in the amounts of genetic diversity they possess. Nucleotide diversity π, the fraction of nucleotides that are different between two randomly chosen genotypes, has been known to range in eukaryotes between 0.0001 in Lynx lynx and 0.16 in Caenorhabditis brenneri. Here, we report the results of a comparative analysis of 24 haploid genotypes (12 from the United States and 12 from European Russia) of a split-gill fungus Schizophyllum commune. The diversity at synonymous sites is 0.20 in the American population of S. commune and 0.13 in the Russian population. This exceptionally high level of nucleotide diversity also leads to extreme amino acid diversity of protein-coding genes. Using whole-genome resequencing of 2 parental and 17 offspring haploid genotypes, we estimate that the mutation rate in S. commune is high, at 2.0 × 10(-8) (95% CI: 1.1 × 10(-8) to 4.1 × 10(-8)) per nucleotide per generation. Therefore, the high diversity of S. commune is primarily determined by its elevated mutation rate, although high effective population size likely also plays a role. Small genome size, ease of cultivation and completion of the life cycle in the laboratory, free-living haploid life stages and exceptionally high variability of S. commune make it a promising model organism for population, quantitative, and evolutionary genetics. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Whole-exome sequencing identifies recurrent AKT1 mutations in sclerosing hemangioma of lung
Jung, Seung-Hyun; Kim, Min Sung; Lee, Sung-Hak; Park, Hyun-Chun; Choi, Hyun Joo; Maeng, Leeso; Min, Ki Ouk; Kim, Jeana; Park, Tae In; Shin, Ok Ran; Kim, Tae-Jung; Xu, Haidong; Lee, Kyo Young; Kim, Tae-Min; Song, Sang Yong; Lee, Charles; Chung, Yeun-Jun; Lee, Sug Hyung
2016-01-01
Pulmonary sclerosing hemangioma (PSH) is a benign tumor with two cell populations (epithelial and stromal cells), for which genomic profiles remain unknown. We conducted exome sequencing of 44 PSHs and identified recurrent somatic mutations of AKT1 (43.2%) and β-catenin (4.5%). We used a second subset of 24 PSHs to confirm the high frequency of AKT1 mutations (overall 31/68, 45.6%; p.E17K, 33.8%) and recurrent β-catenin mutations (overall 3 of 68, 4.4%). Of the PSHs without AKT1 mutations, two exhibited AKT1 copy gain. AKT1 mutations existed in both epithelial and stromal cells. In two separate PSHs from one patient, we observed two different AKT1 mutations, indicating they were not disseminated but independent arising tumors. Because the AKT1 mutations were not found to co-occur with β-catenin mutations (or any other known driver alterations) in any of the PSHs studied, we speculate that this may be the single-most common driver alteration to develop PSHs. Our study revealed genomic differences between PSHs and lung adenocarcinomas, including a high rate of AKT1 mutation in PSHs. These genomic features of PSH identified in the present study provide clues to understanding the biology of PSH and for differential genomic diagnosis of lung tumors. PMID:27601661
Deleterious BRCA1/2 mutations in an urban population of Black women
Smith, Karen Lisa; Stein, Julie; DeMarco, Tiffani; Wang, Yiru; Wang, Hongkun; Fries, Melissa; Peshkin, Beth N.; Isaacs, Claudine
2018-01-01
Information on the prevalence of deleterious BRCA1 and BRCA2 (BRCA1/2) mutations in clinic-based populations of Black women is limited. In order to address this gap, we performed a retrospective study to determine the prevalence of deleterious BRCA1/2 mutations, predictors of having a mutation, and acceptance of risk-reducing surgeries in Black women. In an urban unselected clinic-based population, we evaluated 211 self-identified Black women who underwent genetic counseling for hereditary breast–ovarian cancer syndrome. BRCA1/2 mutations were identified in 13.4 % of the participants who received genetic testing. Younger age at diagnosis, higher BRCA-PRO score, significant family history, and diagnosis of triple-negative breast cancer were associated with identification of a BRCA1/2 mutation. Of the affected patients found to have a deleterious mutation, almost half underwent prophylactic measures. In our study population, 1 in 7 Black women who underwent genetic testing harbored a deleterious BRCA1/2 mutation independent of age at diagnosis or family history. PMID:26250392
Leitersdorf, E; Van der Westhuyzen, D R; Coetzee, G A; Hobbs, H H
1989-09-01
Familial hypercholesterolemia (FH), an autosomal dominant disease caused by mutations in the LDL receptor gene, is five times more frequent in the Afrikaner population of South Africa than it is in the population of the United States and Europe. It has been proposed that the high frequency is due to a founder effect. In this paper, we characterized 24 mutant LDL receptor alleles from 12 Afrikaner individuals homozygous for FH. We identified two mutations that together makeup greater than 95% of the mutant LDL receptor genes represented in our sample. Both mutations were basepair substitutions that result in single-amino acid changes. Each mutation can be detected readily with the polymerase chain reaction and restriction analysis. The finding of two common LDL receptor mutations in the Afrikaner FH homozygotes predicts that these mutations will predominate in the Afrikaner population and that the high frequency of FH is due to a founder effect. The increased incidence of ischemic heart disease in the Afrikaner population may in part be due to the high frequency of these two mutations in the LDL receptor gene.
Leitersdorf, E; Van der Westhuyzen, D R; Coetzee, G A; Hobbs, H H
1989-01-01
Familial hypercholesterolemia (FH), an autosomal dominant disease caused by mutations in the LDL receptor gene, is five times more frequent in the Afrikaner population of South Africa than it is in the population of the United States and Europe. It has been proposed that the high frequency is due to a founder effect. In this paper, we characterized 24 mutant LDL receptor alleles from 12 Afrikaner individuals homozygous for FH. We identified two mutations that together makeup greater than 95% of the mutant LDL receptor genes represented in our sample. Both mutations were basepair substitutions that result in single-amino acid changes. Each mutation can be detected readily with the polymerase chain reaction and restriction analysis. The finding of two common LDL receptor mutations in the Afrikaner FH homozygotes predicts that these mutations will predominate in the Afrikaner population and that the high frequency of FH is due to a founder effect. The increased incidence of ischemic heart disease in the Afrikaner population may in part be due to the high frequency of these two mutations in the LDL receptor gene. Images PMID:2569482
Du, J; Wang, Z; Yang, L; Di, J; Zhang, J G; Wang, T Y; Liu, D G
2018-01-23
Objective: To evaluate the consistency in detection of T790M mutation of epidermal growth factor receptor gene (EGFR) in plasma and tumor samples of patients with lung adenocarcinoma. Methods: The tumor tissues or cytological specimens of 12 patients with operable lung adenocarcinoma(stage Ⅰ-ⅢA) and 100 patients with advanced stage ⅢB-Ⅳ lung adenocarcinoma were collected, among which 11 patients showed acquired resistance for gefitinib (11/100). In the same period, peripheral blood samples were collected from all patients and 50 healthy volunteers. Amplification refractory mutation system (ARMS) was used to detect EGFR mutations in tumor specimens. Next Generation Sequencing(NGS) based circulating single-molecule amplification and resequencing technology (cSMART)was performed to quantitatively detect the EGFR mutations in circulating tumor DNA (ctDNA) from plasma specimens. Results: The sensitivity, specificity and concordance rate of EGFR T790M mutation between plasma and tissue specimens from 100 advanced stage patients were 50.0%, 72.9% and 72.0%, respectively. For L858R mutation and exon 19 deletion mutations, the above mentioned sensitivity, specificity and concordance rate were 91.7%, 100.0%, and 98.0%, as well as 79.2%, 100.0% and 95.0%, respectively. The L858R mutation and exon 19 deletion mutations were not detected in plasma of 50 healthy volunteers, whereasT790M mutation(1.0±0.0 copies) was found in 7 individuals(7/50, 14.0%). Similarly, in 12 resectable patients, 4 (4/12, 33.3%) T790M mutations were found in plasma (1.2±0.2 copies), but no L858R mutation and 19 exon deletion mutations. In comparison, 28.0% of patients with advanced lung adenocarcinoma (28/100)had detectable T790M mutation in plasma with copy numbers (34.0±22.7 copies). Furthermore, the copy numbers of T790M were 268.2±119.9 in plasma of 5 cases with acquired gefitinib-resistance. Conclusions: In patients with advanced stages of lung adenocarcinoma, the detection of T790M mutation in plasma and tumor specimens is low. The T790M mutation also exists in the plasma of some healthy controls, suggesting that T790M mutation participates in EGFR signaling pathway and it might function in healthy population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosatelli, M.C.; Faa, V.; Sardu, R.
This study reports the molecular characterization of [beta]-thalassemia in the Sardinian population. Three thousand [beta]-thalassemia chromosomes from prospective parents presenting at the genetic service were initially analyzed by dot blot analysis with oligonucleotide probes complementary to the most common [beta]-thalassemia mutations in the Mediterranean at-risk populations. The mutation which remained uncharacterized by this approach were defined by denaturing gradient gel electrophoresis (DGGE) followed by direct sequence analysis on amplified DNA. The authors reconfirmed that the predominant mutation in the Sardinian population is the codon 39 nonsense mutation, which accounts for 95.7% of the [beta]-thalassemia chromosomes. The other two relatively commonmore » mutations are frameshifts at codon 6 (2.1%) and at codon 76 (0.7%), relatively uncommon in other Mediterranean-origin populations. In this study they have detected a novel [beta]-thalassemia mutation, i.e., a frameshift at codon 1, in three [beta]-thalassemia chromosomes. The DGGE procedure followed by direct sequencing on amplified DNA is a powerful approach for the characterization of unknown mutations in this genetic system.« less
Cost-effective PKHD1 genetic testing for autosomal recessive polycystic kidney disease.
Krall, Paola; Pineda, Cristina; Ruiz, Patricia; Ejarque, Laia; Vendrell, Teresa; Camacho, Juan Antonio; Mendizábal, Santiago; Oliver, Artur; Ballarín, José; Torra, Roser; Ars, Elisabet
2014-02-01
Genetic diagnosis of autosomal recessive polycystic kidney disease (ARPKD) is challenging due to the length and allelic heterogeneity of the PKHD1 gene. Mutations appear to be clustered at specific exons, depending on the geographic origin of the patient. We aimed to identify the PKHD1 exons most likely mutated in Spanish ARPKD patients. Mutation analysis was performed in 50 ARPKD probands and nine ARPKD-suspicious patients by sequencing PKHD1 exons arranged by their reported mutation frequency. Haplotypes containing the most frequent mutations were analyzed. Other PKD genes (HNF1B, PKD1, PKD2) were sequenced in PKHD1-negative cases. Thirty-six different mutations (concentrated in 24 PKHD1 exons) were detected, giving a mutation detection rate of 86%. The screening of five exons (58, 32, 34, 36, 37) yielded a 54% chance of detecting one mutation; the screening of nine additional exons (3, 9, 39, 61, 5, 22, 26, 41, 57) increased the chance to 76%. The c.9689delA mutation was present in 17 (34%) patients, all of whom shared the same haplotype. Two HNF1B mutations and one PKD1 variant were detected in negative cases. Establishing a PKHD1 exon mutation profile in a specific population and starting the analysis with the most likely mutated exons might significantly enhance the efficacy of genetic testing in ARPKD. Analysis of other PKD genes might be considered, especially in suspicious cases.
Detecting negative selection on recurrent mutations using gene genealogy
2013-01-01
Background Whether or not a mutant allele in a population is under selection is an important issue in population genetics, and various neutrality tests have been invented so far to detect selection. However, detection of negative selection has been notoriously difficult, partly because negatively selected alleles are usually rare in the population and have little impact on either population dynamics or the shape of the gene genealogy. Recently, through studies of genetic disorders and genome-wide analyses, many structural variations were shown to occur recurrently in the population. Such “recurrent mutations” might be revealed as deleterious by exploiting the signal of negative selection in the gene genealogy enhanced by their recurrence. Results Motivated by the above idea, we devised two new test statistics. One is the total number of mutants at a recurrently mutating locus among sampled sequences, which is tested conditionally on the number of forward mutations mapped on the sequence genealogy. The other is the size of the most common class of identical-by-descent mutants in the sample, again tested conditionally on the number of forward mutations mapped on the sequence genealogy. To examine the performance of these two tests, we simulated recurrently mutated loci each flanked by sites with neutral single nucleotide polymorphisms (SNPs), with no recombination. Using neutral recurrent mutations as null models, we attempted to detect deleterious recurrent mutations. Our analyses demonstrated high powers of our new tests under constant population size, as well as their moderate power to detect selection in expanding populations. We also devised a new maximum parsimony algorithm that, given the states of the sampled sequences at a recurrently mutating locus and an incompletely resolved genealogy, enumerates mutation histories with a minimum number of mutations while partially resolving genealogical relationships when necessary. Conclusions With their considerably high powers to detect negative selection, our new neutrality tests may open new venues for dealing with the population genetics of recurrent mutations as well as help identifying some types of genetic disorders that may have escaped identification by currently existing methods. PMID:23651527
Sources and Sinks: A Stochastic Model of Evolution in Heterogeneous Environments
NASA Astrophysics Data System (ADS)
Hermsen, Rutger; Hwa, Terence
2010-12-01
We study evolution driven by spatial heterogeneity in a stochastic model of source-sink ecologies. A sink is a habitat where mortality exceeds reproduction so that a local population persists only due to immigration from a source. Immigrants can, however, adapt to conditions in the sink by mutation. To characterize the adaptation rate, we derive expressions for the first arrival time of adapted mutants. The joint effects of migration, mutation, birth, and death result in two distinct parameter regimes. These results may pertain to the rapid evolution of drug-resistant pathogens and insects.
Klemp, Jennifer R.; Kimler, Bruce F.; Mahnken, Jonathan D.; Geier, Larry J.; Khan, Qamar J.; Elia, Manana; Connor, Carol S.; McGinness, Marilee K.; Mammen, Joshua M. W.; Wagner, Jamie L.; Ward, Claire; Ranallo, Lori; Knight, Catherine J.; Stecklein, Shane R.; Jensen, Roy A.; Fabian, Carol J.; Godwin, Andrew K.
2014-01-01
NCCN guidelines recommend genetic testing for all triple-negative breast cancer (TNBC) patients aged ≤60 years. However, due to the lack of prospective information in unselected patients, these guidelines are not uniformly adopted by clinicians and insurance carriers. The aim of this study was to determine the prevalence of BRCA mutations and evaluate the utility of NCCN guidelines in unselected TNBC population. Stage I–IV TNBC patients were enrolled on a prospective registry at academic and community practices. All patients underwent BRCA1/2 testing. Significant family history (SFH) was defined >1 relative with breast cancer at age ≤50 or ≥1 relative with ovarian cancer. Mutation prevalence in the entire cohort and subgroups was calculated. 207 TNBC patients were enrolled between 2011 and 2013. Racial/ethnic distribution: Caucasian (80 %), African–American (14 %), Ashkenazi (1 %). Deleterious BRCA1/2 mutations were identified in 15.4 % (32/207) of patients (BRCA1:11.1 %, BRCA2:4.3 %). SFH reported by 36 % of patients. Mutation prevalence in patients with and without SFH was 31.6 and 6.1 %, respectively. When assessed by age at TNBC diagnosis, the mutation prevalences were 27.6 % (≤50 years), 11.4 % (51–60 years), and 4.9 % (≥61 years). Using SFH or age ≤50 as criteria, 25 and 34 % of mutations, respectively, were missed. Mutation prevalence in patients meeting NCCN guidelines was 18.3 % (32/175) and 0 % (0/32) in patients who did not meet guidelines (p = .0059). In this unselected academic and community population with negligible Ashkenazi representation, we observed an overall BRCA mutation prevalence rate of 15.4 %. BRCA testing based on NCCN guidelines identified all carriers supporting its routine application in clinical practice for TNBC. PMID:24807107
Yanagawa, Yoshimaro; Aoki, Tomoyuki; Morimura, Tadashi; Araki, Osamu; Kimura, Takao; Ogiwara, Takayuki; Kotajima, Nobuo; Yanagawa, Masumi; Murakami, Masami
2014-01-01
In Japanese pediatric patients with thyrotropin (TSH) resistance, the R450H mutation in TSH receptor gene (TSHR) is occasionally observed. We studied the frequency and clinical implication of the R450H mutation in TSHR in the general population of Japanese adults using smart amplification process 2 (SmartAmp2). We designed SmartAmp2 primer sets to detect this mutation using a drop of whole blood. We analyzed thyroid function, antithyroid antibodies, and this mutation in 429 Japanese participants who had not been found to have thyroid disease. Two cases without antithyroid antibodies were heterozygous for the R450H mutation in TSHR. Thus, the prevalence of this mutation was 0.47% in the general population and 0.63% among those without antithyroid antibodies. Their serum TSH concentrations were higher than the average TSH concentration not only in subjects without antithyroid antibodies but also in those with antithyroid antibodies. The R450H mutation in TSHR is relatively common in the Japanese population and potentially affects thyroid function. The present study demonstrates that the SmartAmp2 method is useful to detect the R450H mutation in TSHR, which is one of the common causes of TSH resistance in the Japanese population. PMID:24895636
Toll-Riera, Macarena; Heilbron, Karl
2016-01-01
Antibiotic resistance carries a fitness cost that must be overcome in order for resistance to persist over the long term. Compensatory mutations that recover the functional defects associated with resistance mutations have been argued to play a key role in overcoming the cost of resistance, but compensatory mutations are expected to be rare relative to generally beneficial mutations that increase fitness, irrespective of antibiotic resistance. Given this asymmetry, population genetics theory predicts that populations should adapt by compensatory mutations when the cost of resistance is large, whereas generally beneficial mutations should drive adaptation when the cost of resistance is small. We tested this prediction by determining the genomic mechanisms underpinning adaptation to antibiotic-free conditions in populations of the pathogenic bacterium Pseudomonas aeruginosa that carry costly antibiotic resistance mutations. Whole-genome sequencing revealed that populations founded by high-cost rifampicin-resistant mutants adapted via compensatory mutations in three genes of the RNA polymerase core enzyme, whereas populations founded by low-cost mutants adapted by generally beneficial mutations, predominantly in the quorum-sensing transcriptional regulator gene lasR. Even though the importance of compensatory evolution in maintaining resistance has been widely recognized, our study shows that the roles of general adaptation in maintaining resistance should not be underestimated and highlights the need to understand how selection at other sites in the genome influences the dynamics of resistance alleles in clinical settings. PMID:26763710
Hitchhiking and epistasis give rise to cohort dynamics in adapting populations
Buskirk, Sean W.; Peace, Ryan Emily; Lang, Gregory I.
2017-01-01
Beneficial mutations are the driving force of adaptive evolution. In asexual populations, the identification of beneficial alleles is confounded by the presence of genetically linked hitchhiker mutations. Parallel evolution experiments enable the recognition of common targets of selection; yet these targets are inherently enriched for genes of large target size and mutations of large effect. A comprehensive study of individual mutations is necessary to create a realistic picture of the evolutionarily significant spectrum of beneficial mutations. Here we use a bulk-segregant approach to identify the beneficial mutations across 11 lineages of experimentally evolved yeast populations. We report that nearly 80% of detected mutations have no discernible effects on fitness and less than 1% are deleterious. We determine the distribution of driver and hitchhiker mutations in 31 mutational cohorts, groups of mutations that arise synchronously from low frequency and track tightly with one another. Surprisingly, we find that one-third of cohorts lack identifiable driver mutations. In addition, we identify intracohort synergistic epistasis between alleles of hsl7 and kel1, which arose together in a low-frequency lineage. PMID:28720700
Charoute, Hicham; Bakhchane, Amina; Benrahma, Houda; Romdhane, Lilia; Gabi, Khalid; Rouba, Hassan; Fakiri, Malika; Abdelhak, Sonia; Lenaers, Guy; Barakat, Abdelhamid
2015-11-01
The Mediterranean basin has been the theater of migration crossroads followed by settlement of several societies and cultures in prehistoric and historical times, with important consequences on genetic and genomic determinisms. Here, we present the Mediterranean Founder Mutation Database (MFMD), established to offer web-based access to founder mutation information in the Mediterranean population. Mutation data were collected from the literature and other online resources and systematically reviewed and assembled into this database. The information provided for each founder mutation includes DNA change, amino-acid change, mutation type and mutation effect, as well as mutation frequency and coalescence time when available. Currently, the database contains 383 founder mutations found in 210 genes related to 219 diseases. We believe that MFMD will help scientists and physicians to design more rapid and less expensive genetic diagnostic tests. Moreover, the coalescence time of founder mutations gives an overview about the migration history of the Mediterranean population. MFMD can be publicly accessed from http://mfmd.pasteur.ma. © 2015 WILEY PERIODICALS, INC.
Kim, Yuseob; Escalante, Ananias A.; Schneider, Kristan A.
2014-01-01
To develop public-health policies that extend the lifespan of affordable anti-malarial drugs as effective treatment options, it is necessary to understand the evolutionary processes leading to the origin and spread of mutations conferring drug resistance in malarial parasites. We built a population-genetic model for the emergence of resistance under combination drug therapy. Reproductive cycles of parasites are specified by their absolute fitness determined by clinical parameters, thus coupling the evolutionary-genetic with population-dynamic processes. Initial mutations confer only partial drug-resistance. Therefore, mutant parasites rarely survive combination therapy and within-host competition is very weak among parasites. The model focuses on the early phase of such unsuccessful recurrent mutations. This ends in the rare event of mutants enriching in an infected individual from which the successful spread of resistance over the entire population is initiated. By computer simulations, the waiting time until the establishment of resistant parasites is analysed. Resistance spreads quickly following the first appearance of a host infected predominantly by mutant parasites. This occurs either through a rare transmission of a resistant parasite to an uninfected host or through a rare failure of drugs in removing “transient” mutant alleles. The emergence of resistance is delayed with lower mutation rate, earlier treatment, higher metabolic cost of resistance, longer duration of high drug dose, and higher drug efficacy causing a stronger reduction in the sensitive and resistant parasites’ fitnesses. Overall, contrary to other studies’ proposition, the current model based on absolute fitness suggests that aggressive drug treatment delays the emergence of drug resistance. PMID:25007207
Katju, Vaishali; Packard, Lucille B; Keightley, Peter D
2018-04-01
The consequences of mutations for population fitness depends on their individual selection coefficients and the effective population size. An earlier study of Caenorhabditis elegans spontaneous mutation accumulation lines evolved for 409 generations at three population sizes found that N e = 1 populations declined significantly in fitness whereas the fitness of larger populations (N e = 5, 50) was indistinguishable from the ancestral control under benign conditions. To test if larger MA populations harbor a load of cryptic deleterious mutations that are obscured under benign laboratory conditions, we measured fitness under osmotic stress via exposure to hypersaline conditions. The fitness of N e = 1 lines exhibited a further decline under osmotic stress compared to benign conditions. However, the fitness of larger populations remained indistinguishable from that of the ancestral control. The average effects of deleterious mutations in N e = 1 lines were estimated to be 22% for productivity and 14% for survivorship, exceeding values previously detected under benign conditions. Our results suggest that fitness decline is due to large effect mutations that are rapidly removed via selection even in small populations, with implications for conservation practices. Genetic stochasticity may not be as potent and immediate a threat to the persistence of small populations as other demographic and environmental stochastic factors. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Distribution of BRCA1 and BRCA2 Mutations in Asian Patients with Breast Cancer
Kim, Haeyoung
2013-01-01
Breast cancer is the most prevalent cancer in Asian females, and the incidence of breast cancer has been increasing in Asia. Because Asian patients develop breast cancer at a younger age than their Caucasian counterparts, the contributions of BRCA1 and BRCA2 (BRCA1/2) mutations in Asians are expected to be different than in Caucasians. The prevalence of BRCA1/2 mutations in the Asian population varies among countries and studies. Most Asian studies have reported more frequent mutations in BRCA2 than in BRCA1, with the exception of studies from India and Pakistan. In addition, the contribution of large genomic rearrangements of BRCA1/2 genes is relatively small in Asian populations in comparison to other ethnic populations. Various statistical models for the prediction of BRCA1/2 mutations have underestimated the risk of having these genetic mutations in Asians, especially in predicting BRCA2 gene mutation. Until recently, BRCA1/2 mutation analyses in Asia were mostly conducted by independent single institutions with different patient selection criteria and using various genotyping methods. However, a couple of Asian groups have initiated nationwide studies collecting BRCA1/2 mutational data. These national collaborative studies will help a comprehensive understanding of the prevalence of BRCA1/2 mutations in the Asian population. PMID:24454456
Continuous in vitro evolution of catalytic function.
Wright, M C; Joyce, G F
1997-04-25
A population of RNA molecules that catalyze the template-directed ligation of RNA substrates was made to evolve in a continuous manner in the test tube. A simple serial transfer procedure was used to achieve approximately 300 successive rounds of catalysis and selective amplification in 52 hours. During this time, the population size was maintained against an overall dilution of 3 x 10(298). Both the catalytic rate and amplification rate of the RNAs improved substantially as a consequence of mutations that accumulated during the evolution process. Continuous in vitro evolution makes it possible to maintain laboratory "cultures" of catalytic molecules that can be perpetuated indefinitely.
Continuous in vitro evolution of catalytic function
NASA Technical Reports Server (NTRS)
Wright, M. C.; Joyce, G. F.
1997-01-01
A population of RNA molecules that catalyze the template-directed ligation of RNA substrates was made to evolve in a continuous manner in the test tube. A simple serial transfer procedure was used to achieve approximately 300 successive rounds of catalysis and selective amplification in 52 hours. During this time, the population size was maintained against an overall dilution of 3 x 10(298). Both the catalytic rate and amplification rate of the RNAs improved substantially as a consequence of mutations that accumulated during the evolution process. Continuous in vitro evolution makes it possible to maintain laboratory "cultures" of catalytic molecules that can be perpetuated indefinitely.
Claerhout, Sofie; Vandenbosch, Michiel; Nivelle, Kelly; Gruyters, Leen; Peeters, Anke; Larmuseau, Maarten H D; Decorte, Ronny
2018-05-01
Knowledge of Y-chromosomal short tandem repeat (Y-STR) mutation rates is essential to determine the most recent common ancestor (MRCA) in familial searching or genealogy research. Up to now, locus-specific mutation rates have been extensively examined especially for commercially available forensic Y-STRs, while haplogroup specific mutation rates have not yet been investigated in detail. Through 450 patrilineally related namesakes distributed over 212 deep-rooting genealogies, the individual mutation rates of 42 Y-STR loci were determined, including 27 forensic Y-STR loci from the Yfiler ® Plus kit and 15 additional Y-STR loci (DYS388, DYS426, DYS442, DYS447, DYS454, DYS455, DYS459a/b, DYS549, DYS607, DYS643, DYS724a/b and YCAIIa/b). At least 726 mutations were observed over 148,596 meiosis and individual Y-STR mutation rates varied from 2.83 × 10 -4 to 1.86 × 10 -2 . The mutation rate was significantly correlated with the average allele size, the complexity of the repeat motif sequence and the age of the father. Significant differences in average Y-STR mutations rates were observed when haplogroup 'I & J' (4.03 × 10 -3 mutations/generation) was compared to 'R1b' (5.35 × 10 -3 mutations/generation) and to the overall mutation rate (5.03 × 10 -3 mutations/generation). A difference in allele size distribution was identified as the only cause for these haplogroup specific mutation rates. The haplogroup specific mutation rates were also present within the commercially available Y-STR kits (Yfiler ® , PowerPlex ® Y23 System and Yfiler ® Plus). This observation has consequences for applications where an average Y-STR mutation rate is used, e.g. tMRCA estimations in familial searching and genealogy research. Copyright © 2018 Elsevier B.V. All rights reserved.
Cellular replication limits in the Luria-Delbrück mutation model
NASA Astrophysics Data System (ADS)
Rodriguez-Brenes, Ignacio A.; Wodarz, Dominik; Komarova, Natalia L.
2016-08-01
Originally developed to elucidate the mechanisms of natural selection in bacteria, the Luria-Delbrück model assumed that cells are intrinsically capable of dividing an unlimited number of times. This assumption however, is not true for human somatic cells which undergo replicative senescence. Replicative senescence is thought to act as a mechanism to protect against cancer and the escape from it is a rate-limiting step in cancer progression. Here we introduce a Luria-Delbrück model that explicitly takes into account cellular replication limits in the wild type cell population and models the emergence of mutants that escape replicative senescence. We present results on the mean, variance, distribution, and asymptotic behavior of the mutant population in terms of three classical formulations of the problem. More broadly the paper introduces the concept of incorporating replicative limits as part of the Luria-Delbrück mutational framework. Guidelines to extend the theory to include other types of mutations and possible applications to the modeling of telomere crisis and fluctuation analysis are also discussed.
Meier, Bettina; Cooke, Susanna L.; Weiss, Joerg; Bailly, Aymeric P.; Alexandrov, Ludmil B.; Marshall, John; Raine, Keiran; Maddison, Mark; Anderson, Elizabeth; Stratton, Michael R.; Campbell, Peter J.
2014-01-01
Mutation is associated with developmental and hereditary disorders, aging, and cancer. While we understand some mutational processes operative in human disease, most remain mysterious. We used Caenorhabditis elegans whole-genome sequencing to model mutational signatures, analyzing 183 worm populations across 17 DNA repair-deficient backgrounds propagated for 20 generations or exposed to carcinogens. The baseline mutation rate in C. elegans was approximately one per genome per generation, not overtly altered across several DNA repair deficiencies over 20 generations. Telomere erosion led to complex chromosomal rearrangements initiated by breakage–fusion–bridge cycles and completed by simultaneously acquired, localized clusters of breakpoints. Aflatoxin B1 induced substitutions of guanines in a GpC context, as observed in aflatoxin-induced liver cancers. Mutational burden increased with impaired nucleotide excision repair. Cisplatin and mechlorethamine, DNA crosslinking agents, caused dose- and genotype-dependent signatures among indels, substitutions, and rearrangements. Strikingly, both agents induced clustered rearrangements resembling “chromoanasynthesis,” a replication-based mutational signature seen in constitutional genomic disorders, suggesting that interstrand crosslinks may play a pathogenic role in such events. Cisplatin mutagenicity was most pronounced in xpf-1 mutants, suggesting that this gene critically protects cells against platinum chemotherapy. Thus, experimental model systems combined with genome sequencing can recapture and mechanistically explain mutational signatures associated with human disease. PMID:25030888
A novel BRCA-1 mutation in Arab kindred from east Jerusalem with breast and ovarian cancer
Kadouri, Luna; Bercovich, Dani; Elimelech, Arava; Lerer, Israela; Sagi, Michal; Glusman, Gila; Shochat, Chen; Korem, Sigal; Hamburger, Tamar; Nissan, Aviram; Abu-Halaf, Nahil; Badrriyah, Muhmud; Abeliovich, Dvorah; Peretz, Tamar
2007-01-01
Background The incidence of breast cancer (BC) in Arab women is lower compared to the incidence in the Jewish population in Israel; still, it is the most common malignancy among Arab women. There is a steep rise in breast cancer incidence in the Arab population in Israel over the last 10 years that can be attributed to life style changes. But, the younger age of BC onset in Arab women compared with that of the Jewish population is suggestive of a genetic component in BC occurrence in that population. Methods We studied the family history of 31 women of Palestinian Arab (PA) origin affected with breast (n = 28), ovarian (n = 3) cancer. We used denaturing high performance liquid chromatography (DHPLC) to screen for mutations of BRCA1/2 in 4 women with a personal and family history highly suggestive of genetic predisposition. Results A novel BRCA1 mutation, E1373X in exon 12, was found in a patient affected with ovarian cancer. Four of her family members, 3 BC patients and a healthy individual were consequently also found to carry this mutation. Of the other 27 patients, which were screened for this specific mutation none was found to carry it. Conclusion We found a novel BRCA1 mutation in a family of PA origin with a history highly compatible with BRCA1 phenotype. This mutation was not found in additional 30 PA women affected with BC or OC. Therefore full BRCA1/2 screening should be offered to patients with characteristic family history. The significance of the novel BRCA1 mutation we identified should be studied in larger population. However, it is likely that the E1373X mutation is not a founder frequent mutation in the PA population. PMID:17233897
Prevalance of Canavan disease heterozygotes in the New York Metropolitan Ashkenazi Jewish population
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kronn, D.; Oddoux, C.; Phillips, J.
1995-11-01
Canavan disease is a severe neurodegenerative disease that occurs most commonly in the Ashkenazi Jewish population. Previous studies have indicated the carrier frequency to be between 1/59 and 1/45. The disease, now recognized as a deficiency of aspartoacylase, is associated with the pathological finding of spongy degeneration of the brain. Patients are usually normal at birth, but by 2-4 mo they lose milestones and develop seizures, macrocephaly, and hypertonia. Death occurs in early childhood. With the availability of enzymatic testing, an increase in the incidence of newly diagnosed cases has been observed, suggesting that the frequency of the disorder maymore » have been underestimated. In 1993, the cDNA for the aspartoacylase gene was cloned, and an A{yields}C transition at nucleotide 854 was identified in affected individuals. This represents a missense mutation from glutamine to alanine at amino acid residue 285 (E285A). This mutation was found in 73/88 Canavan disease-bearing chromosomes from Ashkenazi patients. In the same study, a C{yields}A transition at nucleotide 693, which results in the conversion from a tyrosine codon to terminator codon at position 231 (Y231X), was found in 13/88 chromosomes. Thus, these two mutations provide a detection rate >97% in this population. The aspartoacylase gene spans 23 kb of DNA and has been mapped to 17p13-ter by FISH. The gene consists of six coding exons. The E285A mutation is located in exon 6 and results in the creation of a new EagI site, whereas the Y231X mutation is found in exon S and creates an MseI site. In this study we have determined the frequency of these two mutations from a panel of unaffected individuals who live in the New York metropolitan area. 9 refs., 1 tab.« less
Kurath, G.; Dodds, J.A.
1995-01-01
The high level of genetic diversity and rapid evolution of viral RNA genomes are well documented, but few studies have characterized the rate and nature of ongoing genetic change over time under controlled experimental conditions, especially in plant hosts. The RNA genome of satellite tobacco mosaic virus (STMV) was used as an effective model for such studies because of advantageous features of its genome structure and because the extant genetic heterogeneity of STMV has been characterized previously. In the present study, the process of genetic change over time was studied by monitoring multiple serial passage lines of STMV populations for changes in their consensus sequences. A total of 42 passage lines were initiated by inoculation of tobacco plants with a helper tobamovirus and one of four STMV RNA inocula that were transcribed from full-length infectious STMV clones or extracted from purified STMV type strain virions. Ten serial passages were carried out for each line and the consensus genotypes of progeny STMV populations were assessed for genetic change by RNase protection analyses of the entire 1,059-nt STMV genome. Three different types of genetic change were observed, including the fixation of novel mutations in 9 of 42 lines, mutation at the major heterogeneity site near nt 751 in 5 of the 19 lines inoculated with a single genotype, and selection of a single major genotype in 6 of the 23 lines inoculated with mixed genotypes. Sequence analyses showed that the majority of mutations were single base substitutions. The distribution of mutation sites included three clusters in which mutations occurred at or very near the same site, suggesting hot spots of genetic change in the STMV genome. The diversity of genetic changes in sibling lines is clear evidence for the important role of chance and random sampling events in the process of genetic diversification of STMV virus populations.
Evolution of Functional Diversification within Quasispecies
Colizzi, Enrico Sandro; Hogeweg, Paulien
2014-01-01
According to quasispecies theory, high mutation rates limit the amount of information genomes can store (Eigen’s Paradox), whereas genomes with higher degrees of neutrality may be selected even at the expenses of higher replication rates (the “survival of the flattest” effect). Introducing a complex genotype to phenotype map, such as RNA folding, epitomizes such effect because of the existence of neutral networks and their exploitation by evolution, affecting both population structure and genome composition. We reexamine these classical results in the light of an RNA-based system that can evolve its own ecology. Contrary to expectations, we find that quasispecies evolving at high mutation rates are steep and characterized by one master sequence. Importantly, the analysis of the system and the characterization of the evolved quasispecies reveal the emergence of functionalities as phenotypes of nonreplicating genotypes, whose presence is crucial for the overall viability and stability of the system. In other words, the master sequence codes for the information of the entire ecosystem, whereas the decoding happens, stochastically, through mutations. We show that this solution quickly outcompetes strategies based on genomes with a high degree of neutrality. In conclusion, individually coded but ecosystem-based diversity evolves and persists indefinitely close to the Information Threshold. PMID:25056399
The stability of colorectal cancer mathematical models
NASA Astrophysics Data System (ADS)
Khairudin, Nur Izzati; Abdullah, Farah Aini
2013-04-01
Colorectal cancer is one of the most common types of cancer. To better understand about the kinetics of cancer growth, mathematical models are used to provide insight into the progression of this natural process which enables physicians and oncologists to determine optimal radiation and chemotherapy schedules and develop a prognosis, both of which are indispensable for treating cancer. This thesis investigates the stability of colorectal cancer mathematical models. We found that continuous saturating feedback is the best available model of colorectal cancer growth. We also performed stability analysis. The result shows that cancer progress in sequence of genetic mutations or epigenetic which lead to a very large number of cells population until become unbounded. The cell population growth initiate and its saturating feedback is overcome when mutation changes causing the net per-capita growth rate of stem or transit cells exceed critical threshold.
The Evolution of Latent Genes in Subdivided Populations
Moody, M. E.; Basten, C. J.
1990-01-01
We define latent genes as phenotypically silent DNA sequences which may be reactivated by various genetic mechanisms. Of interest is how they and their functional counterparts can be maintained at high frequency in the face of mutation and selection pressure. We propose a two-deme, three-allele model incorporating viability selection, mutation and migration in haploid populations. It is shown that polymorphism for the three alleles can be easily maintained for a wide range of biologically meaningful parameter values. Computer simulations were employed to gain qualitative insight into the global dynamics of the system. It was found that the dynamics of the latent allele is closely correlated with that of the functional allele. In addition, bias in the migration rates can strengthen or weaken selective conditions for preservation of the functional and latent alleles. PMID:2307354
Nance, Holly A; Klimley, Peter; Galván-Magaña, Felipe; Martínez-Ortíz, Jimmy; Marko, Peter B
2011-01-01
Genetic diversity (θ), effective population size (N(e)), and contemporary levels of gene flow are important parameters to estimate for species of conservation concern, such as the globally endangered scalloped hammerhead shark, Sphyrna lewini. Therefore, we have reconstructed the demographic history of S. lewini across its Eastern Pacific (EP) range by applying classical and coalescent population genetic methods to a combination of 15 microsatellite loci and mtDNA control region sequences. In addition to significant population genetic structure and isolation-by-distance among seven coastal sites between central Mexico and Ecuador, the analyses revealed that all populations have experienced a bottleneck and that all current values of θ are at least an order of magnitude smaller than ancestral θ, indicating large decreases in N(e) (θ = 4N(e)μ), where μ is the mutation rate. Application of the isolation-with-migration (IM) model showed modest but significant genetic connectivity between most sampled sites (point estimates of Nm = 0.1-16.7), with divergence times (t) among all populations significantly greater than zero. Using a conservative (i.e., slow) fossil-based taxon-specific phylogenetic calibration for mtDNA mutation rates, posterior probability distributions (PPDs) for the onset of the decline in N(e) predate modern fishing in this region. The cause of decline over the last several thousand years is unknown but is highly atypical as a post-glacial demographic history. Regardless of the cause, our data and analyses suggest that S. lewini was far more abundant throughout the EP in the past than at present.
Nance, Holly A.; Klimley, Peter; Galván-Magaña, Felipe; Martínez-Ortíz, Jimmy; Marko, Peter B.
2011-01-01
Genetic diversity (θ), effective population size (Ne), and contemporary levels of gene flow are important parameters to estimate for species of conservation concern, such as the globally endangered scalloped hammerhead shark, Sphyrna lewini. Therefore, we have reconstructed the demographic history of S. lewini across its Eastern Pacific (EP) range by applying classical and coalescent population genetic methods to a combination of 15 microsatellite loci and mtDNA control region sequences. In addition to significant population genetic structure and isolation-by-distance among seven coastal sites between central Mexico and Ecuador, the analyses revealed that all populations have experienced a bottleneck and that all current values of θ are at least an order of magnitude smaller than ancestral θ, indicating large decreases in Ne (θ = 4Neμ), where μ is the mutation rate. Application of the isolation-with-migration (IM) model showed modest but significant genetic connectivity between most sampled sites (point estimates of Nm = 0.1–16.7), with divergence times (t) among all populations significantly greater than zero. Using a conservative (i.e., slow) fossil-based taxon-specific phylogenetic calibration for mtDNA mutation rates, posterior probability distributions (PPDs) for the onset of the decline in Ne predate modern fishing in this region. The cause of decline over the last several thousand years is unknown but is highly atypical as a post-glacial demographic history. Regardless of the cause, our data and analyses suggest that S. lewini was far more abundant throughout the EP in the past than at present. PMID:21789171
Kyithar, M P; Bacon, S; Pannu, K K; Rizvi, S R; Colclough, K; Ellard, S; Byrne, M M
2011-12-01
The prevalence of hepatocyte nuclear factor (HNF)-1A and HNF4A mutations, and the clinical implications following the genetic diagnosis of maturity-onset diabetes of the young (MODY) in the Irish population, remain unknown. The aim of this study was to establish the occurrence of HNF1A and HNF4A mutations in subjects classified clinically as MODY to identify novel mutations, and to determine the phenotypic features and response to therapy. A total of 36 unrelated index cases with a clinical diagnosis of MODY were analyzed for HNF1A/HNF4A mutations. OGTT was performed to determine the degree of glucose tolerance and insulin secretory response. Also, 38 relatives underwent OGTT and were tested for the relevant known mutations. HNF1A-/HNF4A-MODY subjects were compared with nine HNF1A mutation-negative relatives and 20 type 2 diabetic (T2DM) patients. Seven different HNF1A mutations were identified in 11/36 (30.5%) index cases, two of which were novel (S352fsdelG and F426X), as well as two novel HNF4A mutations (M1? and R290C; 6%). Family screening revealed 20 subjects with HNF1A and seven with HNF4A mutations. Only 51.6% of HNF1A mutation carriers were diagnosed with diabetes by age 25 years; 11 of the mutation carriers were overweight and four were obese. Insulin secretory response to glucose was significantly lower in HNF1A-MODY subjects than in T2DM patients and HNF1A mutation-negative relatives (P=0.01). Therapeutic changes occurred in 48% of mutation carriers following genetic diagnosis. There was an HNF1A-MODY pick-up rate of 30.5% and an HNF4A-MODY pick-up rate of 6% in Irish MODY families. Genetically confirmed MODY has significant therapeutic implications. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Héritier, Sébastien; Emile, Jean-François; Barkaoui, Mohamed-Aziz; Thomas, Caroline; Fraitag, Sylvie; Boudjemaa, Sabah; Renaud, Florence; Moreau, Anne; Peuchmaur, Michel; Chassagne-Clément, Catherine; Dijoud, Frédérique; Rigau, Valérie; Moshous, Despina; Lambilliotte, Anne; Mazingue, Françoise; Kebaili, Kamila; Miron, Jean; Jeziorski, Eric; Plat, Geneviève; Aladjidi, Nathalie; Ferster, Alina; Pacquement, Hélène; Galambrun, Claire; Brugières, Laurence; Leverger, Guy; Mansuy, Ludovic; Paillard, Catherine; Deville, Anne; Armari-Alla, Corinne; Lutun, Anne; Gillibert-Yvert, Marion; Stephan, Jean-Louis; Cohen-Aubart, Fleur; Haroche, Julien; Pellier, Isabelle; Millot, Frédéric; Lescoeur, Brigitte; Gandemer, Virginie; Bodemer, Christine; Lacave, Roger; Hélias-Rodzewicz, Zofia; Taly, Valérie; Geissmann, Frédéric; Donadieu, Jean
2016-09-01
Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasia with a broad spectrum of clinical manifestations and outcomes in children. The somatic BRAF(V600E) mutation occurs frequently, but clinical significance remains to be determined. BRAF(V600E) mutation was investigated in a French LCH cohort. We analyzed associations between mutation status and clinical presentation, extent of disease, reactivation rate, response to therapy, and long-term permanent sequelae. Among 315 patients with successfully determined BRAF status, 173 (54.6%) carried a BRAF(V600E) mutation. Patients with BRAF(V600E) manifested more severe disease than did those with wild-type BRAF. Patients with BRAF(V600E) comprised 87.8% of patients (43 of 49) with multisystem LCH with risk organ involvement (liver, spleen, hematology), 68.6% of patients (35 of 51) with multisystem LCH without risk organ involvement, 43.9% of patients (86 of 196) with single-system LCH, and 42.1% of patients (8 of 19) with lung-involved LCH (P < .001). BRAF(V600E) mutation was also associated with organ involvement that could lead to permanent, irreversible damage, such as neurologic (75%) and pituitary (72.9%) injuries. Compared with patients with wild-type BRAF, patients with BRAF(V600E) more commonly displayed resistance to combined vinblastine and corticosteroid therapy (21.9% v 3.3%; P = .001), showed a higher reactivation rate (5-year reactivation rate, 42.8% v 28.1%; P = .006), and had more permanent, long-term consequences from disease or treatment (27.9% v 12.6%; P = .001). In children with LCH, BRAF(V600E) mutation was associated with high-risk features, permanent injury, and poor short-term response to chemotherapy. Further population-based studies should be undertaken to confirm our observations and to assess the impact of BRAF inhibitors for this subgroup of patients who may benefit from targeted therapy. © 2016 by American Society of Clinical Oncology.
Lower cognitive performance in healthy G2019S LRRK2 mutation carriers
Thaler, Avner; Mirelman, Anat; Gurevich, Tanya; Simon, Ely; Orr-Urtreger, Avi; Marder, Karen; Bressman, Susan
2012-01-01
Objective: To assess cognitive abilities of healthy first-degree relatives of Ashkenazi patients with Parkinson disease (PD), carriers of the G2019S mutation in the LRRK2 gene. Methods: In this observational study, 60 consecutive healthy first-degree relatives (aged 50.9 ± 6.2 years; 48% male; 30 G2019S carriers) were assessed using a computerized cognitive program, the Montreal Cognitive Assessment questionnaire, the Unified Parkinson's Disease Rating Scale Part III, and the Geriatric Depression Scale. Results: G2019S carriers scored significantly lower on the computerized executive function index (p = 0.04) and on specific executive function tasks (Stroop test, p = 0.007). Conclusion: Carrying the LRRK2 G2019S mutation was associated with lower executive performance in a population at risk for PD. PMID:22914834
Copy-number analysis and inference of subclonal populations in cancer genomes using Sclust.
Cun, Yupeng; Yang, Tsun-Po; Achter, Viktor; Lang, Ulrich; Peifer, Martin
2018-06-01
The genomes of cancer cells constantly change during pathogenesis. This evolutionary process can lead to the emergence of drug-resistant mutations in subclonal populations, which can hinder therapeutic intervention in patients. Data derived from massively parallel sequencing can be used to infer these subclonal populations using tumor-specific point mutations. The accurate determination of copy-number changes and tumor impurity is necessary to reliably infer subclonal populations by mutational clustering. This protocol describes how to use Sclust, a copy-number analysis method with a recently developed mutational clustering approach. In a series of simulations and comparisons with alternative methods, we have previously shown that Sclust accurately determines copy-number states and subclonal populations. Performance tests show that the method is computationally efficient, with copy-number analysis and mutational clustering taking <10 min. Sclust is designed such that even non-experts in computational biology or bioinformatics with basic knowledge of the Linux/Unix command-line syntax should be able to carry out analyses of subclonal populations.
Unveiling adaptation using high-resolution lineage tracking
NASA Astrophysics Data System (ADS)
Blundell, Jamie; Levy, Sasha; Fisher, Daniel; Petrov, Dmitri; Sherlock, Gavin
2013-03-01
Human diseases such as cancer and microbial infections are adaptive processes inside the human body with enormous population sizes: between 106 -1012 cells. In spite of this our understanding of adaptation in large populations is limited. The key problem is the difficulty in identifying anything more than a handful of rare, large-effect beneficial mutations. The development and use of molecular barcodes allows us to uniquely tag hundreds of thousands of cells and enable us to track tens of thousands of adaptive mutations in large yeast populations. We use this system to test some of the key theories on which our understanding of adaptation in large populations is based. We (i) measure the fitness distribution in an evolving population at different times, (ii) identify when an appreciable fraction of clones in the population have at most a single adaptive mutation and isolate a large number of clones with independent single adaptive mutations, and (iii) use this clone collection to determine the distribution of fitness effects of single beneficial mutations.
Bhaskar, Anand; Wang, Y X Rachel; Song, Yun S
2015-02-01
With the recent increase in study sample sizes in human genetics, there has been growing interest in inferring historical population demography from genomic variation data. Here, we present an efficient inference method that can scale up to very large samples, with tens or hundreds of thousands of individuals. Specifically, by utilizing analytic results on the expected frequency spectrum under the coalescent and by leveraging the technique of automatic differentiation, which allows us to compute gradients exactly, we develop a very efficient algorithm to infer piecewise-exponential models of the historical effective population size from the distribution of sample allele frequencies. Our method is orders of magnitude faster than previous demographic inference methods based on the frequency spectrum. In addition to inferring demography, our method can also accurately estimate locus-specific mutation rates. We perform extensive validation of our method on simulated data and show that it can accurately infer multiple recent epochs of rapid exponential growth, a signal that is difficult to pick up with small sample sizes. Lastly, we use our method to analyze data from recent sequencing studies, including a large-sample exome-sequencing data set of tens of thousands of individuals assayed at a few hundred genic regions. © 2015 Bhaskar et al.; Published by Cold Spring Harbor Laboratory Press.
A MAYAN FOUNDER MUTATION IS A COMMON CAUSE OF DEAFNESS IN GUATEMALA
Carranza, Claudia; Menendez, Ibis; Herrera, Mariana; Castellanos, Patricia; Amado, Carlos; Maldonado, Fabiola; Rosales, Luisa; Escobar, Nancy; Guerra, Mariela; Alvarez, Darwin; Foster, Joseph; Guo, Shengru; Blanton, Susan H.; Bademci, Guney; Tekin, Mustafa
2017-01-01
SUMMARY Over 5% of the world population have varying degrees of hearing loss. Mutations in GJB2 are the most common cause of autosomal recessive non-syndromic hearing loss (NSHL) in many populations. The frequency and type of mutations are influenced by ethnicity. Guatemala is a multi-ethnic country with four major populations: Maya, Ladino, Xinca, and Garifuna. To determine the mutation profile of GJB2 in a NSHL population from Guatemala, we sequenced both exons of GJB2 in 133 unrelated families. A total of six pathogenic variants were detected. The most frequent pathogenic variant is c.131G>A (p.Trp44*) detected in 21 of 266 alleles. We show that c.131G>A is associated with a conserved haplotype in Guatemala suggesting a single founder. The majority of Mayan population lives in the west region of the country from where all c.131G>A carriers originated. Further analysis of genome-wide variation of individuals carrying the c.131G>A mutation compared to those of Native American, European, and African populations shows a close match with the Mayan population. PMID:26346709
Evolution of Local Mutation Rate and Its Determinants.
Terekhanova, Nadezhda V; Seplyarskiy, Vladimir B; Soldatov, Ruslan A; Bazykin, Georgii A
2017-05-01
Mutation rate varies along the human genome, and part of this variation is explainable by measurable local properties of the DNA molecule. Moreover, mutation rates differ between orthologous genomic regions of different species, but the drivers of this change are unclear. Here, we use data on human divergence from chimpanzee, human rare polymorphism, and human de novo mutations to predict the substitution rate at orthologous regions of non-human mammals. We show that the local mutation rates are very similar between human and apes, implying that their variation has a strong underlying cryptic component not explainable by the known genomic features. Mutation rates become progressively less similar in more distant species, and these changes are partially explainable by changes in the local genomic features of orthologous regions, most importantly, in the recombination rate. However, they are much more rapid, implying that the cryptic component underlying the mutation rate is more ephemeral than the known genomic features. These findings shed light on the determinants of mutation rate evolution. local mutation rate, molecular evolution, recombination rate. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Simard, Jacques; Dumont, Martine; Moisan, Anne‐Marie; Gaborieau, Valérie; Vézina, Hélène; Durocher, Francine; Chiquette, Jocelyne; Plante, Marie; Avard, Denise; Bessette, Paul; Brousseau, Claire; Dorval, Michel; Godard, Béatrice; Houde, Louis; Joly, Yann; Lajoie, Marie‐Andrée; Leblanc, Gilles; Lépine, Jean; Lespérance, Bernard; Malouin, Hélène; Parboosingh, Jillian; Pichette, Roxane; Provencher, Louise; Rhéaume, Josée; Sinnett, Daniel; Samson, Carolle; Simard, Jean‐Claude; Tranchant, Martine; Voyer, Patricia; BRCAs, INHERIT; Easton, Douglas; Tavtigian, Sean V; Knoppers, Bartha‐Maria; Laframboise, Rachel; Bridge, Peter; Goldgar, David
2007-01-01
Background and objective In clinical settings with fixed resources allocated to predictive genetic testing for high‐risk cancer predisposition genes, optimal strategies for mutation screening programmes are critically important. These depend on the mutation spectrum found in the population under consideration and the frequency of mutations detected as a function of the personal and family history of cancer, which are both affected by the presence of founder mutations and demographic characteristics of the underlying population. The results of multistep genetic testing for mutations in BRCA1 or BRCA2 in a large series of families with breast cancer in the French‐Canadian population of Quebec, Canada are reported. Methods A total of 256 high‐risk families were ascertained from regional familial cancer clinics throughout the province of Quebec. Initially, families were tested for a panel of specific mutations known to occur in this population. Families in which no mutation was identified were then comprehensively tested. Three algorithms to predict the presence of mutations were evaluated, including the prevalence tables provided by Myriad Genetics Laboratories, the Manchester Scoring System and a logistic regression approach based on the data from this study. Results 8 of the 15 distinct mutations found in 62 BRCA1/BRCA2‐positive families had never been previously reported in this population, whereas 82% carried 1 of the 4 mutations currently observed in ⩾2 families. In the subset of 191 families in which at least 1 affected individual was tested, 29% carried a mutation. Of these 27 BRCA1‐positive and 29 BRCA2‐positive families, 48 (86%) were found to harbour a mutation detected by the initial test. Among the remaining 143 inconclusive families, all 8 families found to have a mutation after complete sequencing had Manchester Scores ⩾18. The logistic regression and Manchester Scores provided equal predictive power, and both were significantly better than the Myriad Genetics Laboratories prevalence tables (p<0.001). A threshold of Manchester Score ⩾18 provided an overall sensitivity of 86% and a specificity of 82%, with a positive predictive value of 66% in this population. Conclusion In this population, a testing strategy with an initial test using a panel of reported recurrent mutations, followed by full sequencing in families with Manchester Scores ⩾18, represents an efficient test in terms of overall cost and sensitivity. PMID:16905680
Eaton, T E; Weiner Miller, P; Garrett, J E; Cutting, G R
2002-05-01
Previous work suggests that cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations may be implicated in the aetiology of allergic bronchopulmonary aspergilosis (ABPA). To compare the frequency of CF gene mutations in asthmatics with ABPA of varying severity with asthmatics who were skin prick test (SPT)-positive to Aspergillus fumigatus (Af) without evidence of ABPA and asthmatics SPT-negative to Af. Thirty-one Caucasian patients with ABPA were identified, together with asthmatics SPT positive to Af without evidence of ABPA (n = 23) and SPT negative to Af (n = 28). Genomic DNA was tested for 16 CF mutations accounting for approximately 85% of CF alleles in Caucasian New Zealanders. Four (12.9%) ABPA patients were found to be carriers of a CF mutation (DeltaF508 n = 3, R117H n = 1), one (4.3%) asthmatic SPT positive to Af without ABPA (DeltaF508), and one (3.6%) asthmatic SPT negative to Af (R117H). All patients with a CF mutation had normal sweat chloride (< 40 mM). There was no significant difference between the frequency of CF mutations in the ABPA patients and asthmatics without ABPA. However, the frequency of CF mutations in the ABPA patients was significantly different (P = 0.0125) to the expected carrier rate in the general population. These results lend further support to a possible link between CF mutations and ABPA.
The Frequency of c.550delA Mutation of the CANP3 Gene in the Polish LGMD2A Population.
Dorobek, Małgorzata; Ryniewicz, Barbara; Kabzińska, Dagmara; Fidziańska, Anna; Styczyńska, Maria; Hausmanowa-Petrusewicz, Irena
2015-11-01
Limb girdle muscular dystrophy 2A (LGMD2A) is the most frequent LGMD variant in the European population, representing about 40% of LGMD. The c.550delA mutation in the CANP3 (calcium activated neutral protease 3) gene is the most commonly reported mutation in LGMD2A. Prevalence of this mutation in the Polish population has not been previously investigated. The aim of this study was to identify and estimate the frequency of the c.550delA mutation in Polish LGMD2A patients. Polymerase chain reaction-sequencing analysis, restriction fragment length polymorphism polymerase chain reaction method. We analyzed 76 families affected with LGMD and identified 62 probands with mutations in the CANP3 gene. C.550delA was the most common mutation identified, being found in 78% of the LGMD2A families. The remaining mutations observed multiple times were as follows: c.598-612del15ntd; c.2242C>T; c.418dupC; c.1356insT, listed in terms of decreasing frequency. Two novel variants in the CANP3 gene, that is, c.700G>A Gly234Arg and c.661G>A Gly221Ser were also characterized. Overall, mutations in the LGMD2A gene were estimated to be present in 81% of patients with the LGMD phenotype who were without sarcoglycans and dysferlin deficiency on immunocytochemical analysis. The frequency of the heterozygous c.550delA mutation in the healthy Polish population was estimated at 1/124. The c.550delA is the most frequent CANP3 mutation in the Polish population, thus sequencing of exon 4 of this gene could identify the majority of LGMD2A patients in Poland.
Liu, Xiaoming; Fu, Yun-Xin; Maxwell, Taylor J.; Boerwinkle, Eric
2010-01-01
It is known that sequencing error can bias estimation of evolutionary or population genetic parameters. This problem is more prominent in deep resequencing studies because of their large sample size n, and a higher probability of error at each nucleotide site. We propose a new method based on the composite likelihood of the observed SNP configurations to infer population mutation rate θ = 4Neμ, population exponential growth rate R, and error rate ɛ, simultaneously. Using simulation, we show the combined effects of the parameters, θ, n, ɛ, and R on the accuracy of parameter estimation. We compared our maximum composite likelihood estimator (MCLE) of θ with other θ estimators that take into account the error. The results show the MCLE performs well when the sample size is large or the error rate is high. Using parametric bootstrap, composite likelihood can also be used as a statistic for testing the model goodness-of-fit of the observed DNA sequences. The MCLE method is applied to sequence data on the ANGPTL4 gene in 1832 African American and 1045 European American individuals. PMID:19952140
Kimani, Jane W; Buchman, Craig A; Booker, Jessica K; Huang, Benjamin Y; Castillo, Mauricio; Powell, Cynthia M; Weck, Karen E
2010-10-01
To examine the incidence of congenital cytomegalovirus (CMV) infection relative to common genetic etiologies of hearing loss in a pediatric population with sensorineural hearing loss (SNHL), and to characterize intracranial radiological abnormalities in patients with CMV-associated hearing loss. Retrospective study. Academic tertiary care center. A total of 112 pediatric patients with confirmed SNHL. The association of congenital CMV infection status with abnormal brain magnetic resonance imaging (MRI) scans and the frequencies of congenital CMV infection, gap junction β-2 (GJB2) mutations, and the mitochondrial DNA (mtDNA) 1555A>G mutation in children with SNHL. Of 109 patients, 11 (10%) had positive results for CMV DNA; 10 of the 11 had normal GJB2 sequence and had negative test results for the mtDNA 1555A>G mutation. Brain MRI scans for 97 patients demonstrated a higher proportion of abnormalities in patients with positive CMV test results (80%) compared with those with no detectable CMV DNA (33%) (P = .006). GJB2 mutations and the mtDNA 1555A>G mutation were seen in 10 of 88 patients (11%) and 1 of 97 patients (1%) with SNHL, respectively. The presence of brain abnormalities in most patients with congenital CMV infection suggests that neurological damage in otherwise asymptomatic patients may not be limited to SNHL. Congenital CMV infection accounted for a significant proportion of patients with SNHL, with an incidence rate comparable with that of GJB2-related SNHL.
Gjini, Erida; Haydon, Daniel T; David Barry, J; Cobbold, Christina A
2014-01-21
Genetic diversity in multigene families is shaped by multiple processes, including gene conversion and point mutation. Because multi-gene families are involved in crucial traits of organisms, quantifying the rates of their genetic diversification is important. With increasing availability of genomic data, there is a growing need for quantitative approaches that integrate the molecular evolution of gene families with their higher-scale function. In this study, we integrate a stochastic simulation framework with population genetics theory, namely the diffusion approximation, to investigate the dynamics of genetic diversification in a gene family. Duplicated genes can diverge and encode new functions as a result of point mutation, and become more similar through gene conversion. To model the evolution of pairwise identity in a multigene family, we first consider all conversion and mutation events in a discrete manner, keeping track of their details and times of occurrence; second we consider only the infinitesimal effect of these processes on pairwise identity accounting for random sampling of genes and positions. The purely stochastic approach is closer to biological reality and is based on many explicit parameters, such as conversion tract length and family size, but is more challenging analytically. The population genetics approach is an approximation accounting implicitly for point mutation and gene conversion, only in terms of per-site average probabilities. Comparison of these two approaches across a range of parameter combinations reveals that they are not entirely equivalent, but that for certain relevant regimes they do match. As an application of this modelling framework, we consider the distribution of nucleotide identity among VSG genes of African trypanosomes, representing the most prominent example of a multi-gene family mediating parasite antigenic variation and within-host immune evasion. © 2013 Published by Elsevier Ltd. All rights reserved.
A Constant Rate of Spontaneous Mutation in DNA-Based Microbes
NASA Astrophysics Data System (ADS)
Drake, John W.
1991-08-01
In terms of evolution and fitness, the most significant spontaneous mutation rate is likely to be that for the entire genome (or its nonfrivolous fraction). Information is now available to calculate this rate for several DNA-based haploid microbes, including bacteriophages with single- or double-stranded DNA, a bacterium, a yeast, and a filamentous fungus. Their genome sizes vary by ≈6500-fold. Their average mutation rates per base pair vary by ≈16,000-fold, whereas their mutation rates per genome vary by only ≈2.5-fold, apparently randomly, around a mean value of 0.0033 per DNA replication. The average mutation rate per base pair is inversely proportional to genome size. Therefore, a nearly invariant microbial mutation rate appears to have evolved. Because this rate is uniform in such diverse organisms, it is likely to be determined by deep general forces, perhaps by a balance between the usually deleterious effects of mutation and the physiological costs of further reducing mutation rates.
Smith, Thomas; Ho, Gladys; Christodoulou, John; Price, Elizabeth Ann; Onadim, Zerrin; Gauthier-Villars, Marion; Dehainault, Catherine; Houdayer, Claude; Parfait, Beatrice; van Minkelen, Rick; Lohman, Dietmar; Eyre-Walker, Adam
2016-05-01
We have investigated whether the mutation rate varies between genes and sites using de novo mutations (DNMs) from three genes associated with Mendelian diseases (RB1, NF1, and MECP2). We show that the relative frequency of mutations at CpG dinucleotides relative to non-CpG sites varies between genes and relative to the genomic average. In particular we show that the rate of transition mutation at CpG sites relative to the rate of non-CpG transversion is substantially higher in our disease genes than amongst DNMs in general; the rate of CpG transition can be several hundred-fold greater than the rate of non-CpG transversion. We also show that the mutation rate varies significantly between sites of a particular mutational type, such as non-CpG transversion, within a gene. We estimate that for all categories of sites, except CpG transitions, there is at least a 30-fold difference in the mutation rate between the 10% of sites with the highest and lowest mutation rates. However, our best estimate is that the mutation rate varies by several hundred-fold variation. We suggest that the presence of hypermutable sites may be one reason certain genes are associated with disease. © 2016 WILEY PERIODICALS, INC.
Chen, Qianting; Dai, Congling; Zhang, Qianjun; Du, Juan; Li, Wen
2016-10-01
To study the prediction performance evaluation with five kinds of bioinformatics software (SIFT, PolyPhen2, MutationTaster, Provean, MutationAssessor). From own database for genetic mutations collected over the past five years, Chinese literature database, Human Gene Mutation Database, and dbSNP, 121 missense mutations confirmed by functional studies, and 121 missense mutations suspected to be pathogenic by pedigree analysis were used as positive gold standard, while 242 missense mutations with minor allele frequency (MAF)>5% in dominant hereditary diseases were used as negative gold standard. The selected mutations were predicted with the five software. Based on the results, the performance of the five software was evaluated for their sensitivity, specificity, positive predict value, false positive rate, negative predict value, false negative rate, false discovery rate, accuracy, and receiver operating characteristic curve (ROC). In terms of sensitivity, negative predictive value and false negative rate, the rank was MutationTaster, PolyPhen2, Provean, SIFT, and MutationAssessor. For specificity and false positive rate, the rank was MutationTaster, Provean, MutationAssessor, SIFT, and PolyPhen2. For positive predict value and false discovery rate, the rank was MutationTaster, Provean, MutationAssessor, PolyPhen2, and SIFT. For area under the ROC curve (AUC) and accuracy, the rank was MutationTaster, Provean, PolyPhen2, MutationAssessor, and SIFT. The prediction performance of software may be different when using different parameters. Among the five software, MutationTaster has the best prediction performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDowell, G.A.; Blitzer, M.G.; Mules, E.H.
A study was undertaken to characterize the mutation(s) responsible for Tay-Sachs disease (TSD) in a Cajun population in southwest Louisiana and to identify the origins of these mutations. Eleven of 12 infantile TSD alleles examined in six families had the [beta]-hexosaminidase A (Hex A) [alpha]-subunit exon 11 insertion mutation that is present in approximately 70% of Ashkenazi Jewish TSD heterozygotes. The mutation in the remaining allele was a single-base transition in the donor splice site of the [alpha]-subunit intron 9. To determine the origins of these two mutations in the Cajun population, the TSD carrier status was enzymatically determined formore » 90 members of four of the six families, and extensive pedigrees were constructed for all carriers. A single ancestral couple from France was found to be common to most of the carriers of the exon 11 insertion. Pedigree data suggest that this mutation has been in the Cajun population since its founding over 2 centuries ago and that it may be widely distributed within the population. In contrast, the intron 9 mutation apparently was introduced within the last century and probably is limited to a few Louisiana families. 29 refs., 4 figs.« less
Bashir, Tufail; Sailer, Christian; Gerber, Florian; Loganathan, Nitin; Bhoopalan, Hemadev; Eichenberger, Christof; Grossniklaus, Ueli; Baskar, Ramamurthy
2014-05-01
Over 70 years ago, increased spontaneous mutation rates were observed in Drosophila spp. hybrids, but the genetic basis of this phenomenon is not well understood. The model plant Arabidopsis (Arabidopsis thaliana) offers unique opportunities to study the types of mutations induced upon hybridization and the frequency of their occurrence. Understanding the mutational effects of hybridization is important, as many crop plants are grown as hybrids. Besides, hybridization is important for speciation and its effects on genome integrity could be critical, as chromosomal rearrangements can lead to reproductive isolation. We examined the rates of hybridization-induced point and frameshift mutations as well as homologous recombination events in intraspecific Arabidopsis hybrids using a set of transgenic mutation detector lines that carry mutated or truncated versions of a reporter gene. We found that hybridization alters the frequency of different kinds of mutations. In general, Columbia (Col)×Cape Verde Islands and Col×C24 hybrid progeny had decreased T→G and T→A transversion rates but an increased C→T transition rate. Significant changes in frameshift mutation rates were also observed in some hybrids. In Col×C24 hybrids, there is a trend for increased homologous recombination rates, except for the hybrids from one line, while in Col×Cape Verde Islands hybrids, this rate is decreased. The overall genetic distance of the parents had no influence on mutation rates in the progeny, as closely related accessions on occasion displayed higher mutation rates than accessions that are separated farther apart. However, reciprocal hybrids had significantly different mutation rates, suggesting parent-of-origin-dependent effects on the mutation frequency.
Molecular pathology and haplotype analysis of Wilson disease in Mediterranean populations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Figus, A.; Farcia, A.M.G.; Nurchi, A.
1995-12-01
We analyzed mutations and defined the chromosomal haplotype in 127 patients of Mediterranean descent who were affected in Wilson disease (WD): 39 Sardinians, 49 Italians, 33 Turks, and 6 Albanians. Haplotypes were derived by use of the microsatellite markers D13S301, D13S296, D13S297, and D13S298, which are linked to the WD locus. There were five common haplotypes in Sardinians, three in Italians, and two in Turks, which accounted for 85%, 32%, and 30% of the WD chromosomes, respectively. We identified 16 novel mutations: 8 frameshifts, 7 missense mutations, and 1 splicing defect. In addition, we detected the previously described mutations: 2302insC,more » 3404delC, Arg1320ter, Gly944Ser, and His1070Gin. Of the new mutations detected, two, the 1515insT on haplotype I and 2464delC on haplotype XVI, accounted for 6% and 13%, respectively, of the mutations in WD chromsomes in the Sardinian populations. Mutations H1070Q, 2302insC, and 2533delA represented 13%, 8%, and 8%, respectively, of the mutations in WD chromsomes in other Mediterranean populations. The remaining mutations were rare and limited to one or two patients from different populations. Thus, WD results from some frequent mutations and many rare defects. 28 refs., 1 fig., 3 tabs.« less
Russell, Prudence A; Rogers, Toni-Maree; Solomon, Benjamin; Alam, Naveed; Barnett, Stephen A; Rathi, Vivek; Williams, Richard A; Wright, Gavin M; Conron, Matthew
2017-10-01
We investigated correlations between diagnosis according to the 2015 World Health Organization (WHO) classification of unresected lung tumours, molecular analysis and TTF1 expression in small biopsy and cytology specimens from 344 non-small cell lung carcinoma (NSCLC) patients. One case failed testing for EGFR, KRAS and ALK abnormalities and six had insufficient tumour for ALK testing. Overall mutation rate in 343 cases was 48% for the genes tested, with 19% EGFR, 33% KRAS and 4% BRAF mutations, and 5% ALK rearrangements detected. More EGFR-mutant (78%) and ALK-rearranged (75%) tumours had morphologic adenocarcinoma than KRAS-mutant (56%) tumours. Despite no significant difference in the overall rate of any molecular abnormality between morphologic adenocarcinoma (52%) and NSCLC, favour adenocarcinoma (47%) (p = 0.18), KRAS mutations were detected more frequently in the latter group. No significant difference in the overall rate of any molecular abnormality between TTF1 positive (49%) and TTF1 negative tumours (44%) (p = 0.92) was detected, but more EGFR-mutant (97%) and ALK-rearranged tumours (92%) were TTF1 positive than KRAS-mutant tumours (68%). Rates of EGFR, KRAS and BRAF mutations and ALK rearrangements in this Australian NSCLC patient population are consistent with the published international literature. Our findings suggest that 2015 WHO classification of unresected tumours may assist in identifying molecular subsets of advanced NSCLC. Copyright © 2017 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.
Johnson, Dylan; Mathur, Mohit C; Kobayashi, Tomoyoshi; Chalovich, Joseph M
2016-08-16
The R146G mutation of troponin I (TnI) is associated with hypertrophic cardiomyopathy in humans. Earlier data pointed to stabilization of the intermediate, C state, of actin-tropomyosin-troponin by this mutant. Because cardiac disorders appear to be linked to changes in regulated actin distributions, we determined the extent to which the R146G TnI mutant alters the distribution of states at low and high Ca(2+) concentrations. We show, from measurements of the kcat for actin-activated ATPase activity at saturating Ca(2+) concentrations, that R146G TnI reduced the population of the active, M, state to 25% of the wild-type level. Together with acrylodan-tropomyosin fluorescence measurements of the B state, it appeared that the C state was populated at ∼91% of the total for the R146G TnI-containing actin filaments. The C state was also more heavily populated at low Ca(2+) concentrations. Acrylodan-tropomyosin fluorescence changes showed a large diminution in the inactive state value relative to the wild-type value without a comparable increase in the active state. Furthermore, the rate of binding of rigor S1 to pyrene-labeled actin filaments containing R146G TnI was faster than the rate of binding to wild-type filaments at low free Ca(2+) concentrations. These results indicate that the inhibitory region of TnI affects the B-C and M-C equilibria of actin-tropomyosin-troponin. The observation that a mutation in the inhibitory region affects the M-C equilibrium may point to a novel regulatory interaction.
García, Katherine; Gavilán, Ronnie G.; Höfle, Manfred G.; Martínez-Urtaza, Jaime; Espejo, Romilio T.
2012-01-01
The emergence of the pandemic strain Vibrio parahaemolyticus O3:K6 in 1996 caused a large increase of diarrhea outbreaks related to seafood consumption in Southeast Asia, and later worldwide. Isolates of this strain constitutes a clonal complex, and their effectual differentiation is possible by comparison of their variable number tandem repeats (VNTRs). The differentiation of the isolates by the differences in VNTRs will allow inferring the population dynamics and microevolution of this strain but this requires knowing the rate and mechanism of VNTRs' variation. Our study of mutants obtained after serial cultivation of clones showed that mutation rates of the six VNTRs examined are on the order of 10−4 mutant per generation and that difference increases by stepwise addition of single mutations. The single stepwise mutation (SSM) was deduced because mutants with 1, 2, 3, or more repeat unit deletions or insertions follow a geometric distribution. Plausible phylogenetic trees are obtained when, according to SSM, the genetic distance between clusters with different number of repeats is assessed by the absolute differences in repeats. Using this approach, mutants originated from different isolates of pandemic V. parahaemolyticus after serial cultivation are clustered with their parental isolates. Additionally, isolates of pandemic V. parahaemolyticus from Southeast Asia, Tokyo, and northern and southern Chile are clustered according their geographical origin. The deepest split in these four populations is observed between the Tokyo and southern Chile populations. We conclude that proper phylogenetic relations and successful tracing of pandemic V. parahaemolyticus requires measuring the differences between isolates by the absolute number of repeats in the VNTRs considered. PMID:22292049
Prevalence of 1691G>A FV mutation in females from Bosnia and Herzegovina - a preliminary report
Yaljevac, Amina; Mehić, Bakir; Kiseljaković, Emina; Ibrulj, Slavka; Garstka, Agnieszka; Adler, Grazyna
2013-01-01
Factor V is the liver-synthesized multidomain glycoprotein encoded by a gene localised on chromosome 1q23. The point mutation 1691G>A in this gene results in formation of an altered protein of V Factor resistant to activated protein C (APC) cleavage. This mutation alone is the most frequent cause of inborn thrombophilia and the most widely acknowledged genetic risk factor for venous thrombosis in a Caucasian population. This study was designed to provide the first estimate of the frequency of the allele 1691A FV in the Bosnian female population. The 1691G>A FV mutation was examined by polymerase chain reaction-restriction fragment length polymorphism, in a group of 67 women, mean age of 58.6 years with no history of cardiovascural incident. Our findings revealed an absence of the mutated allele 1691A FV in the studied group. This is the first report on the 1691G>A FV mutation in a population from Bosnia and Herzegovina. Further research is needed to establish prevalence of the mutated allele in the population from Bosnia and Herzegovina. PMID:23448608
Identification of a founder BRCA1 mutation in the Moroccan population.
Quiles, F; Teulé, À; Martinussen Tandstad, N; Feliubadaló, L; Tornero, E; Del Valle, J; Menéndez, M; Salinas, M; Wethe Rognlien, V; Velasco, A; Izquierdo, A; Capellá, G; Brunet, J; Lázaro, C
2016-10-01
Breast cancer (BC) is the most frequent cancer among women in Morocco. However, the role of the most prevalent BC-predisposing genes, BRCA1 and BRCA2, has been largely unexplored. To help define the role of BRCA1 in BC in Morocco, we characterized the first potential BRCA1 founder mutation in this population. Genetic testing of BRCA1 and BRCA2 in BC high-risk families identified mutation BRCA1 c.5309G>T, p.(Gly1770Val) or G1770V in five independent families from Morocco, suggesting a founder effect. To confirm this hypothesis, haplotype construction was performed using seven intragenic and flanking BRCA1 microsatellite markers. Clinical data were also compiled. Clinical data from carriers of mutation G1770V correspond to data from carriers of BRCA1 pathogenic mutations. Microsatellite analysis showed a common haplotype for the five families in a region comprising 1.54 Mb, confirming G1770V as the first specific founder BRCA1 mutation in the Moroccan population. Our findings contribute to a better understanding of BC genetics in the Moroccan population. Nevertheless, comprehensive studies of mutation G1770V in large series of BC patients from Morocco are needed to assess the real prevalence of this mutation and to improve genetic testing and risk assessment in this population. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Population-based screening for breast and ovarian cancer risk due to BRCA1 and BRCA2
Gabai-Kapara, Efrat; Lahad, Amnon; Kaufman, Bella; Friedman, Eitan; Segev, Shlomo; Renbaum, Paul; Beeri, Rachel; Gal, Moran; Grinshpun-Cohen, Julia; Djemal, Karen; Mandell, Jessica B.; Lee, Ming K.; Beller, Uziel; Catane, Raphael; King, Mary-Claire; Levy-Lahad, Ephrat
2014-01-01
In the Ashkenazi Jewish (AJ) population of Israel, 11% of breast cancer and 40% of ovarian cancer are due to three inherited founder mutations in the cancer predisposition genes BRCA1 and BRCA2. For carriers of these mutations, risk-reducing salpingo-oophorectomy significantly reduces morbidity and mortality. Population screening for these mutations among AJ women may be justifiable if accurate estimates of cancer risk for mutation carriers can be obtained. We therefore undertook to determine risks of breast and ovarian cancer for BRCA1 and BRCA2 mutation carriers ascertained irrespective of personal or family history of cancer. Families harboring mutations in BRCA1 or BRCA2 were ascertained by identifying mutation carriers among healthy AJ males recruited from health screening centers and outpatient clinics. Female relatives of the carriers were then enrolled and genotyped. Among the female relatives with BRCA1 or BRCA2 mutations, cumulative risk of developing either breast or ovarian cancer by age 60 and 80, respectively, were 0.60 (± 0.07) and 0.83 (± 0.07) for BRCA1 carriers and 0.33 (± 0.09) and 0.76 (± 0.13) for BRCA2 carriers. Risks were higher in recent vs. earlier birth cohorts (P = 0.006). High cancer risks in BRCA1 or BRCA2 mutation carriers identified through healthy males provide an evidence base for initiating a general screening program in the AJ population. General screening would identify many carriers who are not evaluated by genetic testing based on family history criteria. Such a program could serve as a model to investigate implementation and outcomes of population screening for genetic predisposition to cancer in other populations. PMID:25192939
Gaucher disease: Gene frequencies in the Ashkenazi Jewish population
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beutler, E.; West, C.; Gelbart, T.
1993-01-01
DNA from over 2,000 Ashkenazi Jewish subjects has been examined for the four most common Jewish Gaucher disease mutations, which collectively account for about 96% of the disease-producing alleles in Jewish patients. This population survey has made possible the estimation of gene frequencies for these alleles. Eighty-seven of 1,528 individuals were heterozygous for the 1226G (N370S) mutation, and four presumably well persons were homozygous for this mutation. The gene frequency for the 1226G allele was calculated to be .0311, and when these data were pooled with those obtained previously from another 593 Jewish subjects, a gene frequency of .032 withmore » a standard error of .004 was found. Among 2,305 normal subjects, 10 were found to be heterozygous for the 84GG allele, giving a gene frequency of .00217 with a standard error of .00096. No examples of the IVS2(+1) mutation were found among 1,256 samples screened, and no 1448C (L444P) mutations were found among 1,528 samples examined. Examination of the distribution of Gaucher disease gene frequencies in the general population shows that the ratio of 1226G mutations to 84GG mutations is higher than that in the patient population. This is presumed to be due to the fact that homozygotes for the 1226G mutation often have late-onset disease or no significant clinical manifestations at all. To bring the gene frequency in the patient population into conformity with the gene frequency in the general population, nearly two-thirds of persons with a Gaucher disease genotype would be missing from the patient population, presumably because their clinical manifestations were very mild. 10 refs., 3 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macek, M. Jr.; Nash, E.; Cutting, G.R.
1994-09-01
Cystic fibrosis (CF) is one of the more common lethal autosomal recessive disorders in Caucasian populations. Numerous hypotheses including genetic drift, founder effect, sex ratio, segregation distortions and various forms of heterozygote advantage have been proposed to explain the relatively high frequency of CF alleles. The observation of high linkage disequilibrium between markers at the 5{prime} end of CFTR and mutations that cause CF raised the possibility of epistatic selection. CF-linked marker allele frequencies were determined in 417 elderly individuals from a stable Czech population that survived high levels of infant and childhood mortality in the pre-antibiotic era. These datamore » were compared with allele frequencies of 646 contemporary newborns and 345 young adults drawn from the same population who had significantly lower mortality rates in the antibiotic era. Allele frequencies of markers CS7/Hhal and KM19/Pstl from the D7S23 locus are significantly different (p<0.05) between elderly female and male subjects in this population. Furthermore, there is a significant difference in the allele frequencies of marker CS7/Hhal when newborn females and elderly women are compared (p<0.05). Taken together, these data suggest that the allele status at the CS7 region influenced female survival in the period of high infant and childhood mortality in the pre-antibiotic era. Under this selective pressure, CFTR mutations that occurred on the {open_quotes}favorable{close_quotes} background would marginally increase in frequency in each successive generation and more ancient mutations residing on this background would become the most frequent in the general population.« less
Putcharoen, Opass; Lee, Sun Hee; Henrich, Timothy J.; Hu, Zixin; Vanichanan, Jakapat; Coakley, Eoin; Greaves, Wayne; Gulick, Roy M.; Kuritzkes, Daniel R.
2012-01-01
HIV CCR5 antagonists select for env gene mutations that enable virus entry via drug-bound coreceptor. To investigate the mechanisms responsible for viral adaptation to drug-bound coreceptor-mediated entry, we studied viral isolates from three participants who developed CCR5 antagonist resistance during treatment with vicriviroc (VCV), an investigational small-molecule CCR5 antagonist. VCV-sensitive and -resistant viruses were isolated from one HIV subtype C- and two subtype B-infected participants; VCV-resistant isolates had mutations in the V3 loop of gp120 and were cross-resistant to TAK-779, an investigational antagonist, and maraviroc (MVC). All three resistant isolates contained a 306P mutation but had variable mutations elsewhere in the V3 stem. We used a virus-cell β-lactamase (BlaM) fusion assay to determine the entry kinetics of recombinant viruses that incorporated full-length VCV-sensitive and -resistant envelopes. VCV-resistant isolates exhibited delayed entry rates in the absence of drug, relative to pretherapy VCV-sensitive isolates. The addition of drug corrected these delays. These findings were generalizable across target cell types with a range of CD4 and CCR5 surface densities and were observed when either population-derived or clonal envelopes were used to construct recombinant viruses. V3 loop mutations alone were sufficient to restore virus entry in the presence of drug, and the accumulation of V3 mutations during VCV therapy led to progressively higher rates of viral entry. We propose that the restoration of pre-CCR5 antagonist therapy HIV entry kinetics drives the selection of V3 loop mutations and may represent a common mechanism that underlies the emergence of CCR5 antagonist resistance. PMID:22090117
A Coalescent-Based Estimator of Admixture From DNA Sequences
Wang, Jinliang
2006-01-01
A variety of estimators have been developed to use genetic marker information in inferring the admixture proportions (parental contributions) of a hybrid population. The majority of these estimators used allele frequency data, ignored molecular information that is available in markers such as microsatellites and DNA sequences, and assumed that mutations are absent since the admixture event. As a result, these estimators may fail to deliver an estimate or give rather poor estimates when admixture is ancient and thus mutations are not negligible. A previous molecular estimator based its inference of admixture proportions on the average coalescent times between pairs of genes taken from within and between populations. In this article I propose an estimator that considers the entire genealogy of all of the sampled genes and infers admixture proportions from the numbers of segregating sites in DNA sequence samples. By considering the genealogy of all sequences rather than pairs of sequences, this new estimator also allows the joint estimation of other interesting parameters in the admixture model, such as admixture time, divergence time, population size, and mutation rate. Comparative analyses of simulated data indicate that the new coalescent estimator generally yields better estimates of admixture proportions than the previous molecular estimator, especially when the parental populations are not highly differentiated. It also gives reasonably accurate estimates of other admixture parameters. A human mtDNA sequence data set was analyzed to demonstrate the method, and the analysis results are discussed and compared with those from previous studies. PMID:16624918
Evolution of the human immunodeficiency virus envelope gene is dominated by purifying selection.
Edwards, C T T; Holmes, E C; Pybus, O G; Wilson, D J; Viscidi, R P; Abrams, E J; Phillips, R E; Drummond, A J
2006-11-01
The evolution of the human immunodeficiency virus (HIV-1) during chronic infection involves the rapid, continuous turnover of genetic diversity. However, the role of natural selection, relative to random genetic drift, in governing this process is unclear. We tested a stochastic model of genetic drift using partial envelope sequences sampled longitudinally in 28 infected children. In each case the Bayesian posterior (empirical) distribution of coalescent genealogies was estimated using Markov chain Monte Carlo methods. Posterior predictive simulation was then used to generate a null distribution of genealogies assuming neutrality, with the null and empirical distributions compared using four genealogy-based summary statistics sensitive to nonneutral evolution. Because both null and empirical distributions were generated within a coalescent framework, we were able to explicitly account for the confounding influence of demography. From the distribution of corrected P-values across patients, we conclude that empirical genealogies are more asymmetric than expected if evolution is driven by mutation and genetic drift only, with an excess of low-frequency polymorphisms in the population. This indicates that although drift may still play an important role, natural selection has a strong influence on the evolution of HIV-1 envelope. A negative relationship between effective population size and substitution rate indicates that as the efficacy of selection increases, a smaller proportion of mutations approach fixation in the population. This suggests the presence of deleterious mutations. We therefore conclude that intrahost HIV-1 evolution in envelope is dominated by purifying selection against low-frequency deleterious mutations that do not reach fixation.
Mutation Bias Favors Protein Folding Stability in the Evolution of Small Populations
Porto, Markus; Bastolla, Ugo
2010-01-01
Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine (GC), for instance in actinobacteria. GC mutation bias deeply influences the folding stability of proteins, making proteins on the average less hydrophobic and therefore less stable with respect to unfolding but also less susceptible to misfolding and aggregation. We study a model where proteins evolve subject to selection for folding stability under given mutation bias, population size, and neutrality. We find a non-neutral regime where, for any given population size, there is an optimal mutation bias that maximizes fitness. Interestingly, this optimal GC usage is small for small populations, large for intermediate populations and around 50% for large populations. This result is robust with respect to the definition of the fitness function and to the protein structures studied. Our model suggests that small populations evolving with small GC usage eventually accumulate a significant selective advantage over populations evolving without this bias. This provides a possible explanation to the observation that most species adopting obligatory intracellular lifestyles with a consequent reduction of effective population size shifted their mutation spectrum towards AT. The model also predicts that large GC usage is optimal for intermediate population size. To test these predictions we estimated the effective population sizes of bacterial species using the optimal codon usage coefficients computed by dos Reis et al. and the synonymous to non-synonymous substitution ratio computed by Daubin and Moran. We found that the population sizes estimated in these ways are significantly smaller for species with small and large GC usage compared to species with no bias, which supports our prediction. PMID:20463869
Length polymorphism scanning is an efficient approach for revealing chloroplast DNA variation.
Matthew E. Horning; Richard C. Cronn
2006-01-01
Phylogeographic and population genetic screens of chloroplast DNA (cpDNA) provide insights into seedbased gene flow in angiosperms, yet studies are frequently hampered by the low mutation rate of this genome. Detection methods for intraspecific variation can be either direct (DNA sequencing) or indirect (PCR-RFLP), although no single method incorporates the best...
The Evolution of Phenotypic Switching in Subdivided Populations
Carja, Oana; Liberman, Uri; Feldman, Marcus W.
2014-01-01
Stochastic switching is an example of phenotypic bet hedging, where offspring can express a phenotype different from that of their parents. Phenotypic switching is well documented in viruses, yeast, and bacteria and has been extensively studied when the selection pressures vary through time. However, there has been little work on the evolution of phenotypic switching under both spatially and temporally fluctuating selection pressures. Here we use a population genetic model to explore the interaction of temporal and spatial variation in determining the evolutionary dynamics of phenotypic switching. We find that the stable switching rate is mainly determined by the rate of environmental change and the migration rate. This stable rate is also a decreasing function of the recombination rate, although this is a weaker effect than those of either the period of environmental change or the migration rate. This study highlights the interplay of spatial and temporal environmental variability, offering new insights into how migration can influence the evolution of phenotypic switching rates, mutation rates, or other sources of phenotypic variation. PMID:24496012
Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly
Zink, Florian; Stacey, Simon N.; Norddahl, Gudmundur L.; Frigge, Michael L.; Magnusson, Olafur T.; Jonsdottir, Ingileif; Thorgeirsson, Thorgeir E.; Sigurdsson, Asgeir; Gudjonsson, Sigurjon A.; Gudmundsson, Julius; Jonasson, Jon G.; Tryggvadottir, Laufey; Jonsson, Thorvaldur; Helgason, Agnar; Gylfason, Arnaldur; Sulem, Patrick; Rafnar, Thorunn; Thorsteinsdottir, Unnur; Gudbjartsson, Daniel F.; Masson, Gisli; Kong, Augustine
2017-01-01
Clonal hematopoiesis (CH) arises when a substantial proportion of mature blood cells is derived from a single dominant hematopoietic stem cell lineage. Somatic mutations in candidate driver (CD) genes are thought to be responsible for at least some cases of CH. Using whole-genome sequencing of 11 262 Icelanders, we found 1403 cases of CH by using barcodes of mosaic somatic mutations in peripheral blood, whether or not they have a mutation in a CD gene. We find that CH is very common in the elderly, trending toward inevitability. We show that somatic mutations in TET2, DNMT3A, ASXL1, and PPM1D are associated with CH at high significance. However, known CD mutations were evident in only a fraction of CH cases. Nevertheless, the highly prevalent CH we detect associates with increased mortality rates, risk for hematological malignancy, smoking behavior, telomere length, Y-chromosome loss, and other phenotypic characteristics. Modeling suggests some CH cases could arise in the absence of CD mutations as a result of neutral drift acting on a small population of active hematopoietic stem cells. Finally, we find a germline deletion in intron 3 of the telomerase reverse transcriptase (TERT) gene that predisposes to CH (rs34002450; P = 7.4 × 10−12; odds ratio, 1.37). PMID:28483762
A neutral theory for interpreting correlations between species and genetic diversity in communities.
Laroche, Fabien; Jarne, Philippe; Lamy, Thomas; David, Patrice; Massol, Francois
2015-01-01
Spatial patterns of biological diversity have been extensively studied in ecology and population genetics, because they reflect the forces acting on biodiversity. A growing number of studies have found that genetic (within-species) and species diversity can be correlated in space (the so-called species-gene diversity correlation [SGDC]), which suggests that they are controlled by nonindependent processes. Positive SGDCs are generally assumed to arise from parallel responses of genetic and species diversity to variation in site size and connectivity. However, this argument implicitly assumes a neutral model that has yet to be developed. Here, we build such a model to predict SGDC in a metacommunity. We describe how SGDC emerges from competition within sites and variation in connectivity and carrying capacity among sites. We then introduce the formerly ignored mutation process, which affects genetic but not species diversity. When mutation rate is low, our model confirms that variation in the number of migrants among sites creates positive SGDCs. However, when considering high mutation rates, interactions between mutation, migration, and competition can produce negative SGDCs. Neutral processes thus do not always contribute positively to SGDCs. Our approach provides empirical guidelines for interpreting these novel patterns in natura with respect to evolutionary and ecological forces shaping metacommunities.
Evolutionary and genetic analysis of the VP2 gene of canine parvovirus.
Li, Gairu; Ji, Senlin; Zhai, Xiaofeng; Zhang, Yuxiang; Liu, Jie; Zhu, Mengyan; Zhou, Jiyong; Su, Shuo
2017-07-17
Canine parvovirus (CPV) type 2 emerged in 1978 in the USA and quickly spread among dog populations all over the world with high morbidity. Although CPV is a DNA virus, its genomic substitution rate is similar to some RNA viruses. Therefore, it is important to trace the evolution of CPV to monitor the appearance of mutations that might affect vaccine effectiveness. Our analysis shows that the VP2 genes of CPV isolated from 1979 to 2016 are divided into six groups: GI, GII, GIII, GIV, GV, and GVI. Amino acid mutation analysis revealed several undiscovered important mutation sites: F267Y, Y324I, and T440A. Of note, the evolutionary rate of the CPV VP2 gene from Asia and Europe decreased. Codon usage analysis showed that the VP2 gene of CPV exhibits high bias with an ENC ranging from 34.93 to 36.7. Furthermore, we demonstrate that natural selection plays a major role compared to mutation pressure driving CPV evolution. There are few studies on the codon usage of CPV. Here, we comprehensively studied the genetic evolution, codon usage pattern, and evolutionary characterization of the VP2 gene of CPV. The novel findings revealing the evolutionary process of CPV will greatly serve future CPV research.
Pre-existence and emergence of drug resistance in a generalized model of intra-host viral dynamics.
Alexander, Helen K; Bonhoeffer, Sebastian
2012-12-01
Understanding the source of drug resistance emerging within a treated patient is an important problem, from both clinical and basic evolutionary perspectives. Resistant mutants may arise de novo either before or after treatment is initiated, with different implications for prevention. Here we investigate this problem in the context of chronic viral diseases, such as human immunodeficiency virus (HIV) and hepatitis B and C viruses (HBV and HCV). We present a unified model of viral population dynamics within a host, which can capture a variety of viral life cycles. This allows us to identify which results generalize across various viral diseases, and which are sensitive to the particular virus's life cycle. Accurate analytical approximations are derived that allow for a solid understanding of the parameter dependencies in the system. We find that the mutation-selection balance attained prior to treatment depends on the step at which mutations occur and the viral trait that incurs the cost of resistance. Life cycle effects and key parameters, including mutation rate, infected cell death rate, cost of resistance, and drug efficacy, play a role in determining when mutations arising during treatment are important relative to those pre-existing. Copyright © 2012 Elsevier B.V. All rights reserved.
Bolegenova, N K; Bekmanov, B O; Djansugurova, L B; Bersimbaev, R I; Salama, S A; Au, W W
2009-11-01
We have reported previously that a population near the Semipalatinsk nuclear explosion test site had significantly increased minisatellite mutations (MM), suggesting increased germ-line mutation rates from the exposure in 3 generations. We hypothesize that the MM can be used as a surrogate biomarker for functional genetic alterations, e.g. gene mutations and chromosome aberrations. Therefore, we have investigated the influence of polymorphisms in genes on the expression of MM in the same two populations (247 and 172 individuals, for exposed and control, respectively, in 3 generations), and their relationships with radiation exposure. We have chosen the analyses of three polymorphic DNA - repair genes (XRCC1, XRCC1 and XRCC3) and two xenobiotic detoxification genes (GSTT1 and GSTM1). Among the exposed and in comparison with the wild-type gene, the functionally active XRCC1 Arg194Trp was significantly associated with low MM and over-represented in the exposed compared with the control populations. In a similar analysis, the functionally deficient XRCC1 Arg399Glu and XRCC3 Trp241Met were associated with increased and significantly reduced MM, respectively, but these variant genes were under-represented in the exposed population. Both GSTT1 and GSTM1 nulls were significantly associated with increased MM. The former was under-represented but the latter was significantly over-represented in the exposed compared with the control populations. In summary, the data indicate that the expected enzymatic functions of the polymorphic genes are consistent with the MM expression, except the XRCC1 Arg399Glu variant gene. In addition, the variant genes were retained in the three generations in association with their useful function, except for the GSTM1 null. However, the MM frequencies in the exposed were not consistently and significantly higher than those in the control populations, radiation exposure may therefore not have been the only cause for the high MM frequency among the exposed individuals. Since we studied three generations of citizens, the over- and under-representations of variant genes in the exposed population indicate their persistence and elimination, respectively, from the exposed individuals, suggesting their functional influence on survivability. The latter observation also indicates the complexity of gene and environmental interactions, e.g. the GSTM1 null was significantly over-represented in the exposed population.
Cis-acting factors modulate stability of intermediate alleles for Huntington disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, Y.P.; Zeisler, J.; Thielmann, J.
1994-09-01
The genetic basis of Huntington disease (HD), a late-onset autosomal dominant neurodegenerative disorder, has recently been defined as a CAG trinucleotide expansion in a novel gene on 4p16.3. The CAG length in clinically normal people ranges from 9 to 37, with the vast majority of alleles (99%) containing less than 30 repeats. In contrast, HD patients have CAG lengths greater than 36 with the largest repeat reported to date being 121. Molecular analysis of sporadic cases of HD revealed that new mutations are not rare (3%), and arise from intermediate alleles (IAs). IAs are CAG alleles greater than that usuallymore » seen in the general population (>30), but less than that seen in patients with HD and occur with a frequency of approximately 1.5% of the general population (12/797). An important question is whether these IAs are also susceptible to expansion. In new mutation families, these IAs are unstable in passage through the male germline and in sporadic cases expand to the full mutation associated with the HD phenotype. On the 41 meioses analyzed in new mutation families, 61% were unstable. In contrast to IAs in the new mutation families, the IAs in the general population were predominately stable from one generation to the next. Comparison of the frequency of intergenerational stability between the general population and the new mutation families showed that IAs in the general population are considerably more stable than those in the new mutation families. In contrast to SCA 1 where sequence interruption is thought to play a role in CAG trinucleotide stability, sequence analysis of IAs both from the general population and the new mutation families failed to reveal any interruption of the CAG tracts. These findings suggest that while CAG size is an important factor, other cis-acting factors present in new mutation families but not in the general population are likely to be critical in conferring instability upon the CAG trinucleotide repeat.« less
Amylin S20G mutation in Mexican population.
Garcia-Gonzalez, Claudia Lorena; Montoya-Fuentes, Hector; Padilla-Rosas, Miguel; Sanchez-Corona, Jose
2007-04-01
Diabetes Mellitus type 2 (DM2) is a group of metabolic disorders characterized by defective insulin action or secretion or both with a 10.6% incidence in Mexican Mestizo population, DM2 is also classified within the localized misfolding diseases due to the amyloid pancreatic deposits found in 90% of the DM2 necropsies. The pancreatic amyloid main component is a protein known as human islet amyloid polypeptide (hIAPP) or amylin, the most common mutation is the S20G in Asian population with a polymorphic frequency in DM2 Asian patients. The aim of this study was to search this mutation in Mexican Mestizo general population (104) and DM2 patients (100). This is the first molecular study of hIAPP gene in Mexican population and in which we developed an alternative more effective antisense primer for the analysis of the NFGAILSS region in hIAPP exon 3 critical for the amyloid beta structure formation. We did not find the mutation in any of the 204 analyzed samples, thus the findings show that S20G is not a common mutation in Mexican Mestizo population.
Ultra-deep mutant spectrum profiling: improving sequencing accuracy using overlapping read pairs.
Chen-Harris, Haiyin; Borucki, Monica K; Torres, Clinton; Slezak, Tom R; Allen, Jonathan E
2013-02-12
High throughput sequencing is beginning to make a transformative impact in the area of viral evolution. Deep sequencing has the potential to reveal the mutant spectrum within a viral sample at high resolution, thus enabling the close examination of viral mutational dynamics both within- and between-hosts. The challenge however, is to accurately model the errors in the sequencing data and differentiate real viral mutations, particularly those that exist at low frequencies, from sequencing errors. We demonstrate that overlapping read pairs (ORP) -- generated by combining short fragment sequencing libraries and longer sequencing reads -- significantly reduce sequencing error rates and improve rare variant detection accuracy. Using this sequencing protocol and an error model optimized for variant detection, we are able to capture a large number of genetic mutations present within a viral population at ultra-low frequency levels (<0.05%). Our rare variant detection strategies have important implications beyond viral evolution and can be applied to any basic and clinical research area that requires the identification of rare mutations.
Annealing Ant Colony Optimization with Mutation Operator for Solving TSP
2016-01-01
Ant Colony Optimization (ACO) has been successfully applied to solve a wide range of combinatorial optimization problems such as minimum spanning tree, traveling salesman problem, and quadratic assignment problem. Basic ACO has drawbacks of trapping into local minimum and low convergence rate. Simulated annealing (SA) and mutation operator have the jumping ability and global convergence; and local search has the ability to speed up the convergence. Therefore, this paper proposed a hybrid ACO algorithm integrating the advantages of ACO, SA, mutation operator, and local search procedure to solve the traveling salesman problem. The core of algorithm is based on the ACO. SA and mutation operator were used to increase the ants population diversity from time to time and the local search was used to exploit the current search area efficiently. The comparative experiments, using 24 TSP instances from TSPLIB, show that the proposed algorithm outperformed some well-known algorithms in the literature in terms of solution quality. PMID:27999590
Phuah, Sze Yee; Lee, Sheau Yee; Kang, Peter; Kang, In Nee; Yoon, Sook-Yee; Thong, Meow Keong; Hartman, Mikael; Sng, Jen-Hwei; Yip, Cheng Har; Taib, Nur Aishah Mohd; Teo, Soo-Hwang
2013-01-01
The partner and localizer of breast cancer 2 (PALB2) is responsible for facilitating BRCA2-mediated DNA repair by serving as a bridging molecule, acting as the physical and functional link between the breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) proteins. Truncating mutations in the PALB2 gene are rare but are thought to be associated with increased risks of developing breast cancer in various populations. We evaluated the contribution of PALB2 germline mutations in 122 Asian women with breast cancer, all of whom had significant family history of breast and other cancers. Further screening for nine PALB2 mutations was conducted in 874 Malaysian and 532 Singaporean breast cancer patients, and in 1342 unaffected Malaysian and 541 unaffected Singaporean women. By analyzing the entire coding region of PALB2, we found two novel truncating mutations and ten missense mutations in families tested negative for BRCA1/2-mutations. One additional novel truncating PALB2 mutation was identified in one patient through genotyping analysis. Our results indicate a low prevalence of deleterious PALB2 mutations and a specific mutation profile within the Malaysian and Singaporean populations.
Phuah, Sze Yee; Lee, Sheau Yee; Kang, Peter; Kang, In Nee; Yoon, Sook-Yee; Thong, Meow Keong; Hartman, Mikael; Sng, Jen-Hwei; Yip, Cheng Har; Taib, Nur Aishah Mohd; Teo, Soo-Hwang
2013-01-01
Background The partner and localizer of breast cancer 2 (PALB2) is responsible for facilitating BRCA2-mediated DNA repair by serving as a bridging molecule, acting as the physical and functional link between the breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) proteins. Truncating mutations in the PALB2 gene are rare but are thought to be associated with increased risks of developing breast cancer in various populations. Methods We evaluated the contribution of PALB2 germline mutations in 122 Asian women with breast cancer, all of whom had significant family history of breast and other cancers. Further screening for nine PALB2 mutations was conducted in 874 Malaysian and 532 Singaporean breast cancer patients, and in 1342 unaffected Malaysian and 541 unaffected Singaporean women. Results By analyzing the entire coding region of PALB2, we found two novel truncating mutations and ten missense mutations in families tested negative for BRCA1/2-mutations. One additional novel truncating PALB2 mutation was identified in one patient through genotyping analysis. Our results indicate a low prevalence of deleterious PALB2 mutations and a specific mutation profile within the Malaysian and Singaporean populations. PMID:23977390
A Mayan founder mutation is a common cause of deafness in Guatemala.
Carranza, C; Menendez, I; Herrera, M; Castellanos, P; Amado, C; Maldonado, F; Rosales, L; Escobar, N; Guerra, M; Alvarez, D; Foster, J; Guo, S; Blanton, S H; Bademci, G; Tekin, M
2015-09-08
Over 5% of the world's population has varying degrees of hearing loss. Mutations in GJB2 are the most common cause of autosomal recessive non-syndromic hearing loss (ARNHL) in many populations. The frequency and type of mutations are influenced by ethnicity. Guatemala is a multi-ethnic country with four major populations: Maya, Ladino, Xinca, and Garifuna. To determine the mutation profile of GJB2 in a ARNHL population from Guatemala, we sequenced both exons of GJB2 in 133 unrelated families. A total of six pathogenic variants were detected. The most frequent pathogenic variant is c.131G>A (p.Trp44*) detected in 21 of 266 alleles. We show that c.131G>A is associated with a conserved haplotype in Guatemala suggesting a single founder. The majority of Mayan population lives in the west region of the country from where all c.131G>A carriers originated. Further analysis of genome-wide variation of individuals carrying the c.131G>A mutation compared with those of Native American, European, and African populations shows a close match with the Mayan population. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Novel mutations of MYO7A and USH1G in Israeli Arab families with Usher syndrome type 1.
Rizel, Leah; Safieh, Christine; Shalev, Stavit A; Mezer, Eedy; Jabaly-Habib, Haneen; Ben-Neriah, Ziva; Chervinsky, Elena; Briscoe, Daniel; Ben-Yosef, Tamar
2011-01-01
This study investigated the genetic basis for Usher syndrome type 1 (USH1) in four consanguineous Israeli Arab families. Haplotype analysis for all known USH1 loci was performed in each family. In families for which haplotype analysis was inconclusive, we performed genome-wide homozygosity mapping using a single nucleotide polymorphism (SNP) array. For mutation analysis, specific primers were used to PCR amplify the coding exons of the MYO7A, USH1C, and USH1G genes including intron-exon boundaries. Mutation screening was performed with direct sequencing. A combination of haplotype analysis and genome-wide homozygosity mapping indicated linkage to the USH1B locus in two families, USH1C in one family and USH1G in another family. Sequence analysis of the relevant genes (MYO7A, USH1C, and USH1G) led to the identification of pathogenic mutations in all families. Two of the identified mutations are novel (c.1135-1147dup in MYO7A and c.206-207insC in USH1G). USH1 is a genetically heterogenous condition. Of the five USH1 genes identified to date, USH1C and USH1G are the rarest contributors to USH1 etiology worldwide. It is therefore interesting that two of the four Israeli Arab families reported here have mutations in these two genes. This finding further demonstrates the unique genetic structure of the Israeli population in general, and the Israeli Arab population in particular, which due to high rates of consanguinity segregates many rare autosomal recessive genetic conditions.
The Slavic NBN Founder Mutation: A Role for Reproductive Fitness?
Seemanova, Eva; Varon, Raymonda; Vejvalka, Jan; Jarolim, Petr; Seeman, Pavel; Chrzanowska, Krystyna H; Digweed, Martin; Resnick, Igor; Kremensky, Ivo; Saar, Kathrin; Hoffmann, Katrin; Dutrannoy, Véronique; Karbasiyan, Mohsen; Ghani, Mehdi; Barić, Ivo; Tekin, Mustafa; Kovacs, Peter; Krawczak, Michael; Reis, André; Sperling, Karl; Nothnagel, Michael
2016-01-01
The vast majority of patients with Nijmegen Breakage Syndrome (NBS) are of Slavic origin and carry a deleterious deletion (c.657del5; rs587776650) in the NBN gene on chromosome 8q21. This mutation is essentially confined to Slavic populations and may thus be considered a Slavic founder mutation. Notably, not a single parenthood of a homozygous c.657del5 carrier has been reported to date, while heterozygous carriers do reproduce but have an increased cancer risk. These observations seem to conflict with the considerable carrier frequency of c.657del5 of 0.5% to 1% as observed in different Slavic populations because deleterious mutations would be eliminated quite rapidly by purifying selection. Therefore, we propose that heterozygous c.657del5 carriers have increased reproductive success, i.e., that the mutation confers heterozygote advantage. In fact, in our cohort study of the reproductive history of 24 NBS pedigrees from the Czech Republic, we observed that female carriers gave birth to more children on average than female non-carriers, while no such reproductive differences were observed for males. We also estimate that c.657del5 likely occurred less than 300 generations ago, thus supporting the view that the original mutation predated the historic split and subsequent spread of the 'Slavic people'. We surmise that the higher fertility of female c.657del5 carriers reflects a lower miscarriage rate in these women, thereby reflecting the role of the NBN gene product, nibrin, in the repair of DNA double strand breaks and their processing in immune gene rearrangements, telomere maintenance, and meiotic recombination, akin to the previously described role of the DNA repair genes BRCA1 and BRCA2.
Antoniou, A; Pharoah, P; Narod, S; Risch, H; Eyfjord, J; Hopper, J; Olsson, H; Johannsson, O; Borg, A; Pasini, B; Radice, P; Manoukian, S; Eccles, D; Tang, N; Olah, E; Anton-Culver, H; Warner, E; Lubinski, J; Gronwald, J; Gorski, B; Tulinius, H; Thorlacius, S; Eerola, H; Nevanlinna, H; Syrjakoski, K; Kallioniemi, O; Thompson, D; Evans, C; Peto, J; Lalloo, F; Evans, D; Easton, D
2005-01-01
A recent report estimated the breast cancer risks in carriers of the three Ashkenazi founder mutations to be higher than previously published estimates derived from population based studies. In an attempt to confirm this, the breast and ovarian cancer risks associated with the three Ashkenazi founder mutations were estimated using families included in a previous meta-analysis of populatrion based studies. The estimated breast cancer risks for each of the founder BRCA1 and BRCA2 mutations were similar to the corresponding estimates based on all BRCA1 or BRCA2 mutations in the meta-analysis. These estimates appear to be consistent with the observed prevalence of the mutations in the Ashkenazi Jewish population. PMID:15994883
Error baseline rates of five sample preparation methods used to characterize RNA virus populations.
Kugelman, Jeffrey R; Wiley, Michael R; Nagle, Elyse R; Reyes, Daniel; Pfeffer, Brad P; Kuhn, Jens H; Sanchez-Lockhart, Mariano; Palacios, Gustavo F
2017-01-01
Individual RNA viruses typically occur as populations of genomes that differ slightly from each other due to mutations introduced by the error-prone viral polymerase. Understanding the variability of RNA virus genome populations is critical for understanding virus evolution because individual mutant genomes may gain evolutionary selective advantages and give rise to dominant subpopulations, possibly even leading to the emergence of viruses resistant to medical countermeasures. Reverse transcription of virus genome populations followed by next-generation sequencing is the only available method to characterize variation for RNA viruses. However, both steps may lead to the introduction of artificial mutations, thereby skewing the data. To better understand how such errors are introduced during sample preparation, we determined and compared error baseline rates of five different sample preparation methods by analyzing in vitro transcribed Ebola virus RNA from an artificial plasmid-based system. These methods included: shotgun sequencing from plasmid DNA or in vitro transcribed RNA as a basic "no amplification" method, amplicon sequencing from the plasmid DNA or in vitro transcribed RNA as a "targeted" amplification method, sequence-independent single-primer amplification (SISPA) as a "random" amplification method, rolling circle reverse transcription sequencing (CirSeq) as an advanced "no amplification" method, and Illumina TruSeq RNA Access as a "targeted" enrichment method. The measured error frequencies indicate that RNA Access offers the best tradeoff between sensitivity and sample preparation error (1.4-5) of all compared methods.
Error baseline rates of five sample preparation methods used to characterize RNA virus populations
Kugelman, Jeffrey R.; Wiley, Michael R.; Nagle, Elyse R.; Reyes, Daniel; Pfeffer, Brad P.; Kuhn, Jens H.; Sanchez-Lockhart, Mariano; Palacios, Gustavo F.
2017-01-01
Individual RNA viruses typically occur as populations of genomes that differ slightly from each other due to mutations introduced by the error-prone viral polymerase. Understanding the variability of RNA virus genome populations is critical for understanding virus evolution because individual mutant genomes may gain evolutionary selective advantages and give rise to dominant subpopulations, possibly even leading to the emergence of viruses resistant to medical countermeasures. Reverse transcription of virus genome populations followed by next-generation sequencing is the only available method to characterize variation for RNA viruses. However, both steps may lead to the introduction of artificial mutations, thereby skewing the data. To better understand how such errors are introduced during sample preparation, we determined and compared error baseline rates of five different sample preparation methods by analyzing in vitro transcribed Ebola virus RNA from an artificial plasmid-based system. These methods included: shotgun sequencing from plasmid DNA or in vitro transcribed RNA as a basic “no amplification” method, amplicon sequencing from the plasmid DNA or in vitro transcribed RNA as a “targeted” amplification method, sequence-independent single-primer amplification (SISPA) as a “random” amplification method, rolling circle reverse transcription sequencing (CirSeq) as an advanced “no amplification” method, and Illumina TruSeq RNA Access as a “targeted” enrichment method. The measured error frequencies indicate that RNA Access offers the best tradeoff between sensitivity and sample preparation error (1.4−5) of all compared methods. PMID:28182717
Sanjuán, Rafael; Domingo-Calap, Pilar
2016-12-01
The remarkable capacity of some viruses to adapt to new hosts and environments is highly dependent on their ability to generate de novo diversity in a short period of time. Rates of spontaneous mutation vary amply among viruses. RNA viruses mutate faster than DNA viruses, single-stranded viruses mutate faster than double-strand virus, and genome size appears to correlate negatively with mutation rate. Viral mutation rates are modulated at different levels, including polymerase fidelity, sequence context, template secondary structure, cellular microenvironment, replication mechanisms, proofreading, and access to post-replicative repair. Additionally, massive numbers of mutations can be introduced by some virus-encoded diversity-generating elements, as well as by host-encoded cytidine/adenine deaminases. Our current knowledge of viral mutation rates indicates that viral genetic diversity is determined by multiple virus- and host-dependent processes, and that viral mutation rates can evolve in response to specific selective pressures.
Nesbitt, Victoria; Pitceathly, Robert D S; Turnbull, Doug M; Taylor, Robert W; Sweeney, Mary G; Mudanohwo, Ese E; Rahman, Shamima; Hanna, Michael G; McFarland, Robert
2013-08-01
Population-based studies suggest the m.3243A>G mutation in MTTL1 is the most common disease-causing mtDNA mutation, with a carrier rate of 1 in 400 people. The m.3243A>G mutation is associated with several clinical syndromes including mitochondrial encephalopathy lactic acidosis and stroke-like episodes (MELAS), maternally inherited deafness and diabetes (MIDD) and progressive external ophthalmoplegia (PEO). Many patients affected by this mutation exhibit a clinical phenotype that does not fall within accepted criteria for the currently recognised classical mitochondrial syndromes. We have defined the phenotypic spectrum associated with the m.3243A>G mtDNA mutation in 129 patients, from 83 unrelated families, recruited to the Mitochondrial Disease Patient Cohort Study UK. 10% of patients exhibited a classical MELAS phenotype, 30% had MIDD, 6% MELAS/MIDD, 2% MELAS/chronic PEO (CPEO) and 5% MIDD/CPEO overlap syndromes. 6% had PEO and other features of mitochondrial disease not consistent with another recognised syndrome. Isolated sensorineural hearing loss occurred in 3%. 28% of patients demonstrated a panoply of clinical features, which were not consistent with any of the classical syndromes associated with the m.3243A>G mutation. 9% of individuals harbouring the mutation were clinically asymptomatic. Following this study we propose guidelines for screening and for the management of confirmed cases.
Jones, Angela M.; Ferguson, Peter; Gardner, Jacqui; Rooker, Serena; Sutton, Tim; Ahn, Antonio; Chatterjee, Aniruddha; Bickley, Vivienne M.; Sarwar, Makhdoom; Emanuel, Patrick; Kenwright, Diane; Shepherd, Peter R.; Eccles, Michael R.
2016-01-01
Melanoma, the most aggressive skin cancer type, is responsible for 75% of skin cancer related deaths worldwide. Given that New Zealand (NZ) has the world's highest melanoma incidence, we sought to determine the frequency of mutations in NZ melanomas in recurrently mutated genes. NZ melanomas were from localities distributed between North (35°S-42°S) and South Islands (41°S-47°S). A total of 529 melanomas were analyzed for BRAF exon 15 mutations by Sanger sequencing, and also by Sequenom MelaCarta MassARRAY. While, a relatively low incidence of BRAFV600E mutations (23.4%) was observed overall in NZ melanomas, the incidence of NRAS mutations in South Island melanomas was high compared to North Island melanomas (38.3% vs. 21.9%, P=0.0005), and to The Cancer Genome Atlas database (TCGA) (38.3% vs. 22%, P=0.0004). In contrast, the incidence of EPHB6G404S mutations was 0% in South Island melanomas, and was 7.8% in North Island (P=0.0002). Overall, these data suggest that melanomas from geographically different regions in NZ have markedly different mutation frequencies, in particular in the NRAS and EPHB6 genes, when compared to TCGA or other populations. These data have implications for the causation and treatment of malignant melanoma in NZ. PMID:27191502
Meier, Bettina; Cooke, Susanna L; Weiss, Joerg; Bailly, Aymeric P; Alexandrov, Ludmil B; Marshall, John; Raine, Keiran; Maddison, Mark; Anderson, Elizabeth; Stratton, Michael R; Gartner, Anton; Campbell, Peter J
2014-10-01
Mutation is associated with developmental and hereditary disorders, aging, and cancer. While we understand some mutational processes operative in human disease, most remain mysterious. We used Caenorhabditis elegans whole-genome sequencing to model mutational signatures, analyzing 183 worm populations across 17 DNA repair-deficient backgrounds propagated for 20 generations or exposed to carcinogens. The baseline mutation rate in C. elegans was approximately one per genome per generation, not overtly altered across several DNA repair deficiencies over 20 generations. Telomere erosion led to complex chromosomal rearrangements initiated by breakage-fusion-bridge cycles and completed by simultaneously acquired, localized clusters of breakpoints. Aflatoxin B1 induced substitutions of guanines in a GpC context, as observed in aflatoxin-induced liver cancers. Mutational burden increased with impaired nucleotide excision repair. Cisplatin and mechlorethamine, DNA crosslinking agents, caused dose- and genotype-dependent signatures among indels, substitutions, and rearrangements. Strikingly, both agents induced clustered rearrangements resembling "chromoanasynthesis," a replication-based mutational signature seen in constitutional genomic disorders, suggesting that interstrand crosslinks may play a pathogenic role in such events. Cisplatin mutagenicity was most pronounced in xpf-1 mutants, suggesting that this gene critically protects cells against platinum chemotherapy. Thus, experimental model systems combined with genome sequencing can recapture and mechanistically explain mutational signatures associated with human disease. © 2014 Meier et al.; Published by Cold Spring Harbor Laboratory Press.
Mazen, I; El-Gammal, M; Abdel-Hamid, M; Farooqi, I S; Amr, K
2011-04-01
Congenital deficiency of the leptin receptor is a very rare cause of severe early-onset obesity. To date, only 9 families have been reported in the literature to have mutations in the leptin receptor gene. The clinical features include severe early onset obesity, severe hyperphagia, hypogonadotropic hypogonadism, and T cell and neuroendocrine/metabolic dysfunction. Here we report two cousins with severe early onset obesity and recurrent respiratory tract infections. Their serum leptin levels were elevated but they were within the range predicted by the elevated fat mass in both cousins. Direct sequencing of the entire coding sequence of the leptin receptor gene revealed a novel homozygous missense mutation in exon 6, P316T. The mutation was found in the homozygous form in both cousins and in the heterozygote state in their parents. This mutation was not found in 200 chromosomes from 100 unrelated normal weight control subjects of Egyptian origin using PCR-RFLP analysis. In conclusion, finding this new mutation in the LEPR beside our previous mutation in the LEP gene implies that monogenic obesity syndromes may be common in the Egyptian population owing to the high rates of consanguineous marriages. Further screening of more families for mutations in LEP, LEPR, and MC4 might confirm this assumption. Copyright © 2010 Elsevier Inc. All rights reserved.
Jones, Angela M; Ferguson, Peter; Gardner, Jacqui; Rooker, Serena; Sutton, Tim; Ahn, Antonio; Chatterjee, Aniruddha; Bickley, Vivienne M; Sarwar, Makhdoom; Emanuel, Patrick; Kenwright, Diane; Shepherd, Peter R; Eccles, Michael R
2016-07-05
Melanoma, the most aggressive skin cancer type, is responsible for 75% of skin cancer related deaths worldwide. Given that New Zealand (NZ) has the world's highest melanoma incidence, we sought to determine the frequency of mutations in NZ melanomas in recurrently mutated genes. NZ melanomas were from localities distributed between North (35°S-42°S) and South Islands (41°S-47°S). A total of 529 melanomas were analyzed for BRAF exon 15 mutations by Sanger sequencing, and also by Sequenom MelaCarta MassARRAY. While, a relatively low incidence of BRAFV600E mutations (23.4%) was observed overall in NZ melanomas, the incidence of NRAS mutations in South Island melanomas was high compared to North Island melanomas (38.3% vs. 21.9%, P=0.0005), and to The Cancer Genome Atlas database (TCGA) (38.3% vs. 22%, P=0.0004). In contrast, the incidence of EPHB6G404S mutations was 0% in South Island melanomas, and was 7.8% in North Island (P=0.0002). Overall, these data suggest that melanomas from geographically different regions in NZ have markedly different mutation frequencies, in particular in the NRAS and EPHB6 genes, when compared to TCGA or other populations. These data have implications for the causation and treatment of malignant melanoma in NZ.
Huzmeli, Can; Candan, Ferhan; Bagci, Gokhan; Alaygut, Demet; Yilmaz, Ali; Gedikli, Asim; Bagci, Binnur; Timucin, Meryem; Sezgin, Ilhan; Kayatas, Mansur
2017-11-01
Primary glomerulopathies are those disorders that affect glomerular structure, function, or both in the absence of a multisystem disorder. We aimed to evaluate the frequency of MEFV gene mutation to show possible coexistence of FMF in patients diagnosed with biopsy-proven primary glomerulonephritis (GN). A total of 64 patients with biopsy-proven primary GN were included in the study. MEFV gene mutations examined retrospectively. The mean age of patients was 39.6 ± 13.4 (range 18-69), 35 of patients were female and 29 of patients were male. Of the 64 patients, 17 were mesangial proliferative glomerulonephritis (MsPGN), 15 were IgA nephropathy (IgAN), 12 were membranous glomerulonephritis (MGN), 11 were focal segmental glomerulosclerosis (FSGS), three were membranous proliferative glomerulonephritis (MPGN), three were immune complex glomerulonephritis (ICGN), two were minimal change disease (MCD), and one was IgM nephropathy (IgMN). MEFV gene mutation was detected in 35.9% (23) of these patients. The most frequently detected mutations were E148Q and M694V. Twelve cases (18.75% of GN patients) with MEFV gene mutation were diagnosed as FMF phenotype I. The frequency of MEFV gene mutation was detected at a high rate of 35.9%. Further studies with larger populations are needed to clarify the importance of these mutations on clinical progression of glomerulonephritis.
Molecular and Proteomic Analysis of Levofloxacin and Metronidazole Resistant Helicobacter pylori.
Hanafi, Aimi; Lee, Woon Ching; Loke, Mun Fai; Teh, Xinsheng; Shaari, Ain; Dinarvand, Mojdeh; Lehours, Philippe; Mégraud, Francis; Leow, Alex Hwong Ruey; Vadivelu, Jamuna; Goh, Khean Lee
2016-01-01
Antibiotic resistance in bacteria incurs fitness cost, but compensatory mechanisms may ameliorate the cost and sustain the resistance even under antibiotics-free conditions. The aim of this study was to determine compensatory mechanisms of antibiotic resistance in H. pylori . Five strains of levofloxacin-sensitive H. pylori were induced in vitro to develop resistance. In addition, four pairs of metronidazole-sensitive and -resistant H. pylori strains were isolated from patients carrying dual H. pylori populations that consist of both sensitive and resistant phenotypes. Growth rate, virulence and biofilm-forming ability of the sensitive and resistant strains were compared to determine effects of compensatory response. Proteome profiles of paired sensitive and resistant strains were analyzed by liquid chromatography/mass spectrophotometry (LC/MS). Although there were no significant differences in growth rate between sensitive and resistant pairs, bacterial virulence (in terms of abilities to induce apoptosis and form biofilm) differs from pair to pair. These findings demonstrate the complex and strain-specific phenotypic changes in compensation for antibiotics resistance. Compensation for in vitro induced levofloxacin resistance involving mutations of gyrA and gyrB was functionally random. Furthermore, higher protein translation and non-functional protein degradation capabilities in naturally-occuring dual population metronidazole sensitive-resistant strains may be a possible alternative mechanism underlying resistance to metronidazole without mutations in rdxA and frxA . This may explain the lack of mutations in target genes in ~10% of metronidazole resistant strains.
Molecular and Proteomic Analysis of Levofloxacin and Metronidazole Resistant Helicobacter pylori
Hanafi, Aimi; Lee, Woon Ching; Loke, Mun Fai; Teh, Xinsheng; Shaari, Ain; Dinarvand, Mojdeh; Lehours, Philippe; Mégraud, Francis; Leow, Alex Hwong Ruey; Vadivelu, Jamuna; Goh, Khean Lee
2016-01-01
Antibiotic resistance in bacteria incurs fitness cost, but compensatory mechanisms may ameliorate the cost and sustain the resistance even under antibiotics-free conditions. The aim of this study was to determine compensatory mechanisms of antibiotic resistance in H. pylori. Five strains of levofloxacin-sensitive H. pylori were induced in vitro to develop resistance. In addition, four pairs of metronidazole-sensitive and -resistant H. pylori strains were isolated from patients carrying dual H. pylori populations that consist of both sensitive and resistant phenotypes. Growth rate, virulence and biofilm-forming ability of the sensitive and resistant strains were compared to determine effects of compensatory response. Proteome profiles of paired sensitive and resistant strains were analyzed by liquid chromatography/mass spectrophotometry (LC/MS). Although there were no significant differences in growth rate between sensitive and resistant pairs, bacterial virulence (in terms of abilities to induce apoptosis and form biofilm) differs from pair to pair. These findings demonstrate the complex and strain-specific phenotypic changes in compensation for antibiotics resistance. Compensation for in vitro induced levofloxacin resistance involving mutations of gyrA and gyrB was functionally random. Furthermore, higher protein translation and non-functional protein degradation capabilities in naturally-occuring dual population metronidazole sensitive-resistant strains may be a possible alternative mechanism underlying resistance to metronidazole without mutations in rdxA and frxA. This may explain the lack of mutations in target genes in ~10% of metronidazole resistant strains. PMID:28018334
Rates and Genomic Consequences of Spontaneous Mutational Events in Drosophila melanogaster
Schrider, Daniel R.; Houle, David; Lynch, Michael; Hahn, Matthew W.
2013-01-01
Because spontaneous mutation is the source of all genetic diversity, measuring mutation rates can reveal how natural selection drives patterns of variation within and between species. We sequenced eight genomes produced by a mutation-accumulation experiment in Drosophila melanogaster. Our analysis reveals that point mutation and small indel rates vary significantly between the two different genetic backgrounds examined. We also find evidence that ∼2% of mutational events affect multiple closely spaced nucleotides. Unlike previous similar experiments, we were able to estimate genome-wide rates of large deletions and tandem duplications. These results suggest that, at least in inbred lines like those examined here, mutational pressures may result in net growth rather than contraction of the Drosophila genome. By comparing our mutation rate estimates to polymorphism data, we are able to estimate the fraction of new mutations that are eliminated by purifying selection. These results suggest that ∼99% of duplications and deletions are deleterious—making them 10 times more likely to be removed by selection than nonsynonymous mutations. Our results illuminate not only the rates of new small- and large-scale mutations, but also the selective forces that they encounter once they arise. PMID:23733788
Ogbunugafor, C Brandon; Hartl, Daniel
2016-01-25
The study of reverse evolution from resistant to susceptible phenotypes can reveal constraints on biological evolution, a topic for which evolutionary theory has relatively few general principles. The public health catastrophe of antimicrobial resistance in malaria has brought these constraints on evolution into a practical realm, with one proposed solution: withdrawing anti-malarial medication use in high resistance settings, built on the assumption that reverse evolution occurs readily enough that populations of pathogens may revert to their susceptible states. While past studies have suggested limits to reverse evolution, there have been few attempts to properly dissect its mechanistic constraints. Growth rates were determined from empirical data on the growth and resistance from a set of combinatorially complete set of mutants of a resistance protein (dihydrofolate reductase) in Plasmodium vivax, to construct reverse evolution trajectories. The fitness effects of individual mutations were calculated as a function of drug environment, revealing the magnitude of epistatic interactions between mutations and genetic backgrounds. Evolution across the landscape was simulated in two settings: starting from the population fixed for the quadruple mutant, and from a polymorphic population evenly distributed between double mutants. A single mutation of large effect (S117N) serves as a pivot point for evolution to high resistance regions of the landscape. Through epistatic interactions with other mutations, this pivot creates an epistatic ratchet against reverse evolution towards the wild type ancestor, even in environments where the wild type is the most fit of all genotypes. This pivot mutation underlies the directional bias in evolution across the landscape, where evolution towards the ancestor is precluded across all examined drug concentrations from various starting points in the landscape. The presence of pivot mutations can dictate dynamics of evolution across adaptive landscape through epistatic interactions within a protein, leaving a population trapped on local fitness peaks in an adaptive landscape, unable to locate ancestral genotypes. This irreversibility suggests that the structure of an adaptive landscape for a resistance protein should be understood before considering resistance management strategies. This proposed mechanism for constraints on reverse evolution corroborates evidence from the field indicating that phenotypic reversal often occurs via compensatory mutation at sites independent of those associated with the forward evolution of resistance. Because of this, molecular methods that identify resistance patterns via single SNPs in resistance-associated markers might be missing signals for resistance and compensatory mutation throughout the genome. In these settings, whole genome sequencing efforts should be used to identify resistance patterns, and will likely reveal a more complicated genomic signature for resistance and susceptibility, especially in settings where anti-malarial medications have been used intermittently. Lastly, the findings suggest that, given their role in dictating the dynamics of evolution across the landscape, pivot mutations might serve as future targets for therapy.
Hallamies, Sanna; Pelttari, Liisa M; Poikonen-Saksela, Paula; Jekunen, Antti; Jukkola-Vuorinen, Arja; Auvinen, Päivi; Blomqvist, Carl; Aittomäki, Kristiina; Mattson, Johanna; Nevanlinna, Heli
2017-09-05
Several susceptibility genes have been established for female breast cancer, of which mutations in BRCA1 and especially in BRCA2 are also known risk factors for male breast cancer (MBC). The role of other breast cancer genes in MBC is less well understood. In this study, we have genotyped 68 MBC patients for the known breast or ovarian cancer associated mutations in the Finnish population in CHEK2, PALB2, RAD51C, RAD51D, and FANCM genes. CHEK2 c.1100delC mutation was found in 4 patients (5.9%), which is significantly more frequent than in the control population (OR: 4.47, 95% CI 1.51-13.18, p = 0.019). Four CHEK2 I157T variants were also detected, but the frequency did not significantly differ from population controls (p = 0.781). No RAD51C, RAD51D, PALB2, or FANCM mutations were found. These data suggest that the CHEK2 c.1100delC mutation is associated with an increased risk for MBC in the Finnish population.
Balvín, Ondrej; Booth, Warren
2018-03-15
For over two decades, the bed bug, Cimex lectularius L. (Hemiptera: Cimicidae) has been undergoing a dramatic global resurgence, likely in part to the evolution of mechanisms conferring resistance to insecticides. One such mechanism is knock-down resistance (kdr), resulting from nonsynonymous mutations within the voltage-gated sodium channel (VGSC) gene. To date, three mutations have been identified in C. lectularius, V419L, L925I, and I936F. Using Sanger sequencing, the frequency and distribution of these VGSC mutations across 131 populations collected from the bat-associated and human-associated lineages of C. lectularius found in Europe are documented. All populations from the bat-associated lineage lacked mutations at the three sites. In contrast, the majority of populations associated with humans (93.5%) possessed the mutation at the L925I site. The I936F mutation, previously only reported in Israel and Australia, was found in nine populations spread across several European countries, including the Czech Republic and Switzerland. The high frequency of kdr-associated resistance already reported in C. lectularius and the occurrence and broad geographic distribution of this additional VGSC mutation, questions the continued use of pyrethroids in the treatment of infestations.
Nemoto-Hasebe, I; Akiyama, M; Nomura, T; Sandilands, A; McLean, W H I; Shimizu, H
2009-12-01
Mutations in the gene encoding filaggrin (FLG) have been shown to predispose to atopic eczema (AE). Further to establish population genetics of FLG mutations in the Japanese population and to elucidate effects of FLG mutations to filaggrin biosynthesis in skin of patients with AE. We searched for FLG mutations in 19 newly recruited Japanese patients with AE. We then screened 137 Japanese patients with AE and 134 Japanese control individuals for a novel mutation identified in the present study. In addition, we evaluated FLG mRNA expression by real-time reverse transcription-polymerase chain reaction and profilaggrin/filaggrin protein expression by immunohistochemical staining in the epidermis of the patients carrying the novel mutation. We identified a novel FLG nonsense mutation c.12069A>T (p.Lys4021X) in one patient with AE. Upon further screening, p.Lys4021X was identified in four patients with AE (2.9% of all the patients with AE). In total, there are at least eight FLG variants in the Japanese population. Here we show that about 27% of patients in our Japanese AE case series carry one or more of these eight FLG mutations and these variants are also carried by 3.7% of Japanese general control individuals. There is a significant statistical association between the eight FLG mutations and AE (chi(2) P = 6.50 x 10(-8)). Interestingly, the present nonsense mutation is in the C-terminal incomplete filaggrin repeat and is the mutation nearest the C-terminal among previously reported FLG mutations. Immunohistochemical staining for filaggrin revealed that this nonsense mutation leads to remarkable reduction of filaggrin protein expression in the patients' epidermis. We clearly demonstrated that FLG mutations are significantly associated with AE in the Japanese population. The present results further support the hypothesis that the C-terminal region is essential for proper processing of profilaggrin to filaggrin.
Costa, M C; Helweg-Larsen, J; Lundgren, Bettina; Antunes, F; Matos, O
2003-11-01
The aim of this study was to evaluate the frequency of mutations of the P. jiroveci dihydropteroate synthase (DHPS) gene in an immunocompromised Portuguese population and to investigate the possible association between DHPS mutations and sulpha exposure. In the studied population, DHPS gene mutations were not significantly more frequent in patients exposed to sulpha drugs compared with patients not exposed (P=0.390). The results of this study suggest that DHPS gene mutations are frequent in the Portuguese immunocompromised population but do not seem associated with previous sulpha exposure. These results are consistent with the possibility of an incidental acquisition and transmission of P. jiroveci mutant types, either by person to person transmission or from an environmental source.
Palmero, Edenir Inêz; Alemar, Bárbara; Schüler-Faccini, Lavínia; Hainaut, Pierre; Moreira-Filho, Carlos Alberto; Ewald, Ingrid Petroni; Santos, Patricia Koehler Dos; Ribeiro, Patricia Lisbôa Izetti; Oliveira, Cristina Brinkmann de Netto; Calvez-Kelm, Florence Le; Tavtigian, Sean; Cossio, Silvia Liliana; Giugliani, Roberto; Caleffi, Maira; Ashton-Prolla, Patricia
2016-05-24
In Brazil, breast cancer is a public health care problem due to its high incidence and mortality rates. In this study, we investigated the prevalence of hereditary breast cancer syndromes (HBCS) in a population-based cohort in Brazils southernmost capital, Porto Alegre. All participants answered a questionnaire about family history (FH) of breast, ovarian and colorectal cancer and those with a positive FH were invited for genetic cancer risk assessment (GCRA). If pedigree analysis was suggestive of HBCS, genetic testing of the BRCA1, BRCA2, TP53, and CHEK2 genes was offered. Of 902 women submitted to GCRA, 214 had pedigrees suggestive of HBCS. Fifty of them underwent genetic testing: 18 and 40 for BRCA1/BRCA2 and TP53 mutation screening, respectively, and 7 for CHEK2 1100delC testing. A deleterious BRCA2 mutation was identified in one of the HBOC probands and the CHEK2 1100delC mutation occurred in one of the HBCC families. No deleterious germline alterations were identified in BRCA1 or TP53. Although strict inclusion criteria and a comprehensive testing approach were used, the suspected genetic risk in these families remains unexplained. Further studies in a larger cohort are necessary to better understand the genetic component of hereditary breast cancer in Southern Brazil.