Experimental design and efficient parameter estimation in preclinical pharmacokinetic studies.
Ette, E I; Howie, C A; Kelman, A W; Whiting, B
1995-05-01
Monte Carlo simulation technique used to evaluate the effect of the arrangement of concentrations on the efficiency of estimation of population pharmacokinetic parameters in the preclinical setting is described. Although the simulations were restricted to the one compartment model with intravenous bolus input, they provide the basis of discussing some structural aspects involved in designing a destructive ("quantic") preclinical population pharmacokinetic study with a fixed sample size as is usually the case in such studies. The efficiency of parameter estimation obtained with sampling strategies based on the three and four time point designs were evaluated in terms of the percent prediction error, design number, individual and joint confidence intervals coverage for parameter estimates approaches, and correlation analysis. The data sets contained random terms for both inter- and residual intra-animal variability. The results showed that the typical population parameter estimates for clearance and volume were efficiently (accurately and precisely) estimated for both designs, while interanimal variability (the only random effect parameter that could be estimated) was inefficiently (inaccurately and imprecisely) estimated with most sampling schedules of the two designs. The exact location of the third and fourth time point for the three and four time point designs, respectively, was not critical to the efficiency of overall estimation of all population parameters of the model. However, some individual population pharmacokinetic parameters were sensitive to the location of these times.
NASA Astrophysics Data System (ADS)
Yashima, Kenta; Ito, Kana; Nakamura, Kazuyuki
2013-03-01
When an Infectious disease where to prevail throughout the population, epidemic parameters such as the basic reproduction ratio, initial point of infection etc. are estimated from the time series data of infected population. However, it is unclear how does the structure of host population affects this estimation accuracy. In other words, what kind of city is difficult to estimate its epidemic parameters? To answer this question, epidemic data are simulated by constructing a commuting network with different network structure and running the infection process over this network. From the given time series data for each network structure, we would like to analyzed estimation accuracy of epidemic parameters.
Bridging the gaps between non-invasive genetic sampling and population parameter estimation
Francesca Marucco; Luigi Boitani; Daniel H. Pletscher; Michael K. Schwartz
2011-01-01
Reliable estimates of population parameters are necessary for effective management and conservation actions. The use of genetic data for captureÂrecapture (CR) analyses has become an important tool to estimate population parameters for elusive species. Strong emphasis has been placed on the genetic analysis of non-invasive samples, or on the CR analysis; however,...
Ackleh, A.S.; Carter, J.; Deng, K.; Huang, Q.; Pal, N.; Yang, X.
2012-01-01
We derive point and interval estimates for an urban population of green tree frogs (Hyla cinerea) from capture-mark-recapture field data obtained during the years 2006-2009. We present an infinite-dimensional least-squares approach which compares a mathematical population model to the statistical population estimates obtained from the field data. The model is composed of nonlinear first-order hyperbolic equations describing the dynamics of the amphibian population where individuals are divided into juveniles (tadpoles) and adults (frogs). To solve the least-squares problem, an explicit finite difference approximation is developed. Convergence results for the computed parameters are presented. Parameter estimates for the vital rates of juveniles and adults are obtained, and standard deviations for these estimates are computed. Numerical results for the model sensitivity with respect to these parameters are given. Finally, the above-mentioned parameter estimates are used to illustrate the long-time behavior of the population under investigation. ?? 2011 Society for Mathematical Biology.
Dunham, Kylee; Grand, James B.
2016-01-01
We examined the effects of complexity and priors on the accuracy of models used to estimate ecological and observational processes, and to make predictions regarding population size and structure. State-space models are useful for estimating complex, unobservable population processes and making predictions about future populations based on limited data. To better understand the utility of state space models in evaluating population dynamics, we used them in a Bayesian framework and compared the accuracy of models with differing complexity, with and without informative priors using sequential importance sampling/resampling (SISR). Count data were simulated for 25 years using known parameters and observation process for each model. We used kernel smoothing to reduce the effect of particle depletion, which is common when estimating both states and parameters with SISR. Models using informative priors estimated parameter values and population size with greater accuracy than their non-informative counterparts. While the estimates of population size and trend did not suffer greatly in models using non-informative priors, the algorithm was unable to accurately estimate demographic parameters. This model framework provides reasonable estimates of population size when little to no information is available; however, when information on some vital rates is available, SISR can be used to obtain more precise estimates of population size and process. Incorporating model complexity such as that required by structured populations with stage-specific vital rates affects precision and accuracy when estimating latent population variables and predicting population dynamics. These results are important to consider when designing monitoring programs and conservation efforts requiring management of specific population segments.
Demography of the Pacific walrus (Odobenus rosmarus divergens): 1974-2006
Taylor, Rebecca L.; Udevitz, Mark S.
2015-01-01
Global climate change may fundamentally alter population dynamics of many species for which baseline population parameter estimates are imprecise or lacking. Historically, the Pacific walrus is thought to have been limited by harvest, but it may become limited by global warming-induced reductions in sea ice. Loss of sea ice, on which walruses rest between foraging bouts, may reduce access to food, thus lowering vital rates. Rigorous walrus survival rate estimates do not exist, and other population parameter estimates are out of date or have well-documented bias and imprecision. To provide useful population parameter estimates we developed a Bayesian, hidden process demographic model of walrus population dynamics from 1974 through 2006 that combined annual age-specific harvest estimates with five population size estimates, six standing age structure estimates, and two reproductive rate estimates. Median density independent natural survival was high for juveniles (0.97) and adults (0.99), and annual density dependent vital rates rose from 0.06 to 0.11 for reproduction, 0.31 to 0.59 for survival of neonatal calves, and 0.39 to 0.85 for survival of older calves, concomitant with a population decline. This integrated population model provides a baseline for estimating changing population dynamics resulting from changing harvests or sea ice.
Relative effects of survival and reproduction on the population dynamics of emperor geese
Schmutz, Joel A.; Rockwell, Robert F.; Petersen, Margaret R.
1997-01-01
Populations of emperor geese (Chen canagica) in Alaska declined sometime between the mid-1960s and the mid-1980s and have increased little since. To promote recovery of this species to former levels, managers need to know how much their perturbations of survival and/or reproduction would affect population growth rate (λ). We constructed an individual-based population model to evaluate the relative effect of altering mean values of various survival and reproductive parameters on λ and fall age structure (AS, defined as the proportion of juv), assuming additive rather than compensatory relations among parameters. Altering survival of adults had markedly greater relative effects on λ than did equally proportionate changes in either juvenile survival or reproductive parameters. We found the opposite pattern for relative effects on AS. Due to concerns about bias in the initial parameter estimates used in our model, we used 5 additional sets of parameter estimates with this model structure. We found that estimates of survival based on aerial survey data gathered each fall resulted in models that corresponded more closely to independent estimates of λ than did models that used mark-recapture estimates of survival. This disparity suggests that mark-recapture estimates of survival are biased low. To further explore how parameter estimates affected estimates of λ, we used values of survival and reproduction found in other goose species, and we examined the effect of an hypothesized correlation between an individual's clutch size and the subsequent survival of her young. The rank order of parameters in their relative effects on λ was consistent for all 6 parameter sets we examined. The observed variation in relative effects on λ among the 6 parameter sets is indicative of how relative effects on λ may vary among goose populations. With this knowledge of the relative effects of survival and reproductive parameters on λ, managers can make more informed decisions about which parameters to influence through management or to target for future study.
Population models for passerine birds: structure, parameterization, and analysis
Noon, B.R.; Sauer, J.R.; McCullough, D.R.; Barrett, R.H.
1992-01-01
Population models have great potential as management tools, as they use infonnation about the life history of a species to summarize estimates of fecundity and survival into a description of population change. Models provide a framework for projecting future populations, determining the effects of management decisions on future population dynamics, evaluating extinction probabilities, and addressing a variety of questions of ecological and evolutionary interest. Even when insufficient information exists to allow complete identification of the model, the modelling procedure is useful because it forces the investigator to consider the life history of the species when determining what parameters should be estimated from field studies and provides a context for evaluating the relative importance of demographic parameters. Models have been little used in the study of the population dynamics of passerine birds because of: (1) widespread misunderstandings of the model structures and parameterizations, (2) a lack of knowledge of life histories of many species, (3) difficulties in obtaining statistically reliable estimates of demographic parameters for most passerine species, and (4) confusion about functional relationships among demographic parameters. As a result, studies of passerine demography are often designed inappropriately and fail to provide essential data. We review appropriate models for passerine bird populations and illustrate their possible uses in evaluating the effects of management or other environmental influences on population dynamics. We identify environmental influences on population dynamics. We identify parameters that must be estimated from field data, briefly review existing statistical methods for obtaining valid estimates, and evaluate the present status of knowledge of these parameters.
Palamara, Gian Marco; Childs, Dylan Z; Clements, Christopher F; Petchey, Owen L; Plebani, Marco; Smith, Matthew J
2014-01-01
Understanding and quantifying the temperature dependence of population parameters, such as intrinsic growth rate and carrying capacity, is critical for predicting the ecological responses to environmental change. Many studies provide empirical estimates of such temperature dependencies, but a thorough investigation of the methods used to infer them has not been performed yet. We created artificial population time series using a stochastic logistic model parameterized with the Arrhenius equation, so that activation energy drives the temperature dependence of population parameters. We simulated different experimental designs and used different inference methods, varying the likelihood functions and other aspects of the parameter estimation methods. Finally, we applied the best performing inference methods to real data for the species Paramecium caudatum. The relative error of the estimates of activation energy varied between 5% and 30%. The fraction of habitat sampled played the most important role in determining the relative error; sampling at least 1% of the habitat kept it below 50%. We found that methods that simultaneously use all time series data (direct methods) and methods that estimate population parameters separately for each temperature (indirect methods) are complementary. Indirect methods provide a clearer insight into the shape of the functional form describing the temperature dependence of population parameters; direct methods enable a more accurate estimation of the parameters of such functional forms. Using both methods, we found that growth rate and carrying capacity of Paramecium caudatum scale with temperature according to different activation energies. Our study shows how careful choice of experimental design and inference methods can increase the accuracy of the inferred relationships between temperature and population parameters. The comparison of estimation methods provided here can increase the accuracy of model predictions, with important implications in understanding and predicting the effects of temperature on the dynamics of populations. PMID:25558365
Hoenig, John M; Then, Amy Y.-H.; Babcock, Elizabeth A.; Hall, Norman G.; Hewitt, David A.; Hesp, Sybrand A.
2016-01-01
There are a number of key parameters in population dynamics that are difficult to estimate, such as natural mortality rate, intrinsic rate of population growth, and stock-recruitment relationships. Often, these parameters of a stock are, or can be, estimated indirectly on the basis of comparative life history studies. That is, the relationship between a difficult to estimate parameter and life history correlates is examined over a wide variety of species in order to develop predictive equations. The form of these equations may be derived from life history theory or simply be suggested by exploratory data analysis. Similarly, population characteristics such as potential yield can be estimated by making use of a relationship between the population parameter and bio-chemico–physical characteristics of the ecosystem. Surprisingly, little work has been done to evaluate how well these indirect estimators work and, in fact, there is little guidance on how to conduct comparative life history studies and how to evaluate them. We consider five issues arising in such studies: (i) the parameters of interest may be ill-defined idealizations of the real world, (ii) true values of the parameters are not known for any species, (iii) selecting data based on the quality of the estimates can introduce a host of problems, (iv) the estimates that are available for comparison constitute a non-random sample of species from an ill-defined population of species of interest, and (v) the hierarchical nature of the data (e.g. stocks within species within genera within families, etc., with multiple observations at each level) warrants consideration. We discuss how these issues can be handled and how they shape the kinds of questions that can be asked of a database of life history studies.
Impact of biology knowledge on the conservation and management of large pelagic sharks.
Yokoi, Hiroki; Ijima, Hirotaka; Ohshimo, Seiji; Yokawa, Kotaro
2017-09-06
Population growth rate, which depends on several biological parameters, is valuable information for the conservation and management of pelagic sharks, such as blue and shortfin mako sharks. However, reported biological parameters for estimating the population growth rates of these sharks differ by sex and display large variability. To estimate the appropriate population growth rate and clarify relationships between growth rate and relevant biological parameters, we developed a two-sex age-structured matrix population model and estimated the population growth rate using combinations of biological parameters. We addressed elasticity analysis and clarified the population growth rate sensitivity. For the blue shark, the estimated median population growth rate was 0.384 with a range of minimum and maximum values of 0.195-0.533, whereas those values of the shortfin mako shark were 0.102 and 0.007-0.318, respectively. The maturity age of male sharks had the largest impact for blue sharks, whereas that of female sharks had the largest impact for shortfin mako sharks. Hypotheses for the survival process of sharks also had a large impact on the population growth rate estimation. Both shark maturity age and survival rate were based on ageing validation data, indicating the importance of validating the quality of these data for the conservation and management of large pelagic sharks.
An audit of the statistics and the comparison with the parameter in the population
NASA Astrophysics Data System (ADS)
Bujang, Mohamad Adam; Sa'at, Nadiah; Joys, A. Reena; Ali, Mariana Mohamad
2015-10-01
The sufficient sample size that is needed to closely estimate the statistics for particular parameters are use to be an issue. Although sample size might had been calculated referring to objective of the study, however, it is difficult to confirm whether the statistics are closed with the parameter for a particular population. All these while, guideline that uses a p-value less than 0.05 is widely used as inferential evidence. Therefore, this study had audited results that were analyzed from various sub sample and statistical analyses and had compared the results with the parameters in three different populations. Eight types of statistical analysis and eight sub samples for each statistical analysis were analyzed. Results found that the statistics were consistent and were closed to the parameters when the sample study covered at least 15% to 35% of population. Larger sample size is needed to estimate parameter that involve with categorical variables compared with numerical variables. Sample sizes with 300 to 500 are sufficient to estimate the parameters for medium size of population.
Book review: Estimation of parameters for animal populations: A primer for the rest of us
Post van der Burg, Max
2016-01-01
No abstract available.Estimation of Parameters for Animal Populations: A Primer for the Rest of Us. Larkin A. Powell and George A. Gale. 2015. Caught Napping Publications, Lincoln, Nebraska, USA. 239 pages. (http://larkinpowell.wixsite.com/larkinpowell/estimationof-parameters-for-animal-pop). ISBN: 978-329-06151-4.
On a variational approach to some parameter estimation problems
NASA Technical Reports Server (NTRS)
Banks, H. T.
1985-01-01
Examples (1-D seismic, large flexible structures, bioturbation, nonlinear population dispersal) in which a variation setting can provide a convenient framework for convergence and stability arguments in parameter estimation problems are considered. Some of these examples are 1-D seismic, large flexible structures, bioturbation, and nonlinear population dispersal. Arguments for convergence and stability via a variational approach of least squares formulations of parameter estimation problems for partial differential equations is one aspect of the problem considered.
Liu, Xiaoming; Fu, Yun-Xin; Maxwell, Taylor J.; Boerwinkle, Eric
2010-01-01
It is known that sequencing error can bias estimation of evolutionary or population genetic parameters. This problem is more prominent in deep resequencing studies because of their large sample size n, and a higher probability of error at each nucleotide site. We propose a new method based on the composite likelihood of the observed SNP configurations to infer population mutation rate θ = 4Neμ, population exponential growth rate R, and error rate ɛ, simultaneously. Using simulation, we show the combined effects of the parameters, θ, n, ɛ, and R on the accuracy of parameter estimation. We compared our maximum composite likelihood estimator (MCLE) of θ with other θ estimators that take into account the error. The results show the MCLE performs well when the sample size is large or the error rate is high. Using parametric bootstrap, composite likelihood can also be used as a statistic for testing the model goodness-of-fit of the observed DNA sequences. The MCLE method is applied to sequence data on the ANGPTL4 gene in 1832 African American and 1045 European American individuals. PMID:19952140
Fan, Ming; Kuwahara, Hiroyuki; Wang, Xiaolei; Wang, Suojin; Gao, Xin
2015-11-01
Parameter estimation is a challenging computational problem in the reverse engineering of biological systems. Because advances in biotechnology have facilitated wide availability of time-series gene expression data, systematic parameter estimation of gene circuit models from such time-series mRNA data has become an important method for quantitatively dissecting the regulation of gene expression. By focusing on the modeling of gene circuits, we examine here the performance of three types of state-of-the-art parameter estimation methods: population-based methods, online methods and model-decomposition-based methods. Our results show that certain population-based methods are able to generate high-quality parameter solutions. The performance of these methods, however, is heavily dependent on the size of the parameter search space, and their computational requirements substantially increase as the size of the search space increases. In comparison, online methods and model decomposition-based methods are computationally faster alternatives and are less dependent on the size of the search space. Among other things, our results show that a hybrid approach that augments computationally fast methods with local search as a subsequent refinement procedure can substantially increase the quality of their parameter estimates to the level on par with the best solution obtained from the population-based methods while maintaining high computational speed. These suggest that such hybrid methods can be a promising alternative to the more commonly used population-based methods for parameter estimation of gene circuit models when limited prior knowledge about the underlying regulatory mechanisms makes the size of the parameter search space vastly large. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Effects of sampling close relatives on some elementary population genetics analyses.
Wang, Jinliang
2018-01-01
Many molecular ecology analyses assume the genotyped individuals are sampled at random from a population and thus are representative of the population. Realistically, however, a sample may contain excessive close relatives (ECR) because, for example, localized juveniles are drawn from fecund species. Our knowledge is limited about how ECR affect the routinely conducted elementary genetics analyses, and how ECR are best dealt with to yield unbiased and accurate parameter estimates. This study quantifies the effects of ECR on some popular population genetics analyses of marker data, including the estimation of allele frequencies, F-statistics, expected heterozygosity (H e ), effective and observed numbers of alleles, and the tests of Hardy-Weinberg equilibrium (HWE) and linkage equilibrium (LE). It also investigates several strategies for handling ECR to mitigate their impact and to yield accurate parameter estimates. My analytical work, assisted by simulations, shows that ECR have large and global effects on all of the above marker analyses. The naïve approach of simply ignoring ECR could yield low-precision and often biased parameter estimates, and could cause too many false rejections of HWE and LE. The bold approach, which simply identifies and removes ECR, and the cautious approach, which estimates target parameters (e.g., H e ) by accounting for ECR and using naïve allele frequency estimates, eliminate the bias and the false HWE and LE rejections, but could reduce estimation precision substantially. The likelihood approach, which accounts for ECR in estimating allele frequencies and thus target parameters relying on allele frequencies, usually yields unbiased and the most accurate parameter estimates. Which of the four approaches is the most effective and efficient may depend on the particular marker analysis to be conducted. The results are discussed in the context of using marker data for understanding population properties and marker properties. © 2017 John Wiley & Sons Ltd.
Parameter Estimates in Differential Equation Models for Population Growth
ERIC Educational Resources Information Center
Winkel, Brian J.
2011-01-01
We estimate the parameters present in several differential equation models of population growth, specifically logistic growth models and two-species competition models. We discuss student-evolved strategies and offer "Mathematica" code for a gradient search approach. We use historical (1930s) data from microbial studies of the Russian biologist,…
Helsel, Dennis R.; Gilliom, Robert J.
1986-01-01
Estimates of distributional parameters (mean, standard deviation, median, interquartile range) are often desired for data sets containing censored observations. Eight methods for estimating these parameters have been evaluated by R. J. Gilliom and D. R. Helsel (this issue) using Monte Carlo simulations. To verify those findings, the same methods are now applied to actual water quality data. The best method (lowest root-mean-squared error (rmse)) over all parameters, sample sizes, and censoring levels is log probability regression (LR), the method found best in the Monte Carlo simulations. Best methods for estimating moment or percentile parameters separately are also identical to the simulations. Reliability of these estimates can be expressed as confidence intervals using rmse and bias values taken from the simulation results. Finally, a new simulation study shows that best methods for estimating uncensored sample statistics from censored data sets are identical to those for estimating population parameters. Thus this study and the companion study by Gilliom and Helsel form the basis for making the best possible estimates of either population parameters or sample statistics from censored water quality data, and for assessments of their reliability.
Gordon Luikart; Nils Ryman; David A. Tallmon; Michael K. Schwartz; Fred W. Allendorf
2010-01-01
Population census size (NC) and effective population sizes (Ne) are two crucial parameters that influence population viability, wildlife management decisions, and conservation planning. Genetic estimators of both NC and Ne are increasingly widely used because molecular markers are increasingly available, statistical methods are improving rapidly, and genetic estimators...
Pradhan, Sudeep; Song, Byungjeong; Lee, Jaeyeon; Chae, Jung-Woo; Kim, Kyung Im; Back, Hyun-Moon; Han, Nayoung; Kwon, Kwang-Il; Yun, Hwi-Yeol
2017-12-01
Exploratory preclinical, as well as clinical trials, may involve a small number of patients, making it difficult to calculate and analyze the pharmacokinetic (PK) parameters, especially if the PK parameters show very high inter-individual variability (IIV). In this study, the performance of a classical first-order conditional estimation with interaction (FOCE-I) and expectation maximization (EM)-based Markov chain Monte Carlo Bayesian (BAYES) estimation methods were compared for estimating the population parameters and its distribution from data sets having a low number of subjects. In this study, 100 data sets were simulated with eight sampling points for each subject and with six different levels of IIV (5%, 10%, 20%, 30%, 50%, and 80%) in their PK parameter distribution. A stochastic simulation and estimation (SSE) study was performed to simultaneously simulate data sets and estimate the parameters using four different methods: FOCE-I only, BAYES(C) (FOCE-I and BAYES composite method), BAYES(F) (BAYES with all true initial parameters and fixed ω 2 ), and BAYES only. Relative root mean squared error (rRMSE) and relative estimation error (REE) were used to analyze the differences between true and estimated values. A case study was performed with a clinical data of theophylline available in NONMEM distribution media. NONMEM software assisted by Pirana, PsN, and Xpose was used to estimate population PK parameters, and R program was used to analyze and plot the results. The rRMSE and REE values of all parameter (fixed effect and random effect) estimates showed that all four methods performed equally at the lower IIV levels, while the FOCE-I method performed better than other EM-based methods at higher IIV levels (greater than 30%). In general, estimates of random-effect parameters showed significant bias and imprecision, irrespective of the estimation method used and the level of IIV. Similar performance of the estimation methods was observed with theophylline dataset. The classical FOCE-I method appeared to estimate the PK parameters more reliably than the BAYES method when using a simple model and data containing only a few subjects. EM-based estimation methods can be considered for adapting to the specific needs of a modeling project at later steps of modeling.
Hierarchical models and the analysis of bird survey information
Sauer, J.R.; Link, W.A.
2003-01-01
Management of birds often requires analysis of collections of estimates. We describe a hierarchical modeling approach to the analysis of these data, in which parameters associated with the individual species estimates are treated as random variables, and probability statements are made about the species parameters conditioned on the data. A Markov-Chain Monte Carlo (MCMC) procedure is used to fit the hierarchical model. This approach is computer intensive, and is based upon simulation. MCMC allows for estimation both of parameters and of derived statistics. To illustrate the application of this method, we use the case in which we are interested in attributes of a collection of estimates of population change. Using data for 28 species of grassland-breeding birds from the North American Breeding Bird Survey, we estimate the number of species with increasing populations, provide precision-adjusted rankings of species trends, and describe a measure of population stability as the probability that the trend for a species is within a certain interval. Hierarchical models can be applied to a variety of bird survey applications, and we are investigating their use in estimation of population change from survey data.
Developing population models with data from marked individuals
Hae Yeong Ryu,; Kevin T. Shoemaker,; Eva Kneip,; Anna Pidgeon,; Patricia Heglund,; Brooke Bateman,; Thogmartin, Wayne E.; Reşit Akçakaya,
2016-01-01
Population viability analysis (PVA) is a powerful tool for biodiversity assessments, but its use has been limited because of the requirements for fully specified population models such as demographic structure, density-dependence, environmental stochasticity, and specification of uncertainties. Developing a fully specified population model from commonly available data sources – notably, mark–recapture studies – remains complicated due to lack of practical methods for estimating fecundity, true survival (as opposed to apparent survival), natural temporal variability in both survival and fecundity, density-dependence in the demographic parameters, and uncertainty in model parameters. We present a general method that estimates all the key parameters required to specify a stochastic, matrix-based population model, constructed using a long-term mark–recapture dataset. Unlike standard mark–recapture analyses, our approach provides estimates of true survival rates and fecundities, their respective natural temporal variabilities, and density-dependence functions, making it possible to construct a population model for long-term projection of population dynamics. Furthermore, our method includes a formal quantification of parameter uncertainty for global (multivariate) sensitivity analysis. We apply this approach to 9 bird species and demonstrate the feasibility of using data from the Monitoring Avian Productivity and Survivorship (MAPS) program. Bias-correction factors for raw estimates of survival and fecundity derived from mark–recapture data (apparent survival and juvenile:adult ratio, respectively) were non-negligible, and corrected parameters were generally more biologically reasonable than their uncorrected counterparts. Our method allows the development of fully specified stochastic population models using a single, widely available data source, substantially reducing the barriers that have until now limited the widespread application of PVA. This method is expected to greatly enhance our understanding of the processes underlying population dynamics and our ability to analyze viability and project trends for species of conservation concern.
Gupta, Manan; Joshi, Amitabh; Vidya, T N C
2017-01-01
Mark-recapture estimators are commonly used for population size estimation, and typically yield unbiased estimates for most solitary species with low to moderate home range sizes. However, these methods assume independence of captures among individuals, an assumption that is clearly violated in social species that show fission-fusion dynamics, such as the Asian elephant. In the specific case of Asian elephants, doubts have been raised about the accuracy of population size estimates. More importantly, the potential problem for the use of mark-recapture methods posed by social organization in general has not been systematically addressed. We developed an individual-based simulation framework to systematically examine the potential effects of type of social organization, as well as other factors such as trap density and arrangement, spatial scale of sampling, and population density, on bias in population sizes estimated by POPAN, Robust Design, and Robust Design with detection heterogeneity. In the present study, we ran simulations with biological, demographic and ecological parameters relevant to Asian elephant populations, but the simulation framework is easily extended to address questions relevant to other social species. We collected capture history data from the simulations, and used those data to test for bias in population size estimation. Social organization significantly affected bias in most analyses, but the effect sizes were variable, depending on other factors. Social organization tended to introduce large bias when trap arrangement was uniform and sampling effort was low. POPAN clearly outperformed the two Robust Design models we tested, yielding close to zero bias if traps were arranged at random in the study area, and when population density and trap density were not too low. Social organization did not have a major effect on bias for these parameter combinations at which POPAN gave more or less unbiased population size estimates. Therefore, the effect of social organization on bias in population estimation could be removed by using POPAN with specific parameter combinations, to obtain population size estimates in a social species.
Joshi, Amitabh; Vidya, T. N. C.
2017-01-01
Mark-recapture estimators are commonly used for population size estimation, and typically yield unbiased estimates for most solitary species with low to moderate home range sizes. However, these methods assume independence of captures among individuals, an assumption that is clearly violated in social species that show fission-fusion dynamics, such as the Asian elephant. In the specific case of Asian elephants, doubts have been raised about the accuracy of population size estimates. More importantly, the potential problem for the use of mark-recapture methods posed by social organization in general has not been systematically addressed. We developed an individual-based simulation framework to systematically examine the potential effects of type of social organization, as well as other factors such as trap density and arrangement, spatial scale of sampling, and population density, on bias in population sizes estimated by POPAN, Robust Design, and Robust Design with detection heterogeneity. In the present study, we ran simulations with biological, demographic and ecological parameters relevant to Asian elephant populations, but the simulation framework is easily extended to address questions relevant to other social species. We collected capture history data from the simulations, and used those data to test for bias in population size estimation. Social organization significantly affected bias in most analyses, but the effect sizes were variable, depending on other factors. Social organization tended to introduce large bias when trap arrangement was uniform and sampling effort was low. POPAN clearly outperformed the two Robust Design models we tested, yielding close to zero bias if traps were arranged at random in the study area, and when population density and trap density were not too low. Social organization did not have a major effect on bias for these parameter combinations at which POPAN gave more or less unbiased population size estimates. Therefore, the effect of social organization on bias in population estimation could be removed by using POPAN with specific parameter combinations, to obtain population size estimates in a social species. PMID:28306735
Chapter 8: Demographic characteristics and population modeling
Scott H. Stoleson; Mary J. Whitfield; Mark K. Sogge
2000-01-01
An understanding of the basic demography of a species is necessary to estimate and evaluate population trends. The relative impact of different demographic parameters on growth rates can be assessed through a sensitivity analysis, in which different parameters are altered singly to assess the effect on population growth. Identification of critical parameters can allow...
N-mixture models for estimating population size from spatially replicated counts
Royle, J. Andrew
2004-01-01
Spatial replication is a common theme in count surveys of animals. Such surveys often generate sparse count data from which it is difficult to estimate population size while formally accounting for detection probability. In this article, i describe a class of models (n-mixture models) which allow for estimation of population size from such data. The key idea is to view site-specific population sizes, n, as independent random variables distributed according to some mixing distribution (e.g., Poisson). Prior parameters are estimated from the marginal likelihood of the data, having integrated over the prior distribution for n. Carroll and lombard (1985, journal of american statistical association 80, 423-426) proposed a class of estimators based on mixing over a prior distribution for detection probability. Their estimator can be applied in limited settings, but is sensitive to prior parameter values that are fixed a priori. Spatial replication provides additional information regarding the parameters of the prior distribution on n that is exploited by the n-mixture models and which leads to reasonable estimates of abundance from sparse data. A simulation study demonstrates superior operating characteristics (bias, confidence interval coverage) of the n-mixture estimator compared to the caroll and lombard estimator. Both estimators are applied to point count data on six species of birds illustrating the sensitivity to choice of prior on p and substantially different estimates of abundance as a consequence.
Correcting for Systematic Bias in Sample Estimates of Population Variances: Why Do We Divide by n-1?
ERIC Educational Resources Information Center
Mittag, Kathleen Cage
An important topic presented in introductory statistics courses is the estimation of population parameters using samples. Students learn that when estimating population variances using sample data, we always get an underestimate of the population variance if we divide by n rather than n-1. One implication of this correction is that the degree of…
Adult survival and population growth rate in Colorado big brown bats (Eptesicus fuscus)
O'Shea, T.J.; Ellison, L.E.; Stanley, T.R.
2011-01-01
We studied adult survival and population growth at multiple maternity colonies of big brown bats (Eptesicus fuscus) in Fort Collins, Colorado. We investigated hypotheses about survival using information-theoretic methods and mark-recapture analyses based on passive detection of adult females tagged with passive integrated transponders. We constructed a 3-stage life-history matrix model to estimate population growth rate (??) and assessed the relative importance of adult survival and other life-history parameters to population growth through elasticity and sensitivity analysis. Annual adult survival at 5 maternity colonies monitored from 2001 to 2005 was estimated at 0.79 (95% confidence interval [95% CI] = 0.77-0.82). Adult survival varied by year and roost, with low survival during an extreme drought year, a finding with negative implications for bat populations because of the likelihood of increasing drought in western North America due to global climate change. Adult survival during winter was higher than in summer, and mean life expectancies calculated from survival estimates were lower than maximum longevity records. We modeled adult survival with recruitment parameter estimates from the same population. The study population was growing (?? = 1.096; 95% CI = 1.057-1.135). Adult survival was the most important demographic parameter for population growth. Growth clearly had the highest elasticity to adult survival, followed by juvenile survival and adult fecundity (approximately equivalent in rank). Elasticity was lowest for fecundity of yearlings. The relative importances of the various life-history parameters for population growth rate are similar to those of large mammals. ?? 2011 American Society of Mammalogists.
Spiridonov, S I; Teten'kin, V L; Mukusheva, M K; Solomatin, V M
2008-01-01
Advisability of using risks as indicators for estimating radiation impacts on environmental objects and humans has been jusified. Results are presented from identification of dose burdens distribution to various cohorts of the population living within the Semipalatinsk Test Site (STS) and consuming contaminated farm products. Parameters of dose burden distributions are estimated for areas of livestock grazing and the most contaminated sectors within these areas. Dose distributions to meadow plants for the above areas have been found. Regulatory radiation risks for the STS population and meadow ecosystem components have been calculated. Based on the parameters estimated, levels of radiation exposure of the population and herbaceous plants have been compared.
Baqueiro Cárdenas, Erick; Aldana Aranda, Dalila
2014-03-01
The queen conch, Strombus gigas, is a gastropod of commercial importance in the Caribbean. Population studies are based on size frequency analysis, using either length or weight parameters for the whole live organism. This contribution used mark-recapture data to estimate the Von Bertalanffy equation parameters and population number variation within a non harvest population from a protected area, to clarify the biometric parameters that better suit for the whole population, or for the juvenile and adult fractions. Conchs from Xel-Ha Park were monthly sampled from November 2001 to August 2005. Every conch found was measured and marked with a numbered tag that identified month and locality; and monthly abundance was estimated with Jolly's method. Length, lip thickness and weight increments were used to estimate the Von Bertalanffy growth equation parameters with Appeldoorn's subroutine of FISAT program. The population number varied through the study, with a minimum of 49 in April 2003 and maximum of 9 848 during June 2005. Conchs make only temporary use of Xel-Ha cove. Shell length gave the best fit for the juvenile fraction: L(infinity)=251, K=0.3, C=0.8 Wp=0.3; and lip thickness for adults: L(infinity)=47.78, K=0.17, C=0.1, Wp=0.86, while, the whole population was better represented by weight: L(infinity)=3850, K=0.36, C=0.8, Wp=0.3. A maximum age of 19 years was estimated from the population. Natural mortality was 0.49/year for juveniles and 0.29/year for adults. There were two pulses of recruitment: fall-winter and summer. It is concluded that population studies from length frequency data, should be analyzed independently in two groups, shell for the juvenile fraction and lip thickness for the adult fraction, or if it is not possible to analyze the population fractions separately, weight should be used to avoid miss calculation of the age structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moerk, Anna-Karin, E-mail: anna-karin.mork@ki.s; Jonsson, Fredrik; Pharsight, a Certara company, St. Louis, MO
2009-11-01
The aim of this study was to derive improved estimates of population variability and uncertainty of physiologically based pharmacokinetic (PBPK) model parameters, especially of those related to the washin-washout behavior of polar volatile substances. This was done by optimizing a previously published washin-washout PBPK model for acetone in a Bayesian framework using Markov chain Monte Carlo simulation. The sensitivity of the model parameters was investigated by creating four different prior sets, where the uncertainty surrounding the population variability of the physiological model parameters was given values corresponding to coefficients of variation of 1%, 25%, 50%, and 100%, respectively. The PBPKmore » model was calibrated to toxicokinetic data from 2 previous studies where 18 volunteers were exposed to 250-550 ppm of acetone at various levels of workload. The updated PBPK model provided a good description of the concentrations in arterial, venous, and exhaled air. The precision of most of the model parameter estimates was improved. New information was particularly gained on the population distribution of the parameters governing the washin-washout effect. The results presented herein provide a good starting point to estimate the target dose of acetone in the working and general populations for risk assessment purposes.« less
Escos, J.; Alados, C.L.; Emlen, John M.
1994-01-01
A stage-class population model with density-feedback term included was used to identify the most critical parameters determining the population dynamics of female Spanish ibex (Capra pyrenaica) in southern Spain. A population in the Cazorla and Segura mountains is rapidly declining, but the eastern Sierra Nevada population is growing. The stable population density obtained using estimated values of kid and adult survival (0.49 and 0.87, respectively) and with fecundity equal to 0.367 in the absence of density feedback is 12.7 or 16.82 individuals/km2, based on a non-time-lagged and a time-lagged model, respectively. Given the maximum estimate of fecundity and an adult survival rate of 0.87, a kid survival rate of at least 0.41 is required to avoid extinction. At the minimum fecundity estimate, kid survival would have to exceed 0.52. Elasticities were used to estimate the influence of variation in life-cycle parameters on the intrinsic rate of increase. Adult survival is the most critical parameter, while fecundity and juvenile survival are less important. An increase in adult survival from 0.87 to 0.91 in the Cazorla and Segura mountains population would almost stabilize the population in the absence of stochastic variation, while the same increase in the Sierra Nevada population would yield population growth of 4–5% per annum. A reduction in adult survival to 0.83 results in population decline in both cases.
Whittington, Jesse; Sawaya, Michael A
2015-01-01
Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal's home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786-1.071) for females, 0.844 (0.703-0.975) for males, and 0.882 (0.779-0.981) for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758-1.024) for females, 0.825 (0.700-0.948) for males, and 0.863 (0.771-0.957) for both sexes. The combination of low densities, low reproductive rates, and predominantly negative population growth rates suggest that Banff National Park's population of grizzly bears requires continued conservation-oriented management actions.
An open-population hierarchical distance sampling model
Sollmann, Rachel; Beth Gardner,; Richard B Chandler,; Royle, J. Andrew; T Scott Sillett,
2015-01-01
Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for direct estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for island scrub-jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying number of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.
An open-population hierarchical distance sampling model.
Sollmann, Rahel; Gardner, Beth; Chandler, Richard B; Royle, J Andrew; Sillett, T Scott
2015-02-01
Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for Island Scrub-Jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying numbers of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.
Petrini, J; Iung, L H S; Rodriguez, M A P; Salvian, M; Pértille, F; Rovadoscki, G A; Cassoli, L D; Coutinho, L L; Machado, P F; Wiggans, G R; Mourão, G B
2016-10-01
Information about genetic parameters is essential for selection decisions and genetic evaluation. These estimates are population specific; however, there are few studies with dairy cattle populations reared under tropical and sub-tropical conditions. Thus, the aim was to obtain estimates of heritability and genetic correlations for milk yield and quality traits using pedigree and genomic information from a Holstein population maintained in a tropical environment. Phenotypic records (n = 36 457) of 4203 cows as well as the genotypes for 57 368 single nucleotide polymorphisms from 755 of these cows were used. Covariance components were estimated using the restricted maximum likelihood method under a mixed animal model, considering a pedigree-based relationship matrix or a combined pedigree-genomic matrix. High heritabilities (around 0.30) were estimated for lactose and protein content in milk whereas moderate values (between 0.19 and 0.26) were obtained for percentages of fat, saturated fatty acids and palmitic acid in milk. Genetic correlations ranging from -0.38 to -0.13 were determined between milk yield and composition traits. The smaller estimates compared to other similar studies can be due to poor environmental conditions, which may reduce genetic variability. These results highlight the importance in using genetic parameters estimated in the population under evaluation for selection decisions. © 2016 Blackwell Verlag GmbH.
Nichols, J.D.; Hines, J.E.
2002-01-01
We first consider the estimation of the finite rate of population increase or population growth rate, lambda sub i, using capture-recapture data from open populations. We review estimation and modelling of lambda sub i under three main approaches to modelling open-population data: the classic approach of Jolly (1965) and Seber (1965), the superpopulation approach of Crosbie & Manly (1985) and Schwarz & Arnason (1996), and the temporal symmetry approach of Pradel (1996). Next, we consider the contributions of different demographic components to lambda sub i using a probabilistic approach based on the composition of the population at time i + 1 (Nichols et al., 2000b). The parameters of interest are identical to the seniority parameters, gamma sub i, of Pradel (1996). We review estimation of gamma sub i under the classic, superpopulation, and temporal symmetry approaches. We then compare these direct estimation approaches for lambda sub i and gamma sub i with analogues computed using projection matrix asymptotics. We also discuss various extensions of the estimation approaches to multistate applications and to joint likelihoods involving multiple data types.
Hey, Jody; Nielsen, Rasmus
2004-01-01
The genetic study of diverging, closely related populations is required for basic questions on demography and speciation, as well as for biodiversity and conservation research. However, it is often unclear whether divergence is due simply to separation or whether populations have also experienced gene flow. These questions can be addressed with a full model of population separation with gene flow, by applying a Markov chain Monte Carlo method for estimating the posterior probability distribution of model parameters. We have generalized this method and made it applicable to data from multiple unlinked loci. These loci can vary in their modes of inheritance, and inheritance scalars can be implemented either as constants or as parameters to be estimated. By treating inheritance scalars as parameters it is also possible to address variation among loci in the impact via linkage of recurrent selective sweeps or background selection. These methods are applied to a large multilocus data set from Drosophila pseudoobscura and D. persimilis. The species are estimated to have diverged approximately 500,000 years ago. Several loci have nonzero estimates of gene flow since the initial separation of the species, with considerable variation in gene flow estimates among loci, in both directions between the species. PMID:15238526
NASA Technical Reports Server (NTRS)
Starlinger, Alois; Duffy, Stephen F.; Palko, Joseph L.
1993-01-01
New methods are presented that utilize the optimization of goodness-of-fit statistics in order to estimate Weibull parameters from failure data. It is assumed that the underlying population is characterized by a three-parameter Weibull distribution. Goodness-of-fit tests are based on the empirical distribution function (EDF). The EDF is a step function, calculated using failure data, and represents an approximation of the cumulative distribution function for the underlying population. Statistics (such as the Kolmogorov-Smirnov statistic and the Anderson-Darling statistic) measure the discrepancy between the EDF and the cumulative distribution function (CDF). These statistics are minimized with respect to the three Weibull parameters. Due to nonlinearities encountered in the minimization process, Powell's numerical optimization procedure is applied to obtain the optimum value of the EDF. Numerical examples show the applicability of these new estimation methods. The results are compared to the estimates obtained with Cooper's nonlinear regression algorithm.
USDA-ARS?s Scientific Manuscript database
Information about genetic parameters is essential for selection decisions and genetic evaluation. Those estimates are population specific, but few studies are available for dairy cattle populations reared under tropical and subtropical conditions. Heritability and genetic correlations for milk yield...
Compensatory effects of recruitment and survival when amphibian populations are perturbed by disease
Muths, E.; Scherer, R. D.; Pilliod, D.S.
2011-01-01
The need to increase our understanding of factors that regulate animal population dynamics has been catalysed by recent, observed declines in wildlife populations worldwide. Reliable estimates of demographic parameters are critical for addressing basic and applied ecological questions and understanding the response of parameters to perturbations (e.g. disease, habitat loss, climate change). However, to fully assess the impact of perturbation on population dynamics, all parameters contributing to the response of the target population must be estimated. We applied the reverse-time model of Pradel in Program mark to 6years of capture-recapture data from two populations of Anaxyrus boreas (boreal toad) populations, one with disease and one without. We then assessed a priori hypotheses about differences in survival and recruitment relative to local environmental conditions and the presence of disease. We further explored the relative contribution of survival probability and recruitment rate to population growth and investigated how shifts in these parameters can alter population dynamics when a population is perturbed. High recruitment rates (0??41) are probably compensating for low survival probability (range 0??51-0??54) in the population challenged by an emerging pathogen, resulting in a relatively slow rate of decline. In contrast, the population with no evidence of disease had high survival probability (range 0??75-0??78) but lower recruitment rates (0??25). Synthesis and applications.We suggest that the relationship between survival and recruitment may be compensatory, providing evidence that populations challenged with disease are not necessarily doomed to extinction. A better understanding of these interactions may help to explain, and be used to predict, population regulation and persistence for wildlife threatened with disease. Further, reliable estimates of population parameters such as recruitment and survival can guide the formulation and implementation of conservation actions such as repatriations or habitat management aimed to improve recruitment. ?? 2011 The Authors. Journal of Applied Ecology ?? 2011 British Ecological Society.
Hierarchical models and Bayesian analysis of bird survey information
Sauer, J.R.; Link, W.A.; Royle, J. Andrew; Ralph, C. John; Rich, Terrell D.
2005-01-01
Summary of bird survey information is a critical component of conservation activities, but often our summaries rely on statistical methods that do not accommodate the limitations of the information. Prioritization of species requires ranking and analysis of species by magnitude of population trend, but often magnitude of trend is a misleading measure of actual decline when trend is poorly estimated. Aggregation of population information among regions is also complicated by varying quality of estimates among regions. Hierarchical models provide a reasonable means of accommodating concerns about aggregation and ranking of quantities of varying precision. In these models the need to consider multiple scales is accommodated by placing distributional assumptions on collections of parameters. For collections of species trends, this allows probability statements to be made about the collections of species-specific parameters, rather than about the estimates. We define and illustrate hierarchical models for two commonly encountered situations in bird conservation: (1) Estimating attributes of collections of species estimates, including ranking of trends, estimating number of species with increasing populations, and assessing population stability with regard to predefined trend magnitudes; and (2) estimation of regional population change, aggregating information from bird surveys over strata. User-friendly computer software makes hierarchical models readily accessible to scientists.
Modeling structured population dynamics using data from unmarked individuals
Grant, Evan H. Campbell; Zipkin, Elise; Thorson, James T.; See, Kevin; Lynch, Heather J.; Kanno, Yoichiro; Chandler, Richard; Letcher, Benjamin H.; Royle, J. Andrew
2014-01-01
The study of population dynamics requires unbiased, precise estimates of abundance and vital rates that account for the demographic structure inherent in all wildlife and plant populations. Traditionally, these estimates have only been available through approaches that rely on intensive mark–recapture data. We extended recently developed N-mixture models to demonstrate how demographic parameters and abundance can be estimated for structured populations using only stage-structured count data. Our modeling framework can be used to make reliable inferences on abundance as well as recruitment, immigration, stage-specific survival, and detection rates during sampling. We present a range of simulations to illustrate the data requirements, including the number of years and locations necessary for accurate and precise parameter estimates. We apply our modeling framework to a population of northern dusky salamanders (Desmognathus fuscus) in the mid-Atlantic region (USA) and find that the population is unexpectedly declining. Our approach represents a valuable advance in the estimation of population dynamics using multistate data from unmarked individuals and should additionally be useful in the development of integrated models that combine data from intensive (e.g., mark–recapture) and extensive (e.g., counts) data sources.
Faugeras, Blaise; Maury, Olivier
2005-10-01
We develop an advection-diffusion size-structured fish population dynamics model and apply it to simulate the skipjack tuna population in the Indian Ocean. The model is fully spatialized, and movements are parameterized with oceanographical and biological data; thus it naturally reacts to environment changes. We first formulate an initial-boundary value problem and prove existence of a unique positive solution. We then discuss the numerical scheme chosen for the integration of the simulation model. In a second step we address the parameter estimation problem for such a model. With the help of automatic differentiation, we derive the adjoint code which is used to compute the exact gradient of a Bayesian cost function measuring the distance between the outputs of the model and catch and length frequency data. A sensitivity analysis shows that not all parameters can be estimated from the data. Finally twin experiments in which pertubated parameters are recovered from simulated data are successfully conducted.
Assessing tiger population dynamics using photographic capture-recapture sampling
Karanth, K.U.; Nichols, J.D.; Kumar, N.S.; Hines, J.E.
2006-01-01
Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, ?robust design? capture?recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of =K' =Y' 0.10 ? 0.069 (values are estimated mean ? SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 ? 0.051, and the estimated probability that a newly caught animal was a transient was = 0.18 ? 0.11. During the period when the sampled area was of constant size, the estimated population size Nt varied from 17 ? 1.7 to 31 ? 2.1 tigers, with a geometric mean rate of annual population change estimated as = 1.03 ? 0.020, representing a 3% annual increase. The estimated recruitment of new animals, Bt, varied from 0 ? 3.0 to 14 ? 2.9 tigers. Population density estimates, D, ranged from 7.33 ? 0.8 tigers/100 km2 to 21.73 ? 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis that protected wild tiger populations can remain healthy despite heavy mortalities because of their inherently high reproductive potential. The ability to model the entire photographic capture history data set and incorporate reduced-parameter models led to estimates of mean annual population change that were sufficiently precise to be useful. This efficient, noninvasive sampling approach can be used to rigorously investigate the population dynamics of tigers and other elusive, rare, wide-ranging animal species in which individuals can be identified from photographs or other means.
Assessing tiger population dynamics using photographic capture-recapture sampling.
Karanth, K Ullas; Nichols, James D; Kumar, N Samba; Hines, James E
2006-11-01
Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, "robust design" capture-recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of gamma" = gamma' = 0.10 +/- 0.069 (values are estimated mean +/- SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 +/- 0.051, and the estimated probability that a newly caught animal was a transient was tau = 0.18 +/- 0.11. During the period when the sampled area was of constant size, the estimated population size N(t) varied from 17 +/- 1.7 to 31 +/- 2.1 tigers, with a geometric mean rate of annual population change estimated as lambda = 1.03 +/- 0.020, representing a 3% annual increase. The estimated recruitment of new animals, B(t), varied from 0 +/- 3.0 to 14 +/- 2.9 tigers. Population density estimates, D, ranged from 7.33 +/- 0.8 tigers/100 km2 to 21.73 +/- 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis that protected wild tiger populations can remain healthy despite heavy mortalities because of their inherently high reproductive potential. The ability to model the entire photographic capture history data set and incorporate reduced-parameter models led to estimates of mean annual population change that were sufficiently precise to be useful. This efficient, noninvasive sampling approach can be used to rigorously investigate the population dynamics of tigers and other elusive, rare, wide-ranging animal species in which individuals can be identified from photographs or other means.
Trap configuration and spacing influences parameter estimates in spatial capture-recapture models
Sun, Catherine C.; Fuller, Angela K.; Royle, J. Andrew
2014-01-01
An increasing number of studies employ spatial capture-recapture models to estimate population size, but there has been limited research on how different spatial sampling designs and trap configurations influence parameter estimators. Spatial capture-recapture models provide an advantage over non-spatial models by explicitly accounting for heterogeneous detection probabilities among individuals that arise due to the spatial organization of individuals relative to sampling devices. We simulated black bear (Ursus americanus) populations and spatial capture-recapture data to evaluate the influence of trap configuration and trap spacing on estimates of population size and a spatial scale parameter, sigma, that relates to home range size. We varied detection probability and home range size, and considered three trap configurations common to large-mammal mark-recapture studies: regular spacing, clustered, and a temporal sequence of different cluster configurations (i.e., trap relocation). We explored trap spacing and number of traps per cluster by varying the number of traps. The clustered arrangement performed well when detection rates were low, and provides for easier field implementation than the sequential trap arrangement. However, performance differences between trap configurations diminished as home range size increased. Our simulations suggest it is important to consider trap spacing relative to home range sizes, with traps ideally spaced no more than twice the spatial scale parameter. While spatial capture-recapture models can accommodate different sampling designs and still estimate parameters with accuracy and precision, our simulations demonstrate that aspects of sampling design, namely trap configuration and spacing, must consider study area size, ranges of individual movement, and home range sizes in the study population.
Heinonen, Johannes P M; Palmer, Stephen C F; Redpath, Steve M; Travis, Justin M J
2014-01-01
Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations. We introduce an individual-based model for understanding and predicting spatial hen harrier (Circus cyaneus) population dynamics in Great Britain. The model uses a landscape with habitat, prey and game management indices. The hen harrier population was initialised according to empirical census estimates for 1988/89 and simulated until 2030, and predictions for 1998, 2004 and 2010 were compared to empirical census estimates for respective years. The model produced a good qualitative match to overall trends between 1989 and 2010. Parameter explorations revealed relatively high elasticity in particular to demographic parameters such as juvenile male mortality. This highlights the need for robust parameter estimates from empirical research. There are clearly challenges for replication of real-world population trends, but this model provides a useful tool for increasing understanding of drivers of hen harrier dynamics and focusing research efforts in order to inform conflict management decisions.
Heinonen, Johannes P. M.; Palmer, Stephen C. F.; Redpath, Steve M.; Travis, Justin M. J.
2014-01-01
Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations. We introduce an individual-based model for understanding and predicting spatial hen harrier (Circus cyaneus) population dynamics in Great Britain. The model uses a landscape with habitat, prey and game management indices. The hen harrier population was initialised according to empirical census estimates for 1988/89 and simulated until 2030, and predictions for 1998, 2004 and 2010 were compared to empirical census estimates for respective years. The model produced a good qualitative match to overall trends between 1989 and 2010. Parameter explorations revealed relatively high elasticity in particular to demographic parameters such as juvenile male mortality. This highlights the need for robust parameter estimates from empirical research. There are clearly challenges for replication of real-world population trends, but this model provides a useful tool for increasing understanding of drivers of hen harrier dynamics and focusing research efforts in order to inform conflict management decisions. PMID:25405860
Estimating age at a specified length from the von Bertalanffy growth function
Ogle, Derek H.; Isermann, Daniel A.
2017-01-01
Estimating the time required (i.e., age) for fish in a population to reach a specific length (e.g., legal harvest length) is useful for understanding population dynamics and simulating the potential effects of length-based harvest regulations. The age at which a population reaches a specific mean length is typically estimated by fitting a von Bertalanffy growth function to length-at-age data and then rearranging the best-fit equation to solve for age at the specified length. This process precludes the use of standard frequentist methods to compute confidence intervals and compare estimates of age at the specified length among populations. We provide a parameterization of the von Bertalanffy growth function that has age at a specified length as a parameter. With this parameterization, age at a specified length is directly estimated, and standard methods can be used to construct confidence intervals and make among-group comparisons for this parameter. We demonstrate use of the new parameterization with two data sets.
Forensic parameters of the Investigator DIPplex kit (Qiagen) in six Mexican populations.
Martínez-Cortés, G; García-Aceves, M; Favela-Mendoza, A F; Muñoz-Valle, J F; Velarde-Felix, J S; Rangel-Villalobos, H
2016-05-01
Allele frequencies and statistical parameters of forensic efficiency for 30 deletion-insertion polymorphisms (DIPs) were estimated in six Mexican populations. For this purpose, 421 unrelated individuals were analyzed with the Investigator DIPplex kit. The Hardy-Weinberg and linkage equilibrium was demonstrated for this 30-plex system in all six populations. We estimated the combined power of discrimination (PD ≥ 99.999999%) and combined power of exclusion (PE ≥ 98.632705%) for this genetic system. A low but significant genetic structure was demonstrated among these six populations by pairwise comparisons and AMOVA (F ST ≥ 0.7054; p ≤ 0.0007), which allows clustering populations in agreement with geographical criteria: Northwest, Center, and Southeast.
Forensic parameters of the X-STR Decaplex system in Mexican populations.
Mariscal Ramos, C; Martínez-Cortes, G; Ramos-González, B; Rangel-Villalobos, H
2018-03-01
We studied the X-STR decaplex system in 529 DNA female samples of Mexican populations from five geographic regions. Allele frequencies and forensic parameters were estimated in each region and in the pooled Mexican population. Genotype distribution by locus was in agreement with Hardy-Weinberg expectations in each Mexican population sample. Similarly, linkage equilibrium was demonstrated between pair of loci. Pairwise comparisons and genetic distances between Mexican, Iberoamerican and one African populations were estimated and graphically represented. Interestingly, a non-significant interpopulation differentiation was detected (Fst = 0.0021; p = .74389), which allows using a global Mexican database for forensic interpretation of X-STR genotypes. Copyright © 2017 Elsevier B.V. All rights reserved.
The Reliability of Difference Scores in Populations and Samples
ERIC Educational Resources Information Center
Zimmerman, Donald W.
2009-01-01
This study was an investigation of the relation between the reliability of difference scores, considered as a parameter characterizing a population of examinees, and the reliability estimates obtained from random samples from the population. The parameters in familiar equations for the reliability of difference scores were redefined in such a way…
Approximate Bayesian estimation of extinction rate in the Finnish Daphnia magna metapopulation.
Robinson, John D; Hall, David W; Wares, John P
2013-05-01
Approximate Bayesian computation (ABC) is useful for parameterizing complex models in population genetics. In this study, ABC was applied to simultaneously estimate parameter values for a model of metapopulation coalescence and test two alternatives to a strict metapopulation model in the well-studied network of Daphnia magna populations in Finland. The models shared four free parameters: the subpopulation genetic diversity (θS), the rate of gene flow among patches (4Nm), the founding population size (N0) and the metapopulation extinction rate (e) but differed in the distribution of extinction rates across habitat patches in the system. The three models had either a constant extinction rate in all populations (strict metapopulation), one population that was protected from local extinction (i.e. a persistent source), or habitat-specific extinction rates drawn from a distribution with specified mean and variance. Our model selection analysis favoured the model including a persistent source population over the two alternative models. Of the closest 750,000 data sets in Euclidean space, 78% were simulated under the persistent source model (estimated posterior probability = 0.769). This fraction increased to more than 85% when only the closest 150,000 data sets were considered (estimated posterior probability = 0.774). Approximate Bayesian computation was then used to estimate parameter values that might produce the observed set of summary statistics. Our analysis provided posterior distributions for e that included the point estimate obtained from previous data from the Finnish D. magna metapopulation. Our results support the use of ABC and population genetic data for testing the strict metapopulation model and parameterizing complex models of demography. © 2013 Blackwell Publishing Ltd.
Inter-Individual Variability in High-Throughput Risk ...
We incorporate realistic human variability into an open-source high-throughput (HT) toxicokinetics (TK) modeling framework for use in a next-generation risk prioritization approach. Risk prioritization involves rapid triage of thousands of environmental chemicals, most which have little or no existing TK data. Chemicals are prioritized based on model estimates of hazard and exposure, to decide which chemicals should be first in line for further study. Hazard may be estimated with in vitro HT screening assays, e.g., U.S. EPA’s ToxCast program. Bioactive ToxCast concentrations can be extrapolated to doses that produce equivalent concentrations in body tissues using a reverse TK approach in which generic TK models are parameterized with 1) chemical-specific parameters derived from in vitro measurements and predicted from chemical structure; and 2) with physiological parameters for a virtual population. Here we draw physiological parameters from realistic estimates of distributions of demographic and anthropometric quantities in the modern U.S. population, based on the most recent CDC NHANES data. A Monte Carlo approach, accounting for the correlation structure in physiological parameters, is used to estimate ToxCast equivalent doses for the most sensitive portion of the population. To quantify risk, ToxCast equivalent doses are compared to estimates of exposure rates based on Bayesian inferences drawn from NHANES urinary analyte biomonitoring data. The inclusion
Bowler, Mark; Anderson, Matt; Montes, Daniel; Pérez, Pedro; Mayor, Pedro
2014-01-01
Primates are frequently hunted in Amazonia. Assessing the sustainability of hunting is essential to conservation planning. The most-used sustainability model, the ‘Production Model’, and more recent spatial models, rely on basic reproductive parameters for accuracy. These parameters are often crudely estimated. To date, parameters used for the Amazon’s most-hunted primate, the woolly monkey (Lagothrix spp.), come from captive populations in the 1960s, when captive births were rare. Furthermore, woolly monkeys have since been split into five species. We provide reproductive parameters calculated by examining the reproductive organs of female Poeppig’s woolly monkeys (Lagothrix poeppigii), collected by hunters as part of their normal subsistence activity. Production was 0.48–0.54 young per female per year, and an interbirth interval of 22.3 to 25.2 months, similar to parameters from captive populations. However, breeding was seasonal, which imposes limits on the maximum reproductive rate attainable. We recommend the use of spatial models over the Production Model, since they are less sensitive to error in estimated reproductive rates. Further refinements to reproductive parameters are needed for most primate taxa. Methods like ours verify the suitability of captive reproductive rates for sustainability analysis and population modelling for populations under differing conditions of hunting pressure and seasonality. Without such research, population modelling is based largely on guesswork. PMID:24714614
Royle, J. Andrew; Chandler, Richard B.; Gazenski, Kimberly D.; Graves, Tabitha A.
2013-01-01
Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture–recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on “ecological distance,” i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture–recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture–recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.
Royle, J Andrew; Chandler, Richard B; Gazenski, Kimberly D; Graves, Tabitha A
2013-02-01
Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture--recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on "ecological distance," i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture-recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture-recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.
Hare, Matthew P; Nunney, Leonard; Schwartz, Michael K; Ruzzante, Daniel E; Burford, Martha; Waples, Robin S; Ruegg, Kristen; Palstra, Friso
2011-06-01
Effective population size (N(e)) determines the strength of genetic drift in a population and has long been recognized as an important parameter for evaluating conservation status and threats to genetic health of populations. Specifically, an estimate of N(e) is crucial to management because it integrates genetic effects with the life history of the species, allowing for predictions of a population's current and future viability. Nevertheless, compared with ecological and demographic parameters, N(e) has had limited influence on species management, beyond its application in very small populations. Recent developments have substantially improved N(e) estimation; however, some obstacles remain for the practical application of N(e) estimates. For example, the need to define the spatial and temporal scale of measurement makes the concept complex and sometimes difficult to interpret. We reviewed approaches to estimation of N(e) over both long-term and contemporary time frames, clarifying their interpretations with respect to local populations and the global metapopulation. We describe multiple experimental factors affecting robustness of contemporary N(e) estimates and suggest that different sampling designs can be combined to compare largely independent measures of N(e) for improved confidence in the result. Large populations with moderate gene flow pose the greatest challenges to robust estimation of contemporary N(e) and require careful consideration of sampling and analysis to minimize estimator bias. We emphasize the practical utility of estimating N(e) by highlighting its relevance to the adaptive potential of a population and describing applications in management of marine populations, where the focus is not always on critically endangered populations. Two cases discussed include the mechanisms generating N(e) estimates many orders of magnitude lower than census N in harvested marine fishes and the predicted reduction in N(e) from hatchery-based population supplementation. ©2011 Society for Conservation Biology.
Nichols, James D.; Hines, James E.
2002-01-01
We first consider the estimation of the finite rate of population increase or population growth rate, u i , using capture-recapture data from open populations. We review estimation and modelling of u i under three main approaches to modelling openpopulation data: the classic approach of Jolly (1965) and Seber (1965), the superpopulation approach of Crosbie & Manly (1985) and Schwarz & Arnason (1996), and the temporal symmetry approach of Pradel (1996). Next, we consider the contributions of different demographic components to u i using a probabilistic approach based on the composition of the population at time i + 1 (Nichols et al., 2000b). The parameters of interest are identical to the seniority parameters, n i , of Pradel (1996). We review estimation of n i under the classic, superpopulation, and temporal symmetry approaches. We then compare these direct estimation approaches for u i and n i with analogues computed using projection matrix asymptotics. We also discuss various extensions of the estimation approaches to multistate applications and to joint likelihoods involving multiple data types.
Spatially-explicit estimation of Wright's neighborhood size in continuous populations
Andrew J. Shirk; Samuel A. Cushman
2014-01-01
Effective population size (Ne) is an important parameter in conservation genetics because it quantifies a population's capacity to resist loss of genetic diversity due to inbreeding and drift. The classical approach to estimate Ne from genetic data involves grouping sampled individuals into discretely defined subpopulations assumed to be panmictic. Importantly,...
Roumet, M; Ostrowski, M-F; David, J; Tollon, C; Muller, M-H
2012-01-01
Cultivated plants have been molded by human-induced selection, including manipulations of the mating system in the twentieth century. How these manipulations have affected realized parameters of the mating system in freely evolving cultivated populations is of interest for optimizing the management of breeding populations, predicting the fate of escaped populations and providing material for experimental evolution studies. To produce modern varieties of sunflower (Helianthus annuus L.), self-incompatibility has been broken, recurrent generations of selfing have been performed and male sterility has been introduced. Populations deriving from hybrid-F1 varieties are gynodioecious because of the segregation of a nuclear restorer of male fertility. Using both phenotypic and genotypic data at 11 microsatellite loci, we analyzed the consanguinity status of plants of the first three generations of such a population and estimated parameters related to the mating system. We showed that the resource reallocation to seed in male-sterile individuals was not significant, that inbreeding depression on seed production averaged 15–20% and that cultivated sunflower had acquired a mixed-mating system, with ∼50% of selfing among the hermaphrodites. According to theoretical models, the female advantage and the inbreeding depression at the seed production stage were too low to allow the persistence of male sterility. We discuss our methods of parameter estimation and the potential of such study system in evolutionary biology. PMID:21915147
Extremes in ecology: Avoiding the misleading effects of sampling variation in summary analyses
Link, W.A.; Sauer, J.R.
1996-01-01
Surveys such as the North American Breeding Bird Survey (BBS) produce large collections of parameter estimates. One's natural inclination when confronted with lists of parameter estimates is to look for the extreme values: in the BBS, these correspond to the species that appear to have the greatest changes in population size through time. Unfortunately, extreme estimates are liable to correspond to the most poorly estimated parameters. Consequently, the most extreme parameters may not match up with the most extreme parameter estimates. The ranking of parameter values on the basis of their estimates are a difficult statistical problem. We use data from the BBS and simulations to illustrate the potential misleading effects of sampling variation in rankings of parameters. We describe empirical Bayes and constrained empirical Bayes procedures which provide partial solutions to the problem of ranking in the presence of sampling variation.
Analysis options for estimating status and trends in long-term monitoring
Bart, Jonathan; Beyer, Hawthorne L.
2012-01-01
This chapter describes methods for estimating long-term trends in ecological parameters. Other chapters in this volume discuss more advanced methods for analyzing monitoring data, but these methods may be relatively inaccessible to some readers. Therefore, this chapter provides an introduction to trend analysis for managers and biologists while also discussing general issues relevant to trend assessment in any long-term monitoring program. For simplicity, we focus on temporal trends in population size across years. We refer to the survey results for each year as the “annual means” (e.g. mean per transect, per plot, per time period). The methods apply with little or no modification, however, to formal estimates of population size, other temporal units (e.g. a month), to spatial or other dimensions such as elevation or a north–south gradient, and to other quantities such as chemical or geological parameters. The chapter primarily discusses methods for estimating population-wide parameters rather than studying variation in trend within the population, which can be examined using methods presented in other chapters (e.g. Chapters 7, 12, 20). We begin by reviewing key concepts related to trend analysis. We then describe how to evaluate potential bias in trend estimates. An overview of the statistical models used to quantify trends is then presented. We conclude by showing ways to estimate trends using simple methods that can be implemented with spreadsheets.
ERIC Educational Resources Information Center
DeMars, Christine E.
2012-01-01
In structural equation modeling software, either limited-information (bivariate proportions) or full-information item parameter estimation routines could be used for the 2-parameter item response theory (IRT) model. Limited-information methods assume the continuous variable underlying an item response is normally distributed. For skewed and…
Whittington, Jesse; Sawaya, Michael A.
2015-01-01
Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal’s home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786–1.071) for females, 0.844 (0.703–0.975) for males, and 0.882 (0.779–0.981) for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758–1.024) for females, 0.825 (0.700–0.948) for males, and 0.863 (0.771–0.957) for both sexes. The combination of low densities, low reproductive rates, and predominantly negative population growth rates suggest that Banff National Park’s population of grizzly bears requires continued conservation-oriented management actions. PMID:26230262
Parameter redundancy in discrete state-space and integrated models.
Cole, Diana J; McCrea, Rachel S
2016-09-01
Discrete state-space models are used in ecology to describe the dynamics of wild animal populations, with parameters, such as the probability of survival, being of ecological interest. For a particular parametrization of a model it is not always clear which parameters can be estimated. This inability to estimate all parameters is known as parameter redundancy or a model is described as nonidentifiable. In this paper we develop methods that can be used to detect parameter redundancy in discrete state-space models. An exhaustive summary is a combination of parameters that fully specify a model. To use general methods for detecting parameter redundancy a suitable exhaustive summary is required. This paper proposes two methods for the derivation of an exhaustive summary for discrete state-space models using discrete analogues of methods for continuous state-space models. We also demonstrate that combining multiple data sets, through the use of an integrated population model, may result in a model in which all parameters are estimable, even though models fitted to the separate data sets may be parameter redundant. © 2016 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jiao, Y.; Lapointe, N.W.R.; Angermeier, P.L.; Murphy, B.R.
2009-01-01
Models of species' demographic features are commonly used to understand population dynamics and inform management tactics. Hierarchical demographic models are ideal for the assessment of non-indigenous species because our knowledge of non-indigenous populations is usually limited, data on demographic traits often come from a species' native range, these traits vary among populations, and traits are likely to vary considerably over time as species adapt to new environments. Hierarchical models readily incorporate this spatiotemporal variation in species' demographic traits by representing demographic parameters as multi-level hierarchies. As is done for traditional non-hierarchical matrix models, sensitivity and elasticity analyses are used to evaluate the contributions of different life stages and parameters to estimates of population growth rate. We applied a hierarchical model to northern snakehead (Channa argus), a fish currently invading the eastern United States. We used a Monte Carlo approach to simulate uncertainties in the sensitivity and elasticity analyses and to project future population persistence under selected management tactics. We gathered key biological information on northern snakehead natural mortality, maturity and recruitment in its native Asian environment. We compared the model performance with and without hierarchy of parameters. Our results suggest that ignoring the hierarchy of parameters in demographic models may result in poor estimates of population size and growth and may lead to erroneous management advice. In our case, the hierarchy used multi-level distributions to simulate the heterogeneity of demographic parameters across different locations or situations. The probability that the northern snakehead population will increase and harm the native fauna is considerable. Our elasticity and prognostic analyses showed that intensive control efforts immediately prior to spawning and/or juvenile-dispersal periods would be more effective (and probably require less effort) than year-round control efforts. Our study demonstrates the importance of considering the hierarchy of parameters in estimating population growth rate and evaluating different management strategies for non-indigenous invasive species. ?? 2009 Elsevier B.V.
Using genetic data to estimate diffusion rates in heterogeneous landscapes.
Roques, L; Walker, E; Franck, P; Soubeyrand, S; Klein, E K
2016-08-01
Having a precise knowledge of the dispersal ability of a population in a heterogeneous environment is of critical importance in agroecology and conservation biology as it can provide management tools to limit the effects of pests or to increase the survival of endangered species. In this paper, we propose a mechanistic-statistical method to estimate space-dependent diffusion parameters of spatially-explicit models based on stochastic differential equations, using genetic data. Dividing the total population into subpopulations corresponding to different habitat patches with known allele frequencies, the expected proportions of individuals from each subpopulation at each position is computed by solving a system of reaction-diffusion equations. Modelling the capture and genotyping of the individuals with a statistical approach, we derive a numerically tractable formula for the likelihood function associated with the diffusion parameters. In a simulated environment made of three types of regions, each associated with a different diffusion coefficient, we successfully estimate the diffusion parameters with a maximum-likelihood approach. Although higher genetic differentiation among subpopulations leads to more accurate estimations, once a certain level of differentiation has been reached, the finite size of the genotyped population becomes the limiting factor for accurate estimation.
Spatially explicit dynamic N-mixture models
Zhao, Qing; Royle, Andy; Boomer, G. Scott
2017-01-01
Knowledge of demographic parameters such as survival, reproduction, emigration, and immigration is essential to understand metapopulation dynamics. Traditionally the estimation of these demographic parameters requires intensive data from marked animals. The development of dynamic N-mixture models makes it possible to estimate demographic parameters from count data of unmarked animals, but the original dynamic N-mixture model does not distinguish emigration and immigration from survival and reproduction, limiting its ability to explain important metapopulation processes such as movement among local populations. In this study we developed a spatially explicit dynamic N-mixture model that estimates survival, reproduction, emigration, local population size, and detection probability from count data under the assumption that movement only occurs among adjacent habitat patches. Simulation studies showed that the inference of our model depends on detection probability, local population size, and the implementation of robust sampling design. Our model provides reliable estimates of survival, reproduction, and emigration when detection probability is high, regardless of local population size or the type of sampling design. When detection probability is low, however, our model only provides reliable estimates of survival, reproduction, and emigration when local population size is moderate to high and robust sampling design is used. A sensitivity analysis showed that our model is robust against the violation of the assumption that movement only occurs among adjacent habitat patches, suggesting wide applications of this model. Our model can be used to improve our understanding of metapopulation dynamics based on count data that are relatively easy to collect in many systems.
Parameter Estimation in Epidemiology: from Simple to Complex Dynamics
NASA Astrophysics Data System (ADS)
Aguiar, Maíra; Ballesteros, Sebastién; Boto, João Pedro; Kooi, Bob W.; Mateus, Luís; Stollenwerk, Nico
2011-09-01
We revisit the parameter estimation framework for population biological dynamical systems, and apply it to calibrate various models in epidemiology with empirical time series, namely influenza and dengue fever. When it comes to more complex models like multi-strain dynamics to describe the virus-host interaction in dengue fever, even most recently developed parameter estimation techniques, like maximum likelihood iterated filtering, come to their computational limits. However, the first results of parameter estimation with data on dengue fever from Thailand indicate a subtle interplay between stochasticity and deterministic skeleton. The deterministic system on its own already displays complex dynamics up to deterministic chaos and coexistence of multiple attractors.
Visscher, Peter M; Goddard, Michael E
2015-01-01
Heritability is a population parameter of importance in evolution, plant and animal breeding, and human medical genetics. It can be estimated using pedigree designs and, more recently, using relationships estimated from markers. We derive the sampling variance of the estimate of heritability for a wide range of experimental designs, assuming that estimation is by maximum likelihood and that the resemblance between relatives is solely due to additive genetic variation. We show that well-known results for balanced designs are special cases of a more general unified framework. For pedigree designs, the sampling variance is inversely proportional to the variance of relationship in the pedigree and it is proportional to 1/N, whereas for population samples it is approximately proportional to 1/N(2), where N is the sample size. Variation in relatedness is a key parameter in the quantification of the sampling variance of heritability. Consequently, the sampling variance is high for populations with large recent effective population size (e.g., humans) because this causes low variation in relationship. However, even using human population samples, low sampling variance is possible with high N. Copyright © 2015 by the Genetics Society of America.
Nichols, James D.; Pollock, Kenneth H.; Hines, James E.
1984-01-01
The robust design of Pollock (1982) was used to estimate parameters of a Maryland M. pennsylvanicus population. Closed model tests provided strong evidence of heterogeneity of capture probability, and model M eta (Otis et al., 1978) was selected as the most appropriate model for estimating population size. The Jolly-Seber model goodness-of-fit test indicated rejection of the model for this data set, and the M eta estimates of population size were all higher than the Jolly-Seber estimates. Both of these results are consistent with the evidence of heterogeneous capture probabilities. The authors thus used M eta estimates of population size, Jolly-Seber estimates of survival rate, and estimates of birth-immigration based on a combination of the population size and survival rate estimates. Advantages of the robust design estimates for certain inference procedures are discussed, and the design is recommended for future small mammal capture-recapture studies directed at estimation.
A Coalescent-Based Estimator of Admixture From DNA Sequences
Wang, Jinliang
2006-01-01
A variety of estimators have been developed to use genetic marker information in inferring the admixture proportions (parental contributions) of a hybrid population. The majority of these estimators used allele frequency data, ignored molecular information that is available in markers such as microsatellites and DNA sequences, and assumed that mutations are absent since the admixture event. As a result, these estimators may fail to deliver an estimate or give rather poor estimates when admixture is ancient and thus mutations are not negligible. A previous molecular estimator based its inference of admixture proportions on the average coalescent times between pairs of genes taken from within and between populations. In this article I propose an estimator that considers the entire genealogy of all of the sampled genes and infers admixture proportions from the numbers of segregating sites in DNA sequence samples. By considering the genealogy of all sequences rather than pairs of sequences, this new estimator also allows the joint estimation of other interesting parameters in the admixture model, such as admixture time, divergence time, population size, and mutation rate. Comparative analyses of simulated data indicate that the new coalescent estimator generally yields better estimates of admixture proportions than the previous molecular estimator, especially when the parental populations are not highly differentiated. It also gives reasonably accurate estimates of other admixture parameters. A human mtDNA sequence data set was analyzed to demonstrate the method, and the analysis results are discussed and compared with those from previous studies. PMID:16624918
Boskova, Veronika; Bonhoeffer, Sebastian; Stadler, Tanja
2014-01-01
Quantifying epidemiological dynamics is crucial for understanding and forecasting the spread of an epidemic. The coalescent and the birth-death model are used interchangeably to infer epidemiological parameters from the genealogical relationships of the pathogen population under study, which in turn are inferred from the pathogen genetic sequencing data. To compare the performance of these widely applied models, we performed a simulation study. We simulated phylogenetic trees under the constant rate birth-death model and the coalescent model with a deterministic exponentially growing infected population. For each tree, we re-estimated the epidemiological parameters using both a birth-death and a coalescent based method, implemented as an MCMC procedure in BEAST v2.0. In our analyses that estimate the growth rate of an epidemic based on simulated birth-death trees, the point estimates such as the maximum a posteriori/maximum likelihood estimates are not very different. However, the estimates of uncertainty are very different. The birth-death model had a higher coverage than the coalescent model, i.e. contained the true value in the highest posterior density (HPD) interval more often (2–13% vs. 31–75% error). The coverage of the coalescent decreases with decreasing basic reproductive ratio and increasing sampling probability of infecteds. We hypothesize that the biases in the coalescent are due to the assumption of deterministic rather than stochastic population size changes. Both methods performed reasonably well when analyzing trees simulated under the coalescent. The methods can also identify other key epidemiological parameters as long as one of the parameters is fixed to its true value. In summary, when using genetic data to estimate epidemic dynamics, our results suggest that the birth-death method will be less sensitive to population fluctuations of early outbreaks than the coalescent method that assumes a deterministic exponentially growing infected population. PMID:25375100
Estimation of population trajectories from count data
Link, W.A.; Sauer, J.R.
1997-01-01
Monitoring of changes in animal population size is rarely possible through complete censuses; frequently, the only feasible means of monitoring changes in population size is to use counts of animals obtained by skilled observers as indices to abundance. Analysis of changes in population size can be severely biased if factors related to the acquisition of data are not adequately controlled for. In particular we identify two types of observer effects: these correspond to baseline differences in observer competence, and to changes through time in the ability of individual observers. We present a family of models for count data in which the first of these observer effects is treated as a nuisance parameter. Conditioning on totals of negative binomial counts yields a Dirichlet compound multinomial vector for each observer. Quasi-likelihood is used to estimate parameters related to population trajectory and other parameters of interest; model selection is carried out on the basis of Akaike's information criterion. An example is presented using data on Wood thrush from the North American Breeding Bird Survey.
Use of Bayes theorem to correct size-specific sampling bias in growth data.
Troynikov, V S
1999-03-01
The bayesian decomposition of posterior distribution was used to develop a likelihood function to correct bias in the estimates of population parameters from data collected randomly with size-specific selectivity. Positive distributions with time as a parameter were used for parametrization of growth data. Numerical illustrations are provided. The alternative applications of the likelihood to estimate selectivity parameters are discussed.
Understanding the demographic drivers of realized population growth rates.
Koons, David N; Arnold, Todd W; Schaub, Michael
2017-10-01
Identifying the demographic parameters (e.g., reproduction, survival, dispersal) that most influence population dynamics can increase conservation effectiveness and enhance ecological understanding. Life table response experiments (LTRE) aim to decompose the effects of change in parameters on past demographic outcomes (e.g., population growth rates). But the vast majority of LTREs and other retrospective population analyses have focused on decomposing asymptotic population growth rates, which do not account for the dynamic interplay between population structure and vital rates that shape realized population growth rates (λt=Nt+1/Nt) in time-varying environments. We provide an empirical means to overcome these shortcomings by merging recently developed "transient life-table response experiments" with integrated population models (IPMs). IPMs allow for the estimation of latent population structure and other demographic parameters that are required for transient LTRE analysis, and Bayesian versions additionally allow for complete error propagation from the estimation of demographic parameters to derivations of realized population growth rates and perturbation analyses of growth rates. By integrating available monitoring data for Lesser Scaup over 60 yr, and conducting transient LTREs on IPM estimates, we found that the contribution of juvenile female survival to long-term variation in realized population growth rates was 1.6 and 3.7 times larger than that of adult female survival and fecundity, respectively. But a persistent long-term decline in fecundity explained 92% of the decline in abundance between 1983 and 2006. In contrast, an improvement in adult female survival drove the modest recovery in Lesser Scaup abundance since 2006, indicating that the most important demographic drivers of Lesser Scaup population dynamics are temporally dynamic. In addition to resolving uncertainty about Lesser Scaup population dynamics, the merger of IPMs with transient LTREs will strengthen our understanding of demography for many species as we aim to conserve biodiversity during an era of non-stationary global change. © 2017 by the Ecological Society of America.
An Efficient Acoustic Density Estimation Method with Human Detectors Applied to Gibbons in Cambodia.
Kidney, Darren; Rawson, Benjamin M; Borchers, David L; Stevenson, Ben C; Marques, Tiago A; Thomas, Len
2016-01-01
Some animal species are hard to see but easy to hear. Standard visual methods for estimating population density for such species are often ineffective or inefficient, but methods based on passive acoustics show more promise. We develop spatially explicit capture-recapture (SECR) methods for territorial vocalising species, in which humans act as an acoustic detector array. We use SECR and estimated bearing data from a single-occasion acoustic survey of a gibbon population in northeastern Cambodia to estimate the density of calling groups. The properties of the estimator are assessed using a simulation study, in which a variety of survey designs are also investigated. We then present a new form of the SECR likelihood for multi-occasion data which accounts for the stochastic availability of animals. In the context of gibbon surveys this allows model-based estimation of the proportion of groups that produce territorial vocalisations on a given day, thereby enabling the density of groups, instead of the density of calling groups, to be estimated. We illustrate the performance of this new estimator by simulation. We show that it is possible to estimate density reliably from human acoustic detections of visually cryptic species using SECR methods. For gibbon surveys we also show that incorporating observers' estimates of bearings to detected groups substantially improves estimator performance. Using the new form of the SECR likelihood we demonstrate that estimates of availability, in addition to population density and detection function parameters, can be obtained from multi-occasion data, and that the detection function parameters are not confounded with the availability parameter. This acoustic SECR method provides a means of obtaining reliable density estimates for territorial vocalising species. It is also efficient in terms of data requirements since since it only requires routine survey data. We anticipate that the low-tech field requirements will make this method an attractive option in many situations where populations can be surveyed acoustically by humans.
Evaluating growth of the Porcupine Caribou Herd using a stochastic model
Walsh, Noreen E.; Griffith, Brad; McCabe, Thomas R.
1995-01-01
Estimates of the relative effects of demographic parameters on population rates of change, and of the level of natural variation in these parameters, are necessary to address potential effects of perturbations on populations. We used a stochastic model, based on survival and reproduction estimates of the Porcupine Caribou (Rangifer tarandus granti) Herd (PCH), during 1983-89 and 1989-92 to obtain distributions of potential population rates of change (r). The distribution of r produced by 1,000 trajectories of our simulation model (1983-89, r̄ = 0.013; 1989-92, r̄ = 0.003) encompassed the rate of increase calculated from an independent series of photo-survey data over the same years (1983-89, r = 0.048; 1989-92, r = -0.035). Changes in adult female survival had the largest effect on r, followed by changes in calf survival. We hypothesized that petroleum development on calving grounds, or changes in calving and post-calving habitats due to global climate change, would affect model input parameters. A decline in annual adult female survival from 0.871 to 0.847, or a decline in annual calf survival from 0.518 to 0.472, would be sufficient to cause a declining population, if all other input estimates remained the same. We then used these lower survival rates, in conjunction with our estimated amount of among-year variation, to determine a range of resulting population trajectories. Stochastic models can be used to better understand dynamics of populations, optimize sampling investment, and evaluate potential effects of various factors on population growth.
Doherty, P.F.; Schreiber, E.A.; Nichols, J.D.; Hines, J.E.; Link, W.A.; Schenk, G.A.; Schreiber, R.W.
2004-01-01
Life history theory and associated empirical generalizations predict that population growth rate (λ) in long-lived animals should be most sensitive to adult survival; the rates to which λ is most sensitive should be those with the smallest temporal variances; and stochastic environmental events should most affect the rates to which λ is least sensitive. To date, most analyses attempting to examine these predictions have been inadequate, their validity being called into question by problems in estimating parameters, problems in estimating the variability of parameters, and problems in measuring population sensitivities to parameters. We use improved methodologies in these three areas and test these life-history predictions in a population of red-tailed tropicbirds (Phaethon rubricauda). We support our first prediction that λ is most sensitive to survival rates. However the support for the second prediction that these rates have the smallest temporal variance was equivocal. Previous support for the second prediction may be an artifact of a high survival estimate near the upper boundary of 1 and not a result of natural selection canalizing variances alone. We did not support our third prediction that effects of environmental stochasticity (El Niño) would most likely be detected in vital rates to which λ was least sensitive and which are thought to have high temporal variances. Comparative data-sets on other seabirds, within and among orders, and in other locations, are needed to understand these environmental effects.
Jiménez, José; García, Emilio J; Llaneza, Luis; Palacios, Vicente; González, Luis Mariano; García-Domínguez, Francisco; Múñoz-Igualada, Jaime; López-Bao, José Vicente
2016-08-01
In many cases, the first step in large-carnivore management is to obtain objective, reliable, and cost-effective estimates of population parameters through procedures that are reproducible over time. However, monitoring predators over large areas is difficult, and the data have a high level of uncertainty. We devised a practical multimethod and multistate modeling approach based on Bayesian hierarchical-site-occupancy models that combined multiple survey methods to estimate different population states for use in monitoring large predators at a regional scale. We used wolves (Canis lupus) as our model species and generated reliable estimates of the number of sites with wolf reproduction (presence of pups). We used 2 wolf data sets from Spain (Western Galicia in 2013 and Asturias in 2004) to test the approach. Based on howling surveys, the naïve estimation (i.e., estimate based only on observations) of the number of sites with reproduction was 9 and 25 sites in Western Galicia and Asturias, respectively. Our model showed 33.4 (SD 9.6) and 34.4 (3.9) sites with wolf reproduction, respectively. The number of occupied sites with wolf reproduction was 0.67 (SD 0.19) and 0.76 (0.11), respectively. This approach can be used to design more cost-effective monitoring programs (i.e., to define the sampling effort needed per site). Our approach should inspire well-coordinated surveys across multiple administrative borders and populations and lead to improved decision making for management of large carnivores on a landscape level. The use of this Bayesian framework provides a simple way to visualize the degree of uncertainty around population-parameter estimates and thus provides managers and stakeholders an intuitive approach to interpreting monitoring results. Our approach can be widely applied to large spatial scales in wildlife monitoring where detection probabilities differ between population states and where several methods are being used to estimate different population parameters. © 2016 Society for Conservation Biology.
Effects of tag loss on direct estimates of population growth rate
Rotella, J.J.; Hines, J.E.
2005-01-01
The temporal symmetry approach of R. Pradel can be used with capture-recapture data to produce retrospective estimates of a population's growth rate, lambda(i), and the relative contributions to lambda(i) from different components of the population. Direct estimation of lambda(i) provides an alternative to using population projection matrices to estimate asymptotic lambda and is seeing increased use. However, the robustness of direct estimates of lambda(1) to violations of several key assumptions has not yet been investigated. Here, we consider tag loss as a possible source of bias for scenarios in which the rate of tag loss is (1) the same for all marked animals in the population and (2) a function of tag age. We computed analytic approximations of the expected values for each of the parameter estimators involved in direct estimation and used those values to calculate bias and precision for each parameter estimator. Estimates of lambda(i) were robust to homogeneous rates of tag loss. When tag loss rates varied by tag age, bias occurred for some of the sampling situations evaluated, especially those with low capture probability, a high rate of tag loss, or both. For situations with low rates of tag loss and high capture probability, bias was low and often negligible. Estimates of contributions of demographic components to lambda(i) were not robust to tag loss. Tag loss reduced the precision of all estimates because tag loss results in fewer marked animals remaining available for estimation. Clearly tag loss should be prevented if possible, and should be considered in analyses of lambda(i), but tag loss does not necessarily preclude unbiased estimation of lambda(i).
Estimation and confidence intervals for empirical mixing distributions
Link, W.A.; Sauer, J.R.
1995-01-01
Questions regarding collections of parameter estimates can frequently be expressed in terms of an empirical mixing distribution (EMD). This report discusses empirical Bayes estimation of an EMD, with emphasis on the construction of interval estimates. Estimation of the EMD is accomplished by substitution of estimates of prior parameters in the posterior mean of the EMD. This procedure is examined in a parametric model (the normal-normal mixture) and in a semi-parametric model. In both cases, the empirical Bayes bootstrap of Laird and Louis (1987, Journal of the American Statistical Association 82, 739-757) is used to assess the variability of the estimated EMD arising from the estimation of prior parameters. The proposed methods are applied to a meta-analysis of population trend estimates for groups of birds.
Genetic and phenotypic parameter estimates for feed intake and other traits in growing beef cattle
USDA-ARS?s Scientific Manuscript database
Genetic parameters for dry matter intake (DMI), residual feed intake (RFI), average daily gain (ADG), mid-period body weight (MBW), gain to feed ratio (G:F) and flight speed (FS) were estimated using 1165 steers from a mixed-breed population using restricted maximum likelihood methodology applied to...
Genetic Parameter Estimates for Metabolizing Two Common Pharmaceuticals in Swine.
Howard, Jeremy T; Ashwell, Melissa S; Baynes, Ronald E; Brooks, James D; Yeatts, James L; Maltecca, Christian
2018-01-01
In livestock, the regulation of drugs used to treat livestock has received increased attention and it is currently unknown how much of the phenotypic variation in drug metabolism is due to the genetics of an animal. Therefore, the objective of the study was to determine the amount of phenotypic variation in fenbendazole and flunixin meglumine drug metabolism due to genetics. The population consisted of crossbred female and castrated male nursery pigs ( n = 198) that were sired by boars represented by four breeds. The animals were spread across nine batches. Drugs were administered intravenously and blood collected a minimum of 10 times over a 48 h period. Genetic parameters for the parent drug and metabolite concentration within each drug were estimated based on pharmacokinetics (PK) parameters or concentrations across time utilizing a random regression model. The PK parameters were estimated using a non-compartmental analysis. The PK model included fixed effects of sex and breed of sire along with random sire and batch effects. The random regression model utilized Legendre polynomials and included a fixed population concentration curve, sex, and breed of sire effects along with a random sire deviation from the population curve and batch effect. The sire effect included the intercept for all models except for the fenbendazole metabolite (i.e., intercept and slope). The mean heritability across PK parameters for the fenbendazole and flunixin meglumine parent drug (metabolite) was 0.15 (0.18) and 0.31 (0.40), respectively. For the parent drug (metabolite), the mean heritability across time was 0.27 (0.60) and 0.14 (0.44) for fenbendazole and flunixin meglumine, respectively. The errors surrounding the heritability estimates for the random regression model were smaller compared to estimates obtained from PK parameters. Across both the PK and plasma drug concentration across model, a moderate heritability was estimated. The model that utilized the plasma drug concentration across time resulted in estimates with a smaller standard error compared to models that utilized PK parameters. The current study found a low to moderate proportion of the phenotypic variation in metabolizing fenbendazole and flunixin meglumine that was explained by genetics in the current study.
Genetic Parameter Estimates for Metabolizing Two Common Pharmaceuticals in Swine
Howard, Jeremy T.; Ashwell, Melissa S.; Baynes, Ronald E.; Brooks, James D.; Yeatts, James L.; Maltecca, Christian
2018-01-01
In livestock, the regulation of drugs used to treat livestock has received increased attention and it is currently unknown how much of the phenotypic variation in drug metabolism is due to the genetics of an animal. Therefore, the objective of the study was to determine the amount of phenotypic variation in fenbendazole and flunixin meglumine drug metabolism due to genetics. The population consisted of crossbred female and castrated male nursery pigs (n = 198) that were sired by boars represented by four breeds. The animals were spread across nine batches. Drugs were administered intravenously and blood collected a minimum of 10 times over a 48 h period. Genetic parameters for the parent drug and metabolite concentration within each drug were estimated based on pharmacokinetics (PK) parameters or concentrations across time utilizing a random regression model. The PK parameters were estimated using a non-compartmental analysis. The PK model included fixed effects of sex and breed of sire along with random sire and batch effects. The random regression model utilized Legendre polynomials and included a fixed population concentration curve, sex, and breed of sire effects along with a random sire deviation from the population curve and batch effect. The sire effect included the intercept for all models except for the fenbendazole metabolite (i.e., intercept and slope). The mean heritability across PK parameters for the fenbendazole and flunixin meglumine parent drug (metabolite) was 0.15 (0.18) and 0.31 (0.40), respectively. For the parent drug (metabolite), the mean heritability across time was 0.27 (0.60) and 0.14 (0.44) for fenbendazole and flunixin meglumine, respectively. The errors surrounding the heritability estimates for the random regression model were smaller compared to estimates obtained from PK parameters. Across both the PK and plasma drug concentration across model, a moderate heritability was estimated. The model that utilized the plasma drug concentration across time resulted in estimates with a smaller standard error compared to models that utilized PK parameters. The current study found a low to moderate proportion of the phenotypic variation in metabolizing fenbendazole and flunixin meglumine that was explained by genetics in the current study. PMID:29487615
Drummond, Alexei J; Nicholls, Geoff K; Rodrigo, Allen G; Solomon, Wiremu
2002-01-01
Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences. PMID:12136032
Drummond, Alexei J; Nicholls, Geoff K; Rodrigo, Allen G; Solomon, Wiremu
2002-07-01
Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences.
Automated inference procedure for the determination of cell growth parameters
NASA Astrophysics Data System (ADS)
Harris, Edouard A.; Koh, Eun Jee; Moffat, Jason; McMillen, David R.
2016-01-01
The growth rate and carrying capacity of a cell population are key to the characterization of the population's viability and to the quantification of its responses to perturbations such as drug treatments. Accurate estimation of these parameters necessitates careful analysis. Here, we present a rigorous mathematical approach for the robust analysis of cell count data, in which all the experimental stages of the cell counting process are investigated in detail with the machinery of Bayesian probability theory. We advance a flexible theoretical framework that permits accurate estimates of the growth parameters of cell populations and of the logical correlations between them. Moreover, our approach naturally produces an objective metric of avoidable experimental error, which may be tracked over time in a laboratory to detect instrumentation failures or lapses in protocol. We apply our method to the analysis of cell count data in the context of a logistic growth model by means of a user-friendly computer program that automates this analysis, and present some samples of its output. Finally, we note that a traditional least squares fit can provide misleading estimates of parameter values, because it ignores available information with regard to the way in which the data have actually been collected.
A new approach to estimate parameters of speciation models with application to apes.
Becquet, Celine; Przeworski, Molly
2007-10-01
How populations diverge and give rise to distinct species remains a fundamental question in evolutionary biology, with important implications for a wide range of fields, from conservation genetics to human evolution. A promising approach is to estimate parameters of simple speciation models using polymorphism data from multiple loci. Existing methods, however, make a number of assumptions that severely limit their applicability, notably, no gene flow after the populations split and no intralocus recombination. To overcome these limitations, we developed a new Markov chain Monte Carlo method to estimate parameters of an isolation-migration model. The approach uses summaries of polymorphism data at multiple loci surveyed in a pair of diverging populations or closely related species and, importantly, allows for intralocus recombination. To illustrate its potential, we applied it to extensive polymorphism data from populations and species of apes, whose demographic histories are largely unknown. The isolation-migration model appears to provide a reasonable fit to the data. It suggests that the two chimpanzee species became reproductively isolated in allopatry approximately 850 Kya, while Western and Central chimpanzee populations split approximately 440 Kya but continued to exchange migrants. Similarly, Eastern and Western gorillas and Sumatran and Bornean orangutans appear to have experienced gene flow since their splits approximately 90 and over 250 Kya, respectively.
An Admittance Survey of Large Volcanoes on Venus: Implications for Volcano Growth
NASA Technical Reports Server (NTRS)
Brian, A. W.; Smrekar, S. E.; Stofan, E. R.
2004-01-01
Estimates of the thickness of the venusian crust and elastic lithosphere are important in determining the rheological and thermal properties of Venus. These estimates offer insights into what conditions are needed for certain features, such as large volcanoes and coronae, to form. Lithospheric properties for much of the large volcano population on Venus are not well known. Previous studies of elastic thickness (Te) have concentrated on individual or small groups of edifices, or have used volcano models and fixed values of Te to match with observations of volcano morphologies. In addition, previous studies use different methods to estimate lithospheric parameters meaning it is difficult to compare their results. Following recent global studies of the admittance signatures exhibited by the venusian corona population, we performed a similar survey into large volcanoes in an effort to determine the range of lithospheric parameters shown by these features. This survey of the entire large volcano population used the same method throughout so that all estimates could be directly compared. By analysing a large number of edifices and comparing our results to observations of their morphology and models of volcano formation, we can help determine the controlling parameters that govern volcano growth on Venus.
Ali, Sajid; Soubeyrand, Samuel; Gladieux, Pierre; Giraud, Tatiana; Leconte, Marc; Gautier, Angélique; Mboup, Mamadou; Chen, Wanquan; de Vallavieille-Pope, Claude; Enjalbert, Jérôme
2016-07-01
Inferring reproductive and demographic parameters of populations is crucial to our understanding of species ecology and evolutionary potential but can be challenging, especially in partially clonal organisms. Here, we describe a new and accurate method, cloncase, for estimating both the rate of sexual vs. asexual reproduction and the effective population size, based on the frequency of clonemate resampling across generations. Simulations showed that our method provides reliable estimates of sex frequency and effective population size for a wide range of parameters. The cloncase method was applied to Puccinia striiformis f.sp. tritici, a fungal pathogen causing stripe/yellow rust, an important wheat disease. This fungus is highly clonal in Europe but has been suggested to recombine in Asia. Using two temporally spaced samples of P. striiformis f.sp. tritici in China, the estimated sex frequency was 75% (i.e. three-quarter of individuals being sexually derived during the yearly sexual cycle), indicating strong contribution of sexual reproduction to the life cycle of the pathogen in this area. The inferred effective population size of this partially clonal organism (Nc = 998) was in good agreement with estimates obtained using methods based on temporal variations in allelic frequencies. The cloncase estimator presented herein is the first method allowing accurate inference of both sex frequency and effective population size from population data without knowledge of recombination or mutation rates. cloncase can be applied to population genetic data from any organism with cyclical parthenogenesis and should in particular be very useful for improving our understanding of pest and microbial population biology. © 2016 John Wiley & Sons Ltd.
Improving size estimates of open animal populations by incorporating information on age
Manly, Bryan F.J.; McDonald, Trent L.; Amstrup, Steven C.; Regehr, Eric V.
2003-01-01
Around the world, a great deal of effort is expended each year to estimate the sizes of wild animal populations. Unfortunately, population size has proven to be one of the most intractable parameters to estimate. The capture-recapture estimation models most commonly used (of the Jolly-Seber type) are complicated and require numerous, sometimes questionable, assumptions. The derived estimates usually have large variances and lack consistency over time. In capture–recapture studies of long-lived animals, the ages of captured animals can often be determined with great accuracy and relative ease. We show how to incorporate age information into size estimates for open populations, where the size changes through births, deaths, immigration, and emigration. The proposed method allows more precise estimates of population size than the usual models, and it can provide these estimates from two sample occasions rather than the three usually required. Moreover, this method does not require specialized programs for capture-recapture data; researchers can derive their estimates using the logistic regression module in any standard statistical package.
Colour pairs for constraining the age and metallicity of stellar populations
NASA Astrophysics Data System (ADS)
Li, Zhongmu; Han, Zhanwen
2008-04-01
Using a widely used stellar-population synthesis model, we study the possibility of using pairs of AB system colours to break the well-known stellar age-metallicity degeneracy and to give constraints on two luminosity-weighted stellar-population parameters (age and metallicity). We present the relative age and metallicity sensitivities of the AB system colours that relate to the u,B,g,V,r,R,i, I,z,J,H and K bands, and we quantify the ability of various colour pairs to break the age-metallicity degeneracy. Our results suggest that a few pairs of colours can be used to constrain the above two stellar-population parameters. This will be very useful for exploring the stellar populations of distant galaxies. In detail, colour pairs [(r-K), (u-R)] and [(r-K), (u-r)] are shown to be the best pairs for estimating the luminosity-weighted stellar ages and metallicities of galaxies. They can constrain two stellar-population parameters on average with age uncertainties less than 3.89 Gyr and metallicity uncertainties less than 0.34 dex for typical colour uncertainties. The typical age uncertainties for young populations (age < 4.6 Gyr) and metal-rich populations (Z >= 0.001) are small (about 2.26 Gyr) while those for old populations (age >= 4.6 Gyr) and metal-poor populations (Z < 0.001) are much larger (about 6.88 Gyr). However, the metallicity uncertainties for metal-poor populations (about 0.0024) are much smaller than for other populations (about 0.015). Some other colour pairs can also possibly be used for constraining the two parameters. On the whole, the estimation of stellar-population parameters is likely to be reliable only for early-type galaxies with small colour errors and globular clusters, because such objects contain less dust. In fact, no galaxy is totally dust-free and early-type galaxies are also likely have some dust [e.g. E(B- V) ~ 0.05], which can change the stellar ages by about 2.5 Gyr and metallicities (Z) by about 0.015. When we compare the photometric estimates with previous spectroscopic estimates, we find some differences, especially when comparing the stellar ages determined by two methods. The differences mainly result from the young populations of galaxies. Therefore, it is difficult to obtain the absolute values of stellar ages and metallicities, but the results are useful for obtaining some relative values. In addition, our results suggest that colours relating to both UBVRIJHK and ugriz magnitudes are much better than either UBVRIJHK or ugriz colours for breaking the well-known degeneracy. The results also show that the stellar ages and metallicities of galaxies observed by the Sloan Digital Sky Survey and the Two-Micron All-Sky Survey can be estimated via photometry data. The data are available at the Centre de Données astronomiques de Strabourg (CDS) or on request to the authors. E-mail: zhongmu.li@gmail.com
Analysis and Management of Animal Populations: Modeling, Estimation and Decision Making
Williams, B.K.; Nichols, J.D.; Conroy, M.J.
2002-01-01
This book deals with the processes involved in making informed decisions about the management of animal populations. It covers the modeling of population responses to management actions, the estimation of quantities needed in the modeling effort, and the application of these estimates and models to the development of sound management decisions. The book synthesizes and integrates in a single volume the methods associated with these themes, as they apply to ecological assessment and conservation of animal populations. KEY FEATURES * Integrates population modeling, parameter estimation and * decision-theoretic approaches to management in a single, cohesive framework * Provides authoritative, state-of-the-art descriptions of quantitative * approaches to modeling, estimation and decision-making * Emphasizes the role of mathematical modeling in the conduct of science * and management * Utilizes a unifying biological context, consistent mathematical notation, * and numerous biological examples
Estimation of Population Number via Light Activities on Night-Time Satellite Images
NASA Astrophysics Data System (ADS)
Turan, M. K.; Yücer, E.; Sehirli, E.; Karaş, İ. R.
2017-11-01
Estimation and accurate assessment regarding population gets harder and harder day by day due to growth of world population in a fast manner. Estimating tendencies to settlements in cities and countries, socio-cultural development and population numbers is quite difficult. In addition to them, selection and analysis of parameters such as time, work-force and cost seems like another difficult issue. In this study, population number is guessed by evaluating light activities in İstanbul via night-time images of Turkey. By evaluating light activities between 2000 and 2010, average population per pixel is obtained. Hence, it is used to estimate population numbers in 2011, 2012 and 2013. Mean errors are concluded as 4.14 % for 2011, 3.74 % for 2012 and 3.04 % for 2013 separately. As a result of developed thresholding method, mean error is concluded as 3.64 % to estimate population number in İstanbul for next three years.
Integration of manatee life-history data and population modeling
Eberhardt, L.L.; O'Shea, Thomas J.; O'Shea, Thomas J.; Ackerman, B.B.; Percival, H. Franklin
1995-01-01
Aerial counts and the number of deaths have been a major focus of attention in attempts to understand the population status of the Florida manatee (Trichechus manatus latirostris). Uncertainties associated with these data have made interpretation difficult. However, knowledge of manatee life-history attributes increased and now permits the development of a population model. We describe a provisional model based on the classical approach of Lotka. Parameters in the model are based on data from'other papers in this volume and draw primarily on observations from the Crystal River, Blue Spring, and Adantic Coast areas. The model estimates X (the finite rate ofincrease) at each study area, and application ofthe delta method provides estimates of variance components and partial derivatives ofX with respectto key input parameters (reproduction, adult survival, and early survival). In some study areas, only approximations of some parameters are available. Estimates of X and coefficients of variation (in parentheses) of manatees were 1.07 (0.009) in the Crystal River, 1.06 (0.012) at Blue Spring, and 1.01 (0.012) on the Atlantic Coast. Changing adult survival has a major effect on X. Early-age survival has the smallest effect. Bootstrap comparisons of population growth estimates from trend counts in the Crystal River and at Blue Spring and the reproduction and survival data suggest that the higher, observed rates from counts are probably not due to chance. Bootstrapping for variance estimates based on reproduction and survival data from manatees at Blue Spring and in the Crystal River provided estimates of X, adult survival, and rates of reproduction that were similar to those obtained by other methods. Our estimates are preliminary and suggestimprovements for future data collection and analysis. However, results support efforts to reduce mortality as the most effective means to promote the increased growth necessary for the eventual recovery of the Florida manatee population.
Population growth of Yellowstone grizzly bears: Uncertainty and future monitoring
Harris, R.B.; White, Gary C.; Schwartz, C.C.; Haroldson, M.A.
2007-01-01
Grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem of the US Rocky Mountains have recently increased in numbers, but remain vulnerable due to isolation from other populations and predicted reductions in favored food resources. Harris et al. (2006) projected how this population might fare in the future under alternative survival rates, and in doing so estimated the rate of population growth, 1983–2002. We address issues that remain from that earlier work: (1) the degree of uncertainty surrounding our estimates of the rate of population change (λ); (2) the effect of correlation among demographic parameters on these estimates; and (3) how a future monitoring system using counts of females accompanied by cubs might usefully differentiate between short-term, expected, and inconsequential fluctuations versus a true change in system state. We used Monte Carlo re-sampling of beta distributions derived from the demographic parameters used by Harris et al. (2006) to derive distributions of λ during 1983–2002 given our sampling uncertainty. Approximate 95% confidence intervals were 0.972–1.096 (assuming females with unresolved fates died) and 1.008–1.115 (with unresolved females censored at last contact). We used well-supported models of Haroldson et al. (2006) and Schwartz et al. (2006a,b,c) to assess the strength of correlations among demographic processes and the effect of omitting them in projection models. Incorporating correlations among demographic parameters yielded point estimates of λ that were nearly identical to those from the earlier model that omitted correlations, but yielded wider confidence intervals surrounding λ. Finally, we suggest that fitting linear and quadratic curves to the trend suggested by the estimated number of females with cubs in the ecosystem, and using AICc model weights to infer population sizes and λ provides an objective means to monitoring approximate population trajectories in addition to demographic analysis.
Modification of a rainfall-runoff model for distributed modeling in a GIS and its validation
NASA Astrophysics Data System (ADS)
Nyabeze, W. R.
A rainfall-runoff model, which can be inter-faced with a Geographical Information System (GIS) to integrate definition, measurement, calculating parameter values for spatial features, presents considerable advantages. The modification of the GWBasic Wits Rainfall-Runoff Erosion Model (GWBRafler) to enable parameter value estimation in a GIS (GISRafler) is presented in this paper. Algorithms are applied to estimate parameter values reducing the number of input parameters and the effort to populate them. The use of a GIS makes the relationship between parameter estimates and cover characteristics more evident. This paper has been produced as part of research to generalize the GWBRafler on a spatially distributed basis. Modular data structures are assumed and parameter values are weighted relative to the module area and centroid properties. Modifications to the GWBRafler enable better estimation of low flows, which are typical in drought conditions.
Udevitz, Mark S.; El-Shaarawi, Abdel H.; Piegorsch, Walter W.
2002-01-01
Change-in-ratio (CIR) methods are used to estimate parameters for ecological populations subject to differential removals from population subclasses. Subclasses can be defined according to criteria such as sex, age, or size of individuals. Removals are generally in the form of closely monitored sport or commercial harvests. Estimation is based on observed changes in subclass proportions caused by the removals.
Udevitz, Mark S.
2014-01-01
Change-in-ratio (CIR) methods are used to estimate parameters for ecological populations subject to differential removals from population subclasses. Subclasses can be defined according to criteria such as sex, age, or size of individuals. Removals are generally in the form of closely monitored sport or commercial harvests. Estimation is based on observed changes in subclass proportions caused by the removals.
Nicolas, Xavier; Djebli, Nassim; Rauch, Clémence; Brunet, Aurélie; Hurbin, Fabrice; Martinez, Jean-Marie; Fabre, David
2018-05-03
Alirocumab, a human monoclonal antibody against proprotein convertase subtilisin/kexin type 9 (PCSK9), significantly lowers low-density lipoprotein cholesterol levels. This analysis aimed to develop and qualify a population pharmacokinetic/pharmacodynamic model for alirocumab based on pooled data obtained from 13 phase I/II/III clinical trials. From a dataset of 2799 individuals (14,346 low-density lipoprotein-cholesterol values), individual pharmacokinetic parameters from the population pharmacokinetic model presented in Part I of this series were used to estimate alirocumab concentrations. As a second step, we then developed the current population pharmacokinetic/pharmacodynamic model using an indirect response model with a Hill coefficient, parameterized with increasing low-density lipoprotein cholesterol elimination, to relate alirocumab concentrations to low-density lipoprotein cholesterol values. The population pharmacokinetic/pharmacodynamic model allowed the characterization of the pharmacokinetic/pharmacodynamic properties of alirocumab in the target population and estimation of individual low-density lipoprotein cholesterol levels and derived pharmacodynamic parameters (the maximum decrease in low-density lipoprotein cholesterol values from baseline and the difference between baseline low-density lipoprotein cholesterol and the pre-dose value before the next alirocumab dose). Significant parameter-covariate relationships were retained in the model, with a total of ten covariates (sex, age, weight, free baseline PCSK9, total time-varying PCSK9, concomitant statin administration, total baseline PCSK9, co-administration of high-dose statins, disease status) included in the final population pharmacokinetic/pharmacodynamic model to explain between-subject variability. Nevertheless, the high number of covariates included in the model did not have a clinically meaningful impact on model-derived pharmacodynamic parameters. This model successfully allowed the characterization of the population pharmacokinetic/pharmacodynamic properties of alirocumab in its target population and the estimation of individual low-density lipoprotein cholesterol levels.
The Beta-Geometric Model Applied to Fecundability in a Sample of Married Women
NASA Astrophysics Data System (ADS)
Adekanmbi, D. B.; Bamiduro, T. A.
2006-10-01
The time required to achieve pregnancy among married couples termed fecundability has been proposed to follow a beta-geometric distribution. The accuracy of the method used in estimating the parameters of the model has an implication on the goodness of fit of the model. In this study, the parameters of the model are estimated using the Method of Moments and Newton-Raphson estimation procedure. The goodness of fit of the model was considered, using estimates from the two methods of estimation, as well as the asymptotic relative efficiency of the estimates. A noticeable improvement in the fit of the model to the data on time to conception was observed, when the parameters are estimated by Newton-Raphson procedure, and thereby estimating reasonable expectations of fecundability for married female population in the country.
Hone, J.; Pech, R.; Yip, P.
1992-01-01
Infectious diseases establish in a population of wildlife hosts when the number of secondary infections is greater than or equal to one. To estimate whether establishment will occur requires extensive experience or a mathematical model of disease dynamics and estimates of the parameters of the disease model. The latter approach is explored here. Methods for estimating key model parameters, the transmission coefficient (beta) and the basic reproductive rate (RDRS), are described using classical swine fever (hog cholera) in wild pigs as an example. The tentative results indicate that an acute infection of classical swine fever will establish in a small population of wild pigs. Data required for estimation of disease transmission rates are reviewed and sources of bias and alternative methods discussed. A comprehensive evaluation of the biases and efficiencies of the methods is needed. PMID:1582476
Kalman filter for statistical monitoring of forest cover across sub-continental regions [Symposium
Raymond L. Czaplewski
1991-01-01
The Kalman filter is a generalization of the composite estimator. The univariate composite estimate combines 2 prior estimates of population parameter with a weighted average where the scalar weight is inversely proportional to the variances. The composite estimator is a minimum variance estimator that requires no distributional assumptions other than estimates of the...
A Monte Carlo Evaluation of Estimated Parameters of Five Shrinkage Estimate Formuli.
ERIC Educational Resources Information Center
Newman, Isadore; And Others
A Monte Carlo study was conducted to estimate the efficiency of and the relationship between five equations and the use of cross validation as methods for estimating shrinkage in multiple correlations. Two of the methods were intended to estimate shrinkage to population values and the other methods were intended to estimate shrinkage from sample…
Software Review: A program for testing capture-recapture data for closure
Stanley, Thomas R.; Richards, Jon D.
2005-01-01
Capture-recapture methods are widely used to estimate population parameters of free-ranging animals. Closed-population capture-recapture models, which assume there are no additions to or losses from the population over the period of study (i.e., the closure assumption), are preferred for population estimation over the open-population models, which do not assume closure, because heterogeneity in detection probabilities can be accounted for and this improves estimates. In this paper we introduce CloseTest, a new Microsoft® Windows-based program that computes the Otis et al. (1978) and Stanley and Burnham (1999) closure tests for capture-recapture data sets. Information on CloseTest features and where to obtain the program are provided.
Stochastic dynamics and logistic population growth
NASA Astrophysics Data System (ADS)
Méndez, Vicenç; Assaf, Michael; Campos, Daniel; Horsthemke, Werner
2015-06-01
The Verhulst model is probably the best known macroscopic rate equation in population ecology. It depends on two parameters, the intrinsic growth rate and the carrying capacity. These parameters can be estimated for different populations and are related to the reproductive fitness and the competition for limited resources, respectively. We investigate analytically and numerically the simplest possible microscopic scenarios that give rise to the logistic equation in the deterministic mean-field limit. We provide a definition of the two parameters of the Verhulst equation in terms of microscopic parameters. In addition, we derive the conditions for extinction or persistence of the population by employing either the momentum-space spectral theory or the real-space Wentzel-Kramers-Brillouin approximation to determine the probability distribution function and the mean time to extinction of the population. Our analytical results agree well with numerical simulations.
Larney, Sarah; Grebely, Jason; Hickman, Matthew; De Angelis, Daniela; Dore, Gregory J; Degenhardt, Louisa
2015-10-01
There is considerable interest in determining the impact that increased uptake of treatment for hepatitis C virus (HCV) infection will have on the burden of HCV among people who inject drugs (PWID). An understanding of the size of the population of PWID, rates of injecting cessation and HCV prevalence and incidence within the PWID population is essential for such exercises. However, these parameters are often uncertain. In this paper we review methods for estimating the size of the population of PWID and related parameters, taking into account the uncertainty that exists around data on the natural history of injecting drug use; consider issues in the estimation of HCV prevalence among PWID; and consider the importance of opioid substitution therapy and prisons as settings for the prevention and treatment of HCV infection among PWID. These latter two points are illustrated through examples of ongoing work in England, Scotland and Australia. We conclude that an improved understanding of the size of PWID populations, including current and former PWID and parameters related to injecting drug use and settings where PWID may be reached, is necessary to inform HCV prevention and treatment strategies. Copyright © 2015 Elsevier B.V. All rights reserved.
Fabre, Emmanuelle E; Raynaud-Simon, Agathe; Golmard, Jean-Louis; Gourgouillon, Nadège; Beaudeux, Jean-Louis; Nivet-Antoine, Valérie
2010-01-01
Renal function is often altered in elderly patients. A lot of formulae are proposed to estimate GFR to adjust drug posology. French guidelines recommend the Cockcroft-Gault formula corrected with the body surface area (cCG), but the initially described unadjusted Cockcroft-Gault equation (CG) is mainly used in geriatric clinical practice. International recommendations have proposed the modification of diet in renal disease (MDRD) formula, since several authors recommended the Rule formula using cystatin C (cystC) in particular population. To appreciate the most accurate GFR estimation for posology adaptation in an elderly polypathological population, a cross-sectional study with prospective inclusion was carried out in Charles Foix Hospital. Plasma glucose levels (PGL), creatinine (CREA) levels and serum cystC, albumin (ALB), transthyretin (TTR), C-reactive protein (CRP), orosomucoid (ORO) total cholesterol (tCHOL) levels were determined among 193 elderly patients aged 70 and older. The results showed that in a malnourished, inflamed old population, CG, MDRD and Rule formulae resulted in different estimations of GFR, depending on nutritional and inflammatory parameters. Only cCG estimation was shown to be independent from these parameters. To conclude, cCG seems to be the most accurate and appropriate formula in a polypathological elderly population to evaluate renal function in order to adapt drug posology. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.
A spatial mark–resight model augmented with telemetry data
Sollmann, Rachel; Gardner, Beth; Parsons, Arielle W.; Stocking, Jessica J.; McClintock, Brett T.; Simons, Theodore R.; Pollock, Kenneth H.; O’Connell, Allan F.
2013-01-01
Abundance and population density are fundamental pieces of information for population ecology and species conservation, but they are difficult to estimate for rare and elusive species. Mark-resight models are popular for estimating population abundance because they are less invasive and expensive than traditional mark-recapture. However, density estimation using mark-resight is difficult because the area sampled must be explicitly defined, historically using ad-hoc approaches. We develop a spatial mark-resight model for estimating population density that combines spatial resighting data and telemetry data. Incorporating telemetry data allows us to inform model parameters related to movement and individual location. Our model also allows 2. The model presented here will have widespread utility in future applications, especially for species that are not naturally marked.
Parameter and state estimation in a Neisseria meningitidis model: A study case of Niger
NASA Astrophysics Data System (ADS)
Bowong, S.; Mountaga, L.; Bah, A.; Tewa, J. J.; Kurths, J.
2016-12-01
Neisseria meningitidis (Nm) is a major cause of bacterial meningitidis outbreaks in Africa and the Middle East. The availability of yearly reported meningitis cases in the African meningitis belt offers the opportunity to analyze the transmission dynamics and the impact of control strategies. In this paper, we propose a method for the estimation of state variables that are not accessible to measurements and an unknown parameter in a Nm model. We suppose that the yearly number of Nm induced mortality and the total population are known inputs, which can be obtained from data, and the yearly number of new Nm cases is the model output. We also suppose that the Nm transmission rate is an unknown parameter. We first show how the recruitment rate into the population can be estimated using real data of the total population and Nm induced mortality. Then, we use an auxiliary system called observer whose solutions converge exponentially to those of the original model. This observer does not use the unknown infection transmission rate but only uses the known inputs and the model output. This allows us to estimate unmeasured state variables such as the number of carriers that play an important role in the transmission of the infection and the total number of infected individuals within a human community. Finally, we also provide a simple method to estimate the unknown Nm transmission rate. In order to validate the estimation results, numerical simulations are conducted using real data of Niger.
Tornøe, Christoffer W; Overgaard, Rune V; Agersø, Henrik; Nielsen, Henrik A; Madsen, Henrik; Jonsson, E Niclas
2005-08-01
The objective of the present analysis was to explore the use of stochastic differential equations (SDEs) in population pharmacokinetic/pharmacodynamic (PK/PD) modeling. The intra-individual variability in nonlinear mixed-effects models based on SDEs is decomposed into two types of noise: a measurement and a system noise term. The measurement noise represents uncorrelated error due to, for example, assay error while the system noise accounts for structural misspecifications, approximations of the dynamical model, and true random physiological fluctuations. Since the system noise accounts for model misspecifications, the SDEs provide a diagnostic tool for model appropriateness. The focus of the article is on the implementation of the Extended Kalman Filter (EKF) in NONMEM for parameter estimation in SDE models. Various applications of SDEs in population PK/PD modeling are illustrated through a systematic model development example using clinical PK data of the gonadotropin releasing hormone (GnRH) antagonist degarelix. The dynamic noise estimates were used to track variations in model parameters and systematically build an absorption model for subcutaneously administered degarelix. The EKF-based algorithm was successfully implemented in NONMEM for parameter estimation in population PK/PD models described by systems of SDEs. The example indicated that it was possible to pinpoint structural model deficiencies, and that valuable information may be obtained by tracking unexplained variations in parameters.
Servanty, Sabrina; Converse, Sarah J.; Bailey, Larissa L.
2014-01-01
The reintroduction of threatened and endangered species is now a common method for reestablishing populations. Typically, a fundamental objective of reintroduction is to establish a self-sustaining population. Estimation of demographic parameters in reintroduced populations is critical, as these estimates serve multiple purposes. First, they support evaluation of progress toward the fundamental objective via construction of population viability analyses (PVAs) to predict metrics such as probability of persistence. Second, PVAs can be expanded to support evaluation of management actions, via management modeling. Third, the estimates themselves can support evaluation of the demographic performance of the reintroduced population, e.g., via comparison with wild populations. For each of these purposes, thorough treatment of uncertainties in the estimates is critical. Recently developed statistical methods - namely, hierarchical Bayesian implementations of state-space models - allow for effective integration of different types of uncertainty in estimation. We undertook a demographic estimation effort for a reintroduced population of endangered whooping cranes with the purpose of ultimately developing a Bayesian PVA for determining progress toward establishing a self-sustaining population, and for evaluating potential management actions via a Bayesian PVA-based management model. We evaluated individual and temporal variation in demographic parameters based upon a multi-state mark-recapture model. We found that survival was relatively high across time and varied little by sex. There was some indication that survival varied by release method. Survival was similar to that observed in the wild population. Although overall reproduction in this reintroduced population is poor, birds formed social pairs when relatively young, and once a bird was in a social pair, it had a nearly 50% chance of nesting the following breeding season. Also, once a bird had nested, it had a high probability of nesting again. These results are encouraging considering that survival and reproduction have been major challenges in past reintroductions of this species. The demographic estimates developed will support construction of a management model designed to facilitate exploration of management actions of interest, and will provide critical guidance in future planning for this reintroduction. An approach similar to what we describe could be usefully applied to many reintroduced populations.
Reconstructing the hidden states in time course data of stochastic models.
Zimmer, Christoph
2015-11-01
Parameter estimation is central for analyzing models in Systems Biology. The relevance of stochastic modeling in the field is increasing. Therefore, the need for tailored parameter estimation techniques is increasing as well. Challenges for parameter estimation are partial observability, measurement noise, and the computational complexity arising from the dimension of the parameter space. This article extends the multiple shooting for stochastic systems' method, developed for inference in intrinsic stochastic systems. The treatment of extrinsic noise and the estimation of the unobserved states is improved, by taking into account the correlation between unobserved and observed species. This article demonstrates the power of the method on different scenarios of a Lotka-Volterra model, including cases in which the prey population dies out or explodes, and a Calcium oscillation system. Besides showing how the new extension improves the accuracy of the parameter estimates, this article analyzes the accuracy of the state estimates. In contrast to previous approaches, the new approach is well able to estimate states and parameters for all the scenarios. As it does not need stochastic simulations, it is of the same order of speed as conventional least squares parameter estimation methods with respect to computational time. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Forecasting the mortality rates of Malaysian population using Heligman-Pollard model
NASA Astrophysics Data System (ADS)
Ibrahim, Rose Irnawaty; Mohd, Razak; Ngataman, Nuraini; Abrisam, Wan Nur Azifah Wan Mohd
2017-08-01
Actuaries, demographers and other professionals have always been aware of the critical importance of mortality forecasting due to declining trend of mortality and continuous increases in life expectancy. Heligman-Pollard model was introduced in 1980 and has been widely used by researchers in modelling and forecasting future mortality. This paper aims to estimate an eight-parameter model based on Heligman and Pollard's law of mortality. Since the model involves nonlinear equations that are explicitly difficult to solve, the Matrix Laboratory Version 7.0 (MATLAB 7.0) software will be used in order to estimate the parameters. Statistical Package for the Social Sciences (SPSS) will be applied to forecast all the parameters according to Autoregressive Integrated Moving Average (ARIMA). The empirical data sets of Malaysian population for period of 1981 to 2015 for both genders will be considered, which the period of 1981 to 2010 will be used as "training set" and the period of 2011 to 2015 as "testing set". In order to investigate the accuracy of the estimation, the forecast results will be compared against actual data of mortality rates. The result shows that Heligman-Pollard model fit well for male population at all ages while the model seems to underestimate the mortality rates for female population at the older ages.
Is Bayesian Estimation Proper for Estimating the Individual's Ability? Research Report 80-3.
ERIC Educational Resources Information Center
Samejima, Fumiko
The effect of prior information in Bayesian estimation is considered, mainly from the standpoint of objective testing. In the estimation of a parameter belonging to an individual, the prior information is, in most cases, the density function of the population to which the individual belongs. Bayesian estimation was compared with maximum likelihood…
Jacobs, Matthieu; Grégoire, Nicolas; Couet, William; Bulitta, Jurgen B.
2016-01-01
Semi-mechanistic pharmacokinetic-pharmacodynamic (PK-PD) modeling is increasingly used for antimicrobial drug development and optimization of dosage regimens, but systematic simulation-estimation studies to distinguish between competing PD models are lacking. This study compared the ability of static and dynamic in vitro infection models to distinguish between models with different resistance mechanisms and support accurate and precise parameter estimation. Monte Carlo simulations (MCS) were performed for models with one susceptible bacterial population without (M1) or with a resting stage (M2), a one population model with adaptive resistance (M5), models with pre-existing susceptible and resistant populations without (M3) or with (M4) inter-conversion, and a model with two pre-existing populations with adaptive resistance (M6). For each model, 200 datasets of the total bacterial population were simulated over 24h using static antibiotic concentrations (256-fold concentration range) or over 48h under dynamic conditions (dosing every 12h; elimination half-life: 1h). Twelve-hundred random datasets (each containing 20 curves for static or four curves for dynamic conditions) were generated by bootstrapping. Each dataset was estimated by all six models via population PD modeling to compare bias and precision. For M1 and M3, most parameter estimates were unbiased (<10%) and had good imprecision (<30%). However, parameters for adaptive resistance and inter-conversion for M2, M4, M5 and M6 had poor bias and large imprecision under static and dynamic conditions. For datasets that only contained viable counts of the total population, common statistical criteria and diagnostic plots did not support sound identification of the true resistance mechanism. Therefore, it seems advisable to quantify resistant bacteria and characterize their MICs and resistance mechanisms to support extended simulations and translate from in vitro experiments to animal infection models and ultimately patients. PMID:26967893
Incorporating harvest rates into the sex-age-kill model for white-tailed deer
Norton, Andrew S.; Diefenbach, Duane R.; Rosenberry, Christopher S.; Wallingford, Bret D.
2013-01-01
Although monitoring population trends is an essential component of game species management, wildlife managers rarely have complete counts of abundance. Often, they rely on population models to monitor population trends. As imperfect representations of real-world populations, models must be rigorously evaluated to be applied appropriately. Previous research has evaluated population models for white-tailed deer (Odocoileus virginianus); however, the precision and reliability of these models when tested against empirical measures of variability and bias largely is untested. We were able to statistically evaluate the Pennsylvania sex-age-kill (PASAK) population model using realistic error measured using data from 1,131 radiocollared white-tailed deer in Pennsylvania from 2002 to 2008. We used these data and harvest data (number killed, age-sex structure, etc.) to estimate precision of abundance estimates, identify the most efficient harvest data collection with respect to precision of parameter estimates, and evaluate PASAK model robustness to violation of assumptions. Median coefficient of variation (CV) estimates by Wildlife Management Unit, 13.2% in the most recent year, were slightly above benchmarks recommended for managing game species populations. Doubling reporting rates by hunters or doubling the number of deer checked by personnel in the field reduced median CVs to recommended levels. The PASAK model was robust to errors in estimates for adult male harvest rates but was sensitive to errors in subadult male harvest rates, especially in populations with lower harvest rates. In particular, an error in subadult (1.5-yr-old) male harvest rates resulted in the opposite error in subadult male, adult female, and juvenile population estimates. Also, evidence of a greater harvest probability for subadult female deer when compared with adult (≥2.5-yr-old) female deer resulted in a 9.5% underestimate of the population using the PASAK model. Because obtaining appropriate sample sizes, by management unit, to estimate harvest rate parameters each year may be too expensive, assumptions of constant annual harvest rates may be necessary. However, if changes in harvest regulations or hunter behavior influence subadult male harvest rates, the PASAK model could provide an unreliable index to population changes.
Hydrology and trout populations of cold-water rivers of Michigan and Wisconsin
Hendrickson, G.E.; Knutilla, R.L.
1974-01-01
Statistical multiple-regression analyses showed significant relationships between trout populations and hydrologic parameters. Parameters showing the higher levels of significance were temperature, hardness of water, percentage of gravel bottom, percentage of bottom vegetation, variability of streamflow, and discharge per unit drainage area. Trout populations increase with lower levels of annual maximum water temperatures, with increase in water hardness, and with increase in percentage of gravel and bottom vegetation. Trout populations also increase with decrease in variability of streamflow, and with increase in discharge per unit drainage area. Most hydrologic parameters were significant when evaluated collectively, but no parameter, by itself, showed a high degree of correlation with trout populations in regression analyses that included all the streams sampled. Regression analyses of stream segments that were restricted to certain limits of hardness, temperature, or percentage of gravel bottom showed improvements in correlation. Analyses of trout populations, in pounds per acre and pounds per mile and hydrologic parameters resulted in regression equations from which trout populations could be estimated with standard errors of 89 and 84 per cent, respectively.
Laufenberg, Jared S.; Clark, Joseph D.; Chandler, Richard B.
2018-01-01
Monitoring vulnerable species is critical for their conservation. Thresholds or tipping points are commonly used to indicate when populations become vulnerable to extinction and to trigger changes in conservation actions. However, quantitative methods to determine such thresholds have not been well explored. The Louisiana black bear (Ursus americanus luteolus) was removed from the list of threatened and endangered species under the U.S. Endangered Species Act in 2016 and our objectives were to determine the most appropriate parameters and thresholds for monitoring and management action. Capture mark recapture (CMR) data from 2006 to 2012 were used to estimate population parameters and variances. We used stochastic population simulations and conditional classification trees to identify demographic rates for monitoring that would be most indicative of heighted extinction risk. We then identified thresholds that would be reliable predictors of population viability. Conditional classification trees indicated that annual apparent survival rates for adult females averaged over 5 years () was the best predictor of population persistence. Specifically, population persistence was estimated to be ≥95% over 100 years when , suggesting that this statistic can be used as threshold to trigger management intervention. Our evaluation produced monitoring protocols that reliably predicted population persistence and was cost-effective. We conclude that population projections and conditional classification trees can be valuable tools for identifying extinction thresholds used in monitoring programs.
Laufenberg, Jared S; Clark, Joseph D; Chandler, Richard B
2018-01-01
Monitoring vulnerable species is critical for their conservation. Thresholds or tipping points are commonly used to indicate when populations become vulnerable to extinction and to trigger changes in conservation actions. However, quantitative methods to determine such thresholds have not been well explored. The Louisiana black bear (Ursus americanus luteolus) was removed from the list of threatened and endangered species under the U.S. Endangered Species Act in 2016 and our objectives were to determine the most appropriate parameters and thresholds for monitoring and management action. Capture mark recapture (CMR) data from 2006 to 2012 were used to estimate population parameters and variances. We used stochastic population simulations and conditional classification trees to identify demographic rates for monitoring that would be most indicative of heighted extinction risk. We then identified thresholds that would be reliable predictors of population viability. Conditional classification trees indicated that annual apparent survival rates for adult females averaged over 5 years ([Formula: see text]) was the best predictor of population persistence. Specifically, population persistence was estimated to be ≥95% over 100 years when [Formula: see text], suggesting that this statistic can be used as threshold to trigger management intervention. Our evaluation produced monitoring protocols that reliably predicted population persistence and was cost-effective. We conclude that population projections and conditional classification trees can be valuable tools for identifying extinction thresholds used in monitoring programs.
PopHuman: the human population genomics browser
Mulet, Roger; Villegas-Mirón, Pablo; Hervas, Sergi; Sanz, Esteve; Velasco, Daniel; Bertranpetit, Jaume; Laayouni, Hafid
2018-01-01
Abstract The 1000 Genomes Project (1000GP) represents the most comprehensive world-wide nucleotide variation data set so far in humans, providing the sequencing and analysis of 2504 genomes from 26 populations and reporting >84 million variants. The availability of this sequence data provides the human lineage with an invaluable resource for population genomics studies, allowing the testing of molecular population genetics hypotheses and eventually the understanding of the evolutionary dynamics of genetic variation in human populations. Here we present PopHuman, a new population genomics-oriented genome browser based on JBrowse that allows the interactive visualization and retrieval of an extensive inventory of population genetics metrics. Efficient and reliable parameter estimates have been computed using a novel pipeline that faces the unique features and limitations of the 1000GP data, and include a battery of nucleotide variation measures, divergence and linkage disequilibrium parameters, as well as different tests of neutrality, estimated in non-overlapping windows along the chromosomes and in annotated genes for all 26 populations of the 1000GP. PopHuman is open and freely available at http://pophuman.uab.cat. PMID:29059408
Calibrating Physical Parameters in House Models Using Aggregate AC Power Demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yannan; Stevens, Andrew J.; Lian, Jianming
For residential houses, the air conditioning (AC) units are one of the major resources that can provide significant flexibility in energy use for the purpose of demand response. To quantify the flexibility, the characteristics of all the houses need to be accurately estimated, so that certain house models can be used to predict the dynamics of the house temperatures in order to adjust the setpoints accordingly to provide demand response while maintaining the same comfort levels. In this paper, we propose an approach using the Reverse Monte Carlo modeling method and aggregate house models to calibrate the distribution parameters ofmore » the house models for a population of residential houses. Given the aggregate AC power demand for the population, the approach can successfully estimate the distribution parameters for the sensitive physical parameters based on our previous uncertainty quantification study, such as the mean of the floor areas of the houses.« less
Quantifying cell turnover using CFSE data.
Ganusov, Vitaly V; Pilyugin, Sergei S; de Boer, Rob J; Murali-Krishna, Kaja; Ahmed, Rafi; Antia, Rustom
2005-03-01
The CFSE dye dilution assay is widely used to determine the number of divisions a given CFSE labelled cell has undergone in vitro and in vivo. In this paper, we consider how the data obtained with the use of CFSE (CFSE data) can be used to estimate the parameters determining cell division and death. For a homogeneous cell population (i.e., a population with the parameters for cell division and death being independent of time and the number of divisions cells have undergone), we consider a specific biologically based "Smith-Martin" model of cell turnover and analyze three different techniques for estimation of its parameters: direct fitting, indirect fitting and rescaling method. We find that using only CFSE data, the duration of the division phase (i.e., approximately the S+G2+M phase of the cell cycle) can be estimated with the use of either technique. In some cases, the average division or cell cycle time can be estimated using the direct fitting of the model solution to the data or by using the Gett-Hodgkin method [Gett A. and Hodgkin, P. 2000. A cellular calculus for signal integration by T cells. Nat. Immunol. 1:239-244]. Estimation of the death rates during commitment to division (i.e., approximately the G1 phase of the cell cycle) and during the division phase may not be feasible with the use of only CFSE data. We propose that measuring an additional parameter, the fraction of cells in division, may allow estimation of all model parameters including the death rates during different stages of the cell cycle.
Perry, Russell W.; Plumb, John M.; Huntington, Charles
2015-01-01
To estimate the parameters that govern mass- and temperature-dependent growth, we conducted a meta-analysis of existing growth data from juvenile Chinook Salmon Oncorhynchus tshawytscha that were fed an ad libitum ration of a pelleted diet. Although the growth of juvenile Chinook Salmon has been well studied, research has focused on a single population, a narrow range of fish sizes, or a narrow range of temperatures. Therefore, we incorporated the Ratkowsky model for temperature-dependent growth into an allometric growth model; this model was then fitted to growth data from 11 data sources representing nine populations of juvenile Chinook Salmon. The model fit the growth data well, explaining 98% of the variation in final mass. The estimated allometric mass exponent (b) was 0.338 (SE = 0.025), similar to estimates reported for other salmonids. This estimate of b will be particularly useful for estimating mass-standardized growth rates of juvenile Chinook Salmon. In addition, the lower thermal limit, optimal temperature, and upper thermal limit for growth were estimated to be 1.8°C (SE = 0.63°C), 19.0°C (SE = 0.27°C), and 24.9°C (SE = 0.02°C), respectively. By taking a meta-analytical approach, we were able to provide a growth model that is applicable across populations of juvenile Chinook Salmon receiving an ad libitum ration of a pelleted diet.
Worldwide F(ST) estimates relative to five continental-scale populations.
Steele, Christopher D; Court, Denise Syndercombe; Balding, David J
2014-11-01
We estimate the population genetics parameter FST (also referred to as the fixation index) from short tandem repeat (STR) allele frequencies, comparing many worldwide human subpopulations at approximately the national level with continental-scale populations. FST is commonly used to measure population differentiation, and is important in forensic DNA analysis to account for remote shared ancestry between a suspect and an alternative source of the DNA. We estimate FST comparing subpopulations with a hypothetical ancestral population, which is the approach most widely used in population genetics, and also compare a subpopulation with a sampled reference population, which is more appropriate for forensic applications. Both estimation methods are likelihood-based, in which FST is related to the variance of the multinomial-Dirichlet distribution for allele counts. Overall, we find low FST values, with posterior 97.5 percentiles < 3% when comparing a subpopulation with the most appropriate population, and even for inter-population comparisons we find FST < 5%. These are much smaller than single nucleotide polymorphism-based inter-continental FST estimates, and are also about half the magnitude of STR-based estimates from population genetics surveys that focus on distinct ethnic groups rather than a general population. Our findings support the use of FST up to 3% in forensic calculations, which corresponds to some current practice.
Coral reef fish populations can persist without immigration
Salles, Océane C.; Maynard, Jeffrey A.; Joannides, Marc; Barbu, Corentin M.; Saenz-Agudelo, Pablo; Almany, Glenn R.; Berumen, Michael L.; Thorrold, Simon R.; Jones, Geoffrey P.; Planes, Serge
2015-01-01
Determining the conditions under which populations may persist requires accurate estimates of demographic parameters, including immigration, local reproductive success, and mortality rates. In marine populations, empirical estimates of these parameters are rare, due at least in part to the pelagic dispersal stage common to most marine organisms. Here, we evaluate population persistence and turnover for a population of orange clownfish, Amphiprion percula, at Kimbe Island in Papua New Guinea. All fish in the population were sampled and genotyped on five occasions at 2-year intervals spanning eight years. The genetic data enabled estimates of reproductive success retained in the same population (reproductive success to self-recruitment), reproductive success exported to other subpopulations (reproductive success to local connectivity), and immigration and mortality rates of sub-adults and adults. Approximately 50% of the recruits were assigned to parents from the Kimbe Island population and this was stable through the sampling period. Stability in the proportion of local and immigrant settlers is likely due to: low annual mortality rates and stable egg production rates, and the short larval stages and sensory capacities of reef fish larvae. Biannual mortality rates ranged from 0.09 to 0.55 and varied significantly spatially. We used these data to parametrize a model that estimated the probability of the Kimbe Island population persisting in the absence of immigration. The Kimbe Island population was found to persist without significant immigration. Model results suggest the island population persists because the largest of the subpopulations are maintained due to having low mortality and high self-recruitment rates. Our results enable managers to appropriately target and scale actions to maximize persistence likelihood as disturbance frequencies increase. PMID:26582017
Coral reef fish populations can persist without immigration.
Salles, Océane C; Maynard, Jeffrey A; Joannides, Marc; Barbu, Corentin M; Saenz-Agudelo, Pablo; Almany, Glenn R; Berumen, Michael L; Thorrold, Simon R; Jones, Geoffrey P; Planes, Serge
2015-11-22
Determining the conditions under which populations may persist requires accurate estimates of demographic parameters, including immigration, local reproductive success, and mortality rates. In marine populations, empirical estimates of these parameters are rare, due at least in part to the pelagic dispersal stage common to most marine organisms. Here, we evaluate population persistence and turnover for a population of orange clownfish, Amphiprion percula, at Kimbe Island in Papua New Guinea. All fish in the population were sampled and genotyped on five occasions at 2-year intervals spanning eight years. The genetic data enabled estimates of reproductive success retained in the same population (reproductive success to self-recruitment), reproductive success exported to other subpopulations (reproductive success to local connectivity), and immigration and mortality rates of sub-adults and adults. Approximately 50% of the recruits were assigned to parents from the Kimbe Island population and this was stable through the sampling period. Stability in the proportion of local and immigrant settlers is likely due to: low annual mortality rates and stable egg production rates, and the short larval stages and sensory capacities of reef fish larvae. Biannual mortality rates ranged from 0.09 to 0.55 and varied significantly spatially. We used these data to parametrize a model that estimated the probability of the Kimbe Island population persisting in the absence of immigration. The Kimbe Island population was found to persist without significant immigration. Model results suggest the island population persists because the largest of the subpopulations are maintained due to having low mortality and high self-recruitment rates. Our results enable managers to appropriately target and scale actions to maximize persistence likelihood as disturbance frequencies increase. © 2015 The Author(s).
Estimation of distances to stars with stellar parameters from LAMOST
Carlin, Jeffrey L.; Liu, Chao; Newberg, Heidi Jo; ...
2015-06-05
Here, we present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. We tailor this technique specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and targetmore » selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.« less
Estimation of distances to stars with stellar parameters from LAMOST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, Jeffrey L.; Liu, Chao; Newberg, Heidi Jo
Here, we present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. We tailor this technique specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and targetmore » selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.« less
Bouillon-Pichault, Marion; Jullien, Vincent; Bazzoli, Caroline; Pons, Gérard; Tod, Michel
2011-02-01
The aim of this work was to determine whether optimizing the study design in terms of ages and sampling times for a drug eliminated solely via cytochrome P450 3A4 (CYP3A4) would allow us to accurately estimate the pharmacokinetic parameters throughout the entire childhood timespan, while taking into account age- and weight-related changes. A linear monocompartmental model with first-order absorption was used successively with three different residual error models and previously published pharmacokinetic parameters ("true values"). The optimal ages were established by D-optimization using the CYP3A4 maturation function to create "optimized demographic databases." The post-dose times for each previously selected age were determined by D-optimization using the pharmacokinetic model to create "optimized sparse sampling databases." We simulated concentrations by applying the population pharmacokinetic model to the optimized sparse sampling databases to create optimized concentration databases. The latter were modeled to estimate population pharmacokinetic parameters. We then compared true and estimated parameter values. The established optimal design comprised four age ranges: 0.008 years old (i.e., around 3 days), 0.192 years old (i.e., around 2 months), 1.325 years old, and adults, with the same number of subjects per group and three or four samples per subject, in accordance with the error model. The population pharmacokinetic parameters that we estimated with this design were precise and unbiased (root mean square error [RMSE] and mean prediction error [MPE] less than 11% for clearance and distribution volume and less than 18% for k(a)), whereas the maturation parameters were unbiased but less precise (MPE < 6% and RMSE < 37%). Based on our results, taking growth and maturation into account a priori in a pediatric pharmacokinetic study is theoretically feasible. However, it requires that very early ages be included in studies, which may present an obstacle to the use of this approach. First-pass effects, alternative elimination routes, and combined elimination pathways should also be investigated.
How Much Can Remotely-Sensed Natural Resource Inventories Benefit from Finer Spatial Resolutions?
NASA Astrophysics Data System (ADS)
Hou, Z.; Xu, Q.; McRoberts, R. E.; Ståhl, G.; Greenberg, J. A.
2017-12-01
For remote sensing facilitated natural resource inventories, the effects of spatial resolution in the form of pixel size and the effects of subpixel information on estimates of population parameters were evaluated by comparing results obtained using Landsat 8 and RapidEye auxiliary imagery. The study area was in Burkina Faso, and the variable of interest was the stem volume (m3/ha) convertible to the woodland aboveground biomass. A sample consisting of 160 field plots was selected and measured from the population following a two-stage sampling design. Models were fit using weighted least squares; the population mean, mu, and the variance of the estimator of the population mean, Var(mu.hat), were estimated in two inferential frameworks, model-based and model-assisted, and compared; for each framework, Var(mu.hat) was estimated both analytically and empirically. Empirical variances were estimated with bootstrapping that for resampling takes clustering effects into account. The primary results were twofold. First, for the effects of spatial resolution and subpixel information, four conclusions are relevant: (1) finer spatial resolution imagery indeed contributes to greater precision for estimators of population parameter, but this increase is slight at a maximum rate of 20% considering that RapidEye data are 36 times finer resolution than Landsat 8 data; (2) subpixel information on texture is marginally beneficial when it comes to making inference for population of large areas; (3) cost-effectiveness is more favorable for the free of charge Landsat 8 imagery than RapidEye imagery; and (4) for a given plot size, candidate remote sensing auxiliary datasets are more cost-effective when their spatial resolutions are similar to the plot size than with much finer alternatives. Second, for the comparison between estimators, three conclusions are relevant: (1) model-based variance estimates are consistent with each other and about half as large as stabilized model-assisted estimates, suggesting superior effectiveness of model-based inference to model-assisted inference; (2) bootstrapping is an effective alternative to analytical variance estimators; and (3) prediction accuracy expressed by RMSE is useful for screening candidate models to be used for population inferences.
Modeling Test and Treatment Strategies for Presymptomatic Alzheimer Disease
Burke, James F.; Langa, Kenneth M.; Hayward, Rodney A.; Albin, Roger L.
2014-01-01
Objectives In this study, we developed a model of presymptomatic treatment of Alzheimer disease (AD) after a screening diagnostic evaluation and explored the circumstances required for an AD prevention treatment to produce aggregate net population benefit. Methods Monte Carlo simulation methods were used to estimate outcomes in a simulated population derived from data on AD incidence and mortality. A wide variety of treatment parameters were explored. Net population benefit was estimated in aggregated QALYs. Sensitivity analyses were performed by individually varying the primary parameters. Findings In the base-case scenario, treatment effects were uniformly positive, and net benefits increased with increasing age at screening. A highly efficacious treatment (i.e. relative risk 0.6) modeled in the base-case is estimated to save 20 QALYs per 1000 patients screened and 221 QALYs per 1000 patients treated. Conclusions Highly efficacious presymptomatic screen and treat strategies for AD are likely to produce substantial aggregate population benefits that are likely greater than the benefits of aspirin in primary prevention of moderate risk cardiovascular disease (28 QALYS per 1000 patients treated), even in the context of an imperfect treatment delivery environment. PMID:25474698
NASA Astrophysics Data System (ADS)
Pombo, Maíra; Denadai, Márcia Regina; Turra, Alexander
2013-05-01
Knowledge of population parameters and the ability to predict their responses to environmental changes are useful tools to aid in the appropriate management and conservation of natural resources. Samples of the sciaenid fish Stellifer rastrifer were taken from August 2003 through October 2004 in shallow areas of Caraguatatuba Bight, southeastern Brazil. The results showed a consistent presence of length-frequency classes throughout the year and low values of the gonadosomatic index of this species, indicating that the area is not used for spawning or residence of adults, but rather shelters individuals in late stages of development. The results may serve as a caveat for assessments of transitional areas such as the present one, the nursery function of which is neglected compared to estuaries and mangroves. The danger of mismanaging these areas by not considering their peculiarities is emphasized by using these data as a study case for the development of some broadly used population-parameter analyses. The individuals' body growth parameters from the von Bertalanffy model were estimated based on the most common approaches, and the best values obtained from traditional quantification methods of selection were very prone to bias. The low gonadosomatic index (GSI) estimated during the period was an important factor in stimulating us to select more reliable parameters of body growth (L∞ = 20.9, K = 0.37 and Z = 2.81), which were estimated based on assuming the existence of spatial segregation by size. The data obtained suggest that the estimated mortality rate included a high rate of migration of older individuals to deeper areas, where we assume that they completed their development.
Wildhaber, Mark L.; Albers, Janice; Green, Nicholas; Moran, Edward H.
2017-01-01
We develop a fully-stochasticized, age-structured population model suitable for population viability analysis (PVA) of fish and demonstrate its use with the endangered pallid sturgeon (Scaphirhynchus albus) of the Lower Missouri River as an example. The model incorporates three levels of variance: parameter variance (uncertainty about the value of a parameter itself) applied at the iteration level, temporal variance (uncertainty caused by random environmental fluctuations over time) applied at the time-step level, and implicit individual variance (uncertainty caused by differences between individuals) applied within the time-step level. We found that population dynamics were most sensitive to survival rates, particularly age-2+ survival, and to fecundity-at-length. The inclusion of variance (unpartitioned or partitioned), stocking, or both generally decreased the influence of individual parameters on population growth rate. The partitioning of variance into parameter and temporal components had a strong influence on the importance of individual parameters, uncertainty of model predictions, and quasiextinction risk (i.e., pallid sturgeon population size falling below 50 age-1+ individuals). Our findings show that appropriately applying variance in PVA is important when evaluating the relative importance of parameters, and reinforce the need for better and more precise estimates of crucial life-history parameters for pallid sturgeon.
Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model
NASA Astrophysics Data System (ADS)
Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami
2017-06-01
A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.
The use of resighting data to estimate the rate of population growth of the snail kite in Florida
Dreitz, V.J.; Nichols, J.D.; Hines, J.E.; Bennetts, R.E.; Kitchens, W.M.; DeAngelis, D.L.
2002-01-01
The rate of population growth (lambda) is an important demographic parameter used to assess the viability of a population and to develop management and conservation agendas. We examined the use of resighting data to estimate lambda for the snail kite population in Florida from 1997-2000. The analyses consisted of (1) a robust design approach that derives an estimate of lambda from estimates of population size and (2) the Pradel (1996) temporal symmetry (TSM) approach that directly estimates lambda using an open-population capture-recapture model. Besides resighting data, both approaches required information on the number of unmarked individuals that were sighted during the sampling periods. The point estimates of lambda differed between the robust design and TSM approaches, but the 95% confidence intervals overlapped substantially. We believe the differences may be the result of sparse data and do not indicate the inappropriateness of either modelling technique. We focused on the results of the robust design because this approach provided estimates for all study years. Variation among these estimates was smaller than levels of variation among ad hoc estimates based on previously reported index statistics. We recommend that lambda of snail kites be estimated using capture-resighting methods rather than ad hoc counts.
A Comparison of Normal and Elliptical Estimation Methods in Structural Equation Models.
ERIC Educational Resources Information Center
Schumacker, Randall E.; Cheevatanarak, Suchittra
Monte Carlo simulation compared chi-square statistics, parameter estimates, and root mean square error of approximation values using normal and elliptical estimation methods. Three research conditions were imposed on the simulated data: sample size, population contamination percent, and kurtosis. A Bentler-Weeks structural model established the…
Brooks, John M; Chapman, Cole G; Schroeder, Mary C
2018-06-01
Patient-centred care requires evidence of treatment effects across many outcomes. Outcomes can be beneficial (e.g. increased survival or cure rates) or detrimental (e.g. adverse events, pain associated with treatment, treatment costs, time required for treatment). Treatment effects may also be heterogeneous across outcomes and across patients. Randomized controlled trials are usually insufficient to supply evidence across outcomes. Observational data analysis is an alternative, with the caveat that the treatments observed are choices. Real-world treatment choice often involves complex assessment of expected effects across the array of outcomes. Failure to account for this complexity when interpreting treatment effect estimates could lead to clinical and policy mistakes. Our objective was to assess the properties of treatment effect estimates based on choice when treatments have heterogeneous effects on both beneficial and detrimental outcomes across patients. Simulation methods were used to highlight the sensitivity of treatment effect estimates to the distributions of treatment effects across patients across outcomes. Scenarios with alternative correlations between benefit and detriment treatment effects across patients were used. Regression and instrumental variable estimators were applied to the simulated data for both outcomes. True treatment effect parameters are sensitive to the relationships of treatment effectiveness across outcomes in each study population. In each simulation scenario, treatment effect estimate interpretations for each outcome are aligned with results shown previously in single outcome models, but these estimates vary across simulated populations with the correlations of treatment effects across patients across outcomes. If estimator assumptions are valid, estimates across outcomes can be used to assess the optimality of treatment rates in a study population. However, because true treatment effect parameters are sensitive to correlations of treatment effects across outcomes, decision makers should be cautious about generalizing estimates to other populations.
Terry, Leann; Kelley, Ken
2012-11-01
Composite measures play an important role in psychology and related disciplines. Composite measures almost always have error. Correspondingly, it is important to understand the reliability of the scores from any particular composite measure. However, the point estimates of the reliability of composite measures are fallible and thus all such point estimates should be accompanied by a confidence interval. When confidence intervals are wide, there is much uncertainty in the population value of the reliability coefficient. Given the importance of reporting confidence intervals for estimates of reliability, coupled with the undesirability of wide confidence intervals, we develop methods that allow researchers to plan sample size in order to obtain narrow confidence intervals for population reliability coefficients. We first discuss composite reliability coefficients and then provide a discussion on confidence interval formation for the corresponding population value. Using the accuracy in parameter estimation approach, we develop two methods to obtain accurate estimates of reliability by planning sample size. The first method provides a way to plan sample size so that the expected confidence interval width for the population reliability coefficient is sufficiently narrow. The second method ensures that the confidence interval width will be sufficiently narrow with some desired degree of assurance (e.g., 99% assurance that the 95% confidence interval for the population reliability coefficient will be less than W units wide). The effectiveness of our methods was verified with Monte Carlo simulation studies. We demonstrate how to easily implement the methods with easy-to-use and freely available software. ©2011 The British Psychological Society.
Macher, Jan-Niklas; Rozenberg, Andrey; Pauls, Steffen U; Tollrian, Ralph; Wagner, Rüdiger; Leese, Florian
2015-01-01
Repeated Quaternary glaciations have significantly shaped the present distribution and diversity of several European species in aquatic and terrestrial habitats. To study the phylogeography of freshwater invertebrates, patterns of intraspecific variation have been examined primarily using mitochondrial DNA markers that may yield results unrepresentative of the true species history. Here, population genetic parameters were inferred for a montane aquatic caddisfly, Thremma gallicum, by sequencing a 658-bp fragment of the mitochondrial CO1 gene, and 12,514 nuclear RAD loci. T. gallicum has a highly disjunct distribution in southern and central Europe, with known populations in the Cantabrian Mountains, Pyrenees, Massif Central, and Black Forest. Both datasets represented rangewide sampling of T. gallicum. For the CO1 dataset, this included 352 specimens from 26 populations, and for the RAD dataset, 17 specimens from eight populations. We tested 20 competing phylogeographic scenarios using approximate Bayesian computation (ABC) and estimated genetic diversity patterns. Support for phylogeographic scenarios and diversity estimates differed between datasets with the RAD data favouring a southern origin of extant populations and indicating the Cantabrian Mountains and Massif Central populations to represent highly diverse populations as compared with the Pyrenees and Black Forest populations. The CO1 data supported a vicariance scenario (north–south) and yielded inconsistent diversity estimates. Permutation tests suggest that a few hundred polymorphic RAD SNPs are necessary for reliable parameter estimates. Our results highlight the potential of RAD and ABC-based hypothesis testing to complement phylogeographic studies on non-model species. PMID:25691988
Ladtap XL Version 2017: A Spreadsheet For Estimating Dose Resulting From Aqueous Releases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minter, K.; Jannik, T.
LADTAP XL© is an EXCEL© spreadsheet used to estimate dose to offsite individuals and populations resulting from routine and accidental releases of radioactive materials to the Savannah River. LADTAP XL© contains two worksheets: LADTAP and IRRIDOSE. The LADTAP worksheet estimates dose for environmental pathways including external exposure resulting from recreational activities on the Savannah River and internal exposure resulting from ingestion of water, fish, and invertebrates originating from the Savannah River. IRRIDOSE estimates offsite dose to individuals and populations from irrigation of foodstuffs with contaminated water from the Savannah River. In 2004, a complete description of the LADTAP XL© codemore » and an associated user’s manual was documented in LADTAP XL©: A Spreadsheet for Estimating Dose Resulting from Aqueous Release (WSRC-TR-2004-00059) and revised input parameters, dose coefficients, and radionuclide decay constants were incorporated into LADTAP XL© Version 2013 (SRNL-STI-2011-00238). LADTAP XL© Version 2017 is a slight modification to Version 2013 with minor changes made for more user-friendly parameter inputs and organization, updates in the time conversion factors used within the dose calculations, and fixed an issue with the expected time build-up parameter referenced within the population shoreline dose calculations. This manual has been produced to update the code description, verification of the models, and provide an updated user’s manual. LADTAP XL© Version 2017 has been verified by Minter (2017) and is ready for use at the Savannah River Site (SRS).« less
Use of inequality constrained least squares estimation in small area estimation
NASA Astrophysics Data System (ADS)
Abeygunawardana, R. A. B.; Wickremasinghe, W. N.
2017-05-01
Traditional surveys provide estimates that are based only on the sample observations collected for the population characteristic of interest. However, these estimates may have unacceptably large variance for certain domains. Small Area Estimation (SAE) deals with determining precise and accurate estimates for population characteristics of interest for such domains. SAE usually uses least squares or maximum likelihood procedures incorporating prior information and current survey data. Many available methods in SAE use constraints in equality form. However there are practical situations where certain inequality restrictions on model parameters are more realistic. It will lead to Inequality Constrained Least Squares (ICLS) estimates if the method used is least squares. In this study ICLS estimation procedure is applied to many proposed small area estimates.
A statistical approach to quasi-extinction forecasting.
Holmes, Elizabeth Eli; Sabo, John L; Viscido, Steven Vincent; Fagan, William Fredric
2007-12-01
Forecasting population decline to a certain critical threshold (the quasi-extinction risk) is one of the central objectives of population viability analysis (PVA), and such predictions figure prominently in the decisions of major conservation organizations. In this paper, we argue that accurate forecasting of a population's quasi-extinction risk does not necessarily require knowledge of the underlying biological mechanisms. Because of the stochastic and multiplicative nature of population growth, the ensemble behaviour of population trajectories converges to common statistical forms across a wide variety of stochastic population processes. This paper provides a theoretical basis for this argument. We show that the quasi-extinction surfaces of a variety of complex stochastic population processes (including age-structured, density-dependent and spatially structured populations) can be modelled by a simple stochastic approximation: the stochastic exponential growth process overlaid with Gaussian errors. Using simulated and real data, we show that this model can be estimated with 20-30 years of data and can provide relatively unbiased quasi-extinction risk with confidence intervals considerably smaller than (0,1). This was found to be true even for simulated data derived from some of the noisiest population processes (density-dependent feedback, species interactions and strong age-structure cycling). A key advantage of statistical models is that their parameters and the uncertainty of those parameters can be estimated from time series data using standard statistical methods. In contrast for most species of conservation concern, biologically realistic models must often be specified rather than estimated because of the limited data available for all the various parameters. Biologically realistic models will always have a prominent place in PVA for evaluating specific management options which affect a single segment of a population, a single demographic rate, or different geographic areas. However, for forecasting quasi-extinction risk, statistical models that are based on the convergent statistical properties of population processes offer many advantages over biologically realistic models.
Wilson, R; Abbott, J H
2018-04-01
To describe the construction and preliminary validation of a new population-based microsimulation model developed to analyse the health and economic burden and cost-effectiveness of treatments for knee osteoarthritis (OA) in New Zealand (NZ). We developed the New Zealand Management of Osteoarthritis (NZ-MOA) model, a discrete-time state-transition microsimulation model of the natural history of radiographic knee OA. In this article, we report on the model structure, derivation of input data, validation of baseline model parameters against external data sources, and validation of model outputs by comparison of the predicted population health loss with previous estimates. The NZ-MOA model simulates both the structural progression of radiographic knee OA and the stochastic development of multiple disease symptoms. Input parameters were sourced from NZ population-based data where possible, and from international sources where NZ-specific data were not available. The predicted distributions of structural OA severity and health utility detriments associated with OA were externally validated against other sources of evidence, and uncertainty resulting from key input parameters was quantified. The resulting lifetime and current population health-loss burden was consistent with estimates of previous studies. The new NZ-MOA model provides reliable estimates of the health loss associated with knee OA in the NZ population. The model structure is suitable for analysis of the effects of a range of potential treatments, and will be used in future work to evaluate the cost-effectiveness of recommended interventions within the NZ healthcare system. Copyright © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Hongwen Huang; Fenny Dane; Thomas L. Kubisiak
1998-01-01
Genetic variation among 12 populations of the American chestnut (Custanea dentata) was investigated. Population genetic parameters estimated from allozyme variation suggest that C. dentata at both the population and species level has narrow genetic diversity as compared to other species in the genus. Average expected heterozygosity...
Population pharmacokinetics of aripiprazole in healthy Korean subjects.
Jeon, Ji-Young; Chae, Soo-Wan; Kim, Min-Gul
2016-04-01
Aripiprazole is widely used to treat schizophrenia and bipolar disorder. This study aimed to develop a combined population pharmacokinetic model for aripiprazole in healthy Korean subjects and to identify the significant covariates in the pharmacokinetic variability of aripiprazole. Aripiprazole plasma concentrations and demographic data were collected retrospectively from previous bioequivalence studies that were conducted in Chonbuk National University Hospital. Informed consent was obtained from subjects for cytochrome P450 (CYP) genotyping. The population pharmacokinetic parameters of aripiprazole were estimated using nonlinear mixed-effect modeling with first-order conditional estimation with interaction method. The effects of age, sex, weight, height, and CYP genotype were assessed as covariates. A total of 1,508 samples from 88 subjects in three bioequivalence studies were collected. The two-compartment model was adopted, and the final population model showed that the CYP2D6 genotype polymorphism, height and weight significantly affect aripiprazole disposition. The bootstrap and visual predictive check results were evaluated, showing that the accuracy of the pharmacokinetic model was acceptable. A population pharmacokinetic model of aripiprazole was developed for Korean subjects. CYP2D6 genotype polymorphism, weight, and height were included as significant factors affecting aripiprazole disposition. The population pharmacokinetic parameters of aripiprazole estimated in the present study may be useful for individualizing clinical dosages and for studying the concentration-effect relationship of the drug.
Puncher, M; Zhang, W; Harrison, J D; Wakeford, R
2017-06-26
Assessments of risk to a specific population group resulting from internal exposure to a particular radionuclide can be used to assess the reliability of the appropriate International Commission on Radiological Protection (ICRP) dose coefficients used as a radiation protection device for the specified exposure pathway. An estimate of the uncertainty on the associated risk is important for informing judgments on reliability; a derived uncertainty factor, UF, is an estimate of the 95% probable geometric difference between the best risk estimate and the nominal risk and is a useful tool for making this assessment. This paper describes the application of parameter uncertainty analysis to quantify uncertainties resulting from internal exposures to radioiodine by members of the public, specifically 1, 10 and 20-year old females from the population of England and Wales. Best estimates of thyroid cancer incidence risk (lifetime attributable risk) are calculated for ingestion or inhalation of 129 I and 131 I, accounting for uncertainties in biokinetic model and cancer risk model parameter values. These estimates are compared with the equivalent ICRP derived nominal age-, sex- and population-averaged estimates of excess thyroid cancer incidence to obtain UFs. Derived UF values for ingestion or inhalation of 131 I for 1 year, 10-year and 20-year olds are around 28, 12 and 6, respectively, when compared with ICRP Publication 103 nominal values, and 9, 7 and 14, respectively, when compared with ICRP Publication 60 values. Broadly similar results were obtained for 129 I. The uncertainties on risk estimates are largely determined by uncertainties on risk model parameters rather than uncertainties on biokinetic model parameters. An examination of the sensitivity of the results to the risk models and populations used in the calculations show variations in the central estimates of risk of a factor of around 2-3. It is assumed that the direct proportionality of excess thyroid cancer risk and dose observed at low to moderate acute doses and incorporated in the risk models also applies to very small doses received at very low dose rates; the uncertainty in this assumption is considerable, but largely unquantifiable. The UF values illustrate the need for an informed approach to the use of ICRP dose and risk coefficients.
PREVALENCE OF METABOLIC SYNDROME IN YOUNG MEXICANS: A SENSITIVITY ANALYSIS ON ITS COMPONENTS.
Murguía-Romero, Miguel; Jiménez-Flores, J Rafael; Sigrist-Flores, Santiago C; Tapia-Pancardo, Diana C; Jiménez-Ramos, Arnulfo; Méndez-Cruz, A René; Villalobos-Molina, Rafael
2015-07-28
obesity is a worldwide epidemic, and the high prevalence of diabetes type II (DM2) and cardiovascular disease (CVD) is in great part a consequence of that epidemic. Metabolic syndrome is a useful tool to estimate the risk of a young population to evolve to DM2 and CVD. to estimate the MetS prevalence in young Mexicans, and to evaluate each parameter as an independent indicator through a sensitivity analysis. the prevalence of MetS was estimated in 6 063 young of the México City metropolitan area. A sensitivity analysis was conducted to estimate the performance of each one of the components of MetS, as an indicator of the presence of MetS itself. Five statistical of the sensitivity analysis were calculated for each MetS component and the other parameters included: sensitivity, specificity, positive predictive value or precision, negative predictive value, and accuracy. the prevalence of MetS in Mexican young population was estimated to be 13.4%. Waist circumference presented the highest sensitivity (96.8% women; 90.0% men), blood pressure presented the highest specificity for women (97.7%) and glucose for men (91.0%). When all the five statistical are considered triglycerides is the component with the highest values, showing a value of 75% or more in four of them. Differences by sex are detected for averages of all components of MetS in young without alterations. Mexican young are highly prone to acquire MetS: 71% have at least one and up to five MetS parameters altered, and 13.4% of them have MetS. From all the five components of MetS, waist circumference presented the highest sensitivity as a predictor of MetS, and triglycerides is the best parameter if a single factor is to be taken as sole predictor of MetS in Mexican young population, triglycerides is also the parameter with the highest accuracy. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Genetic parameters and path analysis in cowpea genotypes grown in the Cerrado/Pantanal ecotone.
Lopes, K V; Teodoro, P E; Silva, F A; Silva, M T; Fernandes, R L; Rodrigues, T C; Faria, T C; Corrêa, A M
2017-05-18
Estimating genetic parameters in plant breeding allows us to know the population potential for selecting and designing strategies that can maximize the achievement of superior genotypes. The objective of this study was to evaluate the genetic potential of a population of 20 cowpea genotypes by estimating genetic parameters and path analysis among the traits to guide the selection strategies. The trial was conducted in randomized block design with four replications. Its morphophysiological components, components of green grain production and dry grain yield were estimated from genetic use and correlations between the traits. Phenotypic correlations were deployed through path analysis into direct and indirect effects of morphophysiological traits and yield components on dry grain yield. There were significant differences (P < 0.01) between the genotypes for most the traits, indicating the presence of genetic variability in the population and the possibility of practicing selection. The population presents the potential for future genetic breeding studies and is highly promising for the selection of traits dry grain yield, the number of grains per pod, and hundred grains mass. A number of grains per green pod is the main determinant trait of dry grain yield that is also influenced by the cultivar cycle and that the selection for the dry grain yield can be made indirectly by selecting the green pod mass and green pod length.
NASA Astrophysics Data System (ADS)
Auger-Méthé, Marie; Field, Chris; Albertsen, Christoffer M.; Derocher, Andrew E.; Lewis, Mark A.; Jonsen, Ian D.; Mills Flemming, Joanna
2016-05-01
State-space models (SSMs) are increasingly used in ecology to model time-series such as animal movement paths and population dynamics. This type of hierarchical model is often structured to account for two levels of variability: biological stochasticity and measurement error. SSMs are flexible. They can model linear and nonlinear processes using a variety of statistical distributions. Recent ecological SSMs are often complex, with a large number of parameters to estimate. Through a simulation study, we show that even simple linear Gaussian SSMs can suffer from parameter- and state-estimation problems. We demonstrate that these problems occur primarily when measurement error is larger than biological stochasticity, the condition that often drives ecologists to use SSMs. Using an animal movement example, we show how these estimation problems can affect ecological inference. Biased parameter estimates of a SSM describing the movement of polar bears (Ursus maritimus) result in overestimating their energy expenditure. We suggest potential solutions, but show that it often remains difficult to estimate parameters. While SSMs are powerful tools, they can give misleading results and we urge ecologists to assess whether the parameters can be estimated accurately before drawing ecological conclusions from their results.
D. V. Shaw; R. W. Allard
1981-01-01
Two methods of estimating the proportion of self-fertilization as opposed to outcrossing in plant populations are described. The first method makes use of marker loci one at a time; the second method makes use of multiple marker loci simultaneously. Comparisons of the estimates of proportions of selfing and outcrossing obtained using the two methods are shown to yield...
Isohaline position as a habitat indicator for estuarine populations
Jassby, Alan D.; Kimmerer, W.J.; Monismith, Stephen G.; Armor, C.; Cloern, James E.; Powell, T.M.; Vedlinski, Timothy J.
1995-01-01
The striped bass survival data were also used to illustrate a related important point: incorporating additionalexplanatory variables may decrease the prediction error for a population or process, but it can increase theuncertainty in parameter estimates and management strategies based on these estimates. Even in cases wherethe uncertainty is currently too large to guide management decisions, an uncertainty analysis can identify themost practical direction for future data acquisition.
Saleem, Muhammad; Sharif, Kashif; Fahmi, Aliya
2018-04-27
Applications of Pareto distribution are common in reliability, survival and financial studies. In this paper, A Pareto mixture distribution is considered to model a heterogeneous population comprising of two subgroups. Each of two subgroups is characterized by the same functional form with unknown distinct shape and scale parameters. Bayes estimators have been derived using flat and conjugate priors using squared error loss function. Standard errors have also been derived for the Bayes estimators. An interesting feature of this study is the preparation of components of Fisher Information matrix.
Bhalla, Kavi; Harrison, James E
2016-04-01
Burden of disease and injury methods can be used to summarise and compare the effects of conditions in terms of disability-adjusted life years (DALYs). Burden estimation methods are not inherently complex. However, as commonly implemented, the methods include complex modelling and estimation. To provide a simple and open-source software tool that allows estimation of incidence-DALYs due to injury, given data on incidence of deaths and non-fatal injuries. The tool includes a default set of estimation parameters, which can be replaced by users. The tool was written in Microsoft Excel. All calculations and values can be seen and altered by users. The parameter sets currently used in the tool are based on published sources. The tool is available without charge online at http://calculator.globalburdenofinjuries.org. To use the tool with the supplied parameter sets, users need to only paste a table of population and injury case data organised by age, sex and external cause of injury into a specified location in the tool. Estimated DALYs can be read or copied from tables and figures in another part of the tool. In some contexts, a simple and user-modifiable burden calculator may be preferable to undertaking a more complex study to estimate the burden of disease. The tool and the parameter sets required for its use can be improved by user innovation, by studies comparing DALYs estimates calculated in this way and in other ways, and by shared experience of its use. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Pup Mortality in a Rapidly Declining Harbour Seal (Phoca vitulina) Population
Hanson, Nora; Thompson, Dave; Duck, Callan; Moss, Simon; Lonergan, Mike
2013-01-01
The harbour seal population in Orkney, off the north coast of Scotland, has reduced by 65% between 2001 and 2010. The cause(s) of this decline are unknown but must affect the demographic parameters of the population. Here, satellite telemetry data were used to test the hypothesis that increased pup mortality could be a primary driver of the decline in Orkney. Pup mortality and tag failure parameters were estimated from the duration of operation of satellite tags deployed on harbour seal pups from the Orkney population (n = 24) and from another population on the west coast of Scotland (n = 24) where abundance was stable. Survival probabilities from both populations were best represented by a common gamma distribution and were not different from one another, suggesting that increased pup mortality is unlikely to be the primary agent in the Orkney population decline. The estimated probability of surviving to 6 months was 0.390 (95% CI 0.297 – 0.648) and tag failure was represented by a Gaussian distribution, with estimated mean 270 (95% CI = 198 – 288) and s.d. 21 (95% CI = 1 – 66) days. These results suggest that adult survival is the most likely proximate cause of the decline. They also demonstrate a novel technique for attaining age-specific mortality rates from telemetry data. PMID:24312239
Parameter estimation and sensitivity analysis for a mathematical model with time delays of leukemia
NASA Astrophysics Data System (ADS)
Cândea, Doina; Halanay, Andrei; Rǎdulescu, Rodica; Tǎlmaci, Rodica
2017-01-01
We consider a system of nonlinear delay differential equations that describes the interaction between three competing cell populations: healthy, leukemic and anti-leukemia T cells involved in Chronic Myeloid Leukemia (CML) under treatment with Imatinib. The aim of this work is to establish which model parameters are the most important in the success or failure of leukemia remission under treatment using a sensitivity analysis of the model parameters. For the most significant parameters of the model which affect the evolution of CML disease during Imatinib treatment we try to estimate the realistic values using some experimental data. For these parameters, steady states are calculated and their stability is analyzed and biologically interpreted.
Estimates of population change in selected species of tropical birds using mark-recapture data
Brawn, J.; Nichols, J.D.; Hines, J.E.; Nesbitt, J.
2000-01-01
The population biology of tropical birds is known for a only small sample of species; especially in the Neotropics. Robust estimates of parameters such as survival rate and finite rate of population change (A) are crucial for conservation purposes and useful for studies of avian life histories. We used methods developed by Pradel (1996, Biometrics 52:703-709) to estimate A for 10 species of tropical forest lowland birds using data from a long-term (> 20 yr) banding study in Panama. These species constitute a ecologically and phylogenetically diverse sample. We present these estimates and explore if they are consistent with what we know from selected studies of banded birds and from 5 yr of estimating nesting success (i.e., an important component of A). A major goal of these analyses is to assess if the mark-recapture methods generate reliable and reasonably precise estimates of population change than traditional methods that require more sampling effort.
Population characteristics of a central Appalachian white tailed deer herd
Tyler A. Campbell; Benjamin R. Laseter; W. Mark Ford; Karl V. Miller; Karl V. Miller
2005-01-01
Reliable estimates of white-tailed deer (Odocoileus virginianus) population parameters are needed for effective population management. We used radiotelemetrv to compare survival and cause-specific mortality rates between male and female white-tailed deer and present reproductive data for a high-density deer herd in the central Appalachians of West Virginia during...
Devenish Nelson, Eleanor S.; Harris, Stephen; Soulsbury, Carl D.; Richards, Shane A.; Stephens, Philip A.
2010-01-01
Background Demographic models are widely used in conservation and management, and their parameterisation often relies on data collected for other purposes. When underlying data lack clear indications of associated uncertainty, modellers often fail to account for that uncertainty in model outputs, such as estimates of population growth. Methodology/Principal Findings We applied a likelihood approach to infer uncertainty retrospectively from point estimates of vital rates. Combining this with resampling techniques and projection modelling, we show that confidence intervals for population growth estimates are easy to derive. We used similar techniques to examine the effects of sample size on uncertainty. Our approach is illustrated using data on the red fox, Vulpes vulpes, a predator of ecological and cultural importance, and the most widespread extant terrestrial mammal. We show that uncertainty surrounding estimated population growth rates can be high, even for relatively well-studied populations. Halving that uncertainty typically requires a quadrupling of sampling effort. Conclusions/Significance Our results compel caution when comparing demographic trends between populations without accounting for uncertainty. Our methods will be widely applicable to demographic studies of many species. PMID:21049049
Rico, María; Andrés-Costa, María Jesús; Picó, Yolanda
2017-02-05
Wastewater can provide a wealth of epidemiologic data on common drugs consumed and on health and nutritional problems based on the biomarkers excreted into community sewage systems. One of the biggest uncertainties of these studies is the estimation of the number of inhabitants served by the treatment plants. Twelve human urine biomarkers -5-hydroxyindoleacetic acid (5-HIAA), acesulfame, atenolol, caffeine, carbamazepine, codeine, cotinine, creatinine, hydrochlorothiazide (HCTZ), naproxen, salicylic acid (SA) and hydroxycotinine (OHCOT)- were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to estimate population size. The results reveal that populations calculated from cotinine, 5-HIAA and caffeine are commonly in agreement with those calculated by the hydrochemical parameters. Creatinine is too unstable to be applicable. HCTZ, naproxen, codeine, OHCOT and carbamazepine, under or overestimate the population compared to the hydrochemical population estimates but showed constant results through the weekdays. The consumption of cannabis, cocaine, heroin and bufotenine in Valencia was estimated for a week using different population calculations. Copyright © 2016 Elsevier B.V. All rights reserved.
Estimating Allee dynamics before they can be observed: polar bears as a case study.
Molnár, Péter K; Lewis, Mark A; Derocher, Andrew E
2014-01-01
Allee effects are an important component in the population dynamics of numerous species. Accounting for these Allee effects in population viability analyses generally requires estimates of low-density population growth rates, but such data are unavailable for most species and particularly difficult to obtain for large mammals. Here, we present a mechanistic modeling framework that allows estimating the expected low-density growth rates under a mate-finding Allee effect before the Allee effect occurs or can be observed. The approach relies on representing the mechanisms causing the Allee effect in a process-based model, which can be parameterized and validated from data on the mechanisms rather than data on population growth. We illustrate the approach using polar bears (Ursus maritimus), and estimate their expected low-density growth by linking a mating dynamics model to a matrix projection model. The Allee threshold, defined as the population density below which growth becomes negative, is shown to depend on age-structure, sex ratio, and the life history parameters determining reproduction and survival. The Allee threshold is thus both density- and frequency-dependent. Sensitivity analyses of the Allee threshold show that different combinations of the parameters determining reproduction and survival can lead to differing Allee thresholds, even if these differing combinations imply the same stable-stage population growth rate. The approach further shows how mate-limitation can induce long transient dynamics, even in populations that eventually grow to carrying capacity. Applying the models to the overharvested low-density polar bear population of Viscount Melville Sound, Canada, shows that a mate-finding Allee effect is a plausible mechanism for slow recovery of this population. Our approach is generalizable to any mating system and life cycle, and could aid proactive management and conservation strategies, for example, by providing a priori estimates of minimum conservation targets for rare species or minimum eradication targets for pests and invasive species.
Estimating Allee Dynamics before They Can Be Observed: Polar Bears as a Case Study
Molnár, Péter K.; Lewis, Mark A.; Derocher, Andrew E.
2014-01-01
Allee effects are an important component in the population dynamics of numerous species. Accounting for these Allee effects in population viability analyses generally requires estimates of low-density population growth rates, but such data are unavailable for most species and particularly difficult to obtain for large mammals. Here, we present a mechanistic modeling framework that allows estimating the expected low-density growth rates under a mate-finding Allee effect before the Allee effect occurs or can be observed. The approach relies on representing the mechanisms causing the Allee effect in a process-based model, which can be parameterized and validated from data on the mechanisms rather than data on population growth. We illustrate the approach using polar bears (Ursus maritimus), and estimate their expected low-density growth by linking a mating dynamics model to a matrix projection model. The Allee threshold, defined as the population density below which growth becomes negative, is shown to depend on age-structure, sex ratio, and the life history parameters determining reproduction and survival. The Allee threshold is thus both density- and frequency-dependent. Sensitivity analyses of the Allee threshold show that different combinations of the parameters determining reproduction and survival can lead to differing Allee thresholds, even if these differing combinations imply the same stable-stage population growth rate. The approach further shows how mate-limitation can induce long transient dynamics, even in populations that eventually grow to carrying capacity. Applying the models to the overharvested low-density polar bear population of Viscount Melville Sound, Canada, shows that a mate-finding Allee effect is a plausible mechanism for slow recovery of this population. Our approach is generalizable to any mating system and life cycle, and could aid proactive management and conservation strategies, for example, by providing a priori estimates of minimum conservation targets for rare species or minimum eradication targets for pests and invasive species. PMID:24427306
Dynamics of a black-capped chickadee population, 1958-1983
Loery, G.; Nichols, J.D.
1985-01-01
The dynamics of a wintering population of Black-capped Chickadees (Parus atricapillus) were studied from 1958-1983 using capture-recapture methods. The Jolly-Seber model was used to obtain annual estimates of population size, survival rate, and recruitment. The average estimated population size over this period was ?160 birds. The average estimated number of new birds entering the population each year and alive at the time of sampling was ?57. The arithmetic mean annual survival rate estimate was ?0.59. We tested hypothesis about possible relationships between these population parameters and (1) the natural introduction of Tufted Titmice (Parus bicolor) to the area, (2) the clear-cutting of portions of nearby red pine (Pinus resinosa) plantations, and (3) natural variations in winter temperatures. The chickadee population exhibited a substantial short-term decline following titmouse establishment, produced by decreases in both survival rate and number of new recruits. Survival rate decline somewhat after the initiation of the pine clear-cutting, but population size was very similar before and after clear-cutting. Weighted least squares analyses provided no evidence of a relationship between survival rate and either of two winter temperature variables.
PopHuman: the human population genomics browser.
Casillas, Sònia; Mulet, Roger; Villegas-Mirón, Pablo; Hervas, Sergi; Sanz, Esteve; Velasco, Daniel; Bertranpetit, Jaume; Laayouni, Hafid; Barbadilla, Antonio
2018-01-04
The 1000 Genomes Project (1000GP) represents the most comprehensive world-wide nucleotide variation data set so far in humans, providing the sequencing and analysis of 2504 genomes from 26 populations and reporting >84 million variants. The availability of this sequence data provides the human lineage with an invaluable resource for population genomics studies, allowing the testing of molecular population genetics hypotheses and eventually the understanding of the evolutionary dynamics of genetic variation in human populations. Here we present PopHuman, a new population genomics-oriented genome browser based on JBrowse that allows the interactive visualization and retrieval of an extensive inventory of population genetics metrics. Efficient and reliable parameter estimates have been computed using a novel pipeline that faces the unique features and limitations of the 1000GP data, and include a battery of nucleotide variation measures, divergence and linkage disequilibrium parameters, as well as different tests of neutrality, estimated in non-overlapping windows along the chromosomes and in annotated genes for all 26 populations of the 1000GP. PopHuman is open and freely available at http://pophuman.uab.cat. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
BayeSED: A General Approach to Fitting the Spectral Energy Distribution of Galaxies
NASA Astrophysics Data System (ADS)
Han, Yunkun; Han, Zhanwen
2014-11-01
We present a newly developed version of BayeSED, a general Bayesian approach to the spectral energy distribution (SED) fitting of galaxies. The new BayeSED code has been systematically tested on a mock sample of galaxies. The comparison between the estimated and input values of the parameters shows that BayeSED can recover the physical parameters of galaxies reasonably well. We then applied BayeSED to interpret the SEDs of a large Ks -selected sample of galaxies in the COSMOS/UltraVISTA field with stellar population synthesis models. Using the new BayeSED code, a Bayesian model comparison of stellar population synthesis models has been performed for the first time. We found that the 2003 model by Bruzual & Charlot, statistically speaking, has greater Bayesian evidence than the 2005 model by Maraston for the Ks -selected sample. In addition, while setting the stellar metallicity as a free parameter obviously increases the Bayesian evidence of both models, varying the initial mass function has a notable effect only on the Maraston model. Meanwhile, the physical parameters estimated with BayeSED are found to be generally consistent with those obtained using the popular grid-based FAST code, while the former parameters exhibit more natural distributions. Based on the estimated physical parameters of the galaxies in the sample, we qualitatively classified the galaxies in the sample into five populations that may represent galaxies at different evolution stages or in different environments. We conclude that BayeSED could be a reliable and powerful tool for investigating the formation and evolution of galaxies from the rich multi-wavelength observations currently available. A binary version of the BayeSED code parallelized with Message Passing Interface is publicly available at https://bitbucket.org/hanyk/bayesed.
BayeSED: A GENERAL APPROACH TO FITTING THE SPECTRAL ENERGY DISTRIBUTION OF GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yunkun; Han, Zhanwen, E-mail: hanyk@ynao.ac.cn, E-mail: zhanwenhan@ynao.ac.cn
2014-11-01
We present a newly developed version of BayeSED, a general Bayesian approach to the spectral energy distribution (SED) fitting of galaxies. The new BayeSED code has been systematically tested on a mock sample of galaxies. The comparison between the estimated and input values of the parameters shows that BayeSED can recover the physical parameters of galaxies reasonably well. We then applied BayeSED to interpret the SEDs of a large K{sub s} -selected sample of galaxies in the COSMOS/UltraVISTA field with stellar population synthesis models. Using the new BayeSED code, a Bayesian model comparison of stellar population synthesis models has beenmore » performed for the first time. We found that the 2003 model by Bruzual and Charlot, statistically speaking, has greater Bayesian evidence than the 2005 model by Maraston for the K{sub s} -selected sample. In addition, while setting the stellar metallicity as a free parameter obviously increases the Bayesian evidence of both models, varying the initial mass function has a notable effect only on the Maraston model. Meanwhile, the physical parameters estimated with BayeSED are found to be generally consistent with those obtained using the popular grid-based FAST code, while the former parameters exhibit more natural distributions. Based on the estimated physical parameters of the galaxies in the sample, we qualitatively classified the galaxies in the sample into five populations that may represent galaxies at different evolution stages or in different environments. We conclude that BayeSED could be a reliable and powerful tool for investigating the formation and evolution of galaxies from the rich multi-wavelength observations currently available. A binary version of the BayeSED code parallelized with Message Passing Interface is publicly available at https://bitbucket.org/hanyk/bayesed.« less
Thompson, Robert S.; Anderson, Katherine H.; Pelltier, Richard T.; Strickland, Laura E.; Shafer, Sarah L.; Bartlein, Patrick J.
2012-01-01
Vegetation inventories (plant taxa present in a vegetation assemblage at a given site) can be used to estimate climatic parameters based on the identification of the range of a given parameter where all taxa in an assemblage overlap ("Mutual Climatic Range"). For the reconstruction of past climates from fossil or subfossil plant assemblages, we assembled the data necessary for such analyses for 530 woody plant taxa and eight climatic parameters in North America. Here we present examples of how these data can be used to obtain paleoclimatic estimates from botanical data in a straightforward, simple, and robust fashion. We also include matrices of climate parameter versus occurrence or nonoccurrence of the individual taxa. These relations are depicted graphically as histograms of the population distributions of the occurrences of a given taxon plotted against a given climatic parameter. This provides a new method for quantification of paleoclimatic parameters from fossil plant assemblages.
Scribner, K.T.; Arntzen, J.W.; Burke, T.
1997-01-01
Estimates of the effective number of breeding adults were derived for three semi-isolated populations of the common toad Bufo bufo based on temporal (i.e. adult-progeny) variance in allele frequency for three highly polymorphic minisatellite loci. Estimates of spatial variance in allele frequency among populations and of age-specific measures of genetic variability are also described. Each population was characterized by a low effective adult breeding number (N(b)) based on a large age-specific variance in minisatellite allele frequency. Estimates of N(b) (range 21-46 for population means across three loci) were ??? 55-230-fold lower than estimates of total adult census size. The implications of low effective breeding numbers for long-term maintenance of genetic variability and population viability are discussed relative to the species' reproductive ecology, current land-use practices, and present and historical habitat modification and loss. The utility of indirect measures of population parameters such as N(b) and N(e) based on time-series data of minisatellite allele frequencies is discussed relative to similar measures estimated from commonly used genetic markers such as protein allozymes.
LONG-TERM PROJECTIONS OF EASTERN OYSTER POPULATIONS UNDER VARIOUS MANAGEMENT SCENARIOS
Time series of fishery-dependent and fishery-independent data were used to parameterize a model of oyster population dynamics for Maryland's Chesapeake Bay. Model parameters are (1) fishing mortality, estimated from differences between predicted and reported landings scaled to a ...
Huang, Jihan; Li, Mengying; Lv, Yinghua; Yang, Juan; Xu, Ling; Wang, Jingjing; Chen, Junchao; Wang, Kun; He, Yingchun; Zheng, Qingshan
2016-09-01
This study was aimed at exploring the accuracy of population pharmacokinetic method in evaluating the bioequivalence of pidotimod with sparse data profiles and whether this method is suitable for bioequivalence evaluation in special populations such as children with fewer samplings. Methods In this single-dose, two-period crossover study, 20 healthy male Chinese volunteers were randomized 1 : 1 to receive either the test or reference formulation, with a 1-week washout before receiving the alternative formulation. Noncompartmental and population compartmental pharmacokinetic analyses were conducted. Simulated data were analyzed to graphically evaluate the model and the pharmacokinetic characteristics of the two pidotimod formulations. Various sparse sampling scenarios were generated from the real bioequivalence clinical trial data and evaluated by population pharmacokinetic method. The 90% confidence intervals (CIs) for AUC0-12h, AUC0-∞, and Cmax were 97.3 - 118.7%, 96.9 - 118.7%, and 95.1 - 109.8%, respectively, within the 80 - 125% range for bioequivalence using noncompartmental analysis. The population compartmental pharmacokinetics of pidotimod were described using a one-compartment model with first-order absorption and lag time. In the comparison of estimations in different dataset, the estimation of random three- and< fixed four-point sampling strategies can provide results similar to those obtained through rich sampling. The nonlinear mixed-effects model requires fewer data points. Moreover, compared with the noncompartmental analysis method, the pharmacokinetic parameters can be more accurately estimated using nonlinear mixed-effects model. The population pharmacokinetic modeling method was used to assess the bioequivalence of two pidotimod formulations with relatively few sampling points and further validated the bioequivalence of the two formulations. This method may provide useful information for regulating bioequivalence evaluation in special populations.
Nelson, Chase W; Moncla, Louise H; Hughes, Austin L
2015-11-15
New applications of next-generation sequencing technologies use pools of DNA from multiple individuals to estimate population genetic parameters. However, no publicly available tools exist to analyse single-nucleotide polymorphism (SNP) calling results directly for evolutionary parameters important in detecting natural selection, including nucleotide diversity and gene diversity. We have developed SNPGenie to fill this gap. The user submits a FASTA reference sequence(s), a Gene Transfer Format (.GTF) file with CDS information and a SNP report(s) in an increasing selection of formats. The program estimates nucleotide diversity, distance from the reference and gene diversity. Sites are flagged for multiple overlapping reading frames, and are categorized by polymorphism type: nonsynonymous, synonymous, or ambiguous. The results allow single nucleotide, single codon, sliding window, whole gene and whole genome/population analyses that aid in the detection of positive and purifying natural selection in the source population. SNPGenie version 1.2 is a Perl program with no additional dependencies. It is free, open-source, and available for download at https://github.com/hugheslab/snpgenie. nelsoncw@email.sc.edu or austin@biol.sc.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang
2016-01-01
Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938
Massie, Danielle L.; Smith, Geoffrey; Bonvechio, Timothy F.; Bunch, Aaron J.; Lucchesi, David O.; Wagner, Tyler
2018-01-01
Quantifying spatial variability in fish growth and identifying large‐scale drivers of growth are fundamental to many conservation and management decisions. Although fish growth studies often focus on a single population, it is becoming increasingly clear that large‐scale studies are likely needed for addressing transboundary management needs. This is particularly true for species with high recreational value and for those with negative ecological consequences when introduced outside of their native range, such as the Flathead Catfish Pylodictis olivaris. This study quantified growth variability of the Flathead Catfish across a large portion of its contemporary range to determine whether growth differences existed between habitat types (i.e., reservoirs and rivers) and between native and introduced populations. Additionally, we investigated whether growth parameters varied as a function of latitude and time since introduction (for introduced populations). Length‐at‐age data from 26 populations across 11 states in the USA were modeled using a Bayesian hierarchical von Bertalanffy growth model. Population‐specific growth trajectories revealed large variation in Flathead Catfish growth and relatively high uncertainty in growth parameters for some populations. Relatively high uncertainty was also evident when comparing populations and when quantifying large‐scale patterns. Growth parameters (Brody growth coefficient [K] and theoretical maximum average length [L∞]) were not different (based on overlapping 90% credible intervals) between habitat types or between native and introduced populations. For populations within the introduced range of Flathead Catfish, latitude was negatively correlated with K. For native populations, we estimated an 85% probability that L∞ estimates were negatively correlated with latitude. Contrary to predictions, time since introduction was not correlated with growth parameters in introduced populations of Flathead Catfish. Results of this study suggest that Flathead Catfish growth patterns are likely shaped more strongly by finer‐scale processes (e.g., exploitation or prey abundances) as opposed to macro‐scale drivers.
Establishing endangered species recovery criteria using predictive simulation modeling
McGowan, Conor P.; Catlin, Daniel H.; Shaffer, Terry L.; Gratto-Trevor, Cheri L.; Aron, Carol
2014-01-01
Listing a species under the Endangered Species Act (ESA) and developing a recovery plan requires U.S. Fish and Wildlife Service to establish specific and measurable criteria for delisting. Generally, species are listed because they face (or are perceived to face) elevated risk of extinction due to issues such as habitat loss, invasive species, or other factors. Recovery plans identify recovery criteria that reduce extinction risk to an acceptable level. It logically follows that the recovery criteria, the defined conditions for removing a species from ESA protections, need to be closely related to extinction risk. Extinction probability is a population parameter estimated with a model that uses current demographic information to project the population into the future over a number of replicates, calculating the proportion of replicated populations that go extinct. We simulated extinction probabilities of piping plovers in the Great Plains and estimated the relationship between extinction probability and various demographic parameters. We tested the fit of regression models linking initial abundance, productivity, or population growth rate to extinction risk, and then, using the regression parameter estimates, determined the conditions required to reduce extinction probability to some pre-defined acceptable threshold. Binomial regression models with mean population growth rate and the natural log of initial abundance were the best predictors of extinction probability 50 years into the future. For example, based on our regression models, an initial abundance of approximately 2400 females with an expected mean population growth rate of 1.0 will limit extinction risk for piping plovers in the Great Plains to less than 0.048. Our method provides a straightforward way of developing specific and measurable recovery criteria linked directly to the core issue of extinction risk. Published by Elsevier Ltd.
2010-01-01
Genetic variation and evolutionary demography of the shrimp Fenneropenaeus chinensis were investigated using sequence data of the complete mitochondrial control region (CR). Fragments of 993 bp of the CR were sequenced for 93 individuals from five localities over most of the species' range in the Yellow Sea and the Bohai Sea. There were 84 variable sites defining 68 haplotypes. Haplotype diversity levels were very high (0.95 ± 0.03-0.99 ± 0.02) in F. chinensis populations, whereas those of nucleotide diversity were moderate to low (0.66 ± 0.36%-0.84 ± 0.46%). Analysis of molecular variance and conventional population statistics (FST ) revealed no significant genetic structure throughout the range of F. chinensis. Mismatch distribution, estimates of population parameters and neutrality tests revealed that the significant fluctuations and shallow coalescence of mtDNA genealogies observed were coincident with estimated demographic parameters and neutrality tests, in implying important past-population size fluctuations or range expansion. Isolation with Migration (IM) coalescence results suggest that F. chinensis, distributed along the coasts of northern China and the Korean Peninsula (about 1000 km apart), diverged recently, the estimated time-split being 12,800 (7,400-18,600) years ago. PMID:21637498
Adult survival and productivity of Northern Fulmars in Alaska
Hatch, Scott A.
1987-01-01
The population dynamics of Northern Fulmars (Fulmarus glacialis) were studied at the Semidi Islands in the western Gulf of Alaska. Fulmars occurred in a broad range of color phases, and annual survival was estimated from the return of birds in the rarer plumage classes. A raw estimate of mean annual survival over a 5-year period was 0.963, but a removal experiment indicated the raw value was probably biased downward. The estimate of annual survival adjusted accordingly was 0.969. Mortality during the breeding season was less than 10% of the annual total, and postbreeding mortality of failed breeders was three to four times higher than that of successful breeders. Breeding success averaged 41% over 9 years. About 5% of experienced birds failed to breed each year due to physical destruction of their breeding sites, mate-loss, or other causes. An estimated 30% of the birds near the colony in one year were of prebreeding age. A comparison of population parameters in Pacific and Atlantic fulmars indicates that higher survival in the prebreeding years is the likely basis for population growth in the northeastern Atlantic. The correlation of breeding success and survival suggests both parameters may decline with age.
Stoeger, Angela S.; Zeppelzauer, Matthias; Baotic, Anton
2015-01-01
Animal vocal signals are increasingly used to monitor wildlife populations and to obtain estimates of species occurrence and abundance. In the future, acoustic monitoring should function not only to detect animals, but also to extract detailed information about populations by discriminating sexes, age groups, social or kin groups, and potentially individuals. Here we show that it is possible to estimate age groups of African elephants (Loxodonta africana) based on acoustic parameters extracted from rumbles recorded under field conditions in a National Park in South Africa. Statistical models reached up to 70 % correct classification to four age groups (infants, calves, juveniles, adults) and 95 % correct classification when categorising into two groups (infants/calves lumped into one group versus adults). The models revealed that parameters representing absolute frequency values have the most discriminative power. Comparable classification results were obtained by fully automated classification of rumbles by high-dimensional features that represent the entire spectral envelope, such as MFCC (75 % correct classification) and GFCC (74 % correct classification). The reported results and methods provide the scientific foundation for a future system that could potentially automatically estimate the demography of an acoustically monitored elephant group or population. PMID:25821348
Vogl, Claus; Das, Aparup; Beaumont, Mark; Mohanty, Sujata; Stephan, Wolfgang
2003-11-01
Population subdivision complicates analysis of molecular variation. Even if neutrality is assumed, three evolutionary forces need to be considered: migration, mutation, and drift. Simplification can be achieved by assuming that the process of migration among and drift within subpopulations is occurring fast compared to mutation and drift in the entire population. This allows a two-step approach in the analysis: (i) analysis of population subdivision and (ii) analysis of molecular variation in the migrant pool. We model population subdivision using an infinite island model, where we allow the migration/drift parameter Theta to vary among populations. Thus, central and peripheral populations can be differentiated. For inference of Theta, we use a coalescence approach, implemented via a Markov chain Monte Carlo (MCMC) integration method that allows estimation of allele frequencies in the migrant pool. The second step of this approach (analysis of molecular variation in the migrant pool) uses the estimated allele frequencies in the migrant pool for the study of molecular variation. We apply this method to a Drosophila ananassae sequence data set. We find little indication of isolation by distance, but large differences in the migration parameter among populations. The population as a whole seems to be expanding. A population from Bogor (Java, Indonesia) shows the highest variation and seems closest to the species center.
Hierarchical modeling of population stability and species group attributes from survey data
Sauer, J.R.; Link, W.A.
2002-01-01
Many ecological studies require analysis of collections of estimates. For example, population change is routinely estimated for many species from surveys such as the North American Breeding Bird Survey (BBS), and the species are grouped and used in comparative analyses. We developed a hierarchical model for estimation of group attributes from a collection of estimates of population trend. The model uses information from predefined groups of species to provide a context and to supplement data for individual species; summaries of group attributes are improved by statistical methods that simultaneously analyze collections of trend estimates. The model is Bayesian; trends are treated as random variables rather than fixed parameters. We use Markov Chain Monte Carlo (MCMC) methods to fit the model. Standard assessments of population stability cannot distinguish magnitude of trend and statistical significance of trend estimates, but the hierarchical model allows us to legitimately describe the probability that a trend is within given bounds. Thus we define population stability in terms of the probability that the magnitude of population change for a species is less than or equal to a predefined threshold. We applied the model to estimates of trend for 399 species from the BBS to estimate the proportion of species with increasing populations and to identify species with unstable populations. Analyses are presented for the collection of all species and for 12 species groups commonly used in BBS summaries. Overall, we estimated that 49% of species in the BBS have positive trends and 33 species have unstable populations. However, the proportion of species with increasing trends differs among habitat groups, with grassland birds having only 19% of species with positive trend estimates and wetland birds having 68% of species with positive trend estimates.
A new approach to estimating trends in chlamydia incidence.
Ali, Hammad; Cameron, Ewan; Drovandi, Christopher C; McCaw, James M; Guy, Rebecca J; Middleton, Melanie; El-Hayek, Carol; Hocking, Jane S; Kaldor, John M; Donovan, Basil; Wilson, David P
2015-11-01
Directly measuring disease incidence in a population is difficult and not feasible to do routinely. We describe the development and application of a new method for estimating at a population level the number of incident genital chlamydia infections, and the corresponding incidence rates, by age and sex using routine surveillance data. A Bayesian statistical approach was developed to calibrate the parameters of a decision-pathway tree against national data on numbers of notifications and tests conducted (2001-2013). Independent beta probability density functions were adopted for priors on the time-independent parameters; the shapes of these beta parameters were chosen to match prior estimates sourced from peer-reviewed literature or expert opinion. To best facilitate the calibration, multivariate Gaussian priors on (the logistic transforms of) the time-dependent parameters were adopted, using the Matérn covariance function to favour small changes over consecutive years and across adjacent age cohorts. The model outcomes were validated by comparing them with other independent empirical epidemiological measures, that is, prevalence and incidence as reported by other studies. Model-based estimates suggest that the total number of people acquiring chlamydia per year in Australia has increased by ∼120% over 12 years. Nationally, an estimated 356 000 people acquired chlamydia in 2013, which is 4.3 times the number of reported diagnoses. This corresponded to a chlamydia annual incidence estimate of 1.54% in 2013, increased from 0.81% in 2001 (∼90% increase). We developed a statistical method which uses routine surveillance (notifications and testing) data to produce estimates of the extent and trends in chlamydia incidence. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
A Note on the Reliability Coefficients for Item Response Model-Based Ability Estimates
ERIC Educational Resources Information Center
Kim, Seonghoon
2012-01-01
Assuming item parameters on a test are known constants, the reliability coefficient for item response theory (IRT) ability estimates is defined for a population of examinees in two different ways: as (a) the product-moment correlation between ability estimates on two parallel forms of a test and (b) the squared correlation between the true…
Analysis of multinomial models with unknown index using data augmentation
Royle, J. Andrew; Dorazio, R.M.; Link, W.A.
2007-01-01
Multinomial models with unknown index ('sample size') arise in many practical settings. In practice, Bayesian analysis of such models has proved difficult because the dimension of the parameter space is not fixed, being in some cases a function of the unknown index. We describe a data augmentation approach to the analysis of this class of models that provides for a generic and efficient Bayesian implementation. Under this approach, the data are augmented with all-zero detection histories. The resulting augmented dataset is modeled as a zero-inflated version of the complete-data model where an estimable zero-inflation parameter takes the place of the unknown multinomial index. Interestingly, data augmentation can be justified as being equivalent to imposing a discrete uniform prior on the multinomial index. We provide three examples involving estimating the size of an animal population, estimating the number of diabetes cases in a population using the Rasch model, and the motivating example of estimating the number of species in an animal community with latent probabilities of species occurrence and detection.
Bled, Florent; Belant, Jerrold L; Van Daele, Lawrence J; Svoboda, Nathan; Gustine, David; Hilderbrand, Grant; Barnes, Victor G
2017-11-01
Current management of large carnivores is informed using a variety of parameters, methods, and metrics; however, these data are typically considered independently. Sharing information among data types based on the underlying ecological, and recognizing observation biases, can improve estimation of individual and global parameters. We present a general integrated population model (IPM), specifically designed for brown bears ( Ursus arctos ), using three common data types for bear ( U . spp.) populations: repeated counts, capture-mark-recapture, and litter size. We considered factors affecting ecological and observation processes for these data. We assessed the practicality of this approach on a simulated population and compared estimates from our model to values used for simulation and results from count data only. We then present a practical application of this general approach adapted to the constraints of a case study using historical data available for brown bears on Kodiak Island, Alaska, USA. The IPM provided more accurate and precise estimates than models accounting for repeated count data only, with credible intervals including the true population 94% and 5% of the time, respectively. For the Kodiak population, we estimated annual average litter size (within one year after birth) to vary between 0.45 [95% credible interval: 0.43; 0.55] and 1.59 [1.55; 1.82]. We detected a positive relationship between salmon availability and adult survival, with survival probabilities greater for females than males. Survival probabilities increased from cubs to yearlings to dependent young ≥2 years old and decreased with litter size. Linking multiple information sources based on ecological and observation mechanisms can provide more accurate and precise estimates, to better inform management. IPMs can also reduce data collection efforts by sharing information among agencies and management units. Our approach responds to an increasing need in bear populations' management and can be readily adapted to other large carnivores.
NASA Astrophysics Data System (ADS)
Li, Xia; Welch, E. Brian; Arlinghaus, Lori R.; Bapsi Chakravarthy, A.; Xu, Lei; Farley, Jaime; Loveless, Mary E.; Mayer, Ingrid A.; Kelley, Mark C.; Meszoely, Ingrid M.; Means-Powell, Julie A.; Abramson, Vandana G.; Grau, Ana M.; Gore, John C.; Yankeelov, Thomas E.
2011-09-01
Quantitative analysis of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data requires the accurate determination of the arterial input function (AIF). A novel method for obtaining the AIF is presented here and pharmacokinetic parameters derived from individual and population-based AIFs are then compared. A Philips 3.0 T Achieva MR scanner was used to obtain 20 DCE-MRI data sets from ten breast cancer patients prior to and after one cycle of chemotherapy. Using a semi-automated method to estimate the AIF from the axillary artery, we obtain the AIF for each patient, AIFind, and compute a population-averaged AIF, AIFpop. The extended standard model is used to estimate the physiological parameters using the two types of AIFs. The mean concordance correlation coefficient (CCC) for the AIFs segmented manually and by the proposed AIF tracking approach is 0.96, indicating accurate and automatic tracking of an AIF in DCE-MRI data of the breast is possible. Regarding the kinetic parameters, the CCC values for Ktrans, vp and ve as estimated by AIFind and AIFpop are 0.65, 0.74 and 0.31, respectively, based on the region of interest analysis. The average CCC values for the voxel-by-voxel analysis are 0.76, 0.84 and 0.68 for Ktrans, vp and ve, respectively. This work indicates that Ktrans and vp show good agreement between AIFpop and AIFind while there is a weak agreement on ve.
McKenna, James E.
2000-01-01
Although, perceiving genetic differences and their effects on fish population dynamics is difficult, simulation models offer a means to explore and illustrate these effects. I partitioned the intrinsic rate of increase parameter of a simple logistic-competition model into three components, allowing specification of effects of relative differences in fitness and mortality, as well as finite rate of increase. This model was placed into an interactive, stochastic environment to allow easy manipulation of model parameters (FITPOP). Simulation results illustrated the effects of subtle differences in genetic and population parameters on total population size, overall fitness, and sensitivity of the system to variability. Several consequences of mixing genetically distinct populations were illustrated. For example, behaviors such as depression of population size after initial introgression and extirpation of native stocks due to continuous stocking of genetically inferior fish were reproduced. It also was shown that carrying capacity relative to the amount of stocking had an important influence on population dynamics. Uncertainty associated with parameter estimates reduced confidence in model projections. The FITPOP model provided a simple tool to explore population dynamics, which may assist in formulating management strategies and identifying research needs.
Estimating forest attribute parameters for small areas using nearest neighbors techniques
Ronald E. McRoberts
2012-01-01
Nearest neighbors techniques have become extremely popular, particularly for use with forest inventory data. With these techniques, a population unit prediction is calculated as a linear combination of observations for a selected number of population units in a sample that are most similar, or nearest, in a space of ancillary variables to the population unit requiring...
Volume effects of late term normal tissue toxicity in prostate cancer radiotherapy
NASA Astrophysics Data System (ADS)
Bonta, Dacian Viorel
Modeling of volume effects for treatment toxicity is paramount for optimization of radiation therapy. This thesis proposes a new model for calculating volume effects in gastro-intestinal and genito-urinary normal tissue complication probability (NTCP) following radiation therapy for prostate carcinoma. The radiobiological and the pathological basis for this model and its relationship to other models are detailed. A review of the radiobiological experiments and published clinical data identified salient features and specific properties a biologically adequate model has to conform to. The new model was fit to a set of actual clinical data. In order to verify the goodness of fit, two established NTCP models and a non-NTCP measure for complication risk were fitted to the same clinical data. The method of fit for the model parameters was maximum likelihood estimation. Within the framework of the maximum likelihood approach I estimated the parameter uncertainties for each complication prediction model. The quality-of-fit was determined using the Aikaike Information Criterion. Based on the model that provided the best fit, I identified the volume effects for both types of toxicities. Computer-based bootstrap resampling of the original dataset was used to estimate the bias and variance for the fitted parameter values. Computer simulation was also used to estimate the population size that generates a specific uncertainty level (3%) in the value of predicted complication probability. The same method was used to estimate the size of the patient population needed for accurate choice of the model underlying the NTCP. The results indicate that, depending on the number of parameters of a specific NTCP model, 100 (for two parameter models) and 500 patients (for three parameter models) are needed for accurate parameter fit. Correlation of complication occurrence in patients was also investigated. The results suggest that complication outcomes are correlated in a patient, although the correlation coefficient is rather small.
Applications of bioenergetics models to fish ecology and management: where do we go from here?
Hansen, Michael J.; Boisclair, Daniel; Brandt, Stephen B.; Hewett, Steven W.; Kitchell, James F.; Lucas, Martyn C.; Ney, John J.
1993-01-01
Papers and panel discussions given during a 1992 symposium on bioenergetics models are summarized. Bioenergetics models have been applied to a variety of research and management questions related to fish stocks, populations, food webs, and ecosystems. Applications include estimates of the intensity and dynamics of predator-prey interactions, nutrient cycling within aquatic food webs of varying trophic structure, and food requirements of single animals, whole populations, and communities of fishes. As tools in food web and ecosystem applications, bioenergetics models have been used to compare forage consumption by salmonid predators across the Laurentian Great Lakes for single populations and whole communities, and to estimate the growth potential of pelagic predators in Chesapeake Bay and Lake Ontario. Some critics say that bioenergetics models lack sufficient detail to produce reliable results in such field applications, whereas others say that the models are too complex to be useful tools for fishery managers. Nevertheless, bioenergetics models have achieved notable predictive successes. Improved estimates are needed for model parameters such as metabolic costs of activity, and more complete studies are needed of the bioenergetics of larval and juvenile fishes. Future research on bioenergetics should include laboratory and field measurements of key model parameters such as weight-dependent maximum consumption, respiration and activity, and thermal habitats actually occupied by fish. Future applications of bioenergetics models to fish populations also depend on accurate estimates of population sizes and survival rates.
Horton, G.E.; Letcher, B.H.
2008-01-01
The inability to account for the availability of individuals in the study area during capture-mark-recapture (CMR) studies and the resultant confounding of parameter estimates can make correct interpretation of CMR model parameter estimates difficult. Although important advances based on the Cormack-Jolly-Seber (CJS) model have resulted in estimators of true survival that work by unconfounding either death or recapture probability from availability for capture in the study area, these methods rely on the researcher's ability to select a method that is correctly matched to emigration patterns in the population. If incorrect assumptions regarding site fidelity (non-movement) are made, it may be difficult or impossible as well as costly to change the study design once the incorrect assumption is discovered. Subtleties in characteristics of movement (e.g. life history-dependent emigration, nomads vs territory holders) can lead to mixtures in the probability of being available for capture among members of the same population. The result of these mixtures may be only a partial unconfounding of emigration from other CMR model parameters. Biologically-based differences in individual movement can combine with constraints on study design to further complicate the problem. Because of the intricacies of movement and its interaction with other parameters in CMR models, quantification of and solutions to these problems are needed. Based on our work with stream-dwelling populations of Atlantic salmon Salmo salar, we used a simulation approach to evaluate existing CMR models under various mixtures of movement probabilities. The Barker joint data model provided unbiased estimates of true survival under all conditions tested. The CJS and robust design models provided similarly unbiased estimates of true survival but only when emigration information could be incorporated directly into individual encounter histories. For the robust design model, Markovian emigration (future availability for capture depends on an individual's current location) was a difficult emigration pattern to detect unless survival and especially recapture probability were high. Additionally, when local movement was high relative to study area boundaries and movement became more diffuse (e.g. a random walk), local movement and permanent emigration were difficult to distinguish and had consequences for correctly interpreting the survival parameter being estimated (apparent survival vs true survival). ?? 2008 The Authors.
NASA Astrophysics Data System (ADS)
Norton, Andrew S.
An integral component of managing game species is an understanding of population dynamics and relative abundance. Harvest data are frequently used to estimate abundance of white-tailed deer. Unless harvest age-structure is representative of the population age-structure and harvest vulnerability remains constant from year to year, these data alone are of limited value. Additional model structure and auxiliary information has accommodated this shortcoming. Specifically, integrated age-at-harvest (AAH) state-space population models can formally combine multiple sources of data, and regularization via hierarchical model structure can increase flexibility of model parameters. I collected known fates data, which I evaluated and used to inform trends in survival parameters for an integrated AAH model. I used temperature and snow depth covariates to predict survival outside of the hunting season, and opening weekend temperature and percent of corn harvest covariates to predict hunting season survival. When auxiliary empirical data were unavailable for the AAH model, moderately informative priors provided sufficient information for convergence and parameter estimates. The AAH model was most sensitive to errors in initial abundance, but this error was calibrated after 3 years. Among vital rates, the AAH model was most sensitive to reporting rates (percentage of mortality during the hunting season related to harvest). The AAH model, using only harvest data, was able to track changing abundance trends due to changes in survival rates even when prior models did not inform these changes (i.e. prior models were constant when truth varied). I also compared AAH model results with estimates from the Wisconsin Department of Natural Resources (WIDNR). Trends in abundance estimates from both models were similar, although AAH model predictions were systematically higher than WIDNR estimates in the East study area. When I incorporated auxiliary information (i.e. integrated AAH model) about survival outside the hunting season from known fates data, predicted trends appeared more closely related to what was expected. Disagreements between the AAH model and WIDNR estimates in the East were likely related to biased predictions for reporting and survival rates from the AAH model.
Gould, William R.; Kendall, William L.
2013-01-01
Capture-recapture methods were initially developed to estimate human population abundance, but since that time have seen widespread use for fish and wildlife populations to estimate and model various parameters of population, metapopulation, and disease dynamics. Repeated sampling of marked animals provides information for estimating abundance and tracking the fate of individuals in the face of imperfect detection. Mark types have evolved from clipping or tagging to use of noninvasive methods such as photography of natural markings and DNA collection from feces. Survival estimation has been emphasized more recently as have transition probabilities between life history states and/or geographical locations, even where some states are unobservable or uncertain. Sophisticated software has been developed to handle highly parameterized models, including environmental and individual covariates, to conduct model selection, and to employ various estimation approaches such as maximum likelihood and Bayesian approaches. With these user-friendly tools, complex statistical models for studying population dynamics have been made available to ecologists. The future will include a continuing trend toward integrating data types, both for tagged and untagged individuals, to produce more precise and robust population models.
Spatial dynamics of the 1918 influenza pandemic in England, Wales and the United States.
Eggo, Rosalind M; Cauchemez, Simon; Ferguson, Neil M
2011-02-06
There is still limited understanding of key determinants of spatial spread of influenza. The 1918 pandemic provides an opportunity to elucidate spatial determinants of spread on a large scale. To better characterize the spread of the 1918 major wave, we fitted a range of city-to-city transmission models to mortality data collected for 246 population centres in England and Wales and 47 cities in the US. Using a gravity model for city-to-city contacts, we explored the effect of population size and distance on the spread of disease and tested assumptions regarding density dependence in connectivity between cities. We employed Bayesian Markov Chain Monte Carlo methods to estimate parameters of the model for population, infectivity, distance and density dependence. We inferred the most likely transmission trees for both countries. For England and Wales, a model that estimated the degree of density dependence in connectivity between cities was preferable by deviance information criterion comparison. Early in the major wave, long distance infective interactions predominated, with local infection events more likely as the epidemic became widespread. For the US, with fewer more widely dispersed cities, statistical power was lacking to estimate population size dependence or the degree of density dependence, with the preferred model depending on distance only. We find that parameters estimated from the England and Wales dataset can be applied to the US data with no likelihood penalty.
Spatial dynamics of the 1918 influenza pandemic in England, Wales and the United States
Eggo, Rosalind M.; Cauchemez, Simon; Ferguson, Neil M.
2011-01-01
There is still limited understanding of key determinants of spatial spread of influenza. The 1918 pandemic provides an opportunity to elucidate spatial determinants of spread on a large scale. To better characterize the spread of the 1918 major wave, we fitted a range of city-to-city transmission models to mortality data collected for 246 population centres in England and Wales and 47 cities in the US. Using a gravity model for city-to-city contacts, we explored the effect of population size and distance on the spread of disease and tested assumptions regarding density dependence in connectivity between cities. We employed Bayesian Markov Chain Monte Carlo methods to estimate parameters of the model for population, infectivity, distance and density dependence. We inferred the most likely transmission trees for both countries. For England and Wales, a model that estimated the degree of density dependence in connectivity between cities was preferable by deviance information criterion comparison. Early in the major wave, long distance infective interactions predominated, with local infection events more likely as the epidemic became widespread. For the US, with fewer more widely dispersed cities, statistical power was lacking to estimate population size dependence or the degree of density dependence, with the preferred model depending on distance only. We find that parameters estimated from the England and Wales dataset can be applied to the US data with no likelihood penalty. PMID:20573630
Mating parameter estimates of black walnut based on natural and artificial populations
George Rink; Guoqiang Zhang; Zuo Jinghua; Fan H. Kung
1995-01-01
Horizontal starch gel electrophoresis was performed on six polymorphic loci in black walnut (Juglans nigra L.) embryos from open-pollinated nut collections made in 1987 in a Missouri half-sib progeny test, and Indiana seed orchard and a natural population in southern Illinois.
Performance in population models for count data, part II: a new SAEM algorithm
Savic, Radojka; Lavielle, Marc
2009-01-01
Analysis of count data from clinical trials using mixed effect analysis has recently become widely used. However, algorithms available for the parameter estimation, including LAPLACE and Gaussian quadrature (GQ), are associated with certain limitations, including bias in parameter estimates and the long analysis runtime. The stochastic approximation expectation maximization (SAEM) algorithm has proven to be a very efficient and powerful tool in the analysis of continuous data. The aim of this study was to implement and investigate the performance of a new SAEM algorithm for application to count data. A new SAEM algorithm was implemented in MATLAB for estimation of both, parameters and the Fisher information matrix. Stochastic Monte Carlo simulations followed by re-estimation were performed according to scenarios used in previous studies (part I) to investigate properties of alternative algorithms (1). A single scenario was used to explore six probability distribution models. For parameter estimation, the relative bias was less than 0.92% and 4.13 % for fixed and random effects, for all models studied including ones accounting for over- or under-dispersion. Empirical and estimated relative standard errors were similar, with distance between them being <1.7 % for all explored scenarios. The longest CPU time was 95s for parameter estimation and 56s for SE estimation. The SAEM algorithm was extended for analysis of count data. It provides accurate estimates of both, parameters and standard errors. The estimation is significantly faster compared to LAPLACE and GQ. The algorithm is implemented in Monolix 3.1, (beta-version available in July 2009). PMID:19680795
Using open robust design models to estimate temporary emigration from capture-recapture data.
Kendall, W L; Bjorkland, R
2001-12-01
Capture-recapture studies are crucial in many circumstances for estimating demographic parameters for wildlife and fish populations. Pollock's robust design, involving multiple sampling occasions per period of interest, provides several advantages over classical approaches. This includes the ability to estimate the probability of being present and available for detection, which in some situations is equivalent to breeding probability. We present a model for estimating availability for detection that relaxes two assumptions required in previous approaches. The first is that the sampled population is closed to additions and deletions across samples within a period of interest. The second is that each member of the population has the same probability of being available for detection in a given period. We apply our model to estimate survival and breeding probability in a study of hawksbill sea turtles (Eretmochelys imbricata), where previous approaches are not appropriate.
Using open robust design models to estimate temporary emigration from capture-recapture data
Kendall, W.L.; Bjorkland, R.
2001-01-01
Capture-recapture studies are crucial in many circumstances for estimating demographic parameters for wildlife and fish populations. Pollock's robust design, involving multiple sampling occasions per period of interest, provides several advantages over classical approaches. This includes the ability to estimate the probability of being present and available for detection, which in some situations is equivalent to breeding probability. We present a model for estimating availability for detection that relaxes two assumptions required in previous approaches. The first is that the sampled population is closed to additions and deletions across samples within a period of interest. The second is that each member of the population has the same probability of being available for detection in a given period. We apply our model to estimate survival and breeding probability in a study of hawksbill sea turtles (Eretmochelys imbricata), where previous approaches are not appropriate.
Aditya, Kaustav; Sud, U. C.
2018-01-01
Poverty affects many people, but the ramifications and impacts affect all aspects of society. Information about the incidence of poverty is therefore an important parameter of the population for policy analysis and decision making. In order to provide specific, targeted solutions when addressing poverty disadvantage small area statistics are needed. Surveys are typically designed and planned to produce reliable estimates of population characteristics of interest mainly at higher geographic area such as national and state level. Sample sizes are usually not large enough to provide reliable estimates for disaggregated analysis. In many instances estimates are required for areas of the population for which the survey providing the data was unplanned. Then, for areas with small sample sizes, direct survey estimation of population characteristics based only on the data available from the particular area tends to be unreliable. This paper describes an application of small area estimation (SAE) approach to improve the precision of estimates of poverty incidence at district level in the State of Bihar in India by linking data from the Household Consumer Expenditure Survey 2011–12 of NSSO and the Population Census 2011. The results show that the district level estimates generated by SAE method are more precise and representative. In contrast, the direct survey estimates based on survey data alone are less stable. PMID:29879202
Chandra, Hukum; Aditya, Kaustav; Sud, U C
2018-01-01
Poverty affects many people, but the ramifications and impacts affect all aspects of society. Information about the incidence of poverty is therefore an important parameter of the population for policy analysis and decision making. In order to provide specific, targeted solutions when addressing poverty disadvantage small area statistics are needed. Surveys are typically designed and planned to produce reliable estimates of population characteristics of interest mainly at higher geographic area such as national and state level. Sample sizes are usually not large enough to provide reliable estimates for disaggregated analysis. In many instances estimates are required for areas of the population for which the survey providing the data was unplanned. Then, for areas with small sample sizes, direct survey estimation of population characteristics based only on the data available from the particular area tends to be unreliable. This paper describes an application of small area estimation (SAE) approach to improve the precision of estimates of poverty incidence at district level in the State of Bihar in India by linking data from the Household Consumer Expenditure Survey 2011-12 of NSSO and the Population Census 2011. The results show that the district level estimates generated by SAE method are more precise and representative. In contrast, the direct survey estimates based on survey data alone are less stable.
A Two-Stage Approach to Missing Data: Theory and Application to Auxiliary Variables
ERIC Educational Resources Information Center
Savalei, Victoria; Bentler, Peter M.
2009-01-01
A well-known ad-hoc approach to conducting structural equation modeling with missing data is to obtain a saturated maximum likelihood (ML) estimate of the population covariance matrix and then to use this estimate in the complete data ML fitting function to obtain parameter estimates. This 2-stage (TS) approach is appealing because it minimizes a…
Fronczak, David L.; Andersen, David E.; Hanna, Everett E.; Cooper, Thomas R.
2015-01-01
Several surveys have documented the increasing population size and geographic distribution of Eastern Population greater sandhill cranes Grus canadensis tabida since the 1960s. Sport hunting of this population of sandhill cranes started in 2012 following the provisions of the Eastern Population Sandhill Crane Management Plan. However, there are currently no published estimates of Eastern Population sandhill crane survival rate that can be used to inform harvest management. As part of two studies of Eastern Population sandhill crane migration, we deployed solar-powered global positioning system platform transmitting terminals on Eastern Population sandhill cranes (n = 42) at key concentration areas from 2009 to 2012. We estimated an annual survival rate for Eastern Population sandhill cranes from data resulting from monitoring these cranes by using the known-fates model in the MARK program. Estimated annual survival rate for adult Eastern Population sandhill cranes was 0.950 (95% confidence interval = 0.885–0.979) during December 2009–August 2014. All fatalities (n = 5) occurred after spring migration in late spring and early summer. We were unable to determine cause of death for crane fatalities in our study. Our survival rate estimate will be useful when combined with other population parameters such as the population index derived from the U.S. Fish and Wildlife Service fall survey, harvest, and recruitment rates to assess the effects of harvest on population size and trend and evaluate the effectiveness of management strategies.
Bled, Florent; Belant, Jerrold L.; Van Daele, Lawrence J.; Svoboda, Nathan; Gustine, David D.; Hilderbrand, Grant V.; Barnes, Victor G.
2017-01-01
Current management of large carnivores is informed using a variety of parameters, methods, and metrics; however, these data are typically considered independently. Sharing information among data types based on the underlying ecological, and recognizing observation biases, can improve estimation of individual and global parameters. We present a general integrated population model (IPM), specifically designed for brown bears (Ursus arctos), using three common data types for bear (U. spp.) populations: repeated counts, capture–mark–recapture, and litter size. We considered factors affecting ecological and observation processes for these data. We assessed the practicality of this approach on a simulated population and compared estimates from our model to values used for simulation and results from count data only. We then present a practical application of this general approach adapted to the constraints of a case study using historical data available for brown bears on Kodiak Island, Alaska, USA. The IPM provided more accurate and precise estimates than models accounting for repeated count data only, with credible intervals including the true population 94% and 5% of the time, respectively. For the Kodiak population, we estimated annual average litter size (within one year after birth) to vary between 0.45 [95% credible interval: 0.43; 0.55] and 1.59 [1.55; 1.82]. We detected a positive relationship between salmon availability and adult survival, with survival probabilities greater for females than males. Survival probabilities increased from cubs to yearlings to dependent young ≥2 years old and decreased with litter size. Linking multiple information sources based on ecological and observation mechanisms can provide more accurate and precise estimates, to better inform management. IPMs can also reduce data collection efforts by sharing information among agencies and management units. Our approach responds to an increasing need in bear populations’ management and can be readily adapted to other large carnivores.
General Economic and Demographic Background and Projections for Indiana Library Services.
ERIC Educational Resources Information Center
Foust, James D.; Tower, Carl B.
Before future library needs can be estimated, economic and demographic variables that influence the demand for library services must be projected and estimating equations relating library needs to economic and demographic parameters developed. This study considers the size, location and age-sex characteristics of Indiana's current population and…
The Impact of Missing Background Data on Subpopulation Estimation
ERIC Educational Resources Information Center
Rutkowski, Leslie
2011-01-01
Although population modeling methods are well established, a paucity of literature appears to exist regarding the effect of missing background data on subpopulation achievement estimates. Using simulated data that follows typical large-scale assessment designs with known parameters and a number of missing conditions, this paper examines the extent…
Estimating the Parameters of the Beta-Binomial Distribution.
ERIC Educational Resources Information Center
Wilcox, Rand R.
1979-01-01
For some situations the beta-binomial distribution might be used to describe the marginal distribution of test scores for a particular population of examinees. Several different methods of approximating the maximum likelihood estimate were investigated, and it was found that the Newton-Raphson method should be used when it yields admissable…
Szabolcsi, Zoltán; Farkas, Zsuzsa; Borbély, Andrea; Bárány, Gusztáv; Varga, Dániel; Heinrich, Attila; Völgyi, Antónia; Pamjav, Horolma
2015-11-01
When the DNA profile from a crime-scene matches that of a suspect, the weight of DNA evidence depends on the unbiased estimation of the match probability of the profiles. For this reason, it is required to establish and expand the databases that reflect the actual allele frequencies in the population applied. 21,473 complete DNA profiles from Databank samples were used to establish the allele frequency database to represent the population of Hungarian suspects. We used fifteen STR loci (PowerPlex ESI16) including five, new ESS loci. The aim was to calculate the statistical, forensic efficiency parameters for the Databank samples and compare the newly detected data to the earlier report. The population substructure caused by relatedness may influence the frequency of profiles estimated. As our Databank profiles were considered non-random samples, possible relationships between the suspects can be assumed. Therefore, population inbreeding effect was estimated using the FIS calculation. The overall inbreeding parameter was found to be 0.0106. Furthermore, we tested the impact of the two allele frequency datasets on 101 randomly chosen STR profiles, including full and partial profiles. The 95% confidence interval estimates for the profile frequencies (pM) resulted in a tighter range when we used the new dataset compared to the previously published ones. We found that the FIS had less effect on frequency values in the 21,473 samples than the application of minimum allele frequency. No genetic substructure was detected by STRUCTURE analysis. Due to the low level of inbreeding effect and the high number of samples, the new dataset provides unbiased and precise estimates of LR for statistical interpretation of forensic casework and allows us to use lower allele frequencies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A Bayesian Nonparametric Meta-Analysis Model
ERIC Educational Resources Information Center
Karabatsos, George; Talbott, Elizabeth; Walker, Stephen G.
2015-01-01
In a meta-analysis, it is important to specify a model that adequately describes the effect-size distribution of the underlying population of studies. The conventional normal fixed-effect and normal random-effects models assume a normal effect-size population distribution, conditionally on parameters and covariates. For estimating the mean overall…
Sampling is the act of selecting items from a specified population in order to estimate the parameters of that population (e.g., selecting soil samples to characterize the properties at an environmental site). Sampling occurs at various levels and times throughout an environmenta...
Anabolic hormone profiles in elite military men.
Taylor, Marcus K; Kviatkovsky, Shiloah A; Hernández, Lisa M; Sargent, Paul; Segal, Sabrina; Granger, Douglas A
2016-06-01
We recently characterized the awakening responses and daily profiles of the catabolic stress hormone cortisol in elite military men. Anabolic hormones follow a similar daily pattern and may counteract the catabolic effects of cortisol. This companion report is the first to characterize daily profiles of anabolic hormones dehydroepiandrosterone (DHEA) and testosterone in this population. Overall, the men in this study displayed anabolic hormone profiles comparable to that of healthy, athletic populations. Consistent with the cortisol findings in our prior report, summary parameters of magnitude (hormone output) within the first hour after awakening displayed superior stability versus summary parameters of pattern for both DHEA (r range: 0.77-0.82) and testosterone (r range: 0.62-0.69). Summary parameters of evening function were stable for the two hormones (both p<0.001), while the absolute decrease in testosterone across the day was a stable proxy of diurnal function (p<0.001). Removal of noncompliant subjects did not appreciably affect concentration estimates for either hormone at any time point, nor did it alter the repeatability of any summary parameter. The first of its kind, this report enables accurate estimations of anabolic balance and resultant effects upon health and human performance in this highly resilient yet chronically stressed population. Published by Elsevier Inc.
[Natural selection associated with color vision defects in some population groups of Eurasia].
Evsiukov, A N
2014-01-01
Fitness coefficients and other quantitative parameters of selection associated with the generalized color blindness gene CB+ were obtained for three ethnogeographic population groups, including Belarusians from Belarus, ethnic populations of the Volga-Ural region, and ethnic populations of Siberia and the Far East of Russia. All abnormalities encoded by the OPN1LW and OPN1MW loci were treated as deviations from normal color perception. Coefficients were estimated from an approximation of the observed CB+ frequency distributions to the theoretical stationary distribution for the Wright island model. This model takes into account the pressure of migrations, selection, and random genetic drift, while the selection parameters are represented in the form of the distribution parameters. In the populations of Siberia and Far East, directional selection in favor of normal color vision and the corresponding allele CB- was observed. In the Belarusian and ethnic populations of the Volga-Ural region, stabilizing selection was observed. The selection intensity constituted 0.03 in the Belarusian; 0.22 in the ethnic populations of the Volga-Ural region; and 0.24 in ethnic populations of Siberia and Far East.
Nedorezov, Lev V; Löhr, Bernhard L; Sadykova, Dinara L
2008-10-07
The applicability of discrete mathematical models for the description of diamondback moth (DBM) (Plutella xylostella L.) population dynamics was investigated. The parameter values for several well-known discrete time models (Skellam, Moran-Ricker, Hassell, Maynard Smith-Slatkin, and discrete logistic models) were estimated for an experimental time series from a highland cabbage-growing area in eastern Kenya. For all sets of parameters, boundaries of confidence domains were determined. Maximum calculated birth rates varied between 1.086 and 1.359 when empirical values were used for parameter estimation. After fitting of the models to the empirical trajectory, all birth rate values resulted considerably higher (1.742-3.526). The carrying capacity was determined between 13.0 and 39.9DBM/plant, after fitting of the models these values declined to 6.48-9.3, all values well within the range encountered empirically. The application of the Durbin-Watson criteria for comparison of theoretical and experimental population trajectories produced negative correlations with all models. A test of residual value groupings for randomness showed that their distribution is non-stochastic. In consequence, we conclude that DBM dynamics cannot be explained as a result of intra-population self-regulative mechanisms only (=by any of the models tested) and that more comprehensive models are required for the explanation of DBM population dynamics.
Single-Step BLUP with Varying Genotyping Effort in Open-Pollinated Picea glauca.
Ratcliffe, Blaise; El-Dien, Omnia Gamal; Cappa, Eduardo P; Porth, Ilga; Klápště, Jaroslav; Chen, Charles; El-Kassaby, Yousry A
2017-03-10
Maximization of genetic gain in forest tree breeding programs is contingent on the accuracy of the predicted breeding values and precision of the estimated genetic parameters. We investigated the effect of the combined use of contemporary pedigree information and genomic relatedness estimates on the accuracy of predicted breeding values and precision of estimated genetic parameters, as well as rankings of selection candidates, using single-step genomic evaluation (HBLUP). In this study, two traits with diverse heritabilities [tree height (HT) and wood density (WD)] were assessed at various levels of family genotyping efforts (0, 25, 50, 75, and 100%) from a population of white spruce ( Picea glauca ) consisting of 1694 trees from 214 open-pollinated families, representing 43 provenances in Québec, Canada. The results revealed that HBLUP bivariate analysis is effective in reducing the known bias in heritability estimates of open-pollinated populations, as it exposes hidden relatedness, potential pedigree errors, and inbreeding. The addition of genomic information in the analysis considerably improved the accuracy in breeding value estimates by accounting for both Mendelian sampling and historical coancestry that were not captured by the contemporary pedigree alone. Increasing family genotyping efforts were associated with continuous improvement in model fit, precision of genetic parameters, and breeding value accuracy. Yet, improvements were observed even at minimal genotyping effort, indicating that even modest genotyping effort is effective in improving genetic evaluation. The combined utilization of both pedigree and genomic information may be a cost-effective approach to increase the accuracy of breeding values in forest tree breeding programs where shallow pedigrees and large testing populations are the norm. Copyright © 2017 Ratcliffe et al.
Gasca-Pineda, Jaime; Cassaigne, Ivonne; Alonso, Rogelio A.; Eguiarte, Luis E.
2013-01-01
The amount of genetic diversity in a finite biological population mostly depends on the interactions among evolutionary forces and the effective population size (N e) as well as the time since population establishment. Because the N e estimation helps to explore population demographic history, and allows one to predict the behavior of genetic diversity through time, N e is a key parameter for the genetic management of small and isolated populations. Here, we explored an N e-based approach using a bighorn sheep population on Tiburon Island, Mexico (TI) as a model. We estimated the current (N crnt) and ancestral stable (N stbl) inbreeding effective population sizes as well as summary statistics to assess genetic diversity and the demographic scenarios that could explain such diversity. Then, we evaluated the feasibility of using TI as a source population for reintroduction programs. We also included data from other bighorn sheep and artiodactyl populations in the analysis to compare their inbreeding effective size estimates. The TI population showed high levels of genetic diversity with respect to other managed populations. However, our analysis suggested that TI has been under a genetic bottleneck, indicating that using individuals from this population as the only source for reintroduction could lead to a severe genetic diversity reduction. Analyses of the published data did not show a strict correlation between H E and N crnt estimates. Moreover, we detected that ancient anthropogenic and climatic pressures affected all studied populations. We conclude that the estimation of N crnt and N stbl are informative genetic diversity estimators and should be used in addition to summary statistics for conservation and population management planning. PMID:24147115
Zimmerman, Guthrie S.; Sauer, John; Boomer, G. Scott; Devers, Patrick K.; Garrettson, Pamela R.
2017-01-01
The U.S. Fish and Wildlife Service (USFWS) uses data from the North American Breeding Bird Survey (BBS) to assist in monitoring and management of some migratory birds. However, BBS analyses provide indices of population change rather than estimates of population size, precluding their use in developing abundance-based objectives and limiting applicability to harvest management. Wood Ducks (Aix sponsa) are important harvested birds in the Atlantic Flyway (AF) that are difficult to detect during aerial surveys because they prefer forested habitat. We integrated Wood Duck count data from a ground-plot survey in the northeastern U.S. with AF-wide BBS, banding, parts collection, and harvest data to derive estimates of population size for the AF. Overlapping results between the smaller-scale intensive ground-plot survey and the BBS in the northeastern U.S. provided a means for scaling BBS indices to the breeding population size estimates. We applied these scaling factors to BBS results for portions of the AF lacking intensive surveys. Banding data provided estimates of annual survival and harvest rates; the latter, when combined with parts-collection data, provided estimates of recruitment. We used the harvest data to estimate fall population size. Our estimates of breeding population size and variability from the integrated population model (N̄ = 0.99 million, SD = 0.04) were similar to estimates of breeding population size based solely on data from the AF ground-plot surveys and the BBS (N̄ = 1.01 million, SD = 0.04) from 1998 to 2015. Integrating BBS data with other data provided reliable population size estimates for Wood Ducks at a scale useful for harvest and habitat management in the AF, and allowed us to derive estimates of important demographic parameters (e.g., seasonal survival rates, sex ratio) that were not directly informed by data.
Artim, J M; Sikkel, P C
2016-08-01
Characterizing spatio-temporal variation in the density of organisms in a community is a crucial part of ecological study. However, doing so for small, motile, cryptic species presents multiple challenges, especially where multiple life history stages are involved. Gnathiid isopods are ecologically important marine ectoparasites, micropredators that live in substrate for most of their lives, emerging only once during each juvenile stage to feed on fish blood. Many gnathiid species are nocturnal and most have distinct substrate preferences. Studies of gnathiid use of habitat, exploitation of hosts, and population dynamics have used various trap designs to estimate rates of gnathiid emergence, study sensory ecology, and identify host susceptibility. In the studies reported here, we compare and contrast the performance of emergence, fish-baited and light trap designs, outline the key features of these traps, and determine some life cycle parameters derived from trap counts for the Eastern Caribbean coral-reef gnathiid, Gnathia marleyi. We also used counts from large emergence traps and light traps to estimate additional life cycle parameters, emergence rates, and total gnathiid density on substrate, and to calibrate the light trap design to provide estimates of rate of emergence and total gnathiid density in habitat not amenable to emergence trap deployment.
Hewitt, David A.; Janney, Eric C.; Hayes, Brian S.; Harris, Alta C.
2015-10-02
Despite relatively high survival in most years, we conclude that both species have experienced substantial decreases in the abundance of spawning adults because losses from mortality have not been balanced by recruitment of new individuals. Although capture-recapture data indicate substantial recruitment of new individuals into the spawning populations for SNS and river spawning LRS in some years, size data do not corroborate these estimates. As a result, the status of the endangered sucker populations in Upper Klamath Lake remains worrisome, especially for shortnose suckers. Our monitoring program provides a robust platform for estimating vital population parameters, evaluating the status of the populations, and assessing the effectiveness of conservation and recovery efforts.
Estimating demographic parameters using a combination of known-fate and open N-mixture models
Schmidt, Joshua H.; Johnson, Devin S.; Lindberg, Mark S.; Adams, Layne G.
2015-01-01
Accurate estimates of demographic parameters are required to infer appropriate ecological relationships and inform management actions. Known-fate data from marked individuals are commonly used to estimate survival rates, whereas N-mixture models use count data from unmarked individuals to estimate multiple demographic parameters. However, a joint approach combining the strengths of both analytical tools has not been developed. Here we develop an integrated model combining known-fate and open N-mixture models, allowing the estimation of detection probability, recruitment, and the joint estimation of survival. We demonstrate our approach through both simulations and an applied example using four years of known-fate and pack count data for wolves (Canis lupus). Simulation results indicated that the integrated model reliably recovered parameters with no evidence of bias, and survival estimates were more precise under the joint model. Results from the applied example indicated that the marked sample of wolves was biased toward individuals with higher apparent survival rates than the unmarked pack mates, suggesting that joint estimates may be more representative of the overall population. Our integrated model is a practical approach for reducing bias while increasing precision and the amount of information gained from mark–resight data sets. We provide implementations in both the BUGS language and an R package.
Wicke, Jason; Dumas, Genevieve A
2010-02-01
The geometric method combines a volume and a density function to estimate body segment parameters and has the best opportunity for developing the most accurate models. In the trunk, there are many different tissues that greatly differ in density (e.g., bone versus lung). Thus, the density function for the trunk must be particularly sensitive to capture this diversity, such that accurate inertial estimates are possible. Three different models were used to test this hypothesis by estimating trunk inertial parameters of 25 female and 24 male college-aged participants. The outcome of this study indicates that the inertial estimates for the upper and lower trunk are most sensitive to the volume function and not very sensitive to the density function. Although it appears that the uniform density function has a greater influence on inertial estimates in the lower trunk region than in the upper trunk region, this is likely due to the (overestimated) density value used. When geometric models are used to estimate body segment parameters, care must be taken in choosing a model that can accurately estimate segment volumes. Researchers wanting to develop accurate geometric models should focus on the volume function, especially in unique populations (e.g., pregnant or obese individuals).
Estimating demographic parameters using a combination of known-fate and open N-mixture models.
Schmidt, Joshua H; Johnson, Devin S; Lindberg, Mark S; Adams, Layne G
2015-10-01
Accurate estimates of demographic parameters are required to infer appropriate ecological relationships and inform management actions. Known-fate data from marked individuals are commonly used to estimate survival rates, whereas N-mixture models use count data from unmarked individuals to estimate multiple demographic parameters. However, a joint approach combining the strengths of both analytical tools has not been developed. Here we develop an integrated model combining known-fate and open N-mixture models, allowing the estimation of detection probability, recruitment, and the joint estimation of survival. We demonstrate our approach through both simulations and an applied example using four years of known-fate and pack count data for wolves (Canis lupus). Simulation results indicated that the integrated model reliably recovered parameters with no evidence of bias, and survival estimates were more precise under the joint model. Results from the applied example indicated that the marked sample of wolves was biased toward individuals with higher apparent survival rates than the unmarked pack mates, suggesting that joint estimates may be more representative of the overall population. Our integrated model is a practical approach for reducing bias while increasing precision and the amount of information gained from mark-resight data sets. We provide implementations in both the BUGS language and an R package.
Anderson-Cook, Christine Michaela
2017-03-01
Here, one of the substantial improvements to the practice of data analysis in recent decades is the change from reporting just a point estimate for a parameter or characteristic, to now including a summary of uncertainty for that estimate. Understanding the precision of the estimate for the quantity of interest provides better understanding of what to expect and how well we are able to predict future behavior from the process. For example, when we report a sample average as an estimate of the population mean, it is good practice to also provide a confidence interval (or credible interval, if youmore » are doing a Bayesian analysis) to accompany that summary. This helps to calibrate what ranges of values are reasonable given the variability observed in the sample and the amount of data that were included in producing the summary.« less
Time series sightability modeling of animal populations.
ArchMiller, Althea A; Dorazio, Robert M; St Clair, Katherine; Fieberg, John R
2018-01-01
Logistic regression models-or "sightability models"-fit to detection/non-detection data from marked individuals are often used to adjust for visibility bias in later detection-only surveys, with population abundance estimated using a modified Horvitz-Thompson (mHT) estimator. More recently, a model-based alternative for analyzing combined detection/non-detection and detection-only data was developed. This approach seemed promising, since it resulted in similar estimates as the mHT when applied to data from moose (Alces alces) surveys in Minnesota. More importantly, it provided a framework for developing flexible models for analyzing multiyear detection-only survey data in combination with detection/non-detection data. During initial attempts to extend the model-based approach to multiple years of detection-only data, we found that estimates of detection probabilities and population abundance were sensitive to the amount of detection-only data included in the combined (detection/non-detection and detection-only) analysis. Subsequently, we developed a robust hierarchical modeling approach where sightability model parameters are informed only by the detection/non-detection data, and we used this approach to fit a fixed-effects model (FE model) with year-specific parameters and a temporally-smoothed model (TS model) that shares information across years via random effects and a temporal spline. The abundance estimates from the TS model were more precise, with decreased interannual variability relative to the FE model and mHT abundance estimates, illustrating the potential benefits from model-based approaches that allow information to be shared across years.
Time series sightability modeling of animal populations
ArchMiller, Althea A.; Dorazio, Robert; St. Clair, Katherine; Fieberg, John R.
2018-01-01
Logistic regression models—or “sightability models”—fit to detection/non-detection data from marked individuals are often used to adjust for visibility bias in later detection-only surveys, with population abundance estimated using a modified Horvitz-Thompson (mHT) estimator. More recently, a model-based alternative for analyzing combined detection/non-detection and detection-only data was developed. This approach seemed promising, since it resulted in similar estimates as the mHT when applied to data from moose (Alces alces) surveys in Minnesota. More importantly, it provided a framework for developing flexible models for analyzing multiyear detection-only survey data in combination with detection/non-detection data. During initial attempts to extend the model-based approach to multiple years of detection-only data, we found that estimates of detection probabilities and population abundance were sensitive to the amount of detection-only data included in the combined (detection/non-detection and detection-only) analysis. Subsequently, we developed a robust hierarchical modeling approach where sightability model parameters are informed only by the detection/non-detection data, and we used this approach to fit a fixed-effects model (FE model) with year-specific parameters and a temporally-smoothed model (TS model) that shares information across years via random effects and a temporal spline. The abundance estimates from the TS model were more precise, with decreased interannual variability relative to the FE model and mHT abundance estimates, illustrating the potential benefits from model-based approaches that allow information to be shared across years.
A less field-intensive robust design for estimating demographic parameters with Mark-resight data
McClintock, B.T.; White, Gary C.
2009-01-01
The robust design has become popular among animal ecologists as a means for estimating population abundance and related demographic parameters with mark-recapture data. However, two drawbacks of traditional mark-recapture are financial cost and repeated disturbance to animals. Mark-resight methodology may in many circumstances be a less expensive and less invasive alternative to mark-recapture, but the models developed to date for these data have overwhelmingly concentrated only on the estimation of abundance. Here we introduce a mark-resight model analogous to that used in mark-recapture for the simultaneous estimation of abundance, apparent survival, and transition probabilities between observable and unobservable states. The model may be implemented using standard statistical computing software, but it has also been incorporated into the freeware package Program MARK. We illustrate the use of our model with mainland New Zealand Robin (Petroica australis) data collected to ascertain whether this methodology may be a reliable alternative for monitoring endangered populations of a closely related species inhabiting the Chatham Islands. We found this method to be a viable alternative to traditional mark-recapture when cost or disturbance to species is of particular concern in long-term population monitoring programs. ?? 2009 by the Ecological Society of America.
Meiotic gene-conversion rate and tract length variation in the human genome.
Padhukasahasram, Badri; Rannala, Bruce
2013-02-27
Meiotic recombination occurs in the form of two different mechanisms called crossing-over and gene-conversion and both processes have an important role in shaping genetic variation in populations. Although variation in crossing-over rates has been studied extensively using sperm-typing experiments, pedigree studies and population genetic approaches, our knowledge of variation in gene-conversion parameters (ie, rates and mean tract lengths) remains far from complete. To explore variability in population gene-conversion rates and its relationship to crossing-over rate variation patterns, we have developed and validated using coalescent simulations a comprehensive Bayesian full-likelihood method that can jointly infer crossing-over and gene-conversion rates as well as tract lengths from population genomic data under general variable rate models with recombination hotspots. Here, we apply this new method to SNP data from multiple human populations and attempt to characterize for the first time the fine-scale variation in gene-conversion parameters along the human genome. We find that the estimated ratio of gene-conversion to crossing-over rates varies considerably across genomic regions as well as between populations. However, there is a great degree of uncertainty associated with such estimates. We also find substantial evidence for variation in the mean conversion tract length. The estimated tract lengths did not show any negative relationship with the local heterozygosity levels in our analysis.European Journal of Human Genetics advance online publication, 27 February 2013; doi:10.1038/ejhg.2013.30.
Estimation of demographic parameters in a tiger population from long-term camera trap data
Karanth, K. Ullas; Nichols, James D.; O'Connell, Allan F.; Nichols, James D.; Karanth, K. Ullas
2011-01-01
Chapter 7 (Karanth et al.) illustrated the use of camera trapping in combination with closed population capture–recapture (CR) models to estimate densities of tigers Panthera tigris. Such estimates can be very useful for investigating variation across space for a particular species (e.g., Karanth et al. 2004) or variation among species at a specific location. In addition, estimates of density continued at the same site(s) over multiple years are very useful for understanding and managing populations of large carnivores. Such multi-year studies can yield estimates of rates of change in abundance. Additionally, because the fates of marked individuals are tracked through time, biologists can delve deeper into factors driving changes in abundance such as rates of survival, recruitment and movement (Williams et al. 2002). Fortunately, modern CR approaches permit the modeling of populations that change between sampling occasions as a result of births, deaths, immigration and emigration (Pollock et al. 1990; Nichols 1992). Some of these early “open population” models focused on estimation of survival rates and, to a lesser extent, abundance, but more recent models permit estimation of recruitment and movement rates as well.
The Use of One-Sample Prediction Intervals for Estimating CO2 Scrubber Canister Durations
2012-10-01
Grade and 812 D-Grade Sofnolime.3 Definitions According to Devore,4 A CI (confidence interval) refers to a parameter, or population ... characteristic , whose value is fixed but unknown to us. In contrast, a future value of Y is not a parameter but instead a random variable; for this
Reporting Confidence Intervals and Effect Sizes: Collecting the Evidence
ERIC Educational Resources Information Center
Zientek, Linda Reichwein; Ozel, Z. Ebrar Yetkiner; Ozel, Serkan; Allen, Jeff
2012-01-01
Confidence intervals (CIs) and effect sizes are essential to encourage meta-analytic thinking and to accumulate research findings. CIs provide a range of plausible values for population parameters with a degree of confidence that the parameter is in that particular interval. CIs also give information about how precise the estimates are. Comparison…
Genetic parameters and prediction of breeding values in switchgrass bred for bioenergy
USDA-ARS?s Scientific Manuscript database
Estimating genetic parameters is an essential step in breeding by recurrent selection to maximize genetic gains over time. This study evaluated the effects of selection on genetic variation across two successive cycles (C1 and C2) of a ‘Summer’x‘Kanlow’ switchgrass (Panicum virgatum L.) population. ...
On the number of New World founders: a population genetic portrait of the peopling of the Americas.
Hey, Jody
2005-06-01
The founding of New World populations by Asian peoples is the focus of considerable archaeological and genetic research, and there persist important questions on when and how these events occurred. Genetic data offer great potential for the study of human population history, but there are significant challenges in discerning distinct demographic processes. A new method for the study of diverging populations was applied to questions on the founding and history of Amerind-speaking Native American populations. The model permits estimation of founding population sizes, changes in population size, time of population formation, and gene flow. Analyses of data from nine loci are consistent with the general portrait that has emerged from archaeological and other kinds of evidence. The estimated effective size of the founding population for the New World is fewer than 80 individuals, approximately 1% of the effective size of the estimated ancestral Asian population. By adding a splitting parameter to population divergence models it becomes possible to develop detailed portraits of human demographic history. Analyses of Asian and New World data support a model of a recent founding of the New World by a population of quite small effective size.
Population dynamics of Greater Scaup breeding on the Yukon-Kuskokwim Delta, Alaska
Flint, Paul L.; Grand, J. Barry; Fondell, Thomas F.; Morse, Julie A.
2006-01-01
Using a stochastic model, we estimated that, on average, breeding females produced 0.57 young females/nesting season. We combined this estimate of productivity with our annual estimates of adult survival and an assumed population growth rate of 1.0, then solved for an estimate of first-year survival (0.40). Under these conditions the predicted stable age distribution of breeding females (i.e., the nesting population) was 15.1% 1-year-old, 4.1% 2-year-old first-time breeders, and 80.8% 2-year-old and older, experienced breeders. We subjected this stochastic model to perturbation analyses to examine the relative effects of demographic parameters on k. The relative effects of productivity and adult survival on the population growth rate were 0.26 and 0.72, respectively. Thus, compared to productivity, proportionally equivalent changes in annual survival would have 2.8 times the effect on k. However, when we examined annual variation in predicted population size using standardized regression coefficients, productivity explained twice as much variation as annual survival. Thus, management actions focused on changes in survival or productivity have the ability to influence population size; however, substantially larger changes in productivity are required to influence population trends.
Tangen, C M; Koch, G G
1999-03-01
In the randomized clinical trial setting, controlling for covariates is expected to produce variance reduction for the treatment parameter estimate and to adjust for random imbalances of covariates between the treatment groups. However, for the logistic regression model, variance reduction is not obviously obtained. This can lead to concerns about the assumptions of the logistic model. We introduce a complementary nonparametric method for covariate adjustment. It provides results that are usually compatible with expectations for analysis of covariance. The only assumptions required are based on randomization and sampling arguments. The resulting treatment parameter is a (unconditional) population average log-odds ratio that has been adjusted for random imbalance of covariates. Data from a randomized clinical trial are used to compare results from the traditional maximum likelihood logistic method with those from the nonparametric logistic method. We examine treatment parameter estimates, corresponding standard errors, and significance levels in models with and without covariate adjustment. In addition, we discuss differences between unconditional population average treatment parameters and conditional subpopulation average treatment parameters. Additional features of the nonparametric method, including stratified (multicenter) and multivariate (multivisit) analyses, are illustrated. Extensions of this methodology to the proportional odds model are also made.
Sorzano, Carlos Oscars S; Pérez-De-La-Cruz Moreno, Maria Angeles; Burguet-Castell, Jordi; Montejo, Consuelo; Ros, Antonio Aguilar
2015-06-01
Pharmacokinetics (PK) applications can be seen as a special case of nonlinear, causal systems with memory. There are cases in which prior knowledge exists about the distribution of the system parameters in a population. However, for a specific patient in a clinical setting, we need to determine her system parameters so that the therapy can be personalized. This system identification is performed many times by measuring drug concentrations in plasma. The objective of this work is to provide an irregular sampling strategy that minimizes the uncertainty about the system parameters with a fixed amount of samples (cost constrained). We use Monte Carlo simulations to estimate the average Fisher's information matrix associated to the PK problem, and then estimate the sampling points that minimize the maximum uncertainty associated to system parameters (a minimax criterion). The minimization is performed employing a genetic algorithm. We show that such a sampling scheme can be designed in a way that is adapted to a particular patient and that it can accommodate any dosing regimen as well as it allows flexible therapeutic strategies. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Quantifying Selection with Pool-Seq Time Series Data.
Taus, Thomas; Futschik, Andreas; Schlötterer, Christian
2017-11-01
Allele frequency time series data constitute a powerful resource for unraveling mechanisms of adaptation, because the temporal dimension captures important information about evolutionary forces. In particular, Evolve and Resequence (E&R), the whole-genome sequencing of replicated experimentally evolving populations, is becoming increasingly popular. Based on computer simulations several studies proposed experimental parameters to optimize the identification of the selection targets. No such recommendations are available for the underlying parameters selection strength and dominance. Here, we introduce a highly accurate method to estimate selection parameters from replicated time series data, which is fast enough to be applied on a genome scale. Using this new method, we evaluate how experimental parameters can be optimized to obtain the most reliable estimates for selection parameters. We show that the effective population size (Ne) and the number of replicates have the largest impact. Because the number of time points and sequencing coverage had only a minor effect, we suggest that time series analysis is feasible without major increase in sequencing costs. We anticipate that time series analysis will become routine in E&R studies. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Evaluating the impact of the HIV pandemic on measles control and elimination.
Helfand, Rita F; Moss, William J; Harpaz, Rafael; Scott, Susana; Cutts, Felicity
2005-05-01
To estimate the impact of the HIV pandemic on vaccine-acquired population immunity to measles virus because high levels of population immunity are required to eliminate transmission of measles virus in large geographical areas, and HIV infection can reduce the efficacy of measles vaccination. A literature review was conducted to estimate key parameters relating to the potential impact of HIV infection on the epidemiology of measles in sub-Saharan Africa; parameters included the prevalence of HIV, child mortality, perinatal HIV transmission rates and protective immune responses to measles vaccination. These parameter estimates were incorporated into a simple model, applicable to regions that have a high prevalence of HIV, to estimate the potential impact of HIV infection on population immunity against measles. The model suggests that the HIV pandemic should not introduce an insurmountable barrier to measles control and elimination, in part because higher rates of primary and secondary vaccine failure among HIV-infected children are counteracted by their high mortality rate. The HIV pandemic could result in a 2-3% increase in the proportion of the birth cohort susceptible to measles, and more frequent supplemental immunization activities (SIAs) may be necessary to control or eliminate measles. In the model the optimal interval between SIAs was most influenced by the coverage rate for routine measles vaccination. The absence of a second opportunity for vaccination resulted in the greatest increase in the number of susceptible children. These results help explain the initial success of measles elimination efforts in southern Africa, where measles control has been achieved in a setting of high HIV prevalence.
[Modern principles of the geriatric analysis in medicine].
Volobuev, A N; Zaharova, N O; Romanchuk, N P; Romanov, D V; Romanchuk, P I; Adyshirin-Zade, K A
2016-01-01
The offered methodological principles of the geriatric analysis in medicine enables to plan economic parameters of social protection of the population, necessary amount of medical help financing, to define a structure of the qualified medical personnel training. It is shown that personal health and cognitive longevity of the person depend on the adequate system geriatric analysis and use of biological parameters monitoring in time. That allows estimate efficiency of the combined individual treatment. The geriatric analysis and in particular its genetic-mathematical component aimed at reliability and objectivity of an estimation of the person life expectancy in the country and in region due to the account of influence of mutagen factors as on a gene of the person during his live, and on a population as a whole.
Angeli, Nicole F; Lundgren, Ian F; Pollock, Clayton G; Hillis-Starr, Zandy M; Fitzgerald, Lee A
2018-03-01
Population size is widely used as a unit of ecological analysis, yet to estimate population size requires accounting for observed and latent heterogeneity influencing dispersion of individuals across landscapes. In newly established populations, such as when animals are translocated for conservation, dispersal and availability of resources influence patterns of abundance. We developed a process to estimate population size using N-mixture models and spatial models for newly established and dispersing populations. We used our approach to estimate the population size of critically endangered St. Croix ground lizards (Ameiva polops) five years after translocation of 57 individuals to Buck Island, an offshore island of St. Croix, United States Virgin Islands. Estimates of population size incorporated abiotic variables, dispersal limits, and operative environmental temperature available to the lizards to account for low species detection. Operative environmental temperature and distance from the translocation site were always important in fitting the N-mixture model indicating effects of dispersal and species biology on estimates of population size. We found that the population is increasing its range across the island by 5-10% every six months. We spatially interpolated site-specific abundance from the N-mixture model to the entire island, and we estimated 1,473 (95% CI, 940-1,802) St. Croix ground lizards on Buck Island in 2013 corresponding to survey results. This represents a 26-fold increase since the translocation. We predicted the future dispersal of the lizards to all habitats on Buck Island, with the potential for the population to increase by another five times in the future. Incorporating biologically relevant covariates as explicit parameters in population models can improve predictions of population size and the future spread of species introduced to new localities. © 2018 by the Ecological Society of America.
Allen, Bruce C; Hack, C Eric; Clewell, Harvey J
2007-08-01
A Bayesian approach, implemented using Markov Chain Monte Carlo (MCMC) analysis, was applied with a physiologically-based pharmacokinetic (PBPK) model of methylmercury (MeHg) to evaluate the variability of MeHg exposure in women of childbearing age in the U.S. population. The analysis made use of the newly available National Health and Nutrition Survey (NHANES) blood and hair mercury concentration data for women of age 16-49 years (sample size, 1,582). Bayesian analysis was performed to estimate the population variability in MeHg exposure (daily ingestion rate) implied by the variation in blood and hair concentrations of mercury in the NHANES database. The measured variability in the NHANES blood and hair data represents the result of a process that includes interindividual variation in exposure to MeHg and interindividual variation in the pharmacokinetics (distribution, clearance) of MeHg. The PBPK model includes a number of pharmacokinetic parameters (e.g., tissue volumes, partition coefficients, rate constants for metabolism and elimination) that can vary from individual to individual within the subpopulation of interest. Using MCMC analysis, it was possible to combine prior distributions of the PBPK model parameters with the NHANES blood and hair data, as well as with kinetic data from controlled human exposures to MeHg, to derive posterior distributions that refine the estimates of both the population exposure distribution and the pharmacokinetic parameters. In general, based on the populations surveyed by NHANES, the results of the MCMC analysis indicate that a small fraction, less than 1%, of the U.S. population of women of childbearing age may have mercury exposures greater than the EPA RfD for MeHg of 0.1 microg/kg/day, and that there are few, if any, exposures greater than the ATSDR MRL of 0.3 microg/kg/day. The analysis also indicates that typical exposures may be greater than previously estimated from food consumption surveys, but that the variability in exposure within the population of U.S. women of childbearing age may be less than previously assumed.
Climate-driven vital rates do not always mean climate-driven population.
Tavecchia, Giacomo; Tenan, Simone; Pradel, Roger; Igual, José-Manuel; Genovart, Meritxell; Oro, Daniel
2016-12-01
Current climatic changes have increased the need to forecast population responses to climate variability. A common approach to address this question is through models that project current population state using the functional relationship between demographic rates and climatic variables. We argue that this approach can lead to erroneous conclusions when interpopulation dispersal is not considered. We found that immigration can release the population from climate-driven trajectories even when local vital rates are climate dependent. We illustrated this using individual-based data on a trans-equatorial migratory seabird, the Scopoli's shearwater Calonectris diomedea, in which the variation of vital rates has been associated with large-scale climatic indices. We compared the population annual growth rate λ i , estimated using local climate-driven parameters with ρ i , a population growth rate directly estimated from individual information and that accounts for immigration. While λ i varied as a function of climatic variables, reflecting the climate-dependent parameters, ρ i did not, indicating that dispersal decouples the relationship between population growth and climate variables from that between climatic variables and vital rates. Our results suggest caution when assessing demographic effects of climatic variability especially in open populations for very mobile organisms such as fish, marine mammals, bats, or birds. When a population model cannot be validated or it is not detailed enough, ignoring immigration might lead to misleading climate-driven projections. © 2016 John Wiley & Sons Ltd.
Aguilar-Velázquez, J A; Martínez-Cortés, G; Inclán-Sánchez, A; Favela-Mendoza, A F; Velarde-Félix, J S; Rangel-Villalobos, H
2018-03-01
We analyzed Mestizo (admixed) population samples from different geographic regions of Mexico (n = 1283) with 20 autosomal STRs (PowerPlex® 21, Promega Corp.). Allele frequencies and forensic parameters from the Northwest, Northeast, West, Center, and Southeast regions are reported, as well as from the pooled Mexican population sample. The combined PD and PE for this 20 STR system were > 0.9999999999 and > 0.99999996593% in all five population samples, respectively. Analysis of molecular variance (AMOVA) of these Mexican population samples, plus Monterrey (Northeast) and Mexico (Center) Cities, showed low but significant differences among Mexican-Mestizos from the seven populations (Fst = 0.20%; p = 0.0000). Structure analysis showed the highest proportion of Native American ancestry in Mexico City, Center, and Southeast regions, respectively, which was in agreement with the estimated genetic distances represented in a MDS plot and a NJ tree. The best fit of population clusters (K = 4) obtained with the Structure software indicates that Mexican-Mestizos are mainly composed by European, African, and two Native American ancestries. The European and Native American ancestries displayed a contrary gradient, increasing toward the North-West and South-Southeast, respectively. These 20 autosomal STR loci improved the admixture estimation regarding previous studies with the 13 CODIS-STRs, as supported by the higher similarity with previous estimates based on genome-wide SNP. In brief, this study validates the confident use of the PowerPlex® 21 system for human identification purposes in Mestizo populations throughout the Mexican territory.
ERIC Educational Resources Information Center
Fan, Xitao
This paper empirically and systematically assessed the performance of bootstrap resampling procedure as it was applied to a regression model. Parameter estimates from Monte Carlo experiments (repeated sampling from population) and bootstrap experiments (repeated resampling from one original bootstrap sample) were generated and compared. Sample…
NASA Astrophysics Data System (ADS)
Panhwar, Sher Khan; Liu, Qun; Khan, Fozia; Siddiqui, Pirzada J. A.
2012-03-01
Using surplus production model packages of ASPIC (a stock-production model incorporating covariates) and CEDA (Catch effort data analysis), we analyzed the catch and effort data of Sillago sihama fishery in Pakistan. ASPIC estimates the parameters of MSY (maximum sustainable yield), F msy (fishing mortality), q (catchability coefficient), K (carrying capacity or unexploited biomass) and B1/K (maximum sustainable yield over initial biomass). The estimated non-bootstrapped value of MSY based on logistic was 598 t and that based on the Fox model was 415 t, which showed that the Fox model estimation was more conservative than that with the logistic model. The R 2 with the logistic model (0.702) is larger than that with the Fox model (0.541), which indicates a better fit. The coefficient of variation (cv) of the estimated MSY was about 0.3, except for a larger value 88.87 and a smaller value of 0.173. In contrast to the ASPIC results, the R 2 with the Fox model (0.651-0.692) was larger than that with the Schaefer model (0.435-0.567), indicating a better fit. The key parameters of CEDA are: MSY, K, q, and r (intrinsic growth), and the three error assumptions in using the models are normal, log normal and gamma. Parameter estimates from the Schaefer and Pella-Tomlinson models were similar. The MSY estimations from the above two models were 398 t, 549 t and 398 t for normal, log-normal and gamma error distributions, respectively. The MSY estimates from the Fox model were 381 t, 366 t and 366 t for the above three error assumptions, respectively. The Fox model estimates were smaller than those for the Schaefer and the Pella-Tomlinson models. In the light of the MSY estimations of 415 t from ASPIC for the Fox model and 381 t from CEDA for the Fox model, MSY for S. sihama is about 400 t. As the catch in 2003 was 401 t, we would suggest the fishery should be kept at the current level. Production models used here depend on the assumption that CPUE (catch per unit effort) data used in the study can reliably quantify temporal variability in population abundance, hence the modeling results would be wrong if such an assumption is not met. Because the reliability of this CPUE data in indexing fish population abundance is unknown, we should be cautious with the interpretation and use of the derived population and management parameters.
Income inequality, poverty, and population health: evidence from recent data for the United States.
Ram, Rati
2005-12-01
In this study, state-level US data for the years 2000 and 1990 are used to provide additional evidence on the roles of income inequality and poverty in population health. Five main points are noted. First, contrary to the suggestion made in several recent studies, the income inequality parameter is observed to be quite robust and carries statistical significance in mortality equations estimated from several observation sets and a fairly wide variety of specificational choices. Second, the evidence does not indicate that significance of income inequality is lost when education variables are included. Third, similarly, the income inequality parameter shows significance when a race variable is added, and also when both race and urbanization terms are entered. Fourth, while poverty is seen to have some mortality-increasing consequence, the role of income inequality appears stronger. Fifth, income inequality retains statistical significance when a quadratic income term is added and also if the log-log version of a fairly inclusive model is estimated. I therefore suggest that the recent skepticism articulated by several scholars in regard to the robustness of the income inequality parameters in mortality equations estimated from the US data should be reconsidered.
A robust measure of HIV-1 population turnover within chronically infected individuals.
Achaz, G; Palmer, S; Kearney, M; Maldarelli, F; Mellors, J W; Coffin, J M; Wakeley, J
2004-10-01
A simple nonparameteric test for population structure was applied to temporally spaced samples of HIV-1 sequences from the gag-pol region within two chronically infected individuals. The results show that temporal structure can be detected for samples separated by about 22 months or more. The performance of the method, which was originally proposed to detect geographic structure, was tested for temporally spaced samples using neutral coalescent simulations. Simulations showed that the method is robust to variation in samples sizes and mutation rates, to the presence/absence of recombination, and that the power to detect temporal structure is high. By comparing levels of temporal structure in simulations to the levels observed in real data, we estimate the effective intra-individual population size of HIV-1 to be between 10(3) and 10(4) viruses, which is in agreement with some previous estimates. Using this estimate and a simple measure of sequence diversity, we estimate an effective neutral mutation rate of about 5 x 10(-6) per site per generation in the gag-pol region. The definition and interpretation of estimates of such "effective" population parameters are discussed.
Density estimation in tiger populations: combining information for strong inference
Gopalaswamy, Arjun M.; Royle, J. Andrew; Delampady, Mohan; Nichols, James D.; Karanth, K. Ullas; Macdonald, David W.
2012-01-01
A productive way forward in studies of animal populations is to efficiently make use of all the information available, either as raw data or as published sources, on critical parameters of interest. In this study, we demonstrate two approaches to the use of multiple sources of information on a parameter of fundamental interest to ecologists: animal density. The first approach produces estimates simultaneously from two different sources of data. The second approach was developed for situations in which initial data collection and analysis are followed up by subsequent data collection and prior knowledge is updated with new data using a stepwise process. Both approaches are used to estimate density of a rare and elusive predator, the tiger, by combining photographic and fecal DNA spatial capture–recapture data. The model, which combined information, provided the most precise estimate of density (8.5 ± 1.95 tigers/100 km2 [posterior mean ± SD]) relative to a model that utilized only one data source (photographic, 12.02 ± 3.02 tigers/100 km2 and fecal DNA, 6.65 ± 2.37 tigers/100 km2). Our study demonstrates that, by accounting for multiple sources of available information, estimates of animal density can be significantly improved.
Density estimation in tiger populations: combining information for strong inference.
Gopalaswamy, Arjun M; Royle, J Andrew; Delampady, Mohan; Nichols, James D; Karanth, K Ullas; Macdonald, David W
2012-07-01
A productive way forward in studies of animal populations is to efficiently make use of all the information available, either as raw data or as published sources, on critical parameters of interest. In this study, we demonstrate two approaches to the use of multiple sources of information on a parameter of fundamental interest to ecologists: animal density. The first approach produces estimates simultaneously from two different sources of data. The second approach was developed for situations in which initial data collection and analysis are followed up by subsequent data collection and prior knowledge is updated with new data using a stepwise process. Both approaches are used to estimate density of a rare and elusive predator, the tiger, by combining photographic and fecal DNA spatial capture-recapture data. The model, which combined information, provided the most precise estimate of density (8.5 +/- 1.95 tigers/100 km2 [posterior mean +/- SD]) relative to a model that utilized only one data source (photographic, 12.02 +/- 3.02 tigers/100 km2 and fecal DNA, 6.65 +/- 2.37 tigers/100 km2). Our study demonstrates that, by accounting for multiple sources of available information, estimates of animal density can be significantly improved.
Reference charts of fetal biometric parameters in 31,476 Brazilian singleton pregnancies.
Araujo Júnior, Edward; Martins Santana, Eduardo Félix; Martins, Wellington P; Júnior, Julio Elito; Ruano, Rodrigo; Pires, Claudio Rodrigues; Filho, Sebastião Marques Zanforlin
2014-07-01
The purpose of this study was to establish reference charts of fetal biometric parameters measured by 2-dimensional sonography in a large Brazilian population. A cross-sectional retrospective study was conducted including 31,476 low-risk singleton pregnancies between 18 and 38 weeks' gestation. The following fetal parameters were measured: biparietal diameter, head circumference, abdominal circumference, femur length, and estimated fetal weight. To assess the correlation between the fetal biometric parameters and gestational age, polynomial regression models were created, with adjustments made by the determination coefficient (R(2)). The means ± SDs of the biparietal diameter, head circumference, abdominal circumference, femur length, and estimated fetal weight measurements at 18 and 38 weeks were 4.2 ± 2.34 and 9.1 ± 4.0 cm, 15.3 ± 7.56 and 32.3 ± 11.75 cm, 13.3 ± 10.42 and 33.4 ± 20.06 cm, 2.8 ± 2.17 and 7.2 ± 3.58 cm, and 256.34 ± 34.03 and 3169.55 ± 416.93 g, respectively. Strong correlations were observed between all fetal biometric parameters and gestational age, best represented by second-degree equations, with R(2) values of 0.95, 0.96, 0.95, 0.95, and 0.95 for biparietal diameter, head circumference, abdominal circumference, femur length, and estimated fetal weight. Fetal biometric parameters were determined for a large Brazilian population, and they may serve as reference values in cases with a high risk of intrauterine growth disorders. © 2014 by the American Institute of Ultrasound in Medicine.
Eaton, Mitchell J.; Link, William A.
2011-01-01
Estimating the age of individuals in wild populations can be of fundamental importance for answering ecological questions, modeling population demographics, and managing exploited or threatened species. Significant effort has been devoted to determining age through the use of growth annuli, secondary physical characteristics related to age, and growth models. Many species, however, either do not exhibit physical characteristics useful for independent age validation or are too rare to justify sacrificing a large number of individuals to establish the relationship between size and age. Length-at-age models are well represented in the fisheries and other wildlife management literature. Many of these models overlook variation in growth rates of individuals and consider growth parameters as population parameters. More recent models have taken advantage of hierarchical structuring of parameters and Bayesian inference methods to allow for variation among individuals as functions of environmental covariates or individual-specific random effects. Here, we describe hierarchical models in which growth curves vary as individual-specific stochastic processes, and we show how these models can be fit using capture–recapture data for animals of unknown age along with data for animals of known age. We combine these independent data sources in a Bayesian analysis, distinguishing natural variation (among and within individuals) from measurement error. We illustrate using data for African dwarf crocodiles, comparing von Bertalanffy and logistic growth models. The analysis provides the means of predicting crocodile age, given a single measurement of head length. The von Bertalanffy was much better supported than the logistic growth model and predicted that dwarf crocodiles grow from 19.4 cm total length at birth to 32.9 cm in the first year and 45.3 cm by the end of their second year. Based on the minimum size of females observed with hatchlings, reproductive maturity was estimated to be at nine years. These size benchmarks are believed to represent thresholds for important demographic parameters; improved estimates of age, therefore, will increase the precision of population projection models. The modeling approach that we present can be applied to other species and offers significant advantages when multiple sources of data are available and traditional aging techniques are not practical.
Wicke, Jason; Dumas, Genevieve A; Costigan, Patrick A
2009-01-05
Modeling of the body segments to estimate segment inertial parameters is required in the kinetic analysis of human motion. A new geometric model for the trunk has been developed that uses various cross-sectional shapes to estimate segment volume and adopts a non-uniform density function that is gender-specific. The goal of this study was to test the accuracy of the new model for estimating the trunk's inertial parameters by comparing it to the more current models used in biomechanical research. Trunk inertial parameters estimated from dual X-ray absorptiometry (DXA) were used as the standard. Twenty-five female and 24 male college-aged participants were recruited for the study. Comparisons of the new model to the accepted models were accomplished by determining the error between the models' trunk inertial estimates and that from DXA. Results showed that the new model was more accurate across all inertial estimates than the other models. The new model had errors within 6.0% for both genders, whereas the other models had higher average errors ranging from 10% to over 50% and were much more inconsistent between the genders. In addition, there was little consistency in the level of accuracy for the other models when estimating the different inertial parameters. These results suggest that the new model provides more accurate and consistent trunk inertial estimates than the other models for both female and male college-aged individuals. However, similar studies need to be performed using other populations, such as elderly or individuals from a distinct morphology (e.g. obese). In addition, the effect of using different models on the outcome of kinetic parameters, such as joint moments and forces needs to be assessed.
Markham, Deborah C; Simpson, Matthew J; Baker, Ruth E
2015-04-01
In vitro cell biology assays play a crucial role in informing our understanding of the migratory, proliferative and invasive properties of many cell types in different biological contexts. While mono-culture assays involve the study of a population of cells composed of a single cell type, co-culture assays study a population of cells composed of multiple cell types (or subpopulations of cells). Such co-culture assays can provide more realistic insights into many biological processes including tissue repair, tissue regeneration and malignant spreading. Typically, system parameters, such as motility and proliferation rates, are estimated by calibrating a mathematical or computational model to the observed experimental data. However, parameter estimates can be highly sensitive to the choice of model and modelling framework. This observation motivates us to consider the fundamental question of how we can best choose a model to facilitate accurate parameter estimation for a particular assay. In this work we describe three mathematical models of mono-culture and co-culture assays that include different levels of spatial detail. We study various spatial summary statistics to explore if they can be used to distinguish between the suitability of each model over a range of parameter space. Our results for mono-culture experiments are promising, in that we suggest two spatial statistics that can be used to direct model choice. However, co-culture experiments are far more challenging: we show that these same spatial statistics which provide useful insight into mono-culture systems are insufficient for co-culture systems. Therefore, we conclude that great care ought to be exercised when estimating the parameters of co-culture assays.
Monitoring population and environmental parameters of invasive mosquito species in Europe
2014-01-01
To enable a better understanding of the overwhelming alterations in the invasive mosquito species (IMS), methodical insight into the population and environmental factors that govern the IMS and pathogen adaptations are essential. There are numerous ways of estimating mosquito populations, and usually these describe developmental and life-history parameters. The key population parameters that should be considered during the surveillance of invasive mosquito species are: (1) population size and dynamics during the season, (2) longevity, (3) biting behaviour, and (4) dispersal capacity. Knowledge of these parameters coupled with vector competence may help to determine the vectorial capacity of IMS and basic disease reproduction number (R0) to support mosquito borne disease (MBD) risk assessment. Similarly, environmental factors include availability and type of larval breeding containers, climate change, environmental change, human population density, increased human travel and goods transport, changes in living, agricultural and farming habits (e.g. land use), and reduction of resources in the life cycle of mosquitoes by interventions (e.g. source reduction of aquatic habitats). Human population distributions, urbanisation, and human population movement are the key behavioural factors in most IMS-transmitted diseases. Anthropogenic issues are related to the global spread of MBD such as the introduction, reintroduction, circulation of IMS and increased exposure to humans from infected mosquito bites. This review addresses the population and environmental factors underlying the growing changes in IMS populations in Europe and confers the parameters selected by criteria of their applicability. In addition, overview of the commonly used and newly developed tools for their monitoring is provided. PMID:24739334
Population pharmacokinetics of levofloxacin in Korean patients.
Kiem, Sungmin; Ryu, Sung-Mun; Lee, Yun-Mi; Schentag, Jerome J; Kim, Yang-Wook; Kim, Hyeon-Kuk; Jang, Hang-Jae; Joo, Yong-Don; Jin, Kyubok; Shin, Jae-Gook; Ghim, Jong-Lyul
2016-08-01
Levofloxacin (LVFX) has different effects depending on the area under the concentration-time curve (AUC)/minimum inhibitory concentration (MIC) ratio. While AUC can be expressed as dose/clearance (CL), we measured serial concentrations of LVFX in Koreans and tried to set a Korean-specific equation, estimating the CL of the antibiotic. In total, 38 patients, aged 18-87 years, received once daily intravenous LVFX doses of 500 mg or 250 mg, depending on their renal function. Four plasma samples were obtained according to a D optimal sampling design. The population pharmacokinetic (PK) parameters of LVFX were estimated using non-linear mixed-effect modeling (NONMEM, ver. 7.2). The CL of LVFX was dependent on creatinine clearance (CLCR) as a covariate. The mean population PK parameters of LVFX in Koreans were as follows: CL (l/hour) = 6.19 × (CLCR/75)(1.32). The CL of LVFX in Koreans is expected to be lower than that in Western people.
Nilsen, Erlend B; Strand, Olav
2018-01-01
We developed a model for estimating demographic rates and population abundance based on multiple data sets revealing information about population age- and sex structure. Such models have previously been described in the literature as change-in-ratio models, but we extend the applicability of the models by i) using time series data allowing the full temporal dynamics to be modelled, by ii) casting the model in an explicit hierarchical modelling framework, and by iii) estimating parameters based on Bayesian inference. Based on sensitivity analyses we conclude that the approach developed here is able to obtain estimates of demographic rate with high precision whenever unbiased data of population structure are available. Our simulations revealed that this was true also when data on population abundance are not available or not included in the modelling framework. Nevertheless, when data on population structure are biased due to different observability of different age- and sex categories this will affect estimates of all demographic rates. Estimates of population size is particularly sensitive to such biases, whereas demographic rates can be relatively precisely estimated even with biased observation data as long as the bias is not severe. We then use the models to estimate demographic rates and population abundance for two Norwegian reindeer (Rangifer tarandus) populations where age-sex data were available for all harvested animals, and where population structure surveys were carried out in early summer (after calving) and late fall (after hunting season), and population size is counted in winter. We found that demographic rates were similar regardless whether we include population count data in the modelling, but that the estimated population size is affected by this decision. This suggest that monitoring programs that focus on population age- and sex structure will benefit from collecting additional data that allow estimation of observability for different age- and sex classes. In addition, our sensitivity analysis suggests that focusing monitoring towards changes in demographic rates might be more feasible than monitoring abundance in many situations where data on population age- and sex structure can be collected.
Williamson, Scott; Fledel-Alon, Adi; Bustamante, Carlos D
2004-09-01
We develop a Poisson random-field model of polymorphism and divergence that allows arbitrary dominance relations in a diploid context. This model provides a maximum-likelihood framework for estimating both selection and dominance parameters of new mutations using information on the frequency spectrum of sequence polymorphisms. This is the first DNA sequence-based estimator of the dominance parameter. Our model also leads to a likelihood-ratio test for distinguishing nongenic from genic selection; simulations indicate that this test is quite powerful when a large number of segregating sites are available. We also use simulations to explore the bias in selection parameter estimates caused by unacknowledged dominance relations. When inference is based on the frequency spectrum of polymorphisms, genic selection estimates of the selection parameter can be very strongly biased even for minor deviations from the genic selection model. Surprisingly, however, when inference is based on polymorphism and divergence (McDonald-Kreitman) data, genic selection estimates of the selection parameter are nearly unbiased, even for completely dominant or recessive mutations. Further, we find that weak overdominant selection can increase, rather than decrease, the substitution rate relative to levels of polymorphism. This nonintuitive result has major implications for the interpretation of several popular tests of neutrality.
Temporal Data Set Reduction Based on D-Optimality for Quantitative FLIM-FRET Imaging.
Omer, Travis; Intes, Xavier; Hahn, Juergen
2015-01-01
Fluorescence lifetime imaging (FLIM) when paired with Förster resonance energy transfer (FLIM-FRET) enables the monitoring of nanoscale interactions in living biological samples. FLIM-FRET model-based estimation methods allow the quantitative retrieval of parameters such as the quenched (interacting) and unquenched (non-interacting) fractional populations of the donor fluorophore and/or the distance of the interactions. The quantitative accuracy of such model-based approaches is dependent on multiple factors such as signal-to-noise ratio and number of temporal points acquired when sampling the fluorescence decays. For high-throughput or in vivo applications of FLIM-FRET, it is desirable to acquire a limited number of temporal points for fast acquisition times. Yet, it is critical to acquire temporal data sets with sufficient information content to allow for accurate FLIM-FRET parameter estimation. Herein, an optimal experimental design approach based upon sensitivity analysis is presented in order to identify the time points that provide the best quantitative estimates of the parameters for a determined number of temporal sampling points. More specifically, the D-optimality criterion is employed to identify, within a sparse temporal data set, the set of time points leading to optimal estimations of the quenched fractional population of the donor fluorophore. Overall, a reduced set of 10 time points (compared to a typical complete set of 90 time points) was identified to have minimal impact on parameter estimation accuracy (≈5%), with in silico and in vivo experiment validations. This reduction of the number of needed time points by almost an order of magnitude allows the use of FLIM-FRET for certain high-throughput applications which would be infeasible if the entire number of time sampling points were used.
Duarte, Adam; Adams, Michael J.; Peterson, James T.
2018-01-01
Monitoring animal populations is central to wildlife and fisheries management, and the use of N-mixture models toward these efforts has markedly increased in recent years. Nevertheless, relatively little work has evaluated estimator performance when basic assumptions are violated. Moreover, diagnostics to identify when bias in parameter estimates from N-mixture models is likely is largely unexplored. We simulated count data sets using 837 combinations of detection probability, number of sample units, number of survey occasions, and type and extent of heterogeneity in abundance or detectability. We fit Poisson N-mixture models to these data, quantified the bias associated with each combination, and evaluated if the parametric bootstrap goodness-of-fit (GOF) test can be used to indicate bias in parameter estimates. We also explored if assumption violations can be diagnosed prior to fitting N-mixture models. In doing so, we propose a new model diagnostic, which we term the quasi-coefficient of variation (QCV). N-mixture models performed well when assumptions were met and detection probabilities were moderate (i.e., ≥0.3), and the performance of the estimator improved with increasing survey occasions and sample units. However, the magnitude of bias in estimated mean abundance with even slight amounts of unmodeled heterogeneity was substantial. The parametric bootstrap GOF test did not perform well as a diagnostic for bias in parameter estimates when detectability and sample sizes were low. The results indicate the QCV is useful to diagnose potential bias and that potential bias associated with unidirectional trends in abundance or detectability can be diagnosed using Poisson regression. This study represents the most thorough assessment to date of assumption violations and diagnostics when fitting N-mixture models using the most commonly implemented error distribution. Unbiased estimates of population state variables are needed to properly inform management decision making. Therefore, we also discuss alternative approaches to yield unbiased estimates of population state variables using similar data types, and we stress that there is no substitute for an effective sample design that is grounded upon well-defined management objectives.
Probabilistic prediction models for aggregate quarry siting
Robinson, G.R.; Larkins, P.M.
2007-01-01
Weights-of-evidence (WofE) and logistic regression techniques were used in a GIS framework to predict the spatial likelihood (prospectivity) of crushed-stone aggregate quarry development. The joint conditional probability models, based on geology, transportation network, and population density variables, were defined using quarry location and time of development data for the New England States, North Carolina, and South Carolina, USA. The Quarry Operation models describe the distribution of active aggregate quarries, independent of the date of opening. The New Quarry models describe the distribution of aggregate quarries when they open. Because of the small number of new quarries developed in the study areas during the last decade, independent New Quarry models have low parameter estimate reliability. The performance of parameter estimates derived for Quarry Operation models, defined by a larger number of active quarries in the study areas, were tested and evaluated to predict the spatial likelihood of new quarry development. Population density conditions at the time of new quarry development were used to modify the population density variable in the Quarry Operation models to apply to new quarry development sites. The Quarry Operation parameters derived for the New England study area, Carolina study area, and the combined New England and Carolina study areas were all similar in magnitude and relative strength. The Quarry Operation model parameters, using the modified population density variables, were found to be a good predictor of new quarry locations. Both the aggregate industry and the land management community can use the model approach to target areas for more detailed site evaluation for quarry location. The models can be revised easily to reflect actual or anticipated changes in transportation and population features. ?? International Association for Mathematical Geology 2007.
Ring, Caroline L; Pearce, Robert G; Setzer, R Woodrow; Wetmore, Barbara A; Wambaugh, John F
2017-09-01
The thousands of chemicals present in the environment (USGAO, 2013) must be triaged to identify priority chemicals for human health risk research. Most chemicals have little of the toxicokinetic (TK) data that are necessary for relating exposures to tissue concentrations that are believed to be toxic. Ongoing efforts have collected limited, in vitro TK data for a few hundred chemicals. These data have been combined with biomonitoring data to estimate an approximate margin between potential hazard and exposure. The most "at risk" 95th percentile of adults have been identified from simulated populations that are generated either using standard "average" adult human parameters or very specific cohorts such as Northern Europeans. To better reflect the modern U.S. population, we developed a population simulation using physiologies based on distributions of demographic and anthropometric quantities from the most recent U.S. Centers for Disease Control and Prevention National Health and Nutrition Examination Survey (NHANES) data. This allowed incorporation of inter-individual variability, including variability across relevant demographic subgroups. Variability was analyzed with a Monte Carlo approach that accounted for the correlation structure in physiological parameters. To identify portions of the U.S. population that are more at risk for specific chemicals, physiologic variability was incorporated within an open-source high-throughput (HT) TK modeling framework. We prioritized 50 chemicals based on estimates of both potential hazard and exposure. Potential hazard was estimated from in vitro HT screening assays (i.e., the Tox21 and ToxCast programs). Bioactive in vitro concentrations were extrapolated to doses that produce equivalent concentrations in body tissues using a reverse dosimetry approach in which generic TK models are parameterized with: 1) chemical-specific parameters derived from in vitro measurements and predicted from chemical structure; and 2) with physiological parameters for a virtual population. For risk-based prioritization of chemicals, predicted bioactive equivalent doses were compared to demographic-specific inferences of exposure rates that were based on NHANES urinary analyte biomonitoring data. The inclusion of NHANES-derived inter-individual variability decreased predicted bioactive equivalent doses by 12% on average for the total population when compared to previous methods. However, for some combinations of chemical and demographic groups the margin was reduced by as much as three quarters. This TK modeling framework allows targeted risk prioritization of chemicals for demographic groups of interest, including potentially sensitive life stages and subpopulations. Published by Elsevier Ltd.
An inverse problem for a mathematical model of aquaponic agriculture
NASA Astrophysics Data System (ADS)
Bobak, Carly; Kunze, Herb
2017-01-01
Aquaponic agriculture is a sustainable ecosystem that relies on a symbiotic relationship between fish and macrophytes. While the practice has been growing in popularity, relatively little mathematical models exist which aim to study the system processes. In this paper, we present a system of ODEs which aims to mathematically model the population and concetrations dynamics present in an aquaponic environment. Values of the parameters in the system are estimated from the literature so that simulated results can be presented to illustrate the nature of the solutions to the system. As well, a brief sensitivity analysis is performed in order to identify redundant parameters and highlight those which may need more reliable estimates. Specifically, an inverse problem with manufactured data for fish and plants is presented to demonstrate the ability of the collage theorem to recover parameter estimates.
Decennial Life Tables for the White Population of the United States, 1790-1900.
Hacker, J David
2010-04-01
This article constructs new life tables for the white population of the United States in each decade between 1790 and 1900. Drawing from several recent studies, it suggests best estimates of life expectancy at age 20 for each decade. These estimates are fitted to new standards derived from the 1900-02 rural and 1900-02 overall DRA life tables using a two-parameter logit model with fixed slope. The resulting decennial life tables more accurately represent sex-and age-specific mortality rates while capturing known mortality trends.
Portrait of a small population of boreal toads (Anaxyrus boreas)
Muths, Erin; Scherer, Rick D.
2011-01-01
Much attention has been given to the conservation of small populations, those that are small because of decline, and those that are naturally small. Small populations are of particular interest because ecological theory suggests that they are vulnerable to the deleterious effects of environmental, demographic, and genetic stochasticity as well as natural and human-induced catastrophes. However, testing theory and developing applicable conservation measures for small populations is hampered by sparse data. This lack of information is frequently driven by computational issues with small data sets that can be confounded by the impacts of stressors. We present estimates of demographic parameters from a small population of Boreal Toads (Anaxyrus boreas) that has been surveyed since 2001 by using capture-recapture methods. Estimates of annual adult survival probability are high relative to other Boreal Toad populations, whereas estimates of recruitment rate are low. Despite using simple models, clear patterns emerged from the analyses, suggesting that population size is constrained by low recruitment of adults and is declining slowly. These patterns provide insights that are useful in developing management directions for this small population, and this study serves as an example of the potential for small populations to yield robust and useful information despite sample size constraints.
Tufto, Jarle; Lande, Russell; Ringsby, Thor-Harald; Engen, Steinar; Saether, Bernt-Erik; Walla, Thomas R; DeVries, Philip J
2012-07-01
1. We develop a Bayesian method for analysing mark-recapture data in continuous habitat using a model in which individuals movement paths are Brownian motions, life spans are exponentially distributed and capture events occur at given instants in time if individuals are within a certain attractive distance of the traps. 2. The joint posterior distribution of the dispersal rate, longevity, trap attraction distances and a number of latent variables representing the unobserved movement paths and time of death of all individuals is computed using Gibbs sampling. 3. An estimate of absolute local population density is obtained simply by dividing the Poisson counts of individuals captured at given points in time by the estimated total attraction area of all traps. Our approach for estimating population density in continuous habitat avoids the need to define an arbitrary effective trapping area that characterized previous mark-recapture methods in continuous habitat. 4. We applied our method to estimate spatial demography parameters in nine species of neotropical butterflies. Path analysis of interspecific variation in demographic parameters and mean wing length revealed a simple network of strong causation. Larger wing length increases dispersal rate, which in turn increases trap attraction distance. However, higher dispersal rate also decreases longevity, thus explaining the surprising observation of a negative correlation between wing length and longevity. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Estimating abundance of Sitka black-tailed deer using DNA from fecal pellets
Todd J. Brinkman; David K. Person; F. Stuart Chapin; Winston Smith; Kris J. Hundertmark
2011-01-01
Densely vegetated environments have hindered collection of basic population parameters on forest-dwelling ungulates. Our objective was to develop a mark-recapture technique that used DNA from fecal pellets to overcome constraints associated with estimating abundance of ungulates in landscapes where direct observation is difficult. We tested our technique on Sitka black...
E-FAST-Exposure and Fate Assessment Screening Tool Version 2014
E-FAST estimates potential exposures to the general population and surface water concentrations based on releases from industrial operations and basic physical-chemical properties and fate parameters of the substance
Nichols, J.D.
2004-01-01
The EURING meetings and the scientists who have attended them have contributed substantially to the growth of knowledge in the field of estimating parameters of animal populations. The contributions of David R. Anderson to process modeling, parameter estimation and decision analysis are briefly reviewed. Metrics are considered for assessing individual contributions to a field of inquiry, and it is concluded that Anderson’s contributions have been substantial. Important characteristics of Anderson and his career are the ability to identify and focus on important topics, the premium placed on dissemination of new methods to prospective users, the ability to assemble teams of complementary researchers, and the innovation and vision that characterized so much of his work. The paper concludes with a list of interesting current research topics for consideration by EURING participants.
Rodhouse, T.J.; Irvine, K.M.; Vierling, K.T.; Vierling, L.A.
2011-01-01
Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed Bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas]) population following the cessation of grazing and mowing on the study area, and in a separate reference population of camas. The restoration site was bisected by roads and drainage ditches, resulting in distinct subpopulations ("zones") with different land use histories. We modeled this spatial structure by fitting zone-specific intercepts and slopes. We allowed spatial covariance parameters in the model to vary by zone, as in stratified kriging, accommodating anisotropy and improving computation and biological interpretation. Trend estimates provided evidence of a positive effect of passive restoration, and the strength of evidence was influenced by the amount of spatial structure in the model. Allowing trends to vary among zones and accounting for topographic heterogeneity increased precision of trend estimates. Accounting for spatial autocorrelation shifted parameter coefficients in ways that varied among zones depending on strength of statistical shrinkage, autocorrelation and topographic heterogeneity-a phenomenon not widely described. Spatially explicit estimates of trend from hierarchical models will generally be more useful to land managers than pooled regional estimates and provide more realistic assessments of uncertainty. The ability to grapple with historical contingency is an appealing benefit of this approach.
O’Donnell, Katherine M.; Thompson, Frank R.; Semlitsch, Raymond D.
2015-01-01
Detectability of individual animals is highly variable and nearly always < 1; imperfect detection must be accounted for to reliably estimate population sizes and trends. Hierarchical models can simultaneously estimate abundance and effective detection probability, but there are several different mechanisms that cause variation in detectability. Neglecting temporary emigration can lead to biased population estimates because availability and conditional detection probability are confounded. In this study, we extend previous hierarchical binomial mixture models to account for multiple sources of variation in detectability. The state process of the hierarchical model describes ecological mechanisms that generate spatial and temporal patterns in abundance, while the observation model accounts for the imperfect nature of counting individuals due to temporary emigration and false absences. We illustrate our model’s potential advantages, including the allowance of temporary emigration between sampling periods, with a case study of southern red-backed salamanders Plethodon serratus. We fit our model and a standard binomial mixture model to counts of terrestrial salamanders surveyed at 40 sites during 3–5 surveys each spring and fall 2010–2012. Our models generated similar parameter estimates to standard binomial mixture models. Aspect was the best predictor of salamander abundance in our case study; abundance increased as aspect became more northeasterly. Increased time-since-rainfall strongly decreased salamander surface activity (i.e. availability for sampling), while higher amounts of woody cover objects and rocks increased conditional detection probability (i.e. probability of capture, given an animal is exposed to sampling). By explicitly accounting for both components of detectability, we increased congruence between our statistical modeling and our ecological understanding of the system. We stress the importance of choosing survey locations and protocols that maximize species availability and conditional detection probability to increase population parameter estimate reliability. PMID:25775182
Pharmacokinetic Studies in Neonates: The Utility of an Opportunistic Sampling Design.
Leroux, Stéphanie; Turner, Mark A; Guellec, Chantal Barin-Le; Hill, Helen; van den Anker, Johannes N; Kearns, Gregory L; Jacqz-Aigrain, Evelyne; Zhao, Wei
2015-12-01
The use of an opportunistic (also called scavenged) sampling strategy in a prospective pharmacokinetic study combined with population pharmacokinetic modelling has been proposed as an alternative strategy to conventional methods for accomplishing pharmacokinetic studies in neonates. However, the reliability of this approach in this particular paediatric population has not been evaluated. The objective of the present study was to evaluate the performance of an opportunistic sampling strategy for a population pharmacokinetic estimation, as well as dose prediction, and compare this strategy with a predetermined pharmacokinetic sampling approach. Three population pharmacokinetic models were derived for ciprofloxacin from opportunistic blood samples (SC model), predetermined (i.e. scheduled) samples (TR model) and all samples (full model used to previously characterize ciprofloxacin pharmacokinetics), using NONMEM software. The predictive performance of developed models was evaluated in an independent group of patients. Pharmacokinetic data from 60 newborns were obtained with a total of 430 samples available for analysis; 265 collected at predetermined times and 165 that were scavenged from those obtained as part of clinical care. All datasets were fit using a two-compartment model with first-order elimination. The SC model could identify the most significant covariates and provided reasonable estimates of population pharmacokinetic parameters (clearance and steady-state volume of distribution) compared with the TR and full models. Their predictive performances were further confirmed in an external validation by Bayesian estimation, and showed similar results. Monte Carlo simulation based on area under the concentration-time curve from zero to 24 h (AUC24)/minimum inhibitory concentration (MIC) using either the SC or the TR model gave similar dose prediction for ciprofloxacin. Blood samples scavenged in the course of caring for neonates can be used to estimate ciprofloxacin pharmacokinetic parameters and therapeutic dose requirements.
Locia-Aguilar, G J; López-Saucedo, B; Deheza-Bautista, S; Salado-Beltrán, O V; Martínez-Sevilla, V M; Rangel-Villalobos, H
2018-03-31
Allele distribution and forensic parameters were estimated for 15 STR loci (AmpFlSTR Identifiler kit) in 251 Mexican-Mestizos from the state of Guerrero (South, Mexico). Genotype distribution was in agreement with Hardy-Weinberg expectations for all 15 STRs. Similarly, linkage disequilibrium test demonstrated no association between pair of loci. The power of exclusion and power of discrimination values were 99.999634444% and >99.99999999%, respectively. Genetic relationship analysis regarding Mestizo populations from the main geographic regions of Mexico suggests that the Center and the present South regions conform one population cluster, separated from the Southeast and Northwest regions. Copyright © 2018 Elsevier B.V. All rights reserved.
Nonlinear mixed effects modeling of the diurnal blood pressure profile in a multiracial population.
van Rijn-Bikker, Petra C; Snelder, Nelleke; Ackaert, Oliver; van Hest, Reinier M; Ploeger, Bart A; van Montfrans, Gert A; Koopmans, Richard P; Mathôt, Ron A
2013-09-01
Cardiac and cerebrovascular events in hypertensive patients are related to specific features of the 24-hour diurnal blood pressure (BP) profile (i.e., daytime and nighttime BP, nocturnal dip (ND), and morning surge (MS)). This investigation aimed to characterize 24-hour diurnal systolic BP (SBP) with parameters that correlate directly with daytime and nighttime SBP, ND, and MS using nonlinear mixed effects modeling. Ambulatory 24-hour SBP measurements (ABPM) of 196 nontreated subjects from three ethnic groups were available. A population model was parameterized in NONMEM to estimate and evaluate the parameters baseline SBP (BSL), nadir (minimum SBP during the night), and change (SBP difference between day and night). Associations were tested between these parameters and patient-related factors to explain interindividual variability. The diurnal SBP profile was adequately described as the sum of 2 cosine functions. The following typical values (interindividual variability) were found: BSL = 139 mm Hg (11%); nadir = 122 mm Hg (14%); change = 25 mm Hg (52%), and residual error = 12 mm Hg. The model parameters correlate well with daytime and nighttime SBP, ND, and MS (R (2) = 0.50-0.92). During covariate analysis, ethnicity was found to be associated with change; change was 40% higher in white Dutch subjects and 26.8% higher in South Asians than in blacks. The developed population model allows simultaneous estimation of BSL, nadir, and change for all individuals in the investigated population, regardless of individual number of SBP measurements. Ethnicity was associated with change. The model provides a tool to evaluate and optimize the sampling frequency for 24-hour ABPM.
Estimating population parameters for northern and southern breeding populations of Canada geese
Hestbeck, J.B.; Rusch, Donald H.; Samuel, Michael D.; Humburg, Dale D.; Sullivan, Brian D.
1998-01-01
Canada geese (Branta canadensis) have been managed largely as a migratory resource. In the 1960's, Canada goose flocks were restored to historic breeding ranges in the United States and southern Canada to enhance recreational opportunity for observation and harvest. These populations of southern breeding geese have rapidly expanded, increasing conflicts with social and economic interests and causing the Midwinter Waterfowl Survey to be less effective as a management tool to monitor migrant populations. Wildlife agencies need methods to control local, southern breeding geese that reduce conflicts while providing adequate protection to populations of northern breeding geese. New techniques have been developed using mark-resight data from neck-banded geese to estimate distribution and population size during the late summer, fall, and mid-winter. Survival and movement rates can be estimated over special early or late hunting seasons, traditional fall-winter hunting season, and nonharvest periods. Direct recovery rates can be estimated for special and traditional harvest periods and these recovery rates can be related to survival and movement rates. Changes in harvest regulations can be related to changes in recovery, survival, and movement rates for specific cohorts of Canada geese. These techniques can be used to monitor population status and determine more appropriate harvest strategies.
Pedrini, Paolo; Bragalanti, Natalia; Groff, Claudio
2017-01-01
Recently-developed methods that integrate multiple data sources arising from the same ecological processes have typically utilized structured data from well-defined sampling protocols (e.g., capture-recapture and telemetry). Despite this new methodological focus, the value of opportunistic data for improving inference about spatial ecological processes is unclear and, perhaps more importantly, no procedures are available to formally test whether parameter estimates are consistent across data sources and whether they are suitable for integration. Using data collected on the reintroduced brown bear population in the Italian Alps, a population of conservation importance, we combined data from three sources: traditional spatial capture-recapture data, telemetry data, and opportunistic data. We developed a fully integrated spatial capture-recapture (SCR) model that included a model-based test for data consistency to first compare model estimates using different combinations of data, and then, by acknowledging data-type differences, evaluate parameter consistency. We demonstrate that opportunistic data lend itself naturally to integration within the SCR framework and highlight the value of opportunistic data for improving inference about space use and population size. This is particularly relevant in studies of rare or elusive species, where the number of spatial encounters is usually small and where additional observations are of high value. In addition, our results highlight the importance of testing and accounting for inconsistencies in spatial information from structured and unstructured data so as to avoid the risk of spurious or averaged estimates of space use and consequently, of population size. Our work supports the use of a single modeling framework to combine spatially-referenced data while also accounting for parameter consistency. PMID:28973034
White, Edward W; Lumley, Thomas; Goodreau, Steven M; Goldbaum, Gary; Hawes, Stephen E
2010-12-01
To produce valid seroincidence estimates, the serological testing algorithm for recent HIV seroconversion (STARHS) assumes independence between infection and testing, which may be absent in clinical data. STARHS estimates are generally greater than cohort-based estimates of incidence from observable person-time and diagnosis dates. The authors constructed a series of partial stochastic models to examine whether testing motivated by suspicion of infection could bias STARHS. One thousand Monte Carlo simulations of 10,000 men who have sex with men were generated using parameters for HIV incidence and testing frequency from data from a clinical testing population in Seattle. In one set of simulations, infection and testing dates were independent. In another set, some intertest intervals were abbreviated to reflect the distribution of intervals between suspected HIV exposure and testing in a group of Seattle men who have sex with men recently diagnosed as having HIV. Both estimation methods were applied to the simulated datasets. Both cohort-based and STARHS incidence estimates were calculated using the simulated data and compared with previously calculated, empirical cohort-based and STARHS seroincidence estimates from the clinical testing population. Under simulated independence between infection and testing, cohort-based and STARHS incidence estimates resembled cohort estimates from the clinical dataset. Under simulated motivated testing, cohort-based estimates remained unchanged, but STARHS estimates were inflated similar to empirical STARHS estimates. Varying motivation parameters appreciably affected STARHS incidence estimates, but not cohort-based estimates. Cohort-based incidence estimates are robust against dependence between testing and acquisition of infection, whereas STARHS incidence estimates are not.
Meteorological limits on the growth and development of screwworm populations
NASA Technical Reports Server (NTRS)
Phinney, D. E.; Arp, G. K.
1978-01-01
A program to evaluate the use of remotely sensed data as an additional tool in existing and projected efforts to eradicate the screwworm began in 1973. Estimating weather conditions by use of remotely sensed data was part of the study. Next, the effect of weather on screwworm populations was modeled. A significant portion of the variation in screwworm population growth and development has been traced to weather-related parameters. This report deals with the salient points of the weather and the screwworm population interaction.
Janney, Eric C.; Hayes, Brian S.; Hewitt, David A.; Barry, Patrick M.; Scott, Alta; Koller, Justin; Johnson, Mark; Blackwood, Greta
2009-01-01
We used capture-recapture data to assess population dynamics of endangered Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) in Upper Klamath Lake, Oregon. The Cormack-Jolly-Seber method was used to estimate apparent survival probabilities, and a temporal symmetry model was used to estimate annual seniority probabilities. Information theoretic modeling was used to assess variation in parameter estimates due to time, gender, and species. In addition, length data were used to detect multiple year-class failures and events of high recruitment into adult spawning populations. Survival of adult Lost River and shortnose suckers varied substantially across years. Relatively high annual mortality was observed for the lakeshore-spawning Lost River sucker subpopulation in 2002 and for the river spawning subpopulation in 2001. Shortnose suckers experienced high mortality in 2001 and 2004. This indicates that high mortality events are not only species specific, but also are specific to subpopulations for Lost River suckers. Seniority probability estimates and length composition data indicate that recruitment of new individuals into adult sucker populations has been sparse. The overall fitness of Upper Klamath Lake sucker populations are of concern given the low observed survival in some years and the paucity of recent recruitment. During most years, estimates of survival probabilities were lower than seniority probabilities, indicating net losses in adult sucker population abundances. The evidence for decline was more marked for shortnose suckers than for Lost River suckers. Our data indicated that sucker survival for both species, but especially shortnose suckers, was sometimes low in years without any observed fish kills. This indicates that high mortality can occur over a protracted period, resulting in poor annual survival, but will not necessarily be observed in association with a fish kill. A better understanding of the factors influencing adult survival and recruitment into spawning populations is needed. Monitoring these vital parameters will provide a quantitative means to evaluate population status and assess the effectiveness of conservation and recovery efforts.
Event-scale power law recession analysis: quantifying methodological uncertainty
NASA Astrophysics Data System (ADS)
Dralle, David N.; Karst, Nathaniel J.; Charalampous, Kyriakos; Veenstra, Andrew; Thompson, Sally E.
2017-01-01
The study of single streamflow recession events is receiving increasing attention following the presentation of novel theoretical explanations for the emergence of power law forms of the recession relationship, and drivers of its variability. Individually characterizing streamflow recessions often involves describing the similarities and differences between model parameters fitted to each recession time series. Significant methodological sensitivity has been identified in the fitting and parameterization of models that describe populations of many recessions, but the dependence of estimated model parameters on methodological choices has not been evaluated for event-by-event forms of analysis. Here, we use daily streamflow data from 16 catchments in northern California and southern Oregon to investigate how combinations of commonly used streamflow recession definitions and fitting techniques impact parameter estimates of a widely used power law recession model. Results are relevant to watersheds that are relatively steep, forested, and rain-dominated. The highly seasonal mediterranean climate of northern California and southern Oregon ensures study catchments explore a wide range of recession behaviors and wetness states, ideal for a sensitivity analysis. In such catchments, we show the following: (i) methodological decisions, including ones that have received little attention in the literature, can impact parameter value estimates and model goodness of fit; (ii) the central tendencies of event-scale recession parameter probability distributions are largely robust to methodological choices, in the sense that differing methods rank catchments similarly according to the medians of these distributions; (iii) recession parameter distributions are method-dependent, but roughly catchment-independent, such that changing the choices made about a particular method affects a given parameter in similar ways across most catchments; and (iv) the observed correlative relationship between the power-law recession scale parameter and catchment antecedent wetness varies depending on recession definition and fitting choices. Considering study results, we recommend a combination of four key methodological decisions to maximize the quality of fitted recession curves, and to minimize bias in the related populations of fitted recession parameters.
Aiassa, E; Higgins, J P T; Frampton, G K; Greiner, M; Afonso, A; Amzal, B; Deeks, J; Dorne, J-L; Glanville, J; Lövei, G L; Nienstedt, K; O'connor, A M; Pullin, A S; Rajić, A; Verloo, D
2015-01-01
Food and feed safety risk assessment uses multi-parameter models to evaluate the likelihood of adverse events associated with exposure to hazards in human health, plant health, animal health, animal welfare, and the environment. Systematic review and meta-analysis are established methods for answering questions in health care, and can be implemented to minimize biases in food and feed safety risk assessment. However, no methodological frameworks exist for refining risk assessment multi-parameter models into questions suitable for systematic review, and use of meta-analysis to estimate all parameters required by a risk model may not be always feasible. This paper describes novel approaches for determining question suitability and for prioritizing questions for systematic review in this area. Risk assessment questions that aim to estimate a parameter are likely to be suitable for systematic review. Such questions can be structured by their "key elements" [e.g., for intervention questions, the population(s), intervention(s), comparator(s), and outcome(s)]. Prioritization of questions to be addressed by systematic review relies on the likely impact and related uncertainty of individual parameters in the risk model. This approach to planning and prioritizing systematic review seems to have useful implications for producing evidence-based food and feed safety risk assessment.
Principles of parametric estimation in modeling language competition
Zhang, Menghan; Gong, Tao
2013-01-01
It is generally difficult to define reasonable parameters and interpret their values in mathematical models of social phenomena. Rather than directly fitting abstract parameters against empirical data, we should define some concrete parameters to denote the sociocultural factors relevant for particular phenomena, and compute the values of these parameters based upon the corresponding empirical data. Taking the example of modeling studies of language competition, we propose a language diffusion principle and two language inheritance principles to compute two critical parameters, namely the impacts and inheritance rates of competing languages, in our language competition model derived from the Lotka–Volterra competition model in evolutionary biology. These principles assign explicit sociolinguistic meanings to those parameters and calculate their values from the relevant data of population censuses and language surveys. Using four examples of language competition, we illustrate that our language competition model with thus-estimated parameter values can reliably replicate and predict the dynamics of language competition, and it is especially useful in cases lacking direct competition data. PMID:23716678
Principles of parametric estimation in modeling language competition.
Zhang, Menghan; Gong, Tao
2013-06-11
It is generally difficult to define reasonable parameters and interpret their values in mathematical models of social phenomena. Rather than directly fitting abstract parameters against empirical data, we should define some concrete parameters to denote the sociocultural factors relevant for particular phenomena, and compute the values of these parameters based upon the corresponding empirical data. Taking the example of modeling studies of language competition, we propose a language diffusion principle and two language inheritance principles to compute two critical parameters, namely the impacts and inheritance rates of competing languages, in our language competition model derived from the Lotka-Volterra competition model in evolutionary biology. These principles assign explicit sociolinguistic meanings to those parameters and calculate their values from the relevant data of population censuses and language surveys. Using four examples of language competition, we illustrate that our language competition model with thus-estimated parameter values can reliably replicate and predict the dynamics of language competition, and it is especially useful in cases lacking direct competition data.
Estimation of mating system parameters in plant populations using marker loci with null alleles.
Ross, H A
1986-06-01
An Expectation-Maximization (EM)-algorithm procedure is presented that extends Cheliak et al. (1983) method of maximum-likelihood estimation of mating system parameters of mixed mating system models. The extension permits the estimation of the rate of self-fertilization (s) and allele frequencies (Pi) at loci in outcrossing pollen, at marker loci having recessive null alleles. The algorithm makes use of maternal and filial genotypic arrays obtained by the electrophoretic analysis of cohorts of progeny. The genotypes of maternal plants must be known. Explicit equations are given for cases when the genotype of the maternal gamete inherited by a seed can (gymnosperms) or cannot (angiosperms) be determined. The procedure can accommodate any number of codominant alleles, but only one recessive null allele at each locus. An example, using actual data from Pinus banksiana, is presented to illustrate the application of this EM algorithm to the estimation of mating system parameters using marker loci having both codominant and recessive alleles.
Li, Yan; Wagner, Tyler; Jiao, Yan; Lorantas, Robert M.; Murphy, Cheryl
2018-01-01
Understanding the spatial and temporal variability in life-history traits among populations is essential for the management of recreational fisheries. However, valuable freshwater recreational fish species often suffer from a lack of catch information. In this study, we demonstrated the use of an approach to estimate the spatial and temporal variability in growth and mortality in the absence of catch data and apply the method to riverine smallmouth bass (Micropterus dolomieu) populations in Pennsylvania, USA. Our approach included a growth analysis and a length-based analysis that estimates mortality. Using a hierarchical Bayesian approach, we examined spatial variability in growth and mortality by assuming parameters vary spatially but remain constant over time and temporal variability by assuming parameters vary spatially and temporally. The estimated growth and mortality of smallmouth bass showed substantial variability over time and across rivers. We explored the relationships of the estimated growth and mortality with spring water temperature and spring flow. Growth rate was likely to be positively correlated with these two factors, while young mortality was likely to be positively correlated with spring flow. The spatially and temporally varying growth and mortality suggest that smallmouth bass populations across rivers may respond differently to management plans and disturbance such as environmental contamination and land-use change. The analytical approach can be extended to other freshwater recreational species that also lack of catch data. The approach could also be useful in developing population assessments with erroneous catch data or be used as a model sensitivity scenario to verify traditional models even when catch data are available.
Santin-Janin, Hugues; Hugueny, Bernard; Aubry, Philippe; Fouchet, David; Gimenez, Olivier; Pontier, Dominique
2014-01-01
Data collected to inform time variations in natural population size are tainted by sampling error. Ignoring sampling error in population dynamics models induces bias in parameter estimators, e.g., density-dependence. In particular, when sampling errors are independent among populations, the classical estimator of the synchrony strength (zero-lag correlation) is biased downward. However, this bias is rarely taken into account in synchrony studies although it may lead to overemphasizing the role of intrinsic factors (e.g., dispersal) with respect to extrinsic factors (the Moran effect) in generating population synchrony as well as to underestimating the extinction risk of a metapopulation. The aim of this paper was first to illustrate the extent of the bias that can be encountered in empirical studies when sampling error is neglected. Second, we presented a space-state modelling approach that explicitly accounts for sampling error when quantifying population synchrony. Third, we exemplify our approach with datasets for which sampling variance (i) has been previously estimated, and (ii) has to be jointly estimated with population synchrony. Finally, we compared our results to those of a standard approach neglecting sampling variance. We showed that ignoring sampling variance can mask a synchrony pattern whatever its true value and that the common practice of averaging few replicates of population size estimates poorly performed at decreasing the bias of the classical estimator of the synchrony strength. The state-space model used in this study provides a flexible way of accurately quantifying the strength of synchrony patterns from most population size data encountered in field studies, including over-dispersed count data. We provided a user-friendly R-program and a tutorial example to encourage further studies aiming at quantifying the strength of population synchrony to account for uncertainty in population size estimates.
Santin-Janin, Hugues; Hugueny, Bernard; Aubry, Philippe; Fouchet, David; Gimenez, Olivier; Pontier, Dominique
2014-01-01
Background Data collected to inform time variations in natural population size are tainted by sampling error. Ignoring sampling error in population dynamics models induces bias in parameter estimators, e.g., density-dependence. In particular, when sampling errors are independent among populations, the classical estimator of the synchrony strength (zero-lag correlation) is biased downward. However, this bias is rarely taken into account in synchrony studies although it may lead to overemphasizing the role of intrinsic factors (e.g., dispersal) with respect to extrinsic factors (the Moran effect) in generating population synchrony as well as to underestimating the extinction risk of a metapopulation. Methodology/Principal findings The aim of this paper was first to illustrate the extent of the bias that can be encountered in empirical studies when sampling error is neglected. Second, we presented a space-state modelling approach that explicitly accounts for sampling error when quantifying population synchrony. Third, we exemplify our approach with datasets for which sampling variance (i) has been previously estimated, and (ii) has to be jointly estimated with population synchrony. Finally, we compared our results to those of a standard approach neglecting sampling variance. We showed that ignoring sampling variance can mask a synchrony pattern whatever its true value and that the common practice of averaging few replicates of population size estimates poorly performed at decreasing the bias of the classical estimator of the synchrony strength. Conclusion/Significance The state-space model used in this study provides a flexible way of accurately quantifying the strength of synchrony patterns from most population size data encountered in field studies, including over-dispersed count data. We provided a user-friendly R-program and a tutorial example to encourage further studies aiming at quantifying the strength of population synchrony to account for uncertainty in population size estimates. PMID:24489839
A core stochastic population projection model for Florida manatees (Trichechus manatus latirostris)
Runge, Michael C.; Sanders-Reed, Carol A.; Fonnesbeck, Christopher J.
2007-01-01
A stochastic, stage-based population model was developed to describe the life history and forecast the population dynamics of the Florida manatee (Trichechus manatus latirostris) in four separate regions of Florida. This population model includes annual variability in survival and reproductive rates, demographic stochasticity, effects of changes in warm-water capacity, and catastrophes. Further, the model explicitly accounts for uncertainty in parameter estimates. This model is meant to serve as a flexible tool for use in assessments relevant to management decision making, and was used in the State of Florida's recent biological status review. The parameter estimates and model structure described herein reflect our understanding of manatee demography at the time that this status review was completed. In the Northwest and Upper St. Johns regions, the model predicts that the populations will increase over time until warm-water capacity is reached, at which point growth will taper off. In the Atlantic region, the model predicts a stable or slightly increasing population over the next decade or so, and then a decrease as industrial warm-water capacity is lost. In the Southwest region, the model predicts a decline over time, driven by high annual mortality in the short-term and exacerbated by loss of industrial warm-water winter refuges over the next 40 years. Statewide, the likelihood of a 50% or greater decline in three manatee generations was 12%; the likelihood of a 20% or greater decline in two generations was 56%. These declines are largely driven by the anticipated loss of warm-water capacity, especially in the Atlantic and Southwest regions. The estimates of probability of extinction within 100 years were 11.9% for the Southwest region, 0.6% for the Northwest, 0.04% for the Atlantic, and <0.02% for the Upper St. Johns. The estimated probability that the statewide population will fall below 1000 animals within 100 years was 2.3%. Thus, while the estimated probability of extinction is low, the model predicts that current and emerging threats are likely to result in a long-term decline in the statewide population and a change in the regional distribution of manatees. Analyses of sensitivity and variance contribution highlight the importance of reducing uncertainty in some life-history parameters, particularly adult survival, temporal variance of adult survival, and long-term warm-water capacity. This core biological model is expected to evolve over time, as better information becomes available about manatees and their habitat, and as new assessment needs arise. We anticipate that this core model will be customized for other state and federal assessments in the near future.
Mollet, Pierre; Kery, Marc; Gardner, Beth; Pasinelli, Gilberto; Royle, Andy
2015-01-01
We conducted a survey of an endangered and cryptic forest grouse, the capercaillie Tetrao urogallus, based on droppings collected on two sampling occasions in eight forest fragments in central Switzerland in early spring 2009. We used genetic analyses to sex and individually identify birds. We estimated sex-dependent detection probabilities and population size using a modern spatial capture-recapture (SCR) model for the data from pooled surveys. A total of 127 capercaillie genotypes were identified (77 males, 46 females, and 4 of unknown sex). The SCR model yielded atotal population size estimate (posterior mean) of 137.3 capercaillies (posterior sd 4.2, 95% CRI 130–147). The observed sex ratio was skewed towards males (0.63). The posterior mean of the sex ratio under the SCR model was 0.58 (posterior sd 0.02, 95% CRI 0.54–0.61), suggesting a male-biased sex ratio in our study area. A subsampling simulation study indicated that a reduced sampling effort representing 75% of the actual detections would still yield practically acceptable estimates of total size and sex ratio in our population. Hence, field work and financial effort could be reduced without compromising accuracy when the SCR model is used to estimate key population parameters of cryptic species.
Lanier, Wendy E.; Bailey, Larissa L.; Muths, Erin L.
2016-01-01
Conservation of imperiled species often requires knowledge of vital rates and population dynamics. However, these can be difficult to estimate for rare species and small populations. This problem is further exacerbated when individuals are not available for detection during some surveys due to limited access, delaying surveys and creating mismatches between the breeding behavior and survey timing. Here we use simulations to explore the impacts of this issue using four hypothetical boreal toad (Anaxyrus boreas boreas) populations, representing combinations of logistical access (accessible, inaccessible) and breeding behavior (synchronous, asynchronous). We examine the bias and precision of survival and breeding probability estimates generated by survey designs that differ in effort and timing for these populations. Our findings indicate that the logistical access of a site and mismatch between the breeding behavior and survey design can greatly limit the ability to yield accurate and precise estimates of survival and breeding probabilities. Simulations similar to what we have performed can help researchers determine an optimal survey design(s) for their system before initiating sampling efforts.
Schillaci, Michael A; Schillaci, Mario E
2009-02-01
The use of small sample sizes in human and primate evolutionary research is commonplace. Estimating how well small samples represent the underlying population, however, is not commonplace. Because the accuracy of determinations of taxonomy, phylogeny, and evolutionary process are dependant upon how well the study sample represents the population of interest, characterizing the uncertainty, or potential error, associated with analyses of small sample sizes is essential. We present a method for estimating the probability that the sample mean is within a desired fraction of the standard deviation of the true mean using small (n<10) or very small (n < or = 5) sample sizes. This method can be used by researchers to determine post hoc the probability that their sample is a meaningful approximation of the population parameter. We tested the method using a large craniometric data set commonly used by researchers in the field. Given our results, we suggest that sample estimates of the population mean can be reasonable and meaningful even when based on small, and perhaps even very small, sample sizes.
Bassen, David M; Vilkhovoy, Michael; Minot, Mason; Butcher, Jonathan T; Varner, Jeffrey D
2017-01-25
Ensemble modeling is a promising approach for obtaining robust predictions and coarse grained population behavior in deterministic mathematical models. Ensemble approaches address model uncertainty by using parameter or model families instead of single best-fit parameters or fixed model structures. Parameter ensembles can be selected based upon simulation error, along with other criteria such as diversity or steady-state performance. Simulations using parameter ensembles can estimate confidence intervals on model variables, and robustly constrain model predictions, despite having many poorly constrained parameters. In this software note, we present a multiobjective based technique to estimate parameter or models ensembles, the Pareto Optimal Ensemble Technique in the Julia programming language (JuPOETs). JuPOETs integrates simulated annealing with Pareto optimality to estimate ensembles on or near the optimal tradeoff surface between competing training objectives. We demonstrate JuPOETs on a suite of multiobjective problems, including test functions with parameter bounds and system constraints as well as for the identification of a proof-of-concept biochemical model with four conflicting training objectives. JuPOETs identified optimal or near optimal solutions approximately six-fold faster than a corresponding implementation in Octave for the suite of test functions. For the proof-of-concept biochemical model, JuPOETs produced an ensemble of parameters that gave both the mean of the training data for conflicting data sets, while simultaneously estimating parameter sets that performed well on each of the individual objective functions. JuPOETs is a promising approach for the estimation of parameter and model ensembles using multiobjective optimization. JuPOETs can be adapted to solve many problem types, including mixed binary and continuous variable types, bilevel optimization problems and constrained problems without altering the base algorithm. JuPOETs is open source, available under an MIT license, and can be installed using the Julia package manager from the JuPOETs GitHub repository.
Kendall, W.L.; Nichols, J.D.; Hines, J.E.
1997-01-01
Statistical inference for capture-recapture studies of open animal populations typically relies on the assumption that all emigration from the studied population is permanent. However, there are many instances in which this assumption is unlikely to be met. We define two general models for the process of temporary emigration, completely random and Markovian. We then consider effects of these two types of temporary emigration on Jolly-Seber (Seber 1982) estimators and on estimators arising from the full-likelihood approach of Kendall et al. (1995) to robust design data. Capture-recapture data arising from Pollock's (1982) robust design provide the basis for obtaining unbiased estimates of demographic parameters in the presence of temporary emigration and for estimating the probability of temporary emigration. We present a likelihood-based approach to dealing with temporary emigration that permits estimation under different models of temporary emigration and yields tests for completely random and Markovian emigration. In addition, we use the relationship between capture probability estimates based on closed and open models under completely random temporary emigration to derive three ad hoc estimators for the probability of temporary emigration, two of which should be especially useful in situations where capture probabilities are heterogeneous among individual animals. Ad hoc and full-likelihood estimators are illustrated for small mammal capture-recapture data sets. We believe that these models and estimators will be useful for testing hypotheses about the process of temporary emigration, for estimating demographic parameters in the presence of temporary emigration, and for estimating probabilities of temporary emigration. These latter estimates are frequently of ecological interest as indicators of animal movement and, in some sampling situations, as direct estimates of breeding probabilities and proportions.
Regression dilution in the proportional hazards model.
Hughes, M D
1993-12-01
The problem of regression dilution arising from covariate measurement error is investigated for survival data using the proportional hazards model. The naive approach to parameter estimation is considered whereby observed covariate values are used, inappropriately, in the usual analysis instead of the underlying covariate values. A relationship between the estimated parameter in large samples and the true parameter is obtained showing that the bias does not depend on the form of the baseline hazard function when the errors are normally distributed. With high censorship, adjustment of the naive estimate by the factor 1 + lambda, where lambda is the ratio of within-person variability about an underlying mean level to the variability of these levels in the population sampled, removes the bias. As censorship increases, the adjustment required increases and when there is no censorship is markedly higher than 1 + lambda and depends also on the true risk relationship.
Sartain-Iverson, Autumn R.; Hart, Kristen M.; Fujisaki, Ikuko; Cherkiss, Michael S.; Pollock, Clayton; Lundgren, Ian; Hillis-Starr, Zandy
2016-01-01
Hawksbill sea turtles (Eretmochelys imbricata) are circumtropically distributed and listed as Critically Endangered by the IUCN (Meylan & Donnelly 1999; NMFS & USFWS 1993). To aid in population recovery and protection, the Hawksbill Recovery Plan identified the need to determine demographic information for hawksbills, such as distribution, abundance, seasonal movements, foraging areas (sections 121 and 2211), growth rates, and survivorship (section 2213, NMFS & USFWS 1993). Mark-recapture analyses are helpful in estimating demographic parameters and have been used for hawksbills throughout the Caribbean (e.g., Richardson et al. 1999; Velez-Zuazo et al. 2008); integral to these studies are recaptures at the nesting site as well as remigration interval estimates (Hays 2000). Estimates of remigration intervals (the duration between nesting seasons) are critical to marine turtle population estimates and measures of nesting success (Hays 2000; Richardson et al. 1999). Although hawksbills in the Caribbean generally show natal philopatry and nesting-site fidelity (Bass et al. 1996; Bowen et al. 2007), exceptions to this have been observed for hawksbills and other marine turtles (Bowen & Karl 2007; Diamond 1976; Esteban et al. 2015; Hart et al. 2013). This flexibility in choosing a nesting beach could therefore affect the apparent remigration interval and subsequently, region-wide population counts.
Mateus, L A de F; Estupiñán, G M B
2002-02-01
Fork length measurements of individuals of Brycon microlepis landed and commercialized at the Porto Market in Cuiabá, MT, from May-October 1996 to May-October 1997 were used to estimate growth and mortality parameters for this species. The average estimated populational parameters were: L infinity = 705 mm, k = 0.275 year-1, C = 0.775, WP = 0.465, Lc = 164 mm, M = 0.585 year-1, Z = 0.822 year-1, with F = 0.237 year-1. Yield per recruit analysis suggests that the stock is not yet overexploited.
Sex estimation from the patella in an African American population.
Peckmann, Tanya R; Fisher, Brooke
2018-02-01
The skull and pelvis have been used for the estimation of sex for unknown human remains. However, in forensic cases where skeletal remains often exhibit postmortem damage and taphonomic changes the patella may be used for the estimation of sex as it is a preservationally favoured bone. The goal of the present research was to derive discriminant function equations from the patella for estimation of sex from an historic African American population. Six parameters were measured on 200 individuals (100 males and 100 females), ranging in age from 20 to 80 years old, from the Robert J. Terry Anatomical Skeleton Collection. The statistical analyses showed that all variables were sexually dimorphic. Discriminant function score equations were generated for use in sex estimation. The overall accuracy of sex classification ranged from 80.0% to 85.0% for the direct method and 80.0%-84.5% for the stepwise method. Overall, when the Spanish and Black South African discriminant functions were applied to the African American population they showed low accuracy rates for sexing the African American sample. However, when the White South African discriminant functions were applied to the African American sample they displayed high accuracy rates for sexing the African American population. The patella was shown to be accurate for sex estimation in the historic African American population. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
NASA Astrophysics Data System (ADS)
Harshan, S.; Roth, M.; Velasco, E.
2014-12-01
Forecasting of the urban weather and climate is of great importance as our cities become more populated and considering the combined effects of global warming and local land use changes which make urban inhabitants more vulnerable to e.g. heat waves and flash floods. In meso/global scale models, urban parameterization schemes are used to represent the urban effects. However, these schemes require a large set of input parameters related to urban morphological and thermal properties. Obtaining all these parameters through direct measurements are usually not feasible. A number of studies have reported on parameter estimation and sensitivity analysis to adjust and determine the most influential parameters for land surface schemes in non-urban areas. Similar work for urban areas is scarce, in particular studies on urban parameterization schemes in tropical cities have so far not been reported. In order to address above issues, the town energy balance (TEB) urban parameterization scheme (part of the SURFEX land surface modeling system) was subjected to a sensitivity and optimization/parameter estimation experiment at a suburban site in, tropical Singapore. The sensitivity analysis was carried out as a screening test to identify the most sensitive or influential parameters. Thereafter, an optimization/parameter estimation experiment was performed to calibrate the input parameter. The sensitivity experiment was based on the "improved Sobol's global variance decomposition method" . The analysis showed that parameters related to road, roof and soil moisture have significant influence on the performance of the model. The optimization/parameter estimation experiment was performed using the AMALGM (a multi-algorithm genetically adaptive multi-objective method) evolutionary algorithm. The experiment showed a remarkable improvement compared to the simulations using the default parameter set. The calibrated parameters from this optimization experiment can be used for further model validation studies to identify inherent deficiencies in model physics.
Luque-Fernandez, Miguel Angel; Belot, Aurélien; Quaresma, Manuela; Maringe, Camille; Coleman, Michel P; Rachet, Bernard
2016-10-01
In population-based cancer research, piecewise exponential regression models are used to derive adjusted estimates of excess mortality due to cancer using the Poisson generalized linear modelling framework. However, the assumption that the conditional mean and variance of the rate parameter given the set of covariates x i are equal is strong and may fail to account for overdispersion given the variability of the rate parameter (the variance exceeds the mean). Using an empirical example, we aimed to describe simple methods to test and correct for overdispersion. We used a regression-based score test for overdispersion under the relative survival framework and proposed different approaches to correct for overdispersion including a quasi-likelihood, robust standard errors estimation, negative binomial regression and flexible piecewise modelling. All piecewise exponential regression models showed the presence of significant inherent overdispersion (p-value <0.001). However, the flexible piecewise exponential model showed the smallest overdispersion parameter (3.2 versus 21.3) for non-flexible piecewise exponential models. We showed that there were no major differences between methods. However, using a flexible piecewise regression modelling, with either a quasi-likelihood or robust standard errors, was the best approach as it deals with both, overdispersion due to model misspecification and true or inherent overdispersion.
Ronald E. McRoberts; Grant M. Domke; Qi Chen; Erik Næsset; Terje Gobakken
2016-01-01
The relatively small sampling intensities used by national forest inventories are often insufficient to produce the desired precision for estimates of population parameters unless the estimation process is augmented with auxiliary information, usually in the form of remotely sensed data. The k-Nearest Neighbors (k-NN) technique is a non-parametric,multivariate approach...
Global parameter estimation for thermodynamic models of transcriptional regulation.
Suleimenov, Yerzhan; Ay, Ahmet; Samee, Md Abul Hassan; Dresch, Jacqueline M; Sinha, Saurabh; Arnosti, David N
2013-07-15
Deciphering the mechanisms involved in gene regulation holds the key to understanding the control of central biological processes, including human disease, population variation, and the evolution of morphological innovations. New experimental techniques including whole genome sequencing and transcriptome analysis have enabled comprehensive modeling approaches to study gene regulation. In many cases, it is useful to be able to assign biological significance to the inferred model parameters, but such interpretation should take into account features that affect these parameters, including model construction and sensitivity, the type of fitness calculation, and the effectiveness of parameter estimation. This last point is often neglected, as estimation methods are often selected for historical reasons or for computational ease. Here, we compare the performance of two parameter estimation techniques broadly representative of local and global approaches, namely, a quasi-Newton/Nelder-Mead simplex (QN/NMS) method and a covariance matrix adaptation-evolutionary strategy (CMA-ES) method. The estimation methods were applied to a set of thermodynamic models of gene transcription applied to regulatory elements active in the Drosophila embryo. Measuring overall fit, the global CMA-ES method performed significantly better than the local QN/NMS method on high quality data sets, but this difference was negligible on lower quality data sets with increased noise or on data sets simplified by stringent thresholding. Our results suggest that the choice of parameter estimation technique for evaluation of gene expression models depends both on quality of data, the nature of the models [again, remains to be established] and the aims of the modeling effort. Copyright © 2013 Elsevier Inc. All rights reserved.
Estimating transition probabilities in unmarked populations --entropy revisited
Cooch, E.G.; Link, W.A.
1999-01-01
The probability of surviving and moving between 'states' is of great interest to biologists. Robust estimation of these transitions using multiple observations of individually identifiable marked individuals has received considerable attention in recent years. However, in some situations, individuals are not identifiable (or have a very low recapture rate), although all individuals in a sample can be assigned to a particular state (e.g. breeding or non-breeding) without error. In such cases, only aggregate data (number of individuals in a given state at each occasion) are available. If the underlying matrix of transition probabilities does not vary through time and aggregate data are available for several time periods, then it is possible to estimate these parameters using least-squares methods. Even when such data are available, this assumption of stationarity will usually be deemed overly restrictive and, frequently, data will only be available for two time periods. In these cases, the problem reduces to estimating the most likely matrix (or matrices) leading to the observed frequency distribution of individuals in each state. An entropy maximization approach has been previously suggested. In this paper, we show that the entropy approach rests on a particular limiting assumption, and does not provide estimates of latent population parameters (the transition probabilities), but rather predictions of realized rates.
Modeling individual effects in the Cormack-Jolly-Seber Model: A state-space formulation
Royle, J. Andrew
2008-01-01
In population and evolutionary biology, there exists considerable interest in individual heterogeneity in parameters of demographic models for open populations. However, flexible and practical solutions to the development of such models have proven to be elusive. In this article, I provide a state-space formulation of open population capture-recapture models with individual effects. The state-space formulation provides a generic and flexible framework for modeling and inference in models with individual effects, and it yields a practical means of estimation in these complex problems via contemporary methods of Markov chain Monte Carlo. A straightforward implementation can be achieved in the software package WinBUGS. I provide an analysis of a simple model with constant parameter detection and survival probability parameters. A second example is based on data from a 7-year study of European dippers, in which a model with year and individual effects is fitted.
Demography of common toads after local extirpation of co-occurring midwife toads
Bosch, Jaime; Fernandez-Beaskoetxea, S; Scherer, R.; Amburgey, Staci; Muths, Erin L.
2014-01-01
Estimating demographic parameters like survival or recruitment provides insight into the state and trajectory of populations, but understanding the contexts influencing those parameters, including both biotic and abiotic factors, is particularly important for management and conservation. At a high elevation national park in Central Spain, common toads (Bufo bufo) are apparently taking advantage of the near-extirpation of the midwife toad (Alytes obstetricans), as colonization into new breeding ponds is evident. Within this scenario, we expected demographic parameters of common toad populations tobe affected favorably by the putative release from competition. However, we found the population growth rate was negative in 4 of 5 years at the long-standing population; survival probability at the long-standing population and newly-colonised breeding ponds was lower than reported for other toads living at high elevations and the probability of recruitment was inadequate to compensate for the survival rate in maintaining a positive trajectory for either of the breeding ponds. We assessed weather covariates and disease for their contribution to the context that may be limiting the common toad’s successful use of the niche vacated by the midwife toad.
Pisharady, Pramod Kumar; Sotiropoulos, Stamatios N; Duarte-Carvajalino, Julio M; Sapiro, Guillermo; Lenglet, Christophe
2018-02-15
We present a sparse Bayesian unmixing algorithm BusineX: Bayesian Unmixing for Sparse Inference-based Estimation of Fiber Crossings (X), for estimation of white matter fiber parameters from compressed (under-sampled) diffusion MRI (dMRI) data. BusineX combines compressive sensing with linear unmixing and introduces sparsity to the previously proposed multiresolution data fusion algorithm RubiX, resulting in a method for improved reconstruction, especially from data with lower number of diffusion gradients. We formulate the estimation of fiber parameters as a sparse signal recovery problem and propose a linear unmixing framework with sparse Bayesian learning for the recovery of sparse signals, the fiber orientations and volume fractions. The data is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible diffusion directions. Volume fractions of fibers along these directions define the dictionary weights. The proposed sparse inference, which is based on the dictionary representation, considers the sparsity of fiber populations and exploits the spatial redundancy in data representation, thereby facilitating inference from under-sampled q-space. The algorithm improves parameter estimation from dMRI through data-dependent local learning of hyperparameters, at each voxel and for each possible fiber orientation, that moderate the strength of priors governing the parameter variances. Experimental results on synthetic and in-vivo data show improved accuracy with a lower uncertainty in fiber parameter estimates. BusineX resolves a higher number of second and third fiber crossings. For under-sampled data, the algorithm is also shown to produce more reliable estimates. Copyright © 2017 Elsevier Inc. All rights reserved.
Fang, Yun; Wu, Hulin; Zhu, Li-Xing
2011-07-01
We propose a two-stage estimation method for random coefficient ordinary differential equation (ODE) models. A maximum pseudo-likelihood estimator (MPLE) is derived based on a mixed-effects modeling approach and its asymptotic properties for population parameters are established. The proposed method does not require repeatedly solving ODEs, and is computationally efficient although it does pay a price with the loss of some estimation efficiency. However, the method does offer an alternative approach when the exact likelihood approach fails due to model complexity and high-dimensional parameter space, and it can also serve as a method to obtain the starting estimates for more accurate estimation methods. In addition, the proposed method does not need to specify the initial values of state variables and preserves all the advantages of the mixed-effects modeling approach. The finite sample properties of the proposed estimator are studied via Monte Carlo simulations and the methodology is also illustrated with application to an AIDS clinical data set.
Statistical Estimation of Orbital Debris Populations with a Spectrum of Object Size
NASA Technical Reports Server (NTRS)
Xu, Y. -l; Horstman, M.; Krisko, P. H.; Liou, J. -C; Matney, M.; Stansbery, E. G.; Stokely, C. L.; Whitlock, D.
2008-01-01
Orbital debris is a real concern for the safe operations of satellites. In general, the hazard of debris impact is a function of the size and spatial distributions of the debris populations. To describe and characterize the debris environment as reliably as possible, the current NASA Orbital Debris Engineering Model (ORDEM2000) is being upgraded to a new version based on new and better quality data. The data-driven ORDEM model covers a wide range of object sizes from 10 microns to greater than 1 meter. This paper reviews the statistical process for the estimation of the debris populations in the new ORDEM upgrade, and discusses the representation of large-size (greater than or equal to 1 m and greater than or equal to 10 cm) populations by SSN catalog objects and the validation of the statistical approach. Also, it presents results for the populations with sizes of greater than or equal to 3.3 cm, greater than or equal to 1 cm, greater than or equal to 100 micrometers, and greater than or equal to 10 micrometers. The orbital debris populations used in the new version of ORDEM are inferred from data based upon appropriate reference (or benchmark) populations instead of the binning of the multi-dimensional orbital-element space. This paper describes all of the major steps used in the population-inference procedure for each size-range. Detailed discussions on data analysis, parameter definition, the correlation between parameters and data, and uncertainty assessment are included.
A model of northern pintail productivity and population growth rate
Flint, Paul L.; Grand, James B.; Rockwell, Robert F.
1998-01-01
Our objective was to synthesize individual components of reproductive ecology into a single estimate of productivity and to assess the relative effects of survival and productivity on population dynamics. We used information on nesting ecology, renesting potential, and duckling survival of northern pintails (Anas acuta) collected on the Yukon-Kuskokwim Delta (Y-K Delta), Alaska, 1991-95, to model the number of ducklings produced under a range of nest success and duckling survival probabilities. Using average values of 25% nest success, 11% duckling survival, and 56% renesting probability from our study population, we calculated that all young in our population were produced by 13% of the breeding females, and that early-nesting females produced more young than later-nesting females. Further, we calculated, on average, that each female produced only 0.16 young females/nesting season. We combined these results with estimates of first-year and adult survival to examine the growth rate (X) of the population and the relative contributions of these demographic parameters to that growth rate. Contrary to aerial survey data, the population projection model suggests our study population is declining rapidly (X = 0.6969). The relative effects on population growth rate were 0.1175 for reproductive success, 0.1175 for first-year survival, and 0.8825 for adult survival. Adult survival had the greatest influence on X for our population, and this conclusion was robust over a range of survival and productivity estimates. Given published estimates of annual survival for adult females (61%), our model suggested nest success and duckling survival need to increase to approximately 40% to achieve population stability. We discuss reasons for the apparent discrepancy in population trends between our model and aerial surveys in terms of bias in productivity and survival estimates.
Yackel Adams, A.A.; Skagen, S.K.; Savidge, J.A.
2007-01-01
Many North American prairie bird populations have recently declined, and the causes of these declines remain largely unknown. To determine whether population limitation occurs during breeding, we evaluated the stability of a population of prairie birds using population-specific values for fecundity and postfledging survival. During 2001-2003, we radiomarked 67 female Lark Buntings (Calamospiza melanocorys) to determine annual fecundity and evaluate contributing factors such as nest survival and breeding response (number of breeding attempts and dispersal). Collectively, 67 females built 112 nests (1.67 ± 0.07 nests female−1 season−1; range: 1–3); 34 were second nests and 11 were third nests. Daily nest survival estimates were similar for initial and later nests with overall nest survival (DSR19) of 30.7% and 31.7%, respectively. Nest predation was the most common cause of failure (92%). Capture and radiomarking of females did not affect nest survival. Lark Bunting dispersal probabilities increased among females that fledged young from initial nests and females that lost their original nests late in the season. Conservative and liberal estimates of mean annual fecundity were 0.96 ±0.11 and 1.24 ± 0.09 female offspring per female, respectively. Given the fecundity and juvenile-survival estimates for this population, annual adult survival values of 71–77% are necessary to achieve a stable population. Because adult survival of prairie passerines ranges between 55% and 65%, this study area may not be capable of sustaining a stable population in the absence of immigration. We contrast our population assessment with one that assumes indirect values of fecundity and juvenile survival. To elucidate limiting factors, estimation of population-specific demographic parameters is desirable. We present an approach for selecting species and areas for evaluation of population stability.
GLISTR: Glioma Image Segmentation and Registration
Pohl, Kilian M.; Bilello, Michel; Cirillo, Luigi; Biros, George; Melhem, Elias R.; Davatzikos, Christos
2015-01-01
We present a generative approach for simultaneously registering a probabilistic atlas of a healthy population to brain magnetic resonance (MR) scans showing glioma and segmenting the scans into tumor as well as healthy tissue labels. The proposed method is based on the expectation maximization (EM) algorithm that incorporates a glioma growth model for atlas seeding, a process which modifies the original atlas into one with tumor and edema adapted to best match a given set of patient’s images. The modified atlas is registered into the patient space and utilized for estimating the posterior probabilities of various tissue labels. EM iteratively refines the estimates of the posterior probabilities of tissue labels, the deformation field and the tumor growth model parameters. Hence, in addition to segmentation, the proposed method results in atlas registration and a low-dimensional description of the patient scans through estimation of tumor model parameters. We validate the method by automatically segmenting 10 MR scans and comparing the results to those produced by clinical experts and two state-of-the-art methods. The resulting segmentations of tumor and edema outperform the results of the reference methods, and achieve a similar accuracy from a second human rater. We additionally apply the method to 122 patients scans and report the estimated tumor model parameters and their relations with segmentation and registration results. Based on the results from this patient population, we construct a statistical atlas of the glioma by inverting the estimated deformation fields to warp the tumor segmentations of patients scans into a common space. PMID:22907965
The 'robust' capture-recapture design allows components of recruitment to be estimated
Pollock, K.H.; Kendall, W.L.; Nichols, J.D.; Lebreton, J.-D.; North, P.M.
1993-01-01
The 'robust' capture-recapture design (Pollock 1982) allows analyses which combine features of closed population model analyses (Otis et aI., 1978, White et aI., 1982) and open population model analyses (Pollock et aI., 1990). Estimators obtained under these analyses are more robust to unequal catch ability than traditional Jolly-Seber estimators (Pollock, 1982; Pollock et al., 1990; Kendall, 1992). The robust design also allows estimation of parameters for population size, survival rate and recruitment numbers for all periods of the study unlike under Jolly-Seber type models. The major advantage of this design that we emphasize in this short review paper is that it allows separate estimation of immigration and in situ recruitment numbers for a two or more age class model (Nichols and Pollock, 1990). This is contrasted with the age-dependent Jolly-Seber model (Pollock, 1981; Stokes, 1984; Pollock et L, 1990) which provides separate estimates for immigration and in situ recruitment for all but the first two age classes where there is at least a three age class model. The ability to achieve this separation of recruitment components can be very important to population modelers and wildlife managers as many species can only be separated into two easily identified age classes in the field.
Knebel, William; Palmen, Mary; Dowell, James A; Gastonguay, Marc
2008-07-01
This analysis quantifies the population pharmacokinetics of subcutaneous and intravenous epoetin delta, an epoetin produced in a human cell line, in pediatric patients with chronic kidney disease and estimates the effects of covariate factors on epoetin delta and epoetin alfa pharmacokinetic parameters. Erythropoietin serum concentration data, taken from a phase III study conducted in 60 patients aged 1 to 17 years, were best described by a 1-compartment model with first-order absorption and elimination. The typical point estimates were clearance (0.268 L/h), central volume of distribution (1.03 L), absorption rate constant (0.0554 h(-1)), and bioavailability (0.708) for a 35-kg male < or = 10 years who was predialysis and on subcutaneous epoetin delta treatment. Erythropoietin pharmacokinetic parameters were similar in pediatric patients as compared with adults when scaled by weight. The subcutaneous administration of epoetin alfa exhibited lower systemic bioavailability than subcutaneous administration of epoetin delta.
Wu, Liviawati; Mould, Diane R; Perez Ruixo, Juan Jose; Doshi, Sameer
2015-10-01
A population pharmacokinetic pharmacodynamic (PK/PD) model describing the effect of epoetin alfa on hemoglobin (Hb) response in hemodialysis patients was developed. Epoetin alfa pharmacokinetics was described using a linear 2-compartment model. PK parameter estimates were similar to previously reported values. A maturation-structured cytokinetic model consisting of 5 compartments linked in a catenary fashion by first-order cell transfer rates following a zero-order input process described the Hb time course. The PD model described 2 subpopulations, one whose Hb response reflected epoetin alfa dosing and a second whose response was unrelated to epoetin alfa dosing. Parameter estimates from the PK/PD model were physiologically reasonable and consistent with published reports. Numerical and visual predictive checks using data from 2 studies were performed. The PK and PD of epoetin alfa were well described by the model. © 2015, The American College of Clinical Pharmacology.
Stochastic Individual-Based Modeling of Bacterial Growth and Division Using Flow Cytometry.
García, Míriam R; Vázquez, José A; Teixeira, Isabel G; Alonso, Antonio A
2017-01-01
A realistic description of the variability in bacterial growth and division is critical to produce reliable predictions of safety risks along the food chain. Individual-based modeling of bacteria provides the theoretical framework to deal with this variability, but it requires information about the individual behavior of bacteria inside populations. In this work, we overcome this problem by estimating the individual behavior of bacteria from population statistics obtained with flow cytometry. For this objective, a stochastic individual-based modeling framework is defined based on standard assumptions during division and exponential growth. The unknown single-cell parameters required for running the individual-based modeling simulations, such as cell size growth rate, are estimated from the flow cytometry data. Instead of using directly the individual-based model, we make use of a modified Fokker-Plank equation. This only equation simulates the population statistics in function of the unknown single-cell parameters. We test the validity of the approach by modeling the growth and division of Pediococcus acidilactici within the exponential phase. Estimations reveal the statistics of cell growth and division using only data from flow cytometry at a given time. From the relationship between the mother and daughter volumes, we also predict that P. acidilactici divide into two successive parallel planes.
Cryptosporidiosis susceptibility and risk: a case study.
Makri, Anna; Modarres, Reza; Parkin, Rebecca
2004-02-01
Regional estimates of cryptosporidiosis risks from drinking water exposure were developed and validated, accounting for AIDS status and age. We constructed a model with probability distributions and point estimates representing Cryptosporidium in tap water, tap water consumed per day (exposure characterization); dose response, illness given infection, prolonged illness given illness; and three conditional probabilities describing the likelihood of case detection by active surveillance (health effects characterization). The model predictions were combined with population data to derive expected case numbers and incidence rates per 100,000 population, by age and AIDS status, borough specific and for New York City overall in 2000 (risk characterization). They were compared with same-year surveillance data to evaluate predictive ability, assumed to represent true incidence of waterborne cryptosporidiosis. The predicted mean risks, similar to previously published estimates for this region, overpredicted observed incidence-most extensively when accounting for AIDS status. The results suggest that overprediction may be due to conservative parameters applied to both non-AIDS and AIDS populations, and that biological differences for children need to be incorporated. Interpretations are limited by the unknown accuracy of available surveillance data, in addition to variability and uncertainty of model predictions. The model appears sensitive to geographical differences in AIDS prevalence. The use of surveillance data for validation and model parameters pertinent to susceptibility are discussed.
Skrbinšek, Tomaž; Jelenčič, Maja; Waits, Lisette; Kos, Ivan; Jerina, Klemen; Trontelj, Peter
2012-02-01
The effective population size (N(e) ) could be the ideal parameter for monitoring populations of conservation concern as it conveniently summarizes both the evolutionary potential of the population and its sensitivity to genetic stochasticity. However, tracing its change through time is difficult in natural populations. We applied four new methods for estimating N(e) from a single sample of genotypes to trace temporal change in N(e) for bears in the Northern Dinaric Mountains. We genotyped 510 bears using 20 microsatellite loci and determined their age. The samples were organized into cohorts with regard to the year when the animals were born and yearly samples with age categories for every year when they were alive. We used the Estimator by Parentage Assignment (EPA) to directly estimate both N(e) and generation interval for each yearly sample. For cohorts, we estimated the effective number of breeders (N(b) ) using linkage disequilibrium, sibship assignment and approximate Bayesian computation methods and extrapolated these estimates to N(e) using the generation interval. The N(e) estimate by EPA is 276 (183-350 95% CI), meeting the inbreeding-avoidance criterion of N(e) > 50 but short of the long-term minimum viable population goal of N(e) > 500. The results obtained by the other methods are highly consistent with this result, and all indicate a rapid increase in N(e) probably in the late 1990s and early 2000s. The new single-sample approaches to the estimation of N(e) provide efficient means for including N(e) in monitoring frameworks and will be of great importance for future management and conservation. © 2012 Blackwell Publishing Ltd.
Combining band recovery data and Pollock's robust design to model temporary and permanent emigration
Lindberg, M.S.; Kendall, W.L.; Hines, J.E.; Anderson, M.G.
2001-01-01
Capture-recapture models are widely used to estimate demographic parameters of marked populations. Recently, this statistical theory has been extended to modeling dispersal of open populations. Multistate models can be used to estimate movement probabilities among subdivided populations if multiple sites are sampled. Frequently, however, sampling is limited to a single site. Models described by Burnham (1993, in Marked Individuals in the Study of Bird Populations, 199-213), which combined open population capture-recapture and band-recovery models, can be used to estimate permanent emigration when sampling is limited to a single population. Similarly, Kendall, Nichols, and Hines (1997, Ecology 51, 563-578) developed models to estimate temporary emigration under Pollock's (1982, Journal of Wildlife Management 46, 757-760) robust design. We describe a likelihood-based approach to simultaneously estimate temporary and permanent emigration when sampling is limited to a single population. We use a sampling design that combines the robust design and recoveries of individuals obtained immediately following each sampling period. We present a general form for our model where temporary emigration is a first-order Markov process, and we discuss more restrictive models. We illustrate these models with analysis of data on marked Canvasback ducks. Our analysis indicates that probability of permanent emigration for adult female Canvasbacks was 0.193 (SE = 0.082) and that birds that were present at the study area in year i - 1 had a higher probability of presence in year i than birds that were not present in year i - 1.
Prediction of flunixin tissue residue concentrations in livers from diseased cattle.
Wu, H; Baynes, R E; Tell, L A; Riviere, J E
2013-12-01
Flunixin, a widely used non-steroidal anti-inflammatory drug, was a leading cause of violative residues in cattle. The objective of this analysis was to explore how the changes in pharmacokinetic (PK) parameters that may be associated with diseased animals affect the predicted liver residue of flunixin in cattle. Monte Carlo simulations for liver residues of flunixin were performed using the PK model structure and relevant PK parameter estimates from a previously published population PK model for flunixin in cattle. The magnitude of a change in the PK parameter value that resulted in a violative residue issue in more than one percent of a cattle population was compared. In this regard, elimination clearance and volume of distribution affected withdrawal times. Pathophysiological factors that can change these parameters may contribute to the occurrence of violative residues of flunixin.
Zavodna, Monika; Grueber, Catherine E; Gemmell, Neil J
2013-01-01
Next-generation sequencing (NGS) on pooled samples has already been broadly applied in human medical diagnostics and plant and animal breeding. However, thus far it has been only sparingly employed in ecology and conservation, where it may serve as a useful diagnostic tool for rapid assessment of species genetic diversity and structure at the population level. Here we undertake a comprehensive evaluation of the accuracy, practicality and limitations of parallel tagged amplicon NGS on pooled population samples for estimating species population diversity and structure. We obtained 16S and Cyt b data from 20 populations of Leiopelma hochstetteri, a frog species of conservation concern in New Zealand, using two approaches - parallel tagged NGS on pooled population samples and individual Sanger sequenced samples. Data from each approach were then used to estimate two standard population genetic parameters, nucleotide diversity (π) and population differentiation (FST), that enable population genetic inference in a species conservation context. We found a positive correlation between our two approaches for population genetic estimates, showing that the pooled population NGS approach is a reliable, rapid and appropriate method for population genetic inference in an ecological and conservation context. Our experimental design also allowed us to identify both the strengths and weaknesses of the pooled population NGS approach and outline some guidelines and suggestions that might be considered when planning future projects.
Ozturk, Onur; Arikan, Sanem; Atalay, Ayfer; Atalay, Erol O
2018-05-01
Hb G-Coushatta variant was reported from various populations' parts of the world such as Thai, Korea, Algeria, Thailand, China, Japan and Turkey. In our study, we aimed to discuss the possible historical relationships of the Hb G-Coushatta mutation with the possible migration routes of the world. For this purpose, associated haplotypes were determined using polymorphic loci in the beta globin gene cluster of hemoglobin G-Coushatta and normal populations in Denizli, Turkey. We performed statistical analysis such as haplotype analysis, Hardy-Weinberg equilibrium, measurement of genetic diversity and population differentiation parameters, analysis of molecular variance using F-statistics, historical-demographic analyses, mismatch distribution analysis of both populations and applied the test statistics in Arlequin ver. 3.5 software program. The diversity of haplotypes has been shown to indicate different genetic origins for two populations. However, AMOVA results, molecular diversity parameters and population demographic expansion times showed that the Hb G-Coushatta mutation develops on the normal population gene pool. Our estimated τ values showed the average time since the demographic expansion for normal and Hb G-Coushatta populations ranged from approximately 42,000 to 38,000 ybp, respectively. Our data suggest that Hb G-Coushatta population originate in normal population in Denizli, Turkey. These results support the hypothesis that the multiple origin of Hb G-Coushatta and indicate that mutation may have been triggered the formation of new variants on beta globin haplotypes. © 2018 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.
Estimation of stature by using lower limb dimensions in the Malaysian population.
Nor, Faridah Mohd; Abdullah, Nurliza; Mustapa, Al-Mizan; Qi Wen, Leong; Faisal, Nurulina Aimi; Ahmad Nazari, Dayang Anis Asyikin
2013-11-01
Estimation of stature is an important step in developing a biological profile for human identification. It may provide a valuable indicator for an unknown individual in a population. The aim of this study was to analyse the relationship between stature and lower limb dimensions in the Malaysian population. The sample comprised 100 corpses, which included 69 males and 31 females between the age range of 20-90 years old. The parameters measured were stature, thigh length, lower leg length, leg length, foot length, foot height and foot breadth. Results showed that the mean values in males were significantly higher than those in females (p < 0.05). There were significant correlations between lower limb dimensions and stature. Cross-validation of the equation on 100 individuals showed close approximation between known stature and estimated stature. It was concluded that lower limb dimensions were useful for estimation of stature, which should be validated in future studies. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Fenner, Jack N
2005-10-01
The length of the human generation interval is a key parameter when using genetics to date population divergence events. However, no consensus exists regarding the generation interval length, and a wide variety of interval lengths have been used in recent studies. This makes comparison between studies difficult, and questions the accuracy of divergence date estimations. Recent genealogy-based research suggests that the male generation interval is substantially longer than the female interval, and that both are greater than the values commonly used in genetics studies. This study evaluates each of these hypotheses in a broader cross-cultural context, using data from both nation states and recent hunter-gatherer societies. Both hypotheses are supported by this study; therefore, revised estimates of male, female, and overall human generation interval lengths are proposed. The nearly universal, cross-cultural nature of the evidence justifies using these proposed estimates in Y-chromosomal, mitochondrial, and autosomal DNA-based population divergence studies.
Coates, Peter S.; Prochazka, Brian G.; Ricca, Mark A.; Halstead, Brian J.; Casazza, Michael L.; Blomberg, Erik J.; Brussee, Brianne E.; Wiechman, Lief; Tebbenkamp, Joel; Gardner, Scott C.; Reese, Kerry P.
2018-01-01
Consideration of ecological scale is fundamental to understanding and managing avian population growth and decline. Empirically driven models for population dynamics and demographic processes across multiple spatial scales can be powerful tools to help guide conservation actions. Integrated population models (IPMs) provide a framework for better parameter estimation by unifying multiple sources of data (e.g., count and demographic data). Hierarchical structure within such models that include random effects allow for varying degrees of data sharing across different spatiotemporal scales. We developed an IPM to investigate Greater Sage-Grouse (Centrocercus urophasianus) on the border of California and Nevada, known as the Bi-State Distinct Population Segment. Our analysis integrated 13 years of lek count data (n > 2,000) and intensive telemetry (VHF and GPS; n > 350 individuals) data across 6 subpopulations. Specifically, we identified the most parsimonious models among varying random effects and density-dependent terms for each population vital rate (e.g., nest survival). Using a joint likelihood process, we integrated the lek count data with the demographic models to estimate apparent abundance and refine vital rate parameter estimates. To investigate effects of climatic conditions, we extended the model to fit a precipitation covariate for instantaneous rate of change (r). At a metapopulation extent (i.e. Bi-State), annual population rate of change λ (er) did not favor an overall increasing or decreasing trend through the time series. However, annual changes in λ were driven by changes in precipitation (one-year lag effect). At subpopulation extents, we identified substantial variation in λ and demographic rates. One subpopulation clearly decoupled from the trend at the metapopulation extent and exhibited relatively high risk of extinction as a result of low egg fertility. These findings can inform localized, targeted management actions for specific areas, and status of the species for the larger Bi-State.
Expert elicitation of population-level effects of disturbance
Fleishman, Erica; Burgman, Mark; Runge, Michael C.; Schick, Robert S; Krauss, Scott; Popper, Arthur N.; Hawkins, Anthony
2016-01-01
Expert elicitation is a rigorous method for synthesizing expert knowledge to inform decision making and is reliable and practical when field data are limited. We evaluated the feasibility of applying expert elicitation to estimate population-level effects of disturbance on marine mammals. Diverse experts estimated parameters related to mortality and sublethal injury of North Atlantic right whales (Eubalaena glacialis). We are now eliciting expert knowledge on the movement of right whales among geographic regions to parameterize a spatial model of health. Expert elicitation complements methods such as simulation models or extrapolations from other species, sometimes with greater accuracy and less uncertainty.
Heritability in the genomics era--concepts and misconceptions.
Visscher, Peter M; Hill, William G; Wray, Naomi R
2008-04-01
Heritability allows a comparison of the relative importance of genes and environment to the variation of traits within and across populations. The concept of heritability and its definition as an estimable, dimensionless population parameter was introduced by Sewall Wright and Ronald Fisher nearly a century ago. Despite continuous misunderstandings and controversies over its use and application, heritability remains key to the response to selection in evolutionary biology and agriculture, and to the prediction of disease risk in medicine. Recent reports of substantial heritability for gene expression and new estimation methods using marker data highlight the relevance of heritability in the genomics era.
Decennial Life Tables for the White Population of the United States, 1790–19001
Hacker, J. David
2010-01-01
This article constructs new life tables for the white population of the United States in each decade between 1790 and 1900. Drawing from several recent studies, it suggests best estimates of life expectancy at age 20 for each decade. These estimates are fitted to new standards derived from the 1900–02 rural and 1900–02 overall DRA life tables using a two-parameter logit model with fixed slope. The resulting decennial life tables more accurately represent sex-and age-specific mortality rates while capturing known mortality trends. PMID:20563225
Evolutionary optimization with data collocation for reverse engineering of biological networks.
Tsai, Kuan-Yao; Wang, Feng-Sheng
2005-04-01
Modern experimental biology is moving away from analyses of single elements to whole-organism measurements. Such measured time-course data contain a wealth of information about the structure and dynamic of the pathway or network. The dynamic modeling of the whole systems is formulated as a reverse problem that requires a well-suited mathematical model and a very efficient computational method to identify the model structure and parameters. Numerical integration for differential equations and finding global parameter values are still two major challenges in this field of the parameter estimation of nonlinear dynamic biological systems. We compare three techniques of parameter estimation for nonlinear dynamic biological systems. In the proposed scheme, the modified collocation method is applied to convert the differential equations to the system of algebraic equations. The observed time-course data are then substituted into the algebraic system equations to decouple system interactions in order to obtain the approximate model profiles. Hybrid differential evolution (HDE) with population size of five is able to find a global solution. The method is not only suited for parameter estimation but also can be applied for structure identification. The solution obtained by HDE is then used as the starting point for a local search method to yield the refined estimates.
Estimating and modeling the cure fraction in population-based cancer survival analysis.
Lambert, Paul C; Thompson, John R; Weston, Claire L; Dickman, Paul W
2007-07-01
In population-based cancer studies, cure is said to occur when the mortality (hazard) rate in the diseased group of individuals returns to the same level as that expected in the general population. The cure fraction (the proportion of patients cured of disease) is of interest to patients and is a useful measure to monitor trends in survival of curable disease. There are 2 main types of cure fraction model, the mixture cure fraction model and the non-mixture cure fraction model, with most previous work concentrating on the mixture cure fraction model. In this paper, we extend the parametric non-mixture cure fraction model to incorporate background mortality, thus providing estimates of the cure fraction in population-based cancer studies. We compare the estimates of relative survival and the cure fraction between the 2 types of model and also investigate the importance of modeling the ancillary parameters in the selected parametric distribution for both types of model.
A Bayesian state-space formulation of dynamic occupancy models
Royle, J. Andrew; Kery, M.
2007-01-01
Species occurrence and its dynamic components, extinction and colonization probabilities, are focal quantities in biogeography and metapopulation biology, and for species conservation assessments. It has been increasingly appreciated that these parameters must be estimated separately from detection probability to avoid the biases induced by nondetection error. Hence, there is now considerable theoretical and practical interest in dynamic occupancy models that contain explicit representations of metapopulation dynamics such as extinction, colonization, and turnover as well as growth rates. We describe a hierarchical parameterization of these models that is analogous to the state-space formulation of models in time series, where the model is represented by two components, one for the partially observable occupancy process and another for the observations conditional on that process. This parameterization naturally allows estimation of all parameters of the conventional approach to occupancy models, but in addition, yields great flexibility and extensibility, e.g., to modeling heterogeneity or latent structure in model parameters. We also highlight the important distinction between population and finite sample inference; the latter yields much more precise estimates for the particular sample at hand. Finite sample estimates can easily be obtained using the state-space representation of the model but are difficult to obtain under the conventional approach of likelihood-based estimation. We use R and Win BUGS to apply the model to two examples. In a standard analysis for the European Crossbill in a large Swiss monitoring program, we fit a model with year-specific parameters. Estimates of the dynamic parameters varied greatly among years, highlighting the irruptive population dynamics of that species. In the second example, we analyze route occupancy of Cerulean Warblers in the North American Breeding Bird Survey (BBS) using a model allowing for site-specific heterogeneity in model parameters. The results indicate relatively low turnover and a stable distribution of Cerulean Warblers which is in contrast to analyses of counts of individuals from the same survey that indicate important declines. This discrepancy illustrates the inertia in occupancy relative to actual abundance. Furthermore, the model reveals a declining patch survival probability, and increasing turnover, toward the edge of the range of the species, which is consistent with metapopulation perspectives on the genesis of range edges. Given detection/non-detection data, dynamic occupancy models as described here have considerable potential for the study of distributions and range dynamics.
Abu Bakar, S N; Aspalilah, A; AbdelNasser, I; Nurliza, A; Hairuliza, M J; Swarhib, M; Das, S; Mohd Nor, F
2017-01-01
Stature is one of the characteristics that could be used to identify human, besides age, sex and racial affiliation. This is useful when the body found is either dismembered, mutilated or even decomposed, and helps in narrowing down the missing person's identity. The main aim of the present study was to construct regression functions for stature estimation by using lower limb bones in the Malaysian population. The sample comprised 87 adult individuals (81 males, 6 females) aged between 20 to 79 years. The parameters such as thigh length, lower leg length, leg length, foot length, foot height and foot breadth were measured. They were measured by a ruler and measuring tape. Statistical analysis involved independent t-test to analyse the difference between lower limbs in male and female. The Pearson's correlation test was used to analyse correlations between lower limb parameters and stature, and the linear regressions were used to form equations. The paired t-test was used to compare between actual stature and estimated stature by using the equations formed. Using independent t-test, there was a significant difference (p< 0.05) in the measurement between males and females with regard to leg length, thigh length, lower leg length, foot length and foot breadth. The thigh length, leg length and foot length were observed to have strong correlations with stature with p= 0.75, p= 0.81 and p= 0.69, respectively. Linear regressions were formulated for stature estimation. Paired t-test showed no significant difference between actual stature and estimated stature. It is concluded that regression functions can be used to estimate stature to identify skeletal remains in the Malaysia population.
The Influence of Normalization Weight in Population Pharmacokinetic Covariate Models.
Goulooze, Sebastiaan C; Völler, Swantje; Välitalo, Pyry A J; Calvier, Elisa A M; Aarons, Leon; Krekels, Elke H J; Knibbe, Catherijne A J
2018-03-23
In covariate (sub)models of population pharmacokinetic models, most covariates are normalized to the median value; however, for body weight, normalization to 70 kg or 1 kg is often applied. In this article, we illustrate the impact of normalization weight on the precision of population clearance (CL pop ) parameter estimates. The influence of normalization weight (70, 1 kg or median weight) on the precision of the CL pop estimate, expressed as relative standard error (RSE), was illustrated using data from a pharmacokinetic study in neonates with a median weight of 2.7 kg. In addition, a simulation study was performed to show the impact of normalization to 70 kg in pharmacokinetic studies with paediatric or obese patients. The RSE of the CL pop parameter estimate in the neonatal dataset was lowest with normalization to median weight (8.1%), compared with normalization to 1 kg (10.5%) or 70 kg (48.8%). Typical clearance (CL) predictions were independent of the normalization weight used. Simulations showed that the increase in RSE of the CL pop estimate with 70 kg normalization was highest in studies with a narrow weight range and a geometric mean weight away from 70 kg. When, instead of normalizing with median weight, a weight outside the observed range is used, the RSE of the CL pop estimate will be inflated, and should therefore not be used for model selection. Instead, established mathematical principles can be used to calculate the RSE of the typical CL (CL TV ) at a relevant weight to evaluate the precision of CL predictions.
Kamath, Pauline L.; Haroldson, Mark A.; Luikart, Gordon; Paetkau, David; Whitman, Craig L.; van Manen, Frank T.
2015-01-01
Effective population size (Ne) is a key parameter for monitoring the genetic health of threatened populations because it reflects a population's evolutionary potential and risk of extinction due to genetic stochasticity. However, its application to wildlife monitoring has been limited because it is difficult to measure in natural populations. The isolated and well-studied population of grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem provides a rare opportunity to examine the usefulness of different Ne estimators for monitoring. We genotyped 729 Yellowstone grizzly bears using 20 microsatellites and applied three single-sample estimators to examine contemporary trends in generation interval (GI), effective number of breeders (Nb) and Ne during 1982–2007. We also used multisample methods to estimate variance (NeV) and inbreeding Ne (NeI). Single-sample estimates revealed positive trajectories, with over a fourfold increase in Ne (≈100 to 450) and near doubling of the GI (≈8 to 14) from the 1980s to 2000s. NeV (240–319) and NeI (256) were comparable with the harmonic mean single-sample Ne (213) over the time period. Reanalysing historical data, we found NeV increased from ≈80 in the 1910s–1960s to ≈280 in the contemporary population. The estimated ratio of effective to total census size (Ne/Nc) was stable and high (0.42–0.66) compared to previous brown bear studies. These results support independent demographic evidence for Yellowstone grizzly bear population growth since the 1980s. They further demonstrate how genetic monitoring of Ne can complement demographic-based monitoring of Nc and vital rates, providing a valuable tool for wildlife managers.
Zaikin, Alexey; Míguez, Joaquín
2017-01-01
We compare three state-of-the-art Bayesian inference methods for the estimation of the unknown parameters in a stochastic model of a genetic network. In particular, we introduce a stochastic version of the paradigmatic synthetic multicellular clock model proposed by Ullner et al., 2007. By introducing dynamical noise in the model and assuming that the partial observations of the system are contaminated by additive noise, we enable a principled mechanism to represent experimental uncertainties in the synthesis of the multicellular system and pave the way for the design of probabilistic methods for the estimation of any unknowns in the model. Within this setup, we tackle the Bayesian estimation of a subset of the model parameters. Specifically, we compare three Monte Carlo based numerical methods for the approximation of the posterior probability density function of the unknown parameters given a set of partial and noisy observations of the system. The schemes we assess are the particle Metropolis-Hastings (PMH) algorithm, the nonlinear population Monte Carlo (NPMC) method and the approximate Bayesian computation sequential Monte Carlo (ABC-SMC) scheme. We present an extensive numerical simulation study, which shows that while the three techniques can effectively solve the problem there are significant differences both in estimation accuracy and computational efficiency. PMID:28797087
Two means of sampling sexual minority women: how different are the samples of women?
Boehmer, Ulrike; Clark, Melissa; Timm, Alison; Ozonoff, Al
2008-01-01
We compared 2 sampling approaches of sexual minority women in 1 limited geographic area to better understand the implications of these 2 sampling approaches. Sexual minority women identified through the Census did not differ on average age or the prevalence of raising children from those sampled using nonrandomized methods. Women in the convenience sample were better educated and lived in smaller households. Modeling the likelihood of disability in this population resulted in contradictory parameter estimates by sampling approach. The degree of variation observed both between sampling approaches and between different parameters suggests that the total population of sexual minority women is still unmeasured. Thoroughly constructed convenience samples will continue to be a useful sampling strategy to further research on this population.
Portrait of a small population of boreal toads (anaxyrus boreas)
Muths, E.; Scherer, R. D.
2011-01-01
Much attention has been given to the conservation of small populations, those that are small because of decline, and those that are naturally small. Small populations are of particular interest because ecological theory suggests that they are vulnerable to the deleterious effects of environmental, demographic, and genetic stochasticity as well as natural and human-induced catastrophes. However, testing theory and developing applicable conservation measures for small populations is hampered by sparse data. This lack of information is frequently driven by computational issues with small data sets that can be confounded by the impacts of stressors. We present estimates of demographic parameters from a small population of Boreal Toads (Anaxyrus boreas) that has been surveyed since 2001 by using capturerecapture methods. Estimates of annual adult survival probability are high relative to other Boreal Toad populations, whereas estimates of recruitment rate are low. Despite using simple models, clear patterns emerged from the analyses, suggesting that population size is constrained by low recruitment of adults and is declining slowly. These patterns provide insights that are useful in developing management directions for this small population, and this study serves as an example of the potential for small populations to yield robust and useful information despite sample size constraints. ?? 2011 The Herpetologists' League, Inc.
Jamsen, Kris M; Duffull, Stephen B; Tarning, Joel; Lindegardh, Niklas; White, Nicholas J; Simpson, Julie A
2012-07-11
Artemisinin-based combination therapy (ACT) is currently recommended as first-line treatment for uncomplicated malaria, but of concern, it has been observed that the effectiveness of the main artemisinin derivative, artesunate, has been diminished due to parasite resistance. This reduction in effect highlights the importance of the partner drugs in ACT and provides motivation to gain more knowledge of their pharmacokinetic (PK) properties via population PK studies. Optimal design methodology has been developed for population PK studies, which analytically determines a sampling schedule that is clinically feasible and yields precise estimation of model parameters. In this work, optimal design methodology was used to determine sampling designs for typical future population PK studies of the partner drugs (mefloquine, lumefantrine, piperaquine and amodiaquine) co-administered with artemisinin derivatives. The optimal designs were determined using freely available software and were based on structural PK models from the literature and the key specifications of 100 patients with five samples per patient, with one sample taken on the seventh day of treatment. The derived optimal designs were then evaluated via a simulation-estimation procedure. For all partner drugs, designs consisting of two sampling schedules (50 patients per schedule) with five samples per patient resulted in acceptable precision of the model parameter estimates. The sampling schedules proposed in this paper should be considered in future population pharmacokinetic studies where intensive sampling over many days or weeks of follow-up is not possible due to either ethical, logistic or economical reasons.
Analysis of genetic diversity in Bolivian llama populations using microsatellites.
Barreta, J; Gutiérrez-Gil, B; Iñiguez, V; Romero, F; Saavedra, V; Chiri, R; Rodríguez, T; Arranz, J J
2013-08-01
South American camelids (SACs) have a major role in the maintenance and potential future of rural Andean human populations. More than 60% of the 3.7 million llamas living worldwide are found in Bolivia. Due to the lack of studies focusing on genetic diversity in Bolivian llamas, this analysis investigates both the genetic diversity and structure of 12 regional groups of llamas that span the greater part of the range of distribution for this species in Bolivia. The analysis of 42 microsatellite markers in the considered regional groups showed that, in general, there were high levels of polymorphism (a total of 506 detected alleles; average PIC across per marker: 0.66), which are comparable with those reported for other populations of domestic SACs. The estimated diversity parameters indicated that there was high intrapopulational genetic variation (average number of alleles and average expected heterozygosity per marker: 12.04 and 0.68, respectively) and weak genetic differentiation among populations (FST range: 0.003-0.052). In agreement with these estimates, Bolivian llamas showed a weak genetic structure and an intense gene flow between all the studied regional groups, which is due to the exchange of reproductive males between the different flocks. Interestingly, the groups for which the largest pairwise FST estimates were observed, Sud Lípez and Nor Lípez, showed a certain level of genetic differentiation that is probably due to the pattern of geographic isolation and limited communication infrastructures of these southern localities. Overall, the population parameters reported here may serve as a reference when establishing conservation policies that address Bolivian llama populations. © 2012 Blackwell Verlag GmbH.
Sampling design considerations for demographic studies: a case of colonial seabirds
Kendall, William L.; Converse, Sarah J.; Doherty, Paul F.; Naughton, Maura B.; Anders, Angela; Hines, James E.; Flint, Elizabeth
2009-01-01
For the purposes of making many informed conservation decisions, the main goal for data collection is to assess population status and allow prediction of the consequences of candidate management actions. Reducing the bias and variance of estimates of population parameters reduces uncertainty in population status and projections, thereby reducing the overall uncertainty under which a population manager must make a decision. In capture-recapture studies, imperfect detection of individuals, unobservable life-history states, local movement outside study areas, and tag loss can cause bias or precision problems with estimates of population parameters. Furthermore, excessive disturbance to individuals during capture?recapture sampling may be of concern because disturbance may have demographic consequences. We address these problems using as an example a monitoring program for Black-footed Albatross (Phoebastria nigripes) and Laysan Albatross (Phoebastria immutabilis) nesting populations in the northwestern Hawaiian Islands. To mitigate these estimation problems, we describe a synergistic combination of sampling design and modeling approaches. Solutions include multiple capture periods per season and multistate, robust design statistical models, dead recoveries and incidental observations, telemetry and data loggers, buffer areas around study plots to neutralize the effect of local movements outside study plots, and double banding and statistical models that account for band loss. We also present a variation on the robust capture?recapture design and a corresponding statistical model that minimizes disturbance to individuals. For the albatross case study, this less invasive robust design was more time efficient and, when used in combination with a traditional robust design, reduced the standard error of detection probability by 14% with only two hours of additional effort in the field. These field techniques and associated modeling approaches are applicable to studies of most taxa being marked and in some cases have individually been applied to studies of birds, fish, herpetofauna, and mammals.
2010-01-01
The objective of the present study was to estimate genetic parameters for test-day milk, fat and protein yields and 305-day-yields in Murrah buffaloes. 4,757 complete lactations of Murrah buffaloes were analyzed. Co-variance components were estimated by the restricted maximum likelihood method. The models included additive direct genetic and permanent environmental effects as random effects, and the fixed effects of contemporary group, milking number and age of the cow at calving as linear and quadratic covariables. Contemporary groups were defined by herd-year-month of test for test-day yields and by herd-year-season of calving for 305-day yields. The heritability estimates obtained by two-trait analysis ranged from 0.15 to 0.24 for milk, 0.16 to 0.23 for protein and 0.13 to 0.22 for fat, yields. Genetic and phenotypic correlations were all positive. The observed population additive genetic variation indicated that selection might be an effective tool in changing population means in milk, fat and protein yields. PMID:21637608
Cros, David; Sánchez, Leopoldo; Cochard, Benoit; Samper, Patrick; Denis, Marie; Bouvet, Jean-Marc; Fernández, Jesús
2014-04-01
Explicit pedigree reconstruction by simulated annealing gave reliable estimates of genealogical coancestry in plant species, especially when selfing rate was lower than 0.6, using a realistic number of markers. Genealogical coancestry information is crucial in plant breeding to estimate genetic parameters and breeding values. The approach of Fernández and Toro (Mol Ecol 15:1657-1667, 2006) to estimate genealogical coancestries from molecular data through pedigree reconstruction was limited to species with separate sexes. In this study it was extended to plants, allowing hermaphroditism and monoecy, with possible selfing. Moreover, some improvements were made to take previous knowledge on the population demographic history into account. The new method was validated using simulated and real datasets. Simulations showed that accuracy of estimates was high with 30 microsatellites, with the best results obtained for selfing rates below 0.6. In these conditions, the root mean square error (RMSE) between the true and estimated genealogical coancestry was small (<0.07), although the number of ancestors was overestimated and the selfing rate could be biased. Simulations also showed that linkage disequilibrium between markers and departure from the Hardy-Weinberg equilibrium in the founder population did not affect the efficiency of the method. Real oil palm data confirmed the simulation results, with a high correlation between the true and estimated genealogical coancestry (>0.9) and a low RMSE (<0.08) using 38 markers. The method was applied to the Deli oil palm population for which pedigree data were scarce. The estimated genealogical coancestries were highly correlated (>0.9) with the molecular coancestries using 100 markers. Reconstructed pedigrees were used to estimate effective population sizes. In conclusion, this method gave reliable genealogical coancestry estimates. The strategy was implemented in the software MOLCOANC 3.0.
Estimated harvesting on jellyfish in Sarawak
NASA Astrophysics Data System (ADS)
Bujang, Noriham; Hassan, Aimi Nuraida Ali
2017-04-01
There are three species of jellyfish recorded in Sarawak which are the Lobonema smithii (white jellyfish), Rhopilema esculenta (red jellyfish) and Mastigias papua. This study focused on two particular species which are L.smithii and R.esculenta. This study was done to estimate the highest carrying capacity and the population growth rate of both species by using logistic growth model. The maximum sustainable yield for the harvesting of this species was also determined. The unknown parameters in the logistic model were estimated using center finite different method. As for the results, it was found that the carrying capacity for L.smithii and R.esculenta were 4594.9246456819 tons and 5855.9894242086 tons respectively. Whereas, the population growth rate for both L.smithii and R.esculenta were estimated at 2.1800463754 and 1.144864086 respectively. Hence, the estimated maximum sustainable yield for harvesting for L.smithii and R.esculenta were 2504.2872047638 tons and 1676.0779949431 tons per year.
Stellar population in star formation regions of galaxies
NASA Astrophysics Data System (ADS)
Gusev, Alexander S.; Shimanovskaya, Elena V.; Shatsky, Nikolai I.; Sakhibov, Firouz; Piskunov, Anatoly E.; Kharchenko, Nina V.
2018-05-01
We developed techniques for searching young unresolved star groupings (clusters, associations, and their complexes) and of estimating their physical parameters. Our study is based on spectroscopic, spectrophotometric, and UBVRI photometric observations of 19 spiral galaxies. In the studied galaxies, we found 1510 objects younger than 10 Myr and present their catalogue. Having combined photometric and spectroscopic data, we derived extinctions, chemical abundances, sizes, ages, and masses of these groupings. We discuss separately the specific cases, when the gas extinction does not agree with the interstellar one. We assume that this is due to spatial offset of Hii clouds with respect to the related stellar population.We developed a method to estimate age of stellar population of the studied complexes using their morphology and the relation with associated H emission region. In result we obtained the estimates of chemical abundances for 80, masses for 63, and ages for 57 young objects observed in seven galaxies.
Néant, Nadège; Gattacceca, Florence; Lê, Minh Patrick; Yazdanpanah, Yazdan; Dhiver, Catherine; Bregigeon, Sylvie; Mokhtari, Saadia; Peytavin, Gilles; Tamalet, Catherine; Descamps, Diane; Lacarelle, Bruno; Solas, Caroline
2018-04-01
Rilpivirine, prescribed for the treatment of HIV infection, presents an important inter-individual pharmacokinetic variability. We aimed to determine population pharmacokinetic parameters of rilpivirine in adult HIV-infected patients and quantify their inter-individual variability. We conducted a multicenter, retrospective, and observational study in patients treated with the once-daily rilpivirine/tenofovir disoproxil fumarate/emtricitabine regimen. As part of routine therapeutic drug monitoring, rilpivirine concentrations were measured by UPLC-MS/MS. Population pharmacokinetic analysis was performed using NONMEM software. Once the compartmental and random effects models were selected, covariates were tested to explain the inter-individual variability in pharmacokinetic parameters. The final model qualification was performed by both statistical and graphical methods. We included 379 patients, resulting in the analysis of 779 rilpivirine plasma concentrations. Of the observed trough individual plasma concentrations, 24.4% were below the 50 ng/ml minimal effective concentration. A one-compartment model with first-order absorption best described the data. The estimated fixed effect for plasma apparent clearance and distribution volume were 9 L/h and 321 L, respectively, resulting in a half-life of 25.2 h. The common inter-individual variability for both parameters was 34.1% at both the first and the second occasions. The inter-individual variability of clearance was 30.3%. Our results showed a terminal half-life lower than reported and a high proportion of patients with suboptimal rilpivirine concentrations, which highlights the interest of using therapeutic drug monitoring in clinical practice. The population analysis performed with data from "real-life" conditions resulted in reliable post hoc estimates of pharmacokinetic parameters, suitable for individualization of dosing regimen.
Growth rates and variances of unexploited wolf populations in dynamic equilibria
Mech, L. David; Fieberg, John
2015-01-01
Several states have begun harvesting gray wolves (Canis lupus), and these states and various European countries are closely monitoring their wolf populations. To provide appropriate perspective for determining unusual or extreme fluctuations in their managed wolf populations, we analyzed natural, long-term, wolf-population-density trajectories totaling 130 years of data from 3 areas: Isle Royale National Park in Lake Superior, Michigan, USA; the east-central Superior National Forest in northeastern Minnesota, USA; and Denali National Park, Alaska, USA. Ratios between minimum and maximum annual sizes for 2 mainland populations (n = 28 and 46 yr) varied from 2.5–2.8, whereas for Isle Royale (n = 56 yr), the ratio was 6.3. The interquartile range (25th percentile, 75th percentile) for annual growth rates, Nt+1/Nt, was (0.88, 1.14), (0.92, 1.11), and (0.86, 1.12) for Denali, Superior National Forest, and Isle Royale respectively. We fit a density-independent model and a Ricker model to each time series, and in both cases we considered the potential for observation error. Mean growth rates from the density-independent model were close to 0 for all 3 populations, with 95% credible intervals including 0. We view the estimated model parameters, including those describing annual variability or process variance, as providing useful summaries of the trajectories of these populations. The estimates of these natural wolf population parameters can serve as benchmarks for comparison with those of recovering wolf populations. Because our study populations were all from circumscribed areas, fluctuations in them represent fluctuations in densities (i.e., changes in numbers are not confounded by changes in occupied area as would be the case with populations expanding their range, as are wolf populations in many states).
Spatiotemporal variation in reproductive parameters of yellow-bellied marmots.
Ozgul, Arpat; Oli, Madan K; Olson, Lucretia E; Blumstein, Daniel T; Armitage, Kenneth B
2007-11-01
Spatiotemporal variation in reproductive rates is a common phenomenon in many wildlife populations, but the population dynamic consequences of spatial and temporal variability in different components of reproduction remain poorly understood. We used 43 years (1962-2004) of data from 17 locations and a capture-mark-recapture (CMR) modeling framework to investigate the spatiotemporal variation in reproductive parameters of yellow-bellied marmots (Marmota flaviventris), and its influence on the realized population growth rate. Specifically, we estimated and modeled breeding probabilities of two-year-old females (earliest age of first reproduction), >2-year-old females that have not reproduced before (subadults), and >2-year-old females that have reproduced before (adults), as well as the litter sizes of two-year old and >2-year-old females. Most reproductive parameters exhibited spatial and/or temporal variation. However, reproductive parameters differed with respect to their relative influence on the realized population growth rate (lambda). Litter size had a stronger influence than did breeding probabilities on both spatial and temporal variations in lambda. Our analysis indicated that lambda was proportionately more sensitive to survival than recruitment. However, the annual fluctuation in litter size, abetted by the breeding probabilities, accounted for most of the temporal variation in lambda.
Fay, Rémi; Weimerskirch, Henri; Delord, Karine; Barbraud, Christophe
2015-09-01
1. Our understanding of demographic processes is mainly based on analyses of traits from the adult component of populations. Early-life demographic traits are poorly known mainly for methodological reasons. Yet, survival of juvenile and immature individuals is critical for the recruitment into the population and thus for the whole population dynamic, especially for long-lived species. This bias currently restrains our ability to fully understand population dynamics of long-lived species and life-history theory. 2. The goal of this study was to estimate the early-life demographic parameters of a long-lived species with a long immature period (9-10 years), to test for sex and age effects on these parameters and to identify the environmental factors encountered during the period of immaturity that may influence survival and recruitment. 3. Using capture-mark-recapture multievent models allowing us to deal with uncertain and unobservable individual states, we analysed a long-term data set of wandering albatrosses to estimate both age- and sex-specific early-life survival and recruitment. We investigated environmental factors potentially driving these demographic traits using climatic and fisheries covariates and tested for density dependence. 4. Our study provides for the first time an estimate of annual survival during the first 2 years at sea for an albatross species (0·801 ± 0·014). Both age and sex affected early-life survival and recruitment processes of this long-lived seabird species. Early-life survival and recruitment were highly variable across years although the sensitivity of young birds to environmental variability decreased with age. Early-life survival was negatively associated with sea surface temperature, and recruitment rate was positively related to both Southern Annular Mode and sea surface temperature. We found strong evidence for density-dependent mortality of juveniles. Population size explained 41% of the variation of this parameter over the study period. 5. These results indicate that early-life survival and recruitment were strongly age and sex dependent in a dimorphic long-lived species. In addition, early-life demographic parameters were affected by natal environmental conditions and by environmental conditions faced during the period of immaturity. Finally, our results constitute one of the first demonstrations of density dependence on juvenile survival in seabirds, with major consequences for our understanding of population dynamics in seabirds. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Recommendations for the use of mist nets for inventory and monitoring of bird populations
C. John Ralph; Erica H. Dunn; Will J. Peach; Colleen M. Handel
2004-01-01
We provide recommendations on the best practices for mist netting for the purposes of monitoring population parameters such as abundance and demography. Studies should be carefully thought out before nets are set up, to ensure that sampling design and estimated sample size will allow study objectives to be met. Station location, number of nets, type of nets, net...
Estimating neural response functions from fMRI
Kumar, Sukhbinder; Penny, William
2014-01-01
This paper proposes a methodology for estimating Neural Response Functions (NRFs) from fMRI data. These NRFs describe non-linear relationships between experimental stimuli and neuronal population responses. The method is based on a two-stage model comprising an NRF and a Hemodynamic Response Function (HRF) that are simultaneously fitted to fMRI data using a Bayesian optimization algorithm. This algorithm also produces a model evidence score, providing a formal model comparison method for evaluating alternative NRFs. The HRF is characterized using previously established “Balloon” and BOLD signal models. We illustrate the method with two example applications based on fMRI studies of the auditory system. In the first, we estimate the time constants of repetition suppression and facilitation, and in the second we estimate the parameters of population receptive fields in a tonotopic mapping study. PMID:24847246
Latorre, Jorge; Llorens, Roberto; Colomer, Carolina; Alcañiz, Mariano
2018-04-27
Different studies have analyzed the potential of the off-the-shelf Microsoft Kinect, in its different versions, to estimate spatiotemporal gait parameters as a portable markerless low-cost alternative to laboratory grade systems. However, variability in populations, measures, and methodologies prevents accurate comparison of the results. The objective of this study was to determine and compare the reliability of the existing Kinect-based methods to estimate spatiotemporal gait parameters in healthy and post-stroke adults. Forty-five healthy individuals and thirty-eight stroke survivors participated in this study. Participants walked five meters at a comfortable speed and their spatiotemporal gait parameters were estimated from the data retrieved by a Kinect v2, using the most common methods in the literature, and by visual inspection of the videotaped performance. Errors between both estimations were computed. For both healthy and post-stroke participants, highest accuracy was obtained when using the speed of the ankles to estimate gait speed (3.6-5.5 cm/s), stride length (2.5-5.5 cm), and stride time (about 45 ms), and when using the distance between the sacrum and the ankles and toes to estimate double support time (about 65 ms) and swing time (60-90 ms). Although the accuracy of these methods is limited, these measures could occasionally complement traditional tools. Copyright © 2018 Elsevier Ltd. All rights reserved.
Čepl, Jaroslav; Holá, Dana; Stejskal, Jan; Korecký, Jiří; Kočová, Marie; Lhotáková, Zuzana; Tomášková, Ivana; Palovská, Markéta; Rothová, Olga; Whetten, Ross W; Kaňák, Jan; Albrechtová, Jana; Lstibůrek, Milan
2016-07-01
Current knowledge of the genetic mechanisms underlying the inheritance of photosynthetic activity in forest trees is generally limited, yet it is essential both for various practical forestry purposes and for better understanding of broader evolutionary mechanisms. In this study, we investigated genetic variation underlying selected chlorophyll a fluorescence (ChlF) parameters in structured populations of Scots pine (Pinus sylvestris L.) grown on two sites under non-stress conditions. These parameters were derived from the OJIP part of the ChlF kinetics curve and characterize individual parts of primary photosynthetic processes associated, for example, with the exciton trapping by light-harvesting antennae, energy utilization in photosystem II (PSII) reaction centers (RCs) and its transfer further down the photosynthetic electron-transport chain. An additive relationship matrix was estimated based on pedigree reconstruction, utilizing a set of highly polymorphic single sequence repeat markers. Variance decomposition was conducted using the animal genetic evaluation mixed-linear model. The majority of ChlF parameters in the analyzed pine populations showed significant additive genetic variation. Statistically significant heritability estimates were obtained for most ChlF indices, with the exception of DI0/RC, φD0 and φP0 (Fv/Fm) parameters. Estimated heritabilities varied around the value of 0.15 with the maximal value of 0.23 in the ET0/RC parameter, which indicates electron-transport flux from QA to QB per PSII RC. No significant correlation was found between these indices and selected growth traits. Moreover, no genotype × environment interaction (G × E) was detected, i.e., no differences in genotypes' performance between sites. The absence of significant G × E in our study is interesting, given the relatively low heritability found for the majority of parameters analyzed. Therefore, we infer that polygenic variability of these indices is selectively neutral. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sampling considerations for disease surveillance in wildlife populations
Nusser, S.M.; Clark, W.R.; Otis, D.L.; Huang, L.
2008-01-01
Disease surveillance in wildlife populations involves detecting the presence of a disease, characterizing its prevalence and spread, and subsequent monitoring. A probability sample of animals selected from the population and corresponding estimators of disease prevalence and detection provide estimates with quantifiable statistical properties, but this approach is rarely used. Although wildlife scientists often assume probability sampling and random disease distributions to calculate sample sizes, convenience samples (i.e., samples of readily available animals) are typically used, and disease distributions are rarely random. We demonstrate how landscape-based simulation can be used to explore properties of estimators from convenience samples in relation to probability samples. We used simulation methods to model what is known about the habitat preferences of the wildlife population, the disease distribution, and the potential biases of the convenience-sample approach. Using chronic wasting disease in free-ranging deer (Odocoileus virginianus) as a simple illustration, we show that using probability sample designs with appropriate estimators provides unbiased surveillance parameter estimates but that the selection bias and coverage errors associated with convenience samples can lead to biased and misleading results. We also suggest practical alternatives to convenience samples that mix probability and convenience sampling. For example, a sample of land areas can be selected using a probability design that oversamples areas with larger animal populations, followed by harvesting of individual animals within sampled areas using a convenience sampling method.
Limits of Predictability in Commuting Flows in the Absence of Data for Calibration
Yang, Yingxiang; Herrera, Carlos; Eagle, Nathan; González, Marta C.
2014-01-01
The estimation of commuting flows at different spatial scales is a fundamental problem for different areas of study. Many current methods rely on parameters requiring calibration from empirical trip volumes. Their values are often not generalizable to cases without calibration data. To solve this problem we develop a statistical expression to calculate commuting trips with a quantitative functional form to estimate the model parameter when empirical trip data is not available. We calculate commuting trip volumes at scales from within a city to an entire country, introducing a scaling parameter α to the recently proposed parameter free radiation model. The model requires only widely available population and facility density distributions. The parameter can be interpreted as the influence of the region scale and the degree of heterogeneity in the facility distribution. We explore in detail the scaling limitations of this problem, namely under which conditions the proposed model can be applied without trip data for calibration. On the other hand, when empirical trip data is available, we show that the proposed model's estimation accuracy is as good as other existing models. We validated the model in different regions in the U.S., then successfully applied it in three different countries. PMID:25012599
Does History Repeat Itself? Wavelets and the Phylodynamics of Influenza A
Tom, Jennifer A.; Sinsheimer, Janet S.; Suchard, Marc A.
2012-01-01
Unprecedented global surveillance of viruses will result in massive sequence data sets that require new statistical methods. These data sets press the limits of Bayesian phylogenetics as the high-dimensional parameters that comprise a phylogenetic tree increase the already sizable computational burden of these techniques. This burden often results in partitioning the data set, for example, by gene, and inferring the evolutionary dynamics of each partition independently, a compromise that results in stratified analyses that depend only on data within a given partition. However, parameter estimates inferred from these stratified models are likely strongly correlated, considering they rely on data from a single data set. To overcome this shortfall, we exploit the existing Monte Carlo realizations from stratified Bayesian analyses to efficiently estimate a nonparametric hierarchical wavelet-based model and learn about the time-varying parameters of effective population size that reflect levels of genetic diversity across all partitions simultaneously. Our methods are applied to complete genome influenza A sequences that span 13 years. We find that broad peaks and trends, as opposed to seasonal spikes, in the effective population size history distinguish individual segments from the complete genome. We also address hypotheses regarding intersegment dynamics within a formal statistical framework that accounts for correlation between segment-specific parameters. PMID:22160768
Epizootiologic Parameters for Plague in Kazakhstan
Klassovskiy, Nikolay; Ageyev, Vladimir; Suleimenov, Bakhtiar; Atshabar, Bakhyt; Bennett, Malcolm
2006-01-01
Reliable estimates are lacking of key epizootiologic parameters for plague caused by Yersinia pestis infection in its natural reservoirs. We report results of a 3-year longitudinal study of plague dynamics in populations of a maintenance host, the great gerbil (Rhombomys opimus), in 2 populations in Kazakhstan. Serologic results suggest a mid-summer peak in the abundance of infectious hosts and possible transmission from the reservoir to humans. Decrease in antibody titer to an undetectable level showed no seasonal pattern. Our findings did not support the use of the nitroblue-tetrazolium test characterization of plague-infected hosts. Y. pestis infection reduced survival of otherwise asymptomatic hosts. PMID:16494753
Does probability of occurrence relate to population dynamics?
Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Georges, Damien; Dullinger, Stefan; Eckhart, Vincent M.; Edwards, Thomas C.; Gravel, Dominique; Kunstler, Georges; Merow, Cory; Moore, Kara; Piedallu, Christian; Vissault, Steve; Zimmermann, Niklaus E.; Zurell, Damaris; Schurr, Frank M.
2014-01-01
Hutchinson defined species' realized niche as the set of environmental conditions in which populations can persist in the presence of competitors. In terms of demography, the realized niche corresponds to the environments where the intrinsic growth rate (r) of populations is positive. Observed species occurrences should reflect the realized niche when additional processes like dispersal and local extinction lags do not have overwhelming effects. Despite the foundational nature of these ideas, quantitative assessments of the relationship between range-wide demographic performance and occurrence probability have not been made. This assessment is needed both to improve our conceptual understanding of species' niches and ranges and to develop reliable mechanistic models of species geographic distributions that incorporate demography and species interactions.The objective of this study is to analyse how demographic parameters (intrinsic growth rate r and carrying capacity K ) and population density (N ) relate to occurrence probability (Pocc ). We hypothesized that these relationships vary with species' competitive ability. Demographic parameters, density, and occurrence probability were estimated for 108 tree species from four temperate forest inventory surveys (Québec, western USA, France and Switzerland). We used published information of shade tolerance as indicators of light competition strategy, assuming that high tolerance denotes high competitive capacity in stable forest environments.Interestingly, relationships between demographic parameters and occurrence probability did not vary substantially across degrees of shade tolerance and regions. Although they were influenced by the uncertainty in the estimation of the demographic parameters, we found that r was generally negatively correlated with Pocc, while N, and for most regions K, was generally positively correlated with Pocc. Thus, in temperate forest trees the regions of highest occurrence probability are those with high densities but slow intrinsic population growth rates. The uncertain relationships between demography and occurrence probability suggests caution when linking species distribution and demographic models.
Population viability analysis for endangered Roanoke logperch
Roberts, James H.; Angermeier, Paul; Anderson, Gregory B.
2016-01-01
A common strategy for recovering endangered species is ensuring that populations exceed the minimum viable population size (MVP), a demographic benchmark that theoretically ensures low long-term extinction risk. One method of establishing MVP is population viability analysis, a modeling technique that simulates population trajectories and forecasts extinction risk based on a series of biological, environmental, and management assumptions. Such models also help identify key uncertainties that have a large influence on extinction risk. We used stochastic count-based simulation models to explore extinction risk, MVP, and the possible benefits of alternative management strategies in populations of Roanoke logperch Percina rex, an endangered stream fish. Estimates of extinction risk were sensitive to the assumed population growth rate and model type, carrying capacity, and catastrophe regime (frequency and severity of anthropogenic fish kills), whereas demographic augmentation did little to reduce extinction risk. Under density-dependent growth, the estimated MVP for Roanoke logperch ranged from 200 to 4200 individuals, depending on the assumed severity of catastrophes. Thus, depending on the MVP threshold, anywhere from two to all five of the logperch populations we assessed were projected to be viable. Despite this uncertainty, these results help identify populations with the greatest relative extinction risk, as well as management strategies that might reduce this risk the most, such as increasing carrying capacity and reducing fish kills. Better estimates of population growth parameters and catastrophe regimes would facilitate the refinement of MVP and extinction-risk estimates, and they should be a high priority for future research on Roanoke logperch and other imperiled stream-fish species.
Joint Adaptive Mean-Variance Regularization and Variance Stabilization of High Dimensional Data.
Dazard, Jean-Eudes; Rao, J Sunil
2012-07-01
The paper addresses a common problem in the analysis of high-dimensional high-throughput "omics" data, which is parameter estimation across multiple variables in a set of data where the number of variables is much larger than the sample size. Among the problems posed by this type of data are that variable-specific estimators of variances are not reliable and variable-wise tests statistics have low power, both due to a lack of degrees of freedom. In addition, it has been observed in this type of data that the variance increases as a function of the mean. We introduce a non-parametric adaptive regularization procedure that is innovative in that : (i) it employs a novel "similarity statistic"-based clustering technique to generate local-pooled or regularized shrinkage estimators of population parameters, (ii) the regularization is done jointly on population moments, benefiting from C. Stein's result on inadmissibility, which implies that usual sample variance estimator is improved by a shrinkage estimator using information contained in the sample mean. From these joint regularized shrinkage estimators, we derived regularized t-like statistics and show in simulation studies that they offer more statistical power in hypothesis testing than their standard sample counterparts, or regular common value-shrinkage estimators, or when the information contained in the sample mean is simply ignored. Finally, we show that these estimators feature interesting properties of variance stabilization and normalization that can be used for preprocessing high-dimensional multivariate data. The method is available as an R package, called 'MVR' ('Mean-Variance Regularization'), downloadable from the CRAN website.
Joint Adaptive Mean-Variance Regularization and Variance Stabilization of High Dimensional Data
Dazard, Jean-Eudes; Rao, J. Sunil
2012-01-01
The paper addresses a common problem in the analysis of high-dimensional high-throughput “omics” data, which is parameter estimation across multiple variables in a set of data where the number of variables is much larger than the sample size. Among the problems posed by this type of data are that variable-specific estimators of variances are not reliable and variable-wise tests statistics have low power, both due to a lack of degrees of freedom. In addition, it has been observed in this type of data that the variance increases as a function of the mean. We introduce a non-parametric adaptive regularization procedure that is innovative in that : (i) it employs a novel “similarity statistic”-based clustering technique to generate local-pooled or regularized shrinkage estimators of population parameters, (ii) the regularization is done jointly on population moments, benefiting from C. Stein's result on inadmissibility, which implies that usual sample variance estimator is improved by a shrinkage estimator using information contained in the sample mean. From these joint regularized shrinkage estimators, we derived regularized t-like statistics and show in simulation studies that they offer more statistical power in hypothesis testing than their standard sample counterparts, or regular common value-shrinkage estimators, or when the information contained in the sample mean is simply ignored. Finally, we show that these estimators feature interesting properties of variance stabilization and normalization that can be used for preprocessing high-dimensional multivariate data. The method is available as an R package, called ‘MVR’ (‘Mean-Variance Regularization’), downloadable from the CRAN website. PMID:22711950
Dunham, Kylee; Grand, James B.
2016-10-11
The Alaskan breeding population of Steller’s eiders (Polysticta stelleri) was listed as threatened under the Endangered Species Act in 1997 in response to perceived declines in abundance throughout their breeding and nesting range. Aerial surveys suggest the breeding population is small and highly variable in number, with zero birds counted in 5 of the last 25 years. Research was conducted to evaluate competing population process models of Alaskan-breeding Steller’s eiders through comparison of model projections to aerial survey data. To evaluate model efficacy and estimate demographic parameters, a Bayesian state-space modeling framework was used and each model was fit to counts from the annual aerial surveys, using sequential importance sampling and resampling. The results strongly support that the Alaskan breeding population experiences population level nonbreeding events and is open to exchange with the larger Russian-Pacific breeding population. Current recovery criteria for the Alaskan breeding population rely heavily on the ability to estimate population viability. The results of this investigation provide an informative model of the population process that can be used to examine future population states and assess the population in terms of the current recovery and reclassification criteria.
Perea-Milla, Emilio; Pons, Sergi Mari; Rivas-Ruiz, Francisco; Gallofre, Anna; Jurado, Enrique Navarro; Ales, Marco A Navarro; Jimenez-Puente, Alberto; Fernandez-Nieto, Fidel; Cerda, Joan C March; Carrasco, Manuel; Martin, Lydia; Cano, Damian Lopez; Gutierrez, Gonzalo E; Macías, Rafael Cortes; Garcia-Ruiz, Jose A
2007-01-01
Background The demographic structure has a significant influence on the use of healthcare services, as does the size of the population denominators. Very few studies have been published on methods for estimating the real population such as tourist resorts. The lack of information about these problems means there is a corresponding lack of information about the behaviour of populational denominators (the floating population or tourist load) and the effect of this on the use of healthcare services. The objectives of the study were: a) To determine the Municipal Solid Waste (MSW) ratio, per person per day, among populations of known size; b) to estimate, by means of this ratio, the real population in an area where tourist numbers are very significant; and c) to determine the impact on the utilisation of hospital emergency healthcare services of the registered population, in comparison to the non-resident population, in two areas where tourist numbers are very significant. Methods An ecological study design was employed. We analysed the Healthcare Districts of the Costa del Sol and the island of Menorca. Both are Spanish territories in the Mediterranean region. Results In the two areas analysed, the correlation coefficient between the MSW ratio and admissions to hospital emergency departments exceeded 0.9, with p < 0.001. On the basis of MSW generation ratios, obtained for a control zone and also measured in neighbouring countries, we estimated the real population. For the summer months, when tourist activity is greatest and demand for emergency healthcare at hospitals is highest, this value was found to be double that of the registered population. Conclusion The MSW indicator, which is both ecological and indirect, can be used to estimate the real population in areas where population levels vary significantly during the year. This parameter is of interest in planning and dimensioning the provision of healthcare services. PMID:17266744
Perea-Milla, Emilio; Pons, Sergi Mari; Rivas-Ruiz, Francisco; Gallofre, Anna; Jurado, Enrique Navarro; Ales, Marco A Navarro; Jimenez-Puente, Alberto; Fernandez-Nieto, Fidel; Cerda, Joan C March; Carrasco, Manuel; Martin, Lydia; Cano, Damian Lopez; Gutierrez, Gonzalo E; Macías, Rafael Cortes; Garcia-Ruiz, Jose A
2007-01-31
The demographic structure has a significant influence on the use of healthcare services, as does the size of the population denominators. Very few studies have been published on methods for estimating the real population such as tourist resorts. The lack of information about these problems means there is a corresponding lack of information about the behaviour of populational denominators (the floating population or tourist load) and the effect of this on the use of healthcare services. The objectives of the study were: a) To determine the Municipal Solid Waste (MSW) ratio, per person per day, among populations of known size; b) to estimate, by means of this ratio, the real population in an area where tourist numbers are very significant; and c) to determine the impact on the utilisation of hospital emergency healthcare services of the registered population, in comparison to the non-resident population, in two areas where tourist numbers are very significant. An ecological study design was employed. We analysed the Healthcare Districts of the Costa del Sol and the island of Menorca. Both are Spanish territories in the Mediterranean region. In the two areas analysed, the correlation coefficient between the MSW ratio and admissions to hospital emergency departments exceeded 0.9, with p < 0.001. On the basis of MSW generation ratios, obtained for a control zone and also measured in neighbouring countries, we estimated the real population. For the summer months, when tourist activity is greatest and demand for emergency healthcare at hospitals is highest, this value was found to be double that of the registered population. The MSW indicator, which is both ecological and indirect, can be used to estimate the real population in areas where population levels vary significantly during the year. This parameter is of interest in planning and dimensioning the provision of healthcare services.
Refining mortality estimates in shark demographic analyses: a Bayesian inverse matrix approach.
Smart, Jonathan J; Punt, André E; White, William T; Simpfendorfer, Colin A
2018-01-18
Leslie matrix models are an important analysis tool in conservation biology that are applied to a diversity of taxa. The standard approach estimates the finite rate of population growth (λ) from a set of vital rates. In some instances, an estimate of λ is available, but the vital rates are poorly understood and can be solved for using an inverse matrix approach. However, these approaches are rarely attempted due to prerequisites of information on the structure of age or stage classes. This study addressed this issue by using a combination of Monte Carlo simulations and the sample-importance-resampling (SIR) algorithm to solve the inverse matrix problem without data on population structure. This approach was applied to the grey reef shark (Carcharhinus amblyrhynchos) from the Great Barrier Reef (GBR) in Australia to determine the demography of this population. Additionally, these outputs were applied to another heavily fished population from Papua New Guinea (PNG) that requires estimates of λ for fisheries management. The SIR analysis determined that natural mortality (M) and total mortality (Z) based on indirect methods have previously been overestimated for C. amblyrhynchos, leading to an underestimated λ. The updated Z distributions determined using SIR provided λ estimates that matched an empirical λ for the GBR population and corrected obvious error in the demographic parameters for the PNG population. This approach provides opportunity for the inverse matrix approach to be applied more broadly to situations where information on population structure is lacking. © 2018 by the Ecological Society of America.
Curtis, K. Alexandra; Moore, Jeffrey E.; Benson, Scott R.
2015-01-01
Biological limit reference points (LRPs) for fisheries catch represent upper bounds that avoid undesirable population states. LRPs can support consistent management evaluation among species and regions, and can advance ecosystem-based fisheries management. For transboundary species, LRPs prorated by local abundance can inform local management decisions when international coordination is lacking. We estimated LRPs for western Pacific leatherbacks in the U.S. West Coast Exclusive Economic Zone (WCEEZ) using three approaches with different types of information on local abundance. For the current application, the best-informed LRP used a local abundance estimate derived from nest counts, vital rate information, satellite tag data, and fishery observer data, and was calculated with a Potential Biological Removal estimator. Management strategy evaluation was used to set tuning parameters of the LRP estimators to satisfy risk tolerances for falling below population thresholds, and to evaluate sensitivity of population outcomes to bias in key inputs. We estimated local LRPs consistent with three hypothetical management objectives: allowing the population to rebuild to its maximum net productivity level (4.7 turtles per five years), limiting delay of population rebuilding (0.8 turtles per five years), or only preventing further decline (7.7 turtles per five years). These LRPs pertain to all human-caused removals and represent the WCEEZ contribution to meeting population management objectives within a broader international cooperative framework. We present multi-year estimates, because at low LRP values, annual assessments are prone to substantial error that can lead to volatile and costly management without providing further conservation benefit. The novel approach and the performance criteria used here are not a direct expression of the “jeopardy” standard of the U.S. Endangered Species Act, but they provide useful assessment information and could help guide international management frameworks. Given the range of abundance data scenarios addressed, LRPs should be estimable for many other areas, populations, and taxa. PMID:26368557
Curtis, K Alexandra; Moore, Jeffrey E; Benson, Scott R
2015-01-01
Biological limit reference points (LRPs) for fisheries catch represent upper bounds that avoid undesirable population states. LRPs can support consistent management evaluation among species and regions, and can advance ecosystem-based fisheries management. For transboundary species, LRPs prorated by local abundance can inform local management decisions when international coordination is lacking. We estimated LRPs for western Pacific leatherbacks in the U.S. West Coast Exclusive Economic Zone (WCEEZ) using three approaches with different types of information on local abundance. For the current application, the best-informed LRP used a local abundance estimate derived from nest counts, vital rate information, satellite tag data, and fishery observer data, and was calculated with a Potential Biological Removal estimator. Management strategy evaluation was used to set tuning parameters of the LRP estimators to satisfy risk tolerances for falling below population thresholds, and to evaluate sensitivity of population outcomes to bias in key inputs. We estimated local LRPs consistent with three hypothetical management objectives: allowing the population to rebuild to its maximum net productivity level (4.7 turtles per five years), limiting delay of population rebuilding (0.8 turtles per five years), or only preventing further decline (7.7 turtles per five years). These LRPs pertain to all human-caused removals and represent the WCEEZ contribution to meeting population management objectives within a broader international cooperative framework. We present multi-year estimates, because at low LRP values, annual assessments are prone to substantial error that can lead to volatile and costly management without providing further conservation benefit. The novel approach and the performance criteria used here are not a direct expression of the "jeopardy" standard of the U.S. Endangered Species Act, but they provide useful assessment information and could help guide international management frameworks. Given the range of abundance data scenarios addressed, LRPs should be estimable for many other areas, populations, and taxa.
Covariate-adjusted Spearman's rank correlation with probability-scale residuals.
Liu, Qi; Li, Chun; Wanga, Valentine; Shepherd, Bryan E
2018-06-01
It is desirable to adjust Spearman's rank correlation for covariates, yet existing approaches have limitations. For example, the traditionally defined partial Spearman's correlation does not have a sensible population parameter, and the conditional Spearman's correlation defined with copulas cannot be easily generalized to discrete variables. We define population parameters for both partial and conditional Spearman's correlation through concordance-discordance probabilities. The definitions are natural extensions of Spearman's rank correlation in the presence of covariates and are general for any orderable random variables. We show that they can be neatly expressed using probability-scale residuals (PSRs). This connection allows us to derive simple estimators. Our partial estimator for Spearman's correlation between X and Y adjusted for Z is the correlation of PSRs from models of X on Z and of Y on Z, which is analogous to the partial Pearson's correlation derived as the correlation of observed-minus-expected residuals. Our conditional estimator is the conditional correlation of PSRs. We describe estimation and inference, and highlight the use of semiparametric cumulative probability models, which allow preservation of the rank-based nature of Spearman's correlation. We conduct simulations to evaluate the performance of our estimators and compare them with other popular measures of association, demonstrating their robustness and efficiency. We illustrate our method in two applications, a biomarker study and a large survey. © 2017, The International Biometric Society.
Hong Su An; David W. MacFarlane; Christopher W. Woodall
2012-01-01
Standing dead trees are an important component of forest ecosystems. However, reliable estimates of standing dead tree population parameters can be difficult to obtain due to their low abundance and spatial and temporal variation. After 1999, the Forest Inventory and Analysis (FIA) Program began collecting data for standing dead trees at the Phase 2 stage of sampling....
Population demographics, survival, and reporduction: Alaska sea otter research
Monson, Daniel H.; Bodkin, James L.; Doak, D.F.; Estes, James A.; Tinker, M.T.; Siniff, D.B.; Maldini, Daniela; Calkins, Donald; Atkinson, Shannon; Meehan, Rosa
2004-01-01
The fundamental force behind population change is the balance between age-specific survival and reproductive rates. Thus, understanding population demographics is crucial when trying to interpret trends in population change over time. For many species, demographic rates change as the population’s status (i.e., relative to prey resources) varies. Indices of body condition indicative of individual energy reserves can be a useful gauge of population status. Integrated studies designed to measure (1) population trends; (2) current population status; and (3) demographic rates will provide the most complete picture of the factors driving observed population changes. In particular, estimates of age specific survival and reproduction in conjunction with measures of population change can be integrated into population matrix models useful in explaining observed trends. We focus here on the methods used to measure demographic rates in sea otters, and note the importance of comparable methods between studies. Next, we review the current knowledge of the influence of population status on demographic parameters. We end with examples of the power of matrix modeling as a tool to integrate various types of demographic information for detecting otherwise hard to detect changes in demographic parameters.
Tinker, M. Timothy; Doak, Daniel F.; Estes, James A.; Hatfield, Brian B.; Staedler, Michelle M.; Gross, Arthur
2006-01-01
Reliable information on historical and current population dynamics is central to understanding patterns of growth and decline in animal populations. We developed a maximum likelihood-based analysis to estimate spatial and temporal trends in age/sex-specific survival rates for the threatened southern sea otter (Enhydra lutris nereis), using annual population censuses and the age structure of salvaged carcass collections. We evaluated a wide range of possible spatial and temporal effects and used model averaging to incorporate model uncertainty into the resulting estimates of key vital rates and their variances. We compared these results to current demographic parameters estimated in a telemetry-based study conducted between 2001 and 2004. These results show that survival has decreased substantially from the early 1990s to the present and is generally lowest in the north-central portion of the population's range. The greatest temporal decrease in survival was for adult females, and variation in the survival of this age/sex class is primarily responsible for regulating population growth and driving population trends. Our results can be used to focus future research on southern sea otters by highlighting the life history stages and mortality factors most relevant to conservation. More broadly, we have illustrated how the powerful and relatively straightforward tools of information-theoretic-based model fitting can be used to sort through and parameterize quite complex demographic modeling frameworks. ?? 2006 by the Ecological Society of America.
Clear: Composition of Likelihoods for Evolve and Resequence Experiments.
Iranmehr, Arya; Akbari, Ali; Schlötterer, Christian; Bafna, Vineet
2017-06-01
The advent of next generation sequencing technologies has made whole-genome and whole-population sampling possible, even for eukaryotes with large genomes. With this development, experimental evolution studies can be designed to observe molecular evolution "in action" via evolve-and-resequence (E&R) experiments. Among other applications, E&R studies can be used to locate the genes and variants responsible for genetic adaptation. Most existing literature on time-series data analysis often assumes large population size, accurate allele frequency estimates, or wide time spans. These assumptions do not hold in many E&R studies. In this article, we propose a method-composition of likelihoods for evolve-and-resequence experiments (Clear)-to identify signatures of selection in small population E&R experiments. Clear takes whole-genome sequences of pools of individuals as input, and properly addresses heterogeneous ascertainment bias resulting from uneven coverage. Clear also provides unbiased estimates of model parameters, including population size, selection strength, and dominance, while being computationally efficient. Extensive simulations show that Clear achieves higher power in detecting and localizing selection over a wide range of parameters, and is robust to variation of coverage. We applied the Clear statistic to multiple E&R experiments, including data from a study of adaptation of Drosophila melanogaster to alternating temperatures and a study of outcrossing yeast populations, and identified multiple regions under selection with genome-wide significance. Copyright © 2017 by the Genetics Society of America.
Variation in detection among passive infrared triggered-cameras used in wildlife research
Damm, Philip E.; Grand, James B.; Barnett, Steven W.
2010-01-01
Precise and accurate estimates of demographics such as age structure, productivity, and density are necessary in determining habitat and harvest management strategies for wildlife populations. Surveys using automated cameras are becoming an increasingly popular tool for estimating these parameters. However, most camera studies fail to incorporate detection probabilities, leading to parameter underestimation. The objective of this study was to determine the sources of heterogeneity in detection for trail cameras that incorporate a passive infrared (PIR) triggering system sensitive to heat and motion. Images were collected at four baited sites within the Conecuh National Forest, Alabama, using three cameras at each site operating continuously over the same seven-day period. Detection was estimated for four groups of animals based on taxonomic group and body size. Our hypotheses of detection considered variation among bait sites and cameras. The best model (w=0.99) estimated different rates of detection for each camera in addition to different detection rates for four animal groupings. Factors that explain this variability might include poor manufacturing tolerances, variation in PIR sensitivity, animal behavior, and species-specific infrared radiation. Population surveys using trail cameras with PIR systems must incorporate detection rates for individual cameras. Incorporating time-lapse triggering systems into survey designs should eliminate issues associated with PIR systems.
Gardner, Beth; Reppucci, Juan; Lucherini, Mauro; Royle, J. Andrew
2010-01-01
We develop a hierarchical capture–recapture model for demographically open populations when auxiliary spatial information about location of capture is obtained. Such spatial capture–recapture data arise from studies based on camera trapping, DNA sampling, and other situations in which a spatial array of devices records encounters of unique individuals. We integrate an individual-based formulation of a Jolly-Seber type model with recently developed spatially explicit capture–recapture models to estimate density and demographic parameters for survival and recruitment. We adopt a Bayesian framework for inference under this model using the method of data augmentation which is implemented in the software program WinBUGS. The model was motivated by a camera trapping study of Pampas cats Leopardus colocolo from Argentina, which we present as an illustration of the model in this paper. We provide estimates of density and the first quantitative assessment of vital rates for the Pampas cat in the High Andes. The precision of these estimates is poor due likely to the sparse data set. Unlike conventional inference methods which usually rely on asymptotic arguments, Bayesian inferences are valid in arbitrary sample sizes, and thus the method is ideal for the study of rare or endangered species for which small data sets are typical.
Gardner, Beth; Reppucci, Juan; Lucherini, Mauro; Royle, J Andrew
2010-11-01
We develop a hierarchical capture-recapture model for demographically open populations when auxiliary spatial information about location of capture is obtained. Such spatial capture-recapture data arise from studies based on camera trapping, DNA sampling, and other situations in which a spatial array of devices records encounters of unique individuals. We integrate an individual-based formulation of a Jolly-Seber type model with recently developed spatially explicit capture-recapture models to estimate density and demographic parameters for survival and recruitment. We adopt a Bayesian framework for inference under this model using the method of data augmentation which is implemented in the software program WinBUGS. The model was motivated by a camera trapping study of Pampas cats Leopardus colocolo from Argentina, which we present as an illustration of the model in this paper. We provide estimates of density and the first quantitative assessment of vital rates for the Pampas cat in the High Andes. The precision of these estimates is poor due likely to the sparse data set. Unlike conventional inference methods which usually rely on asymptotic arguments, Bayesian inferences are valid in arbitrary sample sizes, and thus the method is ideal for the study of rare or endangered species for which small data sets are typical.
NASA Astrophysics Data System (ADS)
Kawano, N.; Varquez, A. C. G.; Dong, Y.; Kanda, M.
2016-12-01
Numerical model such as Weather Research and Forecasting model coupled with single-layer Urban Canopy Model (WRF-UCM) is one of the powerful tools to investigate urban heat island. Urban parameters such as average building height (Have), plain area index (λp) and frontal area index (λf), are necessary inputs for the model. In general, these parameters are uniformly assumed in WRF-UCM but this leads to unrealistic urban representation. Distributed urban parameters can also be incorporated into WRF-UCM to consider a detail urban effect. The problem is that distributed building information is not readily available for most megacities especially in developing countries. Furthermore, acquiring real building parameters often require huge amount of time and money. In this study, we investigated the potential of using globally available satellite-captured datasets for the estimation of the parameters, Have, λp, and λf. Global datasets comprised of high spatial resolution population dataset (LandScan by Oak Ridge National Laboratory), nighttime lights (NOAA), and vegetation fraction (NASA). True samples of Have, λp, and λf were acquired from actual building footprints from satellite images and 3D building database of Tokyo, New York, Paris, Melbourne, Istanbul, Jakarta and so on. Regression equations were then derived from the block-averaging of spatial pairs of real parameters and global datasets. Results show that two regression curves to estimate Have and λf from the combination of population and nightlight are necessary depending on the city's level of development. An index which can be used to decide which equation to use for a city is the Gross Domestic Product (GDP). On the other hand, λphas less dependence on GDP but indicated a negative relationship to vegetation fraction. Finally, a simplified but precise approximation of urban parameters through readily-available, high-resolution global datasets and our derived regressions can be utilized to estimate a global distribution of urban parameters for later incorporation into a weather model, thus allowing us to acquire a global understanding of urban climate (Global Urban Climatology). Acknowledgment: This research was supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan.
Identification and synthetic modeling of factors affecting American black duck populations
Conroy, Michael J.; Miller, Mark W.; Hines, James E.
2002-01-01
We reviewed the literature on factors potentially affecting the population status of American black ducks (Anas rupribes). Our review suggests that there is some support for the influence of 4 major, continental-scope factors in limiting or regulating black duck populations: 1) loss in the quantity or quality of breeding habitats; 2) loss in the quantity or quality of wintering habitats; 3) harvest, and 4) interactions (competition, hybridization) with mallards (Anas platyrhychos) during the breeding and/or wintering periods. These factors were used as the basis of an annual life cycle model in which reproduction rates and survival rates were modeled as functions of the above factors, with parameters of the model describing the strength of these relationships. Variation in the model parameter values allows for consideration of scientific uncertainty as to the degree each of these factors may be contributing to declines in black duck populations, and thus allows for the investigation of the possible effects of management (e.g., habitat improvement, harvest reductions) under different assumptions. We then used available, historical data on black duck populations (abundance, annual reproduction rates, and survival rates) and possible driving factors (trends in breeding and wintering habitats, harvest rates, and abundance of mallards) to estimate model parameters. Our estimated reproduction submodel included parameters describing negative density feedback of black ducks, positive influence of breeding habitat, and negative influence of mallard densities; our survival submodel included terms for positive influence of winter habitat on reproduction rates, and negative influences of black duck density (i.e., compensation to harvest mortality). Individual models within each group (reproduction, survival) involved various combinations of these factors, and each was given an information theoretic weight for use in subsequent prediction. The reproduction model with highest AIC weight (0.70) predicted black duck age ratios increasing as a function of decreasing mallard abundance and increasing acreage of breeding habitat; all models considered involved negative density dependence for black ducks. The survival model with highest AIC weight (0.51) predicted nonharvest survival increasing as a function of increasing acreage of wintering habitat and decreasing harvest rates (additive mortality); models involving compensatory mortality effects received ≈0.12 total weight, vs. 0.88 for additive models. We used the combined model, together with our historical data set, to perform a series of 1-year population forecasts, similar to those that might be performed under adaptive management. Initial model forecasts over-predicted observed breeding populations by ≈25%. Least-squares calibration reduced the bias to ≈0.5% under prediction. After calibration, model-averaged predictions over the 16 alternative models (4 reproduction × 4 survival, weighted by AIC model weights) explained 67% of the variation in annual breeding population abundance for black ducks, suggesting that it might have utility as a predictive tool in adaptive management. We investigated the effects of statistical uncertainty in parameter values on predicted population growth rates for the combined annual model, via sensitivity analyses. Parameter sensitivity varied in relation to the parameter values over the estimated confidence intervals, and in relation to harvest rates and mallard abundance. Forecasts of black duck abundance were extremely sensitive to variation in parameter values for the coefficients for breeding and wintering habitat effects. Model-averaged forecasts of black duck abundance were also sensitive to changes in harvest rate and mallard abundance, with rapid declines in black duck abundance predicted for a range of harvest rates and mallard abundance higher than current levels of either factor, but easily envisaged, particularly given current rates of growth for mallard populations. Because of concerns about sensitivity to habitat coefficients, and particularly in light of deficiencies in the historical data used to estimate these parameters, we developed a simplified model that excludes habitat effects. We also developed alternative models involving a calibration adjustment for reproduction rates, survival rates, or neither. Calibration of survival rates performed best (AIC weight 0.59, % BIAS = -0.280, R2=0.679), with reproduction calibration somewhat inferior (AIC weight 0.41, % BIAS = -0.267, R2=0.672); models without calibration received virtually no AIC weight and were discarded. We recommend that the simplified model set (4 biological models × 2 alternative calibration factors) be retained as the best working set of alternative models for research and management. Finally, we provide some preliminary guidance for the development of adaptive harvest management for black ducks, using our working set of models.
Carlsson, Kristin Cecilie; Hoem, Nils Ove; Glauser, Tracy; Vinks, Alexander A
2005-05-01
Population models can be important extensions of therapeutic drug monitoring (TDM), as they allow estimation of individual pharmacokinetic parameters based on a small number of measured drug concentrations. This study used a Bayesian approach to explore the utility of routinely collected and sparse TDM data (1 sample per patient) for carbamazepine (CBZ) monotherapy in developing a population pharmacokinetic (PPK) model for CBZ in pediatric patients that would allow prediction of CBZ concentrations for both immediate- and controlled-release formulations. Patient and TDM data were obtained from a pediatric neurology outpatient database. Data were analyzed using an iterative 2-stage Bayesian algorithm and a nonparametric adaptive grid algorithm. Models were compared by final log likelihood, mean error (ME) as a measure of bias, and root mean squared error (RMSE) as a measure of precision. Fifty-seven entries with data on CBZ monotherapy were identified from the database and used in the analysis (36 from males, 21 from females; mean [SD] age, 9.1 [4.4] years [range, 2-21 years]). Preliminary models estimating clearance (Cl) or the elimination rate constant (K(el)) gave good prediction of serum concentrations compared with measured serum concentrations, but estimates of Cl and K(el) were highly correlated with estimates of volume of distribution (V(d)). Different covariate models were then tested. The selected model had zero-order input and had age and body weight as covariates. Cl (L/h) was calculated as K(el) . V(d), where K(el) = [K(i) - (K(s) . age)] and V(d) = [V(i) + (V(s) . body weight)]. Median parameter estimates were V(i) (intercept) = 11.5 L (fixed); V(s) (slope) = 0.3957 L/kg (range, 0.01200-1.5730); K(i) (intercept) = 0.173 h(-1) (fixed); and K(s) (slope) = 0.004487 h(-1) . y(-1) (range, 0.0001800-0.02969). The fit was good for estimates of steady-state serum concentrations based on prior values (population median estimates) (R = 0.468; R(2) = 0.219) but was even better for predictions based on individual Bayesian posterior values (R(2) = 0.991), with little bias (ME = -0.079) and good precision (RMSE = 0.055). Based on the findings of this study, sparse TDM data can be used for PPK modeling of CBZ clearance in children with epilepsy, and these models can be used to predict Cl at steady state in pediatric patients. However, to estimate additional pharmacokinetic model parameters (eg, the absorption rate constant and V(d)), it would be necessary to combine sparse TDM data with additional well-timed samples. This would allow development of more informative PPK models that could be used as part of Bayesian dose-individualization strategies.
Hightower, Joseph E.; Pollock, Kenneth H.
2013-01-01
Striped bass Morone saxatilis in inland reservoirs play an important role ecologically and in supporting recreational fishing. To manage these populations, biologists need information about abundance and mortality. Abundance estimates can be used to assess the effectiveness of stocking programs that maintain most reservoir striped bass populations. Mortality estimates can indicate the relative impact of fishing versus natural mortality and the need for harvest regulation. The purpose of this chapter is to evaluate tagging studies as a way of obtaining information about abundance and mortality. These approaches can be grouped into three broad categories: tag recapture, tag return, and telemetry. Tag-recapture methods are typically used to estimate population size and other demographic parameters but are often difficult to apply in large systems. A fishing tournament can be an effective way of generating tagging or recapture effort in large systems, compared to using research sampling only. Tag-return methods that rely on angler harvest and catch and release can be used to estimate fishing (F) and natural (M) mortality rates and are a practical approach in large reservoirs. The key to success in tag-return studies is to build in auxiliary studies to estimate short-term tagging mortality, short- and longterm tag loss, reporting rate, and mortality associated with catch and release. F and M can also be estimated using telemetry tags. Advantages of this approach are that angler nonreporting does not bias estimates and fish with transmitters provide useful ecological data. Cost can be a disadvantage of telemetry studies; thus, combining telemetry tags with conventional tag returns in an integrated analysis is often the optimal approach. In summary, tagging methods can be a powerful tool for assessing the effectiveness of inland striped bass stocking programs and the relative impact of fishing versus natural mortality
Cori, Anne; Boëlle, Pierre-Yves; Thomas, Guy; Leung, Gabriel M; Valleron, Alain-Jacques
2009-08-01
The extent to which self-adopted or intervention-related changes in behaviors affect the course of epidemics remains a key issue for outbreak control. This study attempted to quantify the effect of such changes on the risk of infection in different settings, i.e., the community and hospitals. The 2002-2003 severe acute respiratory syndrome (SARS) outbreak in Hong Kong, where 27% of cases were healthcare workers, was used as an example. A stochastic compartmental SEIR (susceptible-exposed-infectious-removed) model was used: the population was split into healthcare workers, hospitalized people and general population. Super spreading events (SSEs) were taken into account in the model. The temporal evolutions of the daily effective contact rates in the community and hospitals were modeled with smooth functions. Data augmentation techniques and Markov chain Monte Carlo (MCMC) methods were applied to estimate SARS epidemiological parameters. In particular, estimates of daily reproduction numbers were provided for each subpopulation. The average duration of the SARS infectious period was estimated to be 9.3 days (+/-0.3 days). The model was able to disentangle the impact of the two SSEs from background transmission rates. The effective contact rates, which were estimated on a daily basis, decreased with time, reaching zero inside hospitals. This observation suggests that public health measures and possible changes in individual behaviors effectively reduced transmission, especially in hospitals. The temporal patterns of reproduction numbers were similar for healthcare workers and the general population, indicating that on average, an infectious healthcare worker did not infect more people than any other infectious person. We provide a general method to estimate time dependence of parameters in structured epidemic models, which enables investigation of the impact of control measures and behavioral changes in different settings.
Estimating Finite Rate of Population Increase for Sharks Based on Vital Parameters
Liu, Kwang-Ming; Chin, Chien-Pang; Chen, Chun-Hui; Chang, Jui-Han
2015-01-01
The vital parameter data for 62 stocks, covering 38 species, collected from the literature, including parameters of age, growth, and reproduction, were log-transformed and analyzed using multivariate analyses. Three groups were identified and empirical equations were developed for each to describe the relationships between the predicted finite rates of population increase (λ’) and the vital parameters, maximum age (Tmax), age at maturity (Tm), annual fecundity (f/Rc)), size at birth (Lb), size at maturity (Lm), and asymptotic length (L∞). Group (1) included species with slow growth rates (0.034 yr-1 < k < 0.103 yr-1) and extended longevity (26 yr < Tmax < 81 yr), e.g., shortfin mako Isurus oxyrinchus, dusky shark Carcharhinus obscurus, etc.; Group (2) included species with fast growth rates (0.103 yr-1 < k < 0.358 yr-1) and short longevity (9 yr < Tmax < 26 yr), e.g., starspotted smoothhound Mustelus manazo, gray smoothhound M. californicus, etc.; Group (3) included late maturing species (Lm/L∞ ≧ 0.75) with moderate longevity (Tmax < 29 yr), e.g., pelagic thresher Alopias pelagicus, sevengill shark Notorynchus cepedianus. The empirical equation for all data pooled was also developed. The λ’ values estimated by these empirical equations showed good agreement with those calculated using conventional demographic analysis. The predictability was further validated by an independent data set of three species. The empirical equations developed in this study not only reduce the uncertainties in estimation but also account for the difference in life history among groups. This method therefore provides an efficient and effective approach to the implementation of precautionary shark management measures. PMID:26576058
García-Grajales, Jesús; Silva, Alejandra Buenrostro
2014-03-01
Population ecology of Crocodylus acutus (Reptilia: Crocodylidae) in Palmasola lagoon, Oaxaca, Mexico. Abundance and population structure are important parameters to evaluate and compare the conservation status of a population over time in a given area. This study describes the population abundance and structure of Crocodylus acutus in Palmasola lagoon, Oaxaca. The field works consisted of night surveys during the new moon phase, between the 21:00 and 24:00h. These were conducted during the dry and wet seasons and counted the number of individuals to obtain population estimates. Recorded encounter rates ranged from 32 to 109.3ind./ km in 40 journeys deployed with an average time of 18 minutes browsing. The estimated population size using the Messel's model ranged from 32.7 to 93 individuals. For both seasons, there was a marked dominance of subadults, followed by juveniles and to a lesser extent adult individuals, as well as undetermined individuals (i.e. unknown body/size/length), in both seasons. There was also a significant association with mangrove areas (26.1%) by juveniles; the subadults's individual use of superficial water (22.7%) and mangrove areas (15.7%); meanwhile the adults were observed on superficial water (9.7%). This information contributes to our understanding of the population ecology of C. acutus in the Palmasola lagoon where the estimated population size seems to show higher values when compared to other reports in the country.
Trask, Amanda E; Bignal, Eric M; McCracken, Davy I; Piertney, Stuart B; Reid, Jane M
2017-09-01
A population's effective size (N e ) is a key parameter that shapes rates of inbreeding and loss of genetic diversity, thereby influencing evolutionary processes and population viability. However, estimating N e , and identifying key demographic mechanisms that underlie the N e to census population size (N) ratio, remains challenging, especially for small populations with overlapping generations and substantial environmental and demographic stochasticity and hence dynamic age-structure. A sophisticated demographic method of estimating N e /N, which uses Fisher's reproductive value to account for dynamic age-structure, has been formulated. However, this method requires detailed individual- and population-level data on sex- and age-specific reproduction and survival, and has rarely been implemented. Here, we use the reproductive value method and detailed demographic data to estimate N e /N for a small and apparently isolated red-billed chough (Pyrrhocorax pyrrhocorax) population of high conservation concern. We additionally calculated two single-sample molecular genetic estimates of N e to corroborate the demographic estimate and examine evidence for unobserved immigration and gene flow. The demographic estimate of N e /N was 0.21, reflecting a high total demographic variance (σ2dg) of 0.71. Females and males made similar overall contributions to σ2dg. However, contributions varied among sex-age classes, with greater contributions from 3 year-old females than males, but greater contributions from ≥5 year-old males than females. The demographic estimate of N e was ~30, suggesting that rates of increase of inbreeding and loss of genetic variation per generation will be relatively high. Molecular genetic estimates of N e computed from linkage disequilibrium and approximate Bayesian computation were approximately 50 and 30, respectively, providing no evidence of substantial unobserved immigration which could bias demographic estimates of N e . Our analyses identify key sex-age classes contributing to demographic variance and thus decreasing N e /N in a small age-structured population inhabiting a variable environment. They thereby demonstrate how assessments of N e can incorporate stochastic sex- and age-specific demography and elucidate key demographic processes affecting a population's evolutionary trajectory and viability. Furthermore, our analyses show that N e for the focal chough population is critically small, implying that management to re-establish genetic connectivity may be required to ensure population viability. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Chen, Xue Dong; Stark, John D
2010-08-01
The effects of the tetramic acid insecticide, spirotetramat and the agricultural adjuvant, Destiny, were evaluated on the Cladoceran, Ceriodaphnia dubia. These compounds were evaluated separately and as a mixture because they can be applied together for control of certain crop pests and therefore have the potential to enter surface water as a binary mixture. Acute mortality estimates (48 h) were developed followed by chronic exposure (8 days) studies where several population parameters were recorded. Acute LC50 and 95% CL for spirotetramat and Destiny were estimated to be 23.8 (14.5-35.4) and 26.71 (20.8-34.0) mg/l, respectively. Thus, spirotetramat and Destiny were equitoxic to C. dubia at LC50. For the chronic population study, C. dubia populations were exposed to a range of concentrations for spirotetramat and Destiny singly and as a mixture. Each chemical alone reduced the number of founding individuals, offspring/female, final population size, and population growth rate in a concentration-dependent manner. However, exposure to the mixture caused significantly greater reductions in these parameters than either compound alone. These results indicate that agricultural adjuvants and pesticides may cause more damage to aquatic organisms as a mixture than either product alone. Therefore, future evaluations of pesticide effects should consider the effects of adjuvants as a mixture with pesticides when these products are recommended to be applied together for pest control.
Complex Population Dynamics and the Coalescent Under Neutrality
Volz, Erik M.
2012-01-01
Estimates of the coalescent effective population size Ne can be poorly correlated with the true population size. The relationship between Ne and the population size is sensitive to the way in which birth and death rates vary over time. The problem of inference is exacerbated when the mechanisms underlying population dynamics are complex and depend on many parameters. In instances where nonparametric estimators of Ne such as the skyline struggle to reproduce the correct demographic history, model-based estimators that can draw on prior information about population size and growth rates may be more efficient. A coalescent model is developed for a large class of populations such that the demographic history is described by a deterministic nonlinear dynamical system of arbitrary dimension. This class of demographic model differs from those typically used in population genetics. Birth and death rates are not fixed, and no assumptions are made regarding the fraction of the population sampled. Furthermore, the population may be structured in such a way that gene copies reproduce both within and across demes. For this large class of models, it is shown how to derive the rate of coalescence, as well as the likelihood of a gene genealogy with heterochronous sampling and labeled taxa, and how to simulate a coalescent tree conditional on a complex demographic history. This theoretical framework encapsulates many of the models used by ecologists and epidemiologists and should facilitate the integration of population genetics with the study of mathematical population dynamics. PMID:22042576
Tran, Phuong; Yoo, Hee-Doo; Ngo, Lien; Cho, Hea-Young; Lee, Yong-Bok
2017-12-01
The objective of this study was to perform population pharmacokinetic (PK) analysis of gabapentin in healthy Korean subjects and to investigate the possible effect of genetic polymorphisms (1236C > T, 2677G > T/A, and 3435C > T) of ABCB1 gene on PK parameters of gabapentin. Data were collected from bioequivalence studies, in which 173 subjects orally received three different doses of gabapentin (300, 400, and 800 mg). Only data from reference formulation were used. Population pharmacokinetics (PKs) of gabapentin was estimated using a nonlinear mixed-effects model (NONMEM). Gabapentin showed considerable inter-individual variability (from 5.2- to 8.7-fold) in PK parameters. Serum concentration of gabapentin was well fitted by a one-compartment model with first-order absorption and lag time. An inhibitory Emax model was applied to describe the effect of dose on bioavailability. The oral clearance was estimated to be 11.1 L/h. The volume of distribution was characterized as 81.0 L. The absorption rate constant was estimated at 0.860 h -1 , and the lag time was predicted at 0.311 h. Oral bioavailability was estimated to be 68.8% at dose of 300 mg, 62.7% at dose of 400 mg, and 47.1% at dose of 800 mg. The creatinine clearance significantly influenced on the oral clearance (P < 0.005) and ABCB1 2677G > T/A genotypes significantly influenced on the absorption rate constant (P < 0.05) of gabapentin. However, ABCB1 1236C > T and 3435C > T genotypes showed no significant effect on gabapentin PK parameters. The results of the present study indicate that the oral bioavailability of gabapentin is decreased when its dosage is increased. In addition, ABCB1 2677G > T/A polymorphism can explain the substantial inter-individual variability in the absorption of gabapentin.
NASA Astrophysics Data System (ADS)
Baldeschi, Adriano; Elia, D.; Molinari, S.; Pezzuto, S.; Schisano, E.; Gatti, M.; Serra, A.; Merello, M.; Benedettini, M.; Di Giorgio, A. M.; Liu, J. S.
2017-04-01
The degradation of spatial resolution in star-forming regions, observed at large distances (d ≳ 1 kpc) with Herschel, can lead to estimates of the physical parameters of the detected compact sources (clumps), which do not necessarily mirror the properties of the original population of cores. This paper aims at quantifying the bias introduced in the estimation of these parameters by the distance effect. To do so, we consider Herschel maps of nearby star-forming regions taken from the Herschel Gould Belt survey, and simulate the effect of increased distance to understand what amount of information is lost when a distant star-forming region is observed with Herschel resolution. In the maps displaced to different distances we extract compact sources, and we derive their physical parameters as if they were original Herschel infrared Galactic Plane Survey maps of the extracted source samples. In this way, we are able to discuss how the main physical properties change with distance. In particular, we discuss the ability of clumps to form massive stars: we estimate the fraction of distant sources that are classified as high-mass stars-forming objects due to their position in the mass versus radius diagram, that are only 'false positives'. We also give a threshold for high-mass star formation M>1282 (r/ [pc])^{1.42} M_{⊙}. In conclusion, this paper provides the astronomer dealing with Herschel maps of distant star-forming regions with a set of prescriptions to partially recover the character of the core population in unresolved clumps.
Genomic Quantitative Genetics to Study Evolution in the Wild.
Gienapp, Phillip; Fior, Simone; Guillaume, Frédéric; Lasky, Jesse R; Sork, Victoria L; Csilléry, Katalin
2017-12-01
Quantitative genetic theory provides a means of estimating the evolutionary potential of natural populations. However, this approach was previously only feasible in systems where the genetic relatedness between individuals could be inferred from pedigrees or experimental crosses. The genomic revolution opened up the possibility of obtaining the realized proportion of genome shared among individuals in natural populations of virtually any species, which could promise (more) accurate estimates of quantitative genetic parameters in virtually any species. Such a 'genomic' quantitative genetics approach relies on fewer assumptions, offers a greater methodological flexibility, and is thus expected to greatly enhance our understanding of evolution in natural populations, for example, in the context of adaptation to environmental change, eco-evolutionary dynamics, and biodiversity conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yu, Ling-Yuan; Chen, Zhen-Zhen; Zheng, Fang-Qiang; Shi, Ai-Ju; Guo, Ting-Ting; Yeh, Bao-Hua; Chi, Hsin; Xu, Yong-Yu
2013-02-01
The life table of the green lacewing, Chrysopa pallens (Rambur), was studied at 22 degrees C, a photoperiod of 15:9 (L:D) h, and 80% relative humidity in the laboratory. The raw data were analyzed using the age-stage, two-sex life table. The intrinsic rate of increase (r), the finite rate of increase (lambda), the net reproduction rate (R0), and the mean generation time (T) of Ch. pallens were 0.1258 d(-1), 1.1340 d(-1), 241.4 offspring and 43.6 d, respectively. For the estimation of the means, variances, and SEs of the population parameters, we compared the jackknife and bootstrap techniques. Although similar values of the means and SEs were obtained with both techniques, significant differences were observed in the frequency distribution and variances of all parameters. The jackknife technique will result in a zero net reproductive rate upon the omission of a male, an immature death, or a nonreproductive female. This result represents, however, a contradiction because an intrinsic rate of increase exists in this situation. Therefore, we suggest that the jackknife technique should not be used for the estimation of population parameters. In predator-prey interactions, the nonpredatory egg and pupal stages of the predator are time refuges for the prey, and the pest population can grow during these times. In this study, a population projection based on the age-stage, two-sex life table is used to determine the optimal interval between releases to fill the predation gaps and maintain the predatory capacity of the control agent.
Parolin, María Laura; Real, Luciano E; Martinazzo, Liza B; Basso, Néstor G
2015-11-01
Allele frequencies and forensic parameters for 22 autosomal STR loci and DYS391 locus included in the PowerPlex(®) Fusion System kit were estimated in a sample of 770 unrelated individuals from Chubut Province, southern Patagonia. No significant deviations from Hardy-Weinberg equilibrium were observed after Bonferroni's correction. The combined power of discrimination and the combined probability of exclusion were >0.999999 and 0.999984, respectively. Comparisons with other worldwide populations were performed. The MDS obtained show a close biological relation between Chubut and Chile. The estimated interethnic admixture supports a high Native American contribution (46%) in the population sample of Chubut. These results enlarge the Argentine databases of autosomal STR and would provide a valuable contribution for identification tests and population genetic studies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Effects of sampling conditions on DNA-based estimates of American black bear abundance
Laufenberg, Jared S.; Van Manen, Frank T.; Clark, Joseph D.
2013-01-01
DNA-based capture-mark-recapture techniques are commonly used to estimate American black bear (Ursus americanus) population abundance (N). Although the technique is well established, many questions remain regarding study design. In particular, relationships among N, capture probability of heterogeneity mixtures A and B (pA and pB, respectively, or p, collectively), the proportion of each mixture (π), number of capture occasions (k), and probability of obtaining reliable estimates of N are not fully understood. We investigated these relationships using 1) an empirical dataset of DNA samples for which true N was unknown and 2) simulated datasets with known properties that represented a broader array of sampling conditions. For the empirical data analysis, we used the full closed population with heterogeneity data type in Program MARK to estimate N for a black bear population in Great Smoky Mountains National Park, Tennessee. We systematically reduced the number of those samples used in the analysis to evaluate the effect that changes in capture probabilities may have on parameter estimates. Model-averaged N for females and males were 161 (95% CI = 114–272) and 100 (95% CI = 74–167), respectively (pooled N = 261, 95% CI = 192–419), and the average weekly p was 0.09 for females and 0.12 for males. When we reduced the number of samples of the empirical data, support for heterogeneity models decreased. For the simulation analysis, we generated capture data with individual heterogeneity covering a range of sampling conditions commonly encountered in DNA-based capture-mark-recapture studies and examined the relationships between those conditions and accuracy (i.e., probability of obtaining an estimated N that is within 20% of true N), coverage (i.e., probability that 95% confidence interval includes true N), and precision (i.e., probability of obtaining a coefficient of variation ≤20%) of estimates using logistic regression. The capture probability for the larger of 2 mixture proportions of the population (i.e., pA or pB, depending on the value of π) was most important for predicting accuracy and precision, whereas capture probabilities of both mixture proportions (pA and pB) were important to explain variation in coverage. Based on sampling conditions similar to parameter estimates from the empirical dataset (pA = 0.30, pB = 0.05, N = 250, π = 0.15, and k = 10), predicted accuracy and precision were low (60% and 53%, respectively), whereas coverage was high (94%). Increasing pB, the capture probability for the predominate but most difficult to capture proportion of the population, was most effective to improve accuracy under those conditions. However, manipulation of other parameters may be more effective under different conditions. In general, the probabilities of obtaining accurate and precise estimates were best when p≥ 0.2. Our regression models can be used by managers to evaluate specific sampling scenarios and guide development of sampling frameworks or to assess reliability of DNA-based capture-mark-recapture studies.
Wang, Xiunan; Zou, Xingfu
2018-05-21
Mosquito-borne diseases remain a significant threat to public health and economics. Since mosquitoes are quite sensitive to temperature, global warming may not only worsen the disease transmission case in current endemic areas but also facilitate mosquito population together with pathogens to establish in new regions. Therefore, understanding mosquito population dynamics under the impact of temperature is considerably important for making disease control policies. In this paper, we develop a stage-structured mosquito population model in the environment of a temperature-controlled experiment. The model turns out to be a system of periodic delay differential equations with periodic delays. We show that the basic reproduction number is a threshold parameter which determines whether the mosquito population goes to extinction or remains persistent. We then estimate the parameter values for Aedes aegypti, the mosquito that transmits dengue virus. We verify the analytic result by numerical simulations with the temperature data of Colombo, Sri Lanka where a dengue outbreak occurred in 2017.
Mattsson, Brady J.; Runge, M.C.; Devries, J.H.; Boomer, G.S.; Eadie, J.M.; Haukos, D.A.; Fleskes, J.P.; Koons, D.N.; Thogmartin, W.E.; Clark, R.G.
2012-01-01
We developed and evaluated the performance of a metapopulation model enabling managers to examine, for the first time, the consequences of alternative management strategies involving habitat conditions and hunting on both harvest opportunity and carrying capacity (i.e., equilibrium population size in the absence of harvest) for migratory waterfowl at a continental scale. Our focus is on the northern pintail (Anas acuta; hereafter, pintail), which serves as a useful model species to examine the potential for integrating waterfowl harvest and habitat management in North America. We developed submodel structure capturing important processes for pintail populations during breeding, fall migration, winter, and spring migration while encompassing spatial structure representing three core breeding areas and two core nonbreeding areas. A number of continental-scale predictions from our baseline parameterization (e.g., carrying capacity of 5.5 million, equilibrium population size of 2.9 million and harvest rate of 12% at maximum sustained yield [MSY]) were within 10% of those from the pintail harvest strategy under current use by the U.S. Fish and Wildlife Service. To begin investigating the interaction of harvest and habitat management, we examined equilibrium population conditions for pintail at the continental scale across a range of harvest rates while perturbing model parameters to represent: (1) a 10% increase in breeding habitat quality in the Prairie Pothole population (PR); and (2) a 10% increase in nonbreeding habitat quantity along in the Gulf Coast (GC). Based on our model and analysis, a greater increase in carrying capacity and sustainable harvest was seen when increasing a proxy for habitat quality in the Prairie Pothole population. This finding and underlying assumptions must be critically evaluated, however, before specific management recommendations can be made. To make such recommendations, we require (1) extended, refined submodels with additional parameters linking influences of habitat management and environmental conditions to key life-history parameters; (2) a formal sensitivity analysis of the revised model; (3) an integrated population model that incorporates empirical data for estimating key vital rates; and (4) cost estimates for changing these additional parameters through habitat management efforts. We foresee great utility in using an integrated modeling approach to predict habitat and harvest management influences on continental-scale population responses while explicitly considering putative effects of climate change. Such a model could be readily adapted for management of many habitat-limited species.
NASA Astrophysics Data System (ADS)
Harper, E. B.; Stella, J. C.; Fremier, A. K.
2009-12-01
Fremont cottonwood (Populus fremontii) is an important component of semi-arid riparian ecosystems throughout western North America, but its populations are in decline due to flow regulation. Achieving a balance between human resource needs and riparian ecosystem function requires a mechanistic understanding of the multiple geomorphic and biological factors affecting tree recruitment and survival, including the timing and magnitude of river flows, and the concomitant influence on suitable habitat creation and mortality from scour and sedimentation burial. Despite a great deal of empirical research on some components of the system, such as factors affecting cottonwood recruitment, other key components are less studied. Yet understanding the relative influence of the full suite of physical and life-history drivers is critical to modeling whole-population dynamics under changing environmental conditions. We addressed these issues for the Fremont cottonwood population along the Sacramento River, CA using a sensitivity analysis approach to quantify uncertainty in parameters on the outcomes of a patch-based, dynamic population model. Using a broad range of plausible values for 15 model parameters that represent key physical, biological and climatic components of the ecosystem, we ran 1,000 population simulations that consisted of a subset of 14.3 million possible combinations of parameter estimates to predict the frequency of patch colonization and total forest habitat predicted to occur under current hydrologic conditions after 175 years. Results indicate that Fremont cottonwood populations are highly sensitive to the interactions among flow regime, sedimentation rate and the depth of the capillary fringe (Fig. 1). Estimates of long-term floodplain sedimentation rate would substantially improve model accuracy. Spatial variation in sediment texture was also important to the extent that it determines the depth of the capillary fringe, which regulates the availability of water for germination and adult tree growth. Our sensitivity analyses suggest that models of future scenarios should incorporate regional climate change projections because changes in temperature and the timing and volume of precipitation affects sensitive aspects of the system, including the timing of seed release and spring snowmelt runoff. Figure 1. The relative effects on model predictions of uncertainty around each parameter included in the patch-based population model for Fremont cottonwood.
Survival and recovery rates of American woodcock banded in Michigan
Krementz, David G.; Hines, James E.; Luukkonen, David R.
2003-01-01
American woodcock (Scolopax minor) population indices have declined since U.S. Fish and Wildlife Service (USFWS) monitoring began in 1968. Management to stop and/or reverse this population trend has been hampered by the lack of recent information on woodcock population parameters. Without recent information on survival rate trends, managers have had to assume that the recent declines in recruitment indices are the only parameter driving woodcock declines. Using program MARK, we estimated annual survival and recovery rates of adult and juvenile American woodcock, and estimated summer survival of local (young incapable of sustained flight) woodcock banded in Michigan between 1978 and 1998. We constructed a set of candidate models from a global model with age (local, juvenile, adult) and time (year)-dependent survival and recovery rates to no age or time-dependent survival and recovery rates. Five models were supported by the data, with all models suggesting that survival rates differed among age classes, and 4 models had survival rates that were constant over time. The fifth model suggested that juvenile and adult survival rates were linear on a logit scale over time. Survival rates averaged over likelihood-weighted model results were 0.8784 +/- 0.1048 (SE) for locals, 0.2646 +/- 0.0423 (SE) for juveniles, and 0.4898 +/- 0.0329 (SE) for adults. Weighted average recovery rates were 0.0326 +/- 0.0053 (SE) for juveniles and 0.0313 +/- 0.0047 (SE) for adults. Estimated differences between our survival estimates and those from prior years were small, and our confidence around those differences was variable and uncertain. juvenile survival rates were low.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamo, Masashi; Ono, Kyoko; Nakanishi, Junko
2006-05-15
A meta-analysis was conducted to derive age- and gender-specific dose-response relationships between urinary cadmium (Cd) concentration and {beta} {sub 2}-microglobulinuria ({beta}2MG-uria) under environmental exposure. {beta}2MG-uria was defined by a cutoff point of 1000 {mu}g {beta} {sub 2}-microglobulin/g creatinine. We proposed a model for describing the relationships among the interindividual variabilities in urinary Cd concentration, the ratio of Cd concentrations in the target organ and in urine, and the threshold Cd concentration in the target organ. The parameters in the model were determined so that good agreement might be achieved between the prevalence rates of {beta}2MG-uria reported in the literature andmore » those estimated by the model. In this analysis, only the data from the literature on populations environmentally exposed to Cd were used. Using the model and estimated parameters, the prevalence rate of {beta}2MG-uria can be estimated for an age- and gender-specific subpopulation for which the distribution of urinary Cd concentrations is known. The maximum permissible level of urinary Cd concentration was defined as the maximum geometric mean of the urinary Cd concentration in an age- and gender-specific subpopulation that would not result in a statistically significant increase in the prevalence rate of {beta}2MG-uria. This was estimated to be approximately 3 {mu}g/g creatinine for a population in a small geographical area and approximately 2 {mu}g/g creatinine for a nationwide population.« less
Estimating the Variance of Design Parameters
ERIC Educational Resources Information Center
Hedberg, E. C.; Hedges, L. V.; Kuyper, A. M.
2015-01-01
Randomized experiments are generally considered to provide the strongest basis for causal inferences about cause and effect. Consequently randomized field trials have been increasingly used to evaluate the effects of education interventions, products, and services. Populations of interest in education are often hierarchically structured (such as…
Incorporating parametric uncertainty into population viability analysis models
McGowan, Conor P.; Runge, Michael C.; Larson, Michael A.
2011-01-01
Uncertainty in parameter estimates from sampling variation or expert judgment can introduce substantial uncertainty into ecological predictions based on those estimates. However, in standard population viability analyses, one of the most widely used tools for managing plant, fish and wildlife populations, parametric uncertainty is often ignored in or discarded from model projections. We present a method for explicitly incorporating this source of uncertainty into population models to fully account for risk in management and decision contexts. Our method involves a two-step simulation process where parametric uncertainty is incorporated into the replication loop of the model and temporal variance is incorporated into the loop for time steps in the model. Using the piping plover, a federally threatened shorebird in the USA and Canada, as an example, we compare abundance projections and extinction probabilities from simulations that exclude and include parametric uncertainty. Although final abundance was very low for all sets of simulations, estimated extinction risk was much greater for the simulation that incorporated parametric uncertainty in the replication loop. Decisions about species conservation (e.g., listing, delisting, and jeopardy) might differ greatly depending on the treatment of parametric uncertainty in population models.
Genetic trend in economic traits in Iranian native fowl.
Ghorbani, S H; Kamali, M A
2007-09-15
Genetic parameters were estimated in base population of a closed experimental strain fowl, from data issued from 13 successive generations of selection. This population had been selected for body weight at 12 weeks of age (BW12) and egg number during the first 12 weeks of laying period (EN), mean egg weight at 28th, 30th, 32nd weeks and Age at Sexual Maturity (ASM). Data were obtained on 35461 Iranian native hens belonging to breeding center for Fars province in Iran. The method of multi-traits restricted maximum likelihood with an animal model was used to estimate genetic parameters. Resulting heritabilities for BW12, EN, EW and ASM were 0.58, 0.34, 0.62 and 0.49, respectively. Genetic correlations between BW12 and EN, EW and ASM were -0.06, 0.49 and 0.02, respectively. Genetic correlations between EN and EW and ASM were -0.26 and-0.77, respectively, while between EW and ASM, it was 0.20. The overall predicted genetic gains, after 13 generations of selection, estimated by the regression coefficients of the breeding value on generation number were equal to 9.55, 0.99, 0.05 and -1.66, for BW12, EN, EW and ASM, respectively.
O'Shea, Thomas J.; Langtimm, Catherine A.; O'Shea, Thomas J.; Ackerman, B.B.; Percival, H. Franklin
1995-01-01
We applied Cormack-Jolly-Seber open population models to manatee (Trichechus manatus latirostris) photo-identification databases to estimate adult survival probabilities. The computer programs JOLLY and RECAPCO were used to estimate survival of 677 individuals in three study areas: Crystal River (winters 1977-78 to 1990-91), Blue Spring (winters 1977-78 to 1990-91), and the Atlantic Coast (winters 1984-85 to 1990-91). We also estimated annual survival from observations of 111 manatees tagged for studies with radiotelemetry. Survival estimated from observations with telemetry had broader confidence intervals than survival estimated with the Cormack-Jolly-Seber models. Annual probabilities of capture based on photo-identification records were generally high. The mean annual adult survival estimated from sighting-resighting records was 0.959-0.962 in the Crystal River and 0.936-0.948 at Blue Spring and may be high enough to permit population growth, given the values of other life-history parameters. On the Atlantic Coast, the estimated annual adult survival (range of means = 0.877-0.885) may signify a declining population. However, for several reasons, interpretation of data from the latter study group should be tempered with caution. Adult survivorship seems to be constant with age in all three study groups. No strong differences were apparent between adult survival ofmales and females in the Crystal River or at Blue Spring; the basis of significant differences between sexes on the Atlantic Coast is unclear. Future research into estimating survival with photo-identification and the Cormack-Jolly-Seber models should be vigorously pursued. Estimates of annual survival can provide an additional indication of Florida manatee population status with a stronger statistical basis than aerial counts and carcass totals.
An empirical analysis of the Ebola outbreak in West Africa
NASA Astrophysics Data System (ADS)
Khaleque, Abdul; Sen, Parongama
2017-02-01
The data for the Ebola outbreak that occurred in 2014-2016 in three countries of West Africa are analysed within a common framework. The analysis is made using the results of an agent based Susceptible-Infected-Removed (SIR) model on a Euclidean network, where nodes at a distance l are connected with probability P(l) ∝ l-δ, δ determining the range of the interaction, in addition to nearest neighbors. The cumulative (total) density of infected population here has the form , where the parameters depend on δ and the infection probability q. This form is seen to fit well with the data. Using the best fitting parameters, the time at which the peak is reached is estimated and is shown to be consistent with the data. We also show that in the Euclidean model, one can choose δ and q values which reproduce the data for the three countries qualitatively. These choices are correlated with population density, control schemes and other factors. Comparing the real data and the results from the model one can also estimate the size of the actual population susceptible to the disease. Rescaling the real data a reasonably good quantitative agreement with the simulation results is obtained.
Solving delay differential equations in S-ADAPT by method of steps.
Bauer, Robert J; Mo, Gary; Krzyzanski, Wojciech
2013-09-01
S-ADAPT is a version of the ADAPT program that contains additional simulation and optimization abilities such as parametric population analysis. S-ADAPT utilizes LSODA to solve ordinary differential equations (ODEs), an algorithm designed for large dimension non-stiff and stiff problems. However, S-ADAPT does not have a solver for delay differential equations (DDEs). Our objective was to implement in S-ADAPT a DDE solver using the methods of steps. The method of steps allows one to solve virtually any DDE system by transforming it to an ODE system. The solver was validated for scalar linear DDEs with one delay and bolus and infusion inputs for which explicit analytic solutions were derived. Solutions of nonlinear DDE problems coded in S-ADAPT were validated by comparing them with ones obtained by the MATLAB DDE solver dde23. The estimation of parameters was tested on the MATLB simulated population pharmacodynamics data. The comparison of S-ADAPT generated solutions for DDE problems with the explicit solutions as well as MATLAB produced solutions which agreed to at least 7 significant digits. The population parameter estimates from using importance sampling expectation-maximization in S-ADAPT agreed with ones used to generate the data. Published by Elsevier Ireland Ltd.
Size-density scaling in protists and the links between consumer-resource interaction parameters.
DeLong, John P; Vasseur, David A
2012-11-01
Recent work indicates that the interaction between body-size-dependent demographic processes can generate macroecological patterns such as the scaling of population density with body size. In this study, we evaluate this possibility for grazing protists and also test whether demographic parameters in these models are correlated after controlling for body size. We compiled data on the body-size dependence of consumer-resource interactions and population density for heterotrophic protists grazing algae in laboratory studies. We then used nested dynamic models to predict both the height and slope of the scaling relationship between population density and body size for these protists. We also controlled for consumer size and assessed links between model parameters. Finally, we used the models and the parameter estimates to assess the individual- and population-level dependence of resource use on body-size and prey-size selection. The predicted size-density scaling for all models matched closely to the observed scaling, and the simplest model was sufficient to predict the pattern. Variation around the mean size-density scaling relationship may be generated by variation in prey productivity and area of capture, but residuals are relatively insensitive to variation in prey size selection. After controlling for body size, many consumer-resource interaction parameters were correlated, and a positive correlation between residual prey size selection and conversion efficiency neutralizes the apparent fitness advantage of taking large prey. Our results indicate that widespread community-level patterns can be explained with simple population models that apply consistently across a range of sizes. They also indicate that the parameter space governing the dynamics and the steady states in these systems is structured such that some parts of the parameter space are unlikely to represent real systems. Finally, predator-prey size ratios represent a kind of conundrum, because they are widely observed but apparently have little influence on population size and fitness, at least at this level of organization. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Broekhuis, Femke; Gopalaswamy, Arjun M.
2016-01-01
Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed ‘hotspots’ of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species. PMID:27135614
Broekhuis, Femke; Gopalaswamy, Arjun M
2016-01-01
Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed 'hotspots' of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species.
Estimated Chemical Warfare Agent Surface Clearance Goals for Remediation Pre-Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolislager, Frederick; Bansleben, Dr. Donald; Watson, Annetta Paule
2010-01-01
Health-based surface clearance goals, in units of mg/cm2, have been developed for the persistent chemical warfare agents sulfur mustard (HD) and nerve agent VX as well as their principal degradation products. Selection of model parameters and critical receptor (toddler child) allow calculation of surface residue estimates protective for the toddler child, the general population and adult employees of a facilty that has undergone chemical warfare agent attack.
Conroy, M.J.; Runge, J.P.; Barker, R.J.; Schofield, M.R.; Fonnesbeck, C.J.
2008-01-01
Many organisms are patchily distributed, with some patches occupied at high density, others at lower densities, and others not occupied. Estimation of overall abundance can be difficult and is inefficient via intensive approaches such as capture-mark-recapture (CMR) or distance sampling. We propose a two-phase sampling scheme and model in a Bayesian framework to estimate abundance for patchily distributed populations. In the first phase, occupancy is estimated by binomial detection samples taken on all selected sites, where selection may be of all sites available, or a random sample of sites. Detection can be by visual surveys, detection of sign, physical captures, or other approach. At the second phase, if a detection threshold is achieved, CMR or other intensive sampling is conducted via standard procedures (grids or webs) to estimate abundance. Detection and CMR data are then used in a joint likelihood to model probability of detection in the occupancy sample via an abundance-detection model. CMR modeling is used to estimate abundance for the abundance-detection relationship, which in turn is used to predict abundance at the remaining sites, where only detection data are collected. We present a full Bayesian modeling treatment of this problem, in which posterior inference on abundance and other parameters (detection, capture probability) is obtained under a variety of assumptions about spatial and individual sources of heterogeneity. We apply the approach to abundance estimation for two species of voles (Microtus spp.) in Montana, USA. We also use a simulation study to evaluate the frequentist properties of our procedure given known patterns in abundance and detection among sites as well as design criteria. For most population characteristics and designs considered, bias and mean-square error (MSE) were low, and coverage of true parameter values by Bayesian credibility intervals was near nominal. Our two-phase, adaptive approach allows efficient estimation of abundance of rare and patchily distributed species and is particularly appropriate when sampling in all patches is impossible, but a global estimate of abundance is required.
Evaluating sampling designs by computer simulation: A case study with the Missouri bladderpod
Morrison, L.W.; Smith, D.R.; Young, C.; Nichols, D.W.
2008-01-01
To effectively manage rare populations, accurate monitoring data are critical. Yet many monitoring programs are initiated without careful consideration of whether chosen sampling designs will provide accurate estimates of population parameters. Obtaining accurate estimates is especially difficult when natural variability is high, or limited budgets determine that only a small fraction of the population can be sampled. The Missouri bladderpod, Lesquerella filiformis Rollins, is a federally threatened winter annual that has an aggregated distribution pattern and exhibits dramatic interannual population fluctuations. Using the simulation program SAMPLE, we evaluated five candidate sampling designs appropriate for rare populations, based on 4 years of field data: (1) simple random sampling, (2) adaptive simple random sampling, (3) grid-based systematic sampling, (4) adaptive grid-based systematic sampling, and (5) GIS-based adaptive sampling. We compared the designs based on the precision of density estimates for fixed sample size, cost, and distance traveled. Sampling fraction and cost were the most important factors determining precision of density estimates, and relative design performance changed across the range of sampling fractions. Adaptive designs did not provide uniformly more precise estimates than conventional designs, in part because the spatial distribution of L. filiformis was relatively widespread within the study site. Adaptive designs tended to perform better as sampling fraction increased and when sampling costs, particularly distance traveled, were taken into account. The rate that units occupied by L. filiformis were encountered was higher for adaptive than for conventional designs. Overall, grid-based systematic designs were more efficient and practically implemented than the others. ?? 2008 The Society of Population Ecology and Springer.
Efficacy of using data from angler-caught Burbot to estimate population rate functions
Brauer, Tucker A.; Rhea, Darren T.; Walrath, John D.; Quist, Michael C.
2018-01-01
The effective management of a fish population depends on the collection of accurate demographic data from that population. Since demographic data are often expensive and difficult to obtain, developing cost‐effective and efficient collection methods is a high priority. This research evaluates the efficacy of using angler‐supplied data to monitor a nonnative population of Burbot Lota lota. Age and growth estimates were compared between Burbot collected by anglers and those collected in trammel nets from two Wyoming reservoirs. Collection methods produced different length‐frequency distributions, but no difference was observed in age‐frequency distributions. Mean back‐calculated lengths at age revealed that netted Burbot grew faster than angled Burbot in Fontenelle Reservoir. In contrast, angled Burbot grew slightly faster than netted Burbot in Flaming Gorge Reservoir. Von Bertalanffy growth models differed between collection methods, but differences in parameter estimates were minor. Estimates of total annual mortality (A) of Burbot in Fontenelle Reservoir were comparable between angled (A = 35.4%) and netted fish (33.9%); similar results were observed in Flaming Gorge Reservoir for angled (29.3%) and netted fish (30.5%). Beverton–Holt yield‐per‐recruit models were fit using data from both collection methods. Estimated yield differed by less than 15% between data sources and reservoir. Spawning potential ratios indicated that an exploitation rate of 20% would be required to induce recruitment overfishing in either reservoir, regardless of data source. Results of this study suggest that angler‐supplied data are useful for monitoring Burbot population dynamics in Wyoming and may be an option to efficiently monitor other fish populations in North America.
The impact of roads on the demography of grizzly bears in Alberta.
Boulanger, John; Stenhouse, Gordon B
2014-01-01
One of the principal factors that have reduced grizzly bear populations has been the creation of human access into grizzly bear habitat by roads built for resource extraction. Past studies have documented mortality and distributional changes of bears relative to roads but none have attempted to estimate the direct demographic impact of roads in terms of both survival rates, reproductive rates, and the interaction of reproductive state of female bears with survival rate. We applied a combination of survival and reproductive models to estimate demographic parameters for threatened grizzly bear populations in Alberta. Instead of attempting to estimate mean trend we explored factors which caused biological and spatial variation in population trend. We found that sex and age class survival was related to road density with subadult bears being most vulnerable to road-based mortality. A multi-state reproduction model found that females accompanied by cubs of the year and/or yearling cubs had lower survival rates compared to females with two year olds or no cubs. A demographic model found strong spatial gradients in population trend based upon road density. Threshold road densities needed to ensure population stability were estimated to further refine targets for population recovery of grizzly bears in Alberta. Models that considered lowered survival of females with dependant offspring resulted in lower road density thresholds to ensure stable bear populations. Our results demonstrate likely spatial variation in population trend and provide an example how demographic analysis can be used to refine and direct conservation measures for threatened species.
The Impact of Roads on the Demography of Grizzly Bears in Alberta
2014-01-01
One of the principal factors that have reduced grizzly bear populations has been the creation of human access into grizzly bear habitat by roads built for resource extraction. Past studies have documented mortality and distributional changes of bears relative to roads but none have attempted to estimate the direct demographic impact of roads in terms of both survival rates, reproductive rates, and the interaction of reproductive state of female bears with survival rate. We applied a combination of survival and reproductive models to estimate demographic parameters for threatened grizzly bear populations in Alberta. Instead of attempting to estimate mean trend we explored factors which caused biological and spatial variation in population trend. We found that sex and age class survival was related to road density with subadult bears being most vulnerable to road-based mortality. A multi-state reproduction model found that females accompanied by cubs of the year and/or yearling cubs had lower survival rates compared to females with two year olds or no cubs. A demographic model found strong spatial gradients in population trend based upon road density. Threshold road densities needed to ensure population stability were estimated to further refine targets for population recovery of grizzly bears in Alberta. Models that considered lowered survival of females with dependant offspring resulted in lower road density thresholds to ensure stable bear populations. Our results demonstrate likely spatial variation in population trend and provide an example how demographic analysis can be used to refine and direct conservation measures for threatened species. PMID:25532035
Structural reliability analysis of laminated CMC components
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Palko, Joseph L.; Gyekenyesi, John P.
1991-01-01
For laminated ceramic matrix composite (CMC) materials to realize their full potential in aerospace applications, design methods and protocols are a necessity. The time independent failure response of these materials is focussed on and a reliability analysis is presented associated with the initiation of matrix cracking. A public domain computer algorithm is highlighted that was coupled with the laminate analysis of a finite element code and which serves as a design aid to analyze structural components made from laminated CMC materials. Issues relevant to the effect of the size of the component are discussed, and a parameter estimation procedure is presented. The estimation procedure allows three parameters to be calculated from a failure population that has an underlying Weibull distribution.
Hormuth, David A; Skinner, Jack T; Does, Mark D; Yankeelov, Thomas E
2014-05-01
Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) can quantitatively and qualitatively assess physiological characteristics of tissue. Quantitative DCE-MRI requires an estimate of the time rate of change of the concentration of the contrast agent in the blood plasma, the vascular input function (VIF). Measuring the VIF in small animals is notoriously difficult as it requires high temporal resolution images limiting the achievable number of slices, field-of-view, spatial resolution, and signal-to-noise. Alternatively, a population-averaged VIF could be used to mitigate the acquisition demands in studies aimed to investigate, for example, tumor vascular characteristics. Thus, the overall goal of this manuscript is to determine how the kinetic parameters estimated by a population based VIF differ from those estimated by an individual VIF. Eight rats bearing gliomas were imaged before, during, and after an injection of Gd-DTPA. K(trans), ve, and vp were extracted from signal-time curves of tumor tissue using both individual and population-averaged VIFs. Extended model voxel estimates of K(trans) and ve in all animals had concordance correlation coefficients (CCC) ranging from 0.69 to 0.98 and Pearson correlation coefficients (PCC) ranging from 0.70 to 0.99. Additionally, standard model estimates resulted in CCCs ranging from 0.81 to 0.99 and PCCs ranging from 0.98 to 1.00, supporting the use of a population based VIF if an individual VIF is not available. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Daniell, James; Wenzel, Friedemann
2014-05-01
A review of over 200 fatality models over the past 50 years for earthquake loss estimation from various authors has identified key parameters that influence fatality estimation in each of these models. These are often very specific and cannot be readily adapted globally. In the doctoral dissertation of the author, a new method is used for regression of fatalities to intensity using loss functions based not only on fatalities, but also using population models and other socioeconomic parameters created through time for every country worldwide for the period 1900-2013. A calibration of functions was undertaken from 1900-2008, and each individual quake analysed from 2009-2013 in real-time, in conjunction with www.earthquake-report.com. Using the CATDAT Damaging Earthquakes Database containing socioeconomic loss information for 7208 damaging earthquake events from 1900-2013 including disaggregation of secondary effects, fatality estimates for over 2035 events have been re-examined from 1900-2013. In addition, 99 of these events have detailed data for the individual cities and towns or have been reconstructed to create a death rate as a percentage of population. Many historical isoseismal maps and macroseismic intensity datapoint surveys collected globally, have been digitised and modelled covering around 1353 of these 2035 fatal events, to include an estimate of population, occupancy and socioeconomic climate at the time of the event at each intensity bracket. In addition, 1651 events without fatalities but causing damage have also been examined in this way. The production of socioeconomic and engineering indices such as HDI and building vulnerability has been undertaken on a country-level and state/province-level leading to a dataset allowing regressions not only using a static view of risk, but also allowing for the change in the socioeconomic climate between the earthquake events to be undertaken. This means that a year 1920 event in a country, will not simply be regressed against a year 2000 event, but normalised. A global human development index (HDI) (life expectancy, education and income) was developed and collected for the first time from 1900-2013 globally on a country and province level allowing for a very useful parameter in the regression. In addition, the occupancy rate from the time of day that the event occurred, as well as population density and individual earthquake attributes like the existence of a foreshock were also examined for the 3004 events in the regression analysis. Where an event has not occurred in a country previously, a regionalisation strategy based on building typologies, seismic code index, building practice, climate, earthquake history and socioeconomic climate is proposed. The result is a set of "social fragility functions" calculating fatalities for use in any country worldwide using the parameters of macroseismic intensity, population, HDI, time of day and occupancy, that provide a robust accurate method, which has not only been calibrated to country level data but to town and city data through time. The estimates will continue to be used in conjunction with Earthquake Report, a non-profit worldwide earthquake reporting website and has shown very promising results from 2010-2013 for rapid estimates of fatalities globally.
Preliminary assessment of aerial photography techniques for canvasback population analysis
Munro, R.E.; Trauger, D.L.
1976-01-01
Recent intensive research on the canvasback has focused attention on the need for more precise estimates of population parameters. During the 1972-75 period, various types of aerial photographing equipment were evaluated to determine the problems and potentials for employing these techniques in appraisals of canvasback populations. The equipment and procedures available for automated analysis of aerial photographic imagery were also investigated. Serious technical problems remain to be resolved, but some promising results were obtained. Final conclusions about the feasibility of operational implementation await a more rigorous analysis of the data collected.
Linking resources with demography to understand resource limitation for bears
Reynolds-Hogland, M. J.; Pacifici, L.B.; Mitchell, M.S.
2007-01-01
1. Identifying the resources that limit growth of animal populations is essential for effective conservation; however, resource limitation is difficult to quantify. Recent advances in geographical information systems (GIS) and resource modelling can be combined with demographic modelling to yield insights into resource limitation. 2. Using long-term data on a population of black bears Ursus americanus, we evaluated competing hypotheses about whether availability of hard mast (acorns and nuts) or soft mast (fleshy fruits) limited bears in the southern Appalachians, USA, during 1981-2002. The effects of clearcutting on habitat quality were also evaluated. Annual survival, recruitment and population growth rate were estimated using capture-recapture data from 101 females. The availability of hard mast, soft mast and clearcuts was estimated with a GIS, as each changed through time as a result of harvest and succession, and then availabilities were incorporated as covariates for each demographic parameter. 3. The model with the additive availability of hard mast and soft mast across the landscape predicted survival and population growth rate. Availability of young clearcuts predicted recruitment, but not population growth or survival. 4. Availability of hard mast stands across the landscape and availability of soft mast across the landscape were more important than hard mast production and availability of soft mast in young clearcuts, respectively. 5. Synthesis and applications. Our results indicate that older stands, which support high levels of hard mast and moderate levels of soft mast, should be maintained to sustain population growth of bears in the southern Appalachians. Simultaneously, the acreage of intermediate aged stands (10-25 years), which support very low levels of both hard mast and soft mast, should be minimized. The approach used in this study has broad application for wildlife management and conservation. State and federal wildlife agencies often possess long-term data on both resource availability and capture-recapture for wild populations. Combined, these two data types can be used to estimate survival, recruitment, population growth, elasticities of vital rates and the effects of resource availability on demographic parameters. Hence data that are traditionally used to understand population trends can be used to evaluate how and why demography changes over time. ?? 2007 The Authors.
Chlyeh, G; Henry, P Y; Jarne, P
2003-09-01
The population biology of the schistosome-vector snail Bulinus truncatus was studied in an irrigation area near Marrakech, Morocco, using demographic approaches, in order to estimate life-history parameters. The survey was conducted using 2 capture-mark-recapture analyses in 2 separate sites from the irrigation area, the first one in 1999 and the second one in 2000. Individuals larger than 5 mm were considered. The capture probability varied through time and space in both analyses. Apparent survival (from 0.7 to 1 per period of 2-3 days) varied with time and space (a series of sinks was considered), as well as a square function of size. These results suggest variation in population intrinsic rate of increase. They also suggest that results from more classical analyses of population demography, aiming, for example at estimating population size, should be interpreted with caution. Together with other results obtained in the same irrigation area, they also lead to some suggestions for population control.
Hewitt, David A.; Janney, Eric C.; Hayes, Brian S.; Harris, Alta C.
2012-01-01
Despite relatively high survival in most years, both species have experienced substantial declines in the abundance of spawning fish because losses from mortality have not been balanced by recruitment of new individuals. Although capture-recapture data indicate substantial recruitment of new individuals into the adult spawning populations for SNS and river spawning LRS in some years, size data do not corroborate these estimates. In fact, fork length data indicate that all populations are largely comprised of fish that were present in the late 1990s and early 2000s. As a result, the status of the endangered sucker populations in Upper Klamath Lake remains worrisome, and the situation is most dire for shortnose suckers. Future investigations should explore the connections between sucker recruitment and survival and various environmental factors, such as water quality and disease. Our monitoring program provides a robust platform for estimating vital population parameters, evaluating the status of the populations, and assessing the effectiveness of conservation and recovery efforts.
Discovering network behind infectious disease outbreak
NASA Astrophysics Data System (ADS)
Maeno, Yoshiharu
2010-11-01
Stochasticity and spatial heterogeneity are of great interest recently in studying the spread of an infectious disease. The presented method solves an inverse problem to discover the effectively decisive topology of a heterogeneous network and reveal the transmission parameters which govern the stochastic spreads over the network from a dataset on an infectious disease outbreak in the early growth phase. Populations in a combination of epidemiological compartment models and a meta-population network model are described by stochastic differential equations. Probability density functions are derived from the equations and used for the maximal likelihood estimation of the topology and parameters. The method is tested with computationally synthesized datasets and the WHO dataset on the SARS outbreak.
Propagation regimes and populations of internal waves in the Mediterranean Sea basin
NASA Astrophysics Data System (ADS)
Kurkina, Oxana; Rouvinskaya, Ekaterina; Talipova, Tatiana; Soomere, Tarmo
2017-02-01
The geographical and seasonal distributions of kinematic and nonlinear parameters of long internal waves are derived from the Generalized Digital Environmental Model (GDEM) climatology for the Mediterranean Sea region, including the Black Sea. The considered parameters are phase speed of long internal waves and the coefficients at the dispersion, quadratic and cubic terms of the weakly-nonlinear Korteweg-de Vries-type models (in particular, the Gardner model). These parameters govern the possible polarities and shapes of solitary internal waves, their limiting amplitudes and propagation speeds. The key outcome is an express estimate of the expected parameters of internal waves for different regions of the Mediterranean basin.
Kamath, Pauline L; Haroldson, Mark A; Luikart, Gordon; Paetkau, David; Whitman, Craig; van Manen, Frank T
2015-11-01
Effective population size (N(e)) is a key parameter for monitoring the genetic health of threatened populations because it reflects a population's evolutionary potential and risk of extinction due to genetic stochasticity. However, its application to wildlife monitoring has been limited because it is difficult to measure in natural populations. The isolated and well-studied population of grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem provides a rare opportunity to examine the usefulness of different N(e) estimators for monitoring. We genotyped 729 Yellowstone grizzly bears using 20 microsatellites and applied three single-sample estimators to examine contemporary trends in generation interval (GI), effective number of breeders (N(b)) and N(e) during 1982-2007. We also used multisample methods to estimate variance (N(eV)) and inbreeding N(e) (N(eI)). Single-sample estimates revealed positive trajectories, with over a fourfold increase in N(e) (≈100 to 450) and near doubling of the GI (≈8 to 14) from the 1980s to 2000s. N(eV) (240-319) and N(eI) (256) were comparable with the harmonic mean single-sample N(e) (213) over the time period. Reanalysing historical data, we found N(eV) increased from ≈80 in the 1910s-1960s to ≈280 in the contemporary population. The estimated ratio of effective to total census size (N(e) /N(c)) was stable and high (0.42-0.66) compared to previous brown bear studies. These results support independent demographic evidence for Yellowstone grizzly bear population growth since the 1980s. They further demonstrate how genetic monitoring of N(e) can complement demographic-based monitoring of N(c) and vital rates, providing a valuable tool for wildlife managers. © 2015 John Wiley & Sons Ltd.
DuVal, Ashley; Gezan, Salvador A.; Mustiga, Guiliana; Stack, Conrad; Marelli, Jean-Philippe; Chaparro, José; Livingstone, Donald; Royaert, Stefan; Motamayor, Juan C.
2017-01-01
Breeding programs of cacao (Theobroma cacao L.) trees share the many challenges of breeding long-living perennial crops, and genetic progress is further constrained by both the limited understanding of the inheritance of complex traits and the prevalence of technical issues, such as mislabeled individuals (off-types). To better understand the genetic architecture of cacao, in this study, 13 years of phenotypic data collected from four progeny trials in Bahia, Brazil were analyzed jointly in a multisite analysis. Three separate analyses (multisite, single site with and without off-types) were performed to estimate genetic parameters from statistical models fitted on nine important agronomic traits (yield, seed index, pod index, % healthy pods, % pods infected with witches broom, % of pods other loss, vegetative brooms, diameter, and tree height). Genetic parameters were estimated along with variance components and heritabilities from the multisite analysis, and a trial was fingerprinted with low-density SNP markers to determine the impact of off-types on estimations. Heritabilities ranged from 0.37 to 0.64 for yield and its components and from 0.03 to 0.16 for disease resistance traits. A weighted index was used to make selections for clonal evaluation, and breeding values estimated for the parental selection and estimation of genetic gain. The impact of off-types to breeding progress in cacao was assessed for the first time. Even when present at <5% of the total population, off-types altered selections by 48%, and impacted heritability estimations for all nine of the traits analyzed, including a 41% difference in estimated heritability for yield. These results show that in a mixed model analysis, even a low level of pedigree error can significantly alter estimations of genetic parameters and selections in a breeding program. PMID:29250097
An alternative covariance estimator to investigate genetic heterogeneity in populations.
Heslot, Nicolas; Jannink, Jean-Luc
2015-11-26
For genomic prediction and genome-wide association studies (GWAS) using mixed models, covariance between individuals is estimated using molecular markers. Based on the properties of mixed models, using available molecular data for prediction is optimal if this covariance is known. Under this assumption, adding individuals to the analysis should never be detrimental. However, some empirical studies showed that increasing training population size decreased prediction accuracy. Recently, results from theoretical models indicated that even if marker density is high and the genetic architecture of traits is controlled by many loci with small additive effects, the covariance between individuals, which depends on relationships at causal loci, is not always well estimated by the whole-genome kinship. We propose an alternative covariance estimator named K-kernel, to account for potential genetic heterogeneity between populations that is characterized by a lack of genetic correlation, and to limit the information flow between a priori unknown populations in a trait-specific manner. This is similar to a multi-trait model and parameters are estimated by REML and, in extreme cases, it can allow for an independent genetic architecture between populations. As such, K-kernel is useful to study the problem of the design of training populations. K-kernel was compared to other covariance estimators or kernels to examine its fit to the data, cross-validated accuracy and suitability for GWAS on several datasets. It provides a significantly better fit to the data than the genomic best linear unbiased prediction model and, in some cases it performs better than other kernels such as the Gaussian kernel, as shown by an empirical null distribution. In GWAS simulations, alternative kernels control type I errors as well as or better than the classical whole-genome kinship and increase statistical power. No or small gains were observed in cross-validated prediction accuracy. This alternative covariance estimator can be used to gain insight into trait-specific genetic heterogeneity by identifying relevant sub-populations that lack genetic correlation between them. Genetic correlation can be 0 between identified sub-populations by performing automatic selection of relevant sets of individuals to be included in the training population. It may also increase statistical power in GWAS.
NASA Astrophysics Data System (ADS)
Dafonte, C.; Fustes, D.; Manteiga, M.; Garabato, D.; Álvarez, M. A.; Ulla, A.; Allende Prieto, C.
2016-10-01
Aims: We present an innovative artificial neural network (ANN) architecture, called Generative ANN (GANN), that computes the forward model, that is it learns the function that relates the unknown outputs (stellar atmospheric parameters, in this case) to the given inputs (spectra). Such a model can be integrated in a Bayesian framework to estimate the posterior distribution of the outputs. Methods: The architecture of the GANN follows the same scheme as a normal ANN, but with the inputs and outputs inverted. We train the network with the set of atmospheric parameters (Teff, log g, [Fe/H] and [α/ Fe]), obtaining the stellar spectra for such inputs. The residuals between the spectra in the grid and the estimated spectra are minimized using a validation dataset to keep solutions as general as possible. Results: The performance of both conventional ANNs and GANNs to estimate the stellar parameters as a function of the star brightness is presented and compared for different Galactic populations. GANNs provide significantly improved parameterizations for early and intermediate spectral types with rich and intermediate metallicities. The behaviour of both algorithms is very similar for our sample of late-type stars, obtaining residuals in the derivation of [Fe/H] and [α/ Fe] below 0.1 dex for stars with Gaia magnitude Grvs < 12, which accounts for a number in the order of four million stars to be observed by the Radial Velocity Spectrograph of the Gaia satellite. Conclusions: Uncertainty estimation of computed astrophysical parameters is crucial for the validation of the parameterization itself and for the subsequent exploitation by the astronomical community. GANNs produce not only the parameters for a given spectrum, but a goodness-of-fit between the observed spectrum and the predicted one for a given set of parameters. Moreover, they allow us to obtain the full posterior distribution over the astrophysical parameters space once a noise model is assumed. This can be used for novelty detection and quality assessment.
The Variance of Intraclass Correlations in Three- and Four-Level Models
ERIC Educational Resources Information Center
Hedges, Larry V.; Hedberg, E. C.; Kuyper, Arend M.
2012-01-01
Intraclass correlations are used to summarize the variance decomposition in populations with multilevel hierarchical structure. There has recently been considerable interest in estimating intraclass correlations from surveys or designed experiments to provide design parameters for planning future large-scale randomized experiments. The large…
Estimating tag loss of the Atlantic Horseshoe crab, Limulus polyphemus, using a multi-state model
Butler, Catherine Alyssa; McGowan, Conor P.; Grand, James B.; Smith, David
2012-01-01
The Atlantic Horseshoe crab, Limulus polyphemus, is a valuable resource along the Mid-Atlantic coast which has, in recent years, experienced new management paradigms due to increased concern about this species role in the environment. While current management actions are underway, many acknowledge the need for improved and updated parameter estimates to reduce the uncertainty within the management models. Specifically, updated and improved estimates of demographic parameters such as adult crab survival in the regional population of interest, Delaware Bay, could greatly enhance these models and improve management decisions. There is however, some concern that difficulties in tag resighting or complete loss of tags could be occurring. As apparent from the assumptions of a Jolly-Seber model, loss of tags can result in a biased estimate and underestimate a survival rate. Given that uncertainty, as a first step towards estimating an unbiased estimate of adult survival, we first took steps to estimate the rate of tag loss. Using data from a double tag mark-resight study conducted in Delaware Bay and Program MARK, we designed a multi-state model to allow for the estimation of mortality of each tag separately and simultaneously.
Laurenson, Y C S M; Kyriazakis, I; Bishop, S C
2012-07-01
A mathematical model was developed to investigate the impact of level of Teladorsagia circumcincta larval pasture contamination and anthelmintic treatment on genetic parameter estimates for performance and resistance to parasites in sheep. Currently great variability is seen for published correlations between performance and resistance, with estimates appearing to vary with production environment. The model accounted for host genotype and parasitism in a population of lambs, incorporating heritable between-lamb variation in host-parasite interactions, with genetic independence of input growth and immunological variables. An epidemiological module was linked to the host-parasite interaction module via food intake (FI) to create a grazing scenario. The model was run for a population of lambs growing from 2 mo of age, grazing on pasture initially contaminated with 0, 1,000, 3,000, or 5,000 larvae/kg DM, and given either no anthelmintic treatment or drenched at 30-d intervals. The mean population values for FI and empty BW (EBW) decreased with increasing levels of initial larval contamination (IL(0)), with non-drenched lambs having a greater reduction than drenched ones. For non-drenched lambs the maximum mean population values for worm burden (WB) and fecal egg count (FEC) increased and occurred earlier for increasing IL(0), with values being similar for all IL(0) at the end of the simulation. Drenching was predicted to suppress WB and FEC, and cause reduced pasture contamination. The heritability of EBW for non-drenched lambs was predicted to be initially high (0.55) and decreased over time with increasing IL(0), whereas drenched lambs remained high throughout. The heritability of WB and FEC for all lambs was initially low (∼0.05) and increased with time to ∼0.25, with increasing IL(0) leading to this value being reached at faster rates. The genetic correlation between EBW and FEC was initially ∼-0.3. As time progressed the correlation tended towards 0, before becoming negative by the end of the simulation for non-drenched lambs, with increasing IL(0) leading to increasingly negative correlations. For drenched lambs, the correlation remained close to 0. This study highlights the impact of IL(0) and anthelmintic treatment on genetic parameters for resistance. Along with factors affecting performance penalties due to parasitism and time of reporting, the results give plausible causes for variation in genetic parameter estimates previously reported.
Sweeney, Lisa M.; Parker, Ann; Haber, Lynne T.; Tran, C. Lang; Kuempel, Eileen D.
2015-01-01
A biomathematical model was previously developed to describe the long-term clearance and retention of particles in the lungs of coal miners. The model structure was evaluated and parameters were estimated in two data sets, one from the United States and one from the United Kingdom. The three-compartment model structure consists of deposition of inhaled particles in the alveolar region, competing processes of either clearance from the alveolar region or translocation to the lung interstitial region, and very slow, irreversible sequestration of interstitialized material in the lung-associated lymph nodes. Point estimates of model parameter values were estimated separately for the two data sets. In the current effort, Bayesian population analysis using Markov chain Monte Carlo simulation was used to recalibrate the model while improving assessments of parameter variability and uncertainty. When model parameters were calibrated simultaneously to the two data sets, agreement between the derived parameters for the two groups was very good, and the central tendency values were similar to those derived from the deterministic approach. These findings are relevant to the proposed update of the ICRP human respiratory tract model with revisions to the alveolar-interstitial region based on this long-term particle clearance and retention model. PMID:23454101
Genetic Introgression and the Survival of Florida Panther Kittens
Hostetler, Jeffrey A.; Onorato, David P.; Nichols, James D.; Johnson, Warren E.; Roelke, Melody E.; O’Brien, Stephen J.; Jansen, Deborah; Oli, Madan K.
2010-01-01
Estimates of survival for the young of a species are critical for population models. These models can often be improved by determining the effects of management actions and population abundance on this demographic parameter. We used multiple sources of data collected during 1982-2008 and a live recapture-dead recovery modeling framework to estimate and model survival of Florida panther (Puma concolor coryi) kittens (age 0 – 1 year). Overall, annual survival of Florida panther kittens was 0.323 ± 0.071 (SE), which was lower than estimates used in previous population models. In 1995, female pumas from Texas (P. c. stanleyana) were released into occupied panther range as part of an intentional introgression program to restore genetic variability. We found that kitten survival generally increased with degree of admixture: F1 admixed and backcrossed to Texas kittens survived better than canonical Florida panther and backcrossed to canonical kittens. Average heterozygosity positively influenced kitten and older panther survival, whereas index of panther abundance negatively influenced kitten survival. Our results provide strong evidence for the positive population-level impact of genetic introgression on Florida panthers. Our approach to integrate data from multiple sources was effective at improving robustness as well as precision of estimates of Florida panther kitten survival, and can be useful in estimating vital rates for other elusive species with sparse data. PMID:21113436
Genetic introgression and the survival of Florida panther kittens
Hostetler, Jeffrey A.; Onorato, David P.; Nichols, James D.; Johnson, Warren E.; Roelke, Melody E.; O'Brien, Stephen J.; Jansen, Deborah; Oli, Madan K.
2010-01-01
Estimates of survival for the young of a species are critical for population models. These models can often be improved by determining the effects of management actions and population abundance on this demographic parameter. We used multiple sources of data collected during 1982–2008 and a live-recapture dead-recovery modeling framework to estimate and model survival of Florida panther (Puma concolor coryi) kittens (age 0–1 year). Overall, annual survival of Florida panther kittens was 0.323 ± 0.071 (SE), which was lower than estimates used in previous population models. In 1995, female pumas from Texas (P. c. stanleyana) were released into occupied panther range as part of an intentional introgression program to restore genetic variability. We found that kitten survival generally increased with degree of admixture: F1 admixed and backcrossed to Texas kittens survived better than canonical Florida panther and backcrossed to canonical kittens. Average heterozygosity positively influenced kitten and older panther survival, whereas index of panther abundance negatively influenced kitten survival. Our results provide strong evidence for the positive population-level impact of genetic introgression on Florida panthers. Our approach to integrate data from multiple sources was effective at improving robustness as well as precision of estimates of Florida panther kitten survival, and can be useful in estimating vital rates for other elusive species with sparse data.
Abundance estimation and conservation biology
Nichols, J.D.; MacKenzie, D.I.
2004-01-01
Abundance is the state variable of interest in most population–level ecological research and in most programs involving management and conservation of animal populations. Abundance is the single parameter of interest in capture–recapture models for closed populations (e.g., Darroch, 1958; Otis et al., 1978; Chao, 2001). The initial capture–recapture models developed for partially (Darroch, 1959) and completely (Jolly, 1965; Seber, 1965) open populations represented efforts to relax the restrictive assumption of population closure for the purpose of estimating abundance. Subsequent emphases in capture–recapture work were on survival rate estimation in the 1970’s and 1980’s (e.g., Burnham et al., 1987; Lebreton et al.,1992), and on movement estimation in the 1990’s (Brownie et al., 1993; Schwarz et al., 1993). However, from the mid–1990’s until the present time, capture–recapture investigators have expressed a renewed interest in abundance and related parameters (Pradel, 1996; Schwarz & Arnason, 1996; Schwarz, 2001). The focus of this session was abundance, and presentations covered topics ranging from estimation of abundance and rate of change in abundance, to inferences about the demographic processes underlying changes in abundance, to occupancy as a surrogate of abundance. The plenary paper by Link & Barker (2004) is provocative and very interesting, and it contains a number of important messages and suggestions. Link & Barker (2004) emphasize that the increasing complexity of capture–recapture models has resulted in large numbers of parameters and that a challenge to ecologists is to extract ecological signals from this complexity. They offer hierarchical models as a natural approach to inference in which traditional parameters are viewed as realizations of stochastic processes. These processes are governed by hyperparameters, and the inferential approach focuses on these hyperparameters. Link & Barker (2004) also suggest that our attention should be focused on relationships between demographic processes such as survival and recruitment, the two quantities responsible for changes in abundance, rather than simply on the magnitudes of these quantities. They describe a type of Jolly–Seber capture–recapture model that permits inference about the underlying relationship between per capita recruitment rates and survival rates (Link & Barker, this volume). Implementation used Bayesian Markov Chain Monte Carlo methods and appeared to work well, yielding inferences about the relationship between recruitment and survival that were robust to selection of prior distribution. We believe that readers will find their arguments compelling, and we expect to see increased use of hierarchical modeling approaches in capture–recapture and related fields. Otto (presentation without paper) also recommended use of hierarchical models in analysis of multiple data sources dealing with population dynamics of North American mallards. He integrated survival inferences from ringing data, abundance information from aerial survey data, and recruitment information based on age ratios from a harvest survey. He used a Leslie matrix population projection model as an integrating framework and obtained estimates of breeding population size using all data.Otto’s approach also permitted inference about biases in estimated quantities. As with the work of Link & Barker (2004), we find Otto’s recommendation to use hierarchical models to integrate data from multiple sources to be very compelling. Alisauskas et al. (2004) report results of an analysis of capture–recapture data for a askatchewan population of white–winged scoters. They used the approach of Pradel (1996) to estimate population growth rate (See the PDF) directly. Estimates for 1975–1985 were quite low, but estimates for the recent period, 2000–2003,increased to values > 1. Parameter estimates for seniority, survival and per capita recruitment (Pradel, 1996) led to the inference that increased recruitment was largely responsible for the improvements in population status and growth. However, various data sources also indicated that this increase in recruitment was likely a result of increased immigration rather than improved reproduction on the area. This latter inference is important from a conservation perspective in indicating the importance of birds in other locations to growth and health of the study population. Lukacs and Burnham presented material to be published elsewhere that dealt with the use of genetic markers in capture–recapture studies. The data sources for such studies are samples of hair or feces, which are then analyzed using molecular genetic techniques in order to determine individual genotypes with respect to a usually small number of loci. Two types of classification error can arise in such analyses. First, if only a small number of loci is examined, then there may be nonnegligible probabilities that multiple individual animals will have the same genotypes. The second type of error arises during the polymerase chain reaction (PCR) process and can result from failure of alleles to amplify (allelic dropout) or from PCR inhibitors in hair and feces that produce the appearance of false alleles or misprinting (Creel et al., 2003). Lukacs and Burnham developed models that formally incorporate possible misclassification of samples resulting from these errors. These models permit estimation of parameters such as abundance and survival in a manner that properly incorporates this uncertainty of individual identity. We anticipate that noninvasive sampling based on molecular genetic analyses of hair or feces will become extremely important for some species, and that the models of Lukacs and Burnham will become very popular for such analyses. MacKenzie & Nichols (2004) discuss the use of occupancy (proportion of patches or habitat area that is occupied) as a surrogate for abundance. In cases of territorial species and where birds occur at low densities, the number of occupied patches may provide a reasonable estimate of abundance. In other cases, occupancy can be viewed as providing information about one tail of the abundance distribution, P (N = 0). The motivation for considering occupancy as a surrogate for abundance is that occupancy is based on so–called presence–absence surveys that are frequently less expensive of time and effort than methods that estimate abundance directly. We describe one set of models that can be used to estimate occupancy for a single season and another that can be used to estimate parameters such as local probabilities of extinction and colonization that are associated with occupancy dynamics. We outline a possible hybrid approach that combines occupancy data with data on marked individuals in order to betterexplore the mechanisms underlying occupancy dynamics. These five presentations made for an interesting session containing useful information and recommendations for future work. A number of themes connecting these presentations could be emphasized. For example, two of the presentations considered alternatives to standard capture–recapture sampling that can be used to draw inferences about abundance, or a portion of the abundance distribution, with field methods that should be less expensive than usual capture–recapture approaches of handling animals. We believe that the most important theme of the session was the emphasis on the processes responsible for changes in abundance. In particular, we are excited by the potential for using hierarchical models as a means of investigating relationships among vital rates and as a means of combining multiple sources of data relevant to system dynamics. Indeed, we expect the importance of this session theme to be reflected in the content and presentations of the next EURING meeting.
Campos, José Luis; Charlesworth, Brian
2017-01-01
We used whole-genome resequencing data from a population of Drosophila melanogaster to investigate the causes of the negative correlation between the within-population synonymous nucleotide site diversity (πS) of a gene and its degree of divergence from related species at nonsynonymous nucleotide sites (KA). By using the estimated distributions of mutational effects on fitness at nonsynonymous and UTR sites, we predicted the effects of background selection at sites within a gene on πS and found that these could account for only part of the observed correlation between πS and KA. We developed a model of the effects of selective sweeps that included gene conversion as well as crossing over. We used this model to estimate the average strength of selection on positively selected mutations in coding sequences and in UTRs, as well as the proportions of new mutations that are selectively advantageous. Genes with high levels of selective constraint on nonsynonymous sites were found to have lower strengths of positive selection and lower proportions of advantageous mutations than genes with low levels of constraint. Overall, background selection and selective sweeps within a typical gene reduce its synonymous diversity to ∼75% of its value in the absence of selection, with larger reductions for genes with high KA. Gene conversion has a major effect on the estimates of the parameters of positive selection, such that the estimated strength of selection on favorable mutations is greatly reduced if it is ignored. PMID:28559322
Zimmermann, Fabian; Ricard, Daniel; Heino, Mikko
2018-05-01
Population regulation is a central concept in ecology, yet in many cases its presence and the underlying mechanisms are difficult to demonstrate. The current paradigm maintains that marine fish populations are predominantly regulated by density-dependent recruitment. While it is known that density-dependent somatic growth can be present too, its general importance remains unknown and most practical applications neglect it. This study aimed to close this gap by for the first time quantifying and comparing density dependence in growth and recruitment over a large set of fish populations. We fitted density-dependent models to time-series data on population size, recruitment and age-specific weight from commercially exploited fish populations in the Northeast Atlantic Ocean and the Baltic Sea. Data were standardized to enable a direct comparison within and among populations, and estimated parameters were used to quantify the impact of density regulation on population biomass. Statistically significant density dependence in recruitment was detected in a large proportion of populations (70%), whereas for density dependence in somatic growth the prevalence of density dependence depended heavily on the method (26% and 69%). Despite age-dependent variability, the density dependence in recruitment was consistently stronger among age groups and between alternative approaches that use weight-at-age or weight increments to assess growth. Estimates of density-dependent reduction in biomass underlined these results: 97% of populations with statistically significant parameters for growth and recruitment showed a larger impact of density-dependent recruitment on population biomass. The results reaffirm the importance of density-dependent recruitment in marine fishes, yet they also show that density dependence in somatic growth is not uncommon. Furthermore, the results are important from an applied perspective because density dependence in somatic growth affects productivity and catch composition, and therefore the benefits of maintaining fish populations at specific densities. © 2018 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Bayesian Inference for Generalized Linear Models for Spiking Neurons
Gerwinn, Sebastian; Macke, Jakob H.; Bethge, Matthias
2010-01-01
Generalized Linear Models (GLMs) are commonly used statistical methods for modelling the relationship between neural population activity and presented stimuli. When the dimension of the parameter space is large, strong regularization has to be used in order to fit GLMs to datasets of realistic size without overfitting. By imposing properly chosen priors over parameters, Bayesian inference provides an effective and principled approach for achieving regularization. Here we show how the posterior distribution over model parameters of GLMs can be approximated by a Gaussian using the Expectation Propagation algorithm. In this way, we obtain an estimate of the posterior mean and posterior covariance, allowing us to calculate Bayesian confidence intervals that characterize the uncertainty about the optimal solution. From the posterior we also obtain a different point estimate, namely the posterior mean as opposed to the commonly used maximum a posteriori estimate. We systematically compare the different inference techniques on simulated as well as on multi-electrode recordings of retinal ganglion cells, and explore the effects of the chosen prior and the performance measure used. We find that good performance can be achieved by choosing an Laplace prior together with the posterior mean estimate. PMID:20577627
Spatial capture-recapture models allowing Markovian transience or dispersal
Royle, J. Andrew; Fuller, Angela K.; Sutherland, Chris
2016-01-01
Spatial capture–recapture (SCR) models are a relatively recent development in quantitative ecology, and they are becoming widely used to model density in studies of animal populations using camera traps, DNA sampling and other methods which produce spatially explicit individual encounter information. One of the core assumptions of SCR models is that individuals possess home ranges that are spatially stationary during the sampling period. For many species, this assumption is unlikely to be met and, even for species that are typically territorial, individuals may disperse or exhibit transience at some life stages. In this paper we first conduct a simulation study to evaluate the robustness of estimators of density under ordinary SCR models when dispersal or transience is present in the population. Then, using both simulated and real data, we demonstrate that such models can easily be described in the BUGS language providing a practical framework for their analysis, which allows us to evaluate movement dynamics of species using capture–recapture data. We find that while estimators of density are extremely robust, even to pathological levels of movement (e.g., complete transience), the estimator of the spatial scale parameter of the encounter probability model is confounded with the dispersal/transience scale parameter. Thus, use of ordinary SCR models to make inferences about density is feasible, but interpretation of SCR model parameters in relation to movement should be avoided. Instead, when movement dynamics are of interest, such dynamics should be parameterized explicitly in the model.
Estimating the Size of a Large Network and its Communities from a Random Sample
Chen, Lin; Karbasi, Amin; Crawford, Forrest W.
2017-01-01
Most real-world networks are too large to be measured or studied directly and there is substantial interest in estimating global network properties from smaller sub-samples. One of the most important global properties is the number of vertices/nodes in the network. Estimating the number of vertices in a large network is a major challenge in computer science, epidemiology, demography, and intelligence analysis. In this paper we consider a population random graph G = (V, E) from the stochastic block model (SBM) with K communities/blocks. A sample is obtained by randomly choosing a subset W ⊆ V and letting G(W) be the induced subgraph in G of the vertices in W. In addition to G(W), we observe the total degree of each sampled vertex and its block membership. Given this partial information, we propose an efficient PopULation Size Estimation algorithm, called PULSE, that accurately estimates the size of the whole population as well as the size of each community. To support our theoretical analysis, we perform an exhaustive set of experiments to study the effects of sample size, K, and SBM model parameters on the accuracy of the estimates. The experimental results also demonstrate that PULSE significantly outperforms a widely-used method called the network scale-up estimator in a wide variety of scenarios. PMID:28867924
Estimating the Size of a Large Network and its Communities from a Random Sample.
Chen, Lin; Karbasi, Amin; Crawford, Forrest W
2016-01-01
Most real-world networks are too large to be measured or studied directly and there is substantial interest in estimating global network properties from smaller sub-samples. One of the most important global properties is the number of vertices/nodes in the network. Estimating the number of vertices in a large network is a major challenge in computer science, epidemiology, demography, and intelligence analysis. In this paper we consider a population random graph G = ( V, E ) from the stochastic block model (SBM) with K communities/blocks. A sample is obtained by randomly choosing a subset W ⊆ V and letting G ( W ) be the induced subgraph in G of the vertices in W . In addition to G ( W ), we observe the total degree of each sampled vertex and its block membership. Given this partial information, we propose an efficient PopULation Size Estimation algorithm, called PULSE, that accurately estimates the size of the whole population as well as the size of each community. To support our theoretical analysis, we perform an exhaustive set of experiments to study the effects of sample size, K , and SBM model parameters on the accuracy of the estimates. The experimental results also demonstrate that PULSE significantly outperforms a widely-used method called the network scale-up estimator in a wide variety of scenarios.
Forecasting the mortality rates using Lee-Carter model and Heligman-Pollard model
NASA Astrophysics Data System (ADS)
Ibrahim, R. I.; Ngataman, N.; Abrisam, W. N. A. Wan Mohd
2017-09-01
Improvement in life expectancies has driven further declines in mortality. The sustained reduction in mortality rates and its systematic underestimation has been attracting the significant interest of researchers in recent years because of its potential impact on population size and structure, social security systems, and (from an actuarial perspective) the life insurance and pensions industry worldwide. Among all forecasting methods, the Lee-Carter model has been widely accepted by the actuarial community and Heligman-Pollard model has been widely used by researchers in modelling and forecasting future mortality. Therefore, this paper only focuses on Lee-Carter model and Heligman-Pollard model. The main objective of this paper is to investigate how accurately these two models will perform using Malaysian data. Since these models involves nonlinear equations that are explicitly difficult to solve, the Matrix Laboratory Version 8.0 (MATLAB 8.0) software will be used to estimate the parameters of the models. Autoregressive Integrated Moving Average (ARIMA) procedure is applied to acquire the forecasted parameters for both models as the forecasted mortality rates are obtained by using all the values of forecasted parameters. To investigate the accuracy of the estimation, the forecasted results will be compared against actual data of mortality rates. The results indicate that both models provide better results for male population. However, for the elderly female population, Heligman-Pollard model seems to underestimate to the mortality rates while Lee-Carter model seems to overestimate to the mortality rates.
Standing Genetic Variation and the Evolution of Drug Resistance in HIV
Pennings, Pleuni Simone
2012-01-01
Drug resistance remains a major problem for the treatment of HIV. Resistance can occur due to mutations that were present before treatment starts or due to mutations that occur during treatment. The relative importance of these two sources is unknown. Resistance can also be transmitted between patients, but this process is not considered in the current study. We study three different situations in which HIV drug resistance may evolve: starting triple-drug therapy, treatment with a single dose of nevirapine and interruption of treatment. For each of these three cases good data are available from literature, which allows us to estimate the probability that resistance evolves from standing genetic variation. Depending on the treatment we find probabilities of the evolution of drug resistance due to standing genetic variation between and . For patients who start triple-drug combination therapy, we find that drug resistance evolves from standing genetic variation in approximately 6% of the patients. We use a population-dynamic and population-genetic model to understand the observations and to estimate important evolutionary parameters under the assumption that treatment failure is caused by the fixation of a single drug resistance mutation. We find that both the effective population size of the virus before treatment, and the fitness of the resistant mutant during treatment, are key-parameters which determine the probability that resistance evolves from standing genetic variation. Importantly, clinical data indicate that both of these parameters can be manipulated by the kind of treatment that is used. PMID:22685388
Morin, Dana J.; Fuller, Angela K.; Royle, J. Andrew; Sutherland, Chris
2017-01-01
Conservation and management of spatially structured populations is challenging because solutions must consider where individuals are located, but also differential individual space use as a result of landscape heterogeneity. A recent extension of spatial capture–recapture (SCR) models, the ecological distance model, uses spatial encounter histories of individuals (e.g., a record of where individuals are detected across space, often sequenced over multiple sampling occasions), to estimate the relationship between space use and characteristics of a landscape, allowing simultaneous estimation of both local densities of individuals across space and connectivity at the scale of individual movement. We developed two model-based estimators derived from the SCR ecological distance model to quantify connectivity over a continuous surface: (1) potential connectivity—a metric of the connectivity of areas based on resistance to individual movement; and (2) density-weighted connectivity (DWC)—potential connectivity weighted by estimated density. Estimates of potential connectivity and DWC can provide spatial representations of areas that are most important for the conservation of threatened species, or management of abundant populations (i.e., areas with high density and landscape connectivity), and thus generate predictions that have great potential to inform conservation and management actions. We used a simulation study with a stationary trap design across a range of landscape resistance scenarios to evaluate how well our model estimates resistance, potential connectivity, and DWC. Correlation between true and estimated potential connectivity was high, and there was positive correlation and high spatial accuracy between estimated DWC and true DWC. We applied our approach to data collected from a population of black bears in New York, and found that forested areas represented low levels of resistance for black bears. We demonstrate that formal inference about measures of landscape connectivity can be achieved from standard methods of studying animal populations which yield individual encounter history data such as camera trapping. Resulting biological parameters including resistance, potential connectivity, and DWC estimate the spatial distribution and connectivity of the population within a statistical framework, and we outline applications to many possible conservation and management problems.
Garre, Alberto; Huertas, Juan Pablo; González-Tejedor, Gerardo A; Fernández, Pablo S; Egea, Jose A; Palop, Alfredo; Esnoz, Arturo
2018-02-02
This contribution presents a mathematical model to describe non-isothermal microbial inactivation processes taking into account the acclimation of the microbial cell to thermal stress. The model extends the log-linear inactivation model including a variable and model parameters quantifying the induced thermal resistance. The model has been tested on cells of Escherichia coli against two families of non-isothermal profiles with different constant heating rates. One of the families was composed of monophasic profiles, consisting of a non-isothermal heating stage from 35 to 70°C; the other family was composed of biphasic profiles, consisting of a non-isothermal heating stage followed by a holding period at constant temperature of 57.5°C. Lower heating rates resulted in a higher thermal resistance of the bacterial population. This was reflected in a higher D-value. The parameter estimation was performed in two steps. Firstly, the D and z-values were estimated from the isothermal experiments. Next, the parameters describing the acclimation were estimated using one of the biphasic profiles. This set of parameters was able to describe the remaining experimental data. Finally, a methodology for the construction of diagrams illustrating the magnitude of the induced thermal resistance is presented. The methodology has been illustrated by building it for a biphasic temperature profile with a linear heating phase and a holding phase. This diagram provides a visualization of how the shape of the temperature profile (heating rate and holding temperature) affects the acclimation of the cell to the thermal stress. This diagram can be used for the design of inactivation treatments by industry taking into account the acclimation of the cell to the thermal stress. Copyright © 2017 Elsevier B.V. All rights reserved.
Babić, Z; Deskin, M; Muacević-Katanec, D; Erdeljić, V; Misigoj-Duraković, M; Metelko, Z
2004-10-01
This study assessed the level of physical activity in overweight and obese subjects, and overweight and obese patients with Type 2 diabetes mellitus (T2DM). It also compared their physical activity level with that of the general population and investigated benefits of physical activity on anthropometric and metabolic parameters and blood pressure in the studied groups of patients using Baecke's questionnaire and the Lipid Research Clinics Physical Activity (LRC PA) questionnaire. The two questionnaires were also compared in the evaluation of benefits. Physical activity level and other parameters (body weight, body height, body mass index, waist-to-hip ratio, systolic and diastolic blood pressure, lipoprotein and creatinine concentrations in the blood, concentration of fasting glucose and HbA1c in the blood, albuminuria-to-creatinuria ratio) of 136 subjects and their relationships were investigated during their out-patient visits. No difference in physical activity level was found among the four groups of investigated patients. The comparison between the level of physical activity in the investigated patients and the general population obtained by Baecke's questionnaire revealed a lower sports index in all groups of investigated men and obese women with diabetes mellitus. Our results confirm the benefit of physical activity on a high number of investigated parameters in the studied patients. The Baecke's questionnaire was found to estimate the effects of physical activity on metabolic and anthropometric parameters, as well as blood pressure, better than the LRC PA questionnaire, especially the two-point scoring system. LRC PA and especially Baecke's questionnaires are valuable aids in the estimation of physical activity level and its benefits in overweight and obese patients and patients with T2DM.
Efficient Moment-Based Inference of Admixture Parameters and Sources of Gene Flow
Levin, Alex; Reich, David; Patterson, Nick; Berger, Bonnie
2013-01-01
The recent explosion in available genetic data has led to significant advances in understanding the demographic histories of and relationships among human populations. It is still a challenge, however, to infer reliable parameter values for complicated models involving many populations. Here, we present MixMapper, an efficient, interactive method for constructing phylogenetic trees including admixture events using single nucleotide polymorphism (SNP) genotype data. MixMapper implements a novel two-phase approach to admixture inference using moment statistics, first building an unadmixed scaffold tree and then adding admixed populations by solving systems of equations that express allele frequency divergences in terms of mixture parameters. Importantly, all features of the model, including topology, sources of gene flow, branch lengths, and mixture proportions, are optimized automatically from the data and include estimates of statistical uncertainty. MixMapper also uses a new method to express branch lengths in easily interpretable drift units. We apply MixMapper to recently published data for Human Genome Diversity Cell Line Panel individuals genotyped on a SNP array designed especially for use in population genetics studies, obtaining confident results for 30 populations, 20 of them admixed. Notably, we confirm a signal of ancient admixture in European populations—including previously undetected admixture in Sardinians and Basques—involving a proportion of 20–40% ancient northern Eurasian ancestry. PMID:23709261
Kim, Eun Sook; Wang, Yan
2017-01-01
Population heterogeneity in growth trajectories can be detected with growth mixture modeling (GMM). It is common that researchers compute composite scores of repeated measures and use them as multiple indicators of growth factors (baseline performance and growth) assuming measurement invariance between latent classes. Considering that the assumption of measurement invariance does not always hold, we investigate the impact of measurement noninvariance on class enumeration and parameter recovery in GMM through a Monte Carlo simulation study (Study 1). In Study 2, we examine the class enumeration and parameter recovery of the second-order growth mixture modeling (SOGMM) that incorporates measurement models at the first order level. Thus, SOGMM estimates growth trajectory parameters with reliable sources of variance, that is, common factor variance of repeated measures and allows heterogeneity in measurement parameters between latent classes. The class enumeration rates are examined with information criteria such as AIC, BIC, sample-size adjusted BIC, and hierarchical BIC under various simulation conditions. The results of Study 1 showed that the parameter estimates of baseline performance and growth factor means were biased to the degree of measurement noninvariance even when the correct number of latent classes was extracted. In Study 2, the class enumeration accuracy of SOGMM depended on information criteria, class separation, and sample size. The estimates of baseline performance and growth factor mean differences between classes were generally unbiased but the size of measurement noninvariance was underestimated. Overall, SOGMM is advantageous in that it yields unbiased estimates of growth trajectory parameters and more accurate class enumeration compared to GMM by incorporating measurement models. PMID:28928691
Petersen, J.H.; DeAngelis, D.L.; Paukert, C.P.
2008-01-01
Many fish species are at risk to some degree, and conservation efforts are planned or underway to preserve sensitive populations. For many imperiled species, models could serve as useful tools for researchers and managers as they seek to understand individual growth, quantify predator-prey dynamics, and identify critical sources of mortality. Development and application of models for rare species however, has been constrained by small population sizes, difficulty in obtaining sampling permits, limited opportunities for funding, and regulations on how endangered species can be used in laboratory studies. Bioenergetic and life history models should help with endangered species-recovery planning since these types of models have been used successfully in the last 25 years to address management problems for many commercially and recreationally important fish species. In this paper we discuss five approaches to developing models and parameters for rare species. Borrowing model functions and parameters from related species is simple, but uncorroborated results can be misleading. Directly estimating parameters with laboratory studies may be possible for rare species that have locally abundant populations. Monte Carlo filtering can be used to estimate several parameters by means of performing simple laboratory growth experiments to first determine test criteria. Pattern-oriented modeling (POM) is a new and developing field of research that uses field-observed patterns to build, test, and parameterize models. Models developed using the POM approach are closely linked to field data, produce testable hypotheses, and require a close working relationship between modelers and empiricists. Artificial evolution in individual-based models can be used to gain insight into adaptive behaviors for poorly understood species and thus can fill in knowledge gaps. ?? Copyright by the American Fisheries Society 2008.
Ikezaki, Yuka; Suyama, Yoshihisa; Middleton, Beth A; Tsumura, Yoshihiko; Teshima, Kousuke; Tachida, Hidenori; Kusumi, Junko
2016-11-01
Studies of natural genetic variation can elucidate the genetic basis of phenotypic variation and the past population structure of species. Our study species, Taxodium distichum, is a unique conifer that inhabits the flood plains and swamps of North America. Morphological and ecological differences in two varieties, T. distichum var. distichum (bald cypress) and T. distichum var. imbricarium (pond cypress), are well known, but little is known about the level of genetic differentiation between the varieties and the demographic history of local populations. We analyzed nucleotide polymorphisms at 47 nuclear loci from 96 individuals collected from the Mississippi River Alluvial Valley (MRAV), and Gulf Coastal populations in Texas, Louisiana, and Florida using high-throughput DNA sequencing. Standard population genetic statistics were calculated, and demographic parameters were estimated using a composite-likelihood approach. Taxodium distichum in North America can be divided into at least three genetic groups, bald cypress in the MRAV and Texas, bald cypress in Florida, and pond cypress in Florida. The levels of genetic differentiation among the groups were low but significant. Several loci showed the signatures of positive selection, which might be responsible for local adaptation or varietal differentiation. Bald cypress was genetically differentiated into two geographical groups, and the boundary was located between the MRAV and Florida. This differentiation could be explained by population expansion from east to west. Despite the overlap of the two varieties' ranges, they were genetically differentiated in Florida. The estimated demographic parameters suggested that pond cypress split from bald cypress during the late Miocene. © 2016 Botanical Society of America.
Estimating linear temporal trends from aggregated environmental monitoring data
Erickson, Richard A.; Gray, Brian R.; Eager, Eric A.
2017-01-01
Trend estimates are often used as part of environmental monitoring programs. These trends inform managers (e.g., are desired species increasing or undesired species decreasing?). Data collected from environmental monitoring programs is often aggregated (i.e., averaged), which confounds sampling and process variation. State-space models allow sampling variation and process variations to be separated. We used simulated time-series to compare linear trend estimations from three state-space models, a simple linear regression model, and an auto-regressive model. We also compared the performance of these five models to estimate trends from a long term monitoring program. We specifically estimated trends for two species of fish and four species of aquatic vegetation from the Upper Mississippi River system. We found that the simple linear regression had the best performance of all the given models because it was best able to recover parameters and had consistent numerical convergence. Conversely, the simple linear regression did the worst job estimating populations in a given year. The state-space models did not estimate trends well, but estimated population sizes best when the models converged. We found that a simple linear regression performed better than more complex autoregression and state-space models when used to analyze aggregated environmental monitoring data.
Qualitative Meta-Analysis on the Hospital Task: Implications for Research
ERIC Educational Resources Information Center
Noll, Jennifer; Sharma, Sashi
2014-01-01
The "law of large numbers" indicates that as sample size increases, sample statistics become less variable and more closely estimate their corresponding population parameters. Different research studies investigating how people consider sample size when evaluating the reliability of a sample statistic have found a wide range of…
Multimedia data from two probability-based exposure studies were investigated in terms of how missing data and measurement-error imprecision affected estimation of population parameters and associations. Missing data resulted mainly from individuals' refusing to participate in c...
Multimedia data from two probability-based exposure studies were investigated in terms of how censoring of non-detects affected estimation of population parameters and associations. Appropriate methods for handling censored below-detection-limit (BDL) values in this context were...
Increasingly human populations are living and/or working in close proximity to heavily travelled roadways. There is a growing body of research indicating a variety of health conditions are adversely affected by near-road air pollutants. To reliably estimate the health risk assoc...
Development and application of traffic density-based Parameters for near-road air pollutant exposure
Increasingly human populations are living and/or working in close proximity to heavily travelled roadways. There is a growing body of research indicating a variety of health conditions are adversely affected by near-road air pollutants. To reliably estimate the health risk assoc...
Climate change threatens polar bear populations: a stochastic demographic analysis.
Hunter, Christine M; Caswell, Hal; Runge, Michael C; Regehr, Eric V; Amstrup, Steve C; Stirling, Ian
2010-10-01
The polar bear (Ursus maritimus) depends on sea ice for feeding, breeding, and movement. Significant reductions in Arctic sea ice are forecast to continue because of climate warming. We evaluated the impacts of climate change on polar bears in the southern Beaufort Sea by means of a demographic analysis, combining deterministic, stochastic, environment-dependent matrix population models with forecasts of future sea ice conditions from IPCC general circulation models (GCMs). The matrix population models classified individuals by age and breeding status; mothers and dependent cubs were treated as units. Parameter estimates were obtained from a capture-recapture study conducted from 2001 to 2006. Candidate statistical models allowed vital rates to vary with time and as functions of a sea ice covariate. Model averaging was used to produce the vital rate estimates, and a parametric bootstrap procedure was used to quantify model selection and parameter estimation uncertainty. Deterministic models projected population growth in years with more extensive ice coverage (2001-2003) and population decline in years with less ice coverage (2004-2005). LTRE (life table response experiment) analysis showed that the reduction in lambda in years with low sea ice was due primarily to reduced adult female survival, and secondarily to reduced breeding. A stochastic model with two environmental states, good and poor sea ice conditions, projected a declining stochastic growth rate, log lambdas, as the frequency of poor ice years increased. The observed frequency of poor ice years since 1979 would imply log lambdas approximately - 0.01, which agrees with available (albeit crude) observations of population size. The stochastic model was linked to a set of 10 GCMs compiled by the IPCC; the models were chosen for their ability to reproduce historical observations of sea ice and were forced with "business as usual" (A1B) greenhouse gas emissions. The resulting stochastic population projections showed drastic declines in the polar bear population by the end of the 21st century. These projections were instrumental in the decision to list the polar bear as a threatened species under the U.S. Endangered Species Act.
Climate change threatens polar bear populations: A stochastic demographic analysis
Hunter, C.M.; Caswell, H.; Runge, M.C.; Regehr, E.V.; Amstrup, Steven C.; Stirling, I.
2010-01-01
The polar bear (Ursus maritimus) depends on sea ice for feeding, breeding, and movement. Significant reductions in Arctic sea ice are forecast to continue because of climate warming. We evaluated the impacts of climate change on polar bears in the southern Beaufort Sea by means of a demographic analysis, combining deterministic, stochastic, environment-dependent matrix population models with forecasts of future sea ice conditions from IPCC general circulation models (GCMs). The matrix population models classified individuals by age and breeding status; mothers and dependent cubs were treated as units. Parameter estimates were obtained from a capture-recapture study conducted from 2001 to 2006. Candidate statistical models allowed vital rates to vary with time and as functions of a sea ice covariate. Model averaging was used to produce the vital rate estimates, and a parametric bootstrap procedure was used to quantify model selection and parameter estimation uncertainty. Deterministic models projected population growth in years with more extensive ice coverage (2001-2003) and population decline in years with less ice coverage (2004-2005). LTRE (life table response experiment) analysis showed that the reduction in ?? in years with low sea ice was due primarily to reduced adult female survival, and secondarily to reduced breeding. A stochastic model with two environmental states, good and poor sea ice conditions, projected a declining stochastic growth rate, log ??s, as the frequency of poor ice years increased. The observed frequency of poor ice years since 1979 would imply log ??s ' - 0.01, which agrees with available (albeit crude) observations of population size. The stochastic model was linked to a set of 10 GCMs compiled by the IPCC; the models were chosen for their ability to reproduce historical observations of sea ice and were forced with "business as usual" (A1B) greenhouse gas emissions. The resulting stochastic population projections showed drastic declines in the polar bear population by the end of the 21st century. These projections were instrumental in the decision to list the polar bear as a threatened species under the U.S. Endangered Species Act. ?? 2010 by the Ecological Society of America.
Jergenson, Abigail M; Miller, David A W; Neuman-Lee, Lorin A; Warner, Daniel A; Janzen, Fredric J
2014-03-01
Extreme environmental events (EEEs) are likely to exert deleterious effects on populations. From 1996 to 2012 we studied the nesting dynamics of a riverine population of painted turtles (Chrysemys picta) that experienced seven years with significantly definable spring floods. We used capture-mark-recapture methods to estimate the relationships between more than 5 m and more than 6 m flood events and population parameters. Contrary to expectations, flooding was not associated with annual differences in survival, recruitment or annual population growth rates of the adult female segment of the population. These findings suggest that female C. picta exhibit resiliency to key EEE, which are expected to increase in frequency under climate change.
Stahnke, N; Liebscher, V; Staubach, C; Ziller, M
2013-11-01
The analysis of epidemiological field data from monitoring and surveillance systems (MOSSs) in wild animals is of great importance in order to evaluate the performance of such systems. By parameter estimation from MOSS data, conclusions about disease dynamics in the observed population can be drawn. To strengthen the analysis, the implementation of a maximum likelihood estimation is the main aim of our work. The new approach presented here is based on an underlying simple SIR (susceptible-infected-recovered) model for a disease scenario in a wildlife population. The three corresponding classes are assumed to govern the intensities (number of animals in the classes) of non-homogeneous Poisson processes. A sampling rate was defined which describes the process of data collection (for MOSSs). Further, the performance of the diagnostics was implemented in the model by a diagnostic matrix containing misclassification rates. Both descriptions of these MOSS parts were included in the Poisson process approach. For simulation studies, the combined model demonstrates its ability to validly estimate epidemiological parameters, such as the basic reproduction rate R0. These parameters will help the evaluation of existing disease control systems. They will also enable comparison with other simulation models. The model has been tested with data from a Classical Swine Fever (CSF) outbreak in wild boars (Sus scrofa scrofa L.) from a region of Germany (1999-2002). The results show that the hunting strategy as a sole control tool is insufficient to decrease the threshold for susceptible animals to eradicate the disease, since the estimated R0 confirms an ongoing epidemic of CSF. Copyright © 2013 Elsevier B.V. All rights reserved.
Birznieks, Ingvars; Redmond, Stephen J.
2015-01-01
Dexterous manipulation is not possible without sensory information about object properties and manipulative forces. Fundamental neuroscience has been unable to demonstrate how information about multiple stimulus parameters may be continuously extracted, concurrently, from a population of tactile afferents. This is the first study to demonstrate this, using spike trains recorded from tactile afferents innervating the monkey fingerpad. A multiple-regression model, requiring no a priori knowledge of stimulus-onset times or stimulus combination, was developed to obtain continuous estimates of instantaneous force and torque. The stimuli consisted of a normal-force ramp (to a plateau of 1.8, 2.2, or 2.5 N), on top of which −3.5, −2.0, 0, +2.0, or +3.5 mNm torque was applied about the normal to the skin surface. The model inputs were sliding windows of binned spike counts recorded from each afferent. Models were trained and tested by 15-fold cross-validation to estimate instantaneous normal force and torque over the entire stimulation period. With the use of the spike trains from 58 slow-adapting type I and 25 fast-adapting type I afferents, the instantaneous normal force and torque could be estimated with small error. This study demonstrated that instantaneous force and torque parameters could be reliably extracted from a small number of tactile afferent responses in a real-time fashion with stimulus combinations that the model had not been exposed to during training. Analysis of the model weights may reveal how interactions between stimulus parameters could be disentangled for complex population responses and could be used to test neurophysiologically relevant hypotheses about encoding mechanisms. PMID:25948866
Waples, R S
2016-10-01
The relationship between life-history traits and the key eco-evolutionary parameters effective population size (Ne) and Ne/N is revisited for iteroparous species with overlapping generations, with a focus on the annual rate of adult mortality (d). Analytical methods based on populations with arbitrarily long adult lifespans are used to evaluate the influence of d on Ne, Ne/N and the factors that determine these parameters: adult abundance (N), generation length (T), age at maturity (α), the ratio of variance to mean reproductive success in one season by individuals of the same age (φ) and lifetime variance in reproductive success of individuals in a cohort (Vk•). Although the resulting estimators of N, T and Vk• are upwardly biased for species with short adult lifespans, the estimate of Ne/N is largely unbiased because biases in T are compensated for by biases in Vk• and N. For the first time, the contrasting effects of T and Vk• on Ne and Ne/N are jointly considered with respect to d and φ. A simple function of d and α based on the assumption of constant vital rates is shown to be a robust predictor (R(2)=0.78) of Ne/N in an empirical data set of life tables for 63 animal and plant species with diverse life histories. Results presented here should provide important context for interpreting the surge of genetically based estimates of Ne that has been fueled by the genomics revolution.
Marginally specified priors for non-parametric Bayesian estimation
Kessler, David C.; Hoff, Peter D.; Dunson, David B.
2014-01-01
Summary Prior specification for non-parametric Bayesian inference involves the difficult task of quantifying prior knowledge about a parameter of high, often infinite, dimension. A statistician is unlikely to have informed opinions about all aspects of such a parameter but will have real information about functionals of the parameter, such as the population mean or variance. The paper proposes a new framework for non-parametric Bayes inference in which the prior distribution for a possibly infinite dimensional parameter is decomposed into two parts: an informative prior on a finite set of functionals, and a non-parametric conditional prior for the parameter given the functionals. Such priors can be easily constructed from standard non-parametric prior distributions in common use and inherit the large support of the standard priors on which they are based. Additionally, posterior approximations under these informative priors can generally be made via minor adjustments to existing Markov chain approximation algorithms for standard non-parametric prior distributions. We illustrate the use of such priors in the context of multivariate density estimation using Dirichlet process mixture models, and in the modelling of high dimensional sparse contingency tables. PMID:25663813
Lai, Keke; Kelley, Ken
2011-06-01
In addition to evaluating a structural equation model (SEM) as a whole, often the model parameters are of interest and confidence intervals for those parameters are formed. Given a model with a good overall fit, it is entirely possible for the targeted effects of interest to have very wide confidence intervals, thus giving little information about the magnitude of the population targeted effects. With the goal of obtaining sufficiently narrow confidence intervals for the model parameters of interest, sample size planning methods for SEM are developed from the accuracy in parameter estimation approach. One method plans for the sample size so that the expected confidence interval width is sufficiently narrow. An extended procedure ensures that the obtained confidence interval will be no wider than desired, with some specified degree of assurance. A Monte Carlo simulation study was conducted that verified the effectiveness of the procedures in realistic situations. The methods developed have been implemented in the MBESS package in R so that they can be easily applied by researchers. © 2011 American Psychological Association
Aboriginal population prospects.
Gray, A; Tesfaghiorghis, H
1993-11-01
The authors examine data from the 1986 and 1991 Australian censuses to assess discrepancies between the census data and past projections of the size and structure of the Aboriginal population. They also "comment on ways in which determinants of Aboriginal population change are diverging from the parameters used for previous projections. We pay particular attention to mortality prospects.... We note the evidence for under-enumeration of the Aboriginal population in particular age groups in the 1991 Census as in previous censuses, and estimate the size of adjustments necessary to correct for some, but not all, of these deficiencies. The analysis shows that Aboriginal fertility increased in the second half of the 1980s." excerpt
Percha, Bethany; Newman, M. E. J.; Foxman, Betsy
2012-01-01
Group B Streptococcus (GBS) remains a major cause of neonatal sepsis and is an emerging cause of invasive bacterial infections. The 9 known serotypes vary in virulence, and there is little cross-immunity. Key parameters for planning an effective vaccination strategy, such as average length of immunity and transmission probabilities by serotype, are unknown. We simulated GBS spread in a population using a computational model with parameters derived from studies of GBS sexual transmission in a college dormitory. Here we provide estimates of the duration of immunity relative to the transmission probabilities for the 3 GBS serotypes most associated with invasive disease: Ia, III, and V. We also place upper limits on the durations of immunity for serotype Ia (570 days), III (1125 days) and V (260 days). Better transmission estimates are required to establish the epidemiological parameters of GBS infection and determine the best vaccination strategies to prevent GBS disease. PMID:21605704
Norton, Andrew S.; Diefenbach, Duane R.; Wallingford, Bret D.; Rosenberry, Christopher S.
2012-01-01
The performance of 2 popular methods that use age-at-harvest data to estimate abundance of white-tailed deer is contingent on assumptions about variation in estimates of subadult (1.5 yr old) and adult (≥2.5 yr old) male harvest rates. Auxiliary data (e.g., estimates of survival or harvest rates from radiocollared animals) can be used to relax some assumptions, but unless these population parameters exhibit limited temporal or spatial variation, these auxiliary data may not improve accuracy. Unfortunately maintaining sufficient sample sizes of radiocollared deer for parameter estimation in every wildlife management unit (WMU) is not feasible for most state agencies. We monitored the fates of 397 subadult and 225 adult male white-tailed deer across 4 WMUs from 2002 to 2008 using radio telemetry. We investigated spatial and temporal variation in harvest rates and investigated covariates related to the patterns observed. We found that most variation in harvest rates was explained spatially and that adult harvest rates (0.36–0.69) were more variable among study areas than subadult harvest rates (0.26–0.42). We found that hunter effort during the archery and firearms season best explained variation in harvest rates of adult males among WMUs, whereas hunter effort during only the firearms season best explained harvest rates for subadult males. From a population estimation perspective, it is advantageous that most variation was spatial and explained by a readily obtained covariate (hunter effort). However, harvest rates may vary if hunting regulations or hunter behavior change, requiring additional field studies to obtain accurate estimates of harvest rates.
Estimating stage-specific daily survival probabilities of nests when nest age is unknown
Stanley, T.R.
2004-01-01
Estimation of daily survival probabilities of nests is common in studies of avian populations. Since the introduction of Mayfield's (1961, 1975) estimator, numerous models have been developed to relax Mayfield's assumptions and account for biologically important sources of variation. Stanley (2000) presented a model for estimating stage-specific (e.g. incubation stage, nestling stage) daily survival probabilities of nests that conditions on “nest type” and requires that nests be aged when they are found. Because aging nests typically requires handling the eggs, there may be situations where nests can not or should not be aged and the Stanley (2000) model will be inapplicable. Here, I present a model for estimating stage-specific daily survival probabilities that conditions on nest stage for active nests, thereby obviating the need to age nests when they are found. Specifically, I derive the maximum likelihood function for the model, evaluate the model's performance using Monte Carlo simulations, and provide software for estimating parameters (along with an example). For sample sizes as low as 50 nests, bias was small and confidence interval coverage was close to the nominal rate, especially when a reduced-parameter model was used for estimation.
Modelling of seasonal influenza and estimation of the burden in Tunisia.
Chlif, S; Aissi, W; Bettaieb, J; Kharroubi, G; Nouira, M; Yazidi, R; El Moussi, A; Maazaoui, L; Slim, A; Salah, A Ben
2016-10-02
The burden of influenza was estimated from surveillance data in Tunisia using epidemiological parameters of transmission with WHO classical tools and mathematical modelling. The incidence rates of influenza-associated influenza-like illness (ILI) per 100 000 were 18 735 in 2012/2013 season; 5536 in 2013/14 and 12 602 in 2014/15. The estimated proportions of influenza-associated ILI in the total outpatient load were 3.16%; 0.86% and 1.98% in the 3 seasons respectively. Distribution of influenza viruses among positive patients was: A(H3N2) 15.5%; A(H1N1)pdm2009 39.2%; and B virus 45.3% in 2014/2015 season. From the estimated numbers of symptomatic cases, we estimated that the critical proportions of the population that should be vaccinated were 15%, 4% and 10% respectively. Running the model for the different values of R0, we quantified the number of symptomatic clinical cases, the clinical attack rates, the symptomatic clinical attack rates and the number of deaths. More realistic versions of this model and improved estimates of parameters from surveillance data will strengthen the estimation of the burden of influenza.
Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly
MacKenzie, D.I.; Nichols, J.D.; Hines, J.E.; Knutson, M.G.; Franklin, A.B.
2003-01-01
Few species are likely to be so evident that they will always be detected when present. Failing to allow for the possibility that a target species was present, but undetected, at a site will lead to biased estimates of site occupancy, colonization, and local extinction probabilities. These population vital rates are often of interest in long-term monitoring programs and metapopulation studies. We present a model that enables direct estimation of these parameters when the probability of detecting the species is less than 1. The model does not require any assumptions of process stationarity, as do some previous methods, but does require detection/nondetection data to be collected in a manner similar to Pollock's robust design as used in mark?recapture studies. Via simulation, we show that the model provides good estimates of parameters for most scenarios considered. We illustrate the method with data from monitoring programs of Northern Spotted Owls (Strix occidentalis caurina) in northern California and tiger salamanders (Ambystoma tigrinum) in Minnesota, USA.
Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly
MacKenzie, D.I.; Nichols, J.D.; Hines, J.E.; Knutson, M.G.; Franklin, A.B.
2003-01-01
Few species are likely to be so evident that they will always be defected when present: Failing to allow for the possibility that a target species was present, but undetected at a site will lead to biased estimates of site occupancy, colonization,and local extinction probabilities. These population vital rates are often of interest in long-term monitoring programs and metapopulation studies. We present a model that enables direct estimation of these parameters when the probability of detecting the species is less than 1. The model does not require any assumptions-of process stationarity, as do some previous methods, but does require detection/nondetection data to be collected in a-manner similar to. Pollock's robust design as used-in mark-recapture studies. Via simulation, we,show that the model provides good estimates of parameters for most scenarios considered. We illustrate the method with data from monitoring programs of Northern Spotted Owls (Strix occidentalis caurina) in northern California and tiger salamanders (Ambystoma tigrinum) in Minnesota, USA.
Pereyra, Patricia C; Sánchez, Norma E
2006-01-01
Tuta absoluta (Meyrick) is an important tomato pest that also feeds on other host-plants from the Solanceae family. We studied the effect of two cultivated plants, tomato (Lycopersicum esculentum Mill.) and potato Solanum tuberosum L. on the development and populational parameters of T. absoluta related with host-plant suitability. Larval developmental time, pupal weight, mean fecundity and an index of host-plant quality (IPQ = pupal weight / frass weight) were estimated. Age-specific survivorship and fecundity life tables were constructed in the laboratory to evaluate the following populational parameters: net reproductive rate (Ro), intrinsic rate of increase (r) and generation time (T). Larval developmental time was shorter and pupal weight was higher (P < 0.0001) for larvae reared on tomato (P < 0.0001). Mean fecundity was not significantly different on both plants (P = 0.07) and food quality of host-plant was higher for tomato (P = 0.02). Mean population parameters on tomato were: Ro = 48.92; T = 27.98, r = 0.14; and on potato: Ro = 14.43; T = 32.35, r = 0.08. Although results showed that tomato was a more suitable host-plant and had a better nutritional quality than potato, when T. absoluta fed on potato the potential population increase requires attention. Under appropriate climatic conditions, spatial and temporal coincidence between crop and pest, T. absoluta could become a pest for the potato crop.
Quantum sensing of the phase-space-displacement parameters using a single trapped ion
NASA Astrophysics Data System (ADS)
Ivanov, Peter A.; Vitanov, Nikolay V.
2018-03-01
We introduce a quantum sensing protocol for detecting the parameters characterizing the phase-space displacement by using a single trapped ion as a quantum probe. We show that, thanks to the laser-induced coupling between the ion's internal states and the motion mode, the estimation of the two conjugated parameters describing the displacement can be efficiently performed by a set of measurements of the atomic state populations. Furthermore, we introduce a three-parameter protocol capable of detecting the magnitude, the transverse direction, and the phase of the displacement. We characterize the uncertainty of the two- and three-parameter problems in terms of the Fisher information and show that state projective measurement saturates the fundamental quantum Cramér-Rao bound.
Dulau, Violaine; Estrade, Vanessa; Fayan, Jacques
2017-01-01
Photo-identification surveys of Indo-Pacific bottlenose dolphins were conducted from 2009 to 2014 off Reunion Island (55°E33'/21°S07'), in the Indian Ocean. Robust Design models were applied to produce the most reliable estimate of population abundance and survival rate, while accounting for temporary emigration from the survey area (west coast). The sampling scheme consisted of a five-month (June-October) sampling period in each year of the study. The overall population size at Reunion was estimated to be 72 individuals (SE = 6.17, 95%CI = 61-85), based on a random temporary emigration (γ") of 0.096 and a proportion of 0.70 (SE = 0.03) distinct individuals. The annual survival rate was 0.93 (±0.018 SE, 95%CI = 0.886-0.958) and was constant over time and between sexes. Models considering gender groups indicated different movement patterns between males and females. Males showed null or quasi-null temporary emigration (γ" = γ' < 0.01), while females showed a random temporary emigration (γ") of 0.10, suggesting that a small proportion of females was outside the survey area during each primary sampling period. Sex-specific temporary migration patterns were consistent with movement and residency patterns observed in other areas. The Robust Design approach provided an appropriate sampling scheme for deriving island-associated population parameters, while allowing to restrict survey effort both spatially (i.e. west coast only) and temporally (five months per year). Although abundance and survival were stable over the six years, the small population size of fewer than 100 individuals suggested that this population is highly vulnerable. Priority should be given to reducing any potential impact of human activity on the population and its habitat.
Pooseh, Shakoor; Bernhardt, Nadine; Guevara, Alvaro; Huys, Quentin J M; Smolka, Michael N
2018-02-01
Using simple mathematical models of choice behavior, we present a Bayesian adaptive algorithm to assess measures of impulsive and risky decision making. Practically, these measures are characterized by discounting rates and are used to classify individuals or population groups, to distinguish unhealthy behavior, and to predict developmental courses. However, a constant demand for improved tools to assess these constructs remains unanswered. The algorithm is based on trial-by-trial observations. At each step, a choice is made between immediate (certain) and delayed (risky) options. Then the current parameter estimates are updated by the likelihood of observing the choice, and the next offers are provided from the indifference point, so that they will acquire the most informative data based on the current parameter estimates. The procedure continues for a certain number of trials in order to reach a stable estimation. The algorithm is discussed in detail for the delay discounting case, and results from decision making under risk for gains, losses, and mixed prospects are also provided. Simulated experiments using prescribed parameter values were performed to justify the algorithm in terms of the reproducibility of its parameters for individual assessments, and to test the reliability of the estimation procedure in a group-level analysis. The algorithm was implemented as an experimental battery to measure temporal and probability discounting rates together with loss aversion, and was tested on a healthy participant sample.
Toward accurate and precise estimates of lion density.
Elliot, Nicholas B; Gopalaswamy, Arjun M
2017-08-01
Reliable estimates of animal density are fundamental to understanding ecological processes and population dynamics. Furthermore, their accuracy is vital to conservation because wildlife authorities rely on estimates to make decisions. However, it is notoriously difficult to accurately estimate density for wide-ranging carnivores that occur at low densities. In recent years, significant progress has been made in density estimation of Asian carnivores, but the methods have not been widely adapted to African carnivores, such as lions (Panthera leo). Although abundance indices for lions may produce poor inferences, they continue to be used to estimate density and inform management and policy. We used sighting data from a 3-month survey and adapted a Bayesian spatially explicit capture-recapture (SECR) model to estimate spatial lion density in the Maasai Mara National Reserve and surrounding conservancies in Kenya. Our unstructured spatial capture-recapture sampling design incorporated search effort to explicitly estimate detection probability and density on a fine spatial scale, making our approach robust in the context of varying detection probabilities. Overall posterior mean lion density was estimated to be 17.08 (posterior SD 1.310) lions >1 year old/100 km 2 , and the sex ratio was estimated at 2.2 females to 1 male. Our modeling framework and narrow posterior SD demonstrate that SECR methods can produce statistically rigorous and precise estimates of population parameters, and we argue that they should be favored over less reliable abundance indices. Furthermore, our approach is flexible enough to incorporate different data types, which enables robust population estimates over relatively short survey periods in a variety of systems. Trend analyses are essential to guide conservation decisions but are frequently based on surveys of differing reliability. We therefore call for a unified framework to assess lion numbers in key populations to improve management and policy decisions. © 2016 Society for Conservation Biology.
A Note on Recurring Misconceptions When Fitting Nonlinear Mixed Models.
Harring, Jeffrey R; Blozis, Shelley A
2016-01-01
Nonlinear mixed-effects (NLME) models are used when analyzing continuous repeated measures data taken on each of a number of individuals where the focus is on characteristics of complex, nonlinear individual change. Challenges with fitting NLME models and interpreting analytic results have been well documented in the statistical literature. However, parameter estimates as well as fitted functions from NLME analyses in recent articles have been misinterpreted, suggesting the need for clarification of these issues before these misconceptions become fact. These misconceptions arise from the choice of popular estimation algorithms, namely, the first-order linearization method (FO) and Gaussian-Hermite quadrature (GHQ) methods, and how these choices necessarily lead to population-average (PA) or subject-specific (SS) interpretations of model parameters, respectively. These estimation approaches also affect the fitted function for the typical individual, the lack-of-fit of individuals' predicted trajectories, and vice versa.
Quantifying Adventitious Error in a Covariance Structure as a Random Effect
Wu, Hao; Browne, Michael W.
2017-01-01
We present an approach to quantifying errors in covariance structures in which adventitious error, identified as the process underlying the discrepancy between the population and the structured model, is explicitly modeled as a random effect with a distribution, and the dispersion parameter of this distribution to be estimated gives a measure of misspecification. Analytical properties of the resultant procedure are investigated and the measure of misspecification is found to be related to the RMSEA. An algorithm is developed for numerical implementation of the procedure. The consistency and asymptotic sampling distributions of the estimators are established under a new asymptotic paradigm and an assumption weaker than the standard Pitman drift assumption. Simulations validate the asymptotic sampling distributions and demonstrate the importance of accounting for the variations in the parameter estimates due to adventitious error. Two examples are also given as illustrations. PMID:25813463
An empirical model for global earthquake fatality estimation
Jaiswal, Kishor; Wald, David
2010-01-01
We analyzed mortality rates of earthquakes worldwide and developed a country/region-specific empirical model for earthquake fatality estimation within the U.S. Geological Survey's Prompt Assessment of Global Earthquakes for Response (PAGER) system. The earthquake fatality rate is defined as total killed divided by total population exposed at specific shaking intensity level. The total fatalities for a given earthquake are estimated by multiplying the number of people exposed at each shaking intensity level by the fatality rates for that level and then summing them at all relevant shaking intensities. The fatality rate is expressed in terms of a two-parameter lognormal cumulative distribution function of shaking intensity. The parameters are obtained for each country or a region by minimizing the residual error in hindcasting the total shaking-related deaths from earthquakes recorded between 1973 and 2007. A new global regionalization scheme is used to combine the fatality data across different countries with similar vulnerability traits.
Modeling seasonal measles transmission in China
NASA Astrophysics Data System (ADS)
Bai, Zhenguo; Liu, Dan
2015-08-01
A discrete-time deterministic measles model with periodic transmission rate is formulated and studied. The basic reproduction number R0 is defined and used as the threshold parameter in determining the dynamics of the model. It is shown that the disease will die out if R0 < 1 , and the disease will persist in the population if R0 > 1 . Parameters in the model are estimated on the basis of demographic and epidemiological data. Numerical simulations are presented to describe the seasonal fluctuation of measles infection in China.
Harmsen, Bart J; Foster, Rebecca J; Sanchez, Emma; Gutierrez-González, Carmina E; Silver, Scott C; Ostro, Linde E T; Kelly, Marcella J; Kay, Elma; Quigley, Howard
2017-01-01
In this study, we estimate life history parameters and abundance for a protected jaguar population using camera-trap data from a 14-year monitoring program (2002-2015) in Belize, Central America. We investigated the dynamics of this jaguar population using 3,075 detection events of 105 individual adult jaguars. Using robust design open population models, we estimated apparent survival and temporary emigration and investigated individual heterogeneity in detection rates across years. Survival probability was high and constant among the years for both sexes (φ = 0.78), and the maximum (conservative) age recorded was 14 years. Temporary emigration rate for the population was random, but constant through time at 0.20 per year. Detection probability varied between sexes, and among years and individuals. Heterogeneity in detection took the form of a dichotomy for males: those with consistently high detection rates, and those with low, sporadic detection rates, suggesting a relatively stable population of 'residents' consistently present and a fluctuating layer of 'transients'. Female detection was always low and sporadic. On average, twice as many males than females were detected per survey, and individual detection rates were significantly higher for males. We attribute sex-based differences in detection to biases resulting from social variation in trail-walking behaviour. The number of individual females detected increased when the survey period was extended from 3 months to a full year. Due to the low detection rates of females and the variable 'transient' male subpopulation, annual abundance estimates based on 3-month surveys had low precision. To estimate survival and monitor population changes in elusive, wide-ranging, low-density species, we recommend repeated surveys over multiple years; and suggest that continuous monitoring over multiple years yields even further insight into population dynamics of elusive predator populations.
van der Heijden, A A W A; Feenstra, T L; Hoogenveen, R T; Niessen, L W; de Bruijne, M C; Dekker, J M; Baan, C A; Nijpels, G
2015-12-01
To test a simulation model, the MICADO model, for estimating the long-term effects of interventions in people with and without diabetes. The MICADO model includes micro- and macrovascular diseases in relation to their risk factors. The strengths of this model are its population scope and the possibility to assess parameter uncertainty using probabilistic sensitivity analyses. Outcomes include incidence and prevalence of complications, quality of life, costs and cost-effectiveness. We externally validated MICADO's estimates of micro- and macrovascular complications in a Dutch cohort with diabetes (n = 498,400) by comparing these estimates with national and international empirical data. For the annual number of people undergoing amputations, MICADO's estimate was 592 (95% interquantile range 291-842), which compared well with the registered number of people with diabetes-related amputations in the Netherlands (728). The incidence of end-stage renal disease estimated using the MICADO model was 247 people (95% interquartile range 120-363), which was also similar to the registered incidence in the Netherlands (277 people). MICADO performed well in the validation of macrovascular outcomes of population-based cohorts, while it had more difficulty in reflecting a highly selected trial population. Validation by comparison with independent empirical data showed that the MICADO model simulates the natural course of diabetes and its micro- and macrovascular complications well. As a population-based model, MICADO can be applied for projections as well as scenario analyses to evaluate the long-term (cost-)effectiveness of population-level interventions targeting diabetes and its complications in the Netherlands or similar countries. © 2015 The Authors. Diabetic Medicine © 2015 Diabetes UK.
Forecasting extinction risk with nonstationary matrix models.
Gotelli, Nicholas J; Ellison, Aaron M
2006-02-01
Matrix population growth models are standard tools for forecasting population change and for managing rare species, but they are less useful for predicting extinction risk in the face of changing environmental conditions. Deterministic models provide point estimates of lambda, the finite rate of increase, as well as measures of matrix sensitivity and elasticity. Stationary matrix models can be used to estimate extinction risk in a variable environment, but they assume that the matrix elements are randomly sampled from a stationary (i.e., non-changing) distribution. Here we outline a method for using nonstationary matrix models to construct realistic forecasts of population fluctuation in changing environments. Our method requires three pieces of data: (1) field estimates of transition matrix elements, (2) experimental data on the demographic responses of populations to altered environmental conditions, and (3) forecasting data on environmental drivers. These three pieces of data are combined to generate a series of sequential transition matrices that emulate a pattern of long-term change in environmental drivers. Realistic estimates of population persistence and extinction risk can be derived from stochastic permutations of such a model. We illustrate the steps of this analysis with data from two populations of Sarracenia purpurea growing in northern New England. Sarracenia purpurea is a perennial carnivorous plant that is potentially at risk of local extinction because of increased nitrogen deposition. Long-term monitoring records or models of environmental change can be used to generate time series of driver variables under different scenarios of changing environments. Both manipulative and natural experiments can be used to construct a linking function that describes how matrix parameters change as a function of the environmental driver. This synthetic modeling approach provides quantitative estimates of extinction probability that have an explicit mechanistic basis.
Kaye, T.N.; Pyke, David A.
2003-01-01
Population viability analysis is an important tool for conservation biologists, and matrix models that incorporate stochasticity are commonly used for this purpose. However, stochastic simulations may require assumptions about the distribution of matrix parameters, and modelers often select a statistical distribution that seems reasonable without sufficient data to test its fit. We used data from long-term (5a??10 year) studies with 27 populations of five perennial plant species to compare seven methods of incorporating environmental stochasticity. We estimated stochastic population growth rate (a measure of viability) using a matrix-selection method, in which whole observed matrices were selected at random at each time step of the model. In addition, we drew matrix elements (transition probabilities) at random using various statistical distributions: beta, truncated-gamma, truncated-normal, triangular, uniform, or discontinuous/observed. Recruitment rates were held constant at their observed mean values. Two methods of constraining stage-specific survival to a??100% were also compared. Different methods of incorporating stochasticity and constraining matrix column sums interacted in their effects and resulted in different estimates of stochastic growth rate (differing by up to 16%). Modelers should be aware that when constraining stage-specific survival to 100%, different methods may introduce different levels of bias in transition element means, and when this happens, different distributions for generating random transition elements may result in different viability estimates. There was no species effect on the results and the growth rates derived from all methods were highly correlated with one another. We conclude that the absolute value of population viability estimates is sensitive to model assumptions, but the relative ranking of populations (and management treatments) is robust. Furthermore, these results are applicable to a range of perennial plants and possibly other life histories.
Making do with less: Must sparse data preclude informed harvest strategies for European waterbirds?
Johnson, Fred A.; Alhainen, Mikko; Fox, Anthony D.; Madsen, Jesper; Guillemain, Matthieu
2018-01-01
The demography of many European waterbirds is not well understood because most countries have conducted little monitoring and assessment, and coordination among countries on waterbird management has little precedent. Yet intergovernmental treaties now mandate the use of sustainable, adaptive harvest strategies, whose development is challenged by a paucity of demographic information. In this study, we explore how a combination of allometric relationships, fragmentary monitoring and research information, and expert judgment can be used to estimate the parameters of a theta-logistic population model, which in turn can be used in a Markov decision process to derive optimal harvesting strategies. We show how to account for considerable parametric uncertainty, as well as for different management objectives. We illustrate our methodology with a poorly understood population of taiga bean geese (Anser fabalis fabalis), which is a popular game bird in Fennoscandia. Our results for taiga bean geese suggest that they may have demographic rates similar to other, well-studied species of geese, and our model-based predictions of population size are consistent with the limited monitoring information available. Importantly, we found that by using a Markov decision process, a simple scalar population model may be sufficient to guide harvest management of this species, even if its demography is age-structured. Finally, we demonstrated how two different management objectives can lead to very different optimal harvesting strategies, and how conflicting objectives may be traded off with each other. This approach will have broad application for European waterbirds by providing preliminary estimates of key demographic parameters, by providing insights into the monitoring and research activities needed to corroborate those estimates, and by producing harvest management strategies that are optimal with respect to the managers’ objectives, options, and available demographic information.
NASA Astrophysics Data System (ADS)
Derieppe, M.; Bos, C.; de Greef, M.; Moonen, C.; de Senneville, B. Denis
2016-01-01
We have previously demonstrated the feasibility of monitoring ultrasound-mediated uptake of a hydrophilic model drug in real time with dynamic confocal fluorescence microscopy. In this study, we evaluate and correct the impact of photobleaching to improve the accuracy of pharmacokinetic parameter estimates. To model photobleaching of the fluorescent model drug SYTOX Green, a photobleaching process was added to the current two-compartment model describing cell uptake. After collection of the uptake profile, a second acquisition was performed when SYTOX Green was equilibrated, to evaluate the photobleaching rate experimentally. Photobleaching rates up to 5.0 10-3 s-1 were measured when applying power densities up to 0.2 W.cm-2. By applying the three-compartment model, the model drug uptake rate of 6.0 10-3 s-1 was measured independent of the applied laser power. The impact of photobleaching on uptake rate estimates measured by dynamic fluorescence microscopy was evaluated. Subsequent compensation improved the accuracy of pharmacokinetic parameter estimates in the cell population subjected to sonopermeabilization.
Sampling ARG of multiple populations under complex configurations of subdivision and admixture.
Carrieri, Anna Paola; Utro, Filippo; Parida, Laxmi
2016-04-01
Simulating complex evolution scenarios of multiple populations is an important task for answering many basic questions relating to population genomics. Apart from the population samples, the underlying Ancestral Recombinations Graph (ARG) is an additional important means in hypothesis checking and reconstruction studies. Furthermore, complex simulations require a plethora of interdependent parameters making even the scenario-specification highly non-trivial. We present an algorithm SimRA that simulates generic multiple population evolution model with admixture. It is based on random graphs that improve dramatically in time and space requirements of the classical algorithm of single populations.Using the underlying random graphs model, we also derive closed forms of expected values of the ARG characteristics i.e., height of the graph, number of recombinations, number of mutations and population diversity in terms of its defining parameters. This is crucial in aiding the user to specify meaningful parameters for the complex scenario simulations, not through trial-and-error based on raw compute power but intelligent parameter estimation. To the best of our knowledge this is the first time closed form expressions have been computed for the ARG properties. We show that the expected values closely match the empirical values through simulations.Finally, we demonstrate that SimRA produces the ARG in compact forms without compromising any accuracy. We demonstrate the compactness and accuracy through extensive experiments. SimRA (Simulation based on Random graph Algorithms) source, executable, user manual and sample input-output sets are available for downloading at: https://github.com/ComputationalGenomics/SimRA CONTACT: : parida@us.ibm.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Estimating thermal performance curves from repeated field observations
Childress, Evan; Letcher, Benjamin H.
2017-01-01
Estimating thermal performance of organisms is critical for understanding population distributions and dynamics and predicting responses to climate change. Typically, performance curves are estimated using laboratory studies to isolate temperature effects, but other abiotic and biotic factors influence temperature-performance relationships in nature reducing these models' predictive ability. We present a model for estimating thermal performance curves from repeated field observations that includes environmental and individual variation. We fit the model in a Bayesian framework using MCMC sampling, which allowed for estimation of unobserved latent growth while propagating uncertainty. Fitting the model to simulated data varying in sampling design and parameter values demonstrated that the parameter estimates were accurate, precise, and unbiased. Fitting the model to individual growth data from wild trout revealed high out-of-sample predictive ability relative to laboratory-derived models, which produced more biased predictions for field performance. The field-based estimates of thermal maxima were lower than those based on laboratory studies. Under warming temperature scenarios, field-derived performance models predicted stronger declines in body size than laboratory-derived models, suggesting that laboratory-based models may underestimate climate change effects. The presented model estimates true, realized field performance, avoiding assumptions required for applying laboratory-based models to field performance, which should improve estimates of performance under climate change and advance thermal ecology.
NASA Technical Reports Server (NTRS)
Drusano, George L.
1991-01-01
The optimal sampling theory is evaluated in applications to studies related to the distribution and elimination of several drugs (including ceftazidime, piperacillin, and ciprofloxacin), using the SAMPLE module of the ADAPT II package of programs developed by D'Argenio and Schumitzky (1979, 1988) and comparing the pharmacokinetic parameter values with results obtained by traditional ten-sample design. The impact of the use of optimal sampling was demonstrated in conjunction with NONMEM (Sheiner et al., 1977) approach, in which the population is taken as the unit of analysis, allowing even fragmentary patient data sets to contribute to population parameter estimates. It is shown that this technique is applicable in both the single-dose and the multiple-dose environments. The ability to study real patients made it possible to show that there was a bimodal distribution in ciprofloxacin nonrenal clearance.
Sex estimation of the tibia in modern Turkish: A computed tomography study.
Ekizoglu, Oguzhan; Er, Ali; Bozdag, Mustafa; Akcaoglu, Mustafa; Can, Ismail Ozgur; García-Donas, Julieta G; Kranioti, Elena F
2016-11-01
The utilization of computed tomography is beneficial for the analysis of skeletal remains and it has important advantages for anthropometric studies. The present study investigated morphometry of left tibia using CT images of a contemporary Turkish population. Seven parameters were measured on 203 individuals (124 males and 79 females) within the 19-92-years age group. The first objective of this study was to provide population-specific sex estimation equations for the contemporary Turkish population based on CT images. A second objective was to test the sex estimation formulae on Southern Europeans by Kranioti and Apostol (2015). Univariate discriminant functions resulted in classification accuracy that ranged from 66 to 86%. The best single variable was found to be upper epiphyseal breadth (86%) followed by lower epiphyseal breadth (85%). Multivariate discriminant functions resulted in classification accuracy for cross-validated data ranged from 79 to 86%. Applying the multivariate sex estimation formulae on Southern Europeans (SE) by Kranioti and Apostol in our sample resulted in very high classification accuracy ranging from 81 to 88%. In addition, 35.5-47% of the total Turkish sample is correctly classified with over 95% posterior probability, which is actually higher than the one reported for the original sample (25-43%). We conclude that the tibia is a very useful bone for sex estimation in the contemporary Turkish population. Moreover, our test results support the hypothesis that the SE formulae are sufficient for the contemporary Turkish population and they can be used safely for criminal investigations when posterior probabilities are over 95%. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Beckensteiner, Jennifer; Kaplan, David M; Potts, Warren M; Santos, Carmen V; O'Farrell, Michael R
2016-01-01
Excessive truncation of a population's size structure is often identified as an important deleterious effect of exploitation, yet the effect on population persistence of size-structure truncation caused by exploitation is often not quantified due to data limitations. In this study, we estimate changes in eggs per recruit (EPR) using annual length-frequency samples over a 9 year period to assess persistence of the two most important recreational fishes in southern Angola: west coast dusky kob (Argyrosomus coronus) and leerfish (Lichia amia). Using a length- and age-structured model, we improve on an existing method to fit this type of model to length-frequency data and estimate EPR. The objectives of the methodological changes are to add flexibility and robustness to the approach for assessing population status in data-limited situations. Results indicate that dusky kob presents very low levels of EPR (5%-10% of the per recruit reproductive capacity in the absence of fishing) in 2013, whereas large inter-annual variability in leerfish estimates suggest caution must be applied when drawing conclusions about its exploitation status. Using simulated length frequency data with known parameter values, we demonstrate that recruitment decline due to overexploitation leads to overestimation of EPR values. Considering the low levels of EPR estimated for the study species, recruitment limitation is not impossible and true EPR values may be even lower than our estimates. It is, therefore, likely that management action, such as the creation of Marine Protected Areas, is needed to reconstitute the west coast dusky kob population.
A critical look at national monitoring programs for birds and other wildlife species
Sauer, J.R.; O'Shea, T.J.; Bogon, M.A.
2003-01-01
Concerns?about declines in numerous taxa have created agreat deal of interest in survey development. Because birds have traditionally been monitored by a variety of methods, bird surveys form natural models for development of surveys for other taxa. Here I suggest that most bird surveys are not appropriate models for survey design. Most lack important design components associated with estimation of population parameters at sample sites or with sampling over space, leading to estimates that may be biased, I discuss the limitations of national bird monitoring programs designed to monitor population size. Although these surveys are often analyzed, careful consideration must be given to factors that may bias estimates but that cannot be evaluated within the survey. Bird surveys with appropriate designs have generally been developed as part of management programs that have specific information needs. Experiences gained from bird surveys provide important information for development of surveys for other taxa, and statistical developments in estimation of population sizes from counts provide new approaches to overcoming the limitations evident in many bird surveys. Design of surveys is a collaborative effort, requiring input from biologists, statisticians, and the managers who will use the information from the surveys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redding, Laurel E.; Sohn, Michael D.; McKone, Thomas E.
2008-03-01
We developed a physiologically based pharmacokinetic model of PCB 153 in women, and predict its transfer via lactation to infants. The model is the first human, population-scale lactational model for PCB 153. Data in the literature provided estimates for model development and for performance assessment. Physiological parameters were taken from a cohort in Taiwan and from reference values in the literature. We estimated partition coefficients based on chemical structure and the lipid content in various body tissues. Using exposure data in Japan, we predicted acquired body burden of PCB 153 at an average childbearing age of 25 years and comparemore » predictions to measurements from studies in multiple countries. Forward-model predictions agree well with human biomonitoring measurements, as represented by summary statistics and uncertainty estimates. The model successfully describes the range of possible PCB 153 dispositions in maternal milk, suggesting a promising option for back estimating doses for various populations. One example of reverse dosimetry modeling was attempted using our PBPK model for possible exposure scenarios in Canadian Inuits who had the highest level of PCB 153 in their milk in the world.« less
Otis, D.L.; White, Gary C.
2002-01-01
In 1966-1971, eastern US states with hunting seasons on mourning doves (Zenaida macroura) participated in a study designed to estimate the effects of bag limit increases on population survival rates. More than 400 000 adult and juvenile birds were banded and released during this period, and subsequent harvest and return of bands, together with total harvest estimates from mail and telephone surveys of hunters, provided the database for analysis. The original analysis used an ANOVA framework, and resulted in inferences of no effect of bag limit increase on population parameters (Hayne 1975). We used a logistic regression analysis to infer that the bag limit increase did not cause a biologically significant increase in harvest rate and thus the experiment could not provide any insight into the relationship between harvest and annual survival rates. Harvest rate estimates of breeding populations from geographical subregions were used as covariates in a Program MARK analysis and revealed an association between annual survival and harvest rates, although this relationship is potentially confounded by a latitudinal gradient in survival rates of dove populations. We discuss methodological problems encountered in the analysis of these data, and provide recommendations for future studies of the relationship between harvest and annual survival rates of mourning dove populations.
Fottrell, Edward; Byass, Peter; Berhane, Yemane
2008-03-25
As in any measurement process, a certain amount of error may be expected in routine population surveillance operations such as those in demographic surveillance sites (DSSs). Vital events are likely to be missed and errors made no matter what method of data capture is used or what quality control procedures are in place. The extent to which random errors in large, longitudinal datasets affect overall health and demographic profiles has important implications for the role of DSSs as platforms for public health research and clinical trials. Such knowledge is also of particular importance if the outputs of DSSs are to be extrapolated and aggregated with realistic margins of error and validity. This study uses the first 10-year dataset from the Butajira Rural Health Project (BRHP) DSS, Ethiopia, covering approximately 336,000 person-years of data. Simple programmes were written to introduce random errors and omissions into new versions of the definitive 10-year Butajira dataset. Key parameters of sex, age, death, literacy and roof material (an indicator of poverty) were selected for the introduction of errors based on their obvious importance in demographic and health surveillance and their established significant associations with mortality. Defining the original 10-year dataset as the 'gold standard' for the purposes of this investigation, population, age and sex compositions and Poisson regression models of mortality rate ratios were compared between each of the intentionally erroneous datasets and the original 'gold standard' 10-year data. The composition of the Butajira population was well represented despite introducing random errors, and differences between population pyramids based on the derived datasets were subtle. Regression analyses of well-established mortality risk factors were largely unaffected even by relatively high levels of random errors in the data. The low sensitivity of parameter estimates and regression analyses to significant amounts of randomly introduced errors indicates a high level of robustness of the dataset. This apparent inertia of population parameter estimates to simulated errors is largely due to the size of the dataset. Tolerable margins of random error in DSS data may exceed 20%. While this is not an argument in favour of poor quality data, reducing the time and valuable resources spent on detecting and correcting random errors in routine DSS operations may be justifiable as the returns from such procedures diminish with increasing overall accuracy. The money and effort currently spent on endlessly correcting DSS datasets would perhaps be better spent on increasing the surveillance population size and geographic spread of DSSs and analysing and disseminating research findings.
Johnson, Nicholas S.; Swink, William D.; Brenden, Travis O.; Slade, Jeffrey W.; Steeves, Todd B.; Fodale, Michael F.; Jones, Michael L.
2014-01-01
Sea lamprey Petromyzon marinus control in the Great Lakes primarily involves application of lampricides to streams where larval production occurs to kill larvae prior to their metamorphosing and entering the lakes as parasites (juveniles). Because lampricides are not 100% effective, larvae that survive treatment maymetamorphose before streams are again treated. Larvae that survive treatment have not beenwidely studied, so their dynamics are notwell understood.Wetagged and released larvae in six Great Lake tributaries following lampricide treatment and estimated vital demographic rates using multistate tag-recovery models. Model-averaged larval survivals ranged from 56.8 to 57.6%. Model-averaged adult recovery rates, which were the product of juvenile survivals and adult capture probabilities, ranged from 6.8 to 9.3%. Using stochastic simulations, we estimated production of juvenile sea lampreys from a hypothetical population of treatment survivors under different growth conditions based on parameter estimates from this research. For fast-growing populations, juvenile production peaked 2 years after treatment. For slow-growing populations, juvenile production was approximately one-third that of fast-growing populations,with production not peaking until 4 years after treatment. Our results suggest that dynamics (i.e., survival, metamorphosis) of residual larval populations are very similar to those of untreated larval populations. Consequently, residual populations do not necessarily warrant special consideration for the purpose of sea lamprey control and can be ranked for treatment along with other populations. Consecutive lampricide treatments, which are under evaluation by the sea lamprey control program, would bemost effective for reducing juvenile production in large, fast-growing populations.
Bacles, C F E; Bouchard, C; Lange, F; Manicki, A; Tentelier, C; Lepais, O
2018-03-01
This study assesses whether the effective number of breeders (N b ) can be estimated using a time and cost-effective protocol using genetic sibship reconstruction from a single sample of young-of-the-year (YOY) for the purposes of Atlantic salmon Salmo salar population monitoring. N b was estimated for 10 consecutive reproductive seasons for S. salar in the River Nivelle, a small population located at the rear-edge of the species distribution area in France, chronically under its conservation limit and subjected to anthropogenic and environmental changes. Subsampling of real and simulated data showed that accurate estimates of N b can be obtained from YOY genotypes, collected at moderate random sampling intensity, achievable using routine juvenile electrofishing protocols. Spatial bias and time elapsed since spawning were found to affect estimates, which must be accounted for in sampling designs. N b estimated in autumn for S. salar in the River Nivelle was low and variable across years from 23 (95% C.I. 14-41) to 75 (53-101) and was not statistically correlated with the estimated number of returning adults, but it was positively correlated with the estimated number of YOY at age 9 months. N b was found to be lower for intermediate levels of redd aggregation, suggesting that the strength of the competition between males to access females affects reproductive success variance depending on redd spatial configuration. Thus, environmental factors such as habitat availability and quality for spawning and YOY development predominate over demographic ones (number of returning adults) in driving long-term population viability for S. salar in the River Nivelle. This study showcases N b as an integrated parameter, encompassing demographic and ecological information about a reproductive event, relevant to the assessment of both short-term effects of management practices and long-term population conservation status. © 2018 The Fisheries Society of the British Isles.
Estimation of tiger densities in India using photographic captures and recaptures
Karanth, U.; Nichols, J.D.
1998-01-01
Previously applied methods for estimating tiger (Panthera tigris) abundance using total counts based on tracks have proved unreliable. In this paper we use a field method proposed by Karanth (1995), combining camera-trap photography to identify individual tigers based on stripe patterns, with capture-recapture estimators. We developed a sampling design for camera-trapping and used the approach to estimate tiger population size and density in four representative tiger habitats in different parts of India. The field method worked well and provided data suitable for analysis using closed capture-recapture models. The results suggest the potential for applying this methodology for estimating abundances, survival rates and other population parameters in tigers and other low density, secretive animal species with distinctive coat patterns or other external markings. Estimated probabilities of photo-capturing tigers present in the study sites ranged from 0.75 - 1.00. The estimated mean tiger densities ranged from 4.1 (SE hat= 1.31) to 11.7 (SE hat= 1.93) tigers/100 km2. The results support the previous suggestions of Karanth and Sunquist (1995) that densities of tigers and other large felids may be primarily determined by prey community structure at a given site.
Polar bears in the Beaufort Sea: A 30-year mark-recapture case history
Amstrup, Steven C.; McDonald, T.L.; Stirling, I.
2001-01-01
Knowledge of population size and trend is necessary to manage anthropogenic risks to polar bears (Ursus maritimus). Despite capturing over 1,025 females between 1967 and 1998, previously calculated estimates of the size of the southern Beaufort Sea (SBS) population have been unreliable. We improved estimates of numbers of polar bears by modeling heterogeneity in capture probability with covariates. Important covariates referred to the year of the study, age of the bear, capture effort, and geographic location. Our choice of best approximating model was based on the inverse relationship between variance in parameter estimates and likelihood of the fit and suggested a growth from ≈ 500 to over 1,000 females during this study. The mean coefficient of variation on estimates for the last decade of the study was 0.16—the smallest yet derived. A similar model selection approach is recommended for other projects where a best model is not identified by likelihood criteria alone.
Tsamandouras, Nikolaos; Rostami-Hodjegan, Amin; Aarons, Leon
2015-01-01
Pharmacokinetic models range from being entirely exploratory and empirical, to semi-mechanistic and ultimately complex physiologically based pharmacokinetic (PBPK) models. This choice is conditional on the modelling purpose as well as the amount and quality of the available data. The main advantage of PBPK models is that they can be used to extrapolate outside the studied population and experimental conditions. The trade-off for this advantage is a complex system of differential equations with a considerable number of model parameters. When these parameters cannot be informed from in vitro or in silico experiments they are usually optimized with respect to observed clinical data. Parameter estimation in complex models is a challenging task associated with many methodological issues which are discussed here with specific recommendations. Concepts such as structural and practical identifiability are described with regards to PBPK modelling and the value of experimental design and sensitivity analyses is sketched out. Parameter estimation approaches are discussed, while we also highlight the importance of not neglecting the covariance structure between model parameters and the uncertainty and population variability that is associated with them. Finally the possibility of using model order reduction techniques and minimal semi-mechanistic models that retain the physiological-mechanistic nature only in the parts of the model which are relevant to the desired modelling purpose is emphasized. Careful attention to all the above issues allows us to integrate successfully information from in vitro or in silico experiments together with information deriving from observed clinical data and develop mechanistically sound models with clinical relevance. PMID:24033787
Adaptive Robust Estimation of Location and Scale Parameters of Symmetric Populations.
1978-09-01
theses , wh i ch reported the results of a smdll Monte Carlo study of the performances of va rious estimators . The authors wish to thank Lt Michael...Leon (1972). The Method of Least Squares and Some Al ternatives. AR!, TR 72—129 , Aer ospace Res ear ch Lab oratories , Wr ight—Patterson Air Force...5287 .8556 .7875 .7260 .5299 .8489 . 7845 .7242 (c) .9515 .6362 .2920 .4900 .9492 .6205 .2872 .4789 (d)(l) .6147 .8222 .6007 .6846 .6219 .8230 .6014
1993-07-24
orders smaller than the Rayleigh cross section. We estimated the extinction coefficients of the Pinatubo volcanic aerosol in the stratosphere using a Raman...to a common aerosol parameter (e.g., backscatter coefficients at selected CO2 wavelengths), have all led to similar estimated values of that...increase only as -r 2 . During this phase, therefore, the backscatter coefficient of a coagulating aerosol population decreases as -r- The maximum
Novikov, I; Fund, N; Freedman, L S
2010-01-15
Different methods for the calculation of sample size for simple logistic regression (LR) with one normally distributed continuous covariate give different results. Sometimes the difference can be large. Furthermore, some methods require the user to specify the prevalence of cases when the covariate equals its population mean, rather than the more natural population prevalence. We focus on two commonly used methods and show through simulations that the power for a given sample size may differ substantially from the nominal value for one method, especially when the covariate effect is large, while the other method performs poorly if the user provides the population prevalence instead of the required parameter. We propose a modification of the method of Hsieh et al. that requires specification of the population prevalence and that employs Schouten's sample size formula for a t-test with unequal variances and group sizes. This approach appears to increase the accuracy of the sample size estimates for LR with one continuous covariate.
Effective population sizes of a major vector of human diseases, Aedes aegypti.
Saarman, Norah P; Gloria-Soria, Andrea; Anderson, Eric C; Evans, Benjamin R; Pless, Evlyn; Cosme, Luciano V; Gonzalez-Acosta, Cassandra; Kamgang, Basile; Wesson, Dawn M; Powell, Jeffrey R
2017-12-01
The effective population size ( N e ) is a fundamental parameter in population genetics that determines the relative strength of selection and random genetic drift, the effect of migration, levels of inbreeding, and linkage disequilibrium. In many cases where it has been estimated in animals, N e is on the order of 10%-20% of the census size. In this study, we use 12 microsatellite markers and 14,888 single nucleotide polymorphisms (SNPs) to empirically estimate N e in Aedes aegypti , the major vector of yellow fever, dengue, chikungunya, and Zika viruses. We used the method of temporal sampling to estimate N e on a global dataset made up of 46 samples of Ae. aegypti that included multiple time points from 17 widely distributed geographic localities. Our N e estimates for Ae. aegypti fell within a broad range (~25-3,000) and averaged between 400 and 600 across all localities and time points sampled. Adult census size (N c ) estimates for this species range between one and five thousand, so the N e / N c ratio is about the same as for most animals. These N e values are lower than estimates available for other insects and have important implications for the design of genetic control strategies to reduce the impact of this species of mosquito on human health.
Muir, W M; Howard, R D
2001-07-01
Any release of transgenic organisms into nature is a concern because ecological relationships between genetically engineered organisms and other organisms (including their wild-type conspecifics) are unknown. To address this concern, we developed a method to evaluate risk in which we input estimates of fitness parameters from a founder population into a recurrence model to predict changes in transgene frequency after a simulated transgenic release. With this method, we grouped various aspects of an organism's life cycle into six net fitness components: juvenile viability, adult viability, age at sexual maturity, female fecundity, male fertility, and mating advantage. We estimated these components for wild-type and transgenic individuals using the fish, Japanese medaka (Oryzias latipes). We generalized our model's predictions using various combinations of fitness component values in addition to our experimentally derived estimates. Our model predicted that, for a wide range of parameter values, transgenes could spread in populations despite high juvenile viability costs if transgenes also have sufficiently high positive effects on other fitness components. Sensitivity analyses indicated that transgene effects on age at sexual maturity should have the greatest impact on transgene frequency, followed by juvenile viability, mating advantage, female fecundity, and male fertility, with changes in adult viability, resulting in the least impact.
An accessible method for implementing hierarchical models with spatio-temporal abundance data
Ross, Beth E.; Hooten, Melvin B.; Koons, David N.
2012-01-01
A common goal in ecology and wildlife management is to determine the causes of variation in population dynamics over long periods of time and across large spatial scales. Many assumptions must nevertheless be overcome to make appropriate inference about spatio-temporal variation in population dynamics, such as autocorrelation among data points, excess zeros, and observation error in count data. To address these issues, many scientists and statisticians have recommended the use of Bayesian hierarchical models. Unfortunately, hierarchical statistical models remain somewhat difficult to use because of the necessary quantitative background needed to implement them, or because of the computational demands of using Markov Chain Monte Carlo algorithms to estimate parameters. Fortunately, new tools have recently been developed that make it more feasible for wildlife biologists to fit sophisticated hierarchical Bayesian models (i.e., Integrated Nested Laplace Approximation, ‘INLA’). We present a case study using two important game species in North America, the lesser and greater scaup, to demonstrate how INLA can be used to estimate the parameters in a hierarchical model that decouples observation error from process variation, and accounts for unknown sources of excess zeros as well as spatial and temporal dependence in the data. Ultimately, our goal was to make unbiased inference about spatial variation in population trends over time.
The number of Jupiter family comets as a constraint on the transneptunian population
NASA Astrophysics Data System (ADS)
Tancredi, G.; et al.
Several duynamical studies point out that the comets of the Jupiter family were originated in a flat belt in the transneptunian region. The Jupiter family is a transient dynamical state between the injection from the outer region and i) the ejection out of the Solar System, ii) the collision against one of its members or iii) the desintegration into a meteor stream. It has been generally assumed that the Jupiter family (JF) is in a steady state; i.e. the injection is balanced by the ejection+collision+ desintegration. Knowing the duration of a typical visit into the Jupiter family and the number of JF comets we could infer the injection rate. The rate of escapes from the transneptunian region and the fraction that reach the Jupiter family can be computed from massive integrations of particles starting in the outer region. An estimate of the required population of transneptunian objects can then be inferred from these numbers. There have been published several estimates of the dynamical parameters mentioned above but the total number of JF comets has been difficult to estimate. Based on a compilation of all the reported nuclear magnitudes of JF comets, we derive the total number of objects in the cometary population. The observed population (~ 200) is a tiny fraction of the total population (several thousands). Compiling all these numbers, we then derive the required trasneptunian population.
NASA Astrophysics Data System (ADS)
Mercier, Lény; Panfili, Jacques; Paillon, Christelle; N'diaye, Awa; Mouillot, David; Darnaude, Audrey M.
2011-05-01
Accurate knowledge of fish age and growth is crucial for species conservation and management of exploited marine stocks. In exploited species, age estimation based on otolith reading is routinely used for building growth curves that are used to implement fishery management models. However, the universal fit of the von Bertalanffy growth function (VBGF) on data from commercial landings can lead to uncertainty in growth parameter inference, preventing accurate comparison of growth-based history traits between fish populations. In the present paper, we used a comprehensive annual sample of wild gilthead seabream ( Sparus aurata L.) in the Gulf of Lions (France, NW Mediterranean) to test a methodology improving growth modelling for exploited fish populations. After validating the timing for otolith annual increment formation for all life stages, a comprehensive set of growth models (including VBGF) were fitted to the obtained age-length data, used as a whole or sub-divided between group 0 individuals and those coming from commercial landings (ages 1-6). Comparisons in growth model accuracy based on Akaike Information Criterion allowed assessment of the best model for each dataset and, when no model correctly fitted the data, a multi-model inference (MMI) based on model averaging was carried out. The results provided evidence that growth parameters inferred with VBGF must be used with high caution. Hence, VBGF turned to be among the less accurate for growth prediction irrespective of the dataset and its fit to the whole population, the juvenile or the adult datasets provided different growth parameters. The best models for growth prediction were the Tanaka model, for group 0 juveniles, and the MMI, for the older fish, confirming that growth differs substantially between juveniles and adults. All asymptotic models failed to correctly describe the growth of adult S. aurata, probably because of the poor representation of old individuals in the dataset. Multi-model inference associated with separate analysis of juveniles and adult fish is then advised to obtain objective estimations of growth parameters when sampling cannot be corrected towards older fish.