van Mantgem, P.J.; Stephenson, N.L.
2005-01-01
1 We assess the use of simple, size-based matrix population models for projecting population trends for six coniferous tree species in the Sierra Nevada, California. We used demographic data from 16 673 trees in 15 permanent plots to create 17 separate time-invariant, density-independent population projection models, and determined differences between trends projected from initial surveys with a 5-year interval and observed data during two subsequent 5-year time steps. 2 We detected departures from the assumptions of the matrix modelling approach in terms of strong growth autocorrelations. We also found evidence of observation errors for measurements of tree growth and, to a more limited degree, recruitment. Loglinear analysis provided evidence of significant temporal variation in demographic rates for only two of the 17 populations. 3 Total population sizes were strongly predicted by model projections, although population dynamics were dominated by carryover from the previous 5-year time step (i.e. there were few cases of recruitment or death). Fractional changes to overall population sizes were less well predicted. Compared with a null model and a simple demographic model lacking size structure, matrix model projections were better able to predict total population sizes, although the differences were not statistically significant. Matrix model projections were also able to predict short-term rates of survival, growth and recruitment. Mortality frequencies were not well predicted. 4 Our results suggest that simple size-structured models can accurately project future short-term changes for some tree populations. However, not all populations were well predicted and these simple models would probably become more inaccurate over longer projection intervals. The predictive ability of these models would also be limited by disturbance or other events that destabilize demographic rates. ?? 2005 British Ecological Society.
Bienvenu, François; Akçay, Erol; Legendre, Stéphane; McCandlish, David M
2017-06-01
Matrix projection models are a central tool in many areas of population biology. In most applications, one starts from the projection matrix to quantify the asymptotic growth rate of the population (the dominant eigenvalue), the stable stage distribution, and the reproductive values (the dominant right and left eigenvectors, respectively). Any primitive projection matrix also has an associated ergodic Markov chain that contains information about the genealogy of the population. In this paper, we show that these facts can be used to specify any matrix population model as a triple consisting of the ergodic Markov matrix, the dominant eigenvalue and one of the corresponding eigenvectors. This decomposition of the projection matrix separates properties associated with lineages from those associated with individuals. It also clarifies the relationships between many quantities commonly used to describe such models, including the relationship between eigenvalue sensitivities and elasticities. We illustrate the utility of such a decomposition by introducing a new method for aggregating classes in a matrix population model to produce a simpler model with a smaller number of classes. Unlike the standard method, our method has the advantage of preserving reproductive values and elasticities. It also has conceptually satisfying properties such as commuting with changes of units. Copyright © 2017 Elsevier Inc. All rights reserved.
EFFECTS OF CHRONIC STRESS ON WILDLIFE POPULATIONS: A POPULATION MODELING APPROACH AND CASE STUDY
This chapter describes a matrix modeling approach to characterize and project risks to wildlife populations subject to chronic stress. Population matrix modeling was used to estimate effects of one class of environmental contaminants, dioxin-like compounds (DLCs), to populations ...
Population-level effects of the mysid, Americamysis bahia, exposed to varying thiobencarb concentrations were estimated using stage-structured matrix models. A deterministic density-independent matrix model estimated the decrease in population growth rate, l, with increas...
Bordehore, Cesar; Fuentes, Verónica L; Segarra, Jose G; Acevedo, Melisa; Canepa, Antonio; Raventós, Josep
2015-01-01
Frequently, population ecology of marine organisms uses a descriptive approach in which their sizes and densities are plotted over time. This approach has limited usefulness for design strategies in management or modelling different scenarios. Population projection matrix models are among the most widely used tools in ecology. Unfortunately, for the majority of pelagic marine organisms, it is difficult to mark individuals and follow them over time to determine their vital rates and built a population projection matrix model. Nevertheless, it is possible to get time-series data to calculate size structure and densities of each size, in order to determine the matrix parameters. This approach is known as a "demographic inverse problem" and it is based on quadratic programming methods, but it has rarely been used on aquatic organisms. We used unpublished field data of a population of cubomedusae Carybdea marsupialis to construct a population projection matrix model and compare two different management strategies to lower population to values before year 2008 when there was no significant interaction with bathers. Those strategies were by direct removal of medusae and by reducing prey. Our results showed that removal of jellyfish from all size classes was more effective than removing only juveniles or adults. When reducing prey, the highest efficiency to lower the C. marsupialis population occurred when prey depletion affected prey of all medusae sizes. Our model fit well with the field data and may serve to design an efficient management strategy or build hypothetical scenarios such as removal of individuals or reducing prey. TThis This sdfsdshis method is applicable to other marine or terrestrial species, for which density and population structure over time are available.
Stage-Structured Population Dynamics of AEDES AEGYPTI
NASA Astrophysics Data System (ADS)
Yusoff, Nuraini; Budin, Harun; Ismail, Salemah
Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.
As part of an ecological risk assessment case study at the Portsmouth naval Shipyard (PNS), Kittery, Maine, USA, the population level effects of lead exposure to purple sea urchin, Arbacia punctulata, were investigated using a stage-classified matrix population model. The model d...
An age-classified projection matrix model has been developed to extrapolate the chronic (28-35d) demographic responses of Americamysis bahia (formerly Mysidopsis bahia) to population-level response. This study was conducted to evaluate the efficacy of this model for predicting t...
Organism and population-level ecological models for ...
Ecological risk assessment typically focuses on animal populations as endpoints for regulatory ecotoxicology. Scientists at USEPA are developing models for animal populations exposed to a wide range of chemicals from pesticides to emerging contaminants. Modeled taxa include aquatic and terrestrial invertebrates, fish, amphibians, and birds, and employ a wide range of methods, from matrix-based projection models to mechanistic bioenergetics models and spatially explicit population models. not applicable
NASA Astrophysics Data System (ADS)
Vanfleteren, Diederik; Van Neck, Dimitri; Bultinck, Patrick; Ayers, Paul W.; Waroquier, Michel
2012-01-01
A previously introduced partitioning of the molecular one-electron density matrix over atoms and bonds [D. Vanfleteren et al., J. Chem. Phys. 133, 231103 (2010)] is investigated in detail. Orthogonal projection operators are used to define atomic subspaces, as in Natural Population Analysis. The orthogonal projection operators are constructed with a recursive scheme. These operators are chemically relevant and obey a stockholder principle, familiar from the Hirshfeld-I partitioning of the electron density. The stockholder principle is extended to density matrices, where the orthogonal projectors are considered to be atomic fractions of the summed contributions. All calculations are performed as matrix manipulations in one-electron Hilbert space. Mathematical proofs and numerical evidence concerning this recursive scheme are provided in the present paper. The advantages associated with the use of these stockholder projection operators are examined with respect to covalent bond orders, bond polarization, and transferability.
Population clustering based on copy number variations detected from next generation sequencing data.
Duan, Junbo; Zhang, Ji-Gang; Wan, Mingxi; Deng, Hong-Wen; Wang, Yu-Ping
2014-08-01
Copy number variations (CNVs) can be used as significant bio-markers and next generation sequencing (NGS) provides a high resolution detection of these CNVs. But how to extract features from CNVs and further apply them to genomic studies such as population clustering have become a big challenge. In this paper, we propose a novel method for population clustering based on CNVs from NGS. First, CNVs are extracted from each sample to form a feature matrix. Then, this feature matrix is decomposed into the source matrix and weight matrix with non-negative matrix factorization (NMF). The source matrix consists of common CNVs that are shared by all the samples from the same group, and the weight matrix indicates the corresponding level of CNVs from each sample. Therefore, using NMF of CNVs one can differentiate samples from different ethnic groups, i.e. population clustering. To validate the approach, we applied it to the analysis of both simulation data and two real data set from the 1000 Genomes Project. The results on simulation data demonstrate that the proposed method can recover the true common CNVs with high quality. The results on the first real data analysis show that the proposed method can cluster two family trio with different ancestries into two ethnic groups and the results on the second real data analysis show that the proposed method can be applied to the whole-genome with large sample size consisting of multiple groups. Both results demonstrate the potential of the proposed method for population clustering.
ERIC Educational Resources Information Center
Keller, Edward L.
This unit, which looks at applications of linear algebra to population studies, is designed to help pupils: (1) understand an application of matrix algebra to the study of populations; (2) see how knowledge of eigen values and eigen vectors is useful in studying powers of matrices; and (3) be briefly exposed to some difficult but interesting…
Calculating second derivatives of population growth rates for ecology and evolution
Shyu, Esther; Caswell, Hal
2014-01-01
1. Second derivatives of the population growth rate measure the curvature of its response to demographic, physiological or environmental parameters. The second derivatives quantify the response of sensitivity results to perturbations, provide a classification of types of selection and provide one way to calculate sensitivities of the stochastic growth rate. 2. Using matrix calculus, we derive the second derivatives of three population growth rate measures: the discrete-time growth rate λ, the continuous-time growth rate r = log λ and the net reproductive rate R0, which measures per-generation growth. 3. We present a suite of formulae for the second derivatives of each growth rate and show how to compute these derivatives with respect to projection matrix entries and to lower-level parameters affecting those matrix entries. 4. We also illustrate several ecological and evolutionary applications for these second derivative calculations with a case study for the tropical herb Calathea ovandensis. PMID:25793101
A framework for studying transient dynamics of population projection matrix models.
Stott, Iain; Townley, Stuart; Hodgson, David James
2011-09-01
Empirical models are central to effective conservation and population management, and should be predictive of real-world dynamics. Available modelling methods are diverse, but analysis usually focuses on long-term dynamics that are unable to describe the complicated short-term time series that can arise even from simple models following ecological disturbances or perturbations. Recent interest in such transient dynamics has led to diverse methodologies for their quantification in density-independent, time-invariant population projection matrix (PPM) models, but the fragmented nature of this literature has stifled the widespread analysis of transients. We review the literature on transient analyses of linear PPM models and synthesise a coherent framework. We promote the use of standardised indices, and categorise indices according to their focus on either convergence times or transient population density, and on either transient bounds or case-specific transient dynamics. We use a large database of empirical PPM models to explore relationships between indices of transient dynamics. This analysis promotes the use of population inertia as a simple, versatile and informative predictor of transient population density, but criticises the utility of established indices of convergence times. Our findings should guide further development of analyses of transient population dynamics using PPMs or other empirical modelling techniques. © 2011 Blackwell Publishing Ltd/CNRS.
Metapopulation dynamics of a Burrowing Owl (Speotyto cunicularia) population in Colorado
R. Scott Lutz; David L. Plumpton
1997-01-01
We banded 555 Burrowing Owls (Speotyto cunicularia) either as adults (after hatch year; AHY) or as young of the year (hatch year; HY) and used capture-recapture models to estimate survival and recapture rates and Leslie matrix models to project population growth over time at the 6,900-ha Rocky Mountain Arsenal National Wildlife Refuge (RMANWR),...
Caujapé-Castells, Juli; Sabbagh, Izzat; Castellano, José J; Ramos, Rafael; Henríquez, Víctor; Quintana, Francisco M; Medina, Dailos A; Toledo, Javier; Ramírez, Fernando; Rodríguez, Juan F
2013-05-01
Transformer-4 version 2.0.1 (T4) is a multi-platform freeware programmed in java that can transform a genotype matrix in Excel or XML format into the input formats of one or several of the most commonly used population genetic software, for any possible combination of the populations that the matrix contains. T4 also allows the users to (i) draw allozyme gel interpretations for any number of diploid individuals, and then generate a genotype matrix ready to be used by T4; and (ii) produce basic reports about the data in the matrices. Furthermore, T4 is the only way to optionally submit 'genetic diversity digests' for publication in the Demiurge online information system (http://www.demiurge-project.org). Each such digest undergoes peer-review, and it consists of a geo-referenced data matrix in the tfm4 format plus any ancillary document or hyperlink that the digest authors see fit to include. The complementarity between T4 and Demiurge facilitates a free, safe, permanent, and standardized data archival and analysis system for researchers, and may also be a convenient resource for scientific journals, public administrations, or higher educators. T4 and its converters are freely available (at, respectively, http://www.demiurge-project.org/download_t4 and http://www.demiurge-project.org/converterstore) upon registration in the Demiurge information system (http://demiurge-project.org/register). Users have to click on the link provided on an account validation email, and accept Demiurge's terms of use (see http://www.demiurge-project.org/termsofuse). A thorough user's guide is available within T4. A 3-min promotional video about T4 and Demiurge can be seen at http://vimeo.com/29828406. © 2013 Blackwell Publishing Ltd.
S. G. Field; A. W. Schoettle; J. G. Klutsch; S. J. Tavener; M. F. Antolin
2012-01-01
Matrix population models have long been used to examine and predict the fate of threatened populations. However, the majority of these efforts concentrate on long-term equilibrium dynamics of linear systems and their underlying assumptions and, therefore, omit the analysis of transience. Since management decisions are typically concerned with the short term (
Development and application of a density dependent matrix ...
Ranging along the Atlantic coast from US Florida to the Maritime Provinces of Canada, the Atlantic killifish (Fundulus heteroclitus) is an important and well-studied model organism for understanding the effects of pollutants and other stressors in estuarine and marine ecosystems. Matrix population models are useful tools for ecological risk assessment because they integrate effects across the life cycle, provide a linkage between endpoints observed in the individual and ecological risk to the population as a whole, and project outcomes for many generations in the future. We developed a density dependent matrix population model for Atlantic killifish by modifying a model developed for fathead minnow (Pimephales promelas) that has proved to be extremely useful, e.g. to incorporate data from laboratory studies and project effects of endocrine disrupting chemicals. We developed a size-structured model (as opposed to one that is based upon developmental stages or age class structure) so that we could readily incorporate output from a Dynamic Energy Budget (DEB) model, currently under development. Due to a lack of sufficient data to accurately define killifish responses to density dependence, we tested a number of scenarios realistic for other fish species in order to demonstrate the outcome of including this ecologically important factor. We applied the model using published data for killifish exposed to dioxin-like compounds, and compared our results to those using
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shakib-Manesh, T.E.; Hirvonen, K.O.; Jalava, K.J.
2014-11-15
Environmental impacts of small scale projects are often assessed poorly, or not assessed at all. This paper examines the usability of the Rapid Impact Assessment Matrix (RIAM) as a tool to prioritize project proposals for small scale water restoration projects in relation to proposals' potential to improve the environment. The RIAM scoring system was used to assess and rank the proposals based on their environmental impacts, the costs of the projects to repair the harmful impacts, and the size of human population living around the sites. A four-member assessment group (The expert panel) gave the RIAM-scores to the proposals. Themore » assumed impacts of the studied projects at the Eastern Finland water systems were divided into the ecological and social impacts. The more detailed assessment categories of the ecological impacts in this study were impacts on landscape, natural state, and limnology. The social impact categories were impacts to recreational use of the area, fishing, industry, population, and economy. These impacts were scored according to their geographical and social significance, their magnitude of change, their character, permanence, reversibility, and cumulativeness. The RIAM method proved to be an appropriate and recommendable method for the small-scale assessment and prioritizing of project proposals. If the assessments are well documented, the RIAM can be a method for easy assessing and comparison of the various kinds of projects. In the studied project proposals there were no big surprises in the results: the best ranks were received by the projects, which were assumed to return watersheds toward their original state.« less
Climate change threatens polar bear populations: a stochastic demographic analysis.
Hunter, Christine M; Caswell, Hal; Runge, Michael C; Regehr, Eric V; Amstrup, Steve C; Stirling, Ian
2010-10-01
The polar bear (Ursus maritimus) depends on sea ice for feeding, breeding, and movement. Significant reductions in Arctic sea ice are forecast to continue because of climate warming. We evaluated the impacts of climate change on polar bears in the southern Beaufort Sea by means of a demographic analysis, combining deterministic, stochastic, environment-dependent matrix population models with forecasts of future sea ice conditions from IPCC general circulation models (GCMs). The matrix population models classified individuals by age and breeding status; mothers and dependent cubs were treated as units. Parameter estimates were obtained from a capture-recapture study conducted from 2001 to 2006. Candidate statistical models allowed vital rates to vary with time and as functions of a sea ice covariate. Model averaging was used to produce the vital rate estimates, and a parametric bootstrap procedure was used to quantify model selection and parameter estimation uncertainty. Deterministic models projected population growth in years with more extensive ice coverage (2001-2003) and population decline in years with less ice coverage (2004-2005). LTRE (life table response experiment) analysis showed that the reduction in lambda in years with low sea ice was due primarily to reduced adult female survival, and secondarily to reduced breeding. A stochastic model with two environmental states, good and poor sea ice conditions, projected a declining stochastic growth rate, log lambdas, as the frequency of poor ice years increased. The observed frequency of poor ice years since 1979 would imply log lambdas approximately - 0.01, which agrees with available (albeit crude) observations of population size. The stochastic model was linked to a set of 10 GCMs compiled by the IPCC; the models were chosen for their ability to reproduce historical observations of sea ice and were forced with "business as usual" (A1B) greenhouse gas emissions. The resulting stochastic population projections showed drastic declines in the polar bear population by the end of the 21st century. These projections were instrumental in the decision to list the polar bear as a threatened species under the U.S. Endangered Species Act.
Climate change threatens polar bear populations: A stochastic demographic analysis
Hunter, C.M.; Caswell, H.; Runge, M.C.; Regehr, E.V.; Amstrup, Steven C.; Stirling, I.
2010-01-01
The polar bear (Ursus maritimus) depends on sea ice for feeding, breeding, and movement. Significant reductions in Arctic sea ice are forecast to continue because of climate warming. We evaluated the impacts of climate change on polar bears in the southern Beaufort Sea by means of a demographic analysis, combining deterministic, stochastic, environment-dependent matrix population models with forecasts of future sea ice conditions from IPCC general circulation models (GCMs). The matrix population models classified individuals by age and breeding status; mothers and dependent cubs were treated as units. Parameter estimates were obtained from a capture-recapture study conducted from 2001 to 2006. Candidate statistical models allowed vital rates to vary with time and as functions of a sea ice covariate. Model averaging was used to produce the vital rate estimates, and a parametric bootstrap procedure was used to quantify model selection and parameter estimation uncertainty. Deterministic models projected population growth in years with more extensive ice coverage (2001-2003) and population decline in years with less ice coverage (2004-2005). LTRE (life table response experiment) analysis showed that the reduction in ?? in years with low sea ice was due primarily to reduced adult female survival, and secondarily to reduced breeding. A stochastic model with two environmental states, good and poor sea ice conditions, projected a declining stochastic growth rate, log ??s, as the frequency of poor ice years increased. The observed frequency of poor ice years since 1979 would imply log ??s ' - 0.01, which agrees with available (albeit crude) observations of population size. The stochastic model was linked to a set of 10 GCMs compiled by the IPCC; the models were chosen for their ability to reproduce historical observations of sea ice and were forced with "business as usual" (A1B) greenhouse gas emissions. The resulting stochastic population projections showed drastic declines in the polar bear population by the end of the 21st century. These projections were instrumental in the decision to list the polar bear as a threatened species under the U.S. Endangered Species Act. ?? 2010 by the Ecological Society of America.
Wiman, Nik G.; Walton, Vaughn M.; Dalton, Daniel T.; Anfora, Gianfranco; Burrack, Hannah J.; Chiu, Joanna C.; Daane, Kent M.; Grassi, Alberto; Miller, Betsey; Tochen, Samantha; Wang, Xingeng; Ioriatti, Claudio
2014-01-01
Temperature-dependent fecundity and survival data was integrated into a matrix population model to describe relative Drosophila suzukii Matsumura (Diptera: Drosophilidae) population increase and age structure based on environmental conditions. This novel modification of the classic Leslie matrix population model is presented as a way to examine how insect populations interact with the environment, and has application as a predictor of population density. For D. suzukii, we examined model implications for pest pressure on crops. As case studies, we examined model predictions in three small fruit production regions in the United States (US) and one in Italy. These production regions have distinctly different climates. In general, patterns of adult D. suzukii trap activity broadly mimicked seasonal population levels predicted by the model using only temperature data. Age structure of estimated populations suggest that trap and fruit infestation data are of limited value and are insufficient for model validation. Thus, we suggest alternative experiments for validation. The model is advantageous in that it provides stage-specific population estimation, which can potentially guide management strategies and provide unique opportunities to simulate stage-specific management effects such as insecticide applications or the effect of biological control on a specific life-stage. The two factors that drive initiation of the model are suitable temperatures (biofix) and availability of a suitable host medium (fruit). Although there are many factors affecting population dynamics of D. suzukii in the field, temperature-dependent survival and reproduction are believed to be the main drivers for D. suzukii populations. PMID:25192013
COMADRE: a global data base of animal demography.
Salguero-Gómez, Roberto; Jones, Owen R; Archer, C Ruth; Bein, Christoph; de Buhr, Hendrik; Farack, Claudia; Gottschalk, Fränce; Hartmann, Alexander; Henning, Anne; Hoppe, Gabriel; Römer, Gesa; Ruoff, Tara; Sommer, Veronika; Wille, Julia; Voigt, Jakob; Zeh, Stefan; Vieregg, Dirk; Buckley, Yvonne M; Che-Castaldo, Judy; Hodgson, David; Scheuerlein, Alexander; Caswell, Hal; Vaupel, James W
2016-03-01
The open-data scientific philosophy is being widely adopted and proving to promote considerable progress in ecology and evolution. Open-data global data bases now exist on animal migration, species distribution, conservation status, etc. However, a gap exists for data on population dynamics spanning the rich diversity of the animal kingdom world-wide. This information is fundamental to our understanding of the conditions that have shaped variation in animal life histories and their relationships with the environment, as well as the determinants of invasion and extinction. Matrix population models (MPMs) are among the most widely used demographic tools by animal ecologists. MPMs project population dynamics based on the reproduction, survival and development of individuals in a population over their life cycle. The outputs from MPMs have direct biological interpretations, facilitating comparisons among animal species as different as Caenorhabditis elegans, Loxodonta africana and Homo sapiens. Thousands of animal demographic records exist in the form of MPMs, but they are dispersed throughout the literature, rendering comparative analyses difficult. Here, we introduce the COMADRE Animal Matrix Database, an open-data online repository, which in its version 1.0.0 contains data on 345 species world-wide, from 402 studies with a total of 1625 population projection matrices. COMADRE also contains ancillary information (e.g. ecoregion, taxonomy, biogeography, etc.) that facilitates interpretation of the numerous demographic metrics that can be derived from its MPMs. We provide R code to some of these examples. We introduce the COMADRE Animal Matrix Database, a resource for animal demography. Its open-data nature, together with its ancillary information, will facilitate comparative analysis, as will the growing availability of databases focusing on other aspects of the rich animal diversity, and tools to query and combine them. Through future frequent updates of COMADRE, and its integration with other online resources, we encourage animal ecologists to tackle global ecological and evolutionary questions with unprecedented sample size. © 2016 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Ofori, Benjamin Y; Stow, Adam J; Baumgartner, John B; Beaumont, Linda J
2017-01-01
The ability of species to track their climate niche is dependent on their dispersal potential and the connectivity of the landscape matrix linking current and future suitable habitat. However, studies modeling climate-driven range shifts rarely address the movement of species across landscapes realistically, often assuming "unlimited" or "no" dispersal. Here, we incorporate dispersal rate and landscape connectivity with a species distribution model (Maxent) to assess the extent to which the Cunningham's skink (Egernia cunninghami) may be capable of tracking spatial shifts in suitable habitat as climate changes. Our model was projected onto four contrasting, but equally plausible, scenarios describing futures that are (relative to now) hot/wet, warm/dry, hot/with similar precipitation and warm/wet, at six time horizons with decadal intervals (2020-2070) and at two spatial resolutions: 1 km and 250 m. The size of suitable habitat was projected to decline 23-63% at 1 km and 26-64% at 250 m, by 2070. Combining Maxent output with the dispersal rate of the species and connectivity of the intervening landscape matrix showed that most current populations in regions projected to become unsuitable in the medium to long term, will be unable to shift the distance necessary to reach suitable habitat. In particular, numerous populations currently inhabiting the trailing edge of the species' range are highly unlikely to be able to disperse fast enough to track climate change. Unless these populations are capable of adaptation they are likely to be extirpated. We note, however, that the core of the species distribution remains suitable across the broad spectrum of climate scenarios considered. Our findings highlight challenges faced by philopatric species and the importance of adaptation for the persistence of peripheral populations under climate change.
Basal Ganglia Disorders Associated with Imbalances in the Striatal Striosome and Matrix Compartments
Crittenden, Jill R.; Graybiel, Ann M.
2011-01-01
The striatum is composed principally of GABAergic, medium spiny striatal projection neurons (MSNs) that can be categorized based on their gene expression, electrophysiological profiles, and input–output circuits. Major subdivisions of MSN populations include (1) those in ventromedial and dorsolateral striatal regions, (2) those giving rise to the direct and indirect pathways, and (3) those that lie in the striosome and matrix compartments. The first two classificatory schemes have enabled advances in understanding of how basal ganglia circuits contribute to disease. However, despite the large number of molecules that are differentially expressed in the striosomes or the extra-striosomal matrix, and the evidence that these compartments have different input–output connections, our understanding of how this compartmentalization contributes to striatal function is still not clear. A broad view is that the matrix contains the direct and indirect pathway MSNs that form parts of sensorimotor and associative circuits, whereas striosomes contain MSNs that receive input from parts of limbic cortex and project directly or indirectly to the dopamine-containing neurons of the substantia nigra, pars compacta. Striosomes are widely distributed within the striatum and are thought to exert global, as well as local, influences on striatal processing by exchanging information with the surrounding matrix, including through interneurons that send processes into both compartments. It has been suggested that striosomes exert and maintain limbic control over behaviors driven by surrounding sensorimotor and associative parts of the striatal matrix. Consistent with this possibility, imbalances between striosome and matrix functions have been reported in relation to neurological disorders, including Huntington’s disease, L-DOPA-induced dyskinesias, dystonia, and drug addiction. Here, we consider how signaling imbalances between the striosomes and matrix might relate to symptomatology in these disorders. PMID:21941467
Detection of density dependence requires density manipulations and calculation of lambda.
Fowler, N L; Overath, R Deborah; Pease, Craig M
2006-03-01
To investigate density-dependent population regulation in the perennial bunchgrass Bouteloua rigidiseta, we experimentally manipulated density by removing adults or adding seeds to replicate quadrats in a natural population for three annual intervals. We monitored the adjacent control quadrats for 14 annual intervals. We constructed a population projection matrix for each quadrat in each interval, calculated lambda, and did a life table response experiment (LTRE) analysis. We tested the effects of density upon lambda by comparing experimental and control quadrats, and by an analysis of the 15-year observational data set. As measured by effects on lambda and on N(t+1/Nt in the experimental treatments, negative density dependence was strong: the population was being effectively regulated. The relative contributions of different matrix elements to treatment effect on lambda differed among years and treatments; overall the pattern was one of small contributions by many different life cycle stages. In contrast, density dependence could not be detected using only the observational (control quadrats) data, even though this data set covered a much longer time span. Nor did experimental effects on separate matrix elements reach statistical significance. These results suggest that ecologists may fail to detect density dependence when it is present if they have only descriptive, not experimental, data, do not have data for the entire life cycle, or analyze life cycle components separately.
Fortini, Lucas B.; Cropper, Wendell P.; Zarin, Daniel J.
2015-01-01
At the Amazon estuary, the oldest logging frontier in the Amazon, no studies have comprehensively explored the potential long-term population and yield consequences of multiple timber harvests over time. Matrix population modeling is one way to simulate long-term impacts of tree harvests, but this approach has often ignored common impacts of tree harvests including incidental damage, changes in post-harvest demography, shifts in the distribution of merchantable trees, and shifts in stand composition. We designed a matrix-based forest management model that incorporates these harvest-related impacts so resulting simulations reflect forest stand dynamics under repeated timber harvests as well as the realities of local smallholder timber management systems. Using a wide range of values for management criteria (e.g., length of cutting cycle, minimum cut diameter), we projected the long-term population dynamics and yields of hundreds of timber management regimes in the Amazon estuary, where small-scale, unmechanized logging is an important economic activity. These results were then compared to find optimal stand-level and species-specific sustainable timber management (STM) regimes using a set of timber yield and population growth indicators. Prospects for STM in Amazonian tidal floodplain forests are better than for many other tropical forests. However, generally high stock recovery rates between harvests are due to the comparatively high projected mean annualized yields from fast-growing species that effectively counterbalance the projected yield declines from other species. For Amazonian tidal floodplain forests, national management guidelines provide neither the highest yields nor the highest sustained population growth for species under management. Our research shows that management guidelines specific to a region’s ecological settings can be further refined to consider differences in species demographic responses to repeated harvests. In principle, such fine-tuned management guidelines could make management more attractive, thus bridging the currently prevalent gap between tropical timber management practice and regulation. PMID:26322896
Fortini, Lucas B.; Cropper, Wendell P.; Zarin, Daniel J.
2015-01-01
At the Amazon estuary, the oldest logging frontier in the Amazon, no studies have comprehensively explored the potential long-term population and yield consequences of multiple timber harvests over time. Matrix population modeling is one way to simulate long-term impacts of tree harvests, but this approach has often ignored common impacts of tree harvests including incidental damage, changes in post-harvest demography, shifts in the distribution of merchantable trees, and shifts in stand composition. We designed a matrix-based forest management model that incorporates these harvest-related impacts so resulting simulations reflect forest stand dynamics under repeated timber harvests as well as the realities of local smallholder timber management systems. Using a wide range of values for management criteria (e.g., length of cutting cycle, minimum cut diameter), we projected the long-term population dynamics and yields of hundreds of timber management regimes in the Amazon estuary, where small-scale, unmechanized logging is an important economic activity. These results were then compared to find optimal stand-level and species-specific sustainable timber management (STM) regimes using a set of timber yield and population growth indicators. Prospects for STM in Amazonian tidal floodplain forests are better than for many other tropical forests. However, generally high stock recovery rates between harvests are due to the comparatively high projected mean annualized yields from fast-growing species that effectively counterbalance the projected yield declines from other species. For Amazonian tidal floodplain forests, national management guidelines provide neither the highest yields nor the highest sustained population growth for species under management. Our research shows that management guidelines specific to a region’s ecological settings can be further refined to consider differences in species demographic responses to repeated harvests. In principle, such fine-tuned management guidelines could make management more attractive, thus bridging the currently prevalent gap between tropical timber management practice and regulation.
Optimized Projection Matrix for Compressive Sensing
NASA Astrophysics Data System (ADS)
Xu, Jianping; Pi, Yiming; Cao, Zongjie
2010-12-01
Compressive sensing (CS) is mainly concerned with low-coherence pairs, since the number of samples needed to recover the signal is proportional to the mutual coherence between projection matrix and sparsifying matrix. Until now, papers on CS always assume the projection matrix to be a random matrix. In this paper, aiming at minimizing the mutual coherence, a method is proposed to optimize the projection matrix. This method is based on equiangular tight frame (ETF) design because an ETF has minimum coherence. It is impossible to solve the problem exactly because of the complexity. Therefore, an alternating minimization type method is used to find a feasible solution. The optimally designed projection matrix can further reduce the necessary number of samples for recovery or improve the recovery accuracy. The proposed method demonstrates better performance than conventional optimization methods, which brings benefits to both basis pursuit and orthogonal matching pursuit.
Park, A W; Vandekerkhove, J; Michalakis, Y
2014-08-01
Like many organisms, individuals of the freshwater ostracod species Eucypris virens exhibit either obligate sexual or asexual reproductive modes. Both types of individual routinely co-occur, including in the same temporary freshwater pond (their natural habitat in which they undergo seasonal diapause). Given the well-known two-fold cost of sex, this begs the question of how sexually reproducing individuals are able to coexist with their asexual counterparts in spite of such overwhelming costs. Environmental stochasticity in the form of 'false dawn' inundations (where the first hydration is ephemeral and causes loss of early hatching individuals) may provide an advantage to the sexual subpopulation, which shows greater variation in hatching times following inundation. We explore the potential role of environmental stochasticity in this system using life-history data analysis, climate data, and matrix projection models. In the absence of environmental stochasticity, the population growth rate is significantly lower in sexual subpopulations. Climate data reveal that 'false dawn' inundations are common. Using matrix projection modelling with and without environmental stochasticity, we demonstrate that this phenomenon can restore appreciable balance to the system, in terms of population growth rates. This provides support for the role of environmental stochasticity in helping to explain the maintenance of sex and the occurrence of geographical parthenogenesis. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Effects of uncertainty and variability on population declines and IUCN Red List classifications.
Rueda-Cediel, Pamela; Anderson, Kurt E; Regan, Tracey J; Regan, Helen M
2018-01-22
The International Union for Conservation of Nature (IUCN) Red List Categories and Criteria is a quantitative framework for classifying species according to extinction risk. Population models may be used to estimate extinction risk or population declines. Uncertainty and variability arise in threat classifications through measurement and process error in empirical data and uncertainty in the models used to estimate extinction risk and population declines. Furthermore, species traits are known to affect extinction risk. We investigated the effects of measurement and process error, model type, population growth rate, and age at first reproduction on the reliability of risk classifications based on projected population declines on IUCN Red List classifications. We used an age-structured population model to simulate true population trajectories with different growth rates, reproductive ages and levels of variation, and subjected them to measurement error. We evaluated the ability of scalar and matrix models parameterized with these simulated time series to accurately capture the IUCN Red List classification generated with true population declines. Under all levels of measurement error tested and low process error, classifications were reasonably accurate; scalar and matrix models yielded roughly the same rate of misclassifications, but the distribution of errors differed; matrix models led to greater overestimation of extinction risk than underestimations; process error tended to contribute to misclassifications to a greater extent than measurement error; and more misclassifications occurred for fast, rather than slow, life histories. These results indicate that classifications of highly threatened taxa (i.e., taxa with low growth rates) under criterion A are more likely to be reliable than for less threatened taxa when assessed with population models. Greater scrutiny needs to be placed on data used to parameterize population models for species with high growth rates, particularly when available evidence indicates a potential transition to higher risk categories. © 2018 Society for Conservation Biology.
Ability of matrix models to explain the past and predict the future of plant populations.
McEachern, Kathryn; Crone, Elizabeth E.; Ellis, Martha M.; Morris, William F.; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlen, Johan; Kaye, Thomas N.; Knight, Tiffany M.; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer I.; Doak, Daniel F.; Ganesan, Rengaian; Thorpe, Andrea S.; Menges, Eric S.
2013-01-01
Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models.
Ability of matrix models to explain the past and predict the future of plant populations.
Crone, Elizabeth E; Ellis, Martha M; Morris, William F; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlén, Johan; Kaye, Thomas N; Knight, Tiffany M; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer L; Doak, Daniel F; Ganesan, Rengaian; McEachern, Kathyrn; Thorpe, Andrea S; Menges, Eric S
2013-10-01
Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models. © 2013 Society for Conservation Biology.
Terrestrial population models for ecological risk assessment: A state-of-the-art review
Emlen, J.M.
1989-01-01
Few attempts have been made to formulate models for predicting impacts of xenobiotic chemicals on wildlife populations. However, considerable effort has been invested in wildlife optimal exploitation models. Because death from intoxication has a similar effect on population dynamics as death by harvesting, these management models are applicable to ecological risk assessment. An underlying Leslie-matrix bookkeeping formulation is widely applicable to vertebrate wildlife populations. Unfortunately, however, the various submodels that track birth, death, and dispersal rates as functions of the physical, chemical, and biotic environment are by their nature almost inevitably highly species- and locale-specific. Short-term prediction of one-time chemical applications requires only information on mortality before and after contamination. In such cases a simple matrix formulation may be adequate for risk assessment. But generally, risk must be projected over periods of a generation or more. This precludes generic protocols for risk assessment and also the ready and inexpensive predictions of a chemical's influence on a given population. When designing and applying models for ecological risk assessment at the population level, the endpoints (output) of concern must be carefully and rigorously defined. The most easily accessible and appropriate endpoints are (1) pseudoextinction (the frequency or probability of a population falling below a prespecified density), and (2) temporal mean population density. Spatial and temporal extent of predicted changes must be clearly specified a priori to avoid apparent contradictions and confusion.
Sakaris, Peter C; Irwin, Elise R
2010-03-01
We developed stochastic matrix models to evaluate the effects of hydrologic alteration and variable mortality on the population dynamics of a lotic fish in a regulated river system. Models were applied to a representative lotic fish species, the flathead catfish (Pylodictis olivaris), for which two populations were examined: a native population from a regulated reach of the Coosa River (Alabama, USA) and an introduced population from an unregulated section of the Ocmulgee River (Georgia, USA). Size-classified matrix models were constructed for both populations, and residuals from catch-curve regressions were used as indices of year class strength (i.e., recruitment). A multiple regression model indicated that recruitment of flathead catfish in the Coosa River was positively related to the frequency of spring pulses between 283 and 566 m3/s. For the Ocmulgee River population, multiple regression models indicated that year class strength was negatively related to mean March discharge and positively related to June low flow. When the Coosa population was modeled to experience five consecutive years of favorable hydrologic conditions during a 50-year projection period, it exhibited a substantial spike in size and increased at an overall 0.2% annual rate. When modeled to experience five years of unfavorable hydrologic conditions, the Coosa population initially exhibited a decrease in size but later stabilized and increased at a 0.4% annual rate following the decline. When the Ocmulgee River population was modeled to experience five years of favorable conditions, it exhibited a substantial spike in size and increased at an overall 0.4% annual rate. After the Ocmulgee population experienced five years of unfavorable conditions, a sharp decline in population size was predicted. However, the population quickly recovered, with population size increasing at a 0.3% annual rate following the decline. In general, stochastic population growth in the Ocmulgee River was more erratic and variable than population growth in the Coosa River. We encourage ecologists to develop similar models for other lotic species, particularly in regulated river systems. Successful management of fish populations in regulated systems requires that we are able to predict how hydrology affects recruitment and will ultimately influence the population dynamics of fishes.
Schleiff, Meike; Kumapley, Richard; Freeman, Paul A; Gupta, Sundeep; Rassekh, Bahie M; Perry, Henry B
2017-06-01
The degree to which investments in health programs improve the health of the most disadvantaged segments of the population-where utilization of health services and health status is often the worst-is a growing concern throughout the world. Therefore, questions about the degree to which community-based primary health care (CBPHC) can or actually does improve utilization of health services and the health status of the most disadvantaged children in a population is an important one. Using a database containing information about the assessment of 548 interventions, projects or programs (referred to collectively as projects) that used CBPHC to improve child health, we extracted evidence related to equity from a sub-set of 42 projects, identified through a multi-step process, that included an equity analysis. We organized our findings conceptually around a logical framework matrix. Our analysis indicates that these CBPHC projects, all of which implemented child health interventions, achieved equitable effects. The vast majority (87%) of the 82 equity measurements carried out and reported for these 42 projects demonstrated "pro-equitable" or "equitable" effects, meaning that the project's equity indicator(s) improved to the same degree or more in the disadvantaged segments of the project population as in the more advantaged segments. Most (78%) of the all the measured equity effects were "pro-equitable," meaning that the equity criterion improved more in the most disadvantaged segment of the project population than in the other segments of the population. Based on the observation that CBPHC projects commonly provide services that are readily accessible to the entire project population and that even often reach down to all households, such projects are inherently likely to be more equitable than projects that strengthen services only at facilities, where utilization diminishes greatly with one's distance away. The decentralization of services and attention to and tracking of metrics across all phases of project implementation with attention to the underserved, as can be done in CBPHC projects, are important for reducing inequities in countries with a high burden of child mortality. Strengthening CBPHC is a necessary strategy for reducing inequities in child health and for achieving universal coverage of essential services for children.
Sparse PCA with Oracle Property.
Gu, Quanquan; Wang, Zhaoran; Liu, Han
In this paper, we study the estimation of the k -dimensional sparse principal subspace of covariance matrix Σ in the high-dimensional setting. We aim to recover the oracle principal subspace solution, i.e., the principal subspace estimator obtained assuming the true support is known a priori. To this end, we propose a family of estimators based on the semidefinite relaxation of sparse PCA with novel regularizations. In particular, under a weak assumption on the magnitude of the population projection matrix, one estimator within this family exactly recovers the true support with high probability, has exact rank- k , and attains a [Formula: see text] statistical rate of convergence with s being the subspace sparsity level and n the sample size. Compared to existing support recovery results for sparse PCA, our approach does not hinge on the spiked covariance model or the limited correlation condition. As a complement to the first estimator that enjoys the oracle property, we prove that, another estimator within the family achieves a sharper statistical rate of convergence than the standard semidefinite relaxation of sparse PCA, even when the previous assumption on the magnitude of the projection matrix is violated. We validate the theoretical results by numerical experiments on synthetic datasets.
Sparse PCA with Oracle Property
Gu, Quanquan; Wang, Zhaoran; Liu, Han
2014-01-01
In this paper, we study the estimation of the k-dimensional sparse principal subspace of covariance matrix Σ in the high-dimensional setting. We aim to recover the oracle principal subspace solution, i.e., the principal subspace estimator obtained assuming the true support is known a priori. To this end, we propose a family of estimators based on the semidefinite relaxation of sparse PCA with novel regularizations. In particular, under a weak assumption on the magnitude of the population projection matrix, one estimator within this family exactly recovers the true support with high probability, has exact rank-k, and attains a s/n statistical rate of convergence with s being the subspace sparsity level and n the sample size. Compared to existing support recovery results for sparse PCA, our approach does not hinge on the spiked covariance model or the limited correlation condition. As a complement to the first estimator that enjoys the oracle property, we prove that, another estimator within the family achieves a sharper statistical rate of convergence than the standard semidefinite relaxation of sparse PCA, even when the previous assumption on the magnitude of the projection matrix is violated. We validate the theoretical results by numerical experiments on synthetic datasets. PMID:25684971
The paradox of managing a project-oriented matrix: establishing coherence within chaos.
Greiner, L E; Schein, V E
1981-01-01
Projects that require the flexible coordination of multidisciplinary teams have tended to adopt a matrix structure to accomplish complex tasks. Yet these project-oriented matrix structures themselves require careful coordination if they are to realize the objectives set for them. The authors identify the basic organizational questions that project-oriented matrix organizations must face. They examine the relationship between responsibility and authority; the tradeoffs between economic efficiency and the technical quality of the work produced; and the sensitive issues of managing individualistic, highly trained professionals while also maintaining group cohesiveness.
Stow, Adam J.; Baumgartner, John B.; Beaumont, Linda J.
2017-01-01
The ability of species to track their climate niche is dependent on their dispersal potential and the connectivity of the landscape matrix linking current and future suitable habitat. However, studies modeling climate-driven range shifts rarely address the movement of species across landscapes realistically, often assuming “unlimited” or “no” dispersal. Here, we incorporate dispersal rate and landscape connectivity with a species distribution model (Maxent) to assess the extent to which the Cunningham’s skink (Egernia cunninghami) may be capable of tracking spatial shifts in suitable habitat as climate changes. Our model was projected onto four contrasting, but equally plausible, scenarios describing futures that are (relative to now) hot/wet, warm/dry, hot/with similar precipitation and warm/wet, at six time horizons with decadal intervals (2020–2070) and at two spatial resolutions: 1 km and 250 m. The size of suitable habitat was projected to decline 23–63% at 1 km and 26–64% at 250 m, by 2070. Combining Maxent output with the dispersal rate of the species and connectivity of the intervening landscape matrix showed that most current populations in regions projected to become unsuitable in the medium to long term, will be unable to shift the distance necessary to reach suitable habitat. In particular, numerous populations currently inhabiting the trailing edge of the species’ range are highly unlikely to be able to disperse fast enough to track climate change. Unless these populations are capable of adaptation they are likely to be extirpated. We note, however, that the core of the species distribution remains suitable across the broad spectrum of climate scenarios considered. Our findings highlight challenges faced by philopatric species and the importance of adaptation for the persistence of peripheral populations under climate change. PMID:28873398
Haridas, C V; Eager, Eric Alan; Rebarber, Richard; Tenhumberg, Brigitte
2014-11-01
When vital rates depend on population structure (e.g., relative frequencies of males or females), an important question is how the long-term population growth rate λ responds to changes in rates. For instance, availability of mates may depend on the sex ratio of the population and hence reproductive rates could be frequency-dependent. In such cases change in any vital rate alters the structure, which in turn, affect frequency-dependent rates. We show that the elasticity of λ to a rate is the sum of (i) the effect of the linear change in the rate and (ii) the effect of nonlinear changes in frequency-dependent rates. The first component is always positive and is the classical elasticity in density-independent models obtained directly from the population projection matrix. The second component can be positive or negative and is absent in density-independent models. We explicitly express each component of the elasticity as a function of vital rates, eigenvalues and eigenvectors of the population projection matrix. We apply this result to a two-sex model, where male and female fertilities depend on adult sex ratio α (ratio of females to males) and the mating system (e.g., polygyny) through a harmonic mating function. We show that the nonlinear component of elasticity to a survival rate is negligible only when the average number of mates (per male) is close to α. In a strictly monogamous species, elasticity to female survival is larger than elasticity to male survival when α<1 (less females). In a polygynous species, elasticity to female survival can be larger than that of male survival even when sex ratio is female biased. Our results show how demography and mating system together determine the response to selection on sex-specific vital rates. Copyright © 2014 Elsevier Inc. All rights reserved.
Ghanbari, Yasser; Smith, Alex R.; Schultz, Robert T.; Verma, Ragini
2014-01-01
Diffusion tensor imaging (DTI) offers rich insights into the physical characteristics of white matter (WM) fiber tracts and their development in the brain, facilitating a network representation of brain’s traffic pathways. Such a network representation of brain connectivity has provided a novel means of investigating brain changes arising from pathology, development or aging. The high dimensionality of these connectivity networks necessitates the development of methods that identify the connectivity building blocks or sub-network components that characterize the underlying variation in the population. In addition, the projection of the subject networks into the basis set provides a low dimensional representation of it, that teases apart different sources of variation in the sample, facilitating variation-specific statistical analysis. We propose a unified framework of non-negative matrix factorization and graph embedding for learning sub-network patterns of connectivity by their projective non-negative decomposition into a reconstructive basis set, as well as, additional basis sets representing variational sources in the population like age and pathology. The proposed framework is applied to a study of diffusion-based connectivity in subjects with autism that shows localized sparse sub-networks which mostly capture the changes related to pathology and developmental variations. PMID:25037933
Fast iterative image reconstruction using sparse matrix factorization with GPU acceleration
NASA Astrophysics Data System (ADS)
Zhou, Jian; Qi, Jinyi
2011-03-01
Statistically based iterative approaches for image reconstruction have gained much attention in medical imaging. An accurate system matrix that defines the mapping from the image space to the data space is the key to high-resolution image reconstruction. However, an accurate system matrix is often associated with high computational cost and huge storage requirement. Here we present a method to address this problem by using sparse matrix factorization and parallel computing on a graphic processing unit (GPU).We factor the accurate system matrix into three sparse matrices: a sinogram blurring matrix, a geometric projection matrix, and an image blurring matrix. The sinogram blurring matrix models the detector response. The geometric projection matrix is based on a simple line integral model. The image blurring matrix is to compensate for the line-of-response (LOR) degradation due to the simplified geometric projection matrix. The geometric projection matrix is precomputed, while the sinogram and image blurring matrices are estimated by minimizing the difference between the factored system matrix and the original system matrix. The resulting factored system matrix has much less number of nonzero elements than the original system matrix and thus substantially reduces the storage and computation cost. The smaller size also allows an efficient implement of the forward and back projectors on GPUs, which have limited amount of memory. Our simulation studies show that the proposed method can dramatically reduce the computation cost of high-resolution iterative image reconstruction. The proposed technique is applicable to image reconstruction for different imaging modalities, including x-ray CT, PET, and SPECT.
Project - line interaction implementing projects in JPL's Matrix
NASA Technical Reports Server (NTRS)
Baroff, Lynn E.
2006-01-01
Can programmatic and line organizations really work interdependently, to accomplish their work as a community? Does the matrix produce a culture in which individuals take personal responsibility for both immediate mission success and long-term growth? What is the secret to making a matrix enterprise actually work? This paper will consider those questions, and propose that developing an effective project-line partnership demands primary attention to personal interactions among people. Many potential problems can be addressed by careful definition of roles, responsibilities, and work processes for both parts of the matrix -- and by deliberate and clear communication between project and line organizations and individuals.
The Impact of Goal Setting and Empowerment on Governmental Matrix Organizations
1993-09-01
shared. In a study of matrix management, Eduardo Vasconcellos further describes various matrix structures in the Galbraith model. In a functional...Technology/LAR, Wright-Patterson AFB OH, 1992. Vasconcellos , Eduardo . "A Model For a Better Understanding of the Matrix Structure," IEEE Transactions on...project matrix, the project manager maintains more influence and the structure lies to the right-of center ( Vasconcellos , 1979:58). Different Types of
Visualization of x-ray computer tomography using computer-generated holography
NASA Astrophysics Data System (ADS)
Daibo, Masahiro; Tayama, Norio
1998-09-01
The theory converted from x-ray projection data to the hologram directly by combining the computer tomography (CT) with the computer generated hologram (CGH), is proposed. The purpose of this study is to offer the theory for realizing the all- electronic and high-speed seeing through 3D visualization system, which is for the application to medical diagnosis and non- destructive testing. First, the CT is expressed using the pseudo- inverse matrix which is obtained by the singular value decomposition. CGH is expressed in the matrix style. Next, `projection to hologram conversion' (PTHC) matrix is calculated by the multiplication of phase matrix of CGH with pseudo-inverse matrix of the CT. Finally, the projection vector is converted to the hologram vector directly, by multiplication of the PTHC matrix with the projection vector. Incorporating holographic analog computation into CT reconstruction, it becomes possible that the calculation amount is drastically reduced. We demonstrate the CT cross section which is reconstituted by He-Ne laser in the 3D space from the real x-ray projection data acquired by x-ray television equipment, using our direct conversion technique.
Sakaris, P.C.; Irwin, E.R.
2010-01-01
We developed stochastic matrix models to evaluate the effects of hydrologic alteration and variable mortality on the population dynamics of a lotie fish in a regulated river system. Models were applied to a representative lotic fish species, the flathead catfish (Pylodictis olivaris), for which two populations were examined: a native population from a regulated reach of the Coosa River (Alabama, USA) and an introduced population from an unregulated section of the Ocmulgee River (Georgia, USA). Size-classified matrix models were constructed for both populations, and residuals from catch-curve regressions were used as indices of year class strength (i.e., recruitment). A multiple regression model indicated that recruitment of flathead catfish in the Coosa River was positively related to the frequency of spring pulses between 283 and 566 m3/s. For the Ocmulgee River population, multiple regression models indicated that year class strength was negatively related to mean March discharge and positively related to June low flow. When the Coosa population was modeled to experience five consecutive years of favorable hydrologic conditions during a 50-year projection period, it exhibited a substantial spike in size and increased at an overall 0.2% annual rate. When modeled to experience five years of unfavorable hydrologic conditions, the Coosa population initially exhibited a decrease in size but later stabilized and increased at a 0.4% annual rate following the decline. When the Ocmulgee River population was modeled to experience five years of favorable conditions, it exhibited a substantial spike in size and increased at an overall 0.4% annual rate. After the Ocmulgee population experienced five years of unfavorable conditions, a sharp decline in population size was predicted. However, the population quickly recovered, with population size increasing at a 0.3% annual rate following the decline. In general, stochastic population growth in the Ocmulgee River was more erratic and variable than population growth in the Coosa River. We encourage ecologists to develop similar models for other lotic species, particularly in regulated river systems. Successful management of fish populations in regulated systems requires that we are able to predict how hydrology affects recruitment and will ultimately influence the population dynamics of fishes. ?? 2010 by the Ecological Society of America.
Schleiff, Meike; Kumapley, Richard; Freeman, Paul A; Gupta, Sundeep; Rassekh, Bahie M; Perry, Henry B
2017-01-01
Background The degree to which investments in health programs improve the health of the most disadvantaged segments of the population—where utilization of health services and health status is often the worst—is a growing concern throughout the world. Therefore, questions about the degree to which community–based primary health care (CBPHC) can or actually does improve utilization of health services and the health status of the most disadvantaged children in a population is an important one. Methods Using a database containing information about the assessment of 548 interventions, projects or programs (referred to collectively as projects) that used CBPHC to improve child health, we extracted evidence related to equity from a sub–set of 42 projects, identified through a multi–step process, that included an equity analysis. We organized our findings conceptually around a logical framework matrix. Results Our analysis indicates that these CBPHC projects, all of which implemented child health interventions, achieved equitable effects. The vast majority (87%) of the 82 equity measurements carried out and reported for these 42 projects demonstrated “pro–equitable” or “equitable” effects, meaning that the project’s equity indicator(s) improved to the same degree or more in the disadvantaged segments of the project population as in the more advantaged segments. Most (78%) of the all the measured equity effects were “pro–equitable,” meaning that the equity criterion improved more in the most disadvantaged segment of the project population than in the other segments of the population. Conclusions Based on the observation that CBPHC projects commonly provide services that are readily accessible to the entire project population and that even often reach down to all households, such projects are inherently likely to be more equitable than projects that strengthen services only at facilities, where utilization diminishes greatly with one’s distance away. The decentralization of services and attention to and tracking of metrics across all phases of project implementation with attention to the underserved, as can be done in CBPHC projects, are important for reducing inequities in countries with a high burden of child mortality. Strengthening CBPHC is a necessary strategy for reducing inequities in child health and for achieving universal coverage of essential services for children. PMID:28685043
25 CFR Appendix A to Subpart C - IRR High Priority Project Scoring Matrix
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false IRR High Priority Project Scoring Matrix A Appendix A to...—IRR High Priority Project Scoring Matrix Score 10 5 3 1 0 Accident and fatality rate for candidate...,000 or less 250,001-500,000 500,001-750,000 Over 750,000. Geographic isolation No external access to...
25 CFR Appendix A to Subpart C - IRR High Priority Project Scoring Matrix
Code of Federal Regulations, 2013 CFR
2013-04-01
... 25 Indians 1 2013-04-01 2013-04-01 false IRR High Priority Project Scoring Matrix A Appendix A to...—IRR High Priority Project Scoring Matrix Score 10 5 3 1 0 Accident and fatality rate for candidate...,000 or less 250,001-500,000 500,001-750,000 Over 750,000. Geographic isolation No external access to...
25 CFR Appendix A to Subpart C - IRR High Priority Project Scoring Matrix
Code of Federal Regulations, 2014 CFR
2014-04-01
... 25 Indians 1 2014-04-01 2014-04-01 false IRR High Priority Project Scoring Matrix A Appendix A to...—IRR High Priority Project Scoring Matrix Score 10 5 3 1 0 Accident and fatality rate for candidate...,000 or less 250,001-500,000 500,001-750,000 Over 750,000. Geographic isolation No external access to...
25 CFR Appendix A to Subpart C - IRR High Priority Project Scoring Matrix
Code of Federal Regulations, 2012 CFR
2012-04-01
... 25 Indians 1 2012-04-01 2011-04-01 true IRR High Priority Project Scoring Matrix A Appendix A to...—IRR High Priority Project Scoring Matrix Score 10 5 3 1 0 Accident and fatality rate for candidate...,000 or less 250,001-500,000 500,001-750,000 Over 750,000. Geographic isolation No external access to...
Thalamocortical and intracortical laminar connectivity determines sleep spindle properties.
Krishnan, Giri P; Rosen, Burke Q; Chen, Jen-Yung; Muller, Lyle; Sejnowski, Terrence J; Cash, Sydney S; Halgren, Eric; Bazhenov, Maxim
2018-06-27
Sleep spindles are brief oscillatory events during non-rapid eye movement (NREM) sleep. Spindle density and synchronization properties are different in MEG versus EEG recordings in humans and also vary with learning performance, suggesting spindle involvement in memory consolidation. Here, using computational models, we identified network mechanisms that may explain differences in spindle properties across cortical structures. First, we report that differences in spindle occurrence between MEG and EEG data may arise from the contrasting properties of the core and matrix thalamocortical systems. The matrix system, projecting superficially, has wider thalamocortical fanout compared to the core system, which projects to middle layers, and requires the recruitment of a larger population of neurons to initiate a spindle. This property was sufficient to explain lower spindle density and higher spatial synchrony of spindles in the superficial cortical layers, as observed in the EEG signal. In contrast, spindles in the core system occurred more frequently but less synchronously, as observed in the MEG recordings. Furthermore, consistent with human recordings, in the model, spindles occurred independently in the core system but the matrix system spindles commonly co-occurred with core spindles. We also found that the intracortical excitatory connections from layer III/IV to layer V promote spindle propagation from the core to the matrix system, leading to widespread spindle activity. Our study predicts that plasticity of intra- and inter-cortical connectivity can potentially be a mechanism for increased spindle density as has been observed during learning.
Projecting the Population-level Effects of Mercury on the Common Loon in the Northeast
NASA Astrophysics Data System (ADS)
Evers, D. C.; Mitro, M. G.; Gleason, T. R.
2001-05-01
The Common Loon (Gavia immer) is a top-level predator in aquatic systems and is at risk to mercury contamination. This risk is of particular concern in the Northeast, the region of North America in which loons have the highest mean body concentration of methylmercury (MeHg). We used matrix population models to project the population-level effects of mercury on loons in four states in the Northeast (New York, Vermont, New Hampshire, and Maine) exhibiting different levels of risk to MeHg. Four categories of risk to MeHg (low, moderate, high, and extra high) were established based on MeHg levels observed in loons and associated effects observed at the individual and population levels in the field (e.g., behavior and reproductive success). We parameterized deterministic matrix population models using survival estimates from a 12-year band-resight data set and productivity estimates from a 25-year data set of nesting loon observations in NH. The juvenile loon survival rate was 0.55 (minimum) and 0.63 (maximum) (ages 1-3), and the adult loon survival rate was 0.95 (ages 4-30). The mean age at first reproduction was 7. The mean fertility was 0.26 fledgelings per individual at low to moderate risk; there were 53% fewer fledged young per individual at high to extra high risk. Productivity was weighted by risk for each state. The portion of the breeding population at high to extra high risk was 10% in NY, 15% in VT, 17% in NH, and 28% in ME. We also constructed a stochastic model in which productivity was randomly selected in each time step from the 25 estimates in the NH data set. Model results indicated a negative population growth rate for some states. There was a decreasing trend in population growth rate as the percentage of the loon population at high to extra high risk increased. The stochastic model showed that the population growth rate varied over a range of about 0.05 from year to year, and this range decreased as the percentage of the loon population at high to extra high risk increased. These results suggest that an increase in risk to mercury that effects a change in reproductive success may have a negative population-level effect on loons.
Conditional targeting of medium spiny neurons in the striatal matrix
Reinius, Björn; Blunder, Martina; Brett, Frances M.; Eriksson, Anders; Patra, Kalicharan; Jonsson, Jörgen; Jazin, Elena; Kullander, Klas
2015-01-01
The striatum serves as the main input to the basal ganglia, and is key for the regulation of motor behaviors, compulsion, addiction, and various cognitive and emotional states. Its deterioration is associated with degenerative disorders such as Huntington's disease. Despite its apparent anatomical uniformity, it consists of intermingled cell populations, which have precluded straightforward anatomical sub-classifications adhering to functional dissections. Approximately 95% of the striatal neurons are inhibitory projection neurons termed medium spiny neurons (MSNs). They are commonly classified according to their expression of either dopamine receptor D1 or D2, which also determines their axonal projection patterns constituting the direct and indirect pathway in the basal ganglia. Immunohistochemical patterns have further indicated compartmentalization of the striatum to the striosomes and the surrounding matrix, which integrate MSNs of both the D1 and D2 type. Here, we present a transgenic mouse line, Gpr101-Cre, with Cre recombinase activity localized to matrix D1 and D2 MSNs. Using two Gpr101-Cre founder lines with different degrees of expression in the striatum, we conditionally deleted the vesicular inhibitory amino acid transporter (VIAAT), responsible for storage of GABA and glycine in synaptic vesicles. Partial ablation of VIAAT (in ~36% of MSNs) resulted in elevated locomotor activity compared to control mice, when provoked with the monoamine reuptake inhibitor cocaine. Near complete targeting of matrix MSNs led to profoundly changed motor behaviors, which increased in severity as the mice aged. Moreover, these mice had exaggerated muscle rigidity, retarded growth, increased rate of spontaneous deaths, and defective memory. Therefore, our data provide a link between dysfunctional GABA signaling of matrix MSNs to specific behavioral alterations, which are similar to the symptoms of Huntington's disease. PMID:25870547
NASA Astrophysics Data System (ADS)
Mao, Chao; Chen, Shou
2017-01-01
According to the traditional entropy value method still have low evaluation accuracy when evaluating the performance of mining projects, a performance evaluation model of mineral project founded on improved entropy is proposed. First establish a new weight assignment model founded on compatible matrix analysis of analytic hierarchy process (AHP) and entropy value method, when the compatibility matrix analysis to achieve consistency requirements, if it has differences between subjective weights and objective weights, moderately adjust both proportions, then on this basis, the fuzzy evaluation matrix for performance evaluation. The simulation experiments show that, compared with traditional entropy and compatible matrix analysis method, the proposed performance evaluation model of mining project based on improved entropy value method has higher accuracy assessment.
Belarmino, K S; Rêgo, M M; Bruno, R L A; Medeiros, G D A; Andrade, A P; Rêgo, E R
2017-08-31
Poincianella pyramidalis (Tul.) L.P. Queiroz is an endemic Caatinga (Brazilian savannah biome) species that has been exploited for different purposes, although information is necessary about still existing natural populations. The objective of this study was to evaluate the genetic diversity among 20 P. pyramidalis individuals occurring in a population localized in the Caatinga biome of Paraíba State, aiming at seed collection, using RAPD markers. For the DNA extraction, young shoots of the individuals were used, and amplification was carried out using 20 primers. The obtained markers were converted to a binary matrix, from which a genetic dissimilarity matrix was built using the arithmetic complement of Jaccard's coefficient, and the dendrogram was built by the UPGMA analysis. No amplified fragment was monomorphic, resulting in 100% polymorphism of the analyzed population. The mean genetic diversity among the matrices was 63.28%, ranging from 30.9 to 97.7%. Individuals 09 and 17 showed relevant genetic proximity, and thus planting their seedlings at close sites would not be indicated. The population evaluated in this study showed high genetic diversity, originating twelve groups from the UPGMA hierarchical cluster analysis. Based on the results, individuals 09 and 17 can provide plant material for the evaluation of the physiological performance of P. pyramidalis seeds, and the set of individuals of this population has a high genetic diversity that characterizes them as adequate matrices for projects of restoration and conservation of the seed species.
Citizen Science as a Tool for Mosquito Control.
Jordan, Rebecca C; Sorensen, Amanda E; Ladeau, Shannon
2017-09-01
In this paper, we share our findings from a 2-year citizen science program called Mosquito Stoppers. This pest-oriented citizen science project is part of a larger coupled natural-human systems project seeking to understand the fundamental drivers of mosquito population density and spatial variability in potential exposure to mosquito-borne pathogens in a matrix of human construction, urban renewal, and individual behaviors. Focusing on residents in West Baltimore, participants were recruited through neighborhood workshops and festivals. Citizen scientists participated in yard surveys of potential mosquito habitat and in evaluating mosquito nuisance. We found that citizen scientists, with minimal education and training, were able to accurately collect data that reflect trends found in a comparable researcher-generated database.
Two Approaches of Studying Singularity of Projective Conics
ERIC Educational Resources Information Center
Broyles, Chris; Muller, Lars; Tikoo, Mohan; Wang, Haohao
2010-01-01
The singularity of a projective conic can be determined via the associated matrix to the implicit equation of the projective conic. In this expository article, we will first derive a known result for determining the singularity of a projective conic via the associated matrix. Then we will introduce the concepts of [mu]-basis of the parametric…
Lao, Oscar; Liu, Fan; Wollstein, Andreas; Kayser, Manfred
2014-02-01
Attempts to detect genetic population substructure in humans are troubled by the fact that the vast majority of the total amount of observed genetic variation is present within populations rather than between populations. Here we introduce a new algorithm for transforming a genetic distance matrix that reduces the within-population variation considerably. Extensive computer simulations revealed that the transformed matrix captured the genetic population differentiation better than the original one which was based on the T1 statistic. In an empirical genomic data set comprising 2,457 individuals from 23 different European subpopulations, the proportion of individuals that were determined as a genetic neighbour to another individual from the same sampling location increased from 25% with the original matrix to 52% with the transformed matrix. Similarly, the percentage of genetic variation explained between populations by means of Analysis of Molecular Variance (AMOVA) increased from 1.62% to 7.98%. Furthermore, the first two dimensions of a classical multidimensional scaling (MDS) using the transformed matrix explained 15% of the variance, compared to 0.7% obtained with the original matrix. Application of MDS with Mclust, SPA with Mclust, and GemTools algorithms to the same dataset also showed that the transformed matrix gave a better association of the genetic clusters with the sampling locations, and particularly so when it was used in the AMOVA framework with a genetic algorithm. Overall, the new matrix transformation introduced here substantially reduces the within population genetic differentiation, and can be broadly applied to methods such as AMOVA to enhance their sensitivity to reveal population substructure. We herewith provide a publically available (http://www.erasmusmc.nl/fmb/resources/GAGA) model-free method for improved genetic population substructure detection that can be applied to human as well as any other species data in future studies relevant to evolutionary biology, behavioural ecology, medicine, and forensics.
[Orthogonal Vector Projection Algorithm for Spectral Unmixing].
Song, Mei-ping; Xu, Xing-wei; Chang, Chein-I; An, Ju-bai; Yao, Li
2015-12-01
Spectrum unmixing is an important part of hyperspectral technologies, which is essential for material quantity analysis in hyperspectral imagery. Most linear unmixing algorithms require computations of matrix multiplication and matrix inversion or matrix determination. These are difficult for programming, especially hard for realization on hardware. At the same time, the computation costs of the algorithms increase significantly as the number of endmembers grows. Here, based on the traditional algorithm Orthogonal Subspace Projection, a new method called. Orthogonal Vector Projection is prompted using orthogonal principle. It simplifies this process by avoiding matrix multiplication and inversion. It firstly computes the final orthogonal vector via Gram-Schmidt process for each endmember spectrum. And then, these orthogonal vectors are used as projection vector for the pixel signature. The unconstrained abundance can be obtained directly by projecting the signature to the projection vectors, and computing the ratio of projected vector length and orthogonal vector length. Compared to the Orthogonal Subspace Projection and Least Squares Error algorithms, this method does not need matrix inversion, which is much computation costing and hard to implement on hardware. It just completes the orthogonalization process by repeated vector operations, easy for application on both parallel computation and hardware. The reasonability of the algorithm is proved by its relationship with Orthogonal Sub-space Projection and Least Squares Error algorithms. And its computational complexity is also compared with the other two algorithms', which is the lowest one. At last, the experimental results on synthetic image and real image are also provided, giving another evidence for effectiveness of the method.
Ryder, Thomas B; Reitsma, Robert; Evans, Brian; Marra, Peter P
2010-03-01
Despite the increasing pace of urbanization little is known about the factors that limit bird populations (i.e., population-level processes) within the urban/suburban land-use matrix. Here, we report rates of nest survival within the matrix of an urban land-use gradient in the greater Washington, D.C., USA, area for five common songbirds using data collected by scientists and citizens as part of a project called Neighborhood Nestwatch. Using program MARK, we modeled the effects of species, urbanization at multiple spatial scales (canopy cover and impervious surface), and observer (citizen vs. scientist) on nest survival of four open-cup and one cavity-nesting species. In addition, artificial nests were used to determine the relative impacts of specific predators along the land-use gradient. Our results suggest that predation on nests within the land-use matrix declines with urbanization but that there are species-specific differences. Moreover, variation in nest survival among species was best explained by urbanization metrics measured at larger "neighborhood" spatial scales (e.g., 1000 m). Trends were supported by data from artificial nests and suggest that variable predator communities (avian vs. mammalian) are one possible mechanism to explain differential nest survival. In addition, we assessed the quality of citizen science data and show that citizens had no negative effect on nest survival and provided estimates of nest survival comparable to Smithsonian biologists. Although birds nesting within the urban matrix experienced higher nest survival, individuals also faced a multitude of other challenges such as contaminants and invasive species, all of which could reduce adult survival.
25 CFR Appendix A to Subpart C - IRR High Priority Project Scoring Matrix
Code of Federal Regulations, 2010 CFR
2010-04-01
...—IRR High Priority Project Scoring Matrix Score 10 5 3 1 0 Accident and fatality rate for candidate route 1 Severe X Moderate Minimal No accidents. Years since last IRR construction project completed... elements Addresses 1 element. 1 National Highway Traffic Safety Board standards. 2 Total funds requested...
Image Matrix Processor for Volumetric Computations Final Report CRADA No. TSB-1148-95
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberson, G. Patrick; Browne, Jolyon
The development of an Image Matrix Processor (IMP) was proposed that would provide an economical means to perform rapid ray-tracing processes on volume "Giga Voxel" data sets. This was a multi-phased project. The objective of the first phase of the IMP project was to evaluate the practicality of implementing a workstation-based Image Matrix Processor for use in volumetric reconstruction and rendering using hardware simulation techniques. Additionally, ARACOR and LLNL worked together to identify and pursue further funding sources to complete a second phase of this project.
Stepien, Anna E; Tripodi, Marco; Arber, Silvia
2010-11-04
Movement is the behavioral output of neuronal activity in the spinal cord. Motor neurons are grouped into motor neuron pools, the functional units innervating individual muscles. Here we establish an anatomical rabies virus-based connectivity assay in early postnatal mice. We employ it to study the connectivity scheme of premotor neurons, the neuronal cohorts monosynaptically connected to motor neurons, unveiling three aspects of organization. First, motor neuron pools are connected to segmentally widely distributed yet stereotypic interneuron populations, differing for pools innervating functionally distinct muscles. Second, depending on subpopulation identity, interneurons take on local or segmentally distributed positions. Third, cholinergic partition cells involved in the regulation of motor neuron excitability segregate into ipsilaterally and bilaterally projecting populations, the latter exhibiting preferential connections to functionally equivalent motor neuron pools bilaterally. Our study visualizes the widespread yet precise nature of the connectivity matrix for premotor interneurons and reveals exquisite synaptic specificity for bilaterally projecting cholinergic partition cells. Copyright © 2010 Elsevier Inc. All rights reserved.
Short Course on Implementation of Zone Technology in the Repair and Overhaul Environment
1996-04-01
Pier Zone & Sys Pier/DD/Staging Zone Management Approach Varies Function to Project Project/Matrix Project/Matrix Project Project Fig. 9-3. Nature of...intractable problems that currently exist. Nature can give us many clues. If only we could harness the material that makes the dolphin’s outer shell so smooth...the natural effect of requiring peak manning and confined outfitting schedules. Through the application of system oriented logic to actual work accom
Population dynamics of the Concho water snake in rivers and reservoirs
Whiting, M.J.; Dixon, J.R.; Greene, B.D.; Mueller, J.M.; Thornton, O.W.; Hatfield, J.S.; Nichols, J.D.; Hines, J.E.
2008-01-01
The Concho Water Snake (Nerodia harteri paucimaculata) is confined to the Concho–Colorado River valley of central Texas, thereby occupying one of the smallest geographic ranges of any North American snake. In 1986, N. h. paucimaculata was designated as a federally threatened species, in large part because of reservoir projects that were perceived to adversely affect the amount of habitat available to the snake. During a ten-year period (1987–1996), we conducted capture–recapture field studies to assess dynamics of five subpopulations of snakes in both natural (river) and man-made (reservoir) habitats. Because of differential sampling of subpopulations, we present separate results for all five subpopulations combined (including large reservoirs) and three of the five subpopulations (excluding large reservoirs). We used multistate capture–recapture models to deal with stochastic transitions between pre-reproductive and reproductive size classes and to allow for the possibility of different survival and capture probabilities for the two classes. We also estimated both the finite rate of increase (λ) for a deterministic, stage-based, female-only matrix model using the average litter size, and the average rate of adult population change, λ ˆ, which describes changes in numbers of adult snakes, using a direct capture–recapture approach to estimation. Average annual adult survival was about 0.23 and similar for males and females. Average annual survival for subadults was about 0.14. The parameter estimates from the stage-based projection matrix analysis all yielded asymptotic values of λ < 1, suggesting populations that are not viable. However, the direct estimates of average adult λ for the three subpopulations excluding major reservoirs were λ ˆ = 1.26, SE ˆ(λ ˆ) = 0.18 and λ ˆ = 0.99, SE ˆ(λ ˆ) = 0.79, based on two different models. Thus, the direct estimation approach did not provide strong evidence of population declines of the riverine subpopulations, but the estimates are characterized by substantial uncertainty.
Pathways of Knowing: Integrating Citizen Science and Critical Thinking in the Adult ELL Classroom
NASA Astrophysics Data System (ADS)
Basham, Melody
This action research study examines what common perceptions and constructs currently exist in educating adult immigrants in Arizona and considers how might the integration of citizen science with the current English curriculum promote higher order thinking and educational equity in this population. A citizen science project called the Mastodon Matrix Project was introduced to a Level 2 ELAA (English Language Acquisition for Adults) classroom and aligned with the Arizona Adult Standards for ELAA education. Pre and post attitudinal surveys, level tests, and personal meaning maps were implemented to assess student attitudes towards science, views on technology, English skills, and knowledge gained as a result of doing citizen science over a period of 8 weeks.
Projection matrix acquisition for cone-beam computed tomography iterative reconstruction
NASA Astrophysics Data System (ADS)
Yang, Fuqiang; Zhang, Dinghua; Huang, Kuidong; Shi, Wenlong; Zhang, Caixin; Gao, Zongzhao
2017-02-01
Projection matrix is an essential and time-consuming part in computed tomography (CT) iterative reconstruction. In this article a novel calculation algorithm of three-dimensional (3D) projection matrix is proposed to quickly acquire the matrix for cone-beam CT (CBCT). The CT data needed to be reconstructed is considered as consisting of the three orthogonal sets of equally spaced and parallel planes, rather than the individual voxels. After getting the intersections the rays with the surfaces of the voxels, the coordinate points and vertex is compared to obtain the index value that the ray traversed. Without considering ray-slope to voxel, it just need comparing the position of two points. Finally, the computer simulation is used to verify the effectiveness of the algorithm.
Evaluation of the Matrix Project. Interchange 77.
ERIC Educational Resources Information Center
McIvor, Gill; Moodie, Kristina
The Matrix Project is a program that has been established in central Scotland with the aim of reducing the risk of offending and anti-social behavior among vulnerable children. The project provides a range of services to children between eight and 11 years of age who are at risk in the local authority areas of Clackmannanshire, Falkirk and…
Matrix population models are often used to extrapolate from life stage-specific stressor effects on survival and reproduction to population-level effects. Demographic elasticity analysis of a matrix model allows an evaluation of the relative sensitivity of population growth rate ...
Human population reduction is not a quick fix for environmental problems.
Bradshaw, Corey J A; Brook, Barry W
2014-11-18
The inexorable demographic momentum of the global human population is rapidly eroding Earth's life-support system. There are consequently more frequent calls to address environmental problems by advocating further reductions in human fertility. To examine how quickly this could lead to a smaller human population, we used scenario-based matrix modeling to project the global population to the year 2100. Assuming a continuation of current trends in mortality reduction, even a rapid transition to a worldwide one-child policy leads to a population similar to today's by 2100. Even a catastrophic mass mortality event of 2 billion deaths over a hypothetical 5-y window in the mid-21(st) century would still yield around 8.5 billion people by 2100. In the absence of catastrophe or large fertility reductions (to fewer than two children per female worldwide), the greatest threats to ecosystems--as measured by regional projections within the 35 global Biodiversity Hotspots--indicate that Africa and South Asia will experience the greatest human pressures on future ecosystems. Humanity's large demographic momentum means that there are no easy policy levers to change the size of the human population substantially over coming decades, short of extreme and rapid reductions in female fertility; it will take centuries, and the long-term target remains unclear. However, some reduction could be achieved by midcentury and lead to hundreds of millions fewer people to feed. More immediate results for sustainability would emerge from policies and technologies that reverse rising consumption of natural resources.
Project Solo; Newsletter Number Twenty.
ERIC Educational Resources Information Center
Pittsburgh Univ., PA. Project Solo.
Three Project Solo modules are presented. They are designed to teach the concepts of elementary matrix operation, matrix multiplication, and finite-state automata. Together with the module on communication matrices from Newsletter #17 they form a well motivated but structured path to expertise in this area. (JY)
Forecasting extinction risk with nonstationary matrix models.
Gotelli, Nicholas J; Ellison, Aaron M
2006-02-01
Matrix population growth models are standard tools for forecasting population change and for managing rare species, but they are less useful for predicting extinction risk in the face of changing environmental conditions. Deterministic models provide point estimates of lambda, the finite rate of increase, as well as measures of matrix sensitivity and elasticity. Stationary matrix models can be used to estimate extinction risk in a variable environment, but they assume that the matrix elements are randomly sampled from a stationary (i.e., non-changing) distribution. Here we outline a method for using nonstationary matrix models to construct realistic forecasts of population fluctuation in changing environments. Our method requires three pieces of data: (1) field estimates of transition matrix elements, (2) experimental data on the demographic responses of populations to altered environmental conditions, and (3) forecasting data on environmental drivers. These three pieces of data are combined to generate a series of sequential transition matrices that emulate a pattern of long-term change in environmental drivers. Realistic estimates of population persistence and extinction risk can be derived from stochastic permutations of such a model. We illustrate the steps of this analysis with data from two populations of Sarracenia purpurea growing in northern New England. Sarracenia purpurea is a perennial carnivorous plant that is potentially at risk of local extinction because of increased nitrogen deposition. Long-term monitoring records or models of environmental change can be used to generate time series of driver variables under different scenarios of changing environments. Both manipulative and natural experiments can be used to construct a linking function that describes how matrix parameters change as a function of the environmental driver. This synthetic modeling approach provides quantitative estimates of extinction probability that have an explicit mechanistic basis.
Zhao, Meixia; Riegl, Bernhard; Yu, Kefu; Shi, Qi; Zhang, Qiaomin; Liu, Guohui; Yang, Hongqiang; Yan, Hongqiang
2016-09-13
Population models are important for resource management and can inform about potential trajectories useful for planning purposes, even with incomplete monitoring data. From size frequency data on Luhuitou fringing reef, Hainan, South China Sea, a matrix population model of massive corals (Porites lutea) was developed and trajectories over 100 years under no disturbance and random disturbances were projected. The model reflects a largely open population of Porites lutea, with low local recruitment and preponderance of imported recruitment. Under no further disturbance, the population of Porites lutea will grow and its size structure will change from predominance of small size classes to large size classes. Therewith, total Porites cover will increase. Even under random disturbances every 10 to 20 years, the Porites population could remain viable, albeit at lower space cover. The models suggest recovery at Luhuitou following the removal of chronic anthropogenic disturbance. Extending the area of coral reef reserves to protect the open coral community and the path of connectivity is advisable and imperative for the conservation of Hainan's coral reefs.
Zhao, Meixia; Riegl, Bernhard; Yu, Kefu; Shi, Qi; Zhang, Qiaomin; Liu, Guohui; Yang, Hongqiang; Yan, Hongqiang
2016-01-01
Population models are important for resource management and can inform about potential trajectories useful for planning purposes, even with incomplete monitoring data. From size frequency data on Luhuitou fringing reef, Hainan, South China Sea, a matrix population model of massive corals (Porites lutea) was developed and trajectories over 100 years under no disturbance and random disturbances were projected. The model reflects a largely open population of Porites lutea, with low local recruitment and preponderance of imported recruitment. Under no further disturbance, the population of Porites lutea will grow and its size structure will change from predominance of small size classes to large size classes. Therewith, total Porites cover will increase. Even under random disturbances every 10 to 20 years, the Porites population could remain viable, albeit at lower space cover. The models suggest recovery at Luhuitou following the removal of chronic anthropogenic disturbance. Extending the area of coral reef reserves to protect the open coral community and the path of connectivity is advisable and imperative for the conservation of Hainan’s coral reefs. PMID:27622504
Leff, Daniel Richard; Orihuela-Espina, Felipe; Leong, Julian; Darzi, Ara; Yang, Guang-Zhong
2008-01-01
Learning to perform Minimally Invasive Surgery (MIS) requires considerable attention, concentration and spatial ability. Theoretically, this leads to activation in executive control (prefrontal) and visuospatial (parietal) centres of the brain. A novel approach is presented in this paper for analysing the flow of fronto-parietal haemodynamic behaviour and the associated variability between subjects. Serially acquired functional Near Infrared Spectroscopy (fNIRS) data from fourteen laparoscopic novices at different stages of learning is projected into a low-dimensional 'geospace', where sequentially acquired data is mapped to different locations. A trip distribution matrix based on consecutive directed trips between locations in the geospace reveals confluent fronto-parietal haemodynamic changes and a gravity model is applied to populate this matrix. To model global convergence in haemodynamic behaviour, a Markov chain is constructed and by comparing sequential haemodynamic distributions to the Markov's stationary distribution, inter-subject variability in learning an MIS task can be identified.
Amerciamysis bahia Stochastic Matrix Population Model for Laboratory Populations
The population model described here is a stochastic, density-independent matrix model for integrating the effects of toxicants on survival and reproduction of the marine invertebrate, Americamysis bahia. The model was constructed using Microsoft® Excel 2003. The focus of the mode...
Stage-structured matrix models for organisms with non-geometric development times
Andrew Birt; Richard M. Feldman; David M. Cairns; Robert N. Coulson; Maria Tchakerian; Weimin Xi; James M. Guldin
2009-01-01
Matrix models have been used to model population growth of organisms for many decades. They are popular because of both their conceptual simplicity and their computational efficiency. For some types of organisms they are relatively accurate in predicting population growth; however, for others the matrix approach does not adequately model...
Decoding and optimized implementation of SECDED codes over GF(q)
Ward, H. Lee; Ganti, Anand; Resnick, David R
2013-10-22
A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.
Design, decoding and optimized implementation of SECDED codes over GF(q)
Ward, H Lee; Ganti, Anand; Resnick, David R
2014-06-17
A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.
Decoding and optimized implementation of SECDED codes over GF(q)
Ward, H Lee; Ganti, Anand; Resnick, David R
2014-11-18
A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.
Damos, Petros
2015-08-01
In this study, we use entropy related mixing rate modules to measure the effects of temperature on insect population stability and demographic breakdown. The uncertainty in the age of the mother of a randomly chosen newborn, and how it is moved after a finite act of time steps, is modeled using a stochastic transformation of the Leslie matrix. Age classes are represented as a cycle graph and its transitions towards the stable age distribution are brought forth as an exact Markov chain. The dynamics of divergence, from a non equilibrium state towards equilibrium, are evaluated using the Kolmogorov-Sinai entropy. Moreover, Kullback-Leibler distance is applied as information-theoretic measure to estimate exact mixing times of age transitions probabilities towards equilibrium. Using empirically data, we show that on the initial conditions and simulated projection's trough time, that population entropy can effectively be applied to detect demographic variability towards equilibrium under different temperature conditions. Changes in entropy are correlated with the fluctuations of the insect population decay rates (i.e. demographic stability towards equilibrium). Moreover, shorter mixing times are directly linked to lower entropy rates and vice versa. This may be linked to the properties of the insect model system, which in contrast to warm blooded animals has the ability to greatly change its metabolic and demographic rates. Moreover, population entropy and the related distance measures that are applied, provide a means to measure these rates. The current results and model projections provide clear biological evidence why dynamic population entropy may be useful to measure population stability. Copyright © 2015 Elsevier Inc. All rights reserved.
Developing population models with data from marked individuals
Hae Yeong Ryu,; Kevin T. Shoemaker,; Eva Kneip,; Anna Pidgeon,; Patricia Heglund,; Brooke Bateman,; Thogmartin, Wayne E.; Reşit Akçakaya,
2016-01-01
Population viability analysis (PVA) is a powerful tool for biodiversity assessments, but its use has been limited because of the requirements for fully specified population models such as demographic structure, density-dependence, environmental stochasticity, and specification of uncertainties. Developing a fully specified population model from commonly available data sources – notably, mark–recapture studies – remains complicated due to lack of practical methods for estimating fecundity, true survival (as opposed to apparent survival), natural temporal variability in both survival and fecundity, density-dependence in the demographic parameters, and uncertainty in model parameters. We present a general method that estimates all the key parameters required to specify a stochastic, matrix-based population model, constructed using a long-term mark–recapture dataset. Unlike standard mark–recapture analyses, our approach provides estimates of true survival rates and fecundities, their respective natural temporal variabilities, and density-dependence functions, making it possible to construct a population model for long-term projection of population dynamics. Furthermore, our method includes a formal quantification of parameter uncertainty for global (multivariate) sensitivity analysis. We apply this approach to 9 bird species and demonstrate the feasibility of using data from the Monitoring Avian Productivity and Survivorship (MAPS) program. Bias-correction factors for raw estimates of survival and fecundity derived from mark–recapture data (apparent survival and juvenile:adult ratio, respectively) were non-negligible, and corrected parameters were generally more biologically reasonable than their uncorrected counterparts. Our method allows the development of fully specified stochastic population models using a single, widely available data source, substantially reducing the barriers that have until now limited the widespread application of PVA. This method is expected to greatly enhance our understanding of the processes underlying population dynamics and our ability to analyze viability and project trends for species of conservation concern.
Factors associated with continuance commitment to FAA matrix teams.
DOT National Transportation Integrated Search
1993-11-01
Several organizations within the FAA employ matrix teams to achieve cross-functional coordination. Matrix team members typically represent different organizational functions required for project accomplishment (e.g., research and development, enginee...
Experimental placement of stone matrix asphalt (SMA) : project F-STP-017P(89)E Auburn, Court Street.
DOT National Transportation Integrated Search
2003-04-01
In October 1999 the Maine Department of Transportation utilized stone matrix asphalt to resurface an : intersection in Auburn, Maine. The experimental placement of SMA was part of a pavement project F-STP-017P(89)E. The intersection is at the junctio...
Population exposure to heat-related extremes: Demographic change vs climate change
NASA Astrophysics Data System (ADS)
Jones, B.; O'Neill, B. C.; Tebaldi, C.; Oleson, K. W.
2014-12-01
Extreme heat events are projected to increase in frequency and intensity in the coming decades [1]. The physical effects of extreme heat on human populations are well-documented, and anticipating changes in future exposure to extreme heat is a key component of adequate planning/mitigation [2, 3]. Exposure to extreme heat depends not only on changing climate, but also on changes in the size and spatial distribution of the human population. Here we focus on systematically quantifying exposure to extreme heat as a function of both climate and population change. We compare exposure outcomes across multiple global climate and spatial population scenarios, and characterize the relative contributions of each to population exposure to extreme heat. We consider a 2 x 2 matrix of climate and population output, using projections of heat extremes corresponding to RCP 4.5 and RCP 8.5 from the NCAR community land model, and spatial population projections for SSP 3 and SSP 5 from the NCAR spatial population downscaling model. Our primary comparison is across RCPs - exposure outcomes from RCP 4.5 versus RCP 8.5 - paying particular attention to how variation depends on the choice of SSP in terms of aggregate global and regional exposure, as well as the spatial distribution of exposure. We assess how aggregate exposure changes based on the choice of SSP, and which driver is more important, population or climate change (i.e. does that outcome vary more as a result of RCP or SSP). We further decompose the population component to analyze the contributions of total population change, migration, and changes in local spatial structure. Preliminary results from a similar study of the US suggests a four-to-six fold increase in total exposure by the latter half of the 21st century. Changes in population are as important as changes in climate in driving this outcome, and there is regional variation in the relative importance of each. Aggregate population growth, as well as redistribution of the population across larger US regions, strongly affects outcomes while smaller-scale spatial patterns of population change have smaller effects. [1] Collins, M. et al. (2013) Contribution of WG I to the 5th AR of the IPCC[2] Romero-Lankao, P. et al (2014) Contribution of WG II to the 5th AR of the IPCC[3] Walsh, J. et al. (2014) The 3rd National Climate Assessment
Wientjes, Yvonne C J; Bijma, Piter; Vandenplas, Jérémie; Calus, Mario P L
2017-10-01
Different methods are available to calculate multi-population genomic relationship matrices. Since those matrices differ in base population, it is anticipated that the method used to calculate genomic relationships affects the estimate of genetic variances, covariances, and correlations. The aim of this article is to define the multi-population genomic relationship matrix to estimate current genetic variances within and genetic correlations between populations. The genomic relationship matrix containing two populations consists of four blocks, one block for population 1, one block for population 2, and two blocks for relationships between the populations. It is known, based on literature, that by using current allele frequencies to calculate genomic relationships within a population, current genetic variances are estimated. In this article, we theoretically derived the properties of the genomic relationship matrix to estimate genetic correlations between populations and validated it using simulations. When the scaling factor of across-population genomic relationships is equal to the product of the square roots of the scaling factors for within-population genomic relationships, the genetic correlation is estimated unbiasedly even though estimated genetic variances do not necessarily refer to the current population. When this property is not met, the correlation based on estimated variances should be multiplied by a correction factor based on the scaling factors. In this study, we present a genomic relationship matrix which directly estimates current genetic variances as well as genetic correlations between populations. Copyright © 2017 by the Genetics Society of America.
Study design and sampling intensity for demographic analyses of bear populations
Harris, R.B.; Schwartz, C.C.; Mace, R.D.; Haroldson, M.A.
2011-01-01
The rate of population change through time (??) is a fundamental element of a wildlife population's conservation status, yet estimating it with acceptable precision for bears is difficult. For studies that follow known (usually marked) bears, ?? can be estimated during some defined time by applying either life-table or matrix projection methods to estimates of individual vital rates. Usually however, confidence intervals surrounding the estimate are broader than one would like. Using an estimator suggested by Doak et al. (2005), we explored the precision to be expected in ?? from demographic analyses of typical grizzly (Ursus arctos) and American black (U. americanus) bear data sets. We also evaluated some trade-offs among vital rates in sampling strategies. Confidence intervals around ?? were more sensitive to adding to the duration of a short (e.g., 3 yrs) than a long (e.g., 10 yrs) study, and more sensitive to adding additional bears to studies with small (e.g., 10 adult females/yr) than large (e.g., 30 adult females/yr) sample sizes. Confidence intervals of ?? projected using process-only variance of vital rates were only slightly smaller than those projected using total variances of vital rates. Under sampling constraints typical of most bear studies, it may be more efficient to invest additional resources into monitoring recruitment and juvenile survival rates of females already a part of the study, than to simply increase the sample size of study females. ?? 2011 International Association for Bear Research and Management.
Using population models to evaluate management alternatives for Gulf Striped Bass
Aspinwall, Alexander P.; Irwin, Elise R.; Lloyd, M. Clint
2017-01-01
Interstate management of Gulf Striped Bass Morone saxatilis has involved a thirty-year cooperative effort involving Federal and State agencies in Georgia, Florida and Alabama (Apalachicola-Chattahoochee-Flint Gulf Striped Bass Technical Committee). The Committee has recently focused on developing an adaptive framework for conserving and restoring Gulf Striped Bass in the Apalachicola, Chattahoochee, and Flint River (ACF) system. To evaluate the consequences and tradeoffs among management activities, population models were used to inform management decisions. Stochastic matrix models were constructed with varying recruitment and stocking rates to simulate effects of management alternatives on Gulf Striped Bass population objectives. An age-classified matrix model that incorporated stock fecundity estimates and survival estimates was used to project population growth rate. In addition, combinations of management alternatives (stocking rates, Hydrilla control, harvest regulations) were evaluated with respect to how they influenced Gulf Striped Bass population growth. Annual survival and mortality rates were estimated from catch-curve analysis, while fecundity was estimated and predicted using a linear least squares regression analysis of fish length versus egg number from hatchery brood fish data. Stocking rates and stocked-fish survival rates were estimated from census data. Results indicated that management alternatives could be an effective approach to increasing the Gulf Striped Bass population. Population abundance was greatest under maximum stocking effort, maximum Hydrilla control and a moratorium. Conversely, population abundance was lowest under no stocking, no Hydrilla control and the current harvest regulation. Stocking rates proved to be an effective management strategy; however, low survival estimates of stocked fish (1%) limited the potential for population growth. Hydrilla control increased the survival rate of stocked fish and provided higher estimates of population abundances than maximizing the stocking rate. A change in the current harvest regulation (50% harvest regulation) was not an effective alternative to increasing the Gulf Striped Bass population size. Applying a moratorium to the Gulf Striped Bass fishery increased survival rates from 50% to 74% and resulted in the largest population growth of the individual management alternatives. These results could be used by the Committee to inform management decisions for other populations of Striped Bass in the Gulf Region.
Nichols, J.D.; Hines, J.E.
2002-01-01
We first consider the estimation of the finite rate of population increase or population growth rate, lambda sub i, using capture-recapture data from open populations. We review estimation and modelling of lambda sub i under three main approaches to modelling open-population data: the classic approach of Jolly (1965) and Seber (1965), the superpopulation approach of Crosbie & Manly (1985) and Schwarz & Arnason (1996), and the temporal symmetry approach of Pradel (1996). Next, we consider the contributions of different demographic components to lambda sub i using a probabilistic approach based on the composition of the population at time i + 1 (Nichols et al., 2000b). The parameters of interest are identical to the seniority parameters, gamma sub i, of Pradel (1996). We review estimation of gamma sub i under the classic, superpopulation, and temporal symmetry approaches. We then compare these direct estimation approaches for lambda sub i and gamma sub i with analogues computed using projection matrix asymptotics. We also discuss various extensions of the estimation approaches to multistate applications and to joint likelihoods involving multiple data types.
JTEC panel on display technologies in Japan
NASA Technical Reports Server (NTRS)
Tannas, Lawrence E., Jr.; Glenn, William E.; Credelle, Thomas; Doane, J. William; Firester, Arthur H.; Thompson, Malcolm
1992-01-01
This report is one in a series of reports that describes research and development efforts in Japan in the area of display technologies. The following are included in this report: flat panel displays (technical findings, liquid crystal display development and production, large flat panel displays (FPD's), electroluminescent displays and plasma panels, infrastructure in Japan's FPD industry, market and projected sales, and new a-Si active matrix liquid crystal display (AMLCD) factory); materials for flat panel displays (liquid crystal materials, and light-emissive display materials); manufacturing and infrastructure of active matrix liquid crystal displays (manufacturing logistics and equipment); passive matrix liquid crystal displays (LCD basics, twisted nematics LCD's, supertwisted nematic LCD's, ferroelectric LCD's, and a comparison of passive matrix LCD technology); active matrix technology (basic active matrix technology, investment environment, amorphous silicon, polysilicon, and commercial products and prototypes); and projection displays (comparison of Japanese and U.S. display research, and technical evaluation of work).
Computation of ancestry scores with mixed families and unrelated individuals.
Zhou, Yi-Hui; Marron, James S; Wright, Fred A
2018-03-01
The issue of robustness to family relationships in computing genotype ancestry scores such as eigenvector projections has received increased attention in genetic association, and is particularly challenging when sets of both unrelated individuals and closely related family members are included. The current standard is to compute loadings (left singular vectors) using unrelated individuals and to compute projected scores for remaining family members. However, projected ancestry scores from this approach suffer from shrinkage toward zero. We consider two main novel strategies: (i) matrix substitution based on decomposition of a target family-orthogonalized covariance matrix, and (ii) using family-averaged data to obtain loadings. We illustrate the performance via simulations, including resampling from 1000 Genomes Project data, and analysis of a cystic fibrosis dataset. The matrix substitution approach has similar performance to the current standard, but is simple and uses only a genotype covariance matrix, while the family-average method shows superior performance. Our approaches are accompanied by novel ancillary approaches that provide considerable insight, including individual-specific eigenvalue scree plots. © 2017 The Authors. Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.
Changes in seasonal climate outpace compensatory density-dependence in eastern brook trout
Bassar, Ronald D.; Letcher, Benjamin H.; Nislow, Keith H.; Whiteley, Andrew R.
2016-01-01
Understanding how multiple extrinsic (density-independent) factors and intrinsic (density-dependent) mechanisms influence population dynamics has become increasingly urgent in the face of rapidly changing climates. It is particularly unclear how multiple extrinsic factors with contrasting effects among seasons are related to declines in population numbers and changes in mean body size and whether there is a strong role for density-dependence. The primary goal of this study was to identify the roles of seasonal variation in climate driven environmental direct effects (mean stream flow and temperature) versus density-dependence on population size and mean body size in eastern brook trout (Salvelinus fontinalis). We use data from a 10-year capture-mark-recapture study of eastern brook trout in four streams in Western Massachusetts, USA to parameterize a discrete-time population projection model. The model integrates matrix modeling techniques used to characterize discrete population structures (age, habitat type and season) with integral projection models (IPMs) that characterize demographic rates as continuous functions of organismal traits (in this case body size). Using both stochastic and deterministic analyses we show that decreases in population size are due to changes in stream flow and temperature and that these changes are larger than what can be compensated for through density-dependent responses. We also show that the declines are due mostly to increasing mean stream temperatures decreasing the survival of the youngest age class. In contrast, increases in mean body size over the same period are the result of indirect changes in density with a lesser direct role of climate-driven environmental change.
Human population reduction is not a quick fix for environmental problems
Bradshaw, Corey J. A.; Brook, Barry W.
2014-01-01
The inexorable demographic momentum of the global human population is rapidly eroding Earth’s life-support system. There are consequently more frequent calls to address environmental problems by advocating further reductions in human fertility. To examine how quickly this could lead to a smaller human population, we used scenario-based matrix modeling to project the global population to the year 2100. Assuming a continuation of current trends in mortality reduction, even a rapid transition to a worldwide one-child policy leads to a population similar to today’s by 2100. Even a catastrophic mass mortality event of 2 billion deaths over a hypothetical 5-y window in the mid-21st century would still yield around 8.5 billion people by 2100. In the absence of catastrophe or large fertility reductions (to fewer than two children per female worldwide), the greatest threats to ecosystems—as measured by regional projections within the 35 global Biodiversity Hotspots—indicate that Africa and South Asia will experience the greatest human pressures on future ecosystems. Humanity’s large demographic momentum means that there are no easy policy levers to change the size of the human population substantially over coming decades, short of extreme and rapid reductions in female fertility; it will take centuries, and the long-term target remains unclear. However, some reduction could be achieved by midcentury and lead to hundreds of millions fewer people to feed. More immediate results for sustainability would emerge from policies and technologies that reverse rising consumption of natural resources. PMID:25349398
Metal-matrix composites: Status and prospects
NASA Technical Reports Server (NTRS)
1974-01-01
Applications of metal matrix composites for air frames and jet engine components are discussed. The current state of the art in primary and secondary fabrication is presented. The present and projected costs were analyzed to determine the cost effectiveness of metal matrix composites. The various types of metal matrix composites and their characteristics are described.
Selective and Responsive Nanopore-Filled Membranes
2011-03-14
Materials Science and Engineering Poster Competition 15. Chen, H.; Elabd, Y.A. Ionic Liquid Polymers: Electrospinning and Solution Properties. Fall...hydrophilic ionic polymer gels within a hydrophobic polymer host matrix. The specific tasks of this project include (1) synthesizing stimuli...on polymer-polymer nanocomposites of hydrophilic ionic polymer gels within a hydrophobic polymer host matrix. The specific tasks of this project
Experimental placement of stone matrix asphalt : project STP-8724 (00) X South Portland.
DOT National Transportation Integrated Search
2004-01-01
In September 2003 the Maine Department of Transportation used stone matrix asphalt and Superpave to : renovate two intersections in South Portland, Maine. The experimental placement of stone matrix asphalt : (SMA) and Superpave with modified binder w...
JICA -- working from the grass roots up. Vietnam.
1997-11-01
The fact that Japan has reduced its foreign aid by 10% for fiscal 1998 will require the Japan International Cooperation Agency's (JICA) Medical Cooperation Department (MCD) to review both the number of projects it funds and program management. The MCD is developing new guidelines for primary health care programs that will reflect the principles embedded in the Program of Action of the 1994 International Conference on Population and Development. The managing director of the MCD believes that an effective way to promote primary health care is to focus on reproductive health/family planning and then broaden the scope of activities. The current reproductive health project being implemented in Nghe An Province of Viet Nam is expected to make a great contribution to the improvement of community health. The MCD also wants to explore bottom-up primary health care approaches with the cooperation of nongovernmental organizations (NGOs). Thus, the Viet Nam project is being conducted in collaboration with the NGO JOICFP and may pioneer new avenues in governmental/NGO cooperation worldwide. The new budget cuts will force JICA to review its disbursement and project management procedures. Thus, all future projects will use the project cycle management approach, including the use of a participatory project design matrix. JICA will also be fostering a sense of ownership of projects from the grassroots to the national level that will allow projects to become sustainable.
Raju, Dinesh V; Shah, Deep J; Wright, Terrence M; Hall, Randy A; Smith, Yoland
2006-11-10
The striatum is divided into two compartments named the patch (or striosome) and the matrix. Although these two compartments can be differentiated by their neurochemical content or afferent and efferent projections, the synaptology of inputs to these striatal regions remains poorly characterized. By using the vesicular glutamate transporters vGluT1 and vGluT2, as markers of corticostriatal and thalamostriatal projections, respectively, we demonstrate a differential pattern of synaptic connections of these two pathways between the patch and the matrix compartments. We also demonstrate that the majority of vGluT2-immunolabeled axon terminals form axospinous synapses, suggesting that thalamic afferents, like corticostriatal inputs, terminate preferentially onto spines in the striatum. Within both compartments, more than 90% of vGluT1-containing terminals formed axospinous synapses, whereas 87% of vGluT2-positive terminals within the patch innervated dendritic spines, but only 55% did so in the matrix. To characterize further the source of thalamic inputs that could account for the increase in axodendritic synapses in the matrix, we undertook an electron microscopic analysis of the synaptology of thalamostriatal afferents to the matrix compartments from specific intralaminar, midline, relay, and associative thalamic nuclei in rats. Approximately 95% of PHA-L-labeled terminals from the central lateral, midline, mediodorsal, lateral dorsal, anteroventral, and ventral anterior/ventral lateral nuclei formed axospinous synapses, a pattern reminiscent of corticostriatal afferents but strikingly different from thalamostriatal projections arising from the parafascicular nucleus (PF), which terminated onto dendritic shafts. These findings provide the first evidence for a differential pattern of synaptic organization of thalamostriatal glutamatergic inputs to the patch and matrix compartments. Furthermore, they demonstrate that the PF is the sole source of significant axodendritic thalamic inputs to striatal projection neurons. These observations pave the way for understanding differential regulatory mechanisms of striatal outflow from the patch and matrix compartments by thalamostriatal afferents. 2006 Wiley-Liss, Inc.
Matrix Management in DoD: An Annotated Bibliography
1984-04-01
ADDRESS 10 PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS ACSC/EDCC, MAXWELL AFB AL 36112 1 1. CONTROLLING OFFICE NAME AND ADDRESS 12 ...completes their message that matrix orga- nization is the likely format of the multiprogram Program Office. 12 The text’s discussion of matrix is...manager, and functional specialist are of vital importance to the effective operation of the matrix .... Matrix management will not achieve its
Effects of sample size on estimates of population growth rates calculated with matrix models.
Fiske, Ian J; Bruna, Emilio M; Bolker, Benjamin M
2008-08-28
Matrix models are widely used to study the dynamics and demography of populations. An important but overlooked issue is how the number of individuals sampled influences estimates of the population growth rate (lambda) calculated with matrix models. Even unbiased estimates of vital rates do not ensure unbiased estimates of lambda-Jensen's Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of lambda due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among size classes lead to biases in estimates of lambda. Using data from a long-term field study of plant demography, we simulated the effects of sampling variance by drawing vital rates and calculating lambda for increasingly larger populations drawn from a total population of 3842 plants. We then compared these estimates of lambda with those based on the entire population and calculated the resulting bias. Finally, we conducted a review of the literature to determine the sample sizes typically used when parameterizing matrix models used to study plant demography. We found significant bias at small sample sizes when survival was low (survival = 0.5), and that sampling with a more-realistic inverse J-shaped population structure exacerbated this bias. However our simulations also demonstrate that these biases rapidly become negligible with increasing sample sizes or as survival increases. For many of the sample sizes used in demographic studies, matrix models are probably robust to the biases resulting from sampling variance of vital rates. However, this conclusion may depend on the structure of populations or the distribution of sampling effort in ways that are unexplored. We suggest more intensive sampling of populations when individual survival is low and greater sampling of stages with high elasticities.
Blockwise conjugate gradient methods for image reconstruction in volumetric CT.
Qiu, W; Titley-Peloquin, D; Soleimani, M
2012-11-01
Cone beam computed tomography (CBCT) enables volumetric image reconstruction from 2D projection data and plays an important role in image guided radiation therapy (IGRT). Filtered back projection is still the most frequently used algorithm in applications. The algorithm discretizes the scanning process (forward projection) into a system of linear equations, which must then be solved to recover images from measured projection data. The conjugate gradients (CG) algorithm and its variants can be used to solve (possibly regularized) linear systems of equations Ax=b and linear least squares problems minx∥b-Ax∥2, especially when the matrix A is very large and sparse. Their applications can be found in a general CT context, but in tomography problems (e.g. CBCT reconstruction) they have not widely been used. Hence, CBCT reconstruction using the CG-type algorithm LSQR was implemented and studied in this paper. In CBCT reconstruction, the main computational challenge is that the matrix A usually is very large, and storing it in full requires an amount of memory well beyond the reach of commodity computers. Because of these memory capacity constraints, only a small fraction of the weighting matrix A is typically used, leading to a poor reconstruction. In this paper, to overcome this difficulty, the matrix A is partitioned and stored blockwise, and blockwise matrix-vector multiplications are implemented within LSQR. This implementation allows us to use the full weighting matrix A for CBCT reconstruction without further enhancing computer standards. Tikhonov regularization can also be implemented in this fashion, and can produce significant improvement in the reconstructed images. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
General MoM Solutions for Large Arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasenfest, B; Capolino, F; Wilton, D R
2003-07-22
This paper focuses on a numerical procedure that addresses the difficulties of dealing with large, finite arrays while preserving the generality and robustness of full-wave methods. We present a fast method based on approximating interactions between sufficiently separated array elements via a relatively coarse interpolation of the Green's function on a uniform grid commensurate with the array's periodicity. The interaction between the basis and testing functions is reduced to a three-stage process. The first stage is a projection of standard (e.g., RWG) subdomain bases onto a set of interpolation functions that interpolate the Green's function on the array face. Thismore » projection, which is used in a matrix/vector product for each array cell in an iterative solution process, need only be carried out once for a single cell and results in a low-rank matrix. An intermediate stage matrix/vector product computation involving the uniformly sampled Green's function is of convolutional form in the lateral (transverse) directions so that a 2D FFT may be used. The final stage is a third matrix/vector product computation involving a matrix resulting from projecting testing functions onto the Green's function interpolation functions; the low-rank matrix is either identical to (using Galerkin's method) or similar to that for the bases projection. An effective MoM solution scheme is developed for large arrays using a modification of the AIM (Adaptive Integral Method) method. The method permits the analysis of arrays with arbitrary contours and nonplanar elements. Both fill and solve times within the MoM method are improved with respect to more standard MoM solvers.« less
Registration using natural features for augmented reality systems.
Yuan, M L; Ong, S K; Nee, A Y C
2006-01-01
Registration is one of the most difficult problems in augmented reality (AR) systems. In this paper, a simple registration method using natural features based on the projective reconstruction technique is proposed. This method consists of two steps: embedding and rendering. Embedding involves specifying four points to build the world coordinate system on which a virtual object will be superimposed. In rendering, the Kanade-Lucas-Tomasi (KLT) feature tracker is used to track the natural feature correspondences in the live video. The natural features that have been tracked are used to estimate the corresponding projective matrix in the image sequence. Next, the projective reconstruction technique is used to transfer the four specified points to compute the registration matrix for augmentation. This paper also proposes a robust method for estimating the projective matrix, where the natural features that have been tracked are normalized (translation and scaling) and used as the input data. The estimated projective matrix will be used as an initial estimate for a nonlinear optimization method that minimizes the actual residual errors based on the Levenberg-Marquardt (LM) minimization method, thus making the results more robust and stable. The proposed registration method has three major advantages: 1) It is simple, as no predefined fiducials or markers are used for registration for either indoor and outdoor AR applications. 2) It is robust, because it remains effective as long as at least six natural features are tracked during the entire augmentation, and the existence of the corresponding projective matrices in the live video is guaranteed. Meanwhile, the robust method to estimate the projective matrix can obtain stable results even when there are some outliers during the tracking process. 3) Virtual objects can still be superimposed on the specified areas, even if some parts of the areas are occluded during the entire process. Some indoor and outdoor experiments have been conducted to validate the performance of this proposed method.
Bonjean, Maxime; Baker, Tanya; Bazhenov, Maxim; Cash, Sydney; Halgren, Eric; Sejnowski, Terrence
2012-01-01
Sleep spindles, which are bursts of 11–15 Hz that occur during non-REM sleep, are highly synchronous across the scalp when measured with EEG, but have low spatial coherence and exhibit low correlation with EEG signals when simultaneously measured with MEG spindles in humans. We developed a computational model to explore the hypothesis that the spatial coherence of the EEG spindle is a consequence of diffuse matrix projections of the thalamus to layer 1 compared to the focal projections of the core pathway to layer 4 recorded by the MEG. Increasing the fanout of thalamocortical connectivity in the matrix pathway while keeping the core pathway fixed led to increased synchrony of the spindle activity in the superficial cortical layers in the model. In agreement with cortical recordings, the latency for spindles to spread from the core to the matrix was independent of the thalamocortical fanout but highly dependent on the probability of connections between cortical areas. PMID:22496571
Multimedia Matrix: A Cognitive Strategy for Designers.
ERIC Educational Resources Information Center
Sherry, Annette C.
This instructional development project evaluates the effect of a matrix-based strategy to assist multimedia authors in acquiring and applying principles for effective multimedia design. The Multimedia Matrix, based on the Park and Hannafin "Twenty Principles and Implications for Interactive Multimedia" design, displays a condensed…
System Matrix Analysis for Computed Tomography Imaging
Flores, Liubov; Vidal, Vicent; Verdú, Gumersindo
2015-01-01
In practical applications of computed tomography imaging (CT), it is often the case that the set of projection data is incomplete owing to the physical conditions of the data acquisition process. On the other hand, the high radiation dose imposed on patients is also undesired. These issues demand that high quality CT images can be reconstructed from limited projection data. For this reason, iterative methods of image reconstruction have become a topic of increased research interest. Several algorithms have been proposed for few-view CT. We consider that the accurate solution of the reconstruction problem also depends on the system matrix that simulates the scanning process. In this work, we analyze the application of the Siddon method to generate elements of the matrix and we present results based on real projection data. PMID:26575482
CONSTRUCTING, PERTURBATION ANALYSIIS AND TESTING OF A MULTI-HABITAT PERIODIC MATRIX POPULATION MODEL
We present a matrix model that explicitly incorporates spatial habitat structure and seasonality and discuss preliminary results from a landscape level experimental test. Ecological risk to populations is often modeled without explicit treatment of spatially or temporally distri...
Habitat-based conservation strategies cannot compensate for climate-change-induced range loss
NASA Astrophysics Data System (ADS)
Wessely, Johannes; Hülber, Karl; Gattringer, Andreas; Kuttner, Michael; Moser, Dietmar; Rabitsch, Wolfgang; Schindler, Stefan; Dullinger, Stefan; Essl, Franz
2017-11-01
Anthropogenic habitat fragmentation represents a major obstacle to species shifting their range in response to climate change. Conservation measures to increase the (meta-)population capacity and permeability of landscapes may help but the effectiveness of such measures in a warming climate has rarely been evaluated. Here, we simulate range dynamics of 51 species from three taxonomic groups (vascular plants, butterflies and grasshoppers) in Central Europe as driven by twenty-first-century climate scenarios and analyse how three habitat-based conservation strategies (establishing corridors, improving the landscape matrix, and protected area management) modify species' projected range size changes. These simulations suggest that the conservation strategies considered are unable to save species from regional extinction. For those persisting, they reduce the magnitude of range loss in lowland but not in alpine species. Protected area management and corridor establishment are more effective than matrix improvement. However, none of the conservation strategies evaluated could fully compensate the negative impact of climate change for vascular plants, butterflies or grasshoppers in central Europe.
NASA Astrophysics Data System (ADS)
Donnelly, M. A. P.; Marcantonio, M.; Melton, F. S.; Barker, C. M.
2016-12-01
The ongoing spread of the mosquitoes, Aedes aegypti and Aedes albopictus, in the continental United States leaves new areas at risk for local transmission of dengue, chikungunya, and Zika viruses. All three viruses have caused major disease outbreaks in the Americas with infected travelers returning regularly to the U.S. The expanding range of these mosquitoes raises questions about whether recent spread has been enabled by climate change or other anthropogenic influences. In this analysis, we used downscaled climate scenarios from the NASA Earth Exchange Global Daily Downscaled Projections (NEX GDDP) dataset to model Ae. aegypti and Ae. albopictus population growth rates across the United States. We used a stage-structured matrix population model to understand past and present climatic suitability for these vectors, and to project future suitability under CMIP5 climate change scenarios. Our results indicate that much of the southern U.S. is suitable for both Ae. aegypti and Ae. albopictus year-round. In addition, a large proportion of the U.S. is seasonally suitable for mosquito population growth, creating the potential for periodic incursions into new areas. Changes in climatic suitability in recent decades for Ae. aegypti and Ae. albopictus have occurred already in many regions of the U.S., and model projections of future climate suggest that climate change will continue to reshape the range of Ae. aegypti and Ae. albopictus in the U.S., and potentially the risk of the viruses they transmit.
NASA Technical Reports Server (NTRS)
Donnelly, Marisa Anne Pella; Marcantonio, Matteo; Melton, Forrest S.; Barker, Christopher M.
2016-01-01
The ongoing spread of the mosquitoes, Aedes aegypti and Aedes albopictus, in the continental United States leaves new areas at risk for local transmission of dengue, chikungunya, and Zika viruses. All three viruses have caused major disease outbreaks in the Americas with infected travelers returning regularly to the U.S. The expanding range of these mosquitoes raises questions about whether recent spread has been enabled by climate change or other anthropogenic influences. In this analysis, we used downscaled climate scenarios from the NASA Earth Exchange Global Daily Downscaled Projections (NEX GDDP) dataset to model Ae. aegypti and Ae. albopictus population growth rates across the United States. We used a stage-structured matrix population model to understand past and present climatic suitability for these vectors, and to project future suitability under CMIP5 climate change scenarios. Our results indicate that much of the southern U.S. is suitable for both Ae. aegypti and Ae. albopictus year-round. In addition, a large proportion of the U.S. is seasonally suitable for mosquito population growth, creating the potential for periodic incursions into new areas. Changes in climatic suitability in recent decades for Ae. aegypti and Ae. albopictus have occurred already in many regions of the U.S., and model projections of future climate suggest that climate change will continue to reshape the range of Ae. aegypti and Ae. albopictus in the U.S., and potentially the risk of the viruses they transmit.
Nichols, James D.; Hines, James E.
2002-01-01
We first consider the estimation of the finite rate of population increase or population growth rate, u i , using capture-recapture data from open populations. We review estimation and modelling of u i under three main approaches to modelling openpopulation data: the classic approach of Jolly (1965) and Seber (1965), the superpopulation approach of Crosbie & Manly (1985) and Schwarz & Arnason (1996), and the temporal symmetry approach of Pradel (1996). Next, we consider the contributions of different demographic components to u i using a probabilistic approach based on the composition of the population at time i + 1 (Nichols et al., 2000b). The parameters of interest are identical to the seniority parameters, n i , of Pradel (1996). We review estimation of n i under the classic, superpopulation, and temporal symmetry approaches. We then compare these direct estimation approaches for u i and n i with analogues computed using projection matrix asymptotics. We also discuss various extensions of the estimation approaches to multistate applications and to joint likelihoods involving multiple data types.
Matrix models for size-structured populations: unrealistic fast growth or simply diffusion?
Picard, Nicolas; Liang, Jingjing
2014-01-01
Matrix population models are widely used to study population dynamics but have been criticized because their outputs are sensitive to the dimension of the matrix (or, equivalently, to the class width). This sensitivity is concerning for the population growth rate (λ) because this is an intrinsic characteristic of the population that should not depend on the model specification. It has been suggested that the sensitivity of λ to matrix dimension was linked to the existence of fast pathways (i.e. the fraction of individuals that systematically move up a class), whose proportion increases when class width increases. We showed that for matrix population models with growth transition only from class i to class i + 1, λ was independent of the class width when the mortality and the recruitment rates were constant, irrespective of the growth rate. We also showed that if there were indeed fast pathways, there were also in about the same proportion slow pathways (i.e. the fraction of individuals that systematically remained in the same class), and that they jointly act as a diffusion process (where diffusion here is the movement in size of an individual whose size increments are random according to a normal distribution with mean zero). For 53 tree species from a tropical rain forest in the Central African Republic, the diffusion resulting from common matrix dimensions was much stronger than would be realistic. Yet, the sensitivity of λ to matrix dimension for a class width in the range 1-10 cm was small, much smaller than the sampling uncertainty on the value of λ. Moreover, λ could either increase or decrease when class width increased depending on the species. Overall, even if the class width should be kept small enough to limit diffusion, it had little impact on the estimate of λ for tree species.
Incompressible SPH (ISPH) with fast Poisson solver on a GPU
NASA Astrophysics Data System (ADS)
Chow, Alex D.; Rogers, Benedict D.; Lind, Steven J.; Stansby, Peter K.
2018-05-01
This paper presents a fast incompressible SPH (ISPH) solver implemented to run entirely on a graphics processing unit (GPU) capable of simulating several millions of particles in three dimensions on a single GPU. The ISPH algorithm is implemented by converting the highly optimised open-source weakly-compressible SPH (WCSPH) code DualSPHysics to run ISPH on the GPU, combining it with the open-source linear algebra library ViennaCL for fast solutions of the pressure Poisson equation (PPE). Several challenges are addressed with this research: constructing a PPE matrix every timestep on the GPU for moving particles, optimising the limited GPU memory, and exploiting fast matrix solvers. The ISPH pressure projection algorithm is implemented as 4 separate stages, each with a particle sweep, including an algorithm for the population of the PPE matrix suitable for the GPU, and mixed precision storage methods. An accurate and robust ISPH boundary condition ideal for parallel processing is also established by adapting an existing WCSPH boundary condition for ISPH. A variety of validation cases are presented: an impulsively started plate, incompressible flow around a moving square in a box, and dambreaks (2-D and 3-D) which demonstrate the accuracy, flexibility, and speed of the methodology. Fragmentation of the free surface is shown to influence the performance of matrix preconditioners and therefore the PPE matrix solution time. The Jacobi preconditioner demonstrates robustness and reliability in the presence of fragmented flows. For a dambreak simulation, GPU speed ups demonstrate up to 10-18 times and 1.1-4.5 times compared to single-threaded and 16-threaded CPU run times respectively.
Kaye, T.N.; Pyke, David A.
2003-01-01
Population viability analysis is an important tool for conservation biologists, and matrix models that incorporate stochasticity are commonly used for this purpose. However, stochastic simulations may require assumptions about the distribution of matrix parameters, and modelers often select a statistical distribution that seems reasonable without sufficient data to test its fit. We used data from long-term (5a??10 year) studies with 27 populations of five perennial plant species to compare seven methods of incorporating environmental stochasticity. We estimated stochastic population growth rate (a measure of viability) using a matrix-selection method, in which whole observed matrices were selected at random at each time step of the model. In addition, we drew matrix elements (transition probabilities) at random using various statistical distributions: beta, truncated-gamma, truncated-normal, triangular, uniform, or discontinuous/observed. Recruitment rates were held constant at their observed mean values. Two methods of constraining stage-specific survival to a??100% were also compared. Different methods of incorporating stochasticity and constraining matrix column sums interacted in their effects and resulted in different estimates of stochastic growth rate (differing by up to 16%). Modelers should be aware that when constraining stage-specific survival to 100%, different methods may introduce different levels of bias in transition element means, and when this happens, different distributions for generating random transition elements may result in different viability estimates. There was no species effect on the results and the growth rates derived from all methods were highly correlated with one another. We conclude that the absolute value of population viability estimates is sensitive to model assumptions, but the relative ranking of populations (and management treatments) is robust. Furthermore, these results are applicable to a range of perennial plants and possibly other life histories.
Early Successional Microhabitats Allow the Persistence of Endangered Plants in Coastal Sand Dunes
2015-01-01
Many species are adapted to disturbance and occur within dynamic, mosaic landscapes that contain early and late successional microhabitats. Human modification of disturbance regimes alters the availability of microhabitats and may affect the viability of species in these ecosystems. Because restoring historical disturbance regimes is typically expensive and requires action at large spatial scales, such restoration projects must be justified by linking the persistence of species with successional microhabitats. Coastal sand dune ecosystems worldwide are characterized by their endemic biodiversity and frequent disturbance. Dune-stabilizing invasive plants alter successional dynamics and may threaten species in these ecosystems. We examined the distribution and population dynamics of two federally endangered plant species, the annual Layia carnosa and the perennial Lupinus tidestromii, within a dune ecosystem in northern California, USA. We parameterized a matrix population model for L. tidestromii and examined the magnitude by which the successional stage of the habitat (early or late) influenced population dynamics. Both species had higher frequencies and L. tidestromii had higher frequency of seedlings in early successional habitats. Lupinus tidestromii plants in early successional microhabitats had higher projected rates of population growth than those associated with stabilized, late successional habitats, due primarily to higher rates of recruitment in early successional microhabitats. These results support the idea that restoration of disturbance is critical in historically dynamic landscapes. Our results suggest that large-scale restorations are necessary to allow persistence of the endemic plant species that characterize these ecosystems. PMID:25835390
Refining mortality estimates in shark demographic analyses: a Bayesian inverse matrix approach.
Smart, Jonathan J; Punt, André E; White, William T; Simpfendorfer, Colin A
2018-01-18
Leslie matrix models are an important analysis tool in conservation biology that are applied to a diversity of taxa. The standard approach estimates the finite rate of population growth (λ) from a set of vital rates. In some instances, an estimate of λ is available, but the vital rates are poorly understood and can be solved for using an inverse matrix approach. However, these approaches are rarely attempted due to prerequisites of information on the structure of age or stage classes. This study addressed this issue by using a combination of Monte Carlo simulations and the sample-importance-resampling (SIR) algorithm to solve the inverse matrix problem without data on population structure. This approach was applied to the grey reef shark (Carcharhinus amblyrhynchos) from the Great Barrier Reef (GBR) in Australia to determine the demography of this population. Additionally, these outputs were applied to another heavily fished population from Papua New Guinea (PNG) that requires estimates of λ for fisheries management. The SIR analysis determined that natural mortality (M) and total mortality (Z) based on indirect methods have previously been overestimated for C. amblyrhynchos, leading to an underestimated λ. The updated Z distributions determined using SIR provided λ estimates that matched an empirical λ for the GBR population and corrected obvious error in the demographic parameters for the PNG population. This approach provides opportunity for the inverse matrix approach to be applied more broadly to situations where information on population structure is lacking. © 2018 by the Ecological Society of America.
Linear dimension reduction and Bayes classification
NASA Technical Reports Server (NTRS)
Decell, H. P., Jr.; Odell, P. L.; Coberly, W. A.
1978-01-01
An explicit expression for a compression matrix T of smallest possible left dimension K consistent with preserving the n variate normal Bayes assignment of X to a given one of a finite number of populations and the K variate Bayes assignment of TX to that population was developed. The Bayes population assignment of X and TX were shown to be equivalent for a compression matrix T explicitly calculated as a function of the means and covariances of the given populations.
Using demography and movement behavior to predict range expansion of the southern sea otter.
Tinker, M.T.; Doak, D.F.; Estes, J.A.
2008-01-01
In addition to forecasting population growth, basic demographic data combined with movement data provide a means for predicting rates of range expansion. Quantitative models of range expansion have rarely been applied to large vertebrates, although such tools could be useful for restoration and management of many threatened but recovering populations. Using the southern sea otter (Enhydra lutris nereis) as a case study, we utilized integro-difference equations in combination with a stage-structured projection matrix that incorporated spatial variation in dispersal and demography to make forecasts of population recovery and range recolonization. In addition to these basic predictions, we emphasize how to make these modeling predictions useful in a management context through the inclusion of parameter uncertainty and sensitivity analysis. Our models resulted in hind-cast (1989–2003) predictions of net population growth and range expansion that closely matched observed patterns. We next made projections of future range expansion and population growth, incorporating uncertainty in all model parameters, and explored the sensitivity of model predictions to variation in spatially explicit survival and dispersal rates. The predicted rate of southward range expansion (median = 5.2 km/yr) was sensitive to both dispersal and survival rates; elasticity analysis indicated that changes in adult survival would have the greatest potential effect on the rate of range expansion, while perturbation analysis showed that variation in subadult dispersal contributed most to variance in model predictions. Variation in survival and dispersal of females at the south end of the range contributed most of the variance in predicted southward range expansion. Our approach provides guidance for the acquisition of further data and a means of forecasting the consequence of specific management actions. Similar methods could aid in the management of other recovering populations.
An efficient variable projection formulation for separable nonlinear least squares problems.
Gan, Min; Li, Han-Xiong
2014-05-01
We consider in this paper a class of nonlinear least squares problems in which the model can be represented as a linear combination of nonlinear functions. The variable projection algorithm projects the linear parameters out of the problem, leaving the nonlinear least squares problems involving only the nonlinear parameters. To implement the variable projection algorithm more efficiently, we propose a new variable projection functional based on matrix decomposition. The advantage of the proposed formulation is that the size of the decomposed matrix may be much smaller than those of previous ones. The Levenberg-Marquardt algorithm using finite difference method is then applied to minimize the new criterion. Numerical results show that the proposed approach achieves significant reduction in computing time.
Photoexcitation of atoms by Laguerre-Gaussian beams
NASA Astrophysics Data System (ADS)
Peshkov, A. A.; Seipt, D.; Surzhykov, A.; Fritzsche, S.
2017-08-01
In a recent experiment, Schmiegelow et al. [Nat. Commun. 7, 12998 (2016), 10.1038/ncomms12998] investigated the magnetic sublevel population of Ca+ ions in a Laguerre-Gaussian light beam if the target atoms were just centered along the beam axis. They demonstrated in this experiment that the sublevel population of the excited atoms is uniquely defined by the projection of the orbital angular momentum of the incident light. However, little attention has been paid so far to the question of how the magnetic sublevels are populated when atoms are displaced from the beam axis by some impact parameter b . Here, we analyze this sublevel population for different atomic impact parameters in first-order perturbation theory and by making use of the density-matrix formalism. Detailed calculations are performed especially for the 4 s 1/2 2S →3 d 5/2 2 transition in Ca+ ions and for the vector potential of a Laguerre-Gaussian beam in Coulomb gauge. It is shown that the magnetic sublevel population of the excited 5/2 2D level varies significantly with the impact parameter and is sensitive to the polarization, the radial index, as well as the orbital angular momentum of the incident light beam.
(note that the arXiv.org version lacks the full-resolution figures) The SCP "Union" SN Ia Matrix Description Covariance Matrix with Systematics Description Full Table of All SNe Description
Applications of Perron-Frobenius theory to population dynamics.
Li, Chi-Kwong; Schneider, Hans
2002-05-01
By the use of Perron-Frobenius theory, simple proofs are given of the Fundamental Theorem of Demography and of a theorem of Cushing and Yicang on the net reproductive rate occurring in matrix models of population dynamics. The latter result, which is closely related to the Stein-Rosenberg theorem in numerical linear algebra, is further refined with some additional nonnegative matrix theory. When the fertility matrix is scaled by the net reproductive rate, the growth rate of the model is $1$. More generally, we show how to achieve a given growth rate for the model by scaling the fertility matrix. Demographic interpretations of the results are given.
Demographic matrix model for informing swallow-wort (Vincetoxicum spp.) biological control
USDA-ARS?s Scientific Manuscript database
Demographic matrix modeling of plant populations can be a powerful tool to identify key life stage transitions that contribute the most to population growth of an invasive plant and hence should be targeted for disruption (weak links) by biological control and/or other control tactics. Therefore, t...
Jastreboff, P J; Pedersen, P E; Greer, C A; Stewart, W B; Kauer, J S; Benson, T E; Shepherd, G M
1984-08-01
A critical gap exists in our knowledge of the topographical relationship between the olfactory epithelium and olfactory bulb. The present report describes the application to this problem of a method involving horseradish peroxidase conjugated to wheat germ agglutinin. This material was iontophoretically delivered to circumscribed glomeruli in the olfactory bulb and the characteristics and distribution of retrogradely labeled receptor cells were assessed. After discrete injections into small glomerular groups in the caudomedial bulb, topographically defined populations of receptor cells were labeled. Labeled receptor cell somata appeared at several levels within the epithelium. The receptor cell apical dendrites followed a tight helical course towards the surface of the epithelium. The data thus far demonstrate that functional units within the olfactory system may include not only glomeruli as previously suggested but, in addition, a corresponding matrix of receptor cells possessing functional and topographical specificity.
Jastreboff, P J; Pedersen, P E; Greer, C A; Stewart, W B; Kauer, J S; Benson, T E; Shepherd, G M
1984-01-01
A critical gap exists in our knowledge of the topographical relationship between the olfactory epithelium and olfactory bulb. The present report describes the application to this problem of a method involving horseradish peroxidase conjugated to wheat germ agglutinin. This material was iontophoretically delivered to circumscribed glomeruli in the olfactory bulb and the characteristics and distribution of retrogradely labeled receptor cells were assessed. After discrete injections into small glomerular groups in the caudomedial bulb, topographically defined populations of receptor cells were labeled. Labeled receptor cell somata appeared at several levels within the epithelium. The receptor cell apical dendrites followed a tight helical course towards the surface of the epithelium. The data thus far demonstrate that functional units within the olfactory system may include not only glomeruli as previously suggested but, in addition, a corresponding matrix of receptor cells possessing functional and topographical specificity. Images PMID:6206495
Modeling the role of quorum sensing in interspecies competition in biofilms
NASA Astrophysics Data System (ADS)
Narla, Avaneesh V.; Wingreen, Ned S.; Borenstein, David B.
Bacteria grow on surfaces in complex immobile communities known as biofilms, composed of cells embedded in an extracellular matrix. Within biofilms, bacteria often communicate, cooperate, and compete within their own species and with other species using Quorum Sensing (QS). QS refers to the process by which bacteria produce, secrete, and subsequently detect small molecules called autoinducers as a way to assess the local population density of their species, or of other species. QS is known to regulate the production of extracellular matrix. We investigated the possible benefit of QS in regulating matrix production to best gain access to a nutrient that diffuses from a source positioned away from the surface on which the biofilm grows. We employed Agent-Based Modeling (ABM), a form of simulation that allows cells to modify their behavior based on local inputs, e.g. nutrient and QS concentrations. We first determined the optimal fixed strategies (that do not use QS) for pairwise competitions, and then demonstrated that simple QS-based strategies can be superior to any fixed strategy. In nature, species can compete by sensing and/or interfering with each other's QS signals, and we explore approaches for targeting specific species via QS-interference. A.V.N. and N.S.W. contributed equally to this project.
2011-10-01
of bone regeneration in animals treated with different implantable matrix. The material to be tested in this project is a salmon fibrin matrix... Buprenorphine and metacam (Meloxicam) are also administered at the time of surgery for short term pain relief. Fluoroscopy is performed before and after injury
A General Exponential Framework for Dimensionality Reduction.
Wang, Su-Jing; Yan, Shuicheng; Yang, Jian; Zhou, Chun-Guang; Fu, Xiaolan
2014-02-01
As a general framework, Laplacian embedding, based on a pairwise similarity matrix, infers low dimensional representations from high dimensional data. However, it generally suffers from three issues: 1) algorithmic performance is sensitive to the size of neighbors; 2) the algorithm encounters the well known small sample size (SSS) problem; and 3) the algorithm de-emphasizes small distance pairs. To address these issues, here we propose exponential embedding using matrix exponential and provide a general framework for dimensionality reduction. In the framework, the matrix exponential can be roughly interpreted by the random walk over the feature similarity matrix, and thus is more robust. The positive definite property of matrix exponential deals with the SSS problem. The behavior of the decay function of exponential embedding is more significant in emphasizing small distance pairs. Under this framework, we apply matrix exponential to extend many popular Laplacian embedding algorithms, e.g., locality preserving projections, unsupervised discriminant projections, and marginal fisher analysis. Experiments conducted on the synthesized data, UCI, and the Georgia Tech face database show that the proposed new framework can well address the issues mentioned above.
Optimal projection method determination by Logdet Divergence and perturbed von-Neumann Divergence.
Jiang, Hao; Ching, Wai-Ki; Qiu, Yushan; Cheng, Xiao-Qing
2017-12-14
Positive semi-definiteness is a critical property in kernel methods for Support Vector Machine (SVM) by which efficient solutions can be guaranteed through convex quadratic programming. However, a lot of similarity functions in applications do not produce positive semi-definite kernels. We propose projection method by constructing projection matrix on indefinite kernels. As a generalization of the spectrum method (denoising method and flipping method), the projection method shows better or comparable performance comparing to the corresponding indefinite kernel methods on a number of real world data sets. Under the Bregman matrix divergence theory, we can find suggested optimal λ in projection method using unconstrained optimization in kernel learning. In this paper we focus on optimal λ determination, in the pursuit of precise optimal λ determination method in unconstrained optimization framework. We developed a perturbed von-Neumann divergence to measure kernel relationships. We compared optimal λ determination with Logdet Divergence and perturbed von-Neumann Divergence, aiming at finding better λ in projection method. Results on a number of real world data sets show that projection method with optimal λ by Logdet divergence demonstrate near optimal performance. And the perturbed von-Neumann Divergence can help determine a relatively better optimal projection method. Projection method ia easy to use for dealing with indefinite kernels. And the parameter embedded in the method can be determined through unconstrained optimization under Bregman matrix divergence theory. This may provide a new way in kernel SVMs for varied objectives.
Effects of landscape matrix on population connectivity of an arboreal mammal, Petaurus breviceps.
Malekian, Mansoureh; Cooper, Steven J B; Saint, Kathleen M; Lancaster, Melanie L; Taylor, Andrea C; Carthew, Susan M
2015-09-01
Ongoing habitat loss and fragmentation is considered a threat to biodiversity as it can create small, isolated populations that are at increased risk of extinction. Tree-dependent species are predicted to be highly sensitive to forest and woodland loss and fragmentation, but few studies have tested the influence of different types of landscape matrix on gene flow and population structure of arboreal species. Here, we examine the effects of landscape matrix on population structure of the sugar glider (Petaurus breviceps) in a fragmented landscape in southeastern South Australia. We collected 250 individuals across 12 native Eucalyptus forest remnants surrounded by cleared agricultural land or exotic Pinus radiata plantations and a large continuous eucalypt forest. Fifteen microsatellite loci were genotyped and analyzed to infer levels of population differentiation and dispersal. Genetic differentiation among most forest patches was evident. We found evidence for female philopatry and restricted dispersal distances for females relative to males, suggesting there is male-biased dispersal. Among the environmental variables, spatial variables including geographic location, minimum distance to neighboring patch, and degree of isolation were the most important in explaining genetic variation. The permeability of a cleared agricultural matrix to dispersing gliders was significantly higher than that of a pine matrix, with the gliders dispersing shorter distances across the latter. Our results added to previous findings for other species of restricted dispersal and connectivity due to habitat fragmentation in the same region, providing valuable information for the development of strategies to improve the connectivity of populations in the future.
Mallqui, K S Vilca; Vieira, J L; Guedes, R N C; Gontijo, L M
2014-04-01
Insecticides can have lethal or sublethal effects upon targeted pest species, and sublethal effects may even favor pest outbreaks if insecticide-induced hormesis occurs. Hormesis is a biphasic dose-response of a given chemical compound that is stimulatory at low doses and toxic at high doses. The former response may result from the disruption of animal homeostasis leading to trade-off shifts between basic ecophysiological processes. A growing interest in the use of biorational insecticides, such as azadirachtin to control stored-product pests, raises concerns about potential sublethal effects. In this study, we explored the hypothesis that azadirachtin can negatively impact the reproductive capacity of the Mexican bean weevil, Zabrotes subfasciatus (Boheman) (Chrysomelidae: Bruchinae), a key pest of stored beans. In addition, we investigated whether adults of this species could compensate for any sublethal effect that might have affected any of their reproductive parameters by adjusting the allocation of its reproductive efforts. The results showed that females of Z. subfasciatus increased fecundity daily to compensate for azadirachtin-induced decreased longevity. In addition, a stage-structured matrix study revealed that populations of Z. subfasciatus engendered from females exposed to azadirachtin exhibited a higher rate of population increase (r) and a higher net reproductive rate (R(o)). Finally, a projection matrix analysis showed notably higher densities along the generations for azadirachtin-exposed Z. subfasciatus populations. Thus, our study provides empirical evidence for the capacity of Z. subfasciatus to adapt to sublethal effects caused by biorational insecticides; consequently, this study highlights the importance of understanding this phenomenon when devising pest management strategies.
Yuasa, Motoyuki; Yamaguchi, Yoshie; Imada, Mihoko
2013-09-22
The Japan International Cooperation Agency (JICA) has focused its attention on appraising health development assistance projects and redirecting efforts towards health system strengthening. This study aimed to describe the type of project and targets of interest, and assess the contribution of JICA health-related projects to strengthening health systems worldwide. We collected a web-based Project Design Matrix (PDM) of 105 JICA projects implemented between January 2005 and December 2009. We developed an analytical matrix based on the World Health Organization (WHO) health system framework to examine the PDM data and thereby assess the projects' contributions to health system strengthening. The majority of JICA projects had prioritized workforce development, and improvements in governance and service delivery. Conversely, there was little assistance for finance or medical product development. The vast majority (87.6%) of JICA projects addressed public health issues, for example programs to improve maternal and child health, and the prevention and treatment of infectious diseases such as AIDS, tuberculosis and malaria. Nearly 90% of JICA technical healthcare assistance directly focused on improving governance as the most critical means of accomplishing its goals. Our study confirmed that JICA projects met the goals of bilateral cooperation by developing workforce capacity and governance. Nevertheless, our findings suggest that JICA assistance could be used to support financial aspects of healthcare systems, which is an area of increasing concern. We also showed that the analytical matrix methodology is an effective means of examining the component of health system strengthening to which the activity and output of a project contributes. This may help policy makers and practitioners focus future projects on priority areas.
Non-parametric estimation of population size changes from the site frequency spectrum.
Waltoft, Berit Lindum; Hobolth, Asger
2018-06-11
Changes in population size is a useful quantity for understanding the evolutionary history of a species. Genetic variation within a species can be summarized by the site frequency spectrum (SFS). For a sample of size n, the SFS is a vector of length n - 1 where entry i is the number of sites where the mutant base appears i times and the ancestral base appears n - i times. We present a new method, CubSFS, for estimating the changes in population size of a panmictic population from an observed SFS. First, we provide a straightforward proof for the expression of the expected site frequency spectrum depending only on the population size. Our derivation is based on an eigenvalue decomposition of the instantaneous coalescent rate matrix. Second, we solve the inverse problem of determining the changes in population size from an observed SFS. Our solution is based on a cubic spline for the population size. The cubic spline is determined by minimizing the weighted average of two terms, namely (i) the goodness of fit to the observed SFS, and (ii) a penalty term based on the smoothness of the changes. The weight is determined by cross-validation. The new method is validated on simulated demographic histories and applied on unfolded and folded SFS from 26 different human populations from the 1000 Genomes Project.
Modeling tradeoffs in avian life history traits and consequences for population growth
Clark, M.E.; Martin, T.E.
2007-01-01
Variation in population dynamics is inherently related to life history characteristics of species, which vary markedly even within phylogenetic groups such as passerine birds. We computed the finite rate of population change (??) from a matrix projection model and from mark-recapture observations for 23 bird species breeding in northern Arizona. We used sensitivity analyses and a simulation model to separate contributions of different life history traits to population growth rate. In particular we focused on contrasting effects of components of reproduction (nest success, clutch size, number of clutches, and juvenile survival) versus adult survival on ??. We explored how changes in nest success or adult survival coupled to costs in other life history parameters affected ?? over a life history gradient provided by our 23 Arizona species, as well as a broader sample of 121 North American passerine species. We further examined these effects for more than 200 passeriform and piciform populations breeding across North America. Model simulations indicate nest success and juvenile survival exert the largest effects on population growth in species with moderate to high reproductive output, whereas adult survival contributed more to population growth in long-lived species. Our simulations suggest that monitoring breeding success in populations across a broad geographic area provides an important index for identifying neotropical migratory populations at risk of serious population declines and a potential method for identifying large-scale mechanisms regulating population dynamics. ?? 2007 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Caldwell, Benjamin; Rohlman, Christopher; Benore-Parsons, Marilee
2004-01-01
We have designed a skills matrix to be used for developing and assessing undergraduate biochemistry and molecular biology laboratory curricula. We prepared the skills matrix for the Project Kaleidoscope Summer Institute workshop in Snowbird, Utah (July 2001) to help current and developing undergraduate biochemistry and molecular biology program…
MSFC Combustion Devices in 2001
NASA Technical Reports Server (NTRS)
Dexter, Carol; Turner, James (Technical Monitor)
2001-01-01
The objectives of the project detailed in this viewgraph presentation were to reduce thrust assembly weights to create lighter engines and to increase the cycle life and/or operating temperatures. Information is given on material options (metal matrix composites and polymer matrix composites), ceramic matrix composites subscale liners, lightweight linear chambers, lightweight injector development, liquid/liquid preburner tasks, and vortex chamber tasks.
Delahaie, B; Charmantier, A; Chantepie, S; Garant, D; Porlier, M; Teplitsky, C
2017-08-01
The genetic variance-covariance matrix (G-matrix) summarizes the genetic architecture of multiple traits. It has a central role in the understanding of phenotypic divergence and the quantification of the evolutionary potential of populations. Laboratory experiments have shown that G-matrices can vary rapidly under divergent selective pressures. However, because of the demanding nature of G-matrix estimation and comparison in wild populations, the extent of its spatial variability remains largely unknown. In this study, we investigate spatial variation in G-matrices for morphological and life-history traits using long-term data sets from one continental and three island populations of blue tit (Cyanistes caeruleus) that have experienced contrasting population history and selective environment. We found no evidence for differences in G-matrices among populations. Interestingly, the phenotypic variance-covariance matrices (P) were divergent across populations, suggesting that using P as a substitute for G may be inadequate. These analyses also provide the first evidence in wild populations for additive genetic variation in the incubation period (that is, the period between last egg laid and hatching) in all four populations. Altogether, our results suggest that G-matrices may be stable across populations inhabiting contrasted environments, therefore challenging the results of previous simulation studies and laboratory experiments.
2013-01-01
Background The Japan International Cooperation Agency (JICA) has focused its attention on appraising health development assistance projects and redirecting efforts towards health system strengthening. This study aimed to describe the type of project and targets of interest, and assess the contribution of JICA health-related projects to strengthening health systems worldwide. Methods We collected a web-based Project Design Matrix (PDM) of 105 JICA projects implemented between January 2005 and December 2009. We developed an analytical matrix based on the World Health Organization (WHO) health system framework to examine the PDM data and thereby assess the projects’ contributions to health system strengthening. Results The majority of JICA projects had prioritized workforce development, and improvements in governance and service delivery. Conversely, there was little assistance for finance or medical product development. The vast majority (87.6%) of JICA projects addressed public health issues, for example programs to improve maternal and child health, and the prevention and treatment of infectious diseases such as AIDS, tuberculosis and malaria. Nearly 90% of JICA technical healthcare assistance directly focused on improving governance as the most critical means of accomplishing its goals. Conclusions Our study confirmed that JICA projects met the goals of bilateral cooperation by developing workforce capacity and governance. Nevertheless, our findings suggest that JICA assistance could be used to support financial aspects of healthcare systems, which is an area of increasing concern. We also showed that the analytical matrix methodology is an effective means of examining the component of health system strengthening to which the activity and output of a project contributes. This may help policy makers and practitioners focus future projects on priority areas. PMID:24053583
System matrix computation vs storage on GPU: A comparative study in cone beam CT.
Matenine, Dmitri; Côté, Geoffroi; Mascolo-Fortin, Julia; Goussard, Yves; Després, Philippe
2018-02-01
Iterative reconstruction algorithms in computed tomography (CT) require a fast method for computing the intersection distances between the trajectories of photons and the object, also called ray tracing or system matrix computation. This work focused on the thin-ray model is aimed at comparing different system matrix handling strategies using graphical processing units (GPUs). In this work, the system matrix is modeled by thin rays intersecting a regular grid of box-shaped voxels, known to be an accurate representation of the forward projection operator in CT. However, an uncompressed system matrix exceeds the random access memory (RAM) capacities of typical computers by one order of magnitude or more. Considering the RAM limitations of GPU hardware, several system matrix handling methods were compared: full storage of a compressed system matrix, on-the-fly computation of its coefficients, and partial storage of the system matrix with partial on-the-fly computation. These methods were tested on geometries mimicking a cone beam CT (CBCT) acquisition of a human head. Execution times of three routines of interest were compared: forward projection, backprojection, and ordered-subsets convex (OSC) iteration. A fully stored system matrix yielded the shortest backprojection and OSC iteration times, with a 1.52× acceleration for OSC when compared to the on-the-fly approach. Nevertheless, the maximum problem size was bound by the available GPU RAM and geometrical symmetries. On-the-fly coefficient computation did not require symmetries and was shown to be the fastest for forward projection. It also offered reasonable execution times of about 176.4 ms per view per OSC iteration for a detector of 512 × 448 pixels and a volume of 384 3 voxels, using commodity GPU hardware. Partial system matrix storage has shown a performance similar to the on-the-fly approach, while still relying on symmetries. Partial system matrix storage was shown to yield the lowest relative performance. On-the-fly ray tracing was shown to be the most flexible method, yielding reasonable execution times. A fully stored system matrix allowed for the lowest backprojection and OSC iteration times and may be of interest for certain performance-oriented applications. © 2017 American Association of Physicists in Medicine.
Matrix population models as a tool in development of habitat models
Gregory D. Hayward; David B. McDonald
1997-01-01
Building sophisticated habitat models for conservation of owls must stem from an understanding of the relative quality of habitats at a variety of geographic and temporal scales. Developing these models requires knowing the relationship between habitat conditions and owl performance. What measure should be used to compare the quality of habitats? Matrix population...
Jenouvrier, Stéphanie; Holland, Marika; Stroeve, Julienne; Barbraud, Christophe; Weimerskirch, Henri; Serreze, Mark; Caswell, Hal
2012-09-01
Sea ice conditions in the Antarctic affect the life cycle of the emperor penguin (Aptenodytes forsteri). We present a population projection for the emperor penguin population of Terre Adélie, Antarctica, by linking demographic models (stage-structured, seasonal, nonlinear, two-sex matrix population models) to sea ice forecasts from an ensemble of IPCC climate models. Based on maximum likelihood capture-mark-recapture analysis, we find that seasonal sea ice concentration anomalies (SICa ) affect adult survival and breeding success. Demographic models show that both deterministic and stochastic population growth rates are maximized at intermediate values of annual SICa , because neither the complete absence of sea ice, nor heavy and persistent sea ice, would provide satisfactory conditions for the emperor penguin. We show that under some conditions the stochastic growth rate is positively affected by the variance in SICa . We identify an ensemble of five general circulation climate models whose output closely matches the historical record of sea ice concentration in Terre Adélie. The output of this ensemble is used to produce stochastic forecasts of SICa , which in turn drive the population model. Uncertainty is included by incorporating multiple climate models and by a parametric bootstrap procedure that includes parameter uncertainty due to both model selection and estimation error. The median of these simulations predicts a decline of the Terre Adélie emperor penguin population of 81% by the year 2100. We find a 43% chance of an even greater decline, of 90% or more. The uncertainty in population projections reflects large differences among climate models in their forecasts of future sea ice conditions. One such model predicts population increases over much of the century, but overall, the ensemble of models predicts that population declines are far more likely than population increases. We conclude that climate change is a significant risk for the emperor penguin. Our analytical approach, in which demographic models are linked to IPCC climate models, is powerful and generally applicable to other species and systems. © 2012 Blackwell Publishing Ltd.
Supervised orthogonal discriminant subspace projects learning for face recognition.
Chen, Yu; Xu, Xiao-Hong
2014-02-01
In this paper, a new linear dimension reduction method called supervised orthogonal discriminant subspace projection (SODSP) is proposed, which addresses high-dimensionality of data and the small sample size problem. More specifically, given a set of data points in the ambient space, a novel weight matrix that describes the relationship between the data points is first built. And in order to model the manifold structure, the class information is incorporated into the weight matrix. Based on the novel weight matrix, the local scatter matrix as well as non-local scatter matrix is defined such that the neighborhood structure can be preserved. In order to enhance the recognition ability, we impose an orthogonal constraint into a graph-based maximum margin analysis, seeking to find a projection that maximizes the difference, rather than the ratio between the non-local scatter and the local scatter. In this way, SODSP naturally avoids the singularity problem. Further, we develop an efficient and stable algorithm for implementing SODSP, especially, on high-dimensional data set. Moreover, the theoretical analysis shows that LPP is a special instance of SODSP by imposing some constraints. Experiments on the ORL, Yale, Extended Yale face database B and FERET face database are performed to test and evaluate the proposed algorithm. The results demonstrate the effectiveness of SODSP. Copyright © 2013 Elsevier Ltd. All rights reserved.
Inference of Population Structure using Dense Haplotype Data
Lawson, Daniel John; Hellenthal, Garrett
2012-01-01
The advent of genome-wide dense variation data provides an opportunity to investigate ancestry in unprecedented detail, but presents new statistical challenges. We propose a novel inference framework that aims to efficiently capture information on population structure provided by patterns of haplotype similarity. Each individual in a sample is considered in turn as a recipient, whose chromosomes are reconstructed using chunks of DNA donated by the other individuals. Results of this “chromosome painting” can be summarized as a “coancestry matrix,” which directly reveals key information about ancestral relationships among individuals. If markers are viewed as independent, we show that this matrix almost completely captures the information used by both standard Principal Components Analysis (PCA) and model-based approaches such as STRUCTURE in a unified manner. Furthermore, when markers are in linkage disequilibrium, the matrix combines information across successive markers to increase the ability to discern fine-scale population structure using PCA. In parallel, we have developed an efficient model-based approach to identify discrete populations using this matrix, which offers advantages over PCA in terms of interpretability and over existing clustering algorithms in terms of speed, number of separable populations, and sensitivity to subtle population structure. We analyse Human Genome Diversity Panel data for 938 individuals and 641,000 markers, and we identify 226 populations reflecting differences on continental, regional, local, and family scales. We present multiple lines of evidence that, while many methods capture similar information among strongly differentiated groups, more subtle population structure in human populations is consistently present at a much finer level than currently available geographic labels and is only captured by the haplotype-based approach. The software used for this article, ChromoPainter and fineSTRUCTURE, is available from http://www.paintmychromosomes.com/. PMID:22291602
Ralón, Gonzalo; Rossi, Diana; Vila, Marcelo; Latorre, Laura; Bastos, Francisco Inácio; Caiaffa, Waleska Teixeira
2012-12-01
This paper develops the methodological principles of pooled analysis design, using it to study situations of vulnerability among drug users at a regional level. Data from thirteen cross-sectional studies carried out in Argentina, Brazil and Uruguay between 1998 and 2004 were integrated. A critical review of the concept of data matrix which identifies four structural components, allowed us to: define the units of analysis spanning the different original populations; identify a core of common variables (social and demographic characteristics, drug use, sexual practices, serology of blood-borne and sexually transmitted diseases) with their respective values; examine the indicators, dimensions and procedures used to measure the variables; and establish their compatibility with a thematic and comparative analysis of data collection tools. The main result was a new data matrix with 3,534 cases. Multidisciplinary collaboration between teams and institutions from the three countries made it possible to maximize the available sources in order to analyze characteristics of the local contexts and of the overall regional.
Evans, Alison R; Parutis, Violetta; Hart, Graham; Mercer, Catherine H; Gerry, Christopher; Mole, Richard; French, Rebecca S; Imrie, John; Burns, Fiona
2009-10-30
Since May 2004, ten Central and Eastern European (CEE) countries have joined the European Union, leading to a large influx of CEE migrants to the United Kingdom (UK). The SALLEE project (sexual attitudes and lifestyles of London's Eastern Europeans) set out to establish an understanding of the sexual lifestyles and reproductive health risks of CEE migrants. CEE nationals make up a small minority of the population resident in the UK with no sampling frame from which to select a probability sample. There is also difficulty estimating the socio-demographic and geographical distribution of the population. In addition, measuring self-reported sexual behaviour which is generally found to be problematic, may be compounded among people from a range of different cultural and linguistic backgrounds. This paper will describe the methods adopted by the SALLEE project to address these challenges. The research was undertaken using quantitative and qualitative methods: a cross-sectional survey of CEE migrants based on three convenience samples (recruited from community venues, sexual health clinics and from the Internet) and semi-structured in-depth interviews with a purposively selected sample of CEE migrants. A detailed social mapping exercise of the CEE community was conducted prior to commencement of the survey to identify places where CEE migrants could be recruited. A total of 3,005 respondents took part in the cross-sectional survey, including 2,276 respondents in the community sample, 357 in the clinic sample and 372 in the Internet sample. 40 in-depth qualitative interviews were undertaken with a range of individuals, as determined by the interview quota matrix. The SALLEE project has benefited from using quantitative research to provide generalisable data on a range of variables and qualitative research to add in-depth understanding and interpretation. The social mapping exercise successfully located a large number of CEE migrants for the community sample and is recommended for other migrant populations, especially when little or no official data are available for this purpose. The project has collected timely data that will help us to understand the sexual lifestyles, reproductive health risks and health service needs of CEE communities in the UK.
Covariance Matrix Estimation for the Cryo-EM Heterogeneity Problem*
Katsevich, E.; Katsevich, A.; Singer, A.
2015-01-01
In cryo-electron microscopy (cryo-EM), a microscope generates a top view of a sample of randomly oriented copies of a molecule. The problem of single particle reconstruction (SPR) from cryo-EM is to use the resulting set of noisy two-dimensional projection images taken at unknown directions to reconstruct the three-dimensional (3D) structure of the molecule. In some situations, the molecule under examination exhibits structural variability, which poses a fundamental challenge in SPR. The heterogeneity problem is the task of mapping the space of conformational states of a molecule. It has been previously suggested that the leading eigenvectors of the covariance matrix of the 3D molecules can be used to solve the heterogeneity problem. Estimating the covariance matrix is challenging, since only projections of the molecules are observed, but not the molecules themselves. In this paper, we formulate a general problem of covariance estimation from noisy projections of samples. This problem has intimate connections with matrix completion problems and high-dimensional principal component analysis. We propose an estimator and prove its consistency. When there are finitely many heterogeneity classes, the spectrum of the estimated covariance matrix reveals the number of classes. The estimator can be found as the solution to a certain linear system. In the cryo-EM case, the linear operator to be inverted, which we term the projection covariance transform, is an important object in covariance estimation for tomographic problems involving structural variation. Inverting it involves applying a filter akin to the ramp filter in tomography. We design a basis in which this linear operator is sparse and thus can be tractably inverted despite its large size. We demonstrate via numerical experiments on synthetic datasets the robustness of our algorithm to high levels of noise. PMID:25699132
Preconditioned Alternating Projection Algorithms for Maximum a Posteriori ECT Reconstruction
Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng
2012-01-01
We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constrain involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the preconditioned alternating projection algorithm. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality. PMID:23271835
Affine Projection Algorithm with Improved Data-Selective Method Using the Condition Number
NASA Astrophysics Data System (ADS)
Ban, Sung Jun; Lee, Chang Woo; Kim, Sang Woo
Recently, a data-selective method has been proposed to achieve low misalignment in affine projection algorithm (APA) by keeping the condition number of an input data matrix small. We present an improved method, and a complexity reduction algorithm for the APA with the data-selective method. Experimental results show that the proposed algorithm has lower misalignment and a lower condition number for an input data matrix than both the conventional APA and the APA with the previous data-selective method.
The concept and use of elasticity in population viability models [Exercise 13
Carolyn Hull Sieg; Rudy M. King; Fred Van Dyke
2003-01-01
As you have seen in exercise 12, plants, such as the western prairie fringed orchid, typically have distinct life stages and complex life cycles that require the matrix analyses associated with a stage-based population model. Some statistics that can be generated from such matrix analyses can be very informative in determining which variables in the model have the...
Juxtaposed Integration Matrix: A Crisis Communication Tool
2005-05-19
Integration Matrix: A Crisis Communication Tool 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR (S) 5d. PROJECT NUMBER 5e...for their patience and understanding when Daddy had to do schoolwork. The views expressed in this article are those of the author and do not reflect...62 APPENDIX A JUXTAPOSED INTEGRATION MATRIX TRAINING GUIDE ............................64 B QUESTIONNAIRE WORKSHEET
Solution of nonlinear time-dependent PDEs through componentwise approximation of matrix functions
NASA Astrophysics Data System (ADS)
Cibotarica, Alexandru; Lambers, James V.; Palchak, Elisabeth M.
2016-09-01
Exponential propagation iterative (EPI) methods provide an efficient approach to the solution of large stiff systems of ODEs, compared to standard integrators. However, the bulk of the computational effort in these methods is due to products of matrix functions and vectors, which can become very costly at high resolution due to an increase in the number of Krylov projection steps needed to maintain accuracy. In this paper, it is proposed to modify EPI methods by using Krylov subspace spectral (KSS) methods, instead of standard Krylov projection methods, to compute products of matrix functions and vectors. Numerical experiments demonstrate that this modification causes the number of Krylov projection steps to become bounded independently of the grid size, thus dramatically improving efficiency and scalability. As a result, for each test problem featured, as the total number of grid points increases, the growth in computation time is just below linear, while other methods achieved this only on selected test problems or not at all.
NASA Astrophysics Data System (ADS)
Ghale, Purnima; Johnson, Harley T.
2018-06-01
We present an efficient sparse matrix-vector (SpMV) based method to compute the density matrix P from a given Hamiltonian in electronic structure computations. Our method is a hybrid approach based on Chebyshev-Jackson approximation theory and matrix purification methods like the second order spectral projection purification (SP2). Recent methods to compute the density matrix scale as O(N) in the number of floating point operations but are accompanied by large memory and communication overhead, and they are based on iterative use of the sparse matrix-matrix multiplication kernel (SpGEMM), which is known to be computationally irregular. In addition to irregularity in the sparse Hamiltonian H, the nonzero structure of intermediate estimates of P depends on products of H and evolves over the course of computation. On the other hand, an expansion of the density matrix P in terms of Chebyshev polynomials is straightforward and SpMV based; however, the resulting density matrix may not satisfy the required constraints exactly. In this paper, we analyze the strengths and weaknesses of the Chebyshev-Jackson polynomials and the second order spectral projection purification (SP2) method, and propose to combine them so that the accurate density matrix can be computed using the SpMV computational kernel only, and without having to store the density matrix P. Our method accomplishes these objectives by using the Chebyshev polynomial estimate as the initial guess for SP2, which is followed by using sparse matrix-vector multiplications (SpMVs) to replicate the behavior of the SP2 algorithm for purification. We demonstrate the method on a tight-binding model system of an oxide material containing more than 3 million atoms. In addition, we also present the predicted behavior of our method when applied to near-metallic Hamiltonians with a wide energy spectrum.
Thiel, Gilbert T
2007-03-02
Forty projects on stem cell research, tissue and matrix engineering, tolerance induction and other topics were supported by the Swiss National Research Program NRP46 (Implants, Transplants) from 1999-2006. The last project is devoted to developing stem cell lines from frozen surplus human embryos in Switzerland, which would otherwise have to be destroyed at the end of 2008. It is entitled JESP (Joint Embryonic Stem Cell Project) since it involves two Swiss universities, in vitro fertilisation centres and experts from the humanities (ethics and law) to handle this difficult problem. Over the years, stem cell transplantation and tissue/matrix engineering have drawn closer to each other and even developed synergies. Progress in stem cell research has been slower than anticipated, but a multitude of technical skills (phenotyping, isolation, transfection, induction of differentiation, labelling, expanding cells in culture, etc) were acquired. Understanding of stem cell biology has grown. The 7 projects on tissue and matrix engineering progressed closer to clinical applicability than the stem cell projects. Of 3 projects to implant encapsulated cells for the production of hormones (insulin, erythropoietin), one is close to clinical pilot studies with an advanced encapsulated device. Five projects were devoted to mechanisms of tolerance or the role of metzincins in chronic allograft nephropathy. Four studies in psychology and communication in transplantation were funded, as were 5 projects in ethics, law and the history of transplantation in Switzerland. The goal of NRP46 was to provide an impulse for research in these new fields and bring together experts from the humanities, biology and medicine to cope more effectively with the problems of regenerative medicine in the future. The majority of goals were attained, mainly in the basics.
Hong-Ping, Xie; Jian-Hui, Jiang; Guo-Li, Shen; Ru-Qin, Yu
2002-01-01
A new approach for estimating the chemical rank of the three-way array called the principal norm vector orthogonal projection method has been proposed. The method is based on the fact that the chemical rank of the three-way data array is equal to one of the column space of the unfolded matrix along the spectral or chromatographic mode. A vector with maximum Frobenius norm is selected among all the column vectors of the unfolded matrix as the principal norm vector (PNV). A transformation is conducted for the column vectors with an orthogonal projection matrix formulated by PNV. The mathematical rank of the column space of the residual matrix thus obtained should decrease by one. Such orthogonal projection is carried out repeatedly till the contribution of chemical species to the signal data is all deleted. At this time the decrease of the mathematical rank would equal that of the chemical rank, and the remaining residual subspace would entirely be due to the noise contribution. The chemical rank can be estimated easily by using an F-test. The method has been used successfully to the simulated HPLC-DAD type three-way data array and two real excitation-emission fluorescence data sets of amino acid mixtures and dye mixtures. The simulation with added relatively high level noise shows that the method is robust in resisting the heteroscedastic noise. The proposed algorithm is simple and easy to program with quite light computational burden.
Conservation biology for suites of species: Demographic modeling for Pacific island kingfishers
Kesler, D.C.; Haig, S.M.
2007-01-01
Conservation practitioners frequently extrapolate data from single-species investigations when managing critically endangered populations. However, few researchers initiate work with the intent of making findings useful to conservation efforts for other species. We presented and explored the concept of conducting conservation-oriented research for suites of geographically separated populations with similar natural histories, resource needs, and extinction threats. An example was provided in the form of an investigation into the population demography of endangered Micronesian kingfishers (Todiramphus cinnamominus). We provided the first demographic parameter estimates for any of the 12 endangered Pacific Todiramphus species, and used results to develop a population projection matrix model for management throughout the insular Pacific. Further, we used the model for elasticity and simulation analyses with demographic values that randomly varied across ranges that might characterize congener populations. Results from elasticity and simulation analyses indicated that changes in breeding adult survival exerted the greatest magnitude of influence on population dynamics. However, changes in nestling survival were more consistently correlated with population dynamics as demographic rates were randomly altered. We concluded that conservation practitioners working with endangered Pacific kingfishers should primarily focus efforts on factors affecting nestling and breeder survival, and secondarily address fledgling juveniles and helpers. Further, we described how the generalized base model might be changed to focus on individual populations and discussed the potential application of multi-species models to other conservation situations. ?? 2007 Elsevier Ltd. All rights reserved.
SimBA: simulation algorithm to fit extant-population distributions.
Parida, Laxmi; Haiminen, Niina
2015-03-14
Simulation of populations with specified characteristics such as allele frequencies, linkage disequilibrium etc., is an integral component of many studies, including in-silico breeding optimization. Since the accuracy and sensitivity of population simulation is critical to the quality of the output of the applications that use them, accurate algorithms are required to provide a strong foundation to the methods in these studies. In this paper we present SimBA (Simulation using Best-fit Algorithm) a non-generative approach, based on a combination of stochastic techniques and discrete methods. We optimize a hill climbing algorithm and extend the framework to include multiple subpopulation structures. Additionally, we show that SimBA is very sensitive to the input specifications, i.e., very similar but distinct input characteristics result in distinct outputs with high fidelity to the specified distributions. This property of the simulation is not explicitly modeled or studied by previous methods. We show that SimBA outperforms the existing population simulation methods, both in terms of accuracy as well as time-efficiency. Not only does it construct populations that meet the input specifications more stringently than other published methods, SimBA is also easy to use. It does not require explicit parameter adaptations or calibrations. Also, it can work with input specified as distributions, without an exemplar matrix or population as required by some methods. SimBA is available at http://researcher.ibm.com/project/5669 .
Some Methods for Evaluating Program Implementation.
ERIC Educational Resources Information Center
Hardy, Roy A.
An approach to evaluating program implementation is described. This approach includes the development of a project description which includes a structure matrix, sampling from the structure matrix, and preparing an implementation evaluation plan. The implementation evaluation plan should include: (1) verification of implementation of planned…
NASA Astrophysics Data System (ADS)
Zhang, Yi; Vishwanath, Ashvin
2013-04-01
We use entanglement entropy signatures to establish non-Abelian topological order in projected Chern-insulator wave functions. The simplest instance is obtained by Gutzwiller projecting a filled band with Chern number C=2, whose wave function may also be viewed as the square of the Slater determinant of a band insulator. We demonstrate that this wave function is captured by the SU(2)2 Chern-Simons theory coupled to fermions. This is established most persuasively by calculating the modular S-matrix from the candidate ground-state wave functions, following a recent entanglement-entropy-based approach. This directly demonstrates the peculiar non-Abelian braiding statistics of Majorana fermion quasiparticles in this state. We also provide microscopic evidence for the field theoretic generalization, that the Nth power of a Chern number C Slater determinant realizes the topological order of the SU(N)C Chern-Simons theory coupled to fermions, by studying the SU(2)3 (Read-Rezayi-type state) and the SU(3)2 wave functions. An advantage of our projected Chern-insulator wave functions is the relative ease with which physical properties, such as entanglement entropy and modular S-matrix, can be numerically calculated using Monte Carlo techniques.
Ghasemian, Mohammad; Poursafa, Parinaz; Amin, Mohammad Mehdi; Ziarati, Mohammad; Ghoddousi, Hamid; Momeni, Seyyed Alireza; Rezaei, Amir Hossein
2012-01-01
The purpose of this study is environmental impact assessment of the industrial estate development planning. This cross-sectional study was conducted in 2010 in Isfahan province, Iran. GIS and matrix methods were applied. Data analysis was done to identify the current situation of the region, zoning vulnerable areas, and scoping the region. Quantitative evaluation was done by using matrix of Wooten and Rau. The net score for impact of industrial units operation on air quality of the project area was (-3). According to the transition of industrial estate pollutants, residential places located in the radius of 2500 meters of the city were expected to be affected more. The net score for impact of construction of industrial units on plant species of the project area was (-2). Environmental protected areas were not affected by the air and soil pollutants because of their distance from industrial estate. Positive effects of project activities outweigh the drawbacks and the sum scores allocated to the project activities on environmental factor was (+37). Totally it does not have detrimental effects on the environment and residential neighborhood. EIA should be considered as an anticipatory, participatory environmental management tool before determining a plan application.
Diabetes incidence and projections from prevalence surveys in Fiji.
Morrell, Stephen; Lin, Sophia; Tukana, Isimeli; Linhart, Christine; Taylor, Richard; Vatucawaqa, Penina; Magliano, Dianna J; Zimmet, Paul
2016-11-25
Type 2 diabetes mellitus (T2DM) incidence is traditionally derived from cohort studies that are not always feasible, representative, or available. The present study estimates T2DM incidence in Fijian adults from T2DM prevalence estimates assembled from surveys of 25-64 year old adults conducted over 30 years (n = 14,288). T2DM prevalence by five-year age group from five population-based risk factor surveys conducted over 1980-2011 were variously adjusted for urban-rural residency, ethnicity, and sex to previous censuses (1976, 1986, 1996, 2009) to improve representativeness. Prevalence estimates were then used to calculate T2DM incidence based on birth cohorts from the age-period (Lexis) matrix following the Styblo technique, first used to estimate annual risk of tuberculosis infection (incidence) from sequential Mantoux population surveys. Poisson regression of year, age, sex, and ethnicity strata (n = 160) was used to develop projections of T2DM prevalence and incidence to 2020 based on various scenarios of population weight measured by body mass index (BMI) change. T2DM prevalence and annual incidence increased in Fiji over 1980-2011. Prevalence was higher in Indians and men than i-Taukei and women. Incidence was higher in Indians and women. From regression analyses, absolute reductions of 2.6 to 5.1% in T2DM prevalence (13-26% lower), and 0.5-0.9 per 1000 person-years in incidence (8-14% lower), could be expected in 2020 in adults if mean population weight could be reduced by 1-4 kg, compared to the current period trend in weight gain. This is the first application of the Styblo technique to calculate T2DM incidence from population-based prevalence surveys over time. Reductions in population BMI are predicted to reduce T2DM incidence and prevalence in Fiji among adults aged 25-64 years.
Project Effectiveness and the Balance of Power in Matrix Organizations: An Exploratory Study.
1986-09-01
Vasconcellos , Eduardo . "A Model for a Better Understanding of the Matrix Structure." IEEE Transactions on Engineering Management, EM-26: 56-65 (August...coercive power correlated negatively with degree of support (39:219-220). Vasconcellos recognized the five common power sources referenced above and...effect. The second variable identified by Vasconcellos was used to differentiate matrix structures. He felt that it was necessary to differentiate
ERIC Educational Resources Information Center
Cudeck, Robert; Browne, Michael W.
1992-01-01
A method is proposed for constructing a population covariance matrix as the sum of a particular model plus a nonstochastic residual matrix, with the stipulation that the model holds with a prespecified lack of fit. The procedure is considered promising for Monte Carlo studies. (SLD)
Effective Perron-Frobenius eigenvalue for a correlated random map
NASA Astrophysics Data System (ADS)
Pool, Roman R.; Cáceres, Manuel O.
2010-09-01
We investigate the evolution of random positive linear maps with various type of disorder by analytic perturbation and direct simulation. Our theoretical result indicates that the statistics of a random linear map can be successfully described for long time by the mean-value vector state. The growth rate can be characterized by an effective Perron-Frobenius eigenvalue that strongly depends on the type of correlation between the elements of the projection matrix. We apply this approach to an age-structured population dynamics model. We show that the asymptotic mean-value vector state characterizes the population growth rate when the age-structured model has random vital parameters. In this case our approach reveals the nontrivial dependence of the effective growth rate with cross correlations. The problem was reduced to the calculation of the smallest positive root of a secular polynomial, which can be obtained by perturbations in terms of Green’s function diagrammatic technique built with noncommutative cumulants for arbitrary n -point correlations.
Modelling the effect of urbanization on the transmission of an infectious disease.
Zhang, Ping; Atkinson, Peter M
2008-01-01
This paper models the impact of urbanization on infectious disease transmission by integrating a CA land use development model, population projection matrix model and CA epidemic model in S-Plus. The innovative feature of this model lies in both its explicit treatment of spatial land use development, demographic changes, infectious disease transmission and their combination in a dynamic, stochastic model. Heuristically-defined transition rules in cellular automata (CA) were used to capture the processes of both land use development with urban sprawl and infectious disease transmission. A population surface model and dwelling distribution surface were used to bridge the gap between urbanization and infectious disease transmission. A case study is presented involving modelling influenza transmission in Southampton, a dynamically evolving city in the UK. The simulation results for Southampton over a 30-year period show that the pattern of the average number of infection cases per day can depend on land use and demographic changes. The modelling framework presents a useful tool that may be of use in planning applications.
Matrix population models from 20 studies of perennial plant populations
Ellis, Martha M.; Williams, Jennifer L.; Lesica, Peter; Bell, Timothy J.; Bierzychudek, Paulette; Bowles, Marlin; Crone, Elizabeth E.; Doak, Daniel F.; Ehrlen, Johan; Ellis-Adam, Albertine; McEachern, Kathryn; Ganesan, Rengaian; Latham, Penelope; Luijten, Sheila; Kaye, Thomas N.; Knight, Tiffany M.; Menges, Eric S.; Morris, William F.; den Nijs, Hans; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Shelly, J. Stephen; Stanley, Amanda; Thorpe, Andrea; Tamara, Ticktin; Valverde, Teresa; Weekley, Carl W.
2012-01-01
Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the "Testing Matrix Models" working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with >460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics.
Matrix population models from 20 studies of perennial plant populations
Ellis, Martha M.; Williams, Jennifer L.; Lesica, Peter; Bell, Timothy J.; Bierzychudek, Paulette; Bowles, Marlin; Crone, Elizabeth E.; Doak, Daniel F.; Ehrlen, Johan; Ellis-Adam, Albertine; McEachern, Kathryn; Ganesan, Rengaian; Latham, Penelope; Luijten, Sheila; Kaye, Thomas N.; Knight, Tiffany M.; Menges, Eric S.; Morris, William F.; den Nijs, Hans; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Shelly, J. Stephen; Stanley, Amanda; Thorpe, Andrea; Tamara, Ticktin; Valverde, Teresa; Weekley, Carl W.
2012-01-01
Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the 'Testing Matrix Models' working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with >460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics.
Levina, Olga S.; Heimer, Robert; Odinokova, Veronika; Bodanovskaya, Zinaida; Safiullina, Liliya; Irwin, Kevin S.; Niccolai, Linda M.
2014-01-01
Street-based sex work in Russia, as in many countries, carries with it a high risk for violence and the transmission of infectious diseases. The male partners of female sex workers are both cause and recipient of such risks. Because little is known about the men, we undertook a preliminary study to determine the feasibility of recruiting and interviewing them, develop typologies that describe partners, and derive hypotheses for further study and risk reduction intervention projects. We were able to conduct open-ended, qualitative interviews with street-based sex workers and, largely through these contacts, their male partners. To these data, we added interviews with social work and medical experts who engage with the sex workers. The text of interviews from 37 respondents were analyzed to identify commonly mentioned partner characteristics in five distinct domains: sociodemographics, behavioral patterns of the partners, motivations in seeking sex services, levels of partner engagement with the sex workers, and the social circumstances that moderate the engagement. Four of the five domains (all but sociodemographics) proved useful in identifying typologies that were best described as populated points in a matrix generated from the intersection of the four domains. The data were too limited to specify which of the points in the matrix are most common, but the points populated are useful in generating hypotheses for further study and in identifying potential avenues for risk reduction interventions. PMID:25741032
Levina, Olga S; Heimer, Robert; Odinokova, Veronika; Bodanovskaya, Zinaida; Safiullina, Liliya; Irwin, Kevin S; Niccolai, Linda M
2012-01-01
Street-based sex work in Russia, as in many countries, carries with it a high risk for violence and the transmission of infectious diseases. The male partners of female sex workers are both cause and recipient of such risks. Because little is known about the men, we undertook a preliminary study to determine the feasibility of recruiting and interviewing them, develop typologies that describe partners, and derive hypotheses for further study and risk reduction intervention projects. We were able to conduct open-ended, qualitative interviews with street-based sex workers and, largely through these contacts, their male partners. To these data, we added interviews with social work and medical experts who engage with the sex workers. The text of interviews from 37 respondents were analyzed to identify commonly mentioned partner characteristics in five distinct domains: sociodemographics, behavioral patterns of the partners, motivations in seeking sex services, levels of partner engagement with the sex workers, and the social circumstances that moderate the engagement. Four of the five domains (all but sociodemographics) proved useful in identifying typologies that were best described as populated points in a matrix generated from the intersection of the four domains. The data were too limited to specify which of the points in the matrix are most common, but the points populated are useful in generating hypotheses for further study and in identifying potential avenues for risk reduction interventions.
ECOS E-MATRIX Methane and Volatile Organic Carbon (VOC) Emissions Best Practices Database
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parisien, Lia
2016-01-31
This final scientific/technical report on the ECOS e-MATRIX Methane and Volatile Organic Carbon (VOC) Emissions Best Practices Database provides a disclaimer and acknowledgement, table of contents, executive summary, description of project activities, and briefing/technical presentation link.
The RE-Powering Renewable Energy project list tracks completed projects where renewable energy systems have been installed on contaminated lands, landfills, and mine sites.This resource is for informational purposes only and may not be comprehensive.
Method of joining metallic and composite components
NASA Technical Reports Server (NTRS)
Semmes, Edmund B. (Inventor)
2010-01-01
A method is provided for joining a metallic member to a structure made of a composite matrix material. One or more surfaces of a portion of the metallic member that is to be joined to the composite matrix structure is provided with a plurality of outwardly projecting studs. The surface including the studs is brought into engagement with a portion of an uncured composite matrix material so that fibers of the composite matrix material intertwine with the studs, and the metallic member and composite structure form an assembly. The assembly is then companion cured so as to join the metallic member to the composite matrix material structure.
Preconditioned alternating projection algorithms for maximum a posteriori ECT reconstruction
NASA Astrophysics Data System (ADS)
Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng
2012-11-01
We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constraint involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the PAPA. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality.
NASA Astrophysics Data System (ADS)
Pan, Feng; Ding, Xiaoxue; Launey, Kristina D.; Draayer, J. P.
2018-06-01
A simple and effective algebraic isospin projection procedure for constructing orthonormal basis vectors of irreducible representations of O (5) ⊃OT (3) ⊗ON (2) from those in the canonical O (5) ⊃ SUΛ (2) ⊗ SUI (2) basis is outlined. The expansion coefficients are components of null space vectors of the projection matrix with four nonzero elements in each row in general. Explicit formulae for evaluating OT (3)-reduced matrix elements of O (5) generators are derived.
NASA Astrophysics Data System (ADS)
Jin, Juliang; Li, Lei; Wang, Wensheng; Zhang, Ming
2006-10-01
The optimal selection of schemes of water transportation projects is a process of choosing a relatively optimal scheme from a number of schemes of water transportation programming and management projects, which is of importance in both theory and practice in water resource systems engineering. In order to achieve consistency and eliminate the dimensions of fuzzy qualitative and fuzzy quantitative evaluation indexes, to determine the weights of the indexes objectively, and to increase the differences among the comprehensive evaluation index values of water transportation project schemes, a projection pursuit method, named FPRM-PP for short, was developed in this work for selecting the optimal water transportation project scheme based on the fuzzy preference relation matrix. The research results show that FPRM-PP is intuitive and practical, the correction range of the fuzzy preference relation matrix
A metapopulation approach to African lion (Panthera leo) conservation.
Dolrenry, Stephanie; Stenglein, Jennifer; Hazzah, Leela; Lutz, R Scott; Frank, Laurence
2014-01-01
Due to anthropogenic pressures, African lion (Panthera leo) populations in Kenya and Tanzania are increasingly limited to fragmented populations. Lions living on isolated habitat patches exist in a matrix of less-preferred habitat. A framework of habitat patches within a less-suitable matrix describes a metapopulation. Metapopulation analysis can provide insight into the dynamics of each population patch in reference to the system as a whole, and these analyses often guide conservation planning. We present the first metapopulation analysis of African lions. We use a spatially-realistic model to investigate how sex-biased dispersal abilities of lions affect patch occupancy and also examine whether human densities surrounding the remaining lion populations affect the metapopulation as a whole. Our results indicate that male lion dispersal ability strongly contributes to population connectivity while the lesser dispersal ability of females could be a limiting factor. When populations go extinct, recolonization will not occur if distances between patches exceed female dispersal ability or if females are not able to survive moving across the matrix. This has profound implications for the overall metapopulation; the female models showed an intrinsic extinction rate from five-fold to a hundred-fold higher than the male models. Patch isolation is a consideration for even the largest lion populations. As lion populations continue to decline and with local extinctions occurring, female dispersal ability and the proximity to the nearest lion population are serious considerations for the recolonization of individual populations and for broader conservation efforts.
A Metapopulation Approach to African Lion (Panthera leo) Conservation
Dolrenry, Stephanie; Stenglein, Jennifer; Hazzah, Leela; Lutz, R. Scott; Frank, Laurence
2014-01-01
Due to anthropogenic pressures, African lion (Panthera leo) populations in Kenya and Tanzania are increasingly limited to fragmented populations. Lions living on isolated habitat patches exist in a matrix of less-preferred habitat. A framework of habitat patches within a less-suitable matrix describes a metapopulation. Metapopulation analysis can provide insight into the dynamics of each population patch in reference to the system as a whole, and these analyses often guide conservation planning. We present the first metapopulation analysis of African lions. We use a spatially-realistic model to investigate how sex-biased dispersal abilities of lions affect patch occupancy and also examine whether human densities surrounding the remaining lion populations affect the metapopulation as a whole. Our results indicate that male lion dispersal ability strongly contributes to population connectivity while the lesser dispersal ability of females could be a limiting factor. When populations go extinct, recolonization will not occur if distances between patches exceed female dispersal ability or if females are not able to survive moving across the matrix. This has profound implications for the overall metapopulation; the female models showed an intrinsic extinction rate from five-fold to a hundred-fold higher than the male models. Patch isolation is a consideration for even the largest lion populations. As lion populations continue to decline and with local extinctions occurring, female dispersal ability and the proximity to the nearest lion population are serious considerations for the recolonization of individual populations and for broader conservation efforts. PMID:24505385
Estimation of Potential Population Level Effects of Contaminants on Wildlife
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loar, J.M.
2001-06-11
The objective of this project is to provide DOE with improved methods to assess risks from contaminants to wildlife populations. The current approach for wildlife risk assessment consists of comparison of contaminant exposure estimates for individual animals to literature-derived toxicity test endpoints. These test endpoints are assumed to estimate thresholds for population-level effects. Moreover, species sensitivities to contaminants is one of several criteria to be considered when selecting assessment endpoints (EPA 1997 and 1998), yet data on the sensitivities of many birds and mammals are lacking. The uncertainties associated with this approach are considerable. First, because toxicity data are notmore » available for most potential wildlife endpoint species, extrapolation of toxicity data from test species to the species of interest is required. There is no consensus on the most appropriate extrapolation method. Second, toxicity data are represented as statistical measures (e.g., NOAEL s or LOAELs) that provide no information on the nature or magnitude of effects. The level of effect is an artifact of the replication and dosing regime employed, and does not indicate how effects might increase with increasing exposure. Consequently, slight exceedance of a LOAEL is not distinguished from greatly exceeding it. Third, the relationship of toxic effects on individuals to effects on populations is poorly estimated by existing methods. It is assumed that if the exposure of individuals exceeds levels associated with impaired reproduction, then population level effects are likely. Uncertainty associated with this assumption is large because depending on the reproductive strategy of a given species, comparable levels of reproductive impairment may result in dramatically different population-level responses. This project included several tasks to address these problems: (1) investigation of the validity of the current allometric scaling approach for interspecies extrapolation an d development of new scaling models; (2) development of dose-response models for toxicity data presented in the literature; and (3) development of matrix-based population models that were coupled with dose-response models to provide realistic estimation of population-level effects for individual responses.« less
NASA Astrophysics Data System (ADS)
Maravall, Darío; de Lope, Javier; Domínguez, Raúl
In Multi-agent systems, the study of language and communication is an active field of research. In this paper we present the application of evolutionary strategies to the self-emergence of a common lexicon in a population of agents. By modeling the vocabulary or lexicon of each agent as an association matrix or look-up table that maps the meanings (i.e. the objects encountered by the agents or the states of the environment itself) into symbols or signals we check whether it is possible for the population to converge in an autonomous, decentralized way to a common lexicon, so that the communication efficiency of the entire population is optimal. We have conducted several experiments, from the simplest case of a 2×2 association matrix (i.e. two meanings and two symbols) to a 3×3 lexicon case and in both cases we have attained convergence to the optimal communication system by means of evolutionary strategies. To analyze the convergence of the population of agents we have defined the population's consensus when all the agents (i.e. the 100% of the population) share the same association matrix or lexicon. As a general conclusion we have shown that evolutionary strategies are powerful enough optimizers to guarantee the convergence to lexicon consensus in a population of autonomous agents.
Collagen-coated cellulose sponge: three dimensional matrix for tissue culture of Walker tumor 256.
Leighton, J; Justh, G; Esper, M; Kronenthal, R L
1967-03-10
Three-dimensional growth of large populations of cells in vitro has been observed in the interstices of a matrix consisting of collagen-coated cellu lose sponge. The growth of Walker tumor 256 in this composite matrix is com pared with that found in a matrix composed of either cellulose sponge alone or collagen sponge alone. The composite matrix is superior to either one. Collagen coated cellulose sponge may provide a simple tool for the study of social interaction of cells in the formation of organized elementary tissue structures.
Investigation and Implementation of Matrix Permanent Algorithms for Identity Resolution
2014-12-01
calculation of the permanent of a matrix whose dimension is a function of target count [21]. However, the optimal approach for computing the permanent is...presently unclear. The primary objective of this project was to determine the optimal computing strategy(-ies) for the matrix permanent in tactical and...solving various combinatorial problems (see [16] for details and appli- cations to a wide variety of problems) and thus can be applied to compute a
Yamada, Toshihiro; Yamada, Yuko; Okuda, Toshinori; Fletcher, Christine
2013-07-01
Differences in the density of conspecific tree individuals in response to environmental gradients are well documented for many tree species, but how such density differences are generated and maintained is poorly understood. We examined the segregation of six dipterocarp species among three soil types in the Pasoh tropical forest, Malaysia. We examined how individual performance and population dynamics changed across the soil types using 10-year demographic data to compare tree performance across soil types, and constructed population matrix models to analyze the population dynamics. Species showed only minor changes in mortality and juvenile growth across soil types, although recruitment differed greatly. Clear, interspecific demographic trade-offs between growth and mortality were found in all soil types. The relative trade-offs by a species did not differ substantially among the soil types. Population sizes were projected to remain stable in all soil types for all species with one exception. Our life-table response experiment demonstrated that the population dynamics of a species differed only subtly among soil types. Therefore, species with strong density differences across soil types do not necessarily differ greatly in their population dynamics across the soil types. In contrast, interspecific differences in population dynamics were large. The trade-off between mortality and growth led to a negative correlation between the contributions of mortality and growth to variations in the population growth rate (λ) and thus reduced their net contributions. Recruitment had little impact on the variation in λ. The combination of these factors resulted in little variation in λ among species.
Practical implementation of tetrahedral mesh reconstruction in emission tomography
Boutchko, R.; Sitek, A.; Gullberg, G. T.
2014-01-01
This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio projection datasets. The results demonstrate that the reconstructed images represented as tetrahedral meshes based on point clouds offer image quality comparable to that achievable using a standard voxel grid while allowing substantial reduction in the number of unknown intensities to be reconstructed and reducing the noise. PMID:23588373
Practical implementation of tetrahedral mesh reconstruction in emission tomography
NASA Astrophysics Data System (ADS)
Boutchko, R.; Sitek, A.; Gullberg, G. T.
2013-05-01
This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio projection datasets. The results demonstrate that the reconstructed images represented as tetrahedral meshes based on point clouds offer image quality comparable to that achievable using a standard voxel grid while allowing substantial reduction in the number of unknown intensities to be reconstructed and reducing the noise.
Maniscalco, John M.; Springer, Alan M.; Adkison, Milo D.; Parker, Pamela
2015-01-01
Steller sea lion (Eumetopias jubatus) numbers are beginning to recover across most of the western distinct population segment following catastrophic declines that began in the 1970s and ended around the turn of the century. This study makes use of contemporary vital rate estimates from a trend-site rookery in the eastern Gulf of Alaska (a sub-region of the western population) in a matrix population model to estimate the trend and strength of the recovery across this region between 2003 and 2013. The modeled population trend was projected into the future based on observed variation in vital rates and a prospective elasticity analysis was conducted to determine future trends and which vital rates pose the greatest threats to recovery. The modeled population grew at a mean rate of 3.5% per yr between 2003 and 2013 and was correlated with census count data from the local rookery and throughout the eastern Gulf of Alaska. If recent vital rate estimates continue with little change, the eastern Gulf of Alaska population could be fully recovered to pre-decline levels within 23 years. With density dependent growth, the population would need another 45 years to fully recover. Elasticity analysis showed that, as expected, population growth rate (λ) was most sensitive to changes in adult survival, less sensitive to changes in juvenile survival, and least sensitive to changes in fecundity. A population decline could be expected with only a 6% decrease in adult survival, whereas a 32% decrease in fecundity would be necessary to bring about a population decline. These results have important implications for population management and suggest current research priorities should be shifted to a greater emphasis on survival rates and causes of mortality. PMID:26488901
Nonlinear optimization with linear constraints using a projection method
NASA Technical Reports Server (NTRS)
Fox, T.
1982-01-01
Nonlinear optimization problems that are encountered in science and industry are examined. A method of projecting the gradient vector onto a set of linear contraints is developed, and a program that uses this method is presented. The algorithm that generates this projection matrix is based on the Gram-Schmidt method and overcomes some of the objections to the Rosen projection method.
Matrix quality and disturbance frequency drive evolution of species behavior at habitat boundaries.
Martin, Amanda E; Fahrig, Lenore
2015-12-01
Previous theoretical studies suggest that a species' landscape should influence the evolution of its dispersal characteristics, because landscape structure affects the costs and benefits of dispersal. However, these studies have not considered the evolution of boundary crossing, that is, the tendency of animals to cross from habitat to nonhabitat ("matrix"). It is important to understand this dispersal behavior, because of its effects on the probability of population persistence. Boundary-crossing behavior drives the rate of interaction with matrix, and thus, it influences the rate of movement among populations and the risk of dispersal mortality. We used an individual-based, spatially explicit model to simulate the evolution of boundary crossing in response to landscape structure. Our simulations predict higher evolved probabilities of boundary crossing in landscapes with more habitat, less fragmented habitat, higher-quality matrix, and more frequent disturbances (i.e., fewer generations between local population extinction events). Unexpectedly, our simulations also suggest that matrix quality and disturbance frequency have much stronger effects on the evolution of boundary crossing than either habitat amount or habitat fragmentation. Our results suggest that boundary-crossing responses are most affected by the costs of dispersal through matrix and the benefits of escaping local extinction events. Evolution of optimal behavior at habitat boundaries in response to the landscape may have implications for species in human-altered landscapes, because this behavior may become suboptimal if the landscape changes faster than the species' evolutionary response to that change. Understanding how matrix quality and habitat disturbance drive evolution of behavior at boundaries, and how this in turn influences the extinction risk of species in human-altered landscapes should help us identify species of conservation concern and target them for management.
NASA Astrophysics Data System (ADS)
Razgulin, A. V.; Sazonova, S. V.
2017-09-01
A novel statement of the Fourier filtering problem based on the use of matrix Fourier filters instead of conventional multiplier filters is considered. The basic properties of the matrix Fourier filtering for the filters in the Hilbert-Schmidt class are established. It is proved that the solutions with a finite energy to the periodic initial boundary value problem for the quasi-linear functional differential diffusion equation with the matrix Fourier filtering Lipschitz continuously depend on the filter. The problem of optimal matrix Fourier filtering is formulated, and its solvability for various classes of matrix Fourier filters is proved. It is proved that the objective functional is differentiable with respect to the matrix Fourier filter, and the convergence of a version of the gradient projection method is also proved.
Theory of quark mixing matrix and invariant functions of mass matrices
NASA Astrophysics Data System (ADS)
Jarloskog, C.
1987-10-01
The origin of the quark mixing matrix; super elementary theory of flavor projection operators; equivalences and invariances; the commutator formalism and CP violation; CP conditions for any number of families; the angle between the quark mass matrices; and application to Fritzsch and Stech mass matrices are discussed.
First-Principle Construction of U(1) Symmetric Matrix Product States
NASA Astrophysics Data System (ADS)
Rakov, Mykhailo V.
2018-07-01
The algorithm to calculate the sets of symmetry sectors for virtual indices of U(1) symmetric matrix product states (MPS) is described. The principal differences between open (OBC) and periodic (PBC) boundary conditions are stressed, and the extension of PBC MPS algorithm to projected entangled pair states is outlined.
ERIC Educational Resources Information Center
Shemick, John M.
1983-01-01
In a project to identify and verify professional competencies for beginning industrial education teachers, researchers found a 173-item questionnaire unwieldy. Using multiple-matrix sampling, they distributed subsets of items to respondents, resulting in adequate returns as well as duplication, postage, and time savings. (SK)
Spin-Projected Matrix Product States: Versatile Tool for Strongly Correlated Systems.
Li, Zhendong; Chan, Garnet Kin-Lic
2017-06-13
We present a new wave function ansatz that combines the strengths of spin projection with the language of matrix product states (MPS) and matrix product operators (MPO) as used in the density matrix renormalization group (DMRG). Specifically, spin-projected matrix product states (SP-MPS) are constructed as [Formula: see text], where [Formula: see text] is the spin projector for total spin S and |Ψ MPS (N,M) ⟩ is an MPS wave function with a given particle number N and spin projection M. This new ansatz possesses several attractive features: (1) It provides a much simpler route to achieve spin adaptation (i.e., to create eigenfunctions of Ŝ 2 ) compared to explicitly incorporating the non-Abelian SU(2) symmetry into the MPS. In particular, since the underlying state |Ψ MPS (N,M) ⟩ in the SP-MPS uses only Abelian symmetries, one does not need the singlet embedding scheme for nonsinglet states, as normally employed in spin-adapted DMRG, to achieve a single consistent variationally optimized state. (2) Due to the use of |Ψ MPS (N,M) ⟩ as its underlying state, the SP-MPS can be closely connected to broken-symmetry mean-field states. This allows one to straightforwardly generate the large number of broken-symmetry guesses needed to explore complex electronic landscapes in magnetic systems. Further, this connection can be exploited in the future development of quantum embedding theories for open-shell systems. (3) The sum of MPOs representation for the Hamiltonian and spin projector [Formula: see text] naturally leads to an embarrassingly parallel algorithm for computing expectation values and optimizing SP-MPS. (4) Optimizing SP-MPS belongs to the variation-after-projection (VAP) class of spin-projected theories. Unlike usual spin-projected theories based on determinants, the SP-MPS ansatz can be made essentially exact simply by increasing the bond dimensions in |Ψ MPS (N,M) ⟩. Computing excited states is also simple by imposing orthogonality constraints, which are simple to implement with MPS. To illustrate the versatility of SP-MPS, we formulate algorithms for the optimization of ground and excited states, develop perturbation theory based on SP-MPS, and describe how to evaluate spin-independent and spin-dependent properties such as the reduced density matrices. We demonstrate the numerical performance of SP-MPS with applications to several models typical of strong correlation, including the Hubbard model, and [2Fe-2S] and [4Fe-4S] model complexes.
Probabilistic population projections with migration uncertainty
Azose, Jonathan J.; Ševčíková, Hana; Raftery, Adrian E.
2016-01-01
We produce probabilistic projections of population for all countries based on probabilistic projections of fertility, mortality, and migration. We compare our projections to those from the United Nations’ Probabilistic Population Projections, which uses similar methods for fertility and mortality but deterministic migration projections. We find that uncertainty in migration projection is a substantial contributor to uncertainty in population projections for many countries. Prediction intervals for the populations of Northern America and Europe are over 70% wider, whereas prediction intervals for the populations of Africa, Asia, and the world as a whole are nearly unchanged. Out-of-sample validation shows that the model is reasonably well calibrated. PMID:27217571
Ghasemian, Mohammad; Poursafa, Parinaz; Amin, Mohammad Mehdi; Ziarati, Mohammad; Ghoddousi, Hamid; Momeni, Seyyed Alireza; Rezaei, Amir Hossein
2012-01-01
Background. The purpose of this study is environmental impact assessment of the industrial estate development planning. Methods. This cross-sectional study was conducted in 2010 in Isfahan province, Iran. GIS and matrix methods were applied. Data analysis was done to identify the current situation of the region, zoning vulnerable areas, and scoping the region. Quantitative evaluation was done by using matrix of Wooten and Rau. Results. The net score for impact of industrial units operation on air quality of the project area was (−3). According to the transition of industrial estate pollutants, residential places located in the radius of 2500 meters of the city were expected to be affected more. The net score for impact of construction of industrial units on plant species of the project area was (−2). Environmental protected areas were not affected by the air and soil pollutants because of their distance from industrial estate. Conclusion. Positive effects of project activities outweigh the drawbacks and the sum scores allocated to the project activities on environmental factor was (+37). Totally it does not have detrimental effects on the environment and residential neighborhood. EIA should be considered as an anticipatory, participatory environmental management tool before determining a plan application. PMID:22272210
Pressoir, G; Berthaud, J
2004-02-01
To conserve the long-term selection potential of maize, it is necessary to investigate past and present evolutionary processes that have shaped quantitative trait variation. Understanding the dynamics of quantitative trait evolution is crucial to future crop breeding. We characterized population differentiation of maize landraces from the State of Oaxaca, Mexico for quantitative traits and molecular markers. Qst values were much higher than Fst values obtained for molecular markers. While low values of Fst (0.011 within-village and 0.003 among-villages) suggest that considerable gene flow occurred among the studied populations, high levels of population differentiation for quantitative traits were observed (ie an among-village Qst value of 0.535 for kernel weight). Our results suggest that although quantitative traits appear to be under strong divergent selection, a considerable amount of gene flow occurs among populations. Furthermore, we characterized nonproportional changes in the G matrix structure both within and among villages that are consequences of farmer selection. As a consequence of these differences in the G matrix structure, the response to multivariate selection will be different from one population to another. Large changes in the G matrix structure could indicate that farmers select for genes of major and pleiotropic effect. Farmers' decision and selection strategies have a great impact on phenotypic diversification in maize landraces.
2015-01-01
Reliable data necessary to parameterize population models are seldom available for imperiled species. As an alternative, data from populations of the same species or from ecologically similar species have been used to construct models. In this study, we evaluated the use of demographic data collected at one California sea lion colony (Los Islotes) to predict the population dynamics of the same species from two other colonies (San Jorge and Granito) in the Gulf of California, Mexico, for which demographic data are lacking. To do so, we developed a stochastic demographic age-structured matrix model and conducted a population viability analysis for each colony. For the Los Islotes colony we used site-specific pup, juvenile, and adult survival probabilities, as well as birth rates for older females. For the other colonies, we used site-specific pup and juvenile survival probabilities, but used surrogate data from Los Islotes for adult survival probabilities and birth rates. We assessed these models by comparing simulated retrospective population trajectories to observed population trends based on count data. The projected population trajectories approximated the observed trends when surrogate data were used for one colony but failed to match for a second colony. Our results indicate that species-specific and even region-specific surrogate data may lead to erroneous conservation decisions. These results highlight the importance of using population-specific demographic data in assessing extinction risk. When vital rates are not available and immediate management actions must be taken, in particular for imperiled species, we recommend the use of surrogate data only when the populations appear to have similar population trends. PMID:26413746
Matrix Management: Is It Really Conflict Management.
1976-11-01
ru— A036 516 DEFENSE SYSTEMS MANAGEMENT COLL FORT BELVOIR VA - FIG 5/1 MATRIX MANAGEMENT: IS IT REALLY CONFLICT MANAGEMENT . (U) NOV 76 R P... conflict management .” As a result , sensitivity training for managers and their subordinates was conducted in order to implement the matrix concept...Wilemon. “ Conflict Management in ProJect Life Cycles ,” Sloan ~anagement Review , Vol. 16,Spring , 1975, pp . 3 1—5 0. Thamhain , Hans J. and David L
IPMA Standard Competence Scope in Project Management Education
ERIC Educational Resources Information Center
Bartoška, Jan; Flégl, Martin; Jarkovská, Martina
2012-01-01
The authors of the paper endeavoured to find out key competences in IPMA standard for educational approaches in project management. These key competences may be used as a basis for project management university courses. An incidence matrix was set up, containing relations between IPMA competences described in IPMA competence baseline. Further,…
Priority Determination for AVC Funded R&D Projects.
ERIC Educational Resources Information Center
Wilkinson, Gene L.
As an extension of ideas suggested in an earlier paper which proposed a project control system for Indiana University's Audio-Visual Center (see EM 010 306), this paper examines the establishment of project legitimacy and priority within the system and reviews the need to stimulate specific research proposals as well as generating a matrix of…
Secret Message Decryption: Group Consulting Projects Using Matrices and Linear Programming
ERIC Educational Resources Information Center
Gurski, Katharine F.
2009-01-01
We describe two short group projects for finite mathematics students that incorporate matrices and linear programming into fictional consulting requests presented as a letter to the students. The students are required to use mathematics to decrypt secret messages in one project involving matrix multiplication and inversion. The second project…
Mat-Rix-Toe: Improving Writing through a Game-Based Project in Linear Algebra
ERIC Educational Resources Information Center
Graham-Squire, Adam; Farnell, Elin; Stockton, Julianna Connelly
2014-01-01
The Mat-Rix-Toe project utilizes a matrix-based game to deepen students' understanding of linear algebra concepts and strengthen students' ability to express themselves mathematically. The project was administered in three classes using slightly different approaches, each of which included some editing component to encourage the…
Fibrinogen inhibits fibroblast-mediated contraction of collagen
Nien, Yih-Dar; Han, Yuan-Ping; Tawil, Bill; Chan, Linda S.; Tuan, Tai-Lan; Garner, Warren L.
2008-01-01
Extracellular matrix changes in composition and organization as it transitions from the provisional matrix of the fibrin/platelet plug to collagen scar in healed wounds. The manner in which individual matrix proteins affect these activities is not well established. In this article we describe the interactions of two important extracellular matrix components, fibrin and collagen, using an in vitro model of wound contraction, the fibroblast-populated collagen lattice. We utilized different fibrinogen sources and measured tissue reorganization in floating and tensioned collagen lattices. Our results showed that both fibrin and fibrinogen decreased the contraction of fibroblast populated collagen lattices in a dose-dependent manner. Polymerization of fibrinogen to fibrin using thrombin had no effect on this inhibition. Further, there was no effect due to changes in protein concentration, alternate components of the fibrin sealant, or the enzymatic action of thrombin. These results suggest that the initial stability of the fibrin provisional matrix is due to the fibrin, because this protein appears to inhibit contraction of the matrix. This may be important in the early phases of wound healing when clot stability is vital for hemostasis. Later, as fibrin is replaced by collagen, wound contraction can occur. PMID:12950643
ASTM and VAMAS activities in titanium matrix composites test methods development
NASA Technical Reports Server (NTRS)
Johnson, W. S.; Harmon, D. M.; Bartolotta, P. A.; Russ, S. M.
1994-01-01
Titanium matrix composites (TMC's) are being considered for a number of aerospace applications ranging from high performance engine components to airframe structures in areas that require high stiffness to weight ratios at temperatures up to 400 C. TMC's exhibit unique mechanical behavior due to fiber-matrix interface failures, matrix cracks bridged by fibers, thermo-viscoplastic behavior of the matrix at elevated temperatures, and the development of significant thermal residual stresses in the composite due to fabrication. Standard testing methodology must be developed to reflect the uniqueness of this type of material systems. The purpose of this paper is to review the current activities in ASTM and Versailles Project on Advanced Materials and Standards (VAMAS) that are directed toward the development of standard test methodology for titanium matrix composites.
Deng, Bai-chuan; Yun, Yong-huan; Liang, Yi-zeng; Yi, Lun-zhao
2014-10-07
In this study, a new optimization algorithm called the Variable Iterative Space Shrinkage Approach (VISSA) that is based on the idea of model population analysis (MPA) is proposed for variable selection. Unlike most of the existing optimization methods for variable selection, VISSA statistically evaluates the performance of variable space in each step of optimization. Weighted binary matrix sampling (WBMS) is proposed to generate sub-models that span the variable subspace. Two rules are highlighted during the optimization procedure. First, the variable space shrinks in each step. Second, the new variable space outperforms the previous one. The second rule, which is rarely satisfied in most of the existing methods, is the core of the VISSA strategy. Compared with some promising variable selection methods such as competitive adaptive reweighted sampling (CARS), Monte Carlo uninformative variable elimination (MCUVE) and iteratively retaining informative variables (IRIV), VISSA showed better prediction ability for the calibration of NIR data. In addition, VISSA is user-friendly; only a few insensitive parameters are needed, and the program terminates automatically without any additional conditions. The Matlab codes for implementing VISSA are freely available on the website: https://sourceforge.net/projects/multivariateanalysis/files/VISSA/.
The agroecological matrix as alternative to the land-sparing/agriculture intensification model.
Perfecto, Ivette; Vandermeer, John
2010-03-30
Among the myriad complications involved in the current food crisis, the relationship between agriculture and the rest of nature is one of the most important yet remains only incompletely analyzed. Particularly in tropical areas, agriculture is frequently seen as the antithesis of the natural world, where the problem is framed as one of minimizing land devoted to agriculture so as to devote more to conservation of biodiversity and other ecosystem services. In particular, the "forest transition model" projects an overly optimistic vision of a future where increased agricultural intensification (to produce more per hectare) and/or increased rural-to-urban migration (to reduce the rural population that cuts forest for agriculture) suggests a near future of much tropical aforestation and higher agricultural production. Reviewing recent developments in ecological theory (showing the importance of migration between fragments and local extinction rates) coupled with empirical evidence, we argue that there is little to suggest that the forest transition model is useful for tropical areas, at least under current sociopolitical structures. A model that incorporates the agricultural matrix as an integral component of conservation programs is proposed. Furthermore, we suggest that this model will be most successful within a framework of small-scale agroecological production.
Negovetich, N J; Esch, G W
2008-10-01
Larval trematodes frequently castrate their snail intermediate hosts. When castrated, the snails do not contribute offspring to the population, yet they persist and compete with the uninfected individuals for the available food resources. Parasitic castration should reduce the population growth rate lambda, but the magnitude of this decrease is unknown. The present study attempted to quantify the cost of parasitic castration at the level of the population by mathematically modeling the population of the planorbid snail Helisoma anceps in Charlie's Pond, North Carolina. Analysis of the model identified the life-history trait that most affects lambda, and the degree to which parasitic castration can lower lambda. A period matrix product model was constructed with estimates of fecundity, survival, growth rates, and infection probabilities calculated in a previous study. Elasticity analysis was performed by increasing the values of the life-history traits by 10% and recording the percentage change in lambda. Parasitic castration resulted in a 40% decrease in lambda of H. anceps. Analysis of the model suggests that decreasing the size at maturity was more effective at reducing the cost of castration than increasing survival or growth rates of the snails. The current matrix model was the first to mathematically describe a snail population, and the predictions of the model are in agreement with published research.
EvolQG - An R package for evolutionary quantitative genetics
Melo, Diogo; Garcia, Guilherme; Hubbe, Alex; Assis, Ana Paula; Marroig, Gabriel
2016-01-01
We present an open source package for performing evolutionary quantitative genetics analyses in the R environment for statistical computing. Evolutionary theory shows that evolution depends critically on the available variation in a given population. When dealing with many quantitative traits this variation is expressed in the form of a covariance matrix, particularly the additive genetic covariance matrix or sometimes the phenotypic matrix, when the genetic matrix is unavailable and there is evidence the phenotypic matrix is sufficiently similar to the genetic matrix. Given this mathematical representation of available variation, the \\textbf{EvolQG} package provides functions for calculation of relevant evolutionary statistics; estimation of sampling error; corrections for this error; matrix comparison via correlations, distances and matrix decomposition; analysis of modularity patterns; and functions for testing evolutionary hypotheses on taxa diversification. PMID:27785352
2007-09-01
the projective camera matrix (P) which is a 3x4 matrix that is represents both the intrinsic and extrinsic parameters of a camera. It is used to...K contains the intrinsic parameters of the camera and |R t⎡ ⎤⎣ ⎦ represents the extrinsic parameters of the camera. By definition, the extrinsic ... extrinsic parameters are known then the camera is said to be calibrated. If only the intrinsic parameters are known, then the projective camera can
Application of Krylov exponential propagation to fluid dynamics equations
NASA Technical Reports Server (NTRS)
Saad, Youcef; Semeraro, David
1991-01-01
An application of matrix exponentiation via Krylov subspace projection to the solution of fluid dynamics problems is presented. The main idea is to approximate the operation exp(A)v by means of a projection-like process onto a krylov subspace. This results in a computation of an exponential matrix vector product similar to the one above but of a much smaller size. Time integration schemes can then be devised to exploit this basic computational kernel. The motivation of this approach is to provide time-integration schemes that are essentially of an explicit nature but which have good stability properties.
This report consolidates key reference information in a matrix that allows project mangers to quickly identify new technologies that may answer their cleanup needs and contacts for obtaining technology demonstration results and other information.
Small, Bruce H; Fisher, Mark W
2005-01-01
What is the relationship between biotechnology employees' beliefs about the moral outcomes of a controversial transgenic research project and their attitudes of acceptance towards the project? To answer this question, employees (n=466) of a New Zealand company, AgResearch Ltd., were surveyed regarding a project to create transgenic cattle containing a synthetic copy of the human myelin basic protein gene (hMBP). Although diversity existed amongst employees' attitudes of acceptance, they were generally: in favor of the project, believed that it should be allowed to proceed to completion, and that it is acceptable to use transgenic cattle to produce medicines for humans. These three items were aggregated to form a project acceptance score. Scales were developed to measure respondents' beliefs about the moral outcomes of the project for identified stakeholders in terms of the four principles of common morality (benefit, non-harm, justice, and autonomy). These data were statistically aggregated into an Ethical Valence Matrix fo the project. The respondents' project Ethical Valence Scores correlated significantly with their project acceptance scores (r=0.64, p<0.001), accounting for 41% of the variance in respondents' acceptance attitudes. Of the four principles, non-harm had the strongest correlation with attitude to the project (r=0.59), followed by benefit and justice (both r=0.54), then autonomy (r=0.44). These results indicate that beliefs about the moral outcomes of a research project, in terms of the four principles approach, are strongly related to, and may be significant determinants of, attitudes to the research project. This suggests that, for employees of a biotechnology organization, ethical reasoning could be a central mechanism for the evaluation of the acceptability of a project. We propose that the Ethical Valence Matrix may be used as a tool to measure ethical attitudes towards controversial issues, providing a metric for comparison of perceived ethical consequences for multiple stakeholder groups and for the evaluation and comparison of the ethical consequences of competing alternative issues or projects. The tool could be used to measure both public and special interest groups' ethical attitudes and results used for the development of socially responsible policy or by science organizations as a democratizing decision aid to selection amongst projects competing for scarce research funds.
da Silva Carvalho, C; Ribeiro, M C; Côrtes, M C; Galetti, M; Collevatti, R G
2015-01-01
Population genetics theory predicts loss in genetic variability because of drift and inbreeding in isolated plant populations; however, it has been argued that long-distance pollination and seed dispersal may be able to maintain gene flow, even in highly fragmented landscapes. We tested how historical effective population size, historical migration and contemporary landscape structure, such as forest cover, patch isolation and matrix resistance, affect genetic variability and differentiation of seedlings in a tropical palm (Euterpe edulis) in a human-modified rainforest. We sampled 16 sites within five landscapes in the Brazilian Atlantic forest and assessed genetic variability and differentiation using eight microsatellite loci. Using a model selection approach, none of the covariates explained the variation observed in inbreeding coefficients among populations. The variation in genetic diversity among sites was best explained by historical effective population size. Allelic richness was best explained by historical effective population size and matrix resistance, whereas genetic differentiation was explained by matrix resistance. Coalescence analysis revealed high historical migration between sites within landscapes and constant historical population sizes, showing that the genetic differentiation is most likely due to recent changes caused by habitat loss and fragmentation. Overall, recent landscape changes have a greater influence on among-population genetic variation than historical gene flow process. As immediate restoration actions in landscapes with low forest amount, the development of more permeable matrices to allow the movement of pollinators and seed dispersers may be an effective strategy to maintain microevolutionary processes. PMID:25873150
Paracrine signaling in a bacterium.
López, Daniel; Vlamakis, Hera; Losick, Richard; Kolter, Roberto
2009-07-15
Cellular differentiation is triggered by extracellular signals that cause target cells to adopt a particular fate. Differentiation in bacteria typically involves autocrine signaling in which all cells in the population produce and respond to the same signal. Here we present evidence for paracrine signaling in bacterial populations-some cells produce a signal to which only certain target cells respond. Biofilm formation in Bacillus involves two centrally important signaling molecules, ComX and surfactin. ComX triggers the production of surfactin. In turn, surfactin causes a subpopulation of cells to produce an extracellular matrix. Cells that produced surfactin were themselves unable to respond to it. Likewise, once surfactin-responsive cells commenced matrix production, they no longer responded to ComX and could not become surfactin producers. Insensitivity to ComX was the consequence of the extracellular matrix as mutant cells unable to make matrix responded to both ComX and surfactin. Our results demonstrate that extracellular signaling was unidirectional, with one subpopulation producing a signal and a different subpopulation responding to it. Paracrine signaling in a bacterial population ensures the maintenance, over generations, of particular cell types even in the presence of molecules that would otherwise cause those cells to differentiate into other cell types.
Scholtes, Beatrice; Schröder-Bäck, Peter; Mackay, Morag; Vincenten, Joanne; Brand, Helmut
2017-06-01
The aim of this paper is to present the Child Safety Reference Frameworks (CSRF), a policy advice tool that places evidence-based child safety interventions, applicable at the sub-national level, into a framework resembling the Haddon Matrix. The CSRF is based on work done in previous EU funded projects, which we have adapted to the field of child safety. The CSRF were populated following a literature review. Four CSRF were developed for four domains of child safety: road, water and home safety, and intentional injury prevention. The CSRF can be used as a reference, assessment and comparative tool by child safety practitioners and policy makers working at the sub-national level. Copyright© by the National Institute of Public Health, Prague 2017
E-learning for textile enterprises innovation improvement
NASA Astrophysics Data System (ADS)
Blaga, M.; Harpa, R.; Radulescu, I. R.; Stepjanovic, Z.
2017-10-01
The Erasmus Plus project- TEXMatrix: “Matrix of knowledge for innovation and competitiveness in textile enterprises”, financed through the Erasmus+ Programme, Strategic partnerships- KA2 for Vocational Education and Training, aims at spreading the creative and innovative organizational culture inside textile enterprises by transferring and implementing methodologies, tools and concepts for improved training. Five European partners form the project consortium: INCDTP - Bucharest, Romania (coordinator), TecMinho - Portugal, Centrocot - Italy, University Maribor, Slovenia, and “Gheorghe Asachi” Technical University of Iasi, Romania. These will help the textile enterprises involved in the project, to learn how to apply creative thinking in their organizations and how to develop the capacity for innovation and change. The project aims to bridge the gap between textile enterprises need for qualified personnel and the young workforce. It develops an innovative knowledge matrix for the tangible and intangible assets of an enterprise and a benchmarking study, based on which a dedicated software tool will be created. This software tool will aid the decision-making enterprise staff (managers, HR specialists, professionals) as well as the trainees (young employees, students, and scholars) to cope with the new challenges of innovation and competitiveness for the textile field. The purpose of this paper is to present the main objectives and achievements of the project, according to its declared goals, with the focus on the presentation of the knowledge matrix of innovation, which is a powerful instrument for the quantification of the intangible assets of textile enterprises.
Acausal measurement-based quantum computing
NASA Astrophysics Data System (ADS)
Morimae, Tomoyuki
2014-07-01
In measurement-based quantum computing, there is a natural "causal cone" among qubits of the resource state, since the measurement angle on a qubit has to depend on previous measurement results in order to correct the effect of by-product operators. If we respect the no-signaling principle, by-product operators cannot be avoided. Here we study the possibility of acausal measurement-based quantum computing by using the process matrix framework [Oreshkov, Costa, and Brukner, Nat. Commun. 3, 1092 (2012), 10.1038/ncomms2076]. We construct a resource process matrix for acausal measurement-based quantum computing restricting local operations to projective measurements. The resource process matrix is an analog of the resource state of the standard causal measurement-based quantum computing. We find that if we restrict local operations to projective measurements the resource process matrix is (up to a normalization factor and trivial ancilla qubits) equivalent to the decorated graph state created from the graph state of the corresponding causal measurement-based quantum computing. We also show that it is possible to consider a causal game whose causal inequality is violated by acausal measurement-based quantum computing.
Mortality sensitivity in life-stage simulation analysis: A case study of southern sea otters
Gerber, L.R.; Tinker, M.T.; Doak, D.F.; Estes, J.A.; Jessup, David A.
2004-01-01
Currently, there are no generally recognized approaches for linking detailed mortality and pathology data to population-level analyses of extinction risk. We used a combination of analytical and simulation-based analyses to examine 20 years of age- and sex-specific mortality data for southern sea otters (Enhydra lutris), and we applied results to project the efficacy of alternative conservation strategies. Population recovery of the southern sea otter has been slow (rate of population increase ?? = 1.05) compared to other recovering populations (?? = 1.17-1.20), and the population declined (?? = 0.975) between 1995 and 1999. Age-based Leslie matrices were developed to explore explanations for the slow recovery and recent decline in the southern sea other population. An elasticity analysis was performed to predict effects of proportional changes in stage-specific reproductive or survival rates on the rate of population increase. A life-stage simulation analysis (LSA) was developed to evaluate the impact of changing age- and cause-specific mortality rates on ??. The information used to develop these models was derived from death assemblage, pathology, and live population census data to examine the sensitivity of sea otter population growth to different sources of mortality (e.g., disease and starvation, direct human take [fisheries, gun shot, boat strike, oil pollution], mating trauma and intraspecific aggression, shark bites, and unknown). We used resampling simulations to generate random combinations of vital rates for a large number of matrix replicates and drew on these to estimate potential effects of mortality sources on population growth (??). Our analyses suggest management actions that are likely and unlikely to promote recovery of the southern sea otter and more broadly indicate a methodology to better utilize cause-of-death data in conservation decision-making.
Metal Cluster Models for Heterogeneous Catalysis: A Matrix-Isolation Perspective.
Hübner, Olaf; Himmel, Hans-Jörg
2018-02-19
Metal cluster models are of high relevance for establishing new mechanistic concepts for heterogeneous catalysis. The high reactivity and particular selectivity of metal clusters is caused by the wealth of low-lying electronically excited states that are often thermally populated. Thereby the metal clusters are flexible with regard to their electronic structure and can adjust their states to be appropriate for the reaction with a particular substrate. The matrix isolation technique is ideally suited for studying excited state reactivity. The low matrix temperatures (generally 4-40 K) of the noble gas matrix host guarantee that all clusters are in their electronic ground-state (with only a very few exceptions). Electronically excited states can then be selectively populated and their reactivity probed. Unfortunately, a systematic research in this direction has not been made up to date. The purpose of this review is to provide the grounds for a directed approach to understand cluster reactivity through matrix-isolation studies combined with quantum chemical calculations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
CMC Research at NASA Glenn in 2016: Recent Progress and Plans
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2016-01-01
As part of NASA's Aeronautical Sciences project, Glenn Research Center has developed advanced fiber and matrix constituents for a 2700 degrees Fahrenheit CMC (Ceramic Matrix Composite) for turbine engine applications. Fiber and matrix development and characterization will be reviewed. Resulting improvements in CMC mechanical properties and durability will be summarized. Plans for 2015 will be described, including development and validation of models predicting effects of the engine environment on durability of SiCSiC composites with Environmental Barrier Coatings (EBCs).
NASA Astrophysics Data System (ADS)
Fukasawa, Hirotoshi; Horiuchi, Toshiyuki
2009-08-01
The patterning characteristics of matrix projection exposure using an analog liquid crystal display (LCD) panel in place of a reticle were investigated, in particular for oblique patterns. In addition, a new method for fabricating practical thick resist molds was developed. At first, an exposure system fabricated in past research was reconstructed. Changes in the illumination optics and the projection lens were the main improvements. Using fly's eye lenses, the illumination light intensity distribution was homogenized. The projection lens was changed from a common camera lens to a higher-grade telecentric lens. In addition, although the same metal halide lamp was used as an exposure light source, the central exposure wavelength was slightly shortened from 480 to 450 nm to obtain higher resist sensitivity while maintaining almost equivalent contrast between black and white. Circular and radial patterns with linewidths of approximately 6 µm were uniformly printed in all directions throughout the exposure field owing to these improvements. The patterns were smoothly printed without accompanying stepwise roughness caused by the cell matrix array. On the bases of these results, a new method of fabricating thick resist molds for electroplating was investigated. It is known that thick resist molds fabricated using the negative resist SU-8 (Micro Chem) are useful because very high aspect patterns are printable and the side walls are perpendicular to the substrate surfaces. However, the most suitable exposure wavelength of SU-8 is 365 nm, and SU-8 is insensitive to light of 450 nm wavelength, which is most appropriate for LCD matrix exposure. For this reason, a novel multilayer resist process was proposed, and micromolds of SU-8 of 50 µm thickness were successfully obtained. As a result, feasibility for fabricating complex resist molds including oblique patterns was demonstrated.
Skórka, Piotr; Nowicki, Piotr; Bonk, Maciej; Król, Wiesław; Szpiłyk, Damian; Woyciechowski, Michal
2016-01-01
The type of matrix, the landscape surrounding habitat patches, may determine the distribution and function of local populations. However, the matrix is often heterogeneous, and its various components may differentially contribute to metapopulation processes at different spatial scales, a phenomenon that has rarely been investigated. The aim of this study was to estimate the relative importance of matrix composition and spatial scale, habitat quality, and management intensity on the occurrence and density of local populations of two endangered large blue butterflies: Phengaris teleius and P. nausithous. Presence and abundance data were assessed over two years, 2011–12, in 100 local patches within two heterogeneous regions (near Kraków and Tarnów, southern Poland). The matrix composition was analyzed at eight spatial scales. We observed high occupancy rates in both species, regions and years. With the exception of area and isolation, almost all of the matrix components contributed to Phengaris sp. densities. The different matrix components acted at different spatial scales (grassland cover within 4 and 3 km, field cover within 0.4 and 0.3 km and water cover within 4 km radii for P. teleius and P. nausithous, respectively) and provided the highest independent contribution to the butterfly densities. Additionally, the effects of a 0.4 km radius of forest cover and a food plant cover on P. teleius, and a 1 km radius of settlement cover and management intensity on P. nausithous densities were observed. Contrary to former studies we conclude that the matrix heterogeneity and spatial scale rather than general matrix type are of relevance for densities of butterflies. Conservation strategies for these umbrella species should concentrate on maintaining habitat quality and managing matrix composition at the most appropriate spatial scales. PMID:28005942
Kajzer-Bonk, Joanna; Skórka, Piotr; Nowicki, Piotr; Bonk, Maciej; Król, Wiesław; Szpiłyk, Damian; Woyciechowski, Michal
2016-01-01
The type of matrix, the landscape surrounding habitat patches, may determine the distribution and function of local populations. However, the matrix is often heterogeneous, and its various components may differentially contribute to metapopulation processes at different spatial scales, a phenomenon that has rarely been investigated. The aim of this study was to estimate the relative importance of matrix composition and spatial scale, habitat quality, and management intensity on the occurrence and density of local populations of two endangered large blue butterflies: Phengaris teleius and P. nausithous. Presence and abundance data were assessed over two years, 2011-12, in 100 local patches within two heterogeneous regions (near Kraków and Tarnów, southern Poland). The matrix composition was analyzed at eight spatial scales. We observed high occupancy rates in both species, regions and years. With the exception of area and isolation, almost all of the matrix components contributed to Phengaris sp. densities. The different matrix components acted at different spatial scales (grassland cover within 4 and 3 km, field cover within 0.4 and 0.3 km and water cover within 4 km radii for P. teleius and P. nausithous, respectively) and provided the highest independent contribution to the butterfly densities. Additionally, the effects of a 0.4 km radius of forest cover and a food plant cover on P. teleius, and a 1 km radius of settlement cover and management intensity on P. nausithous densities were observed. Contrary to former studies we conclude that the matrix heterogeneity and spatial scale rather than general matrix type are of relevance for densities of butterflies. Conservation strategies for these umbrella species should concentrate on maintaining habitat quality and managing matrix composition at the most appropriate spatial scales.
Dynamic SPECT reconstruction from few projections: a sparsity enforced matrix factorization approach
NASA Astrophysics Data System (ADS)
Ding, Qiaoqiao; Zan, Yunlong; Huang, Qiu; Zhang, Xiaoqun
2015-02-01
The reconstruction of dynamic images from few projection data is a challenging problem, especially when noise is present and when the dynamic images are vary fast. In this paper, we propose a variational model, sparsity enforced matrix factorization (SEMF), based on low rank matrix factorization of unknown images and enforced sparsity constraints for representing both coefficients and bases. The proposed model is solved via an alternating iterative scheme for which each subproblem is convex and involves the efficient alternating direction method of multipliers (ADMM). The convergence of the overall alternating scheme for the nonconvex problem relies upon the Kurdyka-Łojasiewicz property, recently studied by Attouch et al (2010 Math. Oper. Res. 35 438) and Attouch et al (2013 Math. Program. 137 91). Finally our proof-of-concept simulation on 2D dynamic images shows the advantage of the proposed method compared to conventional methods.
NASA Astrophysics Data System (ADS)
Fleming, Kevin; Zschau, Jochen; Gasparini, Paolo
2014-05-01
Recent major natural disasters, such as the 2011 Tōhoku earthquake, tsunami and subsequent Fukushima nuclear accident, have raised awareness of the frequent and potentially far-reaching interconnections between natural hazards. Such interactions occur at the hazard level, where an initial hazard may trigger other events (e.g., an earthquake triggering a tsunami) or several events may occur concurrently (or nearly so), e.g., severe weather around the same time as an earthquake. Interactions also occur at the vulnerability level, where the initial event may make the affected community more susceptible to the negative consequences of another event (e.g., an earthquake weakens buildings, which are then damaged further by windstorms). There is also a temporal element involved, where changes in exposure may alter the total risk to a given area. In short, there is the likelihood that the total risk estimated when considering multiple hazard and risks and their interactions is greater than the sum of their individual parts. It is with these issues in mind that the European Commission, under their FP7 program, supported the New Multi-HAzard and MulTi-RIsK Assessment MethodS for Europe or MATRIX project (10.2010 to 12.2013). MATRIX set out to tackle multiple natural hazards (i.e., those of concern to Europe, namely earthquakes, landslides, volcanos, tsunamis, wild fires, storms and fluvial and coastal flooding) and risks within a common theoretical framework. The MATRIX work plan proceeded from an assessment of single-type risk methodologies (including how uncertainties should be treated), cascade effects within a multi-hazard environment, time-dependent vulnerability, decision making and support for multi-hazard mitigation and adaption, and an assessment of how the multi-hazard and risk viewpoint may be integrated into current decision making and risk mitigation programs, considering the existing single-hazard and risk focus. Three test sites were considered during the project: Naples, Cologne, and the French West Indies. In addition, a software platform, the MATRIX-Common IT sYstem (MATRIX-CITY), was developed to allow the evaluation of characteristic multi-hazard and risk scenarios in comparison to single-type analyses. This presentation therefore outlines the more significant outcomes of the project, in particular those dealing with the harmonization of single-type hazards, cascade event analysis, time-dependent vulnerability changes and the response of the disaster management community to the MATRIX point of view.
Population viability of Pediocactus bradyi (Cactaceae) in a changing climate.
Shryock, Daniel F; Esque, Todd C; Hughes, Lee
2014-11-01
A key question concerns the vulnerability of desert species adapted to harsh, variable climates to future climate change. Evaluating this requires coupling long-term demographic models with information on past and projected future climates. We investigated climatic drivers of population growth using a 22-yr demographic model for Pediocactus bradyi, an endangered cactus in northern Arizona. We used a matrix model to calculate stochastic population growth rates (λs) and the relative influences of life-cycle transitions on population growth. Regression models linked population growth with climatic variability, while stochastic simulations were used to (1) understand how predicted increases in drought frequency and extreme precipitation would affect λs, and (2) quantify variability in λs based on temporal replication of data. Overall λs was below unity (0.961). Population growth was equally influenced by fecundity and survival and significantly correlated with increased annual precipitation and higher winter temperatures. Stochastic simulations increasing the probability of drought and extreme precipitation reduced λs, but less than simulations increasing the probability of drought alone. Simulations varying the temporal replication of data suggested 14 yr were required for accurate λs estimates. Pediocactus bradyi may be vulnerable to increases in the frequency and intensity of extreme climatic events, particularly drought. Biotic interactions resulting in low survival during drought years outweighed increased seedling establishment following heavy precipitation. Climatic extremes beyond historical ranges of variability may threaten rare desert species with low population growth rates and therefore high susceptibility to stochastic events. © 2014 Botanical Society of America, Inc.
Stabilization process of human population: a descriptive approach.
Kayani, A K; Krotki, K J
1981-01-01
An attempt is made to inquire into the process of stabilization of a human population. The same age distribution distorted by past variations in fertility is subjected to several fixed schedules of fertility. The schedules are different from each other monotonically over a narrow range. The primary concern is with the process, almost year by year, through which the populations become stable. There is particular interest in the differential impact in the same original age distribution of the narrowly different fixed fertility schedules. The exercise is prepared in 3 stages: general background of the process of stabilization; methodology and data used; and analysis and discussion of the stabilization process. Among the several approaches through which the analysis of stable population is possible, 2 are popular: the integral equation and the projection matrix. In this presentation the interest is in evaluating the effects of fertility on the stabilization process of a population. Therefore, only 1 initial age distribution and only 1 life table but a variety of narrowly different schedules of fertility have been used. Specifically, the U.S. 1963 female population is treated as the initial population. The process of stabilization is viewed in the light of the changes in the slopes between 2 successive age groups of an age distribution. A high fertility schedule with the given initial age distribution and mortality level overcomes the oscillations more quickly than the low fertility schedule. Simulation confirms the intuitively expected positive relationship between the mean of the slope and the level of fertility. The variance of the slope distribution is an indicator of the aging of the distribution.
Distribution of the Determinant of the Sample Correlation Matrix: Monte Carlo Type One Error Rates.
ERIC Educational Resources Information Center
Reddon, John R.; And Others
1985-01-01
Computer sampling from a multivariate normal spherical population was used to evaluate the type one error rates for a test of sphericity based on the distribution of the determinant of the sample correlation matrix. (Author/LMO)
ERIC Educational Resources Information Center
Colby, Sandra L.; Ortman, Jennifer M.
2015-01-01
Between 2014 and 2060, the U.S. population is projected to increase from 319 million to 417 million, reaching 400 million in 2051. The U.S. population is projected to grow more slowly in future decades than in the recent past, as these projections assume that fertility rates will continue to decline and that there will be a modest decline in the…
The feasibility and stability of large complex biological networks: a random matrix approach.
Stone, Lewi
2018-05-29
In the 70's, Robert May demonstrated that complexity creates instability in generic models of ecological networks having random interaction matrices A. Similar random matrix models have since been applied in many disciplines. Central to assessing stability is the "circular law" since it describes the eigenvalue distribution for an important class of random matrices A. However, despite widespread adoption, the "circular law" does not apply for ecological systems in which density-dependence operates (i.e., where a species growth is determined by its density). Instead one needs to study the far more complicated eigenvalue distribution of the community matrix S = DA, where D is a diagonal matrix of population equilibrium values. Here we obtain this eigenvalue distribution. We show that if the random matrix A is locally stable, the community matrix S = DA will also be locally stable, providing the system is feasible (i.e., all species have positive equilibria D > 0). This helps explain why, unusually, nearly all feasible systems studied here are locally stable. Large complex systems may thus be even more fragile than May predicted, given the difficulty of assembling a feasible system. It was also found that the degree of stability, or resilience of a system, depended on the minimum equilibrium population.
Effective correlator for RadioAstron project
NASA Astrophysics Data System (ADS)
Sergeev, Sergey
This paper presents the implementation of programme FX-correlator for Very Long Baseline Interferometry, adapted for the project "RadioAstron". Software correlator implemented for heterogeneous computing systems using graphics accelerators. It is shown that for the task interferometry implementation of the graphics hardware has a high efficiency. The host processor of heterogeneous computing system, performs the function of forming the data flow for graphics accelerators, the number of which corresponds to the number of frequency channels. So, for the Radioastron project, such channels is seven. Each accelerator is perform correlation matrix for all bases for a single frequency channel. Initial data is converted to the floating-point format, is correction for the corresponding delay function and computes the entire correlation matrix simultaneously. Calculation of the correlation matrix is performed using the sliding Fourier transform. Thus, thanks to the compliance of a solved problem for architecture graphics accelerators, managed to get a performance for one processor platform Kepler, which corresponds to the performance of this task, the computing cluster platforms Intel on four nodes. This task successfully scaled not only on a large number of graphics accelerators, but also on a large number of nodes with multiple accelerators.
Discriminant projective non-negative matrix factorization.
Guan, Naiyang; Zhang, Xiang; Luo, Zhigang; Tao, Dacheng; Yang, Xuejun
2013-01-01
Projective non-negative matrix factorization (PNMF) projects high-dimensional non-negative examples X onto a lower-dimensional subspace spanned by a non-negative basis W and considers W(T) X as their coefficients, i.e., X≈WW(T) X. Since PNMF learns the natural parts-based representation Wof X, it has been widely used in many fields such as pattern recognition and computer vision. However, PNMF does not perform well in classification tasks because it completely ignores the label information of the dataset. This paper proposes a Discriminant PNMF method (DPNMF) to overcome this deficiency. In particular, DPNMF exploits Fisher's criterion to PNMF for utilizing the label information. Similar to PNMF, DPNMF learns a single non-negative basis matrix and needs less computational burden than NMF. In contrast to PNMF, DPNMF maximizes the distance between centers of any two classes of examples meanwhile minimizes the distance between any two examples of the same class in the lower-dimensional subspace and thus has more discriminant power. We develop a multiplicative update rule to solve DPNMF and prove its convergence. Experimental results on four popular face image datasets confirm its effectiveness comparing with the representative NMF and PNMF algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Sean M. McDeavitt; Thomas J. Downar; Dr. Temitope A. Taiwo
2009-03-01
The U.S. Department of Energy is developing next generation processing methods to recycle uranium and transuranic (TRU) isotopes from spent nuclear fuel. The objective of the 3-year project described in this report was to develop near-term options for storing TRU oxides isolated through the uranium extraction (UREX+) process. More specifically, a Zircaloy matrix cermet was developed as a storage form for transuranics with the understanding that the cermet also has the ability to serve as a inert matrix fuel form for TRU burning after intermediate storage. The goals of this research projects were: 1) to develop the processing steps requiredmore » to transform the effluent TRU nitrate solutions and the spent Xircaloy cladding into a zireonium matrix cermet sotrage form; and 2) to evaluate the impact of phenomena that govern durability of the storage form, material processing, and TRU utiliztion in fast reactor fuel. This report represents a compilation of the results generated under this program. The information is presented as a brief technical narrative in the following sections with appended papers, presentations and academic theses to provide a detailed review of the project's accomplishments.« less
Discriminant Projective Non-Negative Matrix Factorization
Guan, Naiyang; Zhang, Xiang; Luo, Zhigang; Tao, Dacheng; Yang, Xuejun
2013-01-01
Projective non-negative matrix factorization (PNMF) projects high-dimensional non-negative examples X onto a lower-dimensional subspace spanned by a non-negative basis W and considers WT X as their coefficients, i.e., X≈WWT X. Since PNMF learns the natural parts-based representation Wof X, it has been widely used in many fields such as pattern recognition and computer vision. However, PNMF does not perform well in classification tasks because it completely ignores the label information of the dataset. This paper proposes a Discriminant PNMF method (DPNMF) to overcome this deficiency. In particular, DPNMF exploits Fisher's criterion to PNMF for utilizing the label information. Similar to PNMF, DPNMF learns a single non-negative basis matrix and needs less computational burden than NMF. In contrast to PNMF, DPNMF maximizes the distance between centers of any two classes of examples meanwhile minimizes the distance between any two examples of the same class in the lower-dimensional subspace and thus has more discriminant power. We develop a multiplicative update rule to solve DPNMF and prove its convergence. Experimental results on four popular face image datasets confirm its effectiveness comparing with the representative NMF and PNMF algorithms. PMID:24376680
An indirect approach to the extensive calculation of relationship coefficients
Colleau, Jean-Jacques
2002-01-01
A method was described for calculating population statistics on relationship coefficients without using corresponding individual data. It relied on the structure of the inverse of the numerator relationship matrix between individuals under investigation and ancestors. Computation times were observed on simulated populations and were compared to those incurred with a conventional direct approach. The indirect approach turned out to be very efficient for multiplying the relationship matrix corresponding to planned matings (full design) by any vector. Efficiency was generally still good or very good for calculating statistics on these simulated populations. An extreme implementation of the method is the calculation of inbreeding coefficients themselves. Relative performances of the indirect method were good except when many full-sibs during many generations existed in the population. PMID:12270102
The Cutting Edge of High-Temperature Composites
NASA Technical Reports Server (NTRS)
2006-01-01
NASA s Ultra-Efficient Engine Technology (UEET) program was formed in 1999 at Glenn Research Center to manage an important national propulsion program for the Space Agency. The UEET program s focus is on developing innovative technologies to enable intelligent, environmentally friendly, and clean-burning turbine engines capable of reducing harmful emissions while maintaining high performance and increasing reliability. Seven technology projects exist under the program, with each project working towards specific goals to provide new technology for propulsion. One of these projects, Materials and Structures for High Performance, is concentrating on developing and demonstrating advanced high-temperature materials to enable high-performance, high-efficiency, and environmentally compatible propulsion systems. Materials include ceramic matrix composite (CMC) combustor liners and turbine vanes, disk alloys, turbine airfoil material systems, high-temperature polymer matrix composites, and lightweight materials for static engine structures.
ERIC Educational Resources Information Center
Minnesota Univ., Minneapolis. Inst. on Community Integration.
The Young Adults Employment Supports Project (YES) of Matrix Research Institute (MRI) has been identified as an exemplary school-to-work program that includes students with disabilities. The program serves young persons with serious emotional disorders between the ages of 17-22 throughout Philadelphia who are preparing to exit special education…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ain, Khusnul; Physics Department - Airlangga University, Surabaya – Indonesia, khusnulainunair@yahoo.com; Kurniadi, Deddy
2015-04-16
Back projection reconstruction has been implemented to get the dynamical image in electrical impedance tomography. However the implementation is still limited in method of adjacent data collection and circular object element model. The study aims to develop the methods of back projection as reconstruction method that has the high speed, accuracy, and flexibility, which can be used for various methods of data collection and model of the object element. The proposed method uses the forward problem solution as the operator of filtered and back projection matrix. This is done through a simulation study on several methods of data collection andmore » various models of the object element. The results indicate that the developed method is capable of producing images, fastly and accurately for reconstruction of the various methods of data collection and models of the object element.« less
Neutral evolution of mutational robustness
van Nimwegen, Erik; Crutchfield, James P.; Huynen, Martijn
1999-01-01
We introduce and analyze a general model of a population evolving over a network of selectively neutral genotypes. We show that the population’s limit distribution on the neutral network is solely determined by the network topology and given by the principal eigenvector of the network’s adjacency matrix. Moreover, the average number of neutral mutant neighbors per individual is given by the matrix spectral radius. These results quantify the extent to which populations evolve mutational robustness—the insensitivity of the phenotype to mutations—and thus reduce genetic load. Because the average neutrality is independent of evolutionary parameters—such as mutation rate, population size, and selective advantage—one can infer global statistics of neutral network topology by using simple population data available from in vitro or in vivo evolution. Populations evolving on neutral networks of RNA secondary structures show excellent agreement with our theoretical predictions. PMID:10449760
NASA Technical Reports Server (NTRS)
Frank, D.; Zolensky, Michael E.; Brearley, A.; Le, L.
2011-01-01
The CO 3.0 chondrite ALHA77307 is thought to be the least metamorphosed of all the CO chondrites [1]. As such, the fine-grained (<30 m) olivine found in its matrix is a valuable resource for investigating the CO formation environment since its compositions should be primary. In the CO matrix, we indeed find a wide range of major element compositions (Fa(0.5-71)). However, more importantly, we find that the olivines make up two compositionally distinct populations (Fa(0.5-5) and Fa(21-71)). Grains from both populations are found within an extremely close proximity and we see no obvious evidence of two distinct lithologies within our samples. Therefore, we conclude that the olivine grains found in the ALHA77307 matrix must have crystallized within two unique formation conditions and were later mixed at a very fine scale during the accretion epoch. Here, we propose a possible explanation based on Cr and Mn concentrations in the olivine.
Locally adaptive, spatially explicit projection of US population for 2030 and 2050.
McKee, Jacob J; Rose, Amy N; Bright, Edward A; Huynh, Timmy; Bhaduri, Budhendra L
2015-02-03
Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Building on the spatial interpolation technique previously developed for high-resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically informed spatial distribution of projected population of the contiguous United States for 2030 and 2050, depicting one of many possible population futures. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection model departs from these by accounting for multiple components that affect population distribution. Modeled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the US Census's projection methodology, with the US Census's official projection as the benchmark. Applications of our model include incorporating multiple various scenario-driven events to produce a range of spatially explicit population futures for suitability modeling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.
A job-exposure matrix for use in population based studies in England and Wales.
Pannett, B; Coggon, D; Acheson, E D
1985-01-01
The job-exposure matrix described has been developed for use in population based studies of occupational morbidity and mortality in England and Wales. The job axis of the matrix is based on the Registrar General's 1966 classification of occupations and 1968 classification of industries, and comprises 669 job categories. The exposure axis is made up of 49 chemical, physical, and biological agents, most of which are known or suspected causes of occupational disease. In the body of the matrix associations between jobs and exposures are graded to four levels. The matrix has been applied to data from a case-control study of lung cancer in which occupational histories were elicited by means of a postal questionnaire. Estimates of exposure to five known or suspected carcinogens (asbestos, chromates, cutting oils, formaldehyde, and inhaled polycyclic aromatic hydrocarbons were compared with those obtained by detailed review of individual occupational histories. When the matrix was used exposures were attributed to jobs more frequently than on the basis of individual histories. Lung cancer was significantly more common among subjects classed by the matrix as having potential exposure to chromates, but neither method of assigning exposures produced statistically significant associations with asbestos or polycyclic aromatic hydrocarbons. Possible explanations for the failure to show a clear effect of these known carcinogens are discussed. The greater accuracy of exposures inferred directly from individual histories was reflected in steeper dose response curves for asbestos, chromates, and polycyclic aromatic hydrocarbons. The improvement over results obtained with the matrix, however, was not great. For occupational data of the type examined in this study, direct exposure estimates offer little advantage over those provided at lower cost by a matrix. PMID:4063222
Wang, Yuhao; Li, Xin; Xu, Kai; Ren, Fengbo; Yu, Hao
2017-04-01
Compressive sensing is widely used in biomedical applications, and the sampling matrix plays a critical role on both quality and power consumption of signal acquisition. It projects a high-dimensional vector of data into a low-dimensional subspace by matrix-vector multiplication. An optimal sampling matrix can ensure accurate data reconstruction and/or high compression ratio. Most existing optimization methods can only produce real-valued embedding matrices that result in large energy consumption during data acquisition. In this paper, we propose an efficient method that finds an optimal Boolean sampling matrix in order to reduce the energy consumption. Compared to random Boolean embedding, our data-driven Boolean sampling matrix can improve the image recovery quality by 9 dB. Moreover, in terms of sampling hardware complexity, it reduces the energy consumption by 4.6× and the silicon area by 1.9× over the data-driven real-valued embedding.
Population demographics, survival, and reporduction: Alaska sea otter research
Monson, Daniel H.; Bodkin, James L.; Doak, D.F.; Estes, James A.; Tinker, M.T.; Siniff, D.B.; Maldini, Daniela; Calkins, Donald; Atkinson, Shannon; Meehan, Rosa
2004-01-01
The fundamental force behind population change is the balance between age-specific survival and reproductive rates. Thus, understanding population demographics is crucial when trying to interpret trends in population change over time. For many species, demographic rates change as the population’s status (i.e., relative to prey resources) varies. Indices of body condition indicative of individual energy reserves can be a useful gauge of population status. Integrated studies designed to measure (1) population trends; (2) current population status; and (3) demographic rates will provide the most complete picture of the factors driving observed population changes. In particular, estimates of age specific survival and reproduction in conjunction with measures of population change can be integrated into population matrix models useful in explaining observed trends. We focus here on the methods used to measure demographic rates in sea otters, and note the importance of comparable methods between studies. Next, we review the current knowledge of the influence of population status on demographic parameters. We end with examples of the power of matrix modeling as a tool to integrate various types of demographic information for detecting otherwise hard to detect changes in demographic parameters.
Johnson, Heather E; Mills, L Scott; Wehausen, John D; Stephenson, Thomas R; Luikart, Gordon
2011-12-01
Evidence of inbreeding depression is commonly detected from the fitness traits of animals, yet its effects on population growth rates of endangered species are rarely assessed. We examined whether inbreeding depression was affecting Sierra Nevada bighorn sheep (Ovis canadensis sierrae), a subspecies listed as endangered under the U.S. Endangered Species Act. Our objectives were to characterize genetic variation in this subspecies; test whether inbreeding depression affects bighorn sheep vital rates (adult survival and female fecundity); evaluate whether inbreeding depression may limit subspecies recovery; and examine the potential for genetic management to increase population growth rates. Genetic variation in 4 populations of Sierra Nevada bighorn sheep was among the lowest reported for any wild bighorn sheep population, and our results suggest that inbreeding depression has reduced adult female fecundity. Despite this population sizes and growth rates predicted from matrix-based projection models demonstrated that inbreeding depression would not substantially inhibit the recovery of Sierra Nevada bighorn sheep populations in the next approximately 8 bighorn sheep generations (48 years). Furthermore, simulations of genetic rescue within the subspecies did not suggest that such activities would appreciably increase population sizes or growth rates during the period we modeled (10 bighorn sheep generations, 60 years). Only simulations that augmented the Mono Basin population with genetic variation from other subspecies, which is not currently a management option, predicted significant increases in population size. Although we recommend that recovery activities should minimize future losses of genetic variation, genetic effects within these endangered populations-either negative (inbreeding depression) or positive (within subspecies genetic rescue)-appear unlikely to dramatically compromise or stimulate short-term conservation efforts. The distinction between detecting the effects of inbreeding depression on a component vital rate (e.g., fecundity) and the effects of inbreeding depression on population growth underscores the importance of quantifying inbreeding costs relative to population dynamics to effectively manage endangered populations. ©2011 Society for Conservation Biology.
Post-1500 Population Flows and the Long Run Determinants of Economic Growth and Inequality.
Putterman, Louis; Weil, David N
2010-01-01
We construct a matrix showing the share of the year 2000 population in every country that is descended from people in different source countries in the year 1500. Using the matrix to adjust indicators of early development so they reflect the history of a population's ancestors rather than the history of the place they live today greatly improves the ability of those indicators to predict current GDP. The variance of early development history of a country's inhabitants is a good predictor for current inequality, with ethnic groups originating in regions having longer histories of organized states tending to be at the upper end of a country's income distribution.
KESSLER, MATTHEW J.; PACHECO, RAISA HERNÁNDEZ; RAWLINS, RICHARD G.; RUIZ-LAMBRIDES, ANGELINA; DELGADO, DIANA L.; SABAT, ALBERTO M.
2014-01-01
Tetanus was a major cause of mortality in the free-ranging population of rhesus monkeys on Cayo Santiago prior to 1985 when the entire colony was given its first dose of tetanus toxoid. The immediate reduction in mortality that followed tetanus toxoid inoculation (TTI) has been documented, but the long-term demographic effects of eliminating tetanus infections have not. This study uses the Cayo Santiago demographic database to construct comparative life tables 12 years before, and 12 years after, TTI. Life tables and matrix projection models are used to test for differences in: (i) survival among all individuals as well as among social groups, (ii) long-term fitness of the population, (iii) age distribution, (iv) reproductive value, and (v) life expectancy. A retrospective life table response experiment (LTRE) was performed to determine which life cycle transition contributed most to observed changes in long-term fitness of the population post-TTI. Elimination of clinical tetanus infections through mass inoculation improved the health and well-being of the monkeys. It also profoundly affected the population by increasing survivorship and long-term fitness, decreasing the differences in survival rates among social groups, shifting the population’s age distribution towards older individuals, and increasing reproductive value and life expectancy. These findings are significant because they demonstrate the long-term effects of eradicating a major cause of mortality at a single point in time on survival, reproduction, and overall demography of a naturalistic population of primates. PMID:25230585
High-dimensional statistical inference: From vector to matrix
NASA Astrophysics Data System (ADS)
Zhang, Anru
Statistical inference for sparse signals or low-rank matrices in high-dimensional settings is of significant interest in a range of contemporary applications. It has attracted significant recent attention in many fields including statistics, applied mathematics and electrical engineering. In this thesis, we consider several problems in including sparse signal recovery (compressed sensing under restricted isometry) and low-rank matrix recovery (matrix recovery via rank-one projections and structured matrix completion). The first part of the thesis discusses compressed sensing and affine rank minimization in both noiseless and noisy cases and establishes sharp restricted isometry conditions for sparse signal and low-rank matrix recovery. The analysis relies on a key technical tool which represents points in a polytope by convex combinations of sparse vectors. The technique is elementary while leads to sharp results. It is shown that, in compressed sensing, delta kA < 1/3, deltak A+ thetak,kA < 1, or deltatkA < √( t - 1)/t for any given constant t ≥ 4/3 guarantee the exact recovery of all k sparse signals in the noiseless case through the constrained ℓ1 minimization, and similarly in affine rank minimization delta rM < 1/3, deltar M + thetar, rM < 1, or deltatrM< √( t - 1)/t ensure the exact reconstruction of all matrices with rank at most r in the noiseless case via the constrained nuclear norm minimization. Moreover, for any epsilon > 0, delta kA < 1/3 + epsilon, deltak A + thetak,kA < 1 + epsilon, or deltatkA< √(t - 1) / t + epsilon are not sufficient to guarantee the exact recovery of all k-sparse signals for large k. Similar result also holds for matrix recovery. In addition, the conditions delta kA<1/3, deltak A+ thetak,kA<1, delta tkA < √(t - 1)/t and deltarM<1/3, delta rM+ thetar,rM<1, delta trM< √(t - 1)/ t are also shown to be sufficient respectively for stable recovery of approximately sparse signals and low-rank matrices in the noisy case. For the second part of the thesis, we introduce a rank-one projection model for low-rank matrix recovery and propose a constrained nuclear norm minimization method for stable recovery of low-rank matrices in the noisy case. The procedure is adaptive to the rank and robust against small perturbations. Both upper and lower bounds for the estimation accuracy under the Frobenius norm loss are obtained. The proposed estimator is shown to be rate-optimal under certain conditions. The estimator is easy to implement via convex programming and performs well numerically. The techniques and main results developed in the chapter also have implications to other related statistical problems. An application to estimation of spiked covariance matrices from one-dimensional random projections is considered. The results demonstrate that it is still possible to accurately estimate the covariance matrix of a high-dimensional distribution based only on one-dimensional projections. For the third part of the thesis, we consider another setting of low-rank matrix completion. Current literature on matrix completion focuses primarily on independent sampling models under which the individual observed entries are sampled independently. Motivated by applications in genomic data integration, we propose a new framework of structured matrix completion (SMC) to treat structured missingness by design. Specifically, our proposed method aims at efficient matrix recovery when a subset of the rows and columns of an approximately low-rank matrix are observed. We provide theoretical justification for the proposed SMC method and derive lower bound for the estimation errors, which together establish the optimal rate of recovery over certain classes of approximately low-rank matrices. Simulation studies show that the method performs well in finite sample under a variety of configurations. The method is applied to integrate several ovarian cancer genomic studies with different extent of genomic measurements, which enables us to construct more accurate prediction rules for ovarian cancer survival.
Continuum modeling of large lattice structures: Status and projections
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Mikulas, Martin M., Jr.
1988-01-01
The status and some recent developments of continuum modeling for large repetitive lattice structures are summarized. Discussion focuses on a number of aspects including definition of an effective substitute continuum; characterization of the continuum model; and the different approaches for generating the properties of the continuum, namely, the constitutive matrix, the matrix of mass densities, and the matrix of thermal coefficients. Also, a simple approach is presented for generating the continuum properties. The approach can be used to generate analytic and/or numerical values of the continuum properties.
DOT National Transportation Integrated Search
2013-08-01
This project demonstrated the capabilities for load testing bridges in Iowa, developed and presented a webinar to local and state engineers, and produced a spreadsheet and benefit evaluation matrix that others can use to preliminarily assess where br...
ERIC Educational Resources Information Center
Rands, Gordon P.
2009-01-01
The environmental threats humanity faces have led businesses to increasingly commit to improve their environmental performance and to increasing attempts to address environmental issues in management education. This article presents a matrix of (a) principles that can underlie and (b) attributes that can be generated by environmentally focused…
Effectiveness of Matrix Organizations at the TACOM LCMC
2013-04-05
Scott Baumgartner UNCLASSIFIED 14 responsibility and involvement in decision making, and offers a greater opportunity to display capabilities and...According to Knight, “Matrix structures are said to facilitate high quality and innovative solutions to complex technical problems” (Knight, 1976...discipline expertise to remain innovative (Davis & Lawrence, 1977). Communications The project teams must have a clear understanding of the vision, goals
John F. Dwyer
1995-01-01
Population projections for Illinois predicts lower growth, an older population, and increased racial diversity. If percent of the population participating in outdoor recreation activities by age and race remains at present levels, cohort-component projection models suggest that with projected changes in the population between 1990 and 2025, the number of Illinois...
Position of Social Determinants of Health in Urban Man-Made Lakes
Shojaei, Parisa; Karimlou, Masoud; Mohammadi, Farahnaz; Afzali, Hosein Malek; Forouzan, Ameneh Setareh
2013-01-01
Background and Objective: A social determinants approach proposes that enhancing living conditions in areas such as income, housing, transportation, employment, education, social support, and health services is central to improving the health of urban populations. Urban development projects can be costly but have health impacts. The benefit derived from the creation of man-made lakes in developing countries is usually associated with great risks; however, the evidence for physical and non-physical health benefits of urban man-made lake is unclear. The aim of this paper is to formulate a conceptual framework of associations between urban man-made lakes and social determinants of health. Method: This study was a qualitative study carried out using one focus group discussion and 16 individual interviews. Data were analyzed based on deductive-inductive content analysis approach. Results: Participants’ points of view were analyzed within 261 codes. Data analysis matrix was the conceptual framework of social determinants of health commission and its sub-groups, thus, two structural and mediating determinants categories as well as their sub-sets were created accordingly. In addition, some extra sub-sets including environment, air quality, weather changes, noise pollution, pathogenesis, quality of life, shortage of available resources, region popularity, ethnicity, tourism, social and physical development of children, unintentional injuries, aesthetic, and spirituality were extracted beyond the matrix factors, which were placed in each of above categories based on their thematic content. Conclusion: This paper has illustrated that the quality and type of man-made lake provided within communities can have a significant and sustained impact on community’s health and wellbeing. Therefore, in order to strengthen positive effects and reduce negative effects of any developmental projects within community, their impacts on public health should be taken into consideration. PMID:24171878
Position of social determinants of health in urban man-made lakes plans.
Shojaei, Parisa; Karimloo, Masoud; Mohammadi, Farahnaz; Malek Afzali, Hossein; Forouzan, Ameneh Setareh
2013-09-04
A social determinants approach proposes that enhancing living conditions in areas such as income, housing, transportation, employment, education, social support, and health services is central to improving the health of urban populations. Urban development projects can be costly but have health impacts. The benefit derived from the creation of man-made lakes in developing countries is usually associated with great risks; however, the evidence for physical and non-physical health benefits of urban man-made lake is unclear. The aim of this paper is to formulate a conceptual framework of associations between urban man-made lakes and social determinants of health. This study was a qualitative study carried out using one focus group discussion and 16 individual interviews. Data were analyzed based on deductive-inductive content analysis approach. Participants' points of view were analyzed within 261 codes. Data analysis matrix was the conceptual framework of social determinants of health commission and its sub-groups, thus, two structural and mediating determinants categories as well as their sub-sets were created accordingly. In addition, some extra sub-sets including environment, air quality, weather changes, noise pollution, pathogenesis, quality of life, shortage of available resources, region popularity, ethnicity, tourism, social and physical development of children, unintentional injuries, aesthetic, and spirituality were extracted beyond the matrix factors, which were placed in each of above categories based on their thematic content. This paper has illustrated that the quality and type of man-made lake provided within communities can have a significant and sustained impact on community's health and wellbeing. Therefore, in order to strengthen positive effects and reduce negative effects of any developmental projects within community, their impacts on public health should be taken into consideration.
Kessler, Matthew J; Hernández Pacheco, Raisa; Rawlins, Richard G; Ruiz-Lambrides, Angelina; Delgado, Diana L; Sabat, Alberto M
2015-02-01
Tetanus was a major cause of mortality in the free-ranging population of rhesus monkeys on Cayo Santiago prior to 1985 when the entire colony was given its first dose of tetanus toxoid. The immediate reduction in mortality that followed tetanus toxoid inoculation (TTI) has been documented, but the long-term demographic effects of eliminating tetanus infections have not. This study uses the Cayo Santiago demographic database to construct comparative life tables 12 years before, and 12 years after, TTI. Life tables and matrix projection models are used to test for differences in: (i) survival among all individuals as well as among social groups, (ii) long-term fitness of the population, (iii) age distribution, (iv) reproductive value, and (v) life expectancy. A retrospective life table response experiment (LTRE) was performed to determine which life cycle transition contributed most to observed changes in long-term fitness of the population post-TTI. Elimination of clinical tetanus infections through mass inoculation improved the health and well-being of the monkeys. It also profoundly affected the population by increasing survivorship and long-term fitness, decreasing the differences in survival rates among social groups, shifting the population's age distribution towards older individuals, and increasing reproductive value and life expectancy. These findings are significant because they demonstrate the long-term effects of eradicating a major cause of mortality at a single point in time on survival, reproduction, and overall demography of a naturalistic population of primates. © 2014 Wiley Periodicals, Inc.
Maschinski, Joyce; Baggs, Joanne E; Quintana-Ascencio, Pedro F; Menges, Eric S
2006-02-01
The threat of global warming to rare species is a growing concern, yet few studies have predicted its effects on rare populations. Using demographic data gathered in both drought and nondrought years between 1996-2003 in central Arizona upper Sonoran Desert, we modeled population viability for the federally endangered Purshia subintegra (Kearney) Henrickson (Arizona cliffrose). We used deterministic matrix projection models and stochastic models simulating weather conditions during our study, given historical weather variation and under scenarios of increased aridity. Our models suggest that the P. subintegra population in Verde Valley is slowly declining and will be at greater risk of extinction with increased aridity. Across patches at a fine spatial scale, demographic performance was associated with environmental factors. Moist sites (patches with the highest soil moisture, lowest sand content, and most northern aspects) had the highest densities, highest seedling recruitment, and highest risk of extinction over the shortest time span. Extinction risk in moist sites was exacerbated by higher variance in recruitment and mortality. Dry sites had higher cumulative adult survival and lower extinction risk but negative growth rates. Steps necessary for the conservation of the species include introductions at more northern latitudes and in situ manipulations to enhance seedling recruitment and plant survival. We demonstrate that fine spatial-scale modeling is necessary to predict where patches with highest extinction risk or potential refugia for rare species may occur Because current climate projections for the 21st century imply range shifts at rates of 300 to 500 km/century, which are beyond even exceptional examples of shifts in the fossil record of 100-150 km, it is likely that preservation of many rare species will require human intervention and a long-term commitment. Global warming conditions are likely to reduce the carrying capacity of many rare species' habitats.
NASA Astrophysics Data System (ADS)
Graham, L. Phil; Andersson, Lotta; Horan, Mark; Kunz, Richard; Lumsden, Trevor; Schulze, Roland; Warburton, Michele; Wilk, Julie; Yang, Wei
This study used climate change projections from different regional approaches to assess hydrological effects on the Thukela River Basin in KwaZulu-Natal, South Africa. Projecting impacts of future climate change onto hydrological systems can be undertaken in different ways and a variety of effects can be expected. Although simulation results from global climate models (GCMs) are typically used to project future climate, different outcomes from these projections may be obtained depending on the GCMs themselves and how they are applied, including different ways of downscaling from global to regional scales. Projections of climate change from different downscaling methods, different global climate models and different future emissions scenarios were used as input to simulations in a hydrological model to assess climate change impacts on hydrology. A total of 10 hydrological change simulations were made, resulting in a matrix of hydrological response results. This matrix included results from dynamically downscaled climate change projections from the same regional climate model (RCM) using an ensemble of three GCMs and three global emissions scenarios, and from statistically downscaled projections using results from five GCMs with the same emissions scenario. Although the matrix of results does not provide complete and consistent coverage of potential uncertainties from the different methods, some robust results were identified. In some regards, the results were in agreement and consistent for the different simulations. For others, particularly rainfall, the simulations showed divergence. For example, all of the statistically downscaled simulations showed an annual increase in precipitation and corresponding increase in river runoff, while the RCM downscaled simulations showed both increases and decreases in runoff. According to the two projections that best represent runoff for the observed climate, increased runoff would generally be expected for this basin in the future. Dealing with such variability in results is not atypical for assessing climate change impacts in Africa and practitioners are faced with how to interpret them. This work highlights the need for additional, well-coordinated regional climate downscaling for the region to further define the range of uncertainties involved.
Wünnemann, H; Eskens, U; Prenger-Berninghoff, E; Ewers, C; Lierz, M
2018-05-28
Since the 1940s, the anadromous allis shad, Alosa alosa (L.), has suffered population declines throughout its distribution range in Europe. In context of EU-LIFE projects for the reintroduction of the allis shad in the Rhine system, a comprehensive study was started in 2012 to investigate infectious diseases occurring in allis shad. In course of the study, 217 mature and young-of-the-year allis shad originating from the wild population from the Gironde-Garonne-Dordogne system (GGD-system) and the Rhine system as well as 38 allis shad from the breeding population were examined by use of bacteriological and histological methods. In 2012 and 2014, an endocarditis valvularis thromboticans caused by a coccoid bacterium was detected in 16% and 25% of mature allis shad originating from the GGD-system. Results of microbiologic examinations, including biochemical characteristics, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequence analysis, revealed Lactococcus lactis as causative agent of this infection. This is the first report of an endocarditis valvularis and parietalis thromboticans caused by Lactococcus lactis in fish. Possible sources of infection as well as the impact for the reintroduction programme are discussed. © 2018 John Wiley & Sons Ltd.
Projected continent-wide declines of the emperor penguin under climate change
NASA Astrophysics Data System (ADS)
Jenouvrier, Stéphanie; Holland, Marika; Stroeve, Julienne; Serreze, Mark; Barbraud, Christophe; Weimerskirch, Henri; Caswell, Hal
2014-08-01
Climate change has been projected to affect species distribution and future trends of local populations, but projections of global population trends are rare. We analyse global population trends of the emperor penguin (Aptenodytes forsteri), an iconic Antarctic top predator, under the influence of sea ice conditions projected by coupled climate models assessed in the Intergovernmental Panel on Climate Change (IPCC) effort. We project the dynamics of all 45 known emperor penguin colonies by forcing a sea-ice-dependent demographic model with local, colony-specific, sea ice conditions projected through to the end of the twenty-first century. Dynamics differ among colonies, but by 2100 all populations are projected to be declining. At least two-thirds are projected to have declined by >50% from their current size. The global population is projected to have declined by at least 19%. Because criteria to classify species by their extinction risk are based on the global population dynamics, global analyses are critical for conservation. We discuss uncertainties arising in such global projections and the problems of defining conservation criteria for species endangered by future climate change.
Research Supervision: The Research Management Matrix
ERIC Educational Resources Information Center
Maxwell, T. W.; Smyth, Robyn
2010-01-01
We briefly make a case for re-conceptualising research project supervision/advising as the consideration of three inter-related areas: the learning and teaching process; developing the student; and producing the research project/outcome as a social practice. We use this as our theoretical base for an heuristic tool, "the research management…
Deformation Response and Life of Metallic Composites
NASA Technical Reports Server (NTRS)
Lissenden, Cliff J.
2005-01-01
The project was initially funded for one year (for $100,764) to investigate the potential of particulate reinforced metals for aeropropulsion applications and to generate fatigue results that quantify the mean stress effect for a titanium alloy matrix material (TIMETAL 21S). The project was continued for a second year (for $85,000) to more closely investigate cyclic deformation, especially ratcheting, of the titanium alloy matrix at elevated temperature. Equipment was purchased (for $19,000) to make the experimental program feasible; this equipment included an extensometer calibrator and a multi-channel signal conditioning amplifier. The project was continued for a third year ($50,000) to conduct cyclic relaxation experiments aimed at validating the elastic-viscoelastic-viscoplastic model that NASA GRC had developed for the titanium alloy. Finally, a one-year no cost extension was granted to enable continued analysis of the experimental results and model comparisons.
Projection of postgraduate students flow with a smoothing matrix transition diagram of Markov chain
NASA Astrophysics Data System (ADS)
Rahim, Rahela; Ibrahim, Haslinda; Adnan, Farah Adibah
2013-04-01
This paper presents a case study of modeling postgraduate students flow at the College of Art and Sciences, Universiti Utara Malaysia. First, full time postgraduate students and the semester they were in are identified. Then administrative data were used to estimate the transitions between these semesters for the year 2001-2005 periods. Markov chain model is developed to calculate the -5 and -10 years projection of postgraduate students flow at the college. The optimization question addressed in this study is 'Which transitions would sustain the desired structure in the dynamic situation such as trend towards graduation?' The smoothed transition probabilities are proposed to estimate the transition probabilities matrix of 16 × 16. The results shows that using smoothed transition probabilities, the projection number of postgraduate students enrolled in the respective semesters are closer to actual than using the conventional steady states transition probabilities.
Design Concepts for Cooled Ceramic Matrix Composite Turbine Vanes
NASA Technical Reports Server (NTRS)
Boyle, Robert
2014-01-01
This project demonstrated that higher temperature capabilities of ceramic matrix composites (CMCs) can be used to reduce emissions and improve fuel consumption in gas turbine engines. The work involved closely coupling aerothermal and structural analyses for the first-stage vane of a high-pressure turbine (HPT). These vanes are actively cooled, typically using film cooling. Ceramic materials have structural and thermal properties different from conventional metals used for the first-stage HPT vane. This project identified vane configurations that satisfy CMC structural strength and life constraints while maintaining vane aerodynamic efficiency and reducing vane cooling to improve engine performance and reduce emissions. The project examined modifications to vane internal configurations to achieve the desired objectives. Thermal and pressure stresses are equally important, and both were analyzed using an ANSYS® structural analysis. Three-dimensional fluid and heat transfer analyses were used to determine vane aerodynamic performance and heat load distributions.
Nanoscale Liquid Jets Shape New Line of Business
NASA Technical Reports Server (NTRS)
2003-01-01
Just as a pistol shrimp stuns its prey by quickly closing its oversized claw to shoot out a shock-inducing, high-velocity jet of water, NanoMatrix, Inc., is sending shockwaves throughout the nanotechnology world with a revolutionary, small-scale fabrication process that uses powerful liquid jets to cut and shape objects. Emanuel Barros, a former project engineer at NASA s Ames Research Center, set out to form the Santa Cruz, California-based NanoMatrix firm and materialize the micro/nano cutting process partially inspired by the water-spewing crustacean. Early on in his 6-year NASA career, Barros led the development of re-flown flight hardware for an award-winning Spacelab project called NeuroLab. This project, the sixteenth and final Spacelab mission, focused on a series of experiments to determine the effects of microgravity on the development of the mammalian nervous system.
2009-08-01
the measurements of Jung et al [3], ’BSR’ to the Breit- Pauli B-Spline ft-matrix method, and ’RDW to the relativistic distorted wave method. low...excitation cross sections using both relativistic distorted wave and semi-relativistic Breit- Pauli B-Spline R-matrix methods is presented. The model...population and line intensity enhancement. 15. SUBJECT TERMS Metastable xenon Electrostatic thruster Relativistic Breit- Pauli b-spline matrix
Understanding the Evolution and Stability of the G-Matrix
Arnold, Stevan J.; Bürger, Reinhard; Hohenlohe, Paul A.; Ajie, Beverley C.; Jones, Adam G.
2011-01-01
The G-matrix summarizes the inheritance of multiple, phenotypic traits. The stability and evolution of this matrix are important issues because they affect our ability to predict how the phenotypic traits evolve by selection and drift. Despite the centrality of these issues, comparative, experimental, and analytical approaches to understanding the stability and evolution of the G-matrix have met with limited success. Nevertheless, empirical studies often find that certain structural features of the matrix are remarkably constant, suggesting that persistent selection regimes or other factors promote stability. On the theoretical side, no one has been able to derive equations that would relate stability of the G-matrix to selection regimes, population size, migration, or to the details of genetic architecture. Recent simulation studies of evolving G-matrices offer solutions to some of these problems, as well as a deeper, synthetic understanding of both the G-matrix and adaptive radiations. PMID:18973631
A project to establish a skills competency matrix for EU nurses.
Cowan, David T; Norman, Ian J; Coopamah, Vinoda P
Enhanced nurse workforce mobility in the European Union (EU) is seen as a remedy to shortages of nurses in some EU countries and a surplus in others. However, knowledge of differences in competence, culture, skill levels and working practices of nursing staff throughout EU countries is not fully documented because currently no tangible method exists to enable comparison. The European Healthcare Training and Accreditation Network (EHTAN) project intends to address this problem by establishing an assessment and evaluation methodology through the compilation of a skills competency matrix. To this end, subsequent to a review of documentation and literature on nursing competence definition and assessment, two versions of a nursing competence self-assessment questionnaire tool have been developed. The final competence matrix will be translated and disseminated for transnational use and it is hoped that this will inform EU and national policies on the training requirements of nurses and nursing mobility and facilitate the promotion of EU-wide recognition of nursing qualifications.
Characterizing species interactions to understand press perturbations: What is the community matrix?
Novak, Mark; Yeakel, Justin D.; Noble, Andrew E.; Doak, Daniel F.; Emmerson, Mark; Estes, James A.; Jacob, Ute; Tinker, M. Tim; Wootton, J. Timothy
2016-01-01
The community matrix is among ecology's most important mathematical abstractions, formally encapsulating the interconnected network of effects that species have on one another's populations. Despite its importance, the term `community matrix' has been applied to matrices having differing interpretations. This has hindered the application of theory for understanding community structure and perturbation responses, particularly in the contexts of ecosystem-based management and conservation. Here we clarify the correspondence and distinctions between the Interaction matrix, the Alpha matrix and the Jacobian matrix, terms which are frequently used interchangeably and have numerous synonyms, including the term Community matrix. We illustrate how these matrices correspond to different ways of characterizing interaction strengths, how they permit insights regarding different types of press perturbations of species growth rates or abundances, and how these are related by a simple scaling relationship. Connections to additional interaction strength characterizations encapsulated by the Beta matrix, the Gamma matrix, and the Removal matrix are also discussed. Our synthesis highlights the empirical challenges that remain in using these mathematical tools to understand actual communities.
Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050
McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.; ...
2015-02-03
Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less
Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.
Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less
Duan, Bin; Yin, Ziying; Hockaday Kang, Laura; Magin, Richard L; Butcher, Jonathan T
2016-05-01
Calcific aortic valve disease (CAVD) progression is a highly dynamic process whereby normally fibroblastic valve interstitial cells (VIC) undergo osteogenic differentiation, maladaptive extracellular matrix (ECM) composition, structural remodeling, and tissue matrix stiffening. However, how VIC with different phenotypes dynamically affect matrix properties and how the altered matrix further affects VIC phenotypes in response to physiological and pathological conditions have not yet been determined. In this study, we develop 3D hydrogels with tunable matrix stiffness to investigate the dynamic interplay between VIC phenotypes and matrix biomechanics. We find that VIC populated within hydrogels with valve leaflet like stiffness differentiate towards myofibroblasts in osteogenic media, but surprisingly undergo osteogenic differentiation when cultured within lower initial stiffness hydrogels. VIC differentiation progressively stiffens the hydrogel microenvironment, which further upregulates both early and late osteogenic markers. These findings identify a dynamic positive feedback loop that governs acceleration of VIC calcification. Temporal stiffening of pathologically lower stiffness matrix back to normal level, or blocking the mechanosensitive RhoA/ROCK signaling pathway, delays the osteogenic differentiation process. Therefore, direct ECM biomechanical modulation can affect VIC phenotypes towards and against osteogenic differentiation in 3D culture. These findings highlight the importance of the homeostatic maintenance of matrix stiffness to restrict pathological VIC differentiation. We implement 3D hydrogels with tunable matrix stiffness to investigate the dynamic interaction between valve interstitial cells (VIC, major cell population in heart valve) and matrix biomechanics. This work focuses on how human VIC responses to changing 3D culture environments. Our findings identify a dynamic positive feedback loop that governs acceleration of VIC calcification, which is the hallmark of calcific aortic valve disease. Temporal stiffening of pathologically lower stiffness matrix back to normal level, or blocking the mechanosensitive signaling pathway, delays VIC osteogenic differentiation. Our findings provide an improved understanding of VIC-matrix interactions to aid in interpretation of VIC calcification studies in vitro and suggest that ECM disruption resulting in local tissue stiffness decreases may promote calcific aortic valve disease. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
24 CFR 960.403 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Mixed Population Projects § 960.403 Applicability. (a) This subpart applies to all dwelling units in mixed population projects (as defined in § 960.405), or portions of mixed population projects, assisted...
24 CFR 960.403 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Mixed Population Projects § 960.403 Applicability. (a) This subpart applies to all dwelling units in mixed population projects (as defined in § 960.405), or portions of mixed population projects, assisted...
24 CFR 960.403 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Mixed Population Projects § 960.403 Applicability. (a) This subpart applies to all dwelling units in mixed population projects (as defined in § 960.405), or portions of mixed population projects, assisted...
24 CFR 960.403 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Mixed Population Projects § 960.403 Applicability. (a) This subpart applies to all dwelling units in mixed population projects (as defined in § 960.405), or portions of mixed population projects, assisted...
24 CFR 960.403 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Mixed Population Projects § 960.403 Applicability. (a) This subpart applies to all dwelling units in mixed population projects (as defined in § 960.405), or portions of mixed population projects, assisted...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matenine, D; Cote, G; Mascolo-Fortin, J
2016-06-15
Purpose: Iterative reconstruction algorithms in computed tomography (CT) require a fast method for computing the intersections between the photons’ trajectories and the object, also called ray-tracing or system matrix computation. This work evaluates different ways to store the system matrix, aiming to reconstruct dense image grids in reasonable time. Methods: We propose an optimized implementation of the Siddon’s algorithm using graphics processing units (GPUs) with a novel data storage scheme. The algorithm computes a part of the system matrix on demand, typically, for one projection angle. The proposed method was enhanced with accelerating options: storage of larger subsets of themore » system matrix, systematic reuse of data via geometric symmetries, an arithmetic-rich parallel code and code configuration via machine learning. It was tested on geometries mimicking a cone beam CT acquisition of a human head. To realistically assess the execution time, the ray-tracing routines were integrated into a regularized Poisson-based reconstruction algorithm. The proposed scheme was also compared to a different approach, where the system matrix is fully pre-computed and loaded at reconstruction time. Results: Fast ray-tracing of realistic acquisition geometries, which often lack spatial symmetry properties, was enabled via the proposed method. Ray-tracing interleaved with projection and backprojection operations required significant additional time. In most cases, ray-tracing was shown to use about 66 % of the total reconstruction time. In absolute terms, tracing times varied from 3.6 s to 7.5 min, depending on the problem size. The presence of geometrical symmetries allowed for non-negligible ray-tracing and reconstruction time reduction. Arithmetic-rich parallel code and machine learning permitted a modest reconstruction time reduction, in the order of 1 %. Conclusion: Partial system matrix storage permitted the reconstruction of higher 3D image grid sizes and larger projection datasets at the cost of additional time, when compared to the fully pre-computed approach. This work was supported in part by the Fonds de recherche du Quebec - Nature et technologies (FRQ-NT). The authors acknowledge partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council of Canada (Grant No. 432290).« less
Development and Validation of a Shear Punch Test Fixture
2013-08-01
composites (MMC) manufactured by friction stir processing (FSP) that are being developed as part of a Technology Investment Fund (TIF) project, as the...leading a team of government departments and academics to develop a friction stir processing (FSP) based procedure to create metal matrix composite... friction stir process to fabricate surface metal matrix composites in aluminum alloys for potential application in light armoured vehicles. The
A systematic approach for locating optimum sites
Angel Ramos; Isabel Otero
1979-01-01
The basic information collected for landscape planning studies may be given the form of a "s x m" matrix, where s is the number of landscape units and m the number of data gathered for each unit. The problem of finding the optimum location for a given project is translated in the problem of ranking the series of vectors in the matrix which represent landscape...
ERIC Educational Resources Information Center
Jewett, Frank I.; And Others
This paper reports on a project undertaken at Humboldt State College, California, to estimate the coefficients of the so-called "induced course load matrix," perhaps the single most vital component of some models that are being developed to aid administrative planning and decisionmaking in institutions of higher education. Chapter I, the…
ERIC Educational Resources Information Center
Collazo, Andres; And Others
Since a great number of variables influence future educational outcomes, forecasting possible trends is a complex task. One such model, the cross-impact matrix, has been developed. The use of this matrix in forecasting future values of social indicators of educational outcomes is described. Variables associated with educational outcomes are used…
1980-07-25
matrix (DTM) and digital planimetric data, combined and integrated into so-called "data bases." I’ll say more about this later. AUTOMATION OF...projection with mechanical inversors to maintain the Scheimpflug condition. Some automation has been achieved, with computer control to determine rectifier... matrix (DTM) form that is not necessarily collected from the same photography as that from which the orthophoto is being produced. Because they are
Habitat loss is the leading cause of decline in wildlife diversity and abundance throughout the world, and understanding its impacts on animal populations is a critical challenge facing conservation biologists. Population viability analysis (PVA) is a commonly used tool for pred...
In recent years there has been an increasing interest in using population models in environmental assessments. Matrix population models represent a valuable tool for extrapolating from life stage-specific stressor effects on survival and reproduction to effects on finite populati...
USDA-ARS?s Scientific Manuscript database
Demographic matrix modeling of invasive plant populations can be a powerful tool to identify key life stage transitions for targeted disruption in order to cause population decline. This approach can provide quantitative estimates of reductions in select vital rates needed to reduce population growt...
A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex
Markov, N. T.; Ercsey-Ravasz, M. M.; Ribeiro Gomes, A. R.; Lamy, C.; Magrou, L.; Vezoli, J.; Misery, P.; Falchier, A.; Quilodran, R.; Gariel, M. A.; Sallet, J.; Gamanut, R.; Huissoud, C.; Clavagnier, S.; Giroud, P.; Sappey-Marinier, D.; Barone, P.; Dehay, C.; Toroczkai, Z.; Knoblauch, K.; Van Essen, D. C.; Kennedy, H.
2014-01-01
Retrograde tracer injections in 29 of the 91 areas of the macaque cerebral cortex revealed 1,615 interareal pathways, a third of which have not previously been reported. A weight index (extrinsic fraction of labeled neurons [FLNe]) was determined for each area-to-area pathway. Newly found projections were weaker on average compared with the known projections; nevertheless, the 2 sets of pathways had extensively overlapping weight distributions. Repeat injections across individuals revealed modest FLNe variability given the range of FLNe values (standard deviation <1 log unit, range 5 log units). The connectivity profile for each area conformed to a lognormal distribution, where a majority of projections are moderate or weak in strength. In the G29 × 29 interareal subgraph, two-thirds of the connections that can exist do exist. Analysis of the smallest set of areas that collects links from all 91 nodes of the G29 × 91 subgraph (dominating set analysis) confirms the dense (66%) structure of the cortical matrix. The G29 × 29 subgraph suggests an unexpectedly high incidence of unidirectional links. The directed and weighted G29 × 91 connectivity matrix for the macaque will be valuable for comparison with connectivity analyses in other species, including humans. It will also inform future modeling studies that explore the regularities of cortical networks. PMID:23010748
An Open-Access Modeled Passenger Flow Matrix for the Global Air Network in 2010
Huang, Zhuojie; Wu, Xiao; Garcia, Andres J.; Fik, Timothy J.; Tatem, Andrew J.
2013-01-01
The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data. PMID:23691194
NASA Astrophysics Data System (ADS)
Bellanger, Véronique; Courcelle, Arnaud; Petit, Alain
2004-09-01
A program to compute the two-step excitation of sodium atoms ( 3S→3P→4D) using the density-matrix formalism is presented. The BEACON program calculates population evolution and the number of photons emitted by fluorescence from the 3P, 4D, 4P, 4S levels. Program summaryTitle of program: BEACON Catalogue identifier:ADSX Program Summary URL:http://cpc.cs.qub.ac.uk/cpc/summaries/ADSX Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Operating systems under which the program has been tested: Win; Unix Programming language used: FORTRAN 77 Memory required to execute with typical data: 1 Mw Number of bits in a word: 32 Number of processors used: 1 (a parallel version of this code is also available and can be obtained on request) Number of lines in distributed program, including test data, etc.: 29 287 Number of bytes in distributed program, including test data, etc.: 830 331 Distribution format: tar.gz CPC Program Library subprograms used: none Nature of physical problem: Resolution of the Bloch equations in the case of the two-step laser excitation of sodium atoms. Method of solution: The program BEACON calculates the evolution of level population versus time using the density-matrix formalism. The number of photons emitted from the 3P, 4D and 4P levels is calculated using the branching ratios and the level lifetimes. Restriction on the complexity of the problem: Since the backscatter emission is calculated after the excitation process, excitation with laser pulse duration longer than the 4D level lifetime cannot be rigorously treated. Particularly, cw laser excitation cannot be calculated with this code. Typical running time:12 h
An open-access modeled passenger flow matrix for the global air network in 2010.
Huang, Zhuojie; Wu, Xiao; Garcia, Andres J; Fik, Timothy J; Tatem, Andrew J
2013-01-01
The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data.
Design of monocular head-mounted displays for increased indoor firefighting safety and efficiency
NASA Astrophysics Data System (ADS)
Wilson, Joel; Steingart, Dan; Romero, Russell; Reynolds, Jessica; Mellers, Eric; Redfern, Andrew; Lim, Lloyd; Watts, William; Patton, Colin; Baker, Jessica; Wright, Paul
2005-05-01
Four monocular Head-Mounted Display (HMD) prototypes from the Fire Information and Rescue Equipment (FIRE) project at UC Berkeley are presented. The FIRE project aims to give firefighters a system of information technology tools for safer and more efficient firefighting in large buildings. The paper begins by describing the FIRE project and its use of a custom wireless sensor network (WSN) called SmokeNet for personnel tracking. The project aims to address urban/industrial firefighting procedures in need of improvement. Two "user-needs" studies with the Chicago and Berkeley Fire Departments are briefly presented. The FIRE project"s initial HMD prototype designs are then discussed with regard to feedback from the user-needs studies. These prototypes are evaluated in their potential costs and benefits to firefighters and found to need improvement. Next, some currently available commercial HMDs are reviewed and compared in their cost, performance, and potential for use by firefighters. Feedback from the Berkeley Fire Department user-needs study, in which the initial prototypes were demonstrated, is compiled into a concept selection matrix for the next prototypes. This matrix is used to evaluate a variety of HMDs, including some of the commercial units presented, and to select the best design options. Finally, the current prototypes of the two best design options are presented and discussed.
Direct Retrieval of Exterior Orientation Parameters Using A 2-D Projective Transformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seedahmed, Gamal H.
2006-09-01
Direct solutions are very attractive because they obviate the need for initial approximations associated with non-linear solutions. The Direct Linear Transformation (DLT) establishes itself as a method of choice for direct solutions in photogrammetry and other fields. The use of the DLT with coplanar object space points leads to a rank deficient model. This rank deficient model leaves the DLT defined up to a 2-D projective transformation, which makes the direct retrieval of the exterior orientation parameters (EOPs) a non-trivial task. This paper presents a novel direct algorithm to retrieve the EOPs from the 2-D projective transformation. It is basedmore » on a direct relationship between the 2-D projective transformation and the collinearity model using homogeneous coordinates representation. This representation offers a direct matrix correspondence between the 2-D projective transformation parameters and the collinearity model parameters. This correspondence lends itself to a direct matrix factorization to retrieve the EOPs. An important step in the proposed algorithm is a normalization process that provides the actual link between the 2-D projective transformation and the collinearity model. This paper explains the theoretical basis of the proposed algorithm as well as the necessary steps for its practical implementation. In addition, numerical examples are provided to demonstrate its validity.« less
Interim 2001-based national population projections for the United Kingdom and constituent countries.
Shaw, Chris
2003-01-01
This article describes new 2001-based national population projections which were carried out following the publication in September 2002 of the first results of the 2001 Census. These "interim" projections, carried out by the Government Actuary in consultation with the Registrars General, take preliminary account of the results of the Census which showed that the base population used in previous projections was overestimated. The interim projections also incorporate a reduced assumption of net international migration to the United Kingdom, informed by the first results of the 2001 Census and taking account of more recent migration information. The population of the United Kingdom is now projected to increase from an estimated 58.8 million in 2001 to reach 63.2 million by 2026. The projected population at 2026 is about 1.8 million (2.8 per cent) lower than in the previous (2000-based) projections.
Snapshot retinal imaging Mueller matrix polarimeter
NASA Astrophysics Data System (ADS)
Wang, Yifan; Kudenov, Michael; Kashani, Amir; Schwiegerling, Jim; Escuti, Michael
2015-09-01
Early diagnosis of glaucoma, which is a leading cause for visual impairment, is critical for successful treatment. It has been shown that Imaging polarimetry has advantages in early detection of structural changes in the retina. Here, we theoretically and experimentally present a snapshot Mueller Matrix Polarimeter fundus camera, which has the potential to record the polarization-altering characteristics of retina with a single snapshot. It is made by incorporating polarization gratings into a fundus camera design. Complete Mueller Matrix data sets can be obtained by analyzing the polarization fringes projected onto the image plane. In this paper, we describe the experimental implementation of the snapshot retinal imaging Mueller matrix polarimeter (SRIMMP), highlight issues related to calibration, and provide preliminary images acquired from the camera.
Improved Estimation and Interpretation of Correlations in Neural Circuits
Yatsenko, Dimitri; Josić, Krešimir; Ecker, Alexander S.; Froudarakis, Emmanouil; Cotton, R. James; Tolias, Andreas S.
2015-01-01
Ambitious projects aim to record the activity of ever larger and denser neuronal populations in vivo. Correlations in neural activity measured in such recordings can reveal important aspects of neural circuit organization. However, estimating and interpreting large correlation matrices is statistically challenging. Estimation can be improved by regularization, i.e. by imposing a structure on the estimate. The amount of improvement depends on how closely the assumed structure represents dependencies in the data. Therefore, the selection of the most efficient correlation matrix estimator for a given neural circuit must be determined empirically. Importantly, the identity and structure of the most efficient estimator informs about the types of dominant dependencies governing the system. We sought statistically efficient estimators of neural correlation matrices in recordings from large, dense groups of cortical neurons. Using fast 3D random-access laser scanning microscopy of calcium signals, we recorded the activity of nearly every neuron in volumes 200 μm wide and 100 μm deep (150–350 cells) in mouse visual cortex. We hypothesized that in these densely sampled recordings, the correlation matrix should be best modeled as the combination of a sparse graph of pairwise partial correlations representing local interactions and a low-rank component representing common fluctuations and external inputs. Indeed, in cross-validation tests, the covariance matrix estimator with this structure consistently outperformed other regularized estimators. The sparse component of the estimate defined a graph of interactions. These interactions reflected the physical distances and orientation tuning properties of cells: The density of positive ‘excitatory’ interactions decreased rapidly with geometric distances and with differences in orientation preference whereas negative ‘inhibitory’ interactions were less selective. Because of its superior performance, this ‘sparse+latent’ estimator likely provides a more physiologically relevant representation of the functional connectivity in densely sampled recordings than the sample correlation matrix. PMID:25826696
Dynamic Remodeling of Microbial Biofilms by Functionally Distinct Exopolysaccharides
Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R. C.; Yang, Liang; Rice, Scott A.; Doyle, Patrick
2014-01-01
ABSTRACT Biofilms are densely populated communities of microbial cells protected and held together by a matrix of extracellular polymeric substances. The structure and rheological properties of the matrix at the microscale influence the retention and transport of molecules and cells in the biofilm, thereby dictating population and community behavior. Despite its importance, quantitative descriptions of the matrix microstructure and microrheology are limited. Here, particle-tracking microrheology in combination with genetic approaches was used to spatially and temporally study the rheological contributions of the major exopolysaccharides Pel and Psl in Pseudomonas aeruginosa biofilms. Psl increased the elasticity and effective cross-linking within the matrix, which strengthened its scaffold and appeared to facilitate the formation of microcolonies. Conversely, Pel reduced effective cross-linking within the matrix. Without Psl, the matrix becomes more viscous, which facilitates biofilm spreading. The wild-type biofilm decreased in effective cross-linking over time, which would be advantageous for the spreading and colonization of new surfaces. This suggests that there are regulatory mechanisms to control production of the exopolysaccharides that serve to remodel the matrix of developing biofilms. The exopolysaccharides were also found to have profound effects on the spatial organization and integration of P. aeruginosa in a mixed-species biofilm model of P. aeruginosa-Staphylococcus aureus. Pel was required for close association of the two species in mixed-species microcolonies. In contrast, Psl was important for P. aeruginosa to form single-species biofilms on top of S. aureus biofilms. Our results demonstrate that Pel and Psl have distinct physical properties and functional roles during biofilm formation. PMID:25096883
An Analysis of Variance Framework for Matrix Sampling.
ERIC Educational Resources Information Center
Sirotnik, Kenneth
Significant cost savings can be achieved with the use of matrix sampling in estimating population parameters from psychometric data. The statistical design is intuitively simple, using the framework of the two-way classification analysis of variance technique. For example, the mean and variance are derived from the performance of a certain grade…
USDA-ARS?s Scientific Manuscript database
Weed biological control workers have advocated for the advance assessment of agent efficacy in order to minimize the release of host-specific but ineffective agents. One method involves demographic matrix modeling of target weed populations in order to identify plant life stage transitions that cont...
Lunn, Nicholas J; Servanty, Sabrina; Regehr, Eric V; Converse, Sarah J; Richardson, Evan; Stirling, Ian
2016-07-01
Changes in the abundance and distribution of wildlife populations are common consequences of historic and contemporary climate change. Some Arctic marine mammals, such as the polar bear (Ursus maritimus), may be particularly vulnerable to such changes due to the loss of Arctic sea ice. We evaluated the impacts of environmental variation on demographic rates for the Western Hudson Bay (WH), polar bear subpopulation from 1984 to 2011 using live-recapture and dead-recovery data in a Bayesian implementation of multistate capture-recapture models. We found that survival of female polar bears was related to the annual timing of sea ice break-up and formation. Using estimated vital rates (e.g., survival and reproduction) in matrix projection models, we calculated the growth rate of the WH subpopulation and projected population responses under different environmental scenarios while accounting for parametric uncertainty, temporal variation, and demographic stochasticity. Our analysis suggested a long-term decline in the number of bears from 1185 (95% Bayesian credible interval [BCI] = 993-1411) in 1987 to 806 (95% BCI = 653-984) in 2011. In the last 10 yr of the study, the number of bears appeared stable due to temporary stability in sea ice conditions (mean population growth rate for the period 2001-2010 = 1.02, 95% BCI = 0.98-1.06). Looking forward, we estimated long-term growth rates for the WH subpopulation of ~1.02 (95% BCI = 1.00-1.05) and 0.97 (95% BCI = 0.92-1.01) under hypothetical high and low sea ice conditions, respectively. Our findings support previous evidence for a demographic linkage between sea ice conditions and polar bear population dynamics. Furthermore, we present a robust framework for sensitivity analysis with respect to continued climate change (e.g., to inform scenario planning) and for evaluating the combined effects of climate change and management actions on the status of wildlife populations. © 2016 by the Ecological Society of America.
Lunn, Nicholas J.; Servanty, Sabrina; Regehr, Eric V.; Converse, Sarah J.; Richardson, Evan S.; Stirling, Ian
2016-01-01
Changes in the abundance and distribution of wildlife populations are common consequences of historic and contemporary climate change. Some Arctic marine mammals, such as the polar bear (Ursus maritimus), may be particularly vulnerable to such changes due to the loss of Arctic sea ice. We evaluated the impacts of environmental variation on demographic rates for the Western Hudson Bay (WH), polar bear subpopulation from 1984 to 2011 using live-recapture and dead-recovery data in a Bayesian implementation of multistate capture–recapture models. We found that survival of female polar bears was related to the annual timing of sea ice break-up and formation. Using estimated vital rates (e.g., survival and reproduction) in matrix projection models, we calculated the growth rate of the WH subpopulation and projected population responses under different environmental scenarios while accounting for parametric uncertainty, temporal variation, and demographic stochasticity. Our analysis suggested a long-term decline in the number of bears from 1185 (95% Bayesian credible interval [BCI] = 993–1411) in 1987 to 806 (95% BCI = 653–984) in 2011. In the last 10 yr of the study, the number of bears appeared stable due to temporary stability in sea ice conditions (mean population growth rate for the period 2001–2010 = 1.02, 95% BCI = 0.98–1.06). Looking forward, we estimated long-term growth rates for the WH subpopulation of ~1.02 (95% BCI = 1.00–1.05) and 0.97 (95% BCI = 0.92–1.01) under hypothetical high and low sea ice conditions, respectively. Our findings support previous evidence for a demographic linkage between sea ice conditions and polar bear population dynamics. Furthermore, we present a robust framework for sensitivity analysis with respect to continued climate change (e.g., to inform scenario planning) and for evaluating the combined effects of climate change and management actions on the status of wildlife populations.
Targeting Learning Needs in an Australian Aid Project in Thailand.
ERIC Educational Resources Information Center
Kinder, Rex; Karawanan, Chaisak
1996-01-01
The Thailand Land Titling Project includes a training and development component aimed at long-term sustainability. A training target matrix was developed to identify the knowledge, skills, experience, and performance standards required and needs for training at various levels. Six broad and flexible career paths allow for logical succession,…
An Overview of Three PCDC Projects.
ERIC Educational Resources Information Center
Horbaly, Marilyn; And Others
This report provides in matrix form a comprehensive overview of three Parent Child Development Centers (PCDC) projects located in Birmingham, Houston, and New Orleans. The report is divided into five sections. In Section I, the introduction, a brief description is given of the study's purpose. Section II provides demographic data from each of the…
Non-Finite Complements in Russian, Serbian/Croatian, and Macedonian
ERIC Educational Resources Information Center
Kim, Bo Ra
2010-01-01
This study investigates the coherence properties of non-finite complements in Russian, Serbian/Croatian, and Macedonian. I demonstrate that Slavic non-finite complements do not project a uniform syntactic structure. The maximal projection of non-finite complements is not fixed but depends on the selectional properties of the matrix verb. I present…
A projection-free method for representing plane-wave DFT results in an atom-centered basis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunnington, Benjamin D.; Schmidt, J. R., E-mail: schmidt@chem.wisc.edu
2015-09-14
Plane wave density functional theory (DFT) is a powerful tool for gaining accurate, atomic level insight into bulk and surface structures. Yet, the delocalized nature of the plane wave basis set hinders the application of many powerful post-computation analysis approaches, many of which rely on localized atom-centered basis sets. Traditionally, this gap has been bridged via projection-based techniques from a plane wave to atom-centered basis. We instead propose an alternative projection-free approach utilizing direct calculation of matrix elements of the converged plane wave DFT Hamiltonian in an atom-centered basis. This projection-free approach yields a number of compelling advantages, including strictmore » orthonormality of the resulting bands without artificial band mixing and access to the Hamiltonian matrix elements, while faithfully preserving the underlying DFT band structure. The resulting atomic orbital representation of the Kohn-Sham wavefunction and Hamiltonian provides a gateway to a wide variety of analysis approaches. We demonstrate the utility of the approach for a diverse set of chemical systems and example analysis approaches.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernhardt, A. F.; Smith, P. M.
This project was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and FlexICs, Inc. to develop thin film transistor (TFT) electronics for active matrix displays.
NASA Technical Reports Server (NTRS)
White, B. S.; Castleman, K. R.
1981-01-01
An important step in the diagnosis of a cervical cytology specimen is estimating the proportions of the various cell types present. This is usually done with a cell classifier, the error rates of which can be expressed as a confusion matrix. We show how to use the confusion matrix to obtain an unbiased estimate of the desired proportions. We show that the mean square error of this estimate depends on a 'befuddlement matrix' derived from the confusion matrix, and how this, in turn, leads to a figure of merit for cell classifiers. Finally, we work out the two-class problem in detail and present examples to illustrate the theory.
A System Analysis for Determining Alternative Technological Issues for the Future
NASA Technical Reports Server (NTRS)
Magistrale, V. J.; Small, J.
1967-01-01
A systems engineering methodology is provided, by which future technological ventures may be examined utilizing particular national, corporate, or individual value judgments. Three matrix analyses are presented. The first matrix is concerned with the effect of technology on population increase, war, poverty, health, resources, and prejudice. The second matrix explores an analytical technique for determining the relative importance of different areas of technology. The third matrix explores how an individual or corporate entity may determine how its capability may be used for future technological opportunities. No conclusions are presented since primary effort has been placed on the methodology of determining future technological issues.
Exploratory factor analysis of the Oral Health Impact Profile.
John, M T; Reissmann, D R; Feuerstahler, L; Waller, N; Baba, K; Larsson, P; Celebić, A; Szabo, G; Rener-Sitar, K
2014-09-01
Although oral health-related quality of life (OHRQoL) as measured by the Oral Health Impact Profile (OHIP) is thought to be multidimensional, the nature of these dimensions is not known. The aim of this report was to explore the dimensionality of the OHIP using the Dimensions of OHRQoL (DOQ) Project, an international study of general population subjects and prosthodontic patients. Using the project's Learning Sample (n = 5173), we conducted an exploratory factor analysis on the 46 OHIP items not specifically referring to dentures for 5146 subjects with sufficiently complete data. The first eigenvalue (27·0) of the polychoric correlation matrix was more than ten times larger than the second eigenvalue (2·6), suggesting the presence of a dominant, higher-order general factor. Follow-up analyses with Horn's parallel analysis revealed a viable second-order, four-factor solution. An oblique rotation of this solution revealed four highly correlated factors that we named Oral Function, Oro-facial Pain, Oro-facial Appearance and Psychosocial Impact. These four dimensions and the strong general factor are two viable hypotheses for the factor structure of the OHIP. © 2014 John Wiley & Sons Ltd.
Seth, Ashok; Hiremath, Shirish; Dani, Sameer; Kapoor, Sunil; Jain, R K; Abhaichand, Rajpal; Trivedi, Shailendra; Kaul, Upendra; Patil, Aruna; Khemnar, Bhushan; Rangnekar, Hrishikesh
2013-01-01
The objective of this registry is to establish safety and efficacy of BioMatrix, BioMatrix™-Biolimus A9™ eluting stent in diabetic population in India. Diabetes mellitus is a major predisposing factor for coronary artery disease. Prognosis for diabetic population patients presenting with coronary artery disease who undergo coronary revascularization is inferior to non diabetics and remains an independent risk factor of restenosis, need for revascularization, and overall mortality. Stent thrombosis is a potential complication of first generation, permanent polymer drug-eluting stents. Biodegradable polymer is a good relief in this era and its utility in diabetic patients will be a major advantage for them. 334 patients with diabetes mellitus and requiring angioplasty, implanted with BioMatrix stent were followed at 1, 6, 12 and 24 months who entered in a multicenter registry in India. We analyzed the incidence of major adverse cardiac events (MACE) and stent thrombosis (ST) at 1, 6, 12 and 24 months. The mean age was 58.71 ± 9.2 years, 81% were males, comorbidity index was 1.6 ± 1.02, and 59.1% presented with acute coronary syndrome. The incidence of adverse event rates was: MACE 1.27%. There were no incidences of myocardial infarction (MI) and target vessel revascularization (TVR). Definite stent thrombosis occurred only in 2 patients. In this registry of diabetic population treated with BioMatrixTM-Biolimus A9TM eluting stent (BioMatrix), the reported incidence of MACE and ST were much lower than previously published results. The 1- and 2-year follow-up result supports favorable clinical outcomes of using BioMatrix stents as a suitable alternative to contemporary DES available during PCI in diabetic patients. Copyright © 2013 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.
Demographic responses of Pinguicula ionantha to prescribed fire: a regression-design LTRE approach.
Kesler, Herbert C; Trusty, Jennifer L; Hermann, Sharon M; Guyer, Craig
2008-06-01
This study describes the use of periodic matrix analysis and regression-design life table response experiments (LTRE) to investigate the effects of prescribed fire on demographic responses of Pinguicula ionantha, a federally listed plant endemic to the herb bog/savanna community in north Florida. Multi-state mark-recapture models with dead recoveries were used to estimate survival and transition probabilities for over 2,300 individuals in 12 populations of P. ionantha. These estimates were applied to parameterize matrix models used in further analyses. P. ionantha demographics were found to be strongly dependent on prescribed fire events. Periodic matrix models were used to evaluate season of burn (either growing or dormant season) for fire return intervals ranging from 1 to 20 years. Annual growing and biannual dormant season fires maximized population growth rates for this species. A regression design LTRE was used to evaluate the effect of number of days since last fire on population growth. Maximum population growth rates calculated using standard asymptotic analysis were realized shortly following a burn event (<2 years), and a regression design LTRE showed that short-term fire-mediated changes in vital rates translated into observed increases in population growth. The LTRE identified fecundity and individual growth as contributing most to increases in post-fire population growth. Our analyses found that the current four-year prescribed fire return intervals used at the study sites can be significantly shortened to increase the population growth rates of this rare species. Understanding the role of fire frequency and season in creating and maintaining appropriate habitat for this species may aid in the conservation of this and other rare herb bog/savanna inhabitants.
The QUELCE Method: Using Change Drivers to Estimate Program Costs
2016-08-01
QUELCE computes a distribution of program costs based on Monte Carlo analysis of program cost drivers—assessed via analyses of dependency structure...possible scenarios. These include a dependency structure matrix to understand the interaction of change drivers for a specific project a...performed by the SEI or by company analysts. From the workshop results, analysts create a dependency structure matrix (DSM) of the change drivers
Interactive display system having a matrix optical detector
Veligdan, James T.; DeSanto, Leonard
2007-01-23
A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. An image beam is projected across the inlet face laterally and transversely for display on the outlet face. An optical detector including a matrix of detector elements is optically aligned with the inlet face for detecting a corresponding lateral and transverse position of an inbound light spot on the outlet face.
Yang, Melinda A; Harris, Kelley; Slatkin, Montgomery
2014-12-01
We introduce a method for comparing a test genome with numerous genomes from a reference population. Sites in the test genome are given a weight, w, that depends on the allele frequency, x, in the reference population. The projection of the test genome onto the reference population is the average weight for each x, [Formula: see text]. The weight is assigned in such a way that, if the test genome is a random sample from the reference population, then [Formula: see text]. Using analytic theory, numerical analysis, and simulations, we show how the projection depends on the time of population splitting, the history of admixture, and changes in past population size. The projection is sensitive to small amounts of past admixture, the direction of admixture, and admixture from a population not sampled (a ghost population). We compute the projections of several human and two archaic genomes onto three reference populations from the 1000 Genomes project-Europeans, Han Chinese, and Yoruba-and discuss the consistency of our analysis with previously published results for European and Yoruba demographic history. Including higher amounts of admixture between Europeans and Yoruba soon after their separation and low amounts of admixture more recently can resolve discrepancies between the projections and demographic inferences from some previous studies. Copyright © 2014 by the Genetics Society of America.
Tome-Garcia, Jessica; Tejero, Rut; Nudelman, German; Yong, Raymund L; Sebra, Robert; Wang, Huaien; Fowkes, Mary; Magid, Margret; Walsh, Martin; Silva-Vargas, Violeta; Zaslavsky, Elena; Friedel, Roland H; Doetsch, Fiona; Tsankova, Nadejda M
2017-05-09
Characterization of non-neoplastic and malignant human stem cell populations in their native state can provide new insights into gliomagenesis. Here we developed a purification strategy to directly isolate EGFR +/- populations from human germinal matrix (GM) and adult subventricular zone autopsy tissues, and from de novo glioblastoma (GBM) resections, enriching for cells capable of binding EGF ligand ( LB EGFR + ), and uniquely compared their functional and molecular properties. LB EGFR + populations in both GM and GBM encompassed all sphere-forming cells and displayed proliferative stem cell properties in vitro. In xenografts, LB EGFR + GBM cells showed robust tumor initiation and progression to high-grade, infiltrative gliomas. Whole-transcriptome sequencing analysis confirmed enrichment of proliferative pathways in both developing and neoplastic freshly isolated EGFR + populations, and identified both unique and shared sets of genes. The ability to prospectively isolate stem cell populations using native ligand-binding capacity opens new doors onto understanding both normal human development and tumor cell biology. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Miller, R. H.; Minsky, M. L.; Smith, D. B. S.
1982-01-01
Applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and their related ground support functions are studied so that informed decisions can be made on which aspects of ARAMIS to develop. The space project breakdowns, which are used to identify tasks ('functional elements'), are described. The study method concentrates on the production of a matrix relating space project tasks to pieces of ARAMIS.
Sridhar, Balaji V; Brock, John L; Silver, Jason S; Leight, Jennifer L; Randolph, Mark A; Anseth, Kristi S
2015-04-02
Healing articular cartilage remains a significant clinical challenge because of its limited self-healing capacity. While delivery of autologous chondrocytes to cartilage defects has received growing interest, combining cell-based therapies with scaffolds that capture aspects of native tissue and promote cell-mediated remodeling could improve outcomes. Currently, scaffold-based therapies with encapsulated chondrocytes permit matrix production; however, resorption of the scaffold does not match the rate of production by cells leading to generally low extracellular matrix outputs. Here, a poly (ethylene glycol) (PEG) norbornene hydrogel is functionalized with thiolated transforming growth factor (TGF-β1) and cross-linked by an MMP-degradable peptide. Chondrocytes are co-encapsulated with a smaller population of mesenchymal stem cells, with the goal of stimulating matrix production and increasing bulk mechanical properties of the scaffold. The co-encapsulated cells cleave the MMP-degradable target sequence more readily than either cell population alone. Relative to non-degradable gels, cellularly degraded materials show significantly increased glycosaminoglycan and collagen deposition over just 14 d of culture, while maintaining high levels of viability and producing a more widely-distributed matrix. These results indicate the potential of an enzymatically degradable, peptide-functionalized PEG hydrogel to locally influence and promote cartilage matrix production over a short period. Scaffolds that permit cell-mediated remodeling may be useful in designing treatment options for cartilage tissue engineering applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The accuracy of matrix population model projections for coniferous trees in the Sierra Nevada
van Mantgem, P.J.; Stephenson, N.L.
2005-01-01
No. 2 fuel oil was fed to mallard (Anas platyrhynchos) ducklings in concentrations of 0.5 and 5.0% of the diet from hatching to 18 wk of age to assess the effects of chronic oil ingestion during early development. Five growth parameters (body weight, wing length, ninth primary length, tarsal length, and bill length) were depressed in birds receiving a diet containing 5% fuel oil. There was no oil-related mortality. The 5% fuel oil diet impaired avoidance behavior of 9-d-old mallard ducklings compared with controls or ducklings fed 0.5% oil. Open-field activity was greatly increased in 16-wk-old ducklings fed 5.0% oil. Liver hypertrophy and splenic atrophy were gross evidences of pathological effects in birds on the 5.0% oil diet. More subtle effects included biochemical lesions that resulted in the elevation of plasma alanine aminotransferase and ornithine carbamoyltransferase activity.
NASA Astrophysics Data System (ADS)
Wang, Peng-Fei; Ruan, Xiao-Dong; Xu, Zhong-Bin; Fu, Xin
2015-11-01
The Hong-Strogatz (HS) model of globally coupled phase oscillators with attractive and repulsive interactions reflects the fact that each individual (oscillator) has its own attitude (attractive or repulsive) to the same environment (mean field). Previous studies on HS model focused mainly on the stable states on Ott-Antonsen (OA) manifold. In this paper, the eigenvalues of the Jacobi matrix of each fixed point in HS model are explicitly derived, with the aim to understand the local dynamics around each fixed point. Phase transitions are described according to relative population and coupling strength. Besides, the dynamics off OA manifold is studied. Supported by the National Basic Research Program of China under Grant No. 2015CB057301, the Applied Research Project of Public Welfare Technology of Zhejiang Province under Grant No. 201SC31109 and China Postdoctoral Science Foundation under Grant No. 2014M560483
Sniegula, Szymon; Golab, Maria J; Drobniak, Szymon M; Johansson, Frank
2018-06-01
Seasonal time constraints are usually stronger at higher than lower latitudes and can exert strong selection on life-history traits and the correlations among these traits. To predict the response of life-history traits to environmental change along a latitudinal gradient, information must be obtained about genetic variance in traits and also genetic correlation between traits, that is the genetic variance-covariance matrix, G. Here, we estimated G for key life-history traits in an obligate univoltine damselfly that faces seasonal time constraints. We exposed populations to simulated native temperatures and photoperiods and common garden environmental conditions in a laboratory set-up. Despite differences in genetic variance in these traits between populations (lower variance at northern latitudes), there was no evidence for latitude-specific covariance of the life-history traits. At simulated native conditions, all populations showed strong genetic and phenotypic correlations between traits that shaped growth and development. The variance-covariance matrix changed considerably when populations were exposed to common garden conditions compared with the simulated natural conditions, showing the importance of environmentally induced changes in multivariate genetic structure. Our results highlight the importance of estimating variance-covariance matrixes in environments that mimic selection pressures and not only trait variances or mean trait values in common garden conditions for understanding the trait evolution across populations and environments. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
NASA Astrophysics Data System (ADS)
Henríquez, Paula; Donoso, Denise S.; Grez, Audrey A.
2009-11-01
Habitat fragmentation results in new environmental conditions that may stress resident populations. Such stress may be reflected in demographical or morphological changes in the individuals inhabiting those landscapes. This study evaluates the effects of fragmentation of the Maulino forest on population density, sex ratio, body size, and fluctuating asymmetry (FA) of the endemic carabid Ceroglossus chilensis. Individuals of C. chilensis were collected during 2006 in five locations at Los Queules National Reserve (continuous forest), in five forest fragments and in five areas of surrounding pine plantations (matrix). In each location, once a season, 40 pitfall traps (20 in the centre, 20 in the edge), were opened for 72 h. Population density of C. chilensis was higher in the small fragments than in the pine matrix, with intermediate densities in the continuous forest; sex ratio did not differ significantly from 1:1 in the three habitats. Individuals from the centre of fragments were smaller than those from the centre of continuous forest, and FA did not vary significantly among habitats. These results suggest that small forest fragments maintain dense populations of C. chilensis and therefore they must be considered in conservation strategies. Although the decrease of the body size suggests that small remnants should be connected by managing the structure of the surrounding matrix, facilitating the dispersion of this carabid across the landscape and avoiding possible antagonistic interactions inside small fragments.
Botteon, V W; Neves, J A; Godoy, W A C
2017-04-01
Among the predators with high potential for use in biological control, the species of the genus Podisus (Hemiptera: Pentatomidae) have received special attention for laboratory rearing, since they feed on different agricultural and forestry pest insects. However, the type of diet offered to insects in the laboratory may affect the viability of populations, expressed essentially by demographic parameters such as survival and fecundity. This study assessed demographic and development aspects in experimental populations of Podisus nigrispinus (Dallas, 1851) fed on larvae of Chrysomya putoria (Wiedemann, 1818) (Diptera: Calliphoridae) as an alternative prey. The demographic parameters fecundity and survival were investigated in life stages of P. nigrispinus with ecological modeling, by applying the Leslie matrix population model, producing histograms of life stages in successive time steps. The functional response of P. nigrispinus was also investigated on seven densities of C. putoria third-instar larvae at 24 and 48 h. The survival of predators that reached adulthood was 65% and the development time from egg to adult was 23.15 days. The predator showed a type III functional response for consumption of C. putoria at 24 and 48 h. The Leslie-matrix simulation of the age structure provided perpetuation of the predator population over time steps and the prey proved to be feasible for use in rearing and maintenance of P. nigrispinus in the laboratory.
Martin, Guillaume; Chapuis, Elodie; Goudet, Jérôme
2008-01-01
Neutrality tests in quantitative genetics provide a statistical framework for the detection of selection on polygenic traits in wild populations. However, the existing method based on comparisons of divergence at neutral markers and quantitative traits (Qst–Fst) suffers from several limitations that hinder a clear interpretation of the results with typical empirical designs. In this article, we propose a multivariate extension of this neutrality test based on empirical estimates of the among-populations (D) and within-populations (G) covariance matrices by MANOVA. A simple pattern is expected under neutrality: D = 2Fst/(1 − Fst)G, so that neutrality implies both proportionality of the two matrices and a specific value of the proportionality coefficient. This pattern is tested using Flury's framework for matrix comparison [common principal-component (CPC) analysis], a well-known tool in G matrix evolution studies. We show the importance of using a Bartlett adjustment of the test for the small sample sizes typically found in empirical studies. We propose a dual test: (i) that the proportionality coefficient is not different from its neutral expectation [2Fst/(1 − Fst)] and (ii) that the MANOVA estimates of mean square matrices between and among populations are proportional. These two tests combined provide a more stringent test for neutrality than the classic Qst–Fst comparison and avoid several statistical problems. Extensive simulations of realistic empirical designs suggest that these tests correctly detect the expected pattern under neutrality and have enough power to efficiently detect mild to strong selection (homogeneous, heterogeneous, or mixed) when it is occurring on a set of traits. This method also provides a rigorous and quantitative framework for disentangling the effects of different selection regimes and of drift on the evolution of the G matrix. We discuss practical requirements for the proper application of our test in empirical studies and potential extensions. PMID:18245845
bayesPop: Probabilistic Population Projections
Ševčíková, Hana; Raftery, Adrian E.
2016-01-01
We describe bayesPop, an R package for producing probabilistic population projections for all countries. This uses probabilistic projections of total fertility and life expectancy generated by Bayesian hierarchical models. It produces a sample from the joint posterior predictive distribution of future age- and sex-specific population counts, fertility rates and mortality rates, as well as future numbers of births and deaths. It provides graphical ways of summarizing this information, including trajectory plots and various kinds of probabilistic population pyramids. An expression language is introduced which allows the user to produce the predictive distribution of a wide variety of derived population quantities, such as the median age or the old age dependency ratio. The package produces aggregated projections for sets of countries, such as UN regions or trading blocs. The methodology has been used by the United Nations to produce their most recent official population projections for all countries, published in the World Population Prospects. PMID:28077933
Rota, Christopher T.; Millspaugh, Joshua J.; Rumble, Mark A.; Lehman, Chad P.; Kesler, Dylan C.
2014-01-01
Wildfire and mountain pine beetle infestations are naturally occurring disturbances in western North American forests. Black-backed woodpeckers (Picoides arcticus) are emblematic of the role these disturbances play in creating wildlife habitat, since they are strongly associated with recently-killed forests. However, management practices aimed at reducing the economic impact of natural disturbances can result in habitat loss for this species. Although black-backed woodpeckers occupy habitats created by wildfire, prescribed fire, and mountain pine beetle infestations, the relative value of these habitats remains unknown. We studied habitat-specific adult and juvenile survival probabilities and reproductive rates between April 2008 and August 2012 in the Black Hills, South Dakota. We estimated habitat-specific adult and juvenile survival probability with Bayesian multi-state models and habitat-specific reproductive success with Bayesian nest survival models. We calculated asymptotic population growth rates from estimated demographic rates with matrix projection models. Adult and juvenile survival and nest success were highest in habitat created by summer wildfire, intermediate in MPB infestations, and lowest in habitat created by fall prescribed fire. Mean posterior distributions of population growth rates indicated growing populations in habitat created by summer wildfire and declining populations in fall prescribed fire and mountain pine beetle infestations. Our finding that population growth rates were positive only in habitat created by summer wildfire underscores the need to maintain early post-wildfire habitat across the landscape. The lower growth rates in fall prescribed fire and MPB infestations may be attributed to differences in predator communities and food resources relative to summer wildfire. PMID:24736502
Rota, Christopher T; Millspaugh, Joshua J; Rumble, Mark A; Lehman, Chad P; Kesler, Dylan C
2014-01-01
Wildfire and mountain pine beetle infestations are naturally occurring disturbances in western North American forests. Black-backed woodpeckers (Picoides arcticus) are emblematic of the role these disturbances play in creating wildlife habitat, since they are strongly associated with recently-killed forests. However, management practices aimed at reducing the economic impact of natural disturbances can result in habitat loss for this species. Although black-backed woodpeckers occupy habitats created by wildfire, prescribed fire, and mountain pine beetle infestations, the relative value of these habitats remains unknown. We studied habitat-specific adult and juvenile survival probabilities and reproductive rates between April 2008 and August 2012 in the Black Hills, South Dakota. We estimated habitat-specific adult and juvenile survival probability with Bayesian multi-state models and habitat-specific reproductive success with Bayesian nest survival models. We calculated asymptotic population growth rates from estimated demographic rates with matrix projection models. Adult and juvenile survival and nest success were highest in habitat created by summer wildfire, intermediate in MPB infestations, and lowest in habitat created by fall prescribed fire. Mean posterior distributions of population growth rates indicated growing populations in habitat created by summer wildfire and declining populations in fall prescribed fire and mountain pine beetle infestations. Our finding that population growth rates were positive only in habitat created by summer wildfire underscores the need to maintain early post-wildfire habitat across the landscape. The lower growth rates in fall prescribed fire and MPB infestations may be attributed to differences in predator communities and food resources relative to summer wildfire.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podgorsak, A; Bednarek, D; Rudin, S
2016-06-15
Purpose: To successfully implement and operate a photon counting scheme on an electron multiplying charged-coupled device (EMCCD) based micro-CT system. Methods: We built an EMCCD based micro-CT system and implemented a photon counting scheme. EMCCD detectors use avalanche transfer registries to multiply the input signal far above the readout noise floor. Due to intrinsic differences in the pixel array, using a global threshold for photon counting is not optimal. To address this shortcoming, we generated a threshold array based on sixty dark fields (no x-ray exposure). We calculated an average matrix and a variance matrix of the dark field sequence.more » The average matrix was used for the offset correction while the variance matrix was used to set individual pixel thresholds for the photon counting scheme. Three hundred photon counting frames were added for each projection and 360 projections were acquired for each object. The system was used to scan various objects followed by reconstruction using an FDK algorithm. Results: Examination of the projection images and reconstructed slices of the objects indicated clear interior detail free of beam hardening artifacts. This suggests successful implementation of the photon counting scheme on our EMCCD based micro-CT system. Conclusion: This work indicates that it is possible to implement and operate a photon counting scheme on an EMCCD based micro-CT system, suggesting that these devices might be able to operate at very low x-ray exposures in a photon counting mode. Such devices could have future implications in clinical CT protocols. NIH Grant R01EB002873; Toshiba Medical Systems Corp.« less
Solving large tomographic linear systems: size reduction and error estimation
NASA Astrophysics Data System (ADS)
Voronin, Sergey; Mikesell, Dylan; Slezak, Inna; Nolet, Guust
2014-10-01
We present a new approach to reduce a sparse, linear system of equations associated with tomographic inverse problems. We begin by making a modification to the commonly used compressed sparse-row format, whereby our format is tailored to the sparse structure of finite-frequency (volume) sensitivity kernels in seismic tomography. Next, we cluster the sparse matrix rows to divide a large matrix into smaller subsets representing ray paths that are geographically close. Singular value decomposition of each subset allows us to project the data onto a subspace associated with the largest eigenvalues of the subset. After projection we reject those data that have a signal-to-noise ratio (SNR) below a chosen threshold. Clustering in this way assures that the sparse nature of the system is minimally affected by the projection. Moreover, our approach allows for a precise estimation of the noise affecting the data while also giving us the ability to identify outliers. We illustrate the method by reducing large matrices computed for global tomographic systems with cross-correlation body wave delays, as well as with surface wave phase velocity anomalies. For a massive matrix computed for 3.7 million Rayleigh wave phase velocity measurements, imposing a threshold of 1 for the SNR, we condensed the matrix size from 1103 to 63 Gbyte. For a global data set of multiple-frequency P wave delays from 60 well-distributed deep earthquakes we obtain a reduction to 5.9 per cent. This type of reduction allows one to avoid loss of information due to underparametrizing models. Alternatively, if data have to be rejected to fit the system into computer memory, it assures that the most important data are preserved.
Structural symmetry in evolutionary games.
McAvoy, Alex; Hauert, Christoph
2015-10-06
In evolutionary game theory, an important measure of a mutant trait (strategy) is its ability to invade and take over an otherwise-monomorphic population. Typically, one quantifies the success of a mutant strategy via the probability that a randomly occurring mutant will fixate in the population. However, in a structured population, this fixation probability may depend on where the mutant arises. Moreover, the fixation probability is just one quantity by which one can measure the success of a mutant; fixation time, for instance, is another. We define a notion of homogeneity for evolutionary games that captures what it means for two single-mutant states, i.e. two configurations of a single mutant in an otherwise-monomorphic population, to be 'evolutionarily equivalent' in the sense that all measures of evolutionary success are the same for both configurations. Using asymmetric games, we argue that the term 'homogeneous' should apply to the evolutionary process as a whole rather than to just the population structure. For evolutionary matrix games in graph-structured populations, we give precise conditions under which the resulting process is homogeneous. Finally, we show that asymmetric matrix games can be reduced to symmetric games if the population structure possesses a sufficient degree of symmetry. © 2015 The Author(s).
Structural symmetry in evolutionary games
McAvoy, Alex; Hauert, Christoph
2015-01-01
In evolutionary game theory, an important measure of a mutant trait (strategy) is its ability to invade and take over an otherwise-monomorphic population. Typically, one quantifies the success of a mutant strategy via the probability that a randomly occurring mutant will fixate in the population. However, in a structured population, this fixation probability may depend on where the mutant arises. Moreover, the fixation probability is just one quantity by which one can measure the success of a mutant; fixation time, for instance, is another. We define a notion of homogeneity for evolutionary games that captures what it means for two single-mutant states, i.e. two configurations of a single mutant in an otherwise-monomorphic population, to be ‘evolutionarily equivalent’ in the sense that all measures of evolutionary success are the same for both configurations. Using asymmetric games, we argue that the term ‘homogeneous’ should apply to the evolutionary process as a whole rather than to just the population structure. For evolutionary matrix games in graph-structured populations, we give precise conditions under which the resulting process is homogeneous. Finally, we show that asymmetric matrix games can be reduced to symmetric games if the population structure possesses a sufficient degree of symmetry. PMID:26423436
DEMOGRAPHY AND VIABILITY ANALYSES OF A DIAMONDBACK TERRAPIN POPULATION
The diamondback terrapin Malaclemys terrapin is a long-lived species with special management requirements, but quantitative analyses to support management are lacking. I analyzed mark-recapture data and constructed an age-classified matrix population model to determine the status...
Discriminative Projection Selection Based Face Image Hashing
NASA Astrophysics Data System (ADS)
Karabat, Cagatay; Erdogan, Hakan
Face image hashing is an emerging method used in biometric verification systems. In this paper, we propose a novel face image hashing method based on a new technique called discriminative projection selection. We apply the Fisher criterion for selecting the rows of a random projection matrix in a user-dependent fashion. Moreover, another contribution of this paper is to employ a bimodal Gaussian mixture model at the quantization step. Our simulation results on three different databases demonstrate that the proposed method has superior performance in comparison to previously proposed random projection based methods.
A Perron-Frobenius theory for block matrices associated to a multiplex network
NASA Astrophysics Data System (ADS)
Romance, Miguel; Solá, Luis; Flores, Julio; García, Esther; García del Amo, Alejandro; Criado, Regino
2015-03-01
The uniqueness of the Perron vector of a nonnegative block matrix associated to a multiplex network is discussed. The conclusions come from the relationships between the irreducibility of some nonnegative block matrix associated to a multiplex network and the irreducibility of the corresponding matrices to each layer as well as the irreducibility of the adjacency matrix of the projection network. In addition the computation of that Perron vector in terms of the Perron vectors of the blocks is also addressed. Finally we present the precise relations that allow to express the Perron eigenvector of the multiplex network in terms of the Perron eigenvectors of its layers.
Estimating Allee dynamics before they can be observed: polar bears as a case study.
Molnár, Péter K; Lewis, Mark A; Derocher, Andrew E
2014-01-01
Allee effects are an important component in the population dynamics of numerous species. Accounting for these Allee effects in population viability analyses generally requires estimates of low-density population growth rates, but such data are unavailable for most species and particularly difficult to obtain for large mammals. Here, we present a mechanistic modeling framework that allows estimating the expected low-density growth rates under a mate-finding Allee effect before the Allee effect occurs or can be observed. The approach relies on representing the mechanisms causing the Allee effect in a process-based model, which can be parameterized and validated from data on the mechanisms rather than data on population growth. We illustrate the approach using polar bears (Ursus maritimus), and estimate their expected low-density growth by linking a mating dynamics model to a matrix projection model. The Allee threshold, defined as the population density below which growth becomes negative, is shown to depend on age-structure, sex ratio, and the life history parameters determining reproduction and survival. The Allee threshold is thus both density- and frequency-dependent. Sensitivity analyses of the Allee threshold show that different combinations of the parameters determining reproduction and survival can lead to differing Allee thresholds, even if these differing combinations imply the same stable-stage population growth rate. The approach further shows how mate-limitation can induce long transient dynamics, even in populations that eventually grow to carrying capacity. Applying the models to the overharvested low-density polar bear population of Viscount Melville Sound, Canada, shows that a mate-finding Allee effect is a plausible mechanism for slow recovery of this population. Our approach is generalizable to any mating system and life cycle, and could aid proactive management and conservation strategies, for example, by providing a priori estimates of minimum conservation targets for rare species or minimum eradication targets for pests and invasive species.
Estimating Allee Dynamics before They Can Be Observed: Polar Bears as a Case Study
Molnár, Péter K.; Lewis, Mark A.; Derocher, Andrew E.
2014-01-01
Allee effects are an important component in the population dynamics of numerous species. Accounting for these Allee effects in population viability analyses generally requires estimates of low-density population growth rates, but such data are unavailable for most species and particularly difficult to obtain for large mammals. Here, we present a mechanistic modeling framework that allows estimating the expected low-density growth rates under a mate-finding Allee effect before the Allee effect occurs or can be observed. The approach relies on representing the mechanisms causing the Allee effect in a process-based model, which can be parameterized and validated from data on the mechanisms rather than data on population growth. We illustrate the approach using polar bears (Ursus maritimus), and estimate their expected low-density growth by linking a mating dynamics model to a matrix projection model. The Allee threshold, defined as the population density below which growth becomes negative, is shown to depend on age-structure, sex ratio, and the life history parameters determining reproduction and survival. The Allee threshold is thus both density- and frequency-dependent. Sensitivity analyses of the Allee threshold show that different combinations of the parameters determining reproduction and survival can lead to differing Allee thresholds, even if these differing combinations imply the same stable-stage population growth rate. The approach further shows how mate-limitation can induce long transient dynamics, even in populations that eventually grow to carrying capacity. Applying the models to the overharvested low-density polar bear population of Viscount Melville Sound, Canada, shows that a mate-finding Allee effect is a plausible mechanism for slow recovery of this population. Our approach is generalizable to any mating system and life cycle, and could aid proactive management and conservation strategies, for example, by providing a priori estimates of minimum conservation targets for rare species or minimum eradication targets for pests and invasive species. PMID:24427306
ERIC Educational Resources Information Center
Grimaldi, Ralph P.
This material was developed to provide an application of matrix mathematics in chemistry, and to show the concepts of linear independence and dependence in vector spaces of dimensions greater than three in a concrete setting. The techniques presented are not intended to be considered as replacements for such chemical methods as oxidation-reduction…
Meninges-derived cues control axon guidance.
Suter, Tracey A C S; DeLoughery, Zachary J; Jaworski, Alexander
2017-10-01
The axons of developing neurons travel long distances along stereotyped pathways under the direction of extracellular cues sensed by the axonal growth cone. Guidance cues are either secreted proteins that diffuse freely or bind the extracellular matrix, or membrane-anchored proteins. Different populations of axons express distinct sets of receptors for guidance cues, which results in differential responses to specific ligands. The full repertoire of axon guidance cues and receptors and the identity of the tissues producing these cues remain to be elucidated. The meninges are connective tissue layers enveloping the vertebrate brain and spinal cord that serve to protect the central nervous system (CNS). The meninges also instruct nervous system development by regulating the generation and migration of neural progenitors, but it has not been determined whether they help guide axons to their targets. Here, we investigate a possible role for the meninges in neuronal wiring. Using mouse neural tissue explants, we show that developing spinal cord meninges produce secreted attractive and repulsive cues that can guide multiple types of axons in vitro. We find that motor and sensory neurons, which project axons across the CNS-peripheral nervous system (PNS) boundary, are attracted by meninges. Conversely, axons of both ipsi- and contralaterally projecting dorsal spinal cord interneurons are repelled by meninges. The responses of these axonal populations to the meninges are consistent with their trajectories relative to meninges in vivo, suggesting that meningeal guidance factors contribute to nervous system wiring and control which axons are able to traverse the CNS-PNS boundary. Copyright © 2017 Elsevier Inc. All rights reserved.
On the Restricted Toda and c-KdV Flows of Neumann Type
NASA Astrophysics Data System (ADS)
Zhou, RuGuang; Qiao, ZhiJun
2000-09-01
It is proven that on a symplectic submanifold the restricted c-KdV flow is just the interpolating Hamiltonian flow of invariant for the restricted Toda flow, which is an integrable symplectic map of Neumann type. They share the common Lax matrix, dynamical r-matrix and system of involutive conserved integrals. Furthermore, the procedure of separation of variables is considered for the restricted c-KdV flow of Neumann type. The project supported by the Chinese National Basic Research Project "Nonlinear Science" and the Doctoral Programme Foundation of Institution of High Education of China. The first author also thanks the National Natural Science Foundation of China (19801031) and "Qinglan Project" of Jiangsu Province of China; and the second author also thanks the Alexander von Humboldt Fellowships, Deutschland, the Special Grant of Excellent Ph. D Thesis of China, the Science & Technology Foundation (Youth Talent Foundation) and the Science Research Foundation of Education Committee of Liaoning Province of China.
1996-based national population projections for the United Kingdom and constituent countries.
Shaw, C
1998-01-01
The 1996-based national population projections, carried out by the Government Actuary in consultation with the Registrars General, show the population of the United Kingdom rising from 58.8 million in 1996 to over 62 million by 2021. The population will become gradually older with the mean age expected to rise from 38.4 years in 1996 to nearly 42 years by 2021. The number of children aged under 16 is projected to fall by 1.0 million (9 per cent) by 2021, while the number aged 65 and over is projected to increase by 2.7 million (29 per cent). Longer-term projections suggest the population will peak around 2031 and then gradually start to fall.
Nonnegative Matrix Factorization for Efficient Hyperspectral Image Projection
NASA Technical Reports Server (NTRS)
Iacchetta, Alexander S.; Fienup, James R.; Leisawitz, David T.; Bolcar, Matthew R.
2015-01-01
Hyperspectral imaging for remote sensing has prompted development of hyperspectral image projectors that can be used to characterize hyperspectral imaging cameras and techniques in the lab. One such emerging astronomical hyperspectral imaging technique is wide-field double-Fourier interferometry. NASA's current, state-of-the-art, Wide-field Imaging Interferometry Testbed (WIIT) uses a Calibrated Hyperspectral Image Projector (CHIP) to generate test scenes and provide a more complete understanding of wide-field double-Fourier interferometry. Given enough time, the CHIP is capable of projecting scenes with astronomically realistic spatial and spectral complexity. However, this would require a very lengthy data collection process. For accurate but time-efficient projection of complicated hyperspectral images with the CHIP, the field must be decomposed both spectrally and spatially in a way that provides a favorable trade-off between accurately projecting the hyperspectral image and the time required for data collection. We apply nonnegative matrix factorization (NMF) to decompose hyperspectral astronomical datacubes into eigenspectra and eigenimages that allow time-efficient projection with the CHIP. Included is a brief analysis of NMF parameters that affect accuracy, including the number of eigenspectra and eigenimages used to approximate the hyperspectral image to be projected. For the chosen field, the normalized mean squared synthesis error is under 0.01 with just 8 eigenspectra. NMF of hyperspectral astronomical fields better utilizes the CHIP's capabilities, providing time-efficient and accurate representations of astronomical scenes to be imaged with the WIIT.
Free Fermions and the Classical Compact Groups
NASA Astrophysics Data System (ADS)
Cunden, Fabio Deelan; Mezzadri, Francesco; O'Connell, Neil
2018-06-01
There is a close connection between the ground state of non-interacting fermions in a box with classical (absorbing, reflecting, and periodic) boundary conditions and the eigenvalue statistics of the classical compact groups. The associated determinantal point processes can be extended in two natural directions: (i) we consider the full family of admissible quantum boundary conditions (i.e., self-adjoint extensions) for the Laplacian on a bounded interval, and the corresponding projection correlation kernels; (ii) we construct the grand canonical extensions at finite temperature of the projection kernels, interpolating from Poisson to random matrix eigenvalue statistics. The scaling limits in the bulk and at the edges are studied in a unified framework, and the question of universality is addressed. Whether the finite temperature determinantal processes correspond to the eigenvalue statistics of some matrix models is, a priori, not obvious. We complete the picture by constructing a finite temperature extension of the Haar measure on the classical compact groups. The eigenvalue statistics of the resulting grand canonical matrix models (of random size) corresponds exactly to the grand canonical measure of free fermions with classical boundary conditions.
Tensor discriminant color space for face recognition.
Wang, Su-Jing; Yang, Jian; Zhang, Na; Zhou, Chun-Guang
2011-09-01
Recent research efforts reveal that color may provide useful information for face recognition. For different visual tasks, the choice of a color space is generally different. How can a color space be sought for the specific face recognition problem? To address this problem, this paper represents a color image as a third-order tensor and presents the tensor discriminant color space (TDCS) model. The model can keep the underlying spatial structure of color images. With the definition of n-mode between-class scatter matrices and within-class scatter matrices, TDCS constructs an iterative procedure to obtain one color space transformation matrix and two discriminant projection matrices by maximizing the ratio of these two scatter matrices. The experiments are conducted on two color face databases, AR and Georgia Tech face databases, and the results show that both the performance and the efficiency of the proposed method are better than those of the state-of-the-art color image discriminant model, which involve one color space transformation matrix and one discriminant projection matrix, specifically in a complicated face database with various pose variations.
Vecharynski, Eugene; Yang, Chao; Pask, John E.
2015-02-25
Here, we present an iterative algorithm for computing an invariant subspace associated with the algebraically smallest eigenvalues of a large sparse or structured Hermitian matrix A. We are interested in the case in which the dimension of the invariant subspace is large (e.g., over several hundreds or thousands) even though it may still be small relative to the dimension of A. These problems arise from, for example, density functional theory (DFT) based electronic structure calculations for complex materials. The key feature of our algorithm is that it performs fewer Rayleigh–Ritz calculations compared to existing algorithms such as the locally optimalmore » block preconditioned conjugate gradient or the Davidson algorithm. It is a block algorithm, and hence can take advantage of efficient BLAS3 operations and be implemented with multiple levels of concurrency. We discuss a number of practical issues that must be addressed in order to implement the algorithm efficiently on a high performance computer.« less
Basigin/EMMPRIN/CD147 mediates neuron-glia interactions in the optic lamina of Drosophila.
Curtin, Kathryn D; Wyman, Robert J; Meinertzhagen, Ian A
2007-11-15
Basigin, an IgG family glycoprotein found on the surface of human metastatic tumors, stimulates fibroblasts to secrete matrix metalloproteases (MMPs) that remodel the extracellular matrix, and is thus also known as Extracellular Matrix MetalloPRotease Inducer (EMMPRIN). Using Drosophila we previously identified novel roles for basigin. Specifically, photoreceptors of flies with basigin eyes show misplaced nuclei, rough ER and mitochondria, and swollen axon terminals, suggesting cytoskeletal disruptions. Here we demonstrate that basigin is required for normal neuron-glia interactions in the Drosophila visual system. Flies with basigin mutant photoreceptors have misplaced epithelial glial cells within the first optic neuropile, or lamina. In addition, epithelial glia insert finger-like projections--capitate projections (CPs)--sites of vesicle endocytosis and possibly neurotransmitter recycling. When basigin is missing from photoreceptors terminals, CP formation between glia and photoreceptor terminals is disrupted. Visual system function is also altered in flies with basigin mutant eyes. While photoreceptors depolarize normally to light, synaptic transmission is greatly diminished, consistent with a defect in neurotransmitter release. Basigin expression in photoreceptor neurons is required for normal structure and placement of glia cells.
Periodic matrix population models: growth rate, basic reproduction number, and entropy.
Bacaër, Nicolas
2009-10-01
This article considers three different aspects of periodic matrix population models. First, a formula for the sensitivity analysis of the growth rate lambda is obtained that is simpler than the one obtained by Caswell and Trevisan. Secondly, the formula for the basic reproduction number R0 in a constant environment is generalized to the case of a periodic environment. Some inequalities between lambda and R0 proved by Cushing and Zhou are also generalized to the periodic case. Finally, we add some remarks on Demetrius' notion of evolutionary entropy H and its relationship to the growth rate lambda in the periodic case.
Heat- and light-induced transformations of Yb trapping sites in an Ar matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, L.-G.; Lambo, R., E-mail: lambo@mail.ustc.edu.cn; Zhou, X.-G.
2015-11-07
The low-lying electronic states of Yb isolated in a solid Ar matrix grown at 4.2 K are characterized through absorption and emission spectroscopy. Yb atoms are found to occupy three distinct thermally stable trapping sites labeled “red,” “blue,” and “violet” according to the relative positions of the absorption features they produce. Classical simulations of the site structure and relative stability broadly reproduced the experimentally observed matrix-induced frequency shifts and thus identified the red, blue, and violet sites as due to respective single substitutional (SS), tetravacancy (TV), and hexavacancy (HV) occupation. Prolonged excitation of the {sup 1}S → {sup 1}P transitionmore » was found to transfer the Yb population from HV sites into TV and SS sites. The process showed reversibility in that annealing to 24 K predominantly transferred the TV population back into HV sites. Population kinetics were used to deduce the effective rate parameters for the site transformation processes. Experimental observations indicate that the blue and violet sites lie close in energy, whereas the red one is much less stable. Classical simulations identify the blue site as the most stable one.« less
NASA Astrophysics Data System (ADS)
McDougall, C.; Martin, A.; Givens, S. M.; Yue, S.; Wilson, C. E.; Karsten, J. L.
2012-12-01
The Tri-Agency Climate Education (TrACE) Catalog is an online, interactive, searchable and browsable web product driven by a database backend. TrACE was developed for and by the community of educators, scientists, and Federal agency representatives involved in a tri-agency collaboration for climate education. NASA, NOAA, and NSF are working together to strategically coordinate and support a portfolio of projects focused on climate literacy and education in formal and informal learning environments. The activities of the tri-agency collaboration, including annual meetings for principal investigators and the ongoing development of a nascent common evaluation framework, have created a strong national network for effectively engaging diverse audiences with the principles of climate literacy (see Eos Vol. 92, No. 24, 14 June 2011). TrACE is a tool for the climate education community that promotes the goals of the tri-agency collaboration to leverage existing resources, minimize duplicate efforts, and facilitate communication among this emergent community of scientists and educators. TrACE was born as "The Matrix," a product of the 2011 Second Annual NASA, NOAA and NSF Climate Change Education Principal Investigators Meeting (see McDougall, Wilson, Martin & Knippenberg, 2011, Abstract ED21B-0583 presented at 2011 Fall Meeting, AGU, San Francisco, CA.) Meeting attendees were asked to populate a pen-and-paper matrix with all of the activities or deliverables they had created or anticipated creating as part of their NOAA/NASA/NSF-funded project. During the 2012 Third Annual Tri-Agency PI Meeting, projects were given the opportunity to add and update their products and deliverables. In the intervening year, the dataset comprising the Matrix was converted to a MySQL database, with a standardized taxonomy and minimum criteria for inclusion, and further developed into the interactive TrACE Catalog. In the fall of 2012, the TrACE Catalog web product will be made publicly available. The catalog currently contains information about 204 educational products and resources, representing 81 federally funded projects, categorized by audience type (e.g., K-12 students, public, decision makers, scientists) and resource type (e.g., curriculum, electronic media & tools, exhibits). The web interface will allow for searching, sorting, and browsing of available educational resources by audience type, product type, funding agency, and geographical region. Using this tool, PIs working on similar efforts or in similar bioregions will be able to locate, learn from, and collaborate with each other. The dataset is also useful for visualizing and assessing the breadth and depth of the tri-agency portfolio. In this poster presentation, representatives from the three collaborating agencies will demonstrate the functionality of the TrACE Catalog and the dataset that drives it. We will invite others who are working on similar efforts to add their anticipated/existing products.
Greenberg, L; Cultice, J M
1997-01-01
OBJECTIVE: The Health Resources and Services Administration's Bureau of Health Professions developed a demographic utilization-based model of physician specialty requirements to explore the consequences of a broad range of scenarios pertaining to the nation's health care delivery system on need for physicians. DATA SOURCE/STUDY SETTING: The model uses selected data primarily from the National Center for Health Statistics, the American Medical Association, and the U.S. Bureau of Census. Forecasts are national estimates. STUDY DESIGN: Current (1989) utilization rates for ambulatory and inpatient medical specialty services were obtained for the population according to age, gender, race/ethnicity, and insurance status. These rates are used to estimate specialty-specific total service utilization expressed in patient care minutes for future populations and converted to physician requirements by applying per-physician productivity estimates. DATA COLLECTION/EXTRACTION METHODS: Secondary data were analyzed and put into matrixes for use in the mainframe computer-based model. Several missing data points, e.g., for HMO-enrolled populations, were extrapolated from available data by the project's contractor. PRINCIPAL FINDINGS: The authors contend that the Bureau's demographic utilization model represents improvements over other data-driven methodologies that rely on staffing ratios and similar supply-determined bases for estimating requirements. The model's distinct utility rests in offering national-level physician specialty requirements forecasts. Images Figure 1 PMID:9018213
Janson, David; Rietveld, Marion; Mahé, Christian; Saintigny, Gaëlle; El Ghalbzouri, Abdoelwaheb
2017-06-01
Papillary and reticular fibroblasts have different effects on keratinocyte proliferation and differentiation. The aim of this study was to investigate whether these effects are caused by differential secretion of soluble factors or by differential generation of extracellular matrix from papillary and reticular fibroblasts. To study the effect of soluble factors, keratinocyte monolayer cultures were grown in papillary or reticular fibroblast-conditioned medium. To study the effect of extracellular matrix, keratinocytes were grown on papillary or reticular-derived matrix. Conditioned medium from papillary or reticular fibroblasts did not differentially affect keratinocyte viability or epidermal development. However, keratinocyte viability was increased when grown on matrix derived from papillary, compared with reticular, fibroblasts. In addition, the longevity of the epidermis was increased when cultured on papillary fibroblast-derived matrix skin equivalents compared with reticular-derived matrix skin equivalents. The findings indicate that the matrix secreted by papillary and reticular fibroblasts is the main causal factor to account for the differences in keratinocyte growth and viability observed in our study. Differences in response to soluble factors between both populations were less significant. Matrix components specific to the papillary dermis may account for the preferential growth of keratinocytes on papillary dermis.
Population models of burrowing mayfly recolonization in Western Lake Erie
Madenjian, C.P.; Schloesser, D.W.; Krieger, K.A.
1998-01-01
Burrowing mayflies, Hexagenia spp. (H. limbata and H. rigida), began recolonizing western Lake Erie during the 1990s. Survey data for mayfly nymph densities indicated that the population experienced exponential growth between 1991 and 1997. To predict the time to full recovery of the mayfly population, we fitted logistic models, ranging in carrying capacity from 600 to 2000 nymphs/m2, to these survey data. Based on the fitted logistic curves, we forecast that the mayfly population in western Lake Erie would achieve full recovery between years 1998 and 2000, depending on the carrying capacity of the western basin. Additionally, we estimated the mortality rate of nymphs in western Lake Erie during 1994 and then applied an age-based matrix model to the mayfly population. The results of the matrix population modeling corroborated the exponential growth model application in that both methods yielded an estimate of the population growth rate, r, in excess of 0.8 yr-1. This was the first evidence that mayfly populations are capable of recolonizing large aquatic ecosystems at rates comparable with those observed in much smaller lentic ecosystems. Our model predictions should prove valuable to managers of power plant facilities along the western basin in planning for mayfly emergences and to managers of the yellow perch (Perca flavescens) fishery in western Lake Erie.
Dynamics of the double-crested cormorant population on Lake Ontario
Blackwell, Bradley F.; Stapanian, Martin A.; Weseloh, D.V. Chip
2002-01-01
After nearly 30 years of recolonization and expansion across North America, the double-crested cormorant (Phalacrocorax auritus) occupies the role of a perceived and, in some situations, realized threat to fish stocks and other resources. However, population data necessary to plan, defend, and implement management of this species are few. Our purpose was to gain insight into the relative contribution of various population parameters to the overall rate of population growth and identify data needs critical to improving our understanding of the dynamics of double-crested cormorant populations. We demonstrated the construction of a biologically reasonable representation of cormorant population growth on Lake Ontario (1979-2000) by referencing literature values for fertility, age at first breeding, and survival. These parameters were incorporated into a deterministic stage-classified matrix model. By calculating the elasticity of matrix elements (i.e., statgspecific fertility and survival), we found that cormorant population growth on Lake Ontario was most sensitive to survival of birds about to turn age 3 and older. Finally, we demonstrated how this information could be used to evaluate management scenarios and direct future research by simulating potential environmental effects on fertility and survival, as well as a 5-year egg-oiling program. We also demonstrated that survival of older birds exerts more effective population control than changes in fertility.
NASA Astrophysics Data System (ADS)
Prato, Marco; Bonettini, Silvia; Loris, Ignace; Porta, Federica; Rebegoldi, Simone
2016-10-01
The scaled gradient projection (SGP) method is a first-order optimization method applicable to the constrained minimization of smooth functions and exploiting a scaling matrix multiplying the gradient and a variable steplength parameter to improve the convergence of the scheme. For a general nonconvex function, the limit points of the sequence generated by SGP have been proved to be stationary, while in the convex case and with some restrictions on the choice of the scaling matrix the sequence itself converges to a constrained minimum point. In this paper we extend these convergence results by showing that the SGP sequence converges to a limit point provided that the objective function satisfies the Kurdyka-Łojasiewicz property at each point of its domain and its gradient is Lipschitz continuous.
MIMAC-
NASA Astrophysics Data System (ADS)
Santos, D.; Guillaudin, O.; Lamy, Th.; Mayet, F.; Moulin, E.
2007-08-01
The project of a micro-TPC matrix of chambers of 3He for direct detection of non-baryonic dark matter is outlined. The privileged properties of 3He are highlighted. The double detection (ionization - projection of tracks) will assure the electron-recoil discrimination. The complementarity of MIMAC-He3 for supersymmetric dark matter search with respect to other experiments is illustrated. The modular character of the detector allows to have different gases to get A-dependence. The pressure degreee of freedom gives the possibility to work at high and low pressure. The low pressure regime gives the possibility to get the directionality of the tracks. The first measurements of ionization at very few keVs for 3He in 4He gas are described.
Bacterial Biofilms as Complex Communities
NASA Astrophysics Data System (ADS)
Vlamakis, Hera
2010-03-01
Many microbial populations form surface-associated multicellular communities known as biofilms. These multicellular communities are encased in a self-produced extracellular matrix composed of polysaccharides and proteins. Division of labor is a key feature of these communities and different cells serve distinct functions. We have found that in biofilms of the bacterium Bacillus subtilis, different cell types including matrix-producing and sporulating cells coexist and localize to distinct regions within the structured community. We were interested in understanding how these different cell types arise. Using fluorescence reporters under the control of promoters that are specific for distinct cell types we were able to follow the dynamics of differentiation throughout biofilm development. We found that a series of extracellular signals leads to differentiation of distinct cell types during biofilm formation. In addition, we found that extracellular matrix functions as a differentiation signal for timely sporulation within a biofilm and mutants unable to produce matrix were delayed in sporulation. Our results indicate that within a biofilm, cell-cell signaling is directional in that one cell type produces a signal that is sensed by another distinct cell type. Furthermore, once differentiated, cells become resistant to the action of other signaling molecules making it possible to maintain distinct cell populations over prolonged periods.
United Nations population estimates and projections with special reference to the Arab world.
1980-06-01
The United Nations Population Division has been preparing world population estimates and projections by region since 1951, by country since 1958, and by sex and age for each country since 1968. The latest revision of the projections was prepared in 1978. The 2 basic methods of preparing population projections are mathematical and component, and the component methods are most widely used at present, by both national governments and the United Nations. Before projections are prepared, the base data must be evaluated and adjusted. In the UN projections, the assumptions imply that orderly progress will be made and that there will be no catastrophes such as famines and epidemics during the projection period. The projectins are prepared in 4 variants--"medium", "high," "low," and "constant." A major source of uncertainty in populations arises from the problem of estimating future fertility. Changes in fertility affect the age distribution and the total population size more than changes in mortality. At the UN, mortality assumptions are initially made in terms of life expectancy at birth and then in terms of age-sex patterns of probabilities of survival corresponding to different life expectancy levels at birth. Some of the results of the 1978 revision of the medium variant of the estimates and projections are shown in table form. The world total population of 4,033,000,000 in 1975 is projected to reach 6,199,000,000 by the year 2000. Among the major areas and regions of the world, the most rapid population growth for the future is projected for the Arab countries, Africa and Latin America. Of the 2 Arab regions, North Africa and Southwest Asia, Southwest Asia is expected to have the higher rate of growth because of assumed continued immigration. Within the Arab regions, there has been an increasing diversity in the rate of population growth. This divergence is expected to narrow with assumed decreased migration rates during the 1980s.
United States Census Bureau Topics Population Latest Information Age and Sex Ancestry Children Mobility Population Estimates Population Projections Race Veterans Economy Latest Information Portal Other Economic Programs Business Latest Information Business Characteristics Classification Codes
NASA Astrophysics Data System (ADS)
Biggin, C.; Ota, K.; Siittari-Kauppi, M.; Moeri, A.
2004-12-01
In the context of a repository for radioactive waste, 'matrix diffusion' is used to describe the process by which solute, flowing in distinct flow paths, penetrates the surrounding rock matrix. Diffusion into the matrix occurs in a connected system of pores or microfractures. Matrix diffusion provides a mechanism for greatly enlarging the area of rock surface in contact with advecting radionuclides, from that of the flow path surfaces (and infills), to a much larger portion of the bulk rock and increases the global pore volume which can retard radionuclides. In terms of a repository safety assessment, demonstration of a significant depth of diffusion-accessible pore space may result in a significant delay in the calculated release of any escaping radionuclides to the environment and a dramatic reduction in the resulting concentration released into the biosphere. For the last decade, Nagra has investigated in situ matrix diffusion at the Grimsel Test Site (GTS) in the Swiss Alps. The in situ investigations offer two distinct advantages to those performed in the lab, namely: 1. Lab-based determination of porosity and diffusivity can lead to an overestimation of matrix diffusion due to stress relief when the rock is sampled (which would overestimate the retardation in the geosphere) 2. Lab-based analysis usually examines small (cm scale) samples and cannot therefore account for any matrix heterogeneity over the hundreds or thousands of metres a typical flow path The in situ investigations described began with the Connected Porosity project, wherein a specially developed acrylic resin was injected into the rock matrix to fill the pore space and determine the depth of connected porosity. The resin was polymerised in situ and the entire rock mass removed by overcoring. The results indicated that lab-based porosity measurements may be two to three times higher than those obtained in situ. While the depth of accessible matrix from a water-conducting feature assumed in repository performance assessments is generally 1 to 10 cm, the results from the GTS in situ experiment suggested depths of several metres could be more appropriate. More recently, the Pore Space Geometry (PSG) experiment at the GTS has used a C-14 doped acrylic resin, combined with state-of-the-art digital beta autoradiography and fluorescence detection to examine a larger area of rock for determination of porosity and the degree of connected pore space. Analysis is currently ongoing and the key findings will be reported in this paper. Starting at the GTS in 2005, the Long-term Diffusion (LTD) project will investigate such processes over spatial and temporal scales more relevant to a repository than traditional lab-based experiments. In the framework of this experiment, long-term (10 to 50 years) in situ diffusion experiments and resin injection experiments are planned to verify current models for matrix diffusion as a radionuclide retardation process. This paper will discuss the findings of the first two experiments and their significance to repository safety assessments before discussing the strategy for the future in relation to the LTD project.
1981-01-01
Data are included on fertility and mortality projections for Czechoslovakia, 1981-2000; population projections, 1981-2000; population of reproductive age, 1981-2000; and natural growth of population, 1975-1980
Method for estimating power outages and restoration during natural and man-made events
Omitaomu, Olufemi A.; Fernandez, Steven J.
2016-01-05
A method of modeling electric supply and demand with a data processor in combination with a recordable medium, and for estimating spatial distribution of electric power outages and affected populations. A geographic area is divided into cells to form a matrix. Within the matrix, supply cells are identified as containing electric substations and demand cells are identified as including electricity customers. Demand cells of the matrix are associated with the supply cells as a function of the capacity of each of the supply cells and the proximity and/or electricity demand of each of the demand cells. The method includes estimating a power outage by applying disaster event prediction information to the matrix, and estimating power restoration using the supply and demand cell information of the matrix and standardized and historical restoration information.
Interim 2003-based national population projections for the United Kingdom and constituent countries.
Shaw, Chris
2004-01-01
The 2003-based national population projections, carried out by the Government Actuary in consultation with the Registrars General, and using essentially the same underlying assumptions as for the previous 2002-based projections, show the population of the United Kingdom rising from 59.6 million in 2003, passing 60 million during 2005, to reach 65.7 million by 2031. Longer-term projections suggest the population will peak around 2050 at nearly 67 million and then very gradually start to fall. The population will become older with the median age expected to rise from 38.4 years in 2003 to 43.3 years by 2031. In 2003, there were around 700 thousand (six per cent) more children aged under 16, than people of state pensionable age. However, from 2007, the population of pensionable age is projected to exceed the number of children.
Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways
Jones, B.; O’Neill, B. C.
2016-07-29
Here we report that the projected size and spatial distribution of the future population are important drivers of global change and key determinants of exposure and vulnerability to hazards. Spatial demographic projections are widely used as inputs to spatial projections of land use, energy use, and emissions, as well as to assessments of the impacts of extreme events, sea level rise, and other climate-related outcomes. To date, however, there are very few global-scale, spatially explicit population projections, and those that do exist are often based on simple scaling or trend extrapolation. Here we present a new set of global, spatiallymore » explicit population scenarios that are consistent with the new Shared Socioeconomic Pathways (SSPs) developed to facilitate global change research. We use a parameterized gravity-based downscaling model to produce projections of spatial population change that are quantitatively consistent with national population and urbanization projections for the SSPs and qualitatively consistent with assumptions in the SSP narratives regarding spatial development patterns. We show that the five SSPs lead to substantially different spatial population outcomes at the continental, national, and sub-national scale. In general, grid cell-level outcomes are most influenced by national-level population change, second by urbanization rate, and third by assumptions about the spatial style of development. However, the relative importance of these factors is a function of the magnitude of the projected change in total population and urbanization for each country and across SSPs. We also demonstrate variation in outcomes considering the example of population existing in a low-elevation coastal zone under alternative scenarios.« less
Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, B.; O’Neill, B. C.
Here we report that the projected size and spatial distribution of the future population are important drivers of global change and key determinants of exposure and vulnerability to hazards. Spatial demographic projections are widely used as inputs to spatial projections of land use, energy use, and emissions, as well as to assessments of the impacts of extreme events, sea level rise, and other climate-related outcomes. To date, however, there are very few global-scale, spatially explicit population projections, and those that do exist are often based on simple scaling or trend extrapolation. Here we present a new set of global, spatiallymore » explicit population scenarios that are consistent with the new Shared Socioeconomic Pathways (SSPs) developed to facilitate global change research. We use a parameterized gravity-based downscaling model to produce projections of spatial population change that are quantitatively consistent with national population and urbanization projections for the SSPs and qualitatively consistent with assumptions in the SSP narratives regarding spatial development patterns. We show that the five SSPs lead to substantially different spatial population outcomes at the continental, national, and sub-national scale. In general, grid cell-level outcomes are most influenced by national-level population change, second by urbanization rate, and third by assumptions about the spatial style of development. However, the relative importance of these factors is a function of the magnitude of the projected change in total population and urbanization for each country and across SSPs. We also demonstrate variation in outcomes considering the example of population existing in a low-elevation coastal zone under alternative scenarios.« less
Projecting population change in the interior Columbia River Basin.
Stephen F. McCool; Richard W. Haynes
1996-01-01
Management of ecosystems requires projecting the human population for a biologically significant timeframe, because the impacts of potential alternative ecosystem management strategies will differ depending on the size, location, and expectations of the human population. Increases since 1990 in the net migration rates are changing the expectations for projections of...
Cable Television: End of a Dream. The Network Project Notebook Number Eight.
ERIC Educational Resources Information Center
Columbia Univ., New York, NY. Network Project.
The Notebook is divided into two parts. The first half reprints the transcript of a radio documentary on cable television, one in a series of five MATRIX radio programs produced by the Network Project in 1974. It includes discussions of planning for the new technology and of its present control by corporate conglomerates, and forecasts a…
McDonald, Daniel; Clemente, Jose C; Kuczynski, Justin; Rideout, Jai Ram; Stombaugh, Jesse; Wendel, Doug; Wilke, Andreas; Huse, Susan; Hufnagle, John; Meyer, Folker; Knight, Rob; Caporaso, J Gregory
2012-07-12
We present the Biological Observation Matrix (BIOM, pronounced "biome") format: a JSON-based file format for representing arbitrary observation by sample contingency tables with associated sample and observation metadata. As the number of categories of comparative omics data types (collectively, the "ome-ome") grows rapidly, a general format to represent and archive this data will facilitate the interoperability of existing bioinformatics tools and future meta-analyses. The BIOM file format is supported by an independent open-source software project (the biom-format project), which initially contains Python objects that support the use and manipulation of BIOM data in Python programs, and is intended to be an open development effort where developers can submit implementations of these objects in other programming languages. The BIOM file format and the biom-format project are steps toward reducing the "bioinformatics bottleneck" that is currently being experienced in diverse areas of biological sciences, and will help us move toward the next phase of comparative omics where basic science is translated into clinical and environmental applications. The BIOM file format is currently recognized as an Earth Microbiome Project Standard, and as a Candidate Standard by the Genomic Standards Consortium.
NASA Astrophysics Data System (ADS)
Sekihara, Kensuke; Kawabata, Yuya; Ushio, Shuta; Sumiya, Satoshi; Kawabata, Shigenori; Adachi, Yoshiaki; Nagarajan, Srikantan S.
2016-06-01
Objective. In functional electrophysiological imaging, signals are often contaminated by interference that can be of considerable magnitude compared to the signals of interest. This paper proposes a novel algorithm for removing such interferences that does not require separate noise measurements. Approach. The algorithm is based on a dual definition of the signal subspace in the spatial- and time-domains. Since the algorithm makes use of this duality, it is named the dual signal subspace projection (DSSP). The DSSP algorithm first projects the columns of the measured data matrix onto the inside and outside of the spatial-domain signal subspace, creating a set of two preprocessed data matrices. The intersection of the row spans of these two matrices is estimated as the time-domain interference subspace. The original data matrix is projected onto the subspace that is orthogonal to this interference subspace. Main results. The DSSP algorithm is validated by using the computer simulation, and using two sets of real biomagnetic data: spinal cord evoked field data measured from a healthy volunteer and magnetoencephalography data from a patient with a vagus nerve stimulator. Significance. The proposed DSSP algorithm is effective for removing overlapped interference in a wide variety of biomagnetic measurements.
2002-based national population projections for the United Kingdom and constituent countries.
Shaw, Chris
2004-01-01
The 2002-based national population projections, carried out by the Government Actuary in consultation with the Registrars General, show the population of the United Kingdom rising from 59.2 million in 2002 to nearly 65 million by 2031. Longer-term projections suggest the population will peak around 2050 at over 65 million and then gradually start to fall. The population will become gradually older with the median age expected to rise from 38.2 years in 2002 to 43.3 years by 2031. In 2002, there were around 850 thousand (8 per cent) more children aged under 16, than people of state pensionable age. However, from 2007, the population of pensionable age is projected to exceed the number of children.
2000-based national population projections for the United Kingdom and its constituent countries.
Shaw, Chris
2002-01-01
The 2000-based national population projections, carried out by the Government Actuary at the request of the Registrars General, show the population of the United Kingdom rising from 59.8 million in 2000 to nearly 65 million by 2025. Longer-term projections suggest the population will peak at nearly 66 million around 2040 and then gradually start to fall. The population will become gradually older with the median age expected to rise from 37.4 years in 2000 to 42.4 years by 2025. In 2000, there were 1.3 million (12 per cent) more children aged under 16, than people of state pensionable age. However, by 2007, the population of state pensionable age is projected to exceed the number of children.
1998-based national population projections for the United Kingdom and constituent countries.
Shaw, C
2000-01-01
The 1998-based national population projections, carried out by the Government Actuary in consultation with the Registrars General, show the population of the United Kingdom rising from 59.2 million in 1998 to over 63.5 million by 2021. Longer-term projections suggest the population will peak around 2036 and then gradually start to fall. The population will become gradually older with the median age expected to rise from 36.9 years in 1998 to nearly 42 years by 2021. In 1998, there were 1.4 million (13 per cent) more children aged under 16, than people of pensionable age. However, by 2008, the population of pensionable age is projected to exceed the number of children.
Solving large sparse eigenvalue problems on supercomputers
NASA Technical Reports Server (NTRS)
Philippe, Bernard; Saad, Youcef
1988-01-01
An important problem in scientific computing consists in finding a few eigenvalues and corresponding eigenvectors of a very large and sparse matrix. The most popular methods to solve these problems are based on projection techniques on appropriate subspaces. The main attraction of these methods is that they only require the use of the matrix in the form of matrix by vector multiplications. The implementations on supercomputers of two such methods for symmetric matrices, namely Lanczos' method and Davidson's method are compared. Since one of the most important operations in these two methods is the multiplication of vectors by the sparse matrix, methods of performing this operation efficiently are discussed. The advantages and the disadvantages of each method are compared and implementation aspects are discussed. Numerical experiments on a one processor CRAY 2 and CRAY X-MP are reported. Possible parallel implementations are also discussed.
Endocrine disrupting chemicals (EDCs) in the environment may alter the population dynamics of wildlife by affecting reproductive output. This study describes a matrix modeling approach to link laboratory studies on endocrine disruption with potential ecological effects. The exper...
Demographic Modelling in Weed Biocontrol
USDA-ARS?s Scientific Manuscript database
Demographic matrix modeling of plant populations can be a powerful tool to identify key life stage transitions that contribute the most to population growth of an invasive plant and hence should be targeted for disruption. Therefore, this approach has the potential to guide the pre-release selection...
The isolation and in vitro expansion of hepatic Sca-1 progenitor cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, Elizabeth, E-mail: Elizabeth.Clayton@ed.ac.uk; Forbes, Stuart J.
2009-04-17
The intra-hepatic population of liver progenitor cells expands during liver injury when hepatocyte proliferation is inhibited. These cells can be purified by density gradient centrifugation and cultured. Separated by size only this population contains small cells of hematopoietic, epithelial and endothelial lineages and is thought to contain liver stem cells. The identity of liver stem cells remains unknown although there is some evidence that tissue Sca1{sup +} CD45{sup -} cells display progenitor cell characteristics. We identified both intra-hepatic and gall bladder Sca1{sup +} cells following liver injury and expanded ex vivo Sca1 cells as part of heterogenous cell culture ormore » as a purified population. We found significant difference between the proliferation of Sca-1 cells when plated on laminin or collagen I while proliferation of heterogenous population was not affected by the extracellular matrix indicating the necessity for culture of Sca1{sup +} cells with laminin matrix or laminin producing cells in long term liver progenitor cell cultures.« less
Kumar, L S; Sawant, A S; Gupta, V S; Ranjekar, P K
2001-10-01
Genetic variation between 28 Indian populations of the rice pest, Scirpophaga incertulas was evaluated using inter-simple sequence repeats (ISSR)-PCR assay. Nine SSR primers gave rise to 79 amplification products of which 67 were polymorphic. A dendrogram constructed from this data indicates that there is no geographical bias to the clustering and that gene flow between populations appears to be relatively unrestricted, substantiating our earlier conclusion based on the RAPD (random amplified polymorphic DNA) data. The dendrograms obtained using each of these marker systems were poorly correlated with each other as determined by Mantel's test for matrix correlation. Estimates of expected heterozygosity and marker index for each of these marker systems suggests that both these marker systems are equally efficient in determining polymorphisms. Matrix correlation analyses suggest that reliable estimates of genetic variation among the S. incertulas pest populations can be obtained by using RAPDs alone or in combination with ISSRs, but ISSRs alone cannot be used for this purpose.
2017-10-01
at the site of the VML. Prior small and large animal studies in our laboratory have demonstrated that minced muscle autograft (MMA), by virtue of...minced and placed intramuscularly at the site of the VML. Prior small and large animal studies in our laboratory have demonstrated that minced muscle...significant delay in the project initiation. First, a large animal study at the ISR indicated some concerns with the extra cellular matrix allograft that
NASA Technical Reports Server (NTRS)
Tien, John K.
1990-01-01
The long term interdiffusional stability of tungsten fiber reinforced niobium alloy composites is addressed. The matrix alloy that is most promising for use as a high temperature structural material for reliable long-term space power generation is Nb1Zr. As an ancillary project to this program, efforts were made to assess the nature and kinetics of interphase reaction between selected beryllide intermetallics and nickel and iron aluminides.
CMC Research at NASA Glenn in 2014: Recent Progress and Plans
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2014-01-01
As part of NASA's Aeronautical Sciences project, Glenn Research Center has developed advanced fiber and matrix constituents for a 2700F CMC for turbine engine applications. Fiber, matrix and CMC development activities will be reviewed and the improvements in the properties and durability of each will be summarized. Plans for 2014 will be summarized, including fabrication and durability testing of the 2700F CMC and status updates on research collaborations underway with AFRL and DOE
Research and Development Project Priotization. An Annotated Bibliography.
1980-04-01
matrix) theory provides the answer in any particular 17 problem. The matrix used is a table to express the number of votes cast for each motion...the majority-rule model and the game model. In 1964, Aumana’s chapter in Shelly and Bryan’s book [187] briefly described ordinal utility ranking...propositions to cast doubt on the existence of Bergson-Samuelson SWFs. They demonstrated that it was impossible to find a "reasonable" Bergson
CMC Research at NASA Glenn in 2015: Recent Progress and Plans
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2015-01-01
As part of NASAs Aeronautical Sciences project, Glenn Research Center has developed advanced fiber and matrix constituents for a 2700F CMC for turbine engine applications. Fiber and matrix development and characterization will be reviewed. Resulting improvements in CMC mechanical properties and durability will be summarized. Plans for 2015 will be described, including development and validation of models predicting effects of the engine environment on durability of SiC/SiC composites with Environmental Barrier Coatings
A fast fully constrained geometric unmixing of hyperspectral images
NASA Astrophysics Data System (ADS)
Zhou, Xin; Li, Xiao-run; Cui, Jian-tao; Zhao, Liao-ying; Zheng, Jun-peng
2014-11-01
A great challenge in hyperspectral image analysis is decomposing a mixed pixel into a collection of endmembers and their corresponding abundance fractions. This paper presents an improved implementation of Barycentric Coordinate approach to unmix hyperspectral images, integrating with the Most-Negative Remove Projection method to meet the abundance sum-to-one constraint (ASC) and abundance non-negativity constraint (ANC). The original barycentric coordinate approach interprets the endmember unmixing problem as a simplex volume ratio problem, which is solved by calculate the determinants of two augmented matrix. One consists of all the members and the other consist of the to-be-unmixed pixel and all the endmembers except for the one corresponding to the specific abundance that is to be estimated. In this paper, we first modified the algorithm of Barycentric Coordinate approach by bringing in the Matrix Determinant Lemma to simplify the unmixing process, which makes the calculation only contains linear matrix and vector operations. So, the matrix determinant calculation of every pixel, as the original algorithm did, is avoided. By the end of this step, the estimated abundance meet the ASC constraint. Then, the Most-Negative Remove Projection method is used to make the abundance fractions meet the full constraints. This algorithm is demonstrated both on synthetic and real images. The resulting algorithm yields the abundance maps that are similar to those obtained by FCLS, while the runtime is outperformed as its computational simplicity.
Environmental impact assessment of Gonabad municipal waste landfill site using Leopold Matrix
Sajjadi, Seyed Ali; Aliakbari, Zohreh; Matlabi, Mohammad; Biglari, Hamed; Rasouli, Seyedeh Samira
2017-01-01
Introduction An environmental impact assessment (EIA) before embarking on any project is a useful tool to reduce the potential effects of each project, including landfill, if possible. The main objective of this study was to assess the environmental impact of the current municipal solid waste disposal site of Gonabad by using the Iranian Leopold matrix method. Methods This cross-sectional study was conducted to assess the environmental impacts of a landfill site in Gonabad in 2015 by an Iranian matrix (modified Leopold matrix). This study was conducted based on field visits of the landfill, and collected information from various sources and analyzing and comparing between five available options, including the continuation of the current disposal practices, construction of new sanitary landfills, recycling plans, composting, and incineration plants was examined. The best option was proposed to replace the existing landfill. Results The current approach has a score of 2.35, the construction of new sanitary landfill has a score of 1.59, a score of 1.57 for the compost plant, and recycling and incineration plant, respectively, have scores of 1.68 and 2.3. Conclusion Results showed that continuation of the current method of disposal, due to severe environmental damage and health problems, is rejected. A compost plant with the lowest negative score is the best option for the waste disposal site of Gonabad City and has priority over the other four options. PMID:28465797
Environmental impact assessment of Gonabad municipal waste landfill site using Leopold Matrix.
Sajjadi, Seyed Ali; Aliakbari, Zohreh; Matlabi, Mohammad; Biglari, Hamed; Rasouli, Seyedeh Samira
2017-02-01
An environmental impact assessment (EIA) before embarking on any project is a useful tool to reduce the potential effects of each project, including landfill, if possible. The main objective of this study was to assess the environmental impact of the current municipal solid waste disposal site of Gonabad by using the Iranian Leopold matrix method. This cross-sectional study was conducted to assess the environmental impacts of a landfill site in Gonabad in 2015 by an Iranian matrix (modified Leopold matrix). This study was conducted based on field visits of the landfill, and collected information from various sources and analyzing and comparing between five available options, including the continuation of the current disposal practices, construction of new sanitary landfills, recycling plans, composting, and incineration plants was examined. The best option was proposed to replace the existing landfill. The current approach has a score of 2.35, the construction of new sanitary landfill has a score of 1.59, a score of 1.57 for the compost plant, and recycling and incineration plant, respectively, have scores of 1.68 and 2.3. Results showed that continuation of the current method of disposal, due to severe environmental damage and health problems, is rejected. A compost plant with the lowest negative score is the best option for the waste disposal site of Gonabad City and has priority over the other four options.
Seed bank dynamics govern persistence of Brassica hybrids in crop and natural habitats
Hooftman, Danny A. P.; Bullock, James M.; Morley, Kathryn; Lamb, Caroline; Hodgson, David J.; Bell, Philippa; Thomas, Jane; Hails, Rosemary S.
2015-01-01
Background and Aims Gene flow from crops to their wild relatives has the potential to alter population growth rates and demography of hybrid populations, especially when a new crop has been genetically modified (GM). This study introduces a comprehensive approach to assess this potential for altered population fitness, and uses a combination of demographic data in two habitat types and mathematical (matrix) models that include crop rotations and outcrossing between parental species. Methods Full life-cycle demographic rates, including seed bank survival, of non-GM Brassica rapa × B. napus F1 hybrids and their parent species were estimated from experiments in both agricultural and semi-natural habitats. Altered fitness potential was modelled using periodic matrices including crop rotations and outcrossing between parent species. Key Results The demographic vital rates (i.e. for major stage transitions) of the hybrid population were intermediate between or lower than both parental species. The population growth rate (λ) of hybrids indicated decreases in both habitat types, and in a semi-natural habitat hybrids became extinct at two sites. Elasticity analyses indicated that seed bank survival was the greatest contributor to λ. In agricultural habitats, hybrid populations were projected to decline, but with persistence times up to 20 years. The seed bank survival rate was the main driver determining persistence. It was found that λ of the hybrids was largely determined by parental seed bank survival and subsequent replenishment of the hybrid population through outcrossing of B. rapa with B. napus. Conclusions Hybrid persistence was found to be highly dependent on the seed bank, suggesting that targeting hybrid seed survival could be an important management option in controlling hybrid persistence. For local risk mitigation, an increased focus on the wild parent is suggested. Management actions, such as control of B. rapa, could indirectly reduce hybrid populations by blocking hybrid replenishment. PMID:25452253
Seed bank dynamics govern persistence of Brassica hybrids in crop and natural habitats.
Hooftman, Danny A P; Bullock, James M; Morley, Kathryn; Lamb, Caroline; Hodgson, David J; Bell, Philippa; Thomas, Jane; Hails, Rosemary S
2015-01-01
Gene flow from crops to their wild relatives has the potential to alter population growth rates and demography of hybrid populations, especially when a new crop has been genetically modified (GM). This study introduces a comprehensive approach to assess this potential for altered population fitness, and uses a combination of demographic data in two habitat types and mathematical (matrix) models that include crop rotations and outcrossing between parental species. Full life-cycle demographic rates, including seed bank survival, of non-GM Brassica rapa × B. napus F1 hybrids and their parent species were estimated from experiments in both agricultural and semi-natural habitats. Altered fitness potential was modelled using periodic matrices including crop rotations and outcrossing between parent species. The demographic vital rates (i.e. for major stage transitions) of the hybrid population were intermediate between or lower than both parental species. The population growth rate (λ) of hybrids indicated decreases in both habitat types, and in a semi-natural habitat hybrids became extinct at two sites. Elasticity analyses indicated that seed bank survival was the greatest contributor to λ. In agricultural habitats, hybrid populations were projected to decline, but with persistence times up to 20 years. The seed bank survival rate was the main driver determining persistence. It was found that λ of the hybrids was largely determined by parental seed bank survival and subsequent replenishment of the hybrid population through outcrossing of B. rapa with B. napus. Hybrid persistence was found to be highly dependent on the seed bank, suggesting that targeting hybrid seed survival could be an important management option in controlling hybrid persistence. For local risk mitigation, an increased focus on the wild parent is suggested. Management actions, such as control of B. rapa, could indirectly reduce hybrid populations by blocking hybrid replenishment. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company.
Jiao, Y.; Lapointe, N.W.R.; Angermeier, P.L.; Murphy, B.R.
2009-01-01
Models of species' demographic features are commonly used to understand population dynamics and inform management tactics. Hierarchical demographic models are ideal for the assessment of non-indigenous species because our knowledge of non-indigenous populations is usually limited, data on demographic traits often come from a species' native range, these traits vary among populations, and traits are likely to vary considerably over time as species adapt to new environments. Hierarchical models readily incorporate this spatiotemporal variation in species' demographic traits by representing demographic parameters as multi-level hierarchies. As is done for traditional non-hierarchical matrix models, sensitivity and elasticity analyses are used to evaluate the contributions of different life stages and parameters to estimates of population growth rate. We applied a hierarchical model to northern snakehead (Channa argus), a fish currently invading the eastern United States. We used a Monte Carlo approach to simulate uncertainties in the sensitivity and elasticity analyses and to project future population persistence under selected management tactics. We gathered key biological information on northern snakehead natural mortality, maturity and recruitment in its native Asian environment. We compared the model performance with and without hierarchy of parameters. Our results suggest that ignoring the hierarchy of parameters in demographic models may result in poor estimates of population size and growth and may lead to erroneous management advice. In our case, the hierarchy used multi-level distributions to simulate the heterogeneity of demographic parameters across different locations or situations. The probability that the northern snakehead population will increase and harm the native fauna is considerable. Our elasticity and prognostic analyses showed that intensive control efforts immediately prior to spawning and/or juvenile-dispersal periods would be more effective (and probably require less effort) than year-round control efforts. Our study demonstrates the importance of considering the hierarchy of parameters in estimating population growth rate and evaluating different management strategies for non-indigenous invasive species. ?? 2009 Elsevier B.V.
Cultural interaction and biological distance in postclassic period Mexico.
Ragsdale, Corey S; Edgar, Heather J H
2015-05-01
Economic, political, and cultural relationships connected virtually every population throughout Mexico during Postclassic period (AD 900-1520). Much of what is known about population interaction in prehistoric Mexico is based on archaeological or ethnohistoric data. What is unclear, especially for the Postclassic period, is how these data correlate with biological population structure. We address this by assessing biological (phenotypic) distances among 28 samples based upon a comparison of dental morphology trait frequencies, which serve as a proxy for genetic variation, from 810 individuals. These distances were compared with models representing geographic and cultural relationships among the same groups. Results of Mantel and partial Mantel matrix correlation tests show that shared migration and trade are correlated with biological distances, but geographic distance is not. Trade and political interaction are also correlated with biological distance when combined in a single matrix. These results indicate that trade and political relationships affected population structure among Postclassic Mexican populations. We suggest that trade likely played a major role in shaping patterns of interaction between populations. This study also shows that the biological distance data support the migration histories described in ethnohistoric sources. © 2015 Wiley Periodicals, Inc.
Life cycle ecophysiology of small pelagic fish and climate-driven changes in populations
NASA Astrophysics Data System (ADS)
Peck, Myron A.; Reglero, Patricia; Takahashi, Motomitsu; Catalán, Ignacio A.
2013-09-01
Due to their population characteristics and trophodynamic role, small pelagic fishes are excellent bio-indicators of climate-driven changes in marine systems world-wide. We argue that making robust projections of future changes in the productivity and distribution of small pelagics will require a cause-and-effect understanding of historical changes based upon physiological principles. Here, we reviewed the ecophysiology of small pelagic (clupeiform) fishes including a matrix of abiotic and biotic extrinsic factors (e.g., temperature, salinity, light, and prey characteristics) and stage-specific vital rates: (1) adult spawning, (2) survival and development of eggs and yolk sac larvae, and (3) feeding and growth of larvae, post-larvae and juveniles. Emphasis was placed on species inhabiting Northwest Pacific and Northeast Atlantic (European) waters for which summary papers are particularly scarce compared to anchovy and sardine in upwelling systems. Our review revealed that thermal niches (optimal and sub-optimal ranges in temperatures) were species- and stage-specific but that temperature effects only partly explained observed changes in the distribution and/or productivity of populations in the Northwest Pacific and Northeast Atlantic; changes in temperature may be necessary but not sufficient to induce population-level shifts. Prey availability during the late larval and early juvenile period was a common, density-dependent mechanism linked to fluctuations in populations but recruitment mechanisms were system-specific suggesting that generalizations of climate drivers across systems should be avoided. We identified gaps in knowledge regarding basic elements of the growth physiology of each life stage that will require additional field and laboratory study. Avenues of research are recommended that will aid the development of models that provide more robust, physiological-based projections of the population dynamics of these and other small pelagic fish. In our opinion, the continued development of biophysical models that close the life cycle (depict all life stages) offers the best chance of revealing processes causing historical fluctuations on the productivity and distribution of small pelagic fishes and to project future climate-driven impacts. Correctly representing physiological-based mechanisms will increase confidence in the outcomes of models simulating the potential impacts of bottom-up processes, a first step towards evaluating the mixture of factors and processes (e.g. intra-guild dynamics, predation, fisheries exploitation) which interact with climate to affect populations of small pelagic fishes. Understand the impacts of reduced growth rates during the juvenile stage on the process of maturation and spawning condition of small pelagic fishes. Examine the effects of changes in prey quality on the duration and magnitude of spawning by small pelagic fishes to capture how climate-driven changes in zooplankton species composition might act as a “bottom-up” regulator of fish productivity. Identify the drivers for spawning location and timing to better understand how spawning dynamics may be influenced by climate change (e.g. changes in water salinity or turbidity resulting from changes in river discharges or wind-driven turbulence, respectively).
Report B: 1986 projected population, labor force and unemployment - Delaware
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-09-01
Report B, the results of the Population, Labor Force and Unemployment Projections Model, contain current socio-economic indicators. For each geographic area, there is one page of summary/background information followed by three tables. These tables contain the population projections, the labor force projections, and the unemployment projections, respectively. These tables are composed of data for the following racial groups: total population, whites, blacks, and other races. Those who call themselves Hispanics may be covered in any of the last three racial groups. For those geographic areas which have provided more than one labor force and/or unemployment control total, the last twomore » tables will appear more than once.« less
500 Million Americans by 2050? Alternative Projections of the U.S. Population.
ERIC Educational Resources Information Center
Ahlburg, Dennis; Vaupel, James W.
1993-01-01
Offers an alternative to the U.S. Bureau of the Consensus population projection for 2050. Discusses alternative mortality, fertility, and immigration assumptions and projection methods that use a baseline scenario of no further gains against mortality. Description of the U.S. population under alternative scenarios include changes in structure and…
Graphics Flutter Analysis Methods, an interactive computing system at Lockheed-California Company
NASA Technical Reports Server (NTRS)
Radovcich, N. A.
1975-01-01
An interactive computer graphics system, Graphics Flutter Analysis Methods (GFAM), was developed to complement FAMAS, a matrix-oriented batch computing system, and other computer programs in performing complex numerical calculations using a fully integrated data management system. GFAM has many of the matrix operation capabilities found in FAMAS, but on a smaller scale, and is utilized when the analysis requires a high degree of interaction between the engineer and computer, and schedule constraints exclude the use of batch entry programs. Applications of GFAM to a variety of preliminary design, development design, and project modification programs suggest that interactive flutter analysis using matrix representations is a feasible and cost effective computing tool.
The Office of Pesticide Programs models daily aquatic pesticide exposure values for 30 years in its risk assessments. However, only a fraction of that information is typically used in these assessments. The population model employed herein is a deterministic, density-dependent pe...
Gong, Zhihao; Tang, Zhoufei; Wang, Haobin; Wu, Jianlan
2017-12-28
Within the framework of the hierarchy equation of motion (HEOM), the quantum kinetic expansion (QKE) method of the spin-boson model is reformulated in the matrix representation. The equivalence between the two formulations (HEOM matrices and quantum operators) is numerically verified from the calculation of the time-integrated QKE rates. The matrix formulation of the QKE is extended to the system-bath factorized initial state. Following a one-to-one mapping between HEOM matrices and quantum operators, a quantum kinetic equation is rederived. The rate kernel is modified by an extra term following a systematic expansion over the site-site coupling. This modified QKE is numerically tested for its reliability by calculating the time-integrated rate and non-Markovian population kinetics. For an intermediate-to-strong dissipation strength and a large site-site coupling, the population transfer is found to be significantly different when the initial condition is changed from the local equilibrium to system-bath factorized state.
A modified dual-level algorithm for large-scale three-dimensional Laplace and Helmholtz equation
NASA Astrophysics Data System (ADS)
Li, Junpu; Chen, Wen; Fu, Zhuojia
2018-01-01
A modified dual-level algorithm is proposed in the article. By the help of the dual level structure, the fully-populated interpolation matrix on the fine level is transformed to a local supported sparse matrix to solve the highly ill-conditioning and excessive storage requirement resulting from fully-populated interpolation matrix. The kernel-independent fast multipole method is adopted to expediting the solving process of the linear equations on the coarse level. Numerical experiments up to 2-million fine-level nodes have successfully been achieved. It is noted that the proposed algorithm merely needs to place 2-3 coarse-level nodes in each wavelength per direction to obtain the reasonable solution, which almost down to the minimum requirement allowed by the Shannon's sampling theorem. In the real human head model example, it is observed that the proposed algorithm can simulate well computationally very challenging exterior high-frequency harmonic acoustic wave propagation up to 20,000 Hz.
The ESS and replicator equation in matrix games under time constraints.
Garay, József; Cressman, Ross; Móri, Tamás F; Varga, Tamás
2018-06-01
Recently, we introduced the class of matrix games under time constraints and characterized the concept of (monomorphic) evolutionarily stable strategy (ESS) in them. We are now interested in how the ESS is related to the existence and stability of equilibria for polymorphic populations. We point out that, although the ESS may no longer be a polymorphic equilibrium, there is a connection between them. Specifically, the polymorphic state at which the average strategy of the active individuals in the population is equal to the ESS is an equilibrium of the polymorphic model. Moreover, in the case when there are only two pure strategies, a polymorphic equilibrium is locally asymptotically stable under the replicator equation for the pure-strategy polymorphic model if and only if it corresponds to an ESS. Finally, we prove that a strict Nash equilibrium is a pure-strategy ESS that is a locally asymptotically stable equilibrium of the replicator equation in n-strategy time-constrained matrix games.
Post-1500 Population Flows and the Long Run Determinants of Economic Growth and Inequality
Putterman, Louis; Weil, David N.
2013-01-01
We construct a matrix showing the share of the year 2000 population in every country that is descended from people in different source countries in the year 1500. Using the matrix to adjust indicators of early development so they reflect the history of a population’s ancestors rather than the history of the place they live today greatly improves the ability of those indicators to predict current GDP. The variance of early development history of a country’s inhabitants is a good predictor for current inequality, with ethnic groups originating in regions having longer histories of organized states tending to be at the upper end of a country’s income distribution. PMID:24478530
The outlook for population growth.
Lee, Ronald
2011-07-29
Projections of population size, growth rates, and age distribution, although extending to distant horizons, shape policies today for the economy, environment, and government programs such as public pensions and health care. The projections can lead to costly policy adjustments, which in turn can cause political and economic turmoil. The United Nations projects global population to grow from about 7 billion today to 9.3 billion in 2050 and 10.1 billion in 2100, while the Old Age Dependency Ratio doubles by 2050 and triples by 2100. How are such population projections made, and how certain can we be about the trends they foresee?
NASA Astrophysics Data System (ADS)
Hendges, Carla D.; Melo, Geruza L.; Gonçalves, Alberto S.; Cerezer, Felipe O.; Cáceres, Nilton C.
2017-10-01
Neotropical primates are among the most well studied forest mammals concerning their population densities. However, few studies have evaluated the factors that influence the spatial variation in the population density of primates, which limits the possibility of inferences towards this animal group, especially at the landscape-level. Here, we compiled density data of Sapajus nigritus from 21 forest patches of the Brazilian Atlantic Forest. We tested the effects of climatic variables (temperature, precipitation), landscape attributes (number of patches, mean inter-patch isolation distance, matrix modification index) and patch size on the population density using linear models and the Akaike information criterion. Our findings showed that the density of S. nigritus is influenced by landscape attributes, particularly by fragmentation and matrix modification. Overall, moderately fragmented landscapes and those surrounded by matrices with intermediate indexes of temporal modification (i.e., crop plantations, forestry) are related to high densities of this species. These results support the assumptions that ecologically flexible species respond positively to forest fragmentation. However, the non-linear relationship between S. nigritus density and number of patches suggests that even the species that are most tolerant to forest cover changes seem to respond positively only at an intermediate level of habitat fragmentation, being dependent of both a moderate degree of forest cover and a high quality matrix. The results we found here can be a common response to fragmentation for those forest dweller species that are able to use the matrix as complementary foraging sites.
Predicting the past: a simple reverse stand table projection method
Quang V. Cao; Shanna M. McCarty
2006-01-01
A stand table gives number of trees in each diameter class. Future stand tables can be predicted from current stand tables using a stand table projection method. In the simplest form of this method, a future stand table can be expressed as the product of a matrix of transitional proportions (based on diameter growth rates) and a vector of the current stand table. There...
Ceramic Matrix Composite Vane Subelement Burst Testing
NASA Technical Reports Server (NTRS)
Brewer, David N.; Verrilli, Michael; Calomino, Anthony
2006-01-01
Burst tests were performed on Ceramic Matrix Composite (CMC) vane specimens, manufactured by two vendors, under the Ultra Efficient Engine Technology (UEET) project. Burst specimens were machined from the ends of 76mm long vane sub-elements blanks and from High Pressure Burner Rig (HPBR) tested specimens. The results of burst tests will be used to compare virgin specimens with specimens that have had an Environmental Barrier Coating (EBC) applied, both HPBR tested and untested, as well as a comparison between vendors.
Hybrid composites that retain graphite fibers on burning
NASA Technical Reports Server (NTRS)
House, E. E.
1980-01-01
A laboratory scale program was conducted to determine fiber release tendencies of graphite reinforced/resinous matrix composites currently used or projected for use in civil aircraft. In the event of an aircraft crash and burn situation, there is concern that graphite fibers will be released from the composites once the resin matrix is thermally decomposed. Hybridizing concepts aimed at preventing fiber release on burning were postulated and their effectiveness evaluated under fire, impact, and air flow during an aircraft crash.
NASA Astrophysics Data System (ADS)
MacDonald, R.; Savina, M. E.
2003-12-01
One approach to curriculum review and development is to construct a matrix of the desired skills versus courses in the departmental curriculum. The matrix approach requires faculty to articulate their goals, identify specific skills, and assess where in the curriculum students will learn and practice these skills and where there are major skills gaps. Faculty members in the Geology Department at Carleton College developed a matrix of skills covered in geology courses with the following objectives: 1) Geology majors should begin their "senior integrative exercise" having practiced multiple times all of the formal steps in the research process (recognizing problems, writing proposals, carrying out a project, reporting a project in several ways); 2) Geology majors should learn and practice a variety of professional and life skills life (e.g. computer skills, field skills, lab skills, and interpretive skills).The matrix was used to identify where in the curriculum various research methods and skills were addressed and to map potential student experiences to the objectives. In Carleton's non-hierarchical curriculum, the matrix was used to verify that students have many opportunities to practice research and life skills regardless of the path they take to completion of the major. In William and Mary's more structured curriculum, the matrix was used to ensure that skills build upon each other from course to course. Faculty members in the Geology Department at the College of William and Mary first used this approach to focus on teaching quantitative skills across the geology curriculum, and later used it in terms of teaching research, communication, and information literacy skills. After articulating goals and skills, faculty members in both departments developed more specific skill lists within each category of skills, then described the current assignments and activities in each course relative to the specific components of the matrix and discussed whether to add assignment or activities. We have found that much conversation among faculty and change within courses happens simply as a result of compiling the matrix. One effect of the use of the matrix is that faculty in the department know fairly specifically what skills students are learning and practicing in their other geology courses. Moreover, some faculty members are better suited by background or inclination to teach certain sets of skills. This coordinated approach avoids unnecessary duplication and allows faculty to build on skills and topics developed in previous courses. The matrix can also be used as a planning tool to identify gaps in the curriculum. In our experience, the skills matrix is a powerful organizational and communication tool. The skills matrix is a representation of what the department believes actually happens in the curriculum. Thus, development of a skills matrix provides a basis for departmental discussions of student learning goals and objectives as well as for describing the existing curriculum. The matrix is also a graphic representation, to college administrators and outside evaluators, of the "intentionality" of an entire curriculum, going beyond single courses and their syllabi. It can be used effectively to engage administration in discussions of departmental planning and needs analysis.
Basic research for the Earth dynamics program
NASA Technical Reports Server (NTRS)
Mueller, I. I.
1981-01-01
A comparison of data from Project MERIT Short Campaign is presented. The time delay weight matrix in VLBI geodetic parameter estimation was investigated. The utilization of range difference observations in geodynamics is discussed.
An Experimental Approach to Mathematical Modeling in Biology
ERIC Educational Resources Information Center
Ledder, Glenn
2008-01-01
The simplest age-structured population models update a population vector via multiplication by a matrix. These linear models offer an opportunity to introduce mathematical modeling to students of limited mathematical sophistication and background. We begin with a detailed discussion of mathematical modeling, particularly in a biological context.…
Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro.
Blair, Harry C; Larrouture, Quitterie C; Li, Yanan; Lin, Hang; Beer-Stoltz, Donna; Liu, Li; Tuan, Rocky S; Robinson, Lisa J; Schlesinger, Paul H; Nelson, Deborah J
2017-06-01
We review the characteristics of osteoblast differentiation and bone matrix synthesis. Bone in air breathing vertebrates is a specialized tissue that developmentally replaces simpler solid tissues, usually cartilage. Bone is a living organ bounded by a layer of osteoblasts that, because of transport and compartmentalization requirements, produce bone matrix exclusively as an organized tight epithelium. With matrix growth, osteoblasts are reorganized and incorporated into the matrix as living cells, osteocytes, which communicate with each other and surface epithelium by cell processes within canaliculi in the matrix. The osteoblasts secrete the organic matrix, which are dense collagen layers that alternate parallel and orthogonal to the axis of stress loading. Into this matrix is deposited extremely dense hydroxyapatite-based mineral driven by both active and passive transport and pH control. As the matrix matures, hydroxyapatite microcrystals are organized into a sophisticated composite in the collagen layer by nucleation in the protein lattice. Recent studies on differentiating osteoblast precursors revealed a sophisticated proton export network driving mineralization, a gene expression program organized with the compartmentalization of the osteoblast epithelium that produces the mature bone matrix composite, despite varying serum calcium and phosphate. Key issues not well defined include how new osteoblasts are incorporated in the epithelial layer, replacing those incorporated in the accumulating matrix. Development of bone in vitro is the subject of numerous projects using various matrices and mesenchymal stem cell-derived preparations in bioreactors. These preparations reflect the structure of bone to variable extents, and include cells at many different stages of differentiation. Major challenges are production of bone matrix approaching the in vivo density and support for trabecular bone formation. In vitro differentiation is limited by the organization and density of osteoblasts and by endogenous and exogenous inhibitors.
Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro
Larrouture, Quitterie C.; Li, Yanan; Lin, Hang; Beer-Stoltz, Donna; Liu, Li; Tuan, Rocky S.; Robinson, Lisa J.; Schlesinger, Paul H.; Nelson, Deborah J.
2017-01-01
We review the characteristics of osteoblast differentiation and bone matrix synthesis. Bone in air breathing vertebrates is a specialized tissue that developmentally replaces simpler solid tissues, usually cartilage. Bone is a living organ bounded by a layer of osteoblasts that, because of transport and compartmentalization requirements, produce bone matrix exclusively as an organized tight epithelium. With matrix growth, osteoblasts are reorganized and incorporated into the matrix as living cells, osteocytes, which communicate with each other and surface epithelium by cell processes within canaliculi in the matrix. The osteoblasts secrete the organic matrix, which are dense collagen layers that alternate parallel and orthogonal to the axis of stress loading. Into this matrix is deposited extremely dense hydroxyapatite-based mineral driven by both active and passive transport and pH control. As the matrix matures, hydroxyapatite microcrystals are organized into a sophisticated composite in the collagen layer by nucleation in the protein lattice. Recent studies on differentiating osteoblast precursors revealed a sophisticated proton export network driving mineralization, a gene expression program organized with the compartmentalization of the osteoblast epithelium that produces the mature bone matrix composite, despite varying serum calcium and phosphate. Key issues not well defined include how new osteoblasts are incorporated in the epithelial layer, replacing those incorporated in the accumulating matrix. Development of bone in vitro is the subject of numerous projects using various matrices and mesenchymal stem cell-derived preparations in bioreactors. These preparations reflect the structure of bone to variable extents, and include cells at many different stages of differentiation. Major challenges are production of bone matrix approaching the in vivo density and support for trabecular bone formation. In vitro differentiation is limited by the organization and density of osteoblasts and by endogenous and exogenous inhibitors. PMID:27846781
Zufiria, Pedro J; Pastor-Escuredo, David; Úbeda-Medina, Luis; Hernandez-Medina, Miguel A; Barriales-Valbuena, Iker; Morales, Alfredo J; Jacques, Damien C; Nkwambi, Wilfred; Diop, M Bamba; Quinn, John; Hidalgo-Sanchís, Paula; Luengo-Oroz, Miguel
2018-01-01
We propose a framework for the systematic analysis of mobile phone data to identify relevant mobility profiles in a population. The proposed framework allows finding distinct human mobility profiles based on the digital trace of mobile phone users characterized by a Matrix of Individual Trajectories (IT-Matrix). This matrix gathers a consistent and regularized description of individual trajectories that enables multi-scale representations along time and space, which can be used to extract aggregated indicators such as a dynamic multi-scale population count. Unsupervised clustering of individual trajectories generates mobility profiles (clusters of similar individual trajectories) which characterize relevant group behaviors preserving optimal aggregation levels for detailed and privacy-secured mobility characterization. The application of the proposed framework is illustrated by analyzing fully anonymized data on human mobility from mobile phones in Senegal at the arrondissement level over a calendar year. The analysis of monthly mobility patterns at the livelihood zone resolution resulted in the discovery and characterization of seasonal mobility profiles related with economic activities, agricultural calendars and rainfalls. The use of these mobility profiles could support the timely identification of mobility changes in vulnerable populations in response to external shocks (such as natural disasters, civil conflicts or sudden increases of food prices) to monitor food security.
NASA Astrophysics Data System (ADS)
Gritsan, Andrei V.; Röntsch, Raoul; Schulze, Markus; Xiao, Meng
2016-09-01
In this paper, we investigate anomalous interactions of the Higgs boson with heavy fermions, employing shapes of kinematic distributions. We study the processes p p →t t ¯+H , b b ¯+H , t q +H , and p p →H →τ+τ- and present applications of event generation, reweighting techniques for fast simulation of anomalous couplings, as well as matrix element techniques for optimal sensitivity. We extend the matrix element likelihood approach (MELA) technique, which proved to be a powerful matrix element tool for Higgs boson discovery and characterization during Run I of the LHC, and implement all analysis tools in the JHU generator framework. A next-to-leading-order QCD description of the p p →t t ¯+H process allows us to investigate the performance of the MELA in the presence of extra radiation. Finally, projections for LHC measurements through the end of Run III are presented.
NASA Astrophysics Data System (ADS)
Vijaya Bhaskar, S.; Rajmohan, T.; Palanikumar, K.; Bharath Ganesh Kumar, B.
2016-04-01
Metal matrix composites (MMCs) reinforced with ceramic nano particles (less than 100 nm), termed as metal matrix nano composites (MMNCs), can overcome those disadvantages associated with the conventional MMCs. MMCs containing carbon nanotubes are being developed and projected for diverse applications in various fields of engineering like automotive, avionic, electronic and bio-medical sectors. The present investigation deals with the synthesis and characterization of hybrid magnesium matrix reinforced with various different wt% (0-0.45) of multi wall carbon nano tubes (MWCNT) and micro SiC particles prepared through powder metallurgy route. Microstructure and mechanical properties such as micro hardness and density of the composites were examined. Microstructure of MMNCs have been investigated by scanning electron microscope, X-ray diffraction and energy dispersive X-ray spectroscopy (EDS) for better observation of dispersion of reinforcement. The results indicated that the increase in wt% of MWCNT improves the mechanical properties of the composite.
Seth, Ashok; Hiremath, Shirish; Dani, Sameer; Kapoor, Sunil; Jain, R.K.; Abhaichand, Rajpal; Trivedi, Shailendra; Kaul, Upendra; Patil, Aruna; Khemnar, Bhushan; Rangnekar, Hrishikesh
2013-01-01
Objective The objective of this registry is to establish safety and efficacy of BioMatrix, BioMatrix™-Biolimus A9™ eluting stent in diabetic population in India. Background Diabetes mellitus is a major predisposing factor for coronary artery disease. Prognosis for diabetic population patients presenting with coronary artery disease who undergo coronary revascularization is inferior to non diabetics and remains an independent risk factor of restenosis, need for revascularization, and overall mortality. Stent thrombosis is a potential complication of first generation, permanent polymer drug-eluting stents. Biodegradable polymer is a good relief in this era and its utility in diabetic patients will be a major advantage for them. Methods 334 patients with diabetes mellitus and requiring angioplasty, implanted with BioMatrix stent were followed at 1, 6, 12 and 24 months who entered in a multicenter registry in India. We analyzed the incidence of major adverse cardiac events (MACE) and stent thrombosis (ST) at 1, 6, 12 and 24 months. Results The mean age was 58.71 ± 9.2 years, 81% were males, comorbidity index was 1.6 ± 1.02, and 59.1% presented with acute coronary syndrome. The incidence of adverse event rates was: MACE 1.27%. There were no incidences of myocardial infarction (MI) and target vessel revascularization (TVR). Definite stent thrombosis occurred only in 2 patients. Conclusion In this registry of diabetic population treated with BioMatrixTM-Biolimus A9TM eluting stent (BioMatrix), the reported incidence of MACE and ST were much lower than previously published results. The 1- and 2-year follow-up result supports favorable clinical outcomes of using BioMatrix stents as a suitable alternative to contemporary DES available during PCI in diabetic patients. PMID:24206882
Randomized subspace-based robust principal component analysis for hyperspectral anomaly detection
NASA Astrophysics Data System (ADS)
Sun, Weiwei; Yang, Gang; Li, Jialin; Zhang, Dianfa
2018-01-01
A randomized subspace-based robust principal component analysis (RSRPCA) method for anomaly detection in hyperspectral imagery (HSI) is proposed. The RSRPCA combines advantages of randomized column subspace and robust principal component analysis (RPCA). It assumes that the background has low-rank properties, and the anomalies are sparse and do not lie in the column subspace of the background. First, RSRPCA implements random sampling to sketch the original HSI dataset from columns and to construct a randomized column subspace of the background. Structured random projections are also adopted to sketch the HSI dataset from rows. Sketching from columns and rows could greatly reduce the computational requirements of RSRPCA. Second, the RSRPCA adopts the columnwise RPCA (CWRPCA) to eliminate negative effects of sampled anomaly pixels and that purifies the previous randomized column subspace by removing sampled anomaly columns. The CWRPCA decomposes the submatrix of the HSI data into a low-rank matrix (i.e., background component), a noisy matrix (i.e., noise component), and a sparse anomaly matrix (i.e., anomaly component) with only a small proportion of nonzero columns. The algorithm of inexact augmented Lagrange multiplier is utilized to optimize the CWRPCA problem and estimate the sparse matrix. Nonzero columns of the sparse anomaly matrix point to sampled anomaly columns in the submatrix. Third, all the pixels are projected onto the complemental subspace of the purified randomized column subspace of the background and the anomaly pixels in the original HSI data are finally exactly located. Several experiments on three real hyperspectral images are carefully designed to investigate the detection performance of RSRPCA, and the results are compared with four state-of-the-art methods. Experimental results show that the proposed RSRPCA outperforms four comparison methods both in detection performance and in computational time.
Bijak, Jakub; Kupiszewska, Dorota; Kupiszewski, Marek; Saczuk, Katarzyna; Kicinger, Anna
2007-03-01
Population and labour force projections are made for 27 selected European countries for 2002-052, focussing on the impact of international migration on population and labour force dynamics. Starting from single scenarios for fertility, mortality and economic activity, three sets of assumptions are explored regarding migration flows, taking into account probable policy developments in Europe following the enlargement of the EU. In addition to age structures, various support ratio indicators are analysed. The results indicate that plausible immigration cannot offset the negative effects of population and labour force ageing.
Han, Fang; Liu, Han
2017-02-01
Correlation matrix plays a key role in many multivariate methods (e.g., graphical model estimation and factor analysis). The current state-of-the-art in estimating large correlation matrices focuses on the use of Pearson's sample correlation matrix. Although Pearson's sample correlation matrix enjoys various good properties under Gaussian models, its not an effective estimator when facing heavy-tail distributions with possible outliers. As a robust alternative, Han and Liu (2013b) advocated the use of a transformed version of the Kendall's tau sample correlation matrix in estimating high dimensional latent generalized correlation matrix under the transelliptical distribution family (or elliptical copula). The transelliptical family assumes that after unspecified marginal monotone transformations, the data follow an elliptical distribution. In this paper, we study the theoretical properties of the Kendall's tau sample correlation matrix and its transformed version proposed in Han and Liu (2013b) for estimating the population Kendall's tau correlation matrix and the latent Pearson's correlation matrix under both spectral and restricted spectral norms. With regard to the spectral norm, we highlight the role of "effective rank" in quantifying the rate of convergence. With regard to the restricted spectral norm, we for the first time present a "sign subgaussian condition" which is sufficient to guarantee that the rank-based correlation matrix estimator attains the optimal rate of convergence. In both cases, we do not need any moment condition.
Different wound healing properties of dermis, adipose, and gingiva mesenchymal stromal cells.
Boink, Mireille A; van den Broek, Lenie J; Roffel, Sanne; Nazmi, Kamran; Bolscher, Jan G M; Gefen, Amit; Veerman, Enno C I; Gibbs, Susan
2016-01-01
Oral wounds heal faster and with better scar quality than skin wounds. Deep skin wounds where adipose tissue is exposed, have a greater risk of forming hypertrophic scars. Differences in wound healing and final scar quality might be related to differences in mesenchymal stromal cells (MSC) and their ability to respond to intrinsic (autocrine) and extrinsic signals, such as human salivary histatin, epidermal growth factor, and transforming growth factor beta1. Dermis-, adipose-, and gingiva-derived MSC were compared for their regenerative potential with regards to proliferation, migration, and matrix contraction. Proliferation was assessed by cell counting and migration using a scratch wound assay. Matrix contraction and alpha smooth muscle actin was assessed in MSC populated collagen gels, and also in skin and gingival full thickness tissue engineered equivalents (reconstructed epithelium on MSC populated matrix). Compared to skin-derived MSC, gingiva MSC showed greater proliferation and migration capacity, and less matrix contraction in full thickness tissue equivalents, which may partly explain the superior oral wound healing. Epidermal keratinocytes were required for enhanced adipose MSC matrix contraction and alpha smooth muscle actin expression, and may therefore contribute to adverse scarring in deep cutaneous wounds. Histatin enhanced migration without influencing proliferation or matrix contraction in all three MSC, indicating that salivary peptides may have a beneficial effect on wound closure in general. Transforming growth factor beta1 enhanced contraction and alpha smooth muscle actin expression in all three MSC types when incorporated into collagen gels. Understanding the mechanisms responsible for the superior oral wound healing will aid us to develop advanced strategies for optimal skin regeneration, wound healing and scar formation. © 2015 by the Wound Healing Society.
Calculating merit increases: a structured approach.
Seithel, W W; Emans, J S
1983-01-01
Determining the amount of salary increase appropriate for each employee poses a major dilemma for many human resources managers and/or compensation managers (not to mention the employee's supervisor). This task requires complying with the company's compensation philosophy, meeting market competition, and rewarding employees fairly and equitably. Authors William W. Seithel, vice president, personnel of the Midwest Stock Exchange, Inc., and Jeff S. Emans, director, employee compensation of the Kemper Group, describe a method for pinpointing a salary rate increase that is not only structured enough to move people through the salary range in accordance with a reward philosophy, but precise enough to provide a basis for projecting costs and flexible enough to meet the needs of various performance levels. The method entails the use of a structured matrix that spells out the target percentage raises for various levels of performance. By using both the matrix-which is constructed to meet the individual company's needs-and a guide chart provided by the authors, it is possible to calculate a specific percentage increase for each employee. The manager who uses this system will find that the matrix is a mechanism for control as well as a means for projecting costs.
Sauwen, Nicolas; Acou, Marjan; Bharath, Halandur N; Sima, Diana M; Veraart, Jelle; Maes, Frederik; Himmelreich, Uwe; Achten, Eric; Van Huffel, Sabine
2017-01-01
Non-negative matrix factorization (NMF) has become a widely used tool for additive parts-based analysis in a wide range of applications. As NMF is a non-convex problem, the quality of the solution will depend on the initialization of the factor matrices. In this study, the successive projection algorithm (SPA) is proposed as an initialization method for NMF. SPA builds on convex geometry and allocates endmembers based on successive orthogonal subspace projections of the input data. SPA is a fast and reproducible method, and it aligns well with the assumptions made in near-separable NMF analyses. SPA was applied to multi-parametric magnetic resonance imaging (MRI) datasets for brain tumor segmentation using different NMF algorithms. Comparison with common initialization methods shows that SPA achieves similar segmentation quality and it is competitive in terms of convergence rate. Whereas SPA was previously applied as a direct endmember extraction tool, we have shown improved segmentation results when using SPA as an initialization method, as it allows further enhancement of the sources during the NMF iterative procedure.
Hessian Schatten-norm regularization for linear inverse problems.
Lefkimmiatis, Stamatios; Ward, John Paul; Unser, Michael
2013-05-01
We introduce a novel family of invariant, convex, and non-quadratic functionals that we employ to derive regularized solutions of ill-posed linear inverse imaging problems. The proposed regularizers involve the Schatten norms of the Hessian matrix, which are computed at every pixel of the image. They can be viewed as second-order extensions of the popular total-variation (TV) semi-norm since they satisfy the same invariance properties. Meanwhile, by taking advantage of second-order derivatives, they avoid the staircase effect, a common artifact of TV-based reconstructions, and perform well for a wide range of applications. To solve the corresponding optimization problems, we propose an algorithm that is based on a primal-dual formulation. A fundamental ingredient of this algorithm is the projection of matrices onto Schatten norm balls of arbitrary radius. This operation is performed efficiently based on a direct link we provide between vector projections onto lq norm balls and matrix projections onto Schatten norm balls. Finally, we demonstrate the effectiveness of the proposed methods through experimental results on several inverse imaging problems with real and simulated data.
The Pediatric Anesthesiology Workforce: Projecting Supply and Trends 2015-2035.
Muffly, Matthew K; Singleton, Mark; Agarwal, Rita; Scheinker, David; Miller, Daniel; Muffly, Tyler M; Honkanen, Anita
2018-02-01
A workforce analysis was conducted to predict whether the projected future supply of pediatric anesthesiologists is balanced with the requirements of the inpatient pediatric population. The specific aims of our analysis were to (1) project the number of pediatric anesthesiologists in the future workforce; (2) project pediatric anesthesiologist-to-pediatric population ratios (0-17 years); (3) project the mean number of inpatient pediatric procedures per pediatric anesthesiologist; and (4) evaluate the effect of alternative projections of individual variables on the model projections through 2035. The future number of pediatric anesthesiologists is determined by the current supply, additions to the workforce, and departures from the workforce. We previously compiled a database of US pediatric anesthesiologists in the base year of 2015. The historical linear growth rate for pediatric anesthesiology fellowship positions was determined using the Accreditation Council for Graduate Medical Education Data Resource Books from 2002 to 2016. The future number of pediatric anesthesiologists in the workforce was projected given growth of pediatric anesthesiology fellowship positions at the historical linear growth rate, modeling that 75% of graduating fellows remain in the pediatric anesthesiology workforce, and anesthesiologists retire at the current mean retirement age of 64 years old. The baseline model projections were accompanied by age- and gender-adjusted anesthesiologist supply, and sensitivity analyses of potential variations in fellowship position growth, retirement, pediatric population, inpatient surgery, and market share to evaluate the effect of each model variable on the baseline model. The projected ratio of pediatric anesthesiologists to pediatric population was determined using the 2012 US Census pediatric population projections. The projected number of inpatient pediatric procedures per pediatric anesthesiologist was determined using the Kids' Inpatient Database historical data to project the future number of inpatient procedures (including out of operating room procedures). In 2015, there were 5.4 pediatric anesthesiologists per 100,000 pediatric population and a mean (±standard deviation [SD]) of 262 ±8 inpatient procedures per pediatric anesthesiologist. If historical trends continue, there will be an estimated 7.4 pediatric anesthesiologists per 100,000 pediatric population and a mean (±SD) 193 ±6 inpatient procedures per pediatric anesthesiologist in 2035. If pediatric anesthesiology fellowship positions plateau at 2015 levels, there will be an estimated 5.7 pediatric anesthesiologists per 100,000 pediatric population and a mean (±SD) 248 ±7 inpatient procedures per pediatric anesthesiologist in 2035. If historical trends continue, the growth in pediatric anesthesiologist supply may exceed the growth in both the pediatric population and inpatient procedures in the 20-year period from 2015 to 2035.
2013-12-14
population covariance matrix with application to array signal processing; and 5) a sample covariance matrix for which a CLT is studied on linear...Applications , (01 2012): 1150004. doi: Walid Hachem, Malika Kharouf, Jamal Najim, Jack W. Silverstein. A CLT FOR INFORMATION- THEORETIC STATISTICS...for Multi-source Power Estimation, (04 2010) Malika Kharouf, Jamal Najim, Jack W. Silverstein, Walid Hachem. A CLT FOR INFORMATION- THEORETIC
Baseline projections for Latin America: base-year assumptions, key drivers and greenhouse emissions
van Ruijven, Bas J.; Daenzer, Katie; Fisher-Vanden, Karen; ...
2016-02-14
This article provides an overview of the base-year assumptions and core baseline projections for the set of models participating in the LAMP and CLIMACAP projects. Here we present the range in core baseline projections for Latin America, and identify key differences between model projections including how these projections compare to historic trends. We find relatively large differences across models in base year assumptions related to population, GDP, energy and CO 2 emissions due to the use of different data sources, but also conclude that this does not influence the range of projections. We find that population and GDP projections acrossmore » models span a broad range, comparable to the range represented by the set of Shared Socioeconomic Pathways (SSPs). Kaya-factor decomposition indicates that the set of core baseline scenarios mirrors trends experienced over the past decades. Emissions in Latin America are projected to rise as result of GDP and population growth and a minor shift in the energy mix toward fossil fuels. Most scenarios assume a somewhat higher GDP growth than historically observed and continued decline of population growth. Minor changes in energy intensity or energy mix are projected over the next few decades.« less
Final Report: Demographic Tools for Climate Change and Environmental Assessments
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Neill, Brian
2017-01-24
This report summarizes work over the course of a three-year project (2012-2015, with one year no-cost extension to 2016). The full proposal detailed six tasks: Task 1: Population projection model Task 2: Household model Task 3: Spatial population model Task 4: Integrated model development Task 5: Population projections for Shared Socio-economic Pathways (SSPs) Task 6: Population exposure to climate extremes We report on all six tasks, provide details on papers that have appeared or been submitted as a result of this project, and list selected key presentations that have been made within the university community and at professional meetings.
Wang, Tianyi; Lai, Janice H; Yang, Fan
2016-12-01
Cell-based therapies offer great promise for repairing cartilage. Previous strategies often involved using a single cell population such as stem cells or chondrocytes. A mixed cell population may offer an alternative strategy for cartilage regeneration while overcoming donor scarcity. We have recently reported that adipose-derived stem cells (ADSCs) can catalyze neocartilage formation by neonatal chondrocytes (NChons) when mixed co-cultured in 3D hydrogels in vitro. However, it remains unknown how the biochemical and mechanical cues of hydrogels modulate cartilage formation by mixed cell populations in vivo. The present study seeks to answer this question by co-encapsulating ADSCs and NChons in 3D hydrogels with tunable stiffness (∼1-33 kPa) and biochemical cues, and evaluating cartilage formation in vivo using a mouse subcutaneous model. Three extracellular matrix molecules were examined, including chondroitin sulfate (CS), hyaluronic acid (HA), and heparan sulfate (HS). Our results showed that the type of biochemical cue played a dominant role in modulating neocartilage deposition. CS and HA enhanced type II collagen deposition, a desirable phenotype for articular cartilage. In contrast, HS promoted fibrocartilage phenotype with the upregulation of type I collagen and failed to retain newly deposited matrix. Hydrogels with stiffnesses of ∼7-33 kPa led to a comparable degree of neocartilage formation, and a minimal initial stiffness was required to retain hydrogel integrity over time. Results from this study highlight the important role of matrix cues in directing neocartilage formation, and they offer valuable insights in guiding optimal scaffold design for cartilage regeneration by using mixed cell populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherman, Andrew J
A heterogeneous body having ceramic rich cermet regions in a more ductile metal matrix. The heterogeneous bodies are formed by thermal spray operations on metal substrates. The thermal spray operations apply heat to a cermet powder and project it onto a solid substrate. The cermet powder is composed of complex composite particles in which a complex ceramic-metallic core particle is coated with a matrix precursor. The cermet regions are generally comprised of complex ceramic-metallic composites that correspond approximately to the core particles. The cermet regions are approximately lenticular shaped with an average width that is at least approximately twice themore » average thickness. The cermet regions are imbedded within the matrix phase and generally isolated from one another. They have obverse and reverse surfaces. The matrix phase is formed from the matrix precursor coating on the core particles. The amount of heat applied during the formation of the heterogeneous body is controlled so that the core particles soften but do not become so fluid that they disperse throughout the matrix phase. The force of the impact on the surface of the substrate tends to flatten them. The flattened cermet regions tend to be approximately aligned with one another in the body.« less
An Efficient Scheme for Updating Sparse Cholesky Factors
NASA Technical Reports Server (NTRS)
Raghavan, Padma
2002-01-01
Raghavan had earlier developed the software package DCSPACK which can be used for solving sparse linear systems where the coefficient matrix is symmetric and positive definite (this project was not funded by NASA but by agencies such as NSF). DSCPACK-S is the serial code and DSCPACK-P is a parallel implementation suitable for multiprocessors or networks-of-workstations with message passing using MCI. The main algorithm used is the Cholesky factorization of a sparse symmetric positive positive definite matrix A = LL(T). The code can also compute the factorization A = LDL(T). The complexity of the software arises from several factors relating to the sparsity of the matrix A. A sparse N x N matrix A has typically less that cN nonzeroes where c is a small constant. If the matrix were dense, it would have O(N2) nonzeroes. The most complicated part of such sparse Cholesky factorization relates to fill-in, i.e., zeroes in the original matrix that become nonzeroes in the factor L. An efficient implementation depends to a large extent on complex data structures and on techniques from graph theory to reduce, identify, and manage fill. DSCPACK is based on an efficient multifrontal implementation with fill-managing algorithms and implementation arising from earlier research by Raghavan and others. Sparse Cholesky factorization is typically a four step process: (1) ordering to compute a fill-reducing numbering, (2) symbolic factorization to determine the nonzero structure of L, (3) numeric factorization to compute L, and, (4) triangular solution to solve L(T)x = y and Ly = b. The first two steps are symbolic and are performed using the graph of the matrix. The numeric factorization step is of dominant cost and there are several schemes for improving performance by exploiting the nested and dense structure of groups of columns in the factor. The latter are aimed at better utilization of the cache-memory hierarchy on modem processors to prevent cache-misses and provide execution rates (operations/second) that are close to the peak rates for dense matrix computations. Currently, EPISCOPACY is being used in an application at NASA directed by J. Newman and M. James. We propose the implementation of efficient schemes for updating the LL(T) or LDL(T) factors computed in DSCPACK-S to meet the computational requirements of their project. A brief description is provided in the next section.
NASA Astrophysics Data System (ADS)
Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu
2016-06-01
Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor.
Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu
2016-06-27
Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor.
Enhancement of the Probabilistic CEramic Matrix Composite ANalyzer (PCEMCAN) Computer Code
NASA Technical Reports Server (NTRS)
Shah, Ashwin
2000-01-01
This report represents a final technical report for Order No. C-78019-J entitled "Enhancement of the Probabilistic Ceramic Matrix Composite Analyzer (PCEMCAN) Computer Code." The scope of the enhancement relates to including the probabilistic evaluation of the D-Matrix terms in MAT2 and MAT9 material properties card (available in CEMCAN code) for the MSC/NASTRAN. Technical activities performed during the time period of June 1, 1999 through September 3, 1999 have been summarized, and the final version of the enhanced PCEMCAN code and revisions to the User's Manual is delivered along with. Discussions related to the performed activities were made to the NASA Project Manager during the performance period. The enhanced capabilities have been demonstrated using sample problems.
2012-01-01
Background We present the Biological Observation Matrix (BIOM, pronounced “biome”) format: a JSON-based file format for representing arbitrary observation by sample contingency tables with associated sample and observation metadata. As the number of categories of comparative omics data types (collectively, the “ome-ome”) grows rapidly, a general format to represent and archive this data will facilitate the interoperability of existing bioinformatics tools and future meta-analyses. Findings The BIOM file format is supported by an independent open-source software project (the biom-format project), which initially contains Python objects that support the use and manipulation of BIOM data in Python programs, and is intended to be an open development effort where developers can submit implementations of these objects in other programming languages. Conclusions The BIOM file format and the biom-format project are steps toward reducing the “bioinformatics bottleneck” that is currently being experienced in diverse areas of biological sciences, and will help us move toward the next phase of comparative omics where basic science is translated into clinical and environmental applications. The BIOM file format is currently recognized as an Earth Microbiome Project Standard, and as a Candidate Standard by the Genomic Standards Consortium. PMID:23587224
van der Burg, Max Post; Tyre, Andrew J
2011-01-01
Wildlife managers often make decisions under considerable uncertainty. In the most extreme case, a complete lack of data leads to uncertainty that is unquantifiable. Information-gap decision theory deals with assessing management decisions under extreme uncertainty, but it is not widely used in wildlife management. So too, robust population management methods were developed to deal with uncertainties in multiple-model parameters. However, the two methods have not, as yet, been used in tandem to assess population management decisions. We provide a novel combination of the robust population management approach for matrix models with the information-gap decision theory framework for making conservation decisions under extreme uncertainty. We applied our model to the problem of nest survival management in an endangered bird species, the Mountain Plover (Charadrius montanus). Our results showed that matrix sensitivities suggest that nest management is unlikely to have a strong effect on population growth rate, confirming previous analyses. However, given the amount of uncertainty about adult and juvenile survival, our analysis suggested that maximizing nest marking effort was a more robust decision to maintain a stable population. Focusing on the twin concepts of opportunity and robustness in an information-gap model provides a useful method of assessing conservation decisions under extreme uncertainty.
Zhang, Wang-Xiang; Zhao, Ming-Ming; Fan, Jun-Jun; Zhou, Ting; Chen, Yong-Xia; Cao, Fu-Liang
2017-01-01
Pollen ornamentation patterns are important in the study of plant genetic evolution and systematic taxonomy. However, they are normally difficult to quantify. Based on observations of pollen exine ornamentation characteristics of 128 flowering crabapple germplasms (44 natural species and 84 varieties), three qualitative variables with binary properties (Xi: regularity of pollen exine ornamentation; Yi: scope of ornamentation arrangement regularity; Zi: ornamentation arrangement patterns) were extracted to establish a binary three-dimensional data matrix (Xi Yi Zi) and the matrix data were converted to decimal data through weight assignment, which facilitated the unification of qualitative analysis and quantitative analysis. The result indicates that from species population to variety population and from parent population to variety population, the exine ornamentation of all three dimensions present the evolutionary trend of regular → irregular, wholly regular → partially regular, and single pattern → multiple patterns. Regarding the evolutionary degree, the regularity of ornamentation was significantly lower in both the variety population and progeny population, with a degree of decrease 0.82–1.27 times that of the regularity range of R-type ornamentation. In addition, the evolutionary degree significantly increased along Xi → Yi → Zi. The result also has certain reference values for defining the taxonomic status of Malus species. PMID:28059122
How feeling betrayed affects cooperation.
Ramazi, Pouria; Hessel, Jop; Cao, Ming
2015-01-01
For a population of interacting self-interested agents, we study how the average cooperation level is affected by some individuals' feelings of being betrayed and guilt. We quantify these feelings as adjusted payoffs in asymmetric games, where for different emotions, the payoff matrix takes the structure of that of either a prisoner's dilemma or a snowdrift game. Then we analyze the evolution of cooperation in a well-mixed population of agents, each of whom is associated with such a payoff matrix. At each time-step, an agent is randomly chosen from the population to update her strategy based on the myopic best-response update rule. According to the simulations, decreasing the feeling of being betrayed in a portion of agents does not necessarily increase the level of cooperation in the population. However, this resistance of the population against low-betrayal-level agents is effective only up to some extend that is explicitly determined by the payoff matrices and the number of agents associated with these matrices. Two other models are also considered where the betrayal factor of an agent fluctuates as a function of the number of cooperators and defectors that she encounters. Unstable behaviors are observed for the level of cooperation in these cases; however, we show that one can tune the parameters in the function to make the whole population become cooperative or defective.
Revilla, Eloy; Wiegand, Thorsten
2008-12-09
The dynamics of spatially structured populations is characterized by within- and between-patch processes. The available theory describes the latter with simple distance-dependent functions that depend on landscape properties such as interpatch distance or patch size. Despite its potential role, we lack a good mechanistic understanding of how the movement of individuals between patches affects the dynamics of these populations. We used the theoretical framework provided by movement ecology to make a direct representation of the processes determining how individuals connect local populations in a spatially structured population of Iberian lynx. Interpatch processes depended on the heterogeneity of the matrix where patches are embedded and the parameters defining individual movement behavior. They were also very sensitive to the dynamic demographic variables limiting the time moving, the within-patch dynamics of available settlement sites (both spatiotemporally heterogeneous) and the response of individuals to the perceived risk while moving. These context-dependent dynamic factors are an inherent part of the movement process, producing connectivities and dispersal kernels whose variability is affected by other demographic processes. Mechanistic representations of interpatch movements, such as the one provided by the movement-ecology framework, permit the dynamic interaction of birth-death processes and individual movement behavior, thus improving our understanding of stochastic spatially structured populations.
Felton, Shilo K.; Hostetter, Nathan J.; Pollock, Kenneth H.; Simons, Theodore R.
2017-01-01
In populations of long-lived species, adult survival typically has a relatively high influence on population growth. From a management perspective, however, adult survival can be difficult to increase in some instances, so other component rates must be considered to reverse population declines. In North Carolina, USA, management to conserve the American Oystercatcher (Haematopus palliatus) targets component vital rates related to fecundity, specifically nest and chick survival. The effectiveness of such a management approach in North Carolina was assessed by creating a three-stage female-based deterministic matrix model. Isoclines were produced from the matrix model to evaluate minimum nest and chick survival rates necessary to reverse population decline, assuming all other vital rates remained stable at mean values. Assuming accurate vital rates, breeding populations within North Carolina appear to be declining. To reverse this decline, combined nest and chick survival would need to increase from 0.14 to ≤ 0.27, a rate that appears to be attainable based on historical estimates. Results are heavily dependent on assumptions of other vital rates, most notably adult survival, revealing the need for accurate estimates of all vital rates to inform management actions. This approach provides valuable insights for evaluating conservation goals for species of concern.
Computational Everyday Life Human Behavior Model as Servicable Knowledge
NASA Astrophysics Data System (ADS)
Motomura, Yoichi; Nishida, Yoshifumi
A project called `Open life matrix' is not only a research activity but also real problem solving as an action research. This concept is realized by large-scale data collection, probabilistic causal structure model construction and information service providing using the model. One concrete outcome of this project is childhood injury prevention activity in new team consist of hospital, government, and many varieties of researchers. The main result from the project is a general methodology to apply probabilistic causal structure models as servicable knowledge for action research. In this paper, the summary of this project and future direction to emphasize action research driven by artificial intelligence technology are discussed.
Understanding Pre-Quantitative Risk in Projects
NASA Technical Reports Server (NTRS)
Cooper, Lynne P.
2011-01-01
Standard approaches to risk management in projects depend on the ability of teams to identify risks and quantify the probabilities and consequences of these risks (e.g., the 5 x 5 risk matrix). However, long before quantification does - or even can - occur, and long after, teams make decisions based on their pre-quantitative understanding of risk. These decisions can have long-lasting impacts on the project. While significant research has looked at the process of how to quantify risk, our understanding of how teams conceive of and manage pre-quantitative risk is lacking. This paper introduces the concept of pre-quantitative risk and discusses the implications of addressing pre-quantitative risk in projects.
Evolutionary Games with Randomly Changing Payoff Matrices
NASA Astrophysics Data System (ADS)
Yakushkina, Tatiana; Saakian, David B.; Bratus, Alexander; Hu, Chin-Kun
2015-06-01
Evolutionary games are used in various fields stretching from economics to biology. In most of these games a constant payoff matrix is assumed, although some works also consider dynamic payoff matrices. In this article we assume a possibility of switching the system between two regimes with different sets of payoff matrices. Potentially such a model can qualitatively describe the development of bacterial or cancer cells with a mutator gene present. A finite population evolutionary game is studied. The model describes the simplest version of annealed disorder in the payoff matrix and is exactly solvable at the large population limit. We analyze the dynamics of the model, and derive the equations for both the maximum and the variance of the distribution using the Hamilton-Jacobi equation formalism.
Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides.
Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R C; Yang, Liang; Rice, Scott A; Doyle, Patrick; Kjelleberg, Staffan
2014-08-05
Biofilms are densely populated communities of microbial cells protected and held together by a matrix of extracellular polymeric substances. The structure and rheological properties of the matrix at the microscale influence the retention and transport of molecules and cells in the biofilm, thereby dictating population and community behavior. Despite its importance, quantitative descriptions of the matrix microstructure and microrheology are limited. Here, particle-tracking microrheology in combination with genetic approaches was used to spatially and temporally study the rheological contributions of the major exopolysaccharides Pel and Psl in Pseudomonas aeruginosa biofilms. Psl increased the elasticity and effective cross-linking within the matrix, which strengthened its scaffold and appeared to facilitate the formation of microcolonies. Conversely, Pel reduced effective cross-linking within the matrix. Without Psl, the matrix becomes more viscous, which facilitates biofilm spreading. The wild-type biofilm decreased in effective cross-linking over time, which would be advantageous for the spreading and colonization of new surfaces. This suggests that there are regulatory mechanisms to control production of the exopolysaccharides that serve to remodel the matrix of developing biofilms. The exopolysaccharides were also found to have profound effects on the spatial organization and integration of P. aeruginosa in a mixed-species biofilm model of P. aeruginosa-Staphylococcus aureus. Pel was required for close association of the two species in mixed-species microcolonies. In contrast, Psl was important for P. aeruginosa to form single-species biofilms on top of S. aureus biofilms. Our results demonstrate that Pel and Psl have distinct physical properties and functional roles during biofilm formation. Importance: Most bacteria grow as biofilms in the environment or in association with eukaryotic hosts. Removal of biofilms that form on surfaces is a challenge in clinical and industrial settings. One of the defining features of a biofilm is its extracellular matrix. The matrix has a heterogeneous structure and is formed from a secretion of various biopolymers, including proteins, extracellular DNA, and polysaccharides. It is generally known to interact with biofilm cells, thus affecting cell physiology and cell-cell communication. Despite the fact that the matrix may comprise up to 90% of the biofilm dry weight, how the matrix properties affect biofilm structure, maturation, and interspecies interactions remain largely unexplored. This study reveals that bacteria can use specific extracellular polymers to modulate the physical properties of their microenvironment. This in turn impacts biofilm structure, differentiation, and interspecies interactions. Copyright © 2014 Chew et al.
ERIC Educational Resources Information Center
Qiu, Shuhao
2015-01-01
In order to investigate the complexity of mutations, a computational approach named Genome Evolution by Matrix Algorithms ("GEMA") has been implemented. GEMA models genomic changes, taking into account hundreds of mutations within each individual in a population. By modeling of entire human chromosomes, GEMA precisely mimics real…
Conservation genetics of remnant Lilium philadelphicum populations in the Midwestern United States
Matthew E. Horning; Michael S. Webster
2009-01-01
In recent decades, an increasing number of plant species have been negatively affected by anthropogenic habitat fragmentation and disturbance. In many cases, the habitat matrix between populations has been converted from a natural to an urban environment. One such species, Lilium philadelphicum (Liliaceae) a showy perennial with a naturally patchy...
Frank R., III Thompson
2009-01-01
Habitat models are widely used in bird conservation planning to assess current habitat or populations and to evaluate management alternatives. These models include species-habitat matrix or database models, habitat suitability models, and statistical models that predict abundance. While extremely useful, these approaches have some limitations.
USDA-ARS?s Scientific Manuscript database
Demographic models are a powerful means of identifying vulnerable life stages of pest species and assessing the potential effectiveness of various management approaches in reducing pest population growth and spread. In a biological control context, such models can be used to focus foreign explorati...
Individual heterogeneity in life histories and eco-evolutionary dynamics
Vindenes, Yngvild; Langangen, Øystein
2015-01-01
Individual heterogeneity in life history shapes eco-evolutionary processes, and unobserved heterogeneity can affect demographic outputs characterising life history and population dynamical properties. Demographic frameworks like matrix models or integral projection models represent powerful approaches to disentangle mechanisms linking individual life histories and population-level processes. Recent developments have provided important steps towards their application to study eco-evolutionary dynamics, but so far individual heterogeneity has largely been ignored. Here, we present a general demographic framework that incorporates individual heterogeneity in a flexible way, by separating static and dynamic traits (discrete or continuous). First, we apply the framework to derive the consequences of ignoring heterogeneity for a range of widely used demographic outputs. A general conclusion is that besides the long-term growth rate lambda, all parameters can be affected. Second, we discuss how the framework can help advance current demographic models of eco-evolutionary dynamics, by incorporating individual heterogeneity. For both applications numerical examples are provided, including an empirical example for pike. For instance, we demonstrate that predicted demographic responses to climate warming can be reversed by increased heritability. We discuss how applications of this demographic framework incorporating individual heterogeneity can help answer key biological questions that require a detailed understanding of eco-evolutionary dynamics. PMID:25807980
Pseudomonas biofilm matrix composition and niche biology
Mann, Ethan E.; Wozniak, Daniel J.
2014-01-01
Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure–function relationships, regulation, and the role of individual matrix molecules in niche biology. PMID:22212072
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Ruijven, Bas J.; Daenzer, Katie; Fisher-Vanden, Karen
This article provides an overview of the base-year assumptions and core baseline projections for the set of models participating in the LAMP and CLIMACAP projects. Here we present the range in core baseline projections for Latin America, and identify key differences between model projections including how these projections compare to historic trends. We find relatively large differences across models in base year assumptions related to population, GDP, energy and CO 2 emissions due to the use of different data sources, but also conclude that this does not influence the range of projections. We find that population and GDP projections acrossmore » models span a broad range, comparable to the range represented by the set of Shared Socioeconomic Pathways (SSPs). Kaya-factor decomposition indicates that the set of core baseline scenarios mirrors trends experienced over the past decades. Emissions in Latin America are projected to rise as result of GDP and population growth and a minor shift in the energy mix toward fossil fuels. Most scenarios assume a somewhat higher GDP growth than historically observed and continued decline of population growth. Minor changes in energy intensity or energy mix are projected over the next few decades.« less
Face verification with balanced thresholds.
Yan, Shuicheng; Xu, Dong; Tang, Xiaoou
2007-01-01
The process of face verification is guided by a pre-learned global threshold, which, however, is often inconsistent with class-specific optimal thresholds. It is, hence, beneficial to pursue a balance of the class-specific thresholds in the model-learning stage. In this paper, we present a new dimensionality reduction algorithm tailored to the verification task that ensures threshold balance. This is achieved by the following aspects. First, feasibility is guaranteed by employing an affine transformation matrix, instead of the conventional projection matrix, for dimensionality reduction, and, hence, we call the proposed algorithm threshold balanced transformation (TBT). Then, the affine transformation matrix, constrained as the product of an orthogonal matrix and a diagonal matrix, is optimized to improve the threshold balance and classification capability in an iterative manner. Unlike most algorithms for face verification which are directly transplanted from face identification literature, TBT is specifically designed for face verification and clarifies the intrinsic distinction between these two tasks. Experiments on three benchmark face databases demonstrate that TBT significantly outperforms the state-of-the-art subspace techniques for face verification.
Cellulose biosynthesis by the beta-proteobacterium, Chromobacterium violaceum.
Recouvreux, Derce O S; Carminatti, Claudimir A; Pitlovanciv, Ana K; Rambo, Carlos R; Porto, Luismar M; Antônio, Regina V
2008-11-01
The Chromobacterium violaceum ATCC 12472 genome was sequenced by The Brazilian National Genome Project Consortium. Previous annotation reported the presence of cellulose biosynthesis genes in that genome. Analysis of these genes showed that, as observed in other bacteria, they are organized in two operons. In the present work, experimental evidences of the presence of cellulose in the extracellular matrix of the biofilm produced by C. violaceum in static cultures are shown. Biofilm samples were enzymatically digested by cellulase, releasing glucose units, suggesting the presence of cellulose as an extracellular matrix component. Fluorescence microscopy observations showed that C. violaceum produces a cellulase-sensitive extracellular matrix composed of fibers able to bind calcofluor. C. violaceum grows on medium containing Congo red, forming brown-red colonies. Together, these results suggest that cellulase-susceptible matrix material is cellulose. Scanning electronic microscopy analysis showed that the extracellular matrix exhibited a network of microfibrils, typical of bacterial cellulose. Although cellulose production is widely distributed between several bacterial species, including at least the groups of Gram-negative proteobacteria alpha and gamma, we give for the first time experimental evidence for cellulose production in beta-proteobacteria.
Ju, Bin; Qian, Yuntao; Ye, Minchao; Ni, Rong; Zhu, Chenxi
2015-01-01
Predicting what items will be selected by a target user in the future is an important function for recommendation systems. Matrix factorization techniques have been shown to achieve good performance on temporal rating-type data, but little is known about temporal item selection data. In this paper, we developed a unified model that combines Multi-task Non-negative Matrix Factorization and Linear Dynamical Systems to capture the evolution of user preferences. Specifically, user and item features are projected into latent factor space by factoring co-occurrence matrices into a common basis item-factor matrix and multiple factor-user matrices. Moreover, we represented both within and between relationships of multiple factor-user matrices using a state transition matrix to capture the changes in user preferences over time. The experiments show that our proposed algorithm outperforms the other algorithms on two real datasets, which were extracted from Netflix movies and Last.fm music. Furthermore, our model provides a novel dynamic topic model for tracking the evolution of the behavior of a user over time. PMID:26270539
Ju, Bin; Qian, Yuntao; Ye, Minchao; Ni, Rong; Zhu, Chenxi
2015-01-01
Predicting what items will be selected by a target user in the future is an important function for recommendation systems. Matrix factorization techniques have been shown to achieve good performance on temporal rating-type data, but little is known about temporal item selection data. In this paper, we developed a unified model that combines Multi-task Non-negative Matrix Factorization and Linear Dynamical Systems to capture the evolution of user preferences. Specifically, user and item features are projected into latent factor space by factoring co-occurrence matrices into a common basis item-factor matrix and multiple factor-user matrices. Moreover, we represented both within and between relationships of multiple factor-user matrices using a state transition matrix to capture the changes in user preferences over time. The experiments show that our proposed algorithm outperforms the other algorithms on two real datasets, which were extracted from Netflix movies and Last.fm music. Furthermore, our model provides a novel dynamic topic model for tracking the evolution of the behavior of a user over time.
ILIAD Testing; and a Kalman Filter for 3-D Pose Estimation
NASA Technical Reports Server (NTRS)
Richardson, A. O.
1996-01-01
This report presents the results of a two-part project. The first part presents results of performance assessment tests on an Internet Library Information Assembly Data Base (ILIAD). It was found that ILLAD performed best when queries were short (one-to-three keywords), and were made up of rare, unambiguous words. In such cases as many as 64% of the typically 25 returned documents were found to be relevant. It was also found that a query format that was not so rigid with respect to spelling errors and punctuation marks would be more user-friendly. The second part of the report shows the design of a Kalman Filter for estimating motion parameters of a three dimensional object from sequences of noisy data derived from two-dimensional pictures. Given six measured deviation values represendng X, Y, Z, pitch, yaw, and roll, twelve parameters were estimated comprising the six deviations and their time rate of change. Values for the state transiton matrix, the observation matrix, the system noise covariance matrix, and the observation noise covariance matrix were determined. A simple way of initilizing the error covariance matrix was pointed out.
An analysis of spectral envelope-reduction via quadratic assignment problems
NASA Technical Reports Server (NTRS)
George, Alan; Pothen, Alex
1994-01-01
A new spectral algorithm for reordering a sparse symmetric matrix to reduce its envelope size was described. The ordering is computed by associating a Laplacian matrix with the given matrix and then sorting the components of a specified eigenvector of the Laplacian. In this paper, we provide an analysis of the spectral envelope reduction algorithm. We described related 1- and 2-sum problems; the former is related to the envelope size, while the latter is related to an upper bound on the work involved in an envelope Cholesky factorization scheme. We formulate the latter two problems as quadratic assignment problems, and then study the 2-sum problem in more detail. We obtain lower bounds on the 2-sum by considering a projected quadratic assignment problem, and then show that finding a permutation matrix closest to an orthogonal matrix attaining one of the lower bounds justifies the spectral envelope reduction algorithm. The lower bound on the 2-sum is seen to be tight for reasonably 'uniform' finite element meshes. We also obtain asymptotically tight lower bounds for the envelope size for certain classes of meshes.
Exploring multicollinearity using a random matrix theory approach.
Feher, Kristen; Whelan, James; Müller, Samuel
2012-01-01
Clustering of gene expression data is often done with the latent aim of dimension reduction, by finding groups of genes that have a common response to potentially unknown stimuli. However, what is poorly understood to date is the behaviour of a low dimensional signal embedded in high dimensions. This paper introduces a multicollinear model which is based on random matrix theory results, and shows potential for the characterisation of a gene cluster's correlation matrix. This model projects a one dimensional signal into many dimensions and is based on the spiked covariance model, but rather characterises the behaviour of the corresponding correlation matrix. The eigenspectrum of the correlation matrix is empirically examined by simulation, under the addition of noise to the original signal. The simulation results are then used to propose a dimension estimation procedure of clusters from data. Moreover, the simulation results warn against considering pairwise correlations in isolation, as the model provides a mechanism whereby a pair of genes with `low' correlation may simply be due to the interaction of high dimension and noise. Instead, collective information about all the variables is given by the eigenspectrum.
Cushing, J M; Henson, Shandelle M
2018-02-03
For structured populations with an annual breeding season, life-stage interactions and behavioral tactics may occur on a faster time scale than that of population dynamics. Motivated by recent field studies of the effect of rising sea surface temperature (SST) on within-breeding-season behaviors in colonial seabirds, we formulate and analyze a general class of discrete-time matrix models designed to account for changes in behavioral tactics within the breeding season and their dynamic consequences at the population level across breeding seasons. As a specific example, we focus on egg cannibalism and the daily reproductive synchrony observed in seabirds. Using the model, we investigate circumstances under which these life history tactics can be beneficial or non-beneficial at the population level in light of the expected continued rise in SST. Using bifurcation theoretic techniques, we study the nature of non-extinction, seasonal cycles as a function of environmental resource availability as they are created upon destabilization of the extinction state. Of particular interest are backward bifurcations in that they typically create strong Allee effects in population models which, in turn, lead to the benefit of possible (initial condition dependent) survival in adverse environments. We find that positive density effects (component Allee effects) due to increased adult survival from cannibalism and the propensity of females to synchronize daily egg laying can produce a strong Allee effect due to a backward bifurcation.
O'Brien, Susan H; Cook, Aonghais S C P; Robinson, Robert A
2017-10-01
Assessing the potential impact of additional mortality from anthropogenic causes on animal populations requires detailed demographic information. However, these data are frequently lacking, making simple algorithms, which require little data, appealing. Because of their simplicity, these algorithms often rely on implicit assumptions, some of which may be quite restrictive. Potential Biological Removal (PBR) is a simple harvest model that estimates the number of additional mortalities that a population can theoretically sustain without causing population extinction. However, PBR relies on a number of implicit assumptions, particularly around density dependence and population trajectory that limit its applicability in many situations. Among several uses, it has been widely employed in Europe in Environmental Impact Assessments (EIA), to examine the acceptability of potential effects of offshore wind farms on marine bird populations. As a case study, we use PBR to estimate the number of additional mortalities that a population with characteristics typical of a seabird population can theoretically sustain. We incorporated this level of additional mortality within Leslie matrix models to test assumptions within the PBR algorithm about density dependence and current population trajectory. Our analyses suggest that the PBR algorithm identifies levels of mortality which cause population declines for most population trajectories and forms of population regulation. Consequently, we recommend that practitioners do not use PBR in an EIA context for offshore wind energy developments. Rather than using simple algorithms that rely on potentially invalid implicit assumptions, we recommend use of Leslie matrix models for assessing the impact of additional mortality on a population, enabling the user to explicitly define assumptions and test their importance. Copyright © 2017 Elsevier Ltd. All rights reserved.
DeLong, John P; Burger, Oskar; Hamilton, Marcus J
2010-10-05
Influential demographic projections suggest that the global human population will stabilize at about 9-10 billion people by mid-century. These projections rest on two fundamental assumptions. The first is that the energy needed to fuel development and the associated decline in fertility will keep pace with energy demand far into the future. The second is that the demographic transition is irreversible such that once countries start down the path to lower fertility they cannot reverse to higher fertility. Both of these assumptions are problematic and may have an effect on population projections. Here we examine these assumptions explicitly. Specifically, given the theoretical and empirical relation between energy-use and population growth rates, we ask how the availability of energy is likely to affect population growth through 2050. Using a cross-country data set, we show that human population growth rates are negatively related to per-capita energy consumption, with zero growth occurring at ∼13 kW, suggesting that the global human population will stop growing only if individuals have access to this amount of power. Further, we find that current projected future energy supply rates are far below the supply needed to fuel a global demographic transition to zero growth, suggesting that the predicted leveling-off of the global population by mid-century is unlikely to occur, in the absence of a transition to an alternative energy source. Direct consideration of the energetic constraints underlying the demographic transition results in a qualitatively different population projection than produced when the energetic constraints are ignored. We suggest that energetic constraints be incorporated into future population projections.
Four-body trajectory optimization
NASA Technical Reports Server (NTRS)
Pu, C. L.; Edelbaum, T. N.
1974-01-01
A comprehensive optimization program has been developed for computing fuel-optimal trajectories between the earth and a point in the sun-earth-moon system. It presents methods for generating fuel optimal two-impulse trajectories which may originate at the earth or a point in space and fuel optimal three-impulse trajectories between two points in space. The extrapolation of the state vector and the computation of the state transition matrix are accomplished by the Stumpff-Weiss method. The cost and constraint gradients are computed analytically in terms of the terminal state and the state transition matrix. The 4-body Lambert problem is solved by using the Newton-Raphson method. An accelerated gradient projection method is used to optimize a 2-impulse trajectory with terminal constraint. The Davidon's Variance Method is used both in the accelerated gradient projection method and the outer loop of a 3-impulse trajectory optimization problem.
NASA Astrophysics Data System (ADS)
Xiang-Guo, Meng; Ji-Suo, Wang; Hong-Yi, Fan; Cheng-Wei, Xia
2016-04-01
We solve the fermionic master equation for a thermal bath to obtain its explicit Kraus operator solutions via the fermionic state approach. The normalization condition of the Kraus operators is proved. The matrix representation for these solutions is obtained, which is incongruous with the result in the book completed by Nielsen and Chuang [Quantum Computation and Quantum Information, Cambridge University Press, 2000]. As especial cases, we also present the Kraus operator solutions to master equations for describing the amplitude-decay model and the diffusion process at finite temperature. Project supported by the National Natural Science Foundation of China (Grant No. 11347026), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2013AM012 and ZR2012AM004), and the Research Fund for the Doctoral Program and Scientific Research Project of Liaocheng University, Shandong Province, China.
NASA Technical Reports Server (NTRS)
Ketchum, E.
1988-01-01
The Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) will be responsible for performing ground attitude determination for Gamma Ray Observatory (GRO) support. The study reported in this paper provides the FDD and the GRO project with ground attitude determination error information and illustrates several uses of the Generalized Calibration System (GCS). GCS, an institutional software tool in the FDD, automates the computation of the expected attitude determination uncertainty that a spacecraft will encounter during its mission. The GRO project is particularly interested in the uncertainty in the attitude determination using Sun sensors and a magnetometer when both star trackers are inoperable. In order to examine the expected attitude errors for GRO, a systematic approach was developed including various parametric studies. The approach identifies pertinent parameters and combines them to form a matrix of test runs in GCS. This matrix formed the basis for this study.
NASA Astrophysics Data System (ADS)
Chen, Shu-Hsia; Wu, Shin-Tson
1992-10-01
A broad range of interdisciplinary subjects related to display technologies is addressed, with emphasis on high-definition displays, CRTs, projection displays, materials for display application, flat-panel displays, display modeling, and polymer-dispersed liquid crystals. Particular attention is given to a CRT approach to high-definition television display, a superhigh-resolution electron gun for color display CRT, a review of active-matrix liquid-crystal displays, color design for LCD parameters in projection and direct-view applications, annealing effects on ZnS:TbF3 electroluminescent devices prepared by RF sputtering, polycrystalline silicon thin film transistors with low-temperature gate dielectrics, refractive index dispersions of liquid crystals, a new rapid-response polymer-dispersed liquid-crystal material, and improved liquid crystals for active-matrix displays using high-tilt-orientation layers. (No individual items are abstracted in this volume)
NASA Astrophysics Data System (ADS)
Zhao, Lianshui; Nahar, Sultana; Pradhan, Anil; Eissner, Werner
2017-04-01
We have carried out converged close coupling R-Matrix (CCC-RM) calculations for photoionization of Ne-like Fe XVII and demonstrate orders-of-magnitude enhancements in cross section due to successive core excitations. Convergence criteria are: (i) inclusion of sufficient number of residual ion Fe XVIII core states, (ii) high-resolution of myriad autoionizing resonances, and (iii) high-energy cross sections. We discuss verification of the conventional oscillator strength sum-rule in limited energy regions for bound-free plasma opacity. High energy cross sections are also under investigation. In order to obtain solar iron opacity at the boundary of the radiative and convection zones, we have studied the residual ion states that should provide convergence of resonances of other L-shell iron ions, Fe XIV - Fe XX, in the plasma region. Preliminary results from R-matrix calculations of photoionization cross sections will be reported. NSF, DOE, OSC.
Harrison, Joe J; Turner, Raymond J; Ceri, Howard
2005-07-01
In this study, we examined Pseudomonas aeruginosa ATCC 27853 biofilm and planktonic cell susceptibility to metal cations. The minimum inhibitory concentration (MIC), the minimum bactericidal concentration (MBC) required to eradicate 100% of the planktonic population (MBC 100), and the minimum biofilm eradication concentration (MBEC) were determined using the MBEC trade mark-high throughput assay. Six metals - Co(2+), Ni(2+), Cu(2+), Zn(2+), Al(3+) and Pb(2+)- were each tested at 2, 4, 6, 8, 10 and 27 h of exposure to biofilm and planktonic cultures grown in rich or minimal media. With 2 or 4 h of exposure, biofilms were approximately 2-25 times more tolerant to killing by metal cations than the corresponding planktonic cultures. However, by 27 h of exposure, biofilm and planktonic bacteria were eradicated at approximately the same concentration in every instance. Viable cell counts evaluated at 2 and 27 h of exposure revealed that at high concentrations, most of the metals assayed had killed greater than 99.9% of biofilm and planktonic cell populations. The surviving cells were propogated in vitro and gave rise to biofilm and planktonic cultures with normal sensitivity to metals. Further, retention of copper by the biofilm matrix was investigated using the chelator sodium diethlydithiocarbamate. Formation of visible brown metal-chelates in biofilms treated with Cu(2+) suggests that the biofilm matrix may coordinate and sequester metal cations from the aqueous surroundings. Overall, our data suggest that both metal sequestration in the biofilm matrix and the presence of a small population of 'persister' cells may be contributing factors in the time-dependent tolerance of both planktonic cells and biofilms to high concentrations of metal cations.
Hall, Jane; Thompson, Paul; Eden, John-Sebastian; Srivastava, Mukesh; Tiernan, Brendan; Jenkins, Cheryl; Phalen, David
2017-01-01
Multisystemic infections with a morphologically unusual bacterium were first observed in captive critically endangered Lister’s geckos (Lepidodactylus listeri) on Christmas Island in October 2014. Since then the infection was identified in another captive critically endangered lizard species, the blue-tailed skink (Cryptoblepharus egeriae) and two species of invasive geckos; the four clawed gecko (Gehyra mutilata) and Asian house gecko (Hemidactylus frenatus), in a wide geographic range across the east side of the island. The Gram and periodic acid-Schiff positive cocci to diplococci have a propensity to form chains surrounded by a matrix, which ultrastructurally appears to be formed by fibrillar capsular projections. The bacterium was associated with severe and extensive replacement of tissues, but minimal host inflammatory response. Attempts to grow the organism in culture and in embryonated eggs were unsuccessful. Molecular characterisation of the organism placed it as a novel member of the genus Enterococcus. Disease Risk Analyses including this organism should now be factored into conservation management actions and island biosecurity. PMID:28727845
Cangialosi, Federico; Intini, Gianluca; Liberti, Lorenzo; Notarnicola, Michele; Stellacci, Paolo
2008-01-01
A health risk assessment of long-term emissions of carcinogenic and non-carcinogenic air pollutants has been carried out for the municipal solid waste incinerator (MSWI) of the city of Taranto, Italy. Ground level air concentrations and soil deposition of carcinogenic (Polychlorinated Dibenzo-p-Dioxins/Furans and Cd) and non-carcinogenic (Pb and Hg) pollutants have been estimated using a well documented atmospheric dispersion model. Health risk values for air inhalation, dermal contact, soil and food ingestion have been calculated based on a combination of these concentrations and a matrix of environmental exposure factors. Exposure of the surrounding population has been addressed for different release scenarios based on four pollutants, four exposure pathways and two receptor groups (children and adults). Spatial risk distribution and cancer excess cases projected from plant emissions have been compared with background mortality records. Estimated results based on the MSWI emissions show: (1) individual risks well below maximum acceptable levels, (2) very small incremental cancer risk compared with background level.
Coasts: the ethical dimension.
Olsen, S; Hale, L Z
1994-01-01
Rapidly increasing numbers of people are profoundly altering the very qualities of coastal regions that make them the preferred home for the majority of the world's population. Along with masses of people, coastal areas contain a high proportion of the world's productive and diverse ecosystems, produce most of the world's fish catch, and support major portions of the world's agriculture, industry, and tourism. Over years of development, changes have been noted to local environments. Along coastlines, global change is manifested in terms of major shifts in rainfall patterns, an increase in the number of violent and destructive storms, and a rise in sea level. However, much of the degradation and conflict noted is considered avoidable and unnecessary. National coastal management programs should prioritize bringing order and control to the process of change and consider equity issues in the development process. Moreover, a ¿two-track approach¿, which uses local-level demonstration projects to discover, test, and apply innovative governance and technical solutions to the complex matrix of coastal management issues, is recommended.
ERIC Educational Resources Information Center
SAW, J.G.
THIS PAPER DEALS WITH SOME TESTS OF HYPOTHESIS FREQUENTLY ENCOUNTERED IN THE ANALYSIS OF MULTIVARIATE DATA. THE TYPE OF HYPOTHESIS CONSIDERED IS THAT WHICH THE STATISTICIAN CAN ANSWER IN THE NEGATIVE OR AFFIRMATIVE. THE DOOLITTLE METHOD MAKES IT POSSIBLE TO EVALUATE THE DETERMINANT OF A MATRIX OF HIGH ORDER, TO SOLVE A MATRIX EQUATION, OR TO…
Constructing stage-structured matrix population models from life tables: comparison of methods
Diaz-Lopez, Jasmin
2017-01-01
A matrix population model is a convenient tool for summarizing per capita survival and reproduction rates (collectively vital rates) of a population and can be used for calculating an asymptotic finite population growth rate (λ) and generation time. These two pieces of information can be used for determining the status of a threatened species. The use of stage-structured population models has increased in recent years, and the vital rates in such models are often estimated using a life table analysis. However, potential bias introduced when converting age-structured vital rates estimated from a life table into parameters for a stage-structured population model has not been assessed comprehensively. The objective of this study was to investigate the performance of methods for such conversions using simulated life histories of organisms. The underlying models incorporate various types of life history and true population growth rates of varying levels. The performance was measured by comparing differences in λ and the generation time calculated using the Euler-Lotka equation, age-structured population matrices, and several stage-structured population matrices that were obtained by applying different conversion methods. The results show that the discretization of age introduces only small bias in λ or generation time. Similarly, assuming a fixed age of maturation at the mean age of maturation does not introduce much bias. However, aggregating age-specific survival rates into a stage-specific survival rate and estimating a stage-transition rate can introduce substantial bias depending on the organism’s life history type and the true values of λ. In order to aggregate survival rates, the use of the weighted arithmetic mean was the most robust method for estimating λ. Here, the weights are given by survivorship curve after discounting with λ. To estimate a stage-transition rate, matching the proportion of individuals transitioning, with λ used for discounting the rate, was the best approach. However, stage-structured models performed poorly in estimating generation time, regardless of the methods used for constructing the models. Based on the results, we recommend using an age-structured matrix population model or the Euler-Lotka equation for calculating λ and generation time when life table data are available. Then, these age-structured vital rates can be converted into a stage-structured model for further analyses. PMID:29085763
Constructing stage-structured matrix population models from life tables: comparison of methods.
Fujiwara, Masami; Diaz-Lopez, Jasmin
2017-01-01
A matrix population model is a convenient tool for summarizing per capita survival and reproduction rates (collectively vital rates) of a population and can be used for calculating an asymptotic finite population growth rate ( λ ) and generation time. These two pieces of information can be used for determining the status of a threatened species. The use of stage-structured population models has increased in recent years, and the vital rates in such models are often estimated using a life table analysis. However, potential bias introduced when converting age-structured vital rates estimated from a life table into parameters for a stage-structured population model has not been assessed comprehensively. The objective of this study was to investigate the performance of methods for such conversions using simulated life histories of organisms. The underlying models incorporate various types of life history and true population growth rates of varying levels. The performance was measured by comparing differences in λ and the generation time calculated using the Euler-Lotka equation, age-structured population matrices, and several stage-structured population matrices that were obtained by applying different conversion methods. The results show that the discretization of age introduces only small bias in λ or generation time. Similarly, assuming a fixed age of maturation at the mean age of maturation does not introduce much bias. However, aggregating age-specific survival rates into a stage-specific survival rate and estimating a stage-transition rate can introduce substantial bias depending on the organism's life history type and the true values of λ . In order to aggregate survival rates, the use of the weighted arithmetic mean was the most robust method for estimating λ . Here, the weights are given by survivorship curve after discounting with λ . To estimate a stage-transition rate, matching the proportion of individuals transitioning, with λ used for discounting the rate, was the best approach. However, stage-structured models performed poorly in estimating generation time, regardless of the methods used for constructing the models. Based on the results, we recommend using an age-structured matrix population model or the Euler-Lotka equation for calculating λ and generation time when life table data are available. Then, these age-structured vital rates can be converted into a stage-structured model for further analyses.
Demography of Immigrant Youth: Past, Present, and Future
ERIC Educational Resources Information Center
Passel, Jeffrey S.
2011-01-01
Jeffrey Passel surveys demographic trends and projections in the U.S. youth population, with an emphasis on trends among immigrant youth. He traces shifts in the youth population over the past hundred years, examines population projections through 2050, and offers some observations about the likely impact of the immigrant youth population on…
ERIC Educational Resources Information Center
Sickler, Jessica; Cherry, Tammy Messick; Allee, Leslie; Smyth, Rebecca Rice; Losey, John
2014-01-01
The Lost Ladybug Project is a citizen science project that engages individuals and groups in research and learning about ladybug population dynamics. With a dual purpose of advancing scientists' research about ladybug populations and achieving learning outcomes with participants, the project's summative evaluation led to critical reflection on the…
Design of a projection display screen with vanishing color shift for rear-projection HDTV
NASA Astrophysics Data System (ADS)
Liu, Xiu; Zhu, Jin-lin
1996-09-01
Using bi-convex cylinder lens with matrix structure, the transmissive projection display screen with high contrast and wider viewing angle has been widely used in large rear projection TV and video projectors, it obtained a inhere color shift and puzzled the designer of display screen for RGB projection tube in-line adjustment. Based on the method of light beam racing, the general software of designing projection display screen has been developed and the computer model of vanishing color shift for rear projection HDTV has bee completed. This paper discussed the practical designing method to vanish the defect of color shift and mentioned the relations between the primary optical parameters of display screen and relative geometry sizes of lens' surface. The distributions of optical gain to viewing angle and the influences on engineering design are briefly analyzed.
Han, Fang; Liu, Han
2016-01-01
Correlation matrix plays a key role in many multivariate methods (e.g., graphical model estimation and factor analysis). The current state-of-the-art in estimating large correlation matrices focuses on the use of Pearson’s sample correlation matrix. Although Pearson’s sample correlation matrix enjoys various good properties under Gaussian models, its not an effective estimator when facing heavy-tail distributions with possible outliers. As a robust alternative, Han and Liu (2013b) advocated the use of a transformed version of the Kendall’s tau sample correlation matrix in estimating high dimensional latent generalized correlation matrix under the transelliptical distribution family (or elliptical copula). The transelliptical family assumes that after unspecified marginal monotone transformations, the data follow an elliptical distribution. In this paper, we study the theoretical properties of the Kendall’s tau sample correlation matrix and its transformed version proposed in Han and Liu (2013b) for estimating the population Kendall’s tau correlation matrix and the latent Pearson’s correlation matrix under both spectral and restricted spectral norms. With regard to the spectral norm, we highlight the role of “effective rank” in quantifying the rate of convergence. With regard to the restricted spectral norm, we for the first time present a “sign subgaussian condition” which is sufficient to guarantee that the rank-based correlation matrix estimator attains the optimal rate of convergence. In both cases, we do not need any moment condition. PMID:28337068
Entanglement classification in the noninteracting Fermi gas
NASA Astrophysics Data System (ADS)
Jafarizadeh, M. A.; Eghbalifam, F.; Nami, S.; Yahyavi, M.
In this paper, entanglement classification shared among the spins of localized fermions in the noninteracting Fermi gas is studied. It is proven that the Fermi gas density matrix is block diagonal on the basis of the projection operators to the irreducible representations of symmetric group Sn. Every block of density matrix is in the form of the direct product of a matrix and identity matrix. Then it is useful to study entanglement in every block of density matrix separately. The basis of corresponding Hilbert space are identified from the Schur-Weyl duality theorem. Also, it can be shown that the symmetric part of the density matrix is fully separable. Then it has been shown that the entanglement measure which is introduced in Eltschka et al. [New J. Phys. 10, 043104 (2008)] and Guhne et al. [New J. Phys. 7, 229 (2005)], is zero for the even n qubit Fermi gas density matrix. Then by focusing on three spin reduced density matrix, the entanglement classes have been investigated. In three qubit states there is an entanglement measure which is called 3-tangle. It can be shown that 3-tangle is zero for three qubit density matrix, but the density matrix is not biseparable for all possible values of its parameters and its eigenvectors are in the form of W-states. Then an entanglement witness for detecting non-separable state and an entanglement witness for detecting nonbiseparable states, have been introduced for three qubit density matrix by using convex optimization problem. Finally, the four spin reduced density matrix has been investigated by restricting the density matrix to the irreducible representations of Sn. The restricted density matrix to the subspaces of the irreducible representations: Ssym, S3,1 and S2,2 are denoted by ρsym, ρ3,1 and ρ2,2, respectively. It has been shown that some highly entangled classes (by using the results of Miyake [Phys. Rev. A 67, 012108 (2003)] for entanglement classification) do not exist in the blocks of density matrix ρ3,1 and ρ2,2, so these classes do not exist in the total Fermi gas density matrix.
Sparse Covariance Matrix Estimation With Eigenvalue Constraints
LIU, Han; WANG, Lie; ZHAO, Tuo
2014-01-01
We propose a new approach for estimating high-dimensional, positive-definite covariance matrices. Our method extends the generalized thresholding operator by adding an explicit eigenvalue constraint. The estimated covariance matrix simultaneously achieves sparsity and positive definiteness. The estimator is rate optimal in the minimax sense and we develop an efficient iterative soft-thresholding and projection algorithm based on the alternating direction method of multipliers. Empirically, we conduct thorough numerical experiments on simulated datasets as well as real data examples to illustrate the usefulness of our method. Supplementary materials for the article are available online. PMID:25620866
The semantic architecture of the World-Wide Molecular Matrix (WWMM)
2011-01-01
The World-Wide Molecular Matrix (WWMM) is a ten year project to create a peer-to-peer (P2P) system for the publication and collection of chemical objects, including over 250, 000 molecules. It has now been instantiated in a number of repositories which include data encoded in Chemical Markup Language (CML) and linked by URIs and RDF. The technical specification and implementation is now complete. We discuss the types of architecture required to implement nodes in the WWMM and consider the social issues involved in adoption. PMID:21999475
The semantic architecture of the World-Wide Molecular Matrix (WWMM).
Murray-Rust, Peter; Adams, Sam E; Downing, Jim; Townsend, Joe A; Zhang, Yong
2011-10-14
The World-Wide Molecular Matrix (WWMM) is a ten year project to create a peer-to-peer (P2P) system for the publication and collection of chemical objects, including over 250, 000 molecules. It has now been instantiated in a number of repositories which include data encoded in Chemical Markup Language (CML) and linked by URIs and RDF. The technical specification and implementation is now complete. We discuss the types of architecture required to implement nodes in the WWMM and consider the social issues involved in adoption.
Templeton, Alan R; Brazeal, Hilary; Neuwald, Jennifer L
2011-09-01
Habitat fragmentation often arises from human-induced alterations to the matrix that reduce or eliminate dispersal between habitat patches. Elimination of dispersal increases local extinction and decreases recolonization. These phenomena were observed in the eastern collared lizard (Crotaphytus collaris collaris), which lives in the mid-continental highland region of the Ozarks (Missouri, USA) on glades: habitats of exposed bedrock that form desert-like habitats imbedded in a woodland matrix. With the onset of woodland fire suppression, glade habitats degenerated and the woodland matrix was altered to create a strong barrier to dispersal. By 1980, lizard populations in the Ozarks were rapidly going extinct. In response to this decline, some glades were restored by clearing and burning. Starting in 1984, collared lizard populations were translocated onto these restored habitats. The translocated populations persisted but did not colonize nearby glades or disperse among one another. In 1994 prescribed woodland fires were initiated, which unleashed much dispersal and colonizing behavior. Dispersal was highly nonrandom by both intrinsic variables (age, gender) and extrinsic variables (overall demography, glade population sizes, glade areas, landscape features), resulting in different classes of lizards being dominant in creating demographic cohesiveness among glades, colonizing new glades on a mountain, and colonizing new mountain systems. A dramatic transition was documented from isolated fragments, to a nonequilibrium colonizing metapopulation, and finally to a stable metapopulation. This transition is characterized by the convergence of rates of extinction and recolonization and a major alteration of dispersal probabilities and pattern in going from the nonequilibrium to stable metapopulation states.
Gridded population projections for the coastal zone under the Shared Socioeconomic Pathways
NASA Astrophysics Data System (ADS)
Merkens, Jan-Ludolf; Reimann, Lena; Hinkel, Jochen; Vafeidis, Athanasios T.
2016-10-01
Existing quantifications of the Shared Socioeconomic Pathways (SSP) used for climate impact assessment do not account for subnational population dynamics such as coastward-migration that can be critical for coastal impact assessment. This paper extends the SSPs by developing spatial projections of global coastal population distribution for the five basic SSPs. Based on a series of coastal migration drivers we develop coastal narratives for each SSP. These narratives account for differences in coastal and inland population developments in urban and rural areas. To spatially distribute population, we use the International Institute for Applied Systems Analysis (IIASA) national population and urbanisation projections and employ country-specific growth rates, which differ for coastal and inland as well as for urban and rural regions, to project coastal population for each SSP. These rates are derived from spatial analysis of historical population data and adjusted for each SSP based on the coastal narratives. Our results show that, compared to the year 2000 (638 million), the population living in the Low Elevated Coastal Zone (LECZ) increases by 58% to 71% until 2050 and exceeds one billion in all SSPs. By the end of the 21st century, global coastal population declines to 830-907 million in all SSPs except for SSP3, where coastal population growth continues and reaches 1.184 billion. Overall, the population living in the LECZ is higher by 85 to 239 million compared to the original IIASA projections. Asia expects the highest absolute growth (238-303 million), Africa the highest relative growth (153% to 218%). Our results highlight regions where high coastal population growth is expected and will therefore face an increased exposure to coastal flooding.
Different properties of skin of different body sites: The root of keloid formation?
Butzelaar, Liselotte; Niessen, Frank B; Talhout, Wendy; Schooneman, Dennis P M; Ulrich, Magda M; Beelen, Robert H J; Mink van der Molen, Aebele B
2017-09-01
The purpose of this study was to examine extracellular matrix composition, vascularization, and immune cell population of skin sites prone to keloid formation. Keloids remain a complex problem, posing esthetical as well as functional difficulties for those affected. These scars tend to develop at anatomic sites of preference. Mechanical properties of skin vary with anatomic location and depend largely on extracellular matrix composition. These differences in extracellular matrix composition, but also vascularization and resident immune cell populations might play a role in the mechanism of keloid formation. To examine this hypothesis, skin samples of several anatomic locations were taken from 24 human donors within zero to 36 hours after they had deceased. Collagen content and cross-links were determined through high-performance liquid chromatography. The expression of several genes, involved in extracellular matrix production and degradation, was measured by means of real-time PCR. (Immuno)histochemistry was performed to detect fibroblasts, collagen, elastin, blood vessels, Langerhans cells, and macrophages. Properties of skin of keloid predilections sites were compared to properties of skin from other locations (nonpredilection sites [NPS]). The results indicated that there are site specific variations in extracellular matrix properties (collagen and cross-links) as well as macrophage numbers. Moreover, predilection sites (PS) for keloid formation contain larger amounts of collagen compared to NPS, but decreased numbers of macrophages, in particular classically activated CD40 positive macrophages. In conclusion, the altered (histological, protein, and genetic) properties of skin of keloid PS may cause a predisposition for and contribute to keloid formation. © 2017 by the Wound Healing Society.
Photochemical isomerizations of thiosemicarbazide, a matrix isolation study.
Rostkowska, Hanna; Lapinski, Leszek; Kozankiewicz, Boleslaw; Nowak, Maciej J
2012-10-11
Two thione conformers of monomeric thiosemicarbazide were trapped from the gas phase into a low-temperature Ar matrix. A phototransformation converting the less stable form of the compound into the most stable conformer was induced by irradiation with near-IR (λ = 1462 nm) or UV (λ > 320 nm) light. This photoeffect allowed separation of the IR spectra of the observed thione forms. The structures of both observed isomers were identified by comparison of the separated experimental IR spectra with the spectra theoretically predicted for two most stable forms of the compound. The population ratio of the two conformers in an Ar matrix, prior to any irradiation, was estimated to be equal ≈2:1. Irradiation of matrix-isolated thiosemicarbazide with shorter-wavelength UV (λ > 270 nm) light induced a phototautomeric reaction generating thiol forms of the compound.
Projections in donor organs available for liver transplantation in the United States: 2014-2025.
Parikh, Neehar D; Hutton, David; Marrero, Wesley; Sanghani, Kunal; Xu, Yongcai; Lavieri, Mariel
2015-06-01
With the aging US population, demographic shifts, and obesity epidemic, there is potential for further exacerbation of the current liver donor shortage. We aimed to project the availability of liver grafts in the United States. We performed a secondary analysis of the Organ Procurement and Transplantation Network database of all adult donors from 2000 to 2012 and calculated the total number of donors available and transplanted donor livers stratified by age, race, and body mass index (BMI) group per year. We used National Health and Nutrition Examination Survey and Centers for Disease Control and Prevention historical data to stratify the general population by age, sex, race, and BMI. We then used US population age and race projections provided by the US Census Bureau and the Weldon Cooper Center for Public Service and made national and regional projections of available donors and donor liver utilization from 2014 to 2025. We performed sensitivity analyses and varied the rate of the rise in obesity, proportion of Hispanics, population growth, liver utilization rate, and donation after cardiac death (DCD) utilization. The projected adult population growth in the United States from 2014 to 2025 will be 7.1%. However, we project that there will be a 6.1% increase in the number of used liver grafts. There is marked regional heterogeneity in liver donor growth. Projections were significantly affected by changes in BMI, DCD utilization, and liver utilization rates but not by changes in the Hispanic proportion of the US population or changes in the overall population growth. Overall population growth will outpace the growth of available donor organs and thus potentially exacerbate the existing liver graft shortage. The projected growth in organs is highly heterogeneous across different United Network for Organ Sharing regions. Focused strategies to increase the liver donor pool are warranted. © 2015 American Association for the Study of Liver Diseases.
Analysis and fifteen-year projection of the market for LANDSAT data
NASA Technical Reports Server (NTRS)
1981-01-01
The potential market for LANDSAT products through the 1990's was determined. Results are presented in a matrix format. Improved resolution is a major factor in the marketability of LANDSAT data, the 10 meter resolution (projected for 1995) having a significant impact on the federal, private, and international users, and on the agricultural, minerals, and national defense applications. Data delivery time and competition from the French remote sensing system are considered.
2010-04-01
available [11]. Additionally, Table-3 is a guide for DMAIC methodology including 29 different methods [12]. RTO-MP-SAS-081 6 - 4 NATO UNCLASSIFIED NATO...Table 3: DMAIC Methodology (5-Phase Methodology). Define Measure Analyze Improve Control Project Charter Prioritization Matrix 5 Whys Analysis...Methodology Scope [13] DMAIC PDCA Develop performance priorities This is a preliminary stage that precedes specific improvement projects, and the aim
Monocyte activation by smooth muscle cell-derived matrices.
Kaufmann, J; Jorgensen, R W; Martin, B M; Franzblau, C
1990-12-01
Mononuclear phagocytes adhere to and penetrate the vessel wall endothelium and contact the subendothelial space prior to the development of the atherosclerotic plaque. In an attempt to model the early events of plaque development we used an elastin-rich, multicomponent, cell-derived matrix from neonatal rat aortic smooth muscle cells as a substratum for monocytes. Using this model, we show that human monocyte morphology and metabolism are markedly altered by the matrix substratum. When a mixed mononuclear cell population is seeded on matrix or plastic, only monocytes adhere to the matrix surface. In contrast, lymphocytes as well as monocytes adhere to the plastic surface. The matrix-adherent monocytes develop large intracellular granules and form extensive clusters of individual cells. Metabolically, these cells develop sodium fluoride resistant non-specific esterase activity and their media contain more growth factor activity and PGE2. Although total protein synthesis is equivalent in both cultures, the matrix contact induces an increase in specific proteins in the media. We also show that a purified alpha-elastin substratum induces some, but not all, of the monocyte changes seen when using the matrix substratum. Using the alpha-elastin substratum, there is selective adhesion of monocytes and increased growth factor activity, however, the cells are morphologically different from the matrix-adherent cells. Thus, the use of the smooth muscle cell-derived matrix, in conjunction with purified matrix components, serves as a model that can provide insight into the mechanisms of monocyte adhesion and stimulation by the matrix environment that exists in vivo. Such mechanisms may be particularly important in atherogenesis.
Demographic rates and population viability of black bears in Louisiana
Laufenberg, Jared S.; Clark, Joseph D.; Hooker, Michael J.; Lowe, Carrie L.; O'Connell-Goode, Kaitlin C.; Troxler, Jesse C.; Davidson, Maria M.; Chamberlain, Michael J.; Chandler, Richard B.
2015-01-01
The Louisiana black bear (Ursus americanus luteolus) was reduced to a few small, fragmented, and isolated subpopulations in the Lower Mississippi Alluvial Valley by the mid-twentieth century resulting from loss and fragmentation of habitat. In 1992, the United States Fish and Wildlife Service (USFWS) granted the Louisiana black bear threatened status under the United States Endangered Species Act of 1973. Since that time, a recovery plan was developed, a reintroduced population was established, and habitat recovery has occurred. The Recovery Plan states that a minimum of 2 populations must be viable (i.e., persistence probabilities over 100 years >0.95), 1 in the Tensas River Basin and 1 in the Atchafalaya River Basin. Consequently, our objectives were to 1) estimate demographic rates of Louisiana black bear subpopulations, 2) develop data-driven stochastic population projection models, and 3) determine how different projection model assumptions affect population trajectories and predictions about long-term persistence. Our overall goal was to assess long-term persistence of the bear subpopulations in Louisiana, individually and as a whole. We collected data using varying combinations of non-invasive DNA sampling, live capture, winter den visits, and radio monitoring from 2002 to 2012 in the 4 areas currently supporting breeding subpopulations in Louisiana: Tensas River Basin (TRB), Upper Atchafalaya River Basin (UARB), Lower Atchafalaya River Basin (LARB), and a recently reintroduced population at the Three Rivers Complex (TRC). From 2002 to 2012, we radio monitored fates of 86 adult females within the TRB and 43 in the TRC. Mean estimates of annual adult survival for the TRB and TRC were 0.997 and 0.990, respectively, when unknown fates were assumed alive and 0.970 and 0.926 when unknown fates were assumed dead. From 2003 to 2013, we observed 130 cub litters from 74 females in the TRB, and 74 cub litters from 45 females in the TRC. During the same period, we observed 43 yearling litters for 33 females in the TRB and 21 yearling litters for 19 females in the TRC. The estimated number of cubs and number of yearlings produced per breeding adult female was 0.47 and 0.20, respectively, in the TRB and 0.32 and 0.18 in the TRC. On the basis of matrix projection models, asymptotic growth rates ranged from 1.053 to 1.078 for the TRB and from 1.005 to 1.062 for the TRC, depending on how we treated unresolved fates of adult females. Persistence probabilities estimated from stochastic population models based on telemetry data ranged from 0.997 to 0.998 for the TRC subpopulation depending on model assumptions and were >0.999 for the TRB regardless of model assumptions. We extracted DNA from hair collected at baited, barbed-wire enclosures in the TRB, UARB, and LARB to determine individual identities for capture-mark-recapture (CMR) analysis. We used those detection histories to estimate apparent survival (φ), per-capita recruitment (f), abundance (N), realized growth rate (λ), and long-term viability, based on Bayesian hierarchical modeling methods that allowed estimation of temporal process variance and parameter uncertainty. Based on 23,312 hair samples, annual N for females in the TRB ranged from 133 to 164 during 2006–2012, depending on year and how detection heterogeneity was modeled. Geometric mean of λ ranged from 0.996 to 1.002. In the UARB, we collected 11,643 hair samples from 2007 to 2012, from which estimates of N for females ranged from 23 to 43 during the study period, depending on detection heterogeneity model. The geometric mean of λ ranged from 1.038 to 1.059. Estimated N for females in LARB ranged from 69 to 96, and annual λ ranged from 0.80 to 1.11 based on 3,698 hair samples collected during 2010–2012, also depending on year and heterogeneity model. Probabilities of persistence over 100 years for the TRC and TRB based on stochastic matrix projection models that used vital rate estimates from telemetry data were >0.95 for all scenarios. Probability of persistence at the TRB and the UARB based on projection models that used vital rate estimates from CMR analyses ranged from 0.928 to 0.954 and from 0.906 to 0.959, respectively, depending on model assumptions. Data from the LARB were insufficient for a viability assessment. Thus, individual persistence probabilities for TRB and UARB did not meet the strict definition of viability (i.e., >0.95) under some model assumptions. However, the joint probability of bears persisting either in the TRB or UARB was >0.993 assuming individual population dynamics were independent and was >0.958 assuming dynamics were perfectly correlated. Furthermore, including the TRC increased the joint probability of bears persisting somewhere in the TRB, UARB, or TRC to >0.999 based on the most pessimistic individual persistence estimates from those subpopulations. Therefore, if the intent of specifying that 2 subpopulations should be viable was to ensure the persistence of Louisiana black bears somewhere within its historical range, then the viability threshold was met. © 2016 The Wildlife Society.
Lin, Shu-Ping; Kyriakides, Themis R; Chen, Jia-Jin J
2009-06-01
Despite many successful applications of microelectrode arrays (MEAs), typical two-dimensional in-vitro cultures do not project the full scale of the cell growth environment in the three-dimensional (3D) in-vivo setting. This study aims to on-line monitor in-vitro cell growth in a 3D matrix on the surface-modified MEAs with a dynamic perfusion culture system. A 3D matrix consisting of poly(ethylene glycol) hydrogel supplemented with poly-D-lysine was subsequently synthesized in situ on the self-assembled monolayer modified MEAs. FTIR spectrum analysis revealed a peak at 2100 cm(-1) due to the degradation of the structure of the 3D matrix. After 2 wks, microscopic examination revealed that the non-degraded area was around 1500 microm(2) and provided enough space for cell growth. Fluorescence microscopy revealed that the degraded 3D matrix was non-cytotoxic allowing the growth of NIH3T3 fibroblasts and cortical neurons in vitro. Time-course changes of total impedance including resistance and reactance were recorded for 8 days to evaluate the cell growth in the 3D matrix on the MEA. A consistent trend reflecting changes of reactance and total impedance was observed. These in-vitro assays demonstrate that our 3D matrix can construct a biomimetic system for cell growth and analysis of cell surface interactions.
Angert, Amy L; Sheth, Seema N; Paul, John R
2011-11-01
Determining how species' geographic ranges are governed by current climates and how they will respond to rapid climatic change poses a major biological challenge. Geographic ranges are often spatially fragmented and composed of genetically differentiated populations that are locally adapted to different thermal regimes. Tradeoffs between different aspects of thermal performance, such as between tolerance to high temperature and tolerance to low temperature or between maximal performance and breadth of performance, suggest that the performance of a given population will be a subset of that of the species. Therefore, species-level projections of distribution might overestimate the species' ability to persist at any given location. However, current approaches to modeling distributions often do not consider variation among populations. Here, we estimated genetically-based differences in thermal performance curves for growth among 12 populations of the scarlet monkeyflower, Mimulus cardinalis, a perennial herb of western North America. We inferred the maximum relative growth rate (RGR(max)), temperature optimum (T(opt)), and temperature breadth (T(breadth)) for each population. We used these data to test for tradeoffs in thermal performance, generate mechanistic population-level projections of distribution under current and future climates, and examine how variation in aspects of thermal performance influences forecasts of range shifts. Populations differed significantly in RGR(max) and had variable, but overlapping, estimates of T(opt) and T(breadth). T(opt) declined with latitude and increased with temperature of origin, consistent with tradeoffs between performances at low temperatures versus those at high temperatures. Further, T(breadth) was negatively related to RGR(max), as expected for a specialist-generalist tradeoff. Parameters of the thermal performance curve influenced properties of projected distributions. For both current and future climates, T(opt) was negatively related to latitudinal position, while T(breadth) was positively related to projected range size. The magnitude and direction of range shifts also varied with T(opt) and T(breadth), but sometimes in unexpected ways. For example, the fraction of habitat remaining suitable increased with T(opt) but decreased with T(breadth). Northern limits of all populations were projected to shift north, but the magnitude of shift decreased with T(opt) and increased with T(breadth). Median latitude was projected to shift north for populations with high T(breadth) and low T(opt), but south for populations with low T(breadth) and high T(opt). Distributions inferred by integrating population-level projections did not differ from a species-level projection that ignored variation among populations. However, the species-level approach masked the potential array of divergent responses by populations that might lead to genotypic sorting within the species' range. Thermal performance tradeoffs among populations within the species' range had important, but sometimes counterintuitive, effects on projected responses to climatic change. © The Author 2011. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.
Crittenden, Jill R.; Lacey, Carolyn J.; Weng, Feng-Ju; Garrison, Catherine E.; Gibson, Daniel J.; Lin, Yingxi; Graybiel, Ann M.
2017-01-01
The striatum is key for action-selection and the motivation to move. Dopamine and acetylcholine release sites are enriched in the striatum and are cross-regulated, possibly to achieve optimal behavior. Drugs of abuse, which promote abnormally high dopamine release, disrupt normal action-selection and drive restricted, repetitive behaviors (stereotypies). Stereotypies occur in a variety of disorders including obsessive-compulsive disorder, autism, schizophrenia and Huntington's disease, as well as in addictive states. The severity of drug-induced stereotypy is correlated with induction of c-Fos expression in striosomes, a striatal compartment that is related to the limbic system and that directly projects to dopamine-producing neurons of the substantia nigra. These characteristics of striosomes contrast with the properties of the extra-striosomal matrix, which has strong sensorimotor and associative circuit inputs and outputs. Disruption of acetylcholine signaling in the striatum blocks the striosome-predominant c-Fos expression pattern induced by drugs of abuse and alters drug-induced stereotypy. The activity of striatal cholinergic interneurons is associated with behaviors related to sensory cues, and cortical inputs to striosomes can bias action-selection in the face of conflicting cues. The neurons and neuropil of striosomes and matrix neurons have observably separate distributions, both at the input level in the striatum and at the output level in the substantia nigra. Notably, cholinergic axons readily cross compartment borders, providing a potential route for local cross-compartment communication to maintain a balance between striosomal and matrix activity. We show here, by slice electrophysiology in transgenic mice, that repetitive evoked firing patterns in striosomal and matrix striatal projection neurons (SPNs) are interrupted by optogenetic activation of cholinergic interneurons either by the addition or the deletion of spikes. We demonstrate that this cholinergic modulation of projection neurons is blocked in brain slices taken from mice exposed to amphetamine and engaged in amphetamine-induced stereotypy, and lacking responsiveness to salient cues. Our findings support a model whereby activity in striosomes is normally under strong regulation by cholinergic interneurons, favoring behavioral flexibility, but that in animals with drug-induced stereotypy, this cholinergic signaling breaks down, resulting in differential modulation of striosomal activity and an inability to bias action-selection according to relevant sensory cues. PMID:28377698
Analysis of urban-rural population dynamics for China.
Shen, J
1991-12-01
The population dynamics of China are presented in a multiregional demographic model using regional estimates or mortality and migration based on the 1% population sample survey in 1987. An open ended population account is generated for period cohort a, gender g of region i (urban) and j (rural) using population, birth, death, and migration. Demographic rates and equations for flows of nonsurviving migrants of period cohort a of gender g are estimated using the forward demographic rate definition. Out-migration rates for period cohort a of gender g are defined by migration flow divided by the initial population. The death rate for period cohort A1 and A are estimated using a single region method. Death and migration rates are simultaneously estimated with an iterative procedure. The population accounts estimates and demographic rates are provided for the period ending 1986-87 for male births, males in period cohorts 10 and 20, female births, and females in period cohorts 10 and 20. The urban and rural population projection model is based on the population accounts concept and assumes fixed rates of mortality, migration, and normal fertility for the base year 1987. The results of this projection are a population of 1090 million that will grow to 1304 million in 2000, 1720 million in 2050, and 1791 million in 2087. Urban population will expand from 44.2% in 1988 to 46.6% in 2000, and 54.7% in 2087. The labor population of males 18-65 years and females 18-60 years will increase from 58.8% in 1988 to 59.7% in 2000 and decline to 58.4% by 2087. The old age population of males 65 years and females 60 years will increase from 6.5% in 1988 to 7.9% in 2000, and 16.3% in 2087. The mean age increased from 28.3 years in 1988 to 37 in 2087. Urban population may be underprojected; migration problems are recognized. Fertility also is likely to decline. An alternative projection (B) is given to account for the U-shape distribution and urban fertility of 1.8 in 2000, increasing to and stabilizing at 2.2 in 2020, such that population estimates for 2000 are 1291 and 1524 for 2087 with a peak in 2048 of 1573. A faster fertility decline is also used to generate projection C. The author's projections A, B, and C, which are based on more recent data and a more realistic model, are than the "objective projection" and than the "warning projection" generated by China's Population Census Office based on 1982 census data.
Kalinowski, Jarosław A.; Makal, Anna; Coppens, Philip
2011-01-01
A new method for determination of the orientation matrix of Laue X-ray data is presented. The method is based on matching of the experimental patterns of central reciprocal lattice rows projected on a unit sphere centered on the origin of the reciprocal lattice with the corresponding pattern of a monochromatic data set on the same material. This technique is applied to the complete data set and thus eliminates problems often encountered when single frames with a limited number of peaks are to be used for orientation matrix determination. Application of the method to a series of Laue data sets on organometallic crystals is described. The corresponding program is available under a Mozilla Public License-like open-source license. PMID:22199400
Effect of temperature on the population dynamics of Aedes aegypti
NASA Astrophysics Data System (ADS)
Yusoff, Nuraini; Tokachil, Mohd Najir
2015-10-01
Aedes aegypti is one of the main vectors in the transmission of dengue fever. Its abundance may cause the spread of the disease to be more intense. In the study of its biological life cycle, temperature was found to increase the development rate of each stage of this species and thus, accelerate the process of the development from egg to adult. In this paper, a Lefkovitch matrix model will be used to study the stage-structured population dynamics of Aedes aegypti. In constructing the transition matrix, temperature will be taken into account. As a case study, temperature recorded at the Subang Meteorological Station for year 2006 until 2010 will be used. Population dynamics of Aedes aegypti at maximum, average and minimum temperature for each year will be simulated and compared. It is expected that the higher the temperature, the faster the mosquito will breed. The result will be compared to the number of dengue fever incidences to see their relationship.
Jenouvrier, Stéphanie; Caswell, Hal; Barbraud, Christophe; Holland, Marika; Stroeve, Julienne; Weimerskirch, Henri
2009-02-10
Studies have reported important effects of recent climate change on Antarctic species, but there has been to our knowledge no attempt to explicitly link those results to forecasted population responses to climate change. Antarctic sea ice extent (SIE) is projected to shrink as concentrations of atmospheric greenhouse gases (GHGs) increase, and emperor penguins (Aptenodytes forsteri) are extremely sensitive to these changes because they use sea ice as a breeding, foraging and molting habitat. We project emperor penguin population responses to future sea ice changes, using a stochastic population model that combines a unique long-term demographic dataset (1962-2005) from a colony in Terre Adélie, Antarctica and projections of SIE from General Circulation Models (GCM) of Earth's climate included in the most recent Intergovernmental Panel on Climate Change (IPCC) assessment report. We show that the increased frequency of warm events associated with projected decreases in SIE will reduce the population viability. The probability of quasi-extinction (a decline of 95% or more) is at least 36% by 2100. The median population size is projected to decline from approximately 6,000 to approximately 400 breeding pairs over this period. To avoid extinction, emperor penguins will have to adapt, migrate or change the timing of their growth stages. However, given the future projected increases in GHGs and its effect on Antarctic climate, evolution or migration seem unlikely for such long lived species at the remote southern end of the Earth.
Demographic models and IPCC climate projections predict the decline of an emperor penguin population
Jenouvrier, Stéphanie; Caswell, Hal; Barbraud, Christophe; Holland, Marika; Strœve, Julienne; Weimerskirch, Henri
2009-01-01
Studies have reported important effects of recent climate change on Antarctic species, but there has been to our knowledge no attempt to explicitly link those results to forecasted population responses to climate change. Antarctic sea ice extent (SIE) is projected to shrink as concentrations of atmospheric greenhouse gases (GHGs) increase, and emperor penguins (Aptenodytes forsteri) are extremely sensitive to these changes because they use sea ice as a breeding, foraging and molting habitat. We project emperor penguin population responses to future sea ice changes, using a stochastic population model that combines a unique long-term demographic dataset (1962–2005) from a colony in Terre Adélie, Antarctica and projections of SIE from General Circulation Models (GCM) of Earth's climate included in the most recent Intergovernmental Panel on Climate Change (IPCC) assessment report. We show that the increased frequency of warm events associated with projected decreases in SIE will reduce the population viability. The probability of quasi-extinction (a decline of 95% or more) is at least 36% by 2100. The median population size is projected to decline from ≈6,000 to ≈400 breeding pairs over this period. To avoid extinction, emperor penguins will have to adapt, migrate or change the timing of their growth stages. However, given the future projected increases in GHGs and its effect on Antarctic climate, evolution or migration seem unlikely for such long lived species at the remote southern end of the Earth. PMID:19171908
General Population Job Exposure Matrix Applied to a Pooled Study of Prevalent Carpal Tunnel Syndrome
Dale, Ann Marie; Zeringue, Angelique; Harris-Adamson, Carisa; Rempel, David; Bao, Stephen; Thiese, Matthew S.; Merlino, Linda; Burt, Susan; Kapellusch, Jay; Garg, Arun; Gerr, Fred; Hegmann, Kurt T.; Eisen, Ellen A.; Evanoff, Bradley
2015-01-01
A job exposure matrix may be useful for the study of biomechanical workplace risk factors when individual-level exposure data are unavailable. We used job title–based exposure data from a public data source to construct a job exposure matrix and test exposure-response relationships with prevalent carpal tunnel syndrome (CTS). Exposures of repetitive motion and force from the Occupational Information Network were assigned to 3,452 active workers from several industries, enrolled between 2001 and 2008 from 6 studies. Repetitive motion and force exposures were combined into high/high, high/low, and low/low exposure groupings in each of 4 multivariable logistic regression models, adjusted for personal factors. Although force measures alone were not independent predictors of CTS in these data, strong associations between combined physical exposures of force and repetition and CTS were observed in all models. Consistent with previous literature, this report shows that workers with high force/high repetition jobs had the highest prevalence of CTS (odds ratio = 2.14–2.95) followed by intermediate values (odds ratio = 1.09–2.27) in mixed exposed jobs relative to the lowest exposed workers. This study supports the use of a general population job exposure matrix to estimate workplace physical exposures in epidemiologic studies of musculoskeletal disorders when measures of individual exposures are unavailable. PMID:25700886
A Novel Image Compression Algorithm for High Resolution 3D Reconstruction
NASA Astrophysics Data System (ADS)
Siddeq, M. M.; Rodrigues, M. A.
2014-06-01
This research presents a novel algorithm to compress high-resolution images for accurate structured light 3D reconstruction. Structured light images contain a pattern of light and shadows projected on the surface of the object, which are captured by the sensor at very high resolutions. Our algorithm is concerned with compressing such images to a high degree with minimum loss without adversely affecting 3D reconstruction. The Compression Algorithm starts with a single level discrete wavelet transform (DWT) for decomposing an image into four sub-bands. The sub-band LL is transformed by DCT yielding a DC-matrix and an AC-matrix. The Minimize-Matrix-Size Algorithm is used to compress the AC-matrix while a DWT is applied again to the DC-matrix resulting in LL2, HL2, LH2 and HH2 sub-bands. The LL2 sub-band is transformed by DCT, while the Minimize-Matrix-Size Algorithm is applied to the other sub-bands. The proposed algorithm has been tested with images of different sizes within a 3D reconstruction scenario. The algorithm is demonstrated to be more effective than JPEG2000 and JPEG concerning higher compression rates with equivalent perceived quality and the ability to more accurately reconstruct the 3D models.
Projected effects of climate and development on California wildfire emissions through 2100.
Hurteau, Matthew D; Westerling, Anthony L; Wiedinmyer, Christine; Bryant, Benjamin P
2014-02-18
Changing climatic conditions are influencing large wildfire frequency, a globally widespread disturbance that affects both human and natural systems. Understanding how climate change, population growth, and development patterns will affect the area burned by and emissions from wildfires and how populations will in turn be exposed to emissions is critical for climate change adaptation and mitigation planning. We quantified the effects of a range of population growth and development patterns in California on emission projections from large wildfires under six future climate scenarios. Here we show that end-of-century wildfire emissions are projected to increase by 19-101% (median increase 56%) above the baseline period (1961-1990) in California for a medium-high temperature scenario, with the largest emissions increases concentrated in northern California. In contrast to other measures of wildfire impacts previously studied (e.g., structural loss), projected population growth and development patterns are unlikely to substantially influence the amount of projected statewide wildfire emissions. However, increases in wildfire emissions due to climate change may have detrimental impacts on air quality and, combined with a growing population, may result in increased population exposure to unhealthy air pollutants.
Coupled-cluster based R-matrix codes (CCRM): Recent developments
NASA Astrophysics Data System (ADS)
Sur, Chiranjib; Pradhan, Anil K.
2008-05-01
We report the ongoing development of the new coupled-cluster R-matrix codes (CCRM) for treating electron-ion scattering and radiative processes within the framework of the relativistic coupled-cluster method (RCC), interfaced with the standard R-matrix methodology. The RCC method is size consistent and in principle equivalent to an all-order many-body perturbation theory. The RCC method is one of the most accurate many-body theories, and has been applied for several systems. This project should enable the study of electron-interactions with heavy atoms/ions, utilizing not only high speed computing platforms but also improved theoretical description of the relativistic and correlation effects for the target atoms/ions as treated extensively within the RCC method. Here we present a comprehensive outline of the newly developed theoretical method and a schematic representation of the new suite of CCRM codes. We begin with the flowchart and description of various stages involved in this development. We retain the notations and nomenclature of different stages as analogous to the standard R-matrix codes.
Matrix completion-based reconstruction for undersampled magnetic resonance fingerprinting data.
Doneva, Mariya; Amthor, Thomas; Koken, Peter; Sommer, Karsten; Börnert, Peter
2017-09-01
An iterative reconstruction method for undersampled magnetic resonance fingerprinting data is presented. The method performs the reconstruction entirely in k-space and is related to low rank matrix completion methods. A low dimensional data subspace is estimated from a small number of k-space locations fully sampled in the temporal direction and used to reconstruct the missing k-space samples before MRF dictionary matching. Performing the iterations in k-space eliminates the need for applying a forward and an inverse Fourier transform in each iteration required in previously proposed iterative reconstruction methods for undersampled MRF data. A projection onto the low dimensional data subspace is performed as a matrix multiplication instead of a singular value thresholding typically used in low rank matrix completion, further reducing the computational complexity of the reconstruction. The method is theoretically described and validated in phantom and in-vivo experiments. The quality of the parameter maps can be significantly improved compared to direct matching on undersampled data. Copyright © 2017 Elsevier Inc. All rights reserved.
Modeling stiffness loss in boron/aluminum below the fatigue limit
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1982-01-01
Boron/aluminum can develop significant internal matrix cracking when fatigued. These matrix cracks can result in a 40 percent secant modulus loss in some laminates, even when fatigued below the fatigue limit. It is shown that the same amount of fatigue damage will develop during stress or strain-controlled tests. Stacking sequence has little influence on secant modulus loss. The secant modulus loss in unidirectional composites is small, whereas the losses are substantial in laminates containing off-axis plies. A simple analysis is presented that predicts unnotched laminate secant modulus loss due to fatigue. The analysis is based upon the elastic modulus and Poisson's ratio of the fiber and matrix, fiber volume fraction, fiber orientations, and the cyclic-hardened yield stress of the matrix material. Excellent agreement was achieved between model predictions and experimental results. With this model, designers can project the material stiffness loss for design load or strain levels and assess the feasibility of its use in stiffness-critical parts.
Danguilan, M
1995-04-01
The Philippine Commission on Population (POPCOM) sets and coordinates the country's population policy. POPCOM launched Gender I in early 1994 in the attempt to find out how aware and sensitive its board of commissioners, staff, and the provincial and city population officers were on gender and population issues. The assessment covered the respondents' gender relations at the workplace; gender, work, and family responsibilities; job satisfaction; their perceptions about gender-related issues in reproductive health; personal sex attitudes; and general perceptions on gender issues. The project also explored respondents' knowledge and perceptions on population growth and structure; population information generation and use; quality of life; reproductive health; law, ethics, and policy; and men's and women's roles. Having completed the institutional assessment, POPCOM has now implemented the Gender II project designed to strengthen the formulation, coordination, and implementation of gender-aware population and reproductive health policies and programs. Project activities include policy review and framework development, capability building through gender and reproductive health training and information management, and special research projects.
New convergence results for the scaled gradient projection method
NASA Astrophysics Data System (ADS)
Bonettini, S.; Prato, M.
2015-09-01
The aim of this paper is to deepen the convergence analysis of the scaled gradient projection (SGP) method, proposed by Bonettini et al in a recent paper for constrained smooth optimization. The main feature of SGP is the presence of a variable scaling matrix multiplying the gradient, which may change at each iteration. In the last few years, extensive numerical experimentation showed that SGP equipped with a suitable choice of the scaling matrix is a very effective tool for solving large scale variational problems arising in image and signal processing. In spite of the very reliable numerical results observed, only a weak convergence theorem is provided establishing that any limit point of the sequence generated by SGP is stationary. Here, under the only assumption that the objective function is convex and that a solution exists, we prove that the sequence generated by SGP converges to a minimum point, if the scaling matrices sequence satisfies a simple and implementable condition. Moreover, assuming that the gradient of the objective function is Lipschitz continuous, we are also able to prove the {O}(1/k) convergence rate with respect to the objective function values. Finally, we present the results of a numerical experience on some relevant image restoration problems, showing that the proposed scaling matrix selection rule performs well also from the computational point of view.
2004-based national population projections for the UK and constituent countries.
Shaw, Chris
2006-01-01
The 2004-based national population projections, carried out by the Government Actuary in consultation with the Registrars General, show the population of the United Kingdom (UK) rising from 59.8 million in 2004, passing 60 million in 2005 and 65 million in 2023, to reach 67.0 million by 2031. In the longer-term, the projections suggest that the population will continue rising beyond 2031 but at a much lower rate of growth. The population will become older with the median age expected to rise from 38.6 years in 2004 to 42.9 years by 2031. With the current plans for a common state pension age of 65 for both sexes from 2020, the number of people of working age for every person of state pensionable age is projected to fall from 3.33 in 2004 to 2.62 by 2031.
A projection of lesser prairie chicken (Tympanuchus pallidicinctus) populations range-wide
Cummings, Jonathan W.; Converse, Sarah J.; Moore, Clinton T.; Smith, David R.; Nichols, Clay T.; Allan, Nathan L.; O'Meilia, Chris M.
2017-08-09
We built a population viability analysis (PVA) model to predict future population status of the lesser prairie-chicken (Tympanuchus pallidicinctus, LEPC) in four ecoregions across the species’ range. The model results will be used in the U.S. Fish and Wildlife Service's (FWS) Species Status Assessment (SSA) for the LEPC. Our stochastic projection model combined demographic rate estimates from previously published literature with demographic rate estimates that integrate the influence of climate conditions. This LEPC PVA projects declining populations with estimated population growth rates well below 1 in each ecoregion regardless of habitat or climate change. These results are consistent with estimates of LEPC population growth rates derived from other demographic process models. Although the absolute magnitude of the decline is unlikely to be as low as modeling tools indicate, several different lines of evidence suggest LEPC populations are declining.
The Microwave Assisted Composite Manufacturing and Repair (MACMAR) Project
NASA Technical Reports Server (NTRS)
Falker, John; Terrier, Douglas; Clayton, Ronald G.; Worthy, Erica; Sosa, Edward
2015-01-01
The inherent microwave property of carbon nanotubes (CNTs) generates the thermal energy required to induce reversible polymerization of the matrix in these self-healing composites. Microwaves will be used to demonstrate advanced composite manufacturing and repair using self-healing composites.