A combined learning algorithm for prostate segmentation on 3D CT images.
Ma, Ling; Guo, Rongrong; Zhang, Guoyi; Schuster, David M; Fei, Baowei
2017-11-01
Segmentation of the prostate on CT images has many applications in the diagnosis and treatment of prostate cancer. Because of the low soft-tissue contrast on CT images, prostate segmentation is a challenging task. A learning-based segmentation method is proposed for the prostate on three-dimensional (3D) CT images. We combine population-based and patient-based learning methods for segmenting the prostate on CT images. Population data can provide useful information to guide the segmentation processing. Because of inter-patient variations, patient-specific information is particularly useful to improve the segmentation accuracy for an individual patient. In this study, we combine a population learning method and a patient-specific learning method to improve the robustness of prostate segmentation on CT images. We train a population model based on the data from a group of prostate patients. We also train a patient-specific model based on the data of the individual patient and incorporate the information as marked by the user interaction into the segmentation processing. We calculate the similarity between the two models to obtain applicable population and patient-specific knowledge to compute the likelihood of a pixel belonging to the prostate tissue. A new adaptive threshold method is developed to convert the likelihood image into a binary image of the prostate, and thus complete the segmentation of the gland on CT images. The proposed learning-based segmentation algorithm was validated using 3D CT volumes of 92 patients. All of the CT image volumes were manually segmented independently three times by two, clinically experienced radiologists and the manual segmentation results served as the gold standard for evaluation. The experimental results show that the segmentation method achieved a Dice similarity coefficient of 87.18 ± 2.99%, compared to the manual segmentation. By combining the population learning and patient-specific learning methods, the proposed method is effective for segmenting the prostate on 3D CT images. The prostate CT segmentation method can be used in various applications including volume measurement and treatment planning of the prostate. © 2017 American Association of Physicists in Medicine.
Automated Segmentability Index for Layer Segmentation of Macular SD-OCT Images.
Lee, Kyungmoo; Buitendijk, Gabriëlle H S; Bogunovic, Hrvoje; Springelkamp, Henriët; Hofman, Albert; Wahle, Andreas; Sonka, Milan; Vingerling, Johannes R; Klaver, Caroline C W; Abràmoff, Michael D
2016-03-01
To automatically identify which spectral-domain optical coherence tomography (SD-OCT) scans will provide reliable automated layer segmentations for more accurate layer thickness analyses in population studies. Six hundred ninety macular SD-OCT image volumes (6.0 × 6.0 × 2.3 mm 3 ) were obtained from one eyes of 690 subjects (74.6 ± 9.7 [mean ± SD] years, 37.8% of males) randomly selected from the population-based Rotterdam Study. The dataset consisted of 420 OCT volumes with successful automated retinal nerve fiber layer (RNFL) segmentations obtained from our previously reported graph-based segmentation method and 270 volumes with failed segmentations. To evaluate the reliability of the layer segmentations, we have developed a new metric, segmentability index SI, which is obtained from a random forest regressor based on 12 features using OCT voxel intensities, edge-based costs, and on-surface costs. The SI was compared with well-known quality indices, quality index (QI), and maximum tissue contrast index (mTCI), using receiver operating characteristic (ROC) analysis. The 95% confidence interval (CI) and the area under the curve (AUC) for the QI are 0.621 to 0.805 with AUC 0.713, for the mTCI 0.673 to 0.838 with AUC 0.756, and for the SI 0.784 to 0.920 with AUC 0.852. The SI AUC is significantly larger than either the QI or mTCI AUC ( P < 0.01). The segmentability index SI is well suited to identify SD-OCT scans for which successful automated intraretinal layer segmentations can be expected. Interpreting the quantification of SD-OCT images requires the underlying segmentation to be reliable, but standard SD-OCT quality metrics do not predict which segmentations are reliable and which are not. The segmentability index SI presented in this study does allow reliable segmentations to be identified, which is important for more accurate layer thickness analyses in research and population studies.
Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging.
Anbeek, Petronella; Vincken, Koen L; Groenendaal, Floris; Koeman, Annemieke; van Osch, Matthias J P; van der Grond, Jeroen
2008-02-01
A fully automated method has been developed for segmentation of four different structures in the neonatal brain: white matter (WM), central gray matter (CEGM), cortical gray matter (COGM), and cerebrospinal fluid (CSF). The segmentation algorithm is based on information from T2-weighted (T2-w) and inversion recovery (IR) scans. The method uses a K nearest neighbor (KNN) classification technique with features derived from spatial information and voxel intensities. Probabilistic segmentations of each tissue type were generated. By applying thresholds on these probability maps, binary segmentations were obtained. These final segmentations were evaluated by comparison with a gold standard. The sensitivity, specificity, and Dice similarity index (SI) were calculated for quantitative validation of the results. High sensitivity and specificity with respect to the gold standard were reached: sensitivity >0.82 and specificity >0.9 for all tissue types. Tissue volumes were calculated from the binary and probabilistic segmentations. The probabilistic segmentation volumes of all tissue types accurately estimated the gold standard volumes. The KNN approach offers valuable ways for neonatal brain segmentation. The probabilistic outcomes provide a useful tool for accurate volume measurements. The described method is based on routine diagnostic magnetic resonance imaging (MRI) and is suitable for large population studies.
Daisne, Jean-François; Blumhofer, Andreas
2013-06-26
Intensity modulated radiotherapy for head and neck cancer necessitates accurate definition of organs at risk (OAR) and clinical target volumes (CTV). This crucial step is time consuming and prone to inter- and intra-observer variations. Automatic segmentation by atlas deformable registration may help to reduce time and variations. We aim to test a new commercial atlas algorithm for automatic segmentation of OAR and CTV in both ideal and clinical conditions. The updated Brainlab automatic head and neck atlas segmentation was tested on 20 patients: 10 cN0-stages (ideal population) and 10 unselected N-stages (clinical population). Following manual delineation of OAR and CTV, automatic segmentation of the same set of structures was performed and afterwards manually corrected. Dice Similarity Coefficient (DSC), Average Surface Distance (ASD) and Maximal Surface Distance (MSD) were calculated for "manual to automatic" and "manual to corrected" volumes comparisons. In both groups, automatic segmentation saved about 40% of the corresponding manual segmentation time. This effect was more pronounced for OAR than for CTV. The edition of the automatically obtained contours significantly improved DSC, ASD and MSD. Large distortions of normal anatomy or lack of iodine contrast were the limiting factors. The updated Brainlab atlas-based automatic segmentation tool for head and neck Cancer patients is timesaving but still necessitates review and corrections by an expert.
NASA Astrophysics Data System (ADS)
Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry
2015-11-01
In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.
Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry
2015-11-21
In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.
Combining population and patient-specific characteristics for prostate segmentation on 3D CT images
NASA Astrophysics Data System (ADS)
Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Tade, Funmilayo; Schuster, David M.; Fei, Baowei
2016-03-01
Prostate segmentation on CT images is a challenging task. In this paper, we explore the population and patient-specific characteristics for the segmentation of the prostate on CT images. Because population learning does not consider the inter-patient variations and because patient-specific learning may not perform well for different patients, we are combining the population and patient-specific information to improve segmentation performance. Specifically, we train a population model based on the population data and train a patient-specific model based on the manual segmentation on three slice of the new patient. We compute the similarity between the two models to explore the influence of applicable population knowledge on the specific patient. By combining the patient-specific knowledge with the influence, we can capture the population and patient-specific characteristics to calculate the probability of a pixel belonging to the prostate. Finally, we smooth the prostate surface according to the prostate-density value of the pixels in the distance transform image. We conducted the leave-one-out validation experiments on a set of CT volumes from 15 patients. Manual segmentation results from a radiologist serve as the gold standard for the evaluation. Experimental results show that our method achieved an average DSC of 85.1% as compared to the manual segmentation gold standard. This method outperformed the population learning method and the patient-specific learning approach alone. The CT segmentation method can have various applications in prostate cancer diagnosis and therapy.
A behavior-based framework for assessing barrier effects to wildlife from vehicle traffic volume
Sandra L. Jacobson; Leslie L. Bliss-Ketchum; Catherine E. de Rivera; Winston P. Smith; D. P. C. Peters
2016-01-01
Roads, while central to the function of human society, create barriers to animal movement through collisions and habitat fragmentation. Barriers to animal movement affect the evolution and trajectory of populations. Investigators have attempted to use traffic volume, the number of vehicles passing a point on a road segment, to predict effects to wildlife populations...
Golbaz, Isabelle; Ahlers, Christian; Goesseringer, Nina; Stock, Geraldine; Geitzenauer, Wolfgang; Prünte, Christian; Schmidt-Erfurth, Ursula Margarethe
2011-03-01
This study compared automatic- and manual segmentation modalities in the retina of healthy eyes using high-definition optical coherence tomography (HD-OCT). Twenty retinas in 20 healthy individuals were examined using an HD-OCT system (Carl Zeiss Meditec, Inc.). Three-dimensional imaging was performed with an axial resolution of 6 μm at a maximum scanning speed of 25,000 A-scans/second. Volumes of 6 × 6 × 2 mm were scanned. Scans were analysed using a matlab-based algorithm and a manual segmentation software system (3D-Doctor). The volume values calculated by the two methods were compared. Statistical analysis revealed a high correlation between automatic and manual modes of segmentation. The automatic mode of measuring retinal volume and the corresponding three-dimensional images provided similar results to the manual segmentation procedure. Both methods were able to visualize retinal and subretinal features accurately. This study compared two methods of assessing retinal volume using HD-OCT scans in healthy retinas. Both methods were able to provide realistic volumetric data when applied to raster scan sets. Manual segmentation methods represent an adequate tool with which to control automated processes and to identify clinically relevant structures, whereas automatic procedures will be needed to obtain data in larger patient populations. © 2009 The Authors. Journal compilation © 2009 Acta Ophthalmol.
NASA Astrophysics Data System (ADS)
Hori, Yasuaki; Yasuno, Yoshiaki; Sakai, Shingo; Matsumoto, Masayuki; Sugawara, Tomoko; Madjarova, Violeta; Yamanari, Masahiro; Makita, Shuichi; Yasui, Takeshi; Araki, Tsutomu; Itoh, Masahide; Yatagai, Toyohiko
2006-03-01
A set of fully automated algorithms that is specialized for analyzing a three-dimensional optical coherence tomography (OCT) volume of human skin is reported. The algorithm set first determines the skin surface of the OCT volume, and a depth-oriented algorithm provides the mean epidermal thickness, distribution map of the epidermis, and a segmented volume of the epidermis. Subsequently, an en face shadowgram is produced by an algorithm to visualize the infundibula in the skin with high contrast. The population and occupation ratio of the infundibula are provided by a histogram-based thresholding algorithm and a distance mapping algorithm. En face OCT slices at constant depths from the sample surface are extracted, and the histogram-based thresholding algorithm is again applied to these slices, yielding a three-dimensional segmented volume of the infundibula. The dermal attenuation coefficient is also calculated from the OCT volume in order to evaluate the skin texture. The algorithm set examines swept-source OCT volumes of the skins of several volunteers, and the results show the high stability, portability and reproducibility of the algorithm.
Invernizzi, Alessandro; Giardini, Piero; Cigada, Mario; Viola, Francesco; Staurenghi, Giovanni
2015-07-01
We analyzed by swept-source anterior segment optical coherence tomography (SS-ASOCT) the three-dimensional iris morphology in a Caucasian population, and correlated the findings with iris color, iris sectors, subject age, and sex. One eye each from consecutive healthy emmetropic (refractive spherical equivalent ± 3 diopters) volunteers were selected for the study. The enrolled eye underwent standardized anterior segment photography to assess iris color. Iris images were assessed by SS-ASOCT for volume, thickness, width, and pupil size. Sectoral variations of morphometric data among the superior, nasal, inferior, and temporal sectors were recorded. A total of 135 eyes from 57 males and 78 females, age 49 ± 17 years, fulfilled the inclusion criteria. All iris morphometric parameters varied significantly among the different sectors (all P < 0.0001). Iris total volume and thickness were significantly correlated with increasingly darker pigmentation (P < 0.0001, P = 0.0384, respectively). Neither width nor pupil diameter was influenced by iris color. Age did not affect iris volume or thickness; iris width increased and pupil diameter decreased with age (rs = 0.52, rs = -0.58, respectively). There was no effect of sex on iris volume, thickness, or pupil diameter; iris width was significantly greater in males (P = 0.007). Morphology of the iris varied by iris sector, and iris color was associated with differences in iris volume and thickness. Morphological parameter variations associated with iris color, sector, age, and sex can be used to identify pathological changes in suspect eyes. To be effective in clinical settings, construction of iris morphological databases for different ethnic and racial populations is essential.
Combining multi-atlas segmentation with brain surface estimation
NASA Astrophysics Data System (ADS)
Huo, Yuankai; Carass, Aaron; Resnick, Susan M.; Pham, Dzung L.; Prince, Jerry L.; Landman, Bennett A.
2016-03-01
Whole brain segmentation (with comprehensive cortical and subcortical labels) and cortical surface reconstruction are two essential techniques for investigating the human brain. The two tasks are typically conducted independently, however, which leads to spatial inconsistencies and hinders further integrated cortical analyses. To obtain self-consistent whole brain segmentations and surfaces, FreeSurfer segregates the subcortical and cortical segmentations before and after the cortical surface reconstruction. However, this "segmentation to surface to parcellation" strategy has shown limitation in various situations. In this work, we propose a novel "multi-atlas segmentation to surface" method called Multi-atlas CRUISE (MaCRUISE), which achieves self-consistent whole brain segmentations and cortical surfaces by combining multi-atlas segmentation with the cortical reconstruction method CRUISE. To our knowledge, this is the first work that achieves the reliability of state-of-the-art multi-atlas segmentation and labeling methods together with accurate and consistent cortical surface reconstruction. Compared with previous methods, MaCRUISE has three features: (1) MaCRUISE obtains 132 cortical/subcortical labels simultaneously from a single multi-atlas segmentation before reconstructing volume consistent surfaces; (2) Fuzzy tissue memberships are combined with multi-atlas segmentations to address partial volume effects; (3) MaCRUISE reconstructs topologically consistent cortical surfaces by using the sulci locations from multi-atlas segmentation. Two data sets, one consisting of five subjects with expertly traced landmarks and the other consisting of 100 volumes from elderly subjects are used for validation. Compared with CRUISE, MaCRUISE achieves self-consistent whole brain segmentation and cortical reconstruction without compromising on surface accuracy. MaCRUISE is comparably accurate to FreeSurfer while achieving greater robustness across an elderly population.
Combining Multi-atlas Segmentation with Brain Surface Estimation.
Huo, Yuankai; Carass, Aaron; Resnick, Susan M; Pham, Dzung L; Prince, Jerry L; Landman, Bennett A
2016-02-27
Whole brain segmentation (with comprehensive cortical and subcortical labels) and cortical surface reconstruction are two essential techniques for investigating the human brain. The two tasks are typically conducted independently, however, which leads to spatial inconsistencies and hinders further integrated cortical analyses. To obtain self-consistent whole brain segmentations and surfaces, FreeSurfer segregates the subcortical and cortical segmentations before and after the cortical surface reconstruction. However, this "segmentation to surface to parcellation" strategy has shown limitations in various situations. In this work, we propose a novel "multi-atlas segmentation to surface" method called Multi-atlas CRUISE (MaCRUISE), which achieves self-consistent whole brain segmentations and cortical surfaces by combining multi-atlas segmentation with the cortical reconstruction method CRUISE. To our knowledge, this is the first work that achieves the reliability of state-of-the-art multi-atlas segmentation and labeling methods together with accurate and consistent cortical surface reconstruction. Compared with previous methods, MaCRUISE has three features: (1) MaCRUISE obtains 132 cortical/subcortical labels simultaneously from a single multi-atlas segmentation before reconstructing volume consistent surfaces; (2) Fuzzy tissue memberships are combined with multi-atlas segmentations to address partial volume effects; (3) MaCRUISE reconstructs topologically consistent cortical surfaces by using the sulci locations from multi-atlas segmentation. Two data sets, one consisting of five subjects with expertly traced landmarks and the other consisting of 100 volumes from elderly subjects are used for validation. Compared with CRUISE, MaCRUISE achieves self-consistent whole brain segmentation and cortical reconstruction without compromising on surface accuracy. MaCRUISE is comparably accurate to FreeSurfer while achieving greater robustness across an elderly population.
CT-based manual segmentation and evaluation of paranasal sinuses.
Pirner, S; Tingelhoff, K; Wagner, I; Westphal, R; Rilk, M; Wahl, F M; Bootz, F; Eichhorn, Klaus W G
2009-04-01
Manual segmentation of computed tomography (CT) datasets was performed for robot-assisted endoscope movement during functional endoscopic sinus surgery (FESS). Segmented 3D models are needed for the robots' workspace definition. A total of 50 preselected CT datasets were each segmented in 150-200 coronal slices with 24 landmarks being set. Three different colors for segmentation represent diverse risk areas. Extension and volumetric measurements were performed. Three-dimensional reconstruction was generated after segmentation. Manual segmentation took 8-10 h for each CT dataset. The mean volumes were: right maxillary sinus 17.4 cm(3), left side 17.9 cm(3), right frontal sinus 4.2 cm(3), left side 4.0 cm(3), total frontal sinuses 7.9 cm(3), sphenoid sinus right side 5.3 cm(3), left side 5.5 cm(3), total sphenoid sinus volume 11.2 cm(3). Our manually segmented 3D-models present the patient's individual anatomy with a special focus on structures in danger according to the diverse colored risk areas. For safe robot assistance, the high-accuracy models represent an average of the population for anatomical variations, extension and volumetric measurements. They can be used as a database for automatic model-based segmentation. None of the segmentation methods so far described provide risk segmentation. The robot's maximum distance to the segmented border can be adjusted according to the differently colored areas.
Wicke, Jason; Dumas, Genevieve A
2010-02-01
The geometric method combines a volume and a density function to estimate body segment parameters and has the best opportunity for developing the most accurate models. In the trunk, there are many different tissues that greatly differ in density (e.g., bone versus lung). Thus, the density function for the trunk must be particularly sensitive to capture this diversity, such that accurate inertial estimates are possible. Three different models were used to test this hypothesis by estimating trunk inertial parameters of 25 female and 24 male college-aged participants. The outcome of this study indicates that the inertial estimates for the upper and lower trunk are most sensitive to the volume function and not very sensitive to the density function. Although it appears that the uniform density function has a greater influence on inertial estimates in the lower trunk region than in the upper trunk region, this is likely due to the (overestimated) density value used. When geometric models are used to estimate body segment parameters, care must be taken in choosing a model that can accurately estimate segment volumes. Researchers wanting to develop accurate geometric models should focus on the volume function, especially in unique populations (e.g., pregnant or obese individuals).
Age-Related Differences and Heritability of the Perisylvian Language Networks.
Budisavljevic, Sanja; Dell'Acqua, Flavio; Rijsdijk, Frühling V; Kane, Fergus; Picchioni, Marco; McGuire, Philip; Toulopoulou, Timothea; Georgiades, Anna; Kalidindi, Sridevi; Kravariti, Eugenia; Murray, Robin M; Murphy, Declan G; Craig, Michael C; Catani, Marco
2015-09-16
Acquisition of language skills depends on the progressive maturation of specialized brain networks that are usually lateralized in adult population. However, how genetic and environmental factors relate to the age-related differences in lateralization of these language pathways is still not known. We recruited 101 healthy right-handed subjects aged 9-40 years to investigate age-related differences in the anatomy of perisylvian language pathways and 86 adult twins (52 monozygotic and 34 dizygotic) to understand how heritability factors influence language anatomy. Diffusion tractography was used to dissect and extract indirect volume measures from the three segments of the arcuate fasciculus connecting Wernicke's to Broca's region (i.e., long segment), Broca's to Geschwind's region (i.e., anterior segment), and Wernicke's to Geschwind's region (i.e., posterior segment). We found that the long and anterior arcuate segments are lateralized before adolescence and their lateralization remains stable throughout adolescence and early adulthood. Conversely, the posterior segment shows right lateralization in childhood but becomes progressively bilateral during adolescence, driven by a reduction in volume in the right hemisphere. Analysis of the twin sample showed that genetic and shared environmental factors influence the anatomy of those segments that lateralize earlier, whereas specific environmental effects drive the variability in the volume of the posterior segment that continues to change in adolescence and adulthood. Our results suggest that the age-related differences in the lateralization of the language perisylvian pathways are related to the relative contribution of genetic and environmental effects specific to each segment. Our study shows that, by early childhood, frontotemporal (long segment) and frontoparietal (anterior segment) connections of the arcuate fasciculus are left and right lateralized, respectively, and remain lateralized throughout adolescence and early adulthood. In contrast, temporoparietal (posterior segment) connections are right lateralized in childhood, but become progressively bilateral during adolescence. Preliminary twin analysis suggested that lateralization of the arcuate fasciculus is a heterogeneous process that depends on the interplay between genetic and environment factors specific to each segment. Tracts that exhibit higher age effects later in life (i.e., posterior segment) appear to be influenced more by specific environmental factors. Copyright © 2015 Budisavljevic et al.
Age-Related Differences and Heritability of the Perisylvian Language Networks
Dell'Acqua, Flavio; Rijsdijk, Frühling V.; Kane, Fergus; Picchioni, Marco; McGuire, Philip; Toulopoulou, Timothea; Georgiades, Anna; Kalidindi, Sridevi; Kravariti, Eugenia; Murray, Robin M.; Murphy, Declan G.; Craig, Michael C.
2015-01-01
Acquisition of language skills depends on the progressive maturation of specialized brain networks that are usually lateralized in adult population. However, how genetic and environmental factors relate to the age-related differences in lateralization of these language pathways is still not known. We recruited 101 healthy right-handed subjects aged 9–40 years to investigate age-related differences in the anatomy of perisylvian language pathways and 86 adult twins (52 monozygotic and 34 dizygotic) to understand how heritability factors influence language anatomy. Diffusion tractography was used to dissect and extract indirect volume measures from the three segments of the arcuate fasciculus connecting Wernicke's to Broca's region (i.e., long segment), Broca's to Geschwind's region (i.e., anterior segment), and Wernicke's to Geschwind's region (i.e., posterior segment). We found that the long and anterior arcuate segments are lateralized before adolescence and their lateralization remains stable throughout adolescence and early adulthood. Conversely, the posterior segment shows right lateralization in childhood but becomes progressively bilateral during adolescence, driven by a reduction in volume in the right hemisphere. Analysis of the twin sample showed that genetic and shared environmental factors influence the anatomy of those segments that lateralize earlier, whereas specific environmental effects drive the variability in the volume of the posterior segment that continues to change in adolescence and adulthood. Our results suggest that the age-related differences in the lateralization of the language perisylvian pathways are related to the relative contribution of genetic and environmental effects specific to each segment. SIGNIFICANCE STATEMENT Our study shows that, by early childhood, frontotemporal (long segment) and frontoparietal (anterior segment) connections of the arcuate fasciculus are left and right lateralized, respectively, and remain lateralized throughout adolescence and early adulthood. In contrast, temporoparietal (posterior segment) connections are right lateralized in childhood, but become progressively bilateral during adolescence. Preliminary twin analysis suggested that lateralization of the arcuate fasciculus is a heterogeneous process that depends on the interplay between genetic and environment factors specific to each segment. Tracts that exhibit higher age effects later in life (i.e., posterior segment) appear to be influenced more by specific environmental factors. PMID:26377454
Population of 224 realistic human subject-based computational breast phantoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, David W.; Wells, Jered R., E-mail: jered.wells@duke.edu; Sturgeon, Gregory M.
Purpose: To create a database of highly realistic and anatomically variable 3D virtual breast phantoms based on dedicated breast computed tomography (bCT) data. Methods: A tissue classification and segmentation algorithm was used to create realistic and detailed 3D computational breast phantoms based on 230 + dedicated bCT datasets from normal human subjects. The breast volume was identified using a coarse three-class fuzzy C-means segmentation algorithm which accounted for and removed motion blur at the breast periphery. Noise in the bCT data was reduced through application of a postreconstruction 3D bilateral filter. A 3D adipose nonuniformity (bias field) correction was thenmore » applied followed by glandular segmentation using a 3D bias-corrected fuzzy C-means algorithm. Multiple tissue classes were defined including skin, adipose, and several fractional glandular densities. Following segmentation, a skin mask was produced which preserved the interdigitated skin, adipose, and glandular boundaries of the skin interior. Finally, surface modeling was used to produce digital phantoms with methods complementary to the XCAT suite of digital human phantoms. Results: After rejecting some datasets due to artifacts, 224 virtual breast phantoms were created which emulate the complex breast parenchyma of actual human subjects. The volume breast density (with skin) ranged from 5.5% to 66.3% with a mean value of 25.3% ± 13.2%. Breast volumes ranged from 25.0 to 2099.6 ml with a mean value of 716.3 ± 386.5 ml. Three breast phantoms were selected for imaging with digital compression (using finite element modeling) and simple ray-tracing, and the results show promise in their potential to produce realistic simulated mammograms. Conclusions: This work provides a new population of 224 breast phantoms based on in vivo bCT data for imaging research. Compared to previous studies based on only a few prototype cases, this dataset provides a rich source of new cases spanning a wide range of breast types, volumes, densities, and parenchymal patterns.« less
Population of 224 realistic human subject-based computational breast phantoms
Erickson, David W.; Wells, Jered R.; Sturgeon, Gregory M.; Dobbins, James T.; Segars, W. Paul; Lo, Joseph Y.
2016-01-01
Purpose: To create a database of highly realistic and anatomically variable 3D virtual breast phantoms based on dedicated breast computed tomography (bCT) data. Methods: A tissue classification and segmentation algorithm was used to create realistic and detailed 3D computational breast phantoms based on 230 + dedicated bCT datasets from normal human subjects. The breast volume was identified using a coarse three-class fuzzy C-means segmentation algorithm which accounted for and removed motion blur at the breast periphery. Noise in the bCT data was reduced through application of a postreconstruction 3D bilateral filter. A 3D adipose nonuniformity (bias field) correction was then applied followed by glandular segmentation using a 3D bias-corrected fuzzy C-means algorithm. Multiple tissue classes were defined including skin, adipose, and several fractional glandular densities. Following segmentation, a skin mask was produced which preserved the interdigitated skin, adipose, and glandular boundaries of the skin interior. Finally, surface modeling was used to produce digital phantoms with methods complementary to the XCAT suite of digital human phantoms. Results: After rejecting some datasets due to artifacts, 224 virtual breast phantoms were created which emulate the complex breast parenchyma of actual human subjects. The volume breast density (with skin) ranged from 5.5% to 66.3% with a mean value of 25.3% ± 13.2%. Breast volumes ranged from 25.0 to 2099.6 ml with a mean value of 716.3 ± 386.5 ml. Three breast phantoms were selected for imaging with digital compression (using finite element modeling) and simple ray-tracing, and the results show promise in their potential to produce realistic simulated mammograms. Conclusions: This work provides a new population of 224 breast phantoms based on in vivo bCT data for imaging research. Compared to previous studies based on only a few prototype cases, this dataset provides a rich source of new cases spanning a wide range of breast types, volumes, densities, and parenchymal patterns. PMID:26745896
Automatic training and reliability estimation for 3D ASM applied to cardiac MRI segmentation
NASA Astrophysics Data System (ADS)
Tobon-Gomez, Catalina; Sukno, Federico M.; Butakoff, Constantine; Huguet, Marina; Frangi, Alejandro F.
2012-07-01
Training active shape models requires collecting manual ground-truth meshes in a large image database. While shape information can be reused across multiple imaging modalities, intensity information needs to be imaging modality and protocol specific. In this context, this study has two main purposes: (1) to test the potential of using intensity models learned from MRI simulated datasets and (2) to test the potential of including a measure of reliability during the matching process to increase robustness. We used a population of 400 virtual subjects (XCAT phantom), and two clinical populations of 40 and 45 subjects. Virtual subjects were used to generate simulated datasets (MRISIM simulator). Intensity models were trained both on simulated and real datasets. The trained models were used to segment the left ventricle (LV) and right ventricle (RV) from real datasets. Segmentations were also obtained with and without reliability information. Performance was evaluated with point-to-surface and volume errors. Simulated intensity models obtained average accuracy comparable to inter-observer variability for LV segmentation. The inclusion of reliability information reduced volume errors in hypertrophic patients (EF errors from 17 ± 57% to 10 ± 18% LV MASS errors from -27 ± 22 g to -14 ± 25 g), and in heart failure patients (EF errors from -8 ± 42% to -5 ± 14%). The RV model of the simulated images needs further improvement to better resemble image intensities around the myocardial edges. Both for real and simulated models, reliability information increased segmentation robustness without penalizing accuracy.
Automatic training and reliability estimation for 3D ASM applied to cardiac MRI segmentation.
Tobon-Gomez, Catalina; Sukno, Federico M; Butakoff, Constantine; Huguet, Marina; Frangi, Alejandro F
2012-07-07
Training active shape models requires collecting manual ground-truth meshes in a large image database. While shape information can be reused across multiple imaging modalities, intensity information needs to be imaging modality and protocol specific. In this context, this study has two main purposes: (1) to test the potential of using intensity models learned from MRI simulated datasets and (2) to test the potential of including a measure of reliability during the matching process to increase robustness. We used a population of 400 virtual subjects (XCAT phantom), and two clinical populations of 40 and 45 subjects. Virtual subjects were used to generate simulated datasets (MRISIM simulator). Intensity models were trained both on simulated and real datasets. The trained models were used to segment the left ventricle (LV) and right ventricle (RV) from real datasets. Segmentations were also obtained with and without reliability information. Performance was evaluated with point-to-surface and volume errors. Simulated intensity models obtained average accuracy comparable to inter-observer variability for LV segmentation. The inclusion of reliability information reduced volume errors in hypertrophic patients (EF errors from 17 ± 57% to 10 ± 18%; LV MASS errors from -27 ± 22 g to -14 ± 25 g), and in heart failure patients (EF errors from -8 ± 42% to -5 ± 14%). The RV model of the simulated images needs further improvement to better resemble image intensities around the myocardial edges. Both for real and simulated models, reliability information increased segmentation robustness without penalizing accuracy.
Anthropometric and biomechanical characteristics on body segments of Koreans.
Park, S J; Kim, C B; Park, S C
1999-05-01
This paper documents the physical measurements of the Korean population in order to construct a data base for ergonomic design. The dimension, volume, density, mass, and center of mass of Koreans whose ages range from 7 to 49 were investigated. Sixty-five male subjects and sixty-nine female subjects participated. Eight body segments (head with neck, trunk, thigh, shank, foot, upper arm, forearm and hand) were directly measured with a Martin-type anthropometer, and the immersion method was adopted to measure the volume of body segments. After this, densities were computed by the density equations in Drillis and Contini (1966). The reaction board method was employed for the measurement of the center of mass. Obtained data were compared with the results in the literature. The results in this paper showed different features on body segment parameters comparing with the results in the literature. The constructed data base can be applied to statistical guideline for product design, workspace design, design of clothing and tools, furniture design and construction of biomechanical models for Korean. Also, they can be extended to the application areas for Mongolian.
Venhuizen, Freerk G; van Ginneken, Bram; Liefers, Bart; van Asten, Freekje; Schreur, Vivian; Fauser, Sascha; Hoyng, Carel; Theelen, Thomas; Sánchez, Clara I
2018-04-01
We developed a deep learning algorithm for the automatic segmentation and quantification of intraretinal cystoid fluid (IRC) in spectral domain optical coherence tomography (SD-OCT) volumes independent of the device used for acquisition. A cascade of neural networks was introduced to include prior information on the retinal anatomy, boosting performance significantly. The proposed algorithm approached human performance reaching an overall Dice coefficient of 0.754 ± 0.136 and an intraclass correlation coefficient of 0.936, for the task of IRC segmentation and quantification, respectively. The proposed method allows for fast quantitative IRC volume measurements that can be used to improve patient care, reduce costs, and allow fast and reliable analysis in large population studies.
Venhuizen, Freerk G.; van Ginneken, Bram; Liefers, Bart; van Asten, Freekje; Schreur, Vivian; Fauser, Sascha; Hoyng, Carel; Theelen, Thomas; Sánchez, Clara I.
2018-01-01
We developed a deep learning algorithm for the automatic segmentation and quantification of intraretinal cystoid fluid (IRC) in spectral domain optical coherence tomography (SD-OCT) volumes independent of the device used for acquisition. A cascade of neural networks was introduced to include prior information on the retinal anatomy, boosting performance significantly. The proposed algorithm approached human performance reaching an overall Dice coefficient of 0.754 ± 0.136 and an intraclass correlation coefficient of 0.936, for the task of IRC segmentation and quantification, respectively. The proposed method allows for fast quantitative IRC volume measurements that can be used to improve patient care, reduce costs, and allow fast and reliable analysis in large population studies. PMID:29675301
LACIE performance predictor final operational capability program description, volume 2
NASA Technical Reports Server (NTRS)
1976-01-01
Given the swath table files, the segment set for one country and cloud cover data, the SAGE program determines how many times and under what conditions each segment is accessed by satellites. The program writes a record for each segment on a data file which contains the pertinent acquisition data. The weather data file can also be generated from a NASA supplied tape. The Segment Acquisition Selector Program (SACS) selects data from the segment reference file based upon data input manually and from a crop window file. It writes the extracted data to a data acquisition file and prints two summary reports. The POUT program reads from associated LACIE files and produces printed reports. The major types of reports that can be produced are: (1) Substrate Reference Data Reports, (2) Population Mean, Standard Deviation and Histogram Reports, (3) Histograms of Monte Carlo Statistics Reports, and (4) Frequency of Sample Segment Acquisitions Reports.
Direct volume estimation without segmentation
NASA Astrophysics Data System (ADS)
Zhen, X.; Wang, Z.; Islam, A.; Bhaduri, M.; Chan, I.; Li, S.
2015-03-01
Volume estimation plays an important role in clinical diagnosis. For example, cardiac ventricular volumes including left ventricle (LV) and right ventricle (RV) are important clinical indicators of cardiac functions. Accurate and automatic estimation of the ventricular volumes is essential to the assessment of cardiac functions and diagnosis of heart diseases. Conventional methods are dependent on an intermediate segmentation step which is obtained either manually or automatically. However, manual segmentation is extremely time-consuming, subjective and highly non-reproducible; automatic segmentation is still challenging, computationally expensive, and completely unsolved for the RV. Towards accurate and efficient direct volume estimation, our group has been researching on learning based methods without segmentation by leveraging state-of-the-art machine learning techniques. Our direct estimation methods remove the accessional step of segmentation and can naturally deal with various volume estimation tasks. Moreover, they are extremely flexible to be used for volume estimation of either joint bi-ventricles (LV and RV) or individual LV/RV. We comparatively study the performance of direct methods on cardiac ventricular volume estimation by comparing with segmentation based methods. Experimental results show that direct estimation methods provide more accurate estimation of cardiac ventricular volumes than segmentation based methods. This indicates that direct estimation methods not only provide a convenient and mature clinical tool for cardiac volume estimation but also enables diagnosis of cardiac diseases to be conducted in a more efficient and reliable way.
System for detecting operating errors in a variable valve timing engine using pressure sensors
Wiles, Matthew A.; Marriot, Craig D
2013-07-02
A method and control module includes a pressure sensor data comparison module that compares measured pressure volume signal segments to ideal pressure volume segments. A valve actuation hardware remedy module performs a hardware remedy in response to comparing the measured pressure volume signal segments to the ideal pressure volume segments when a valve actuation hardware failure is detected.
Liu, Hon-Man; Chen, Shan-Kai; Chen, Ya-Fang; Lee, Chung-Wei; Yeh, Lee-Ren
2016-01-01
Purpose To assess the inter session reproducibility of automatic segmented MRI-derived measures by FreeSurfer in a group of subjects with normal-appearing MR images. Materials and Methods After retrospectively reviewing a brain MRI database from our institute consisting of 14,758 adults, those subjects who had repeat scans and had no history of neurodegenerative disorders were selected for morphometry analysis using FreeSurfer. A total of 34 subjects were grouped by MRI scanner model. After automatic segmentation using FreeSurfer, label-wise comparison (involving area, thickness, and volume) was performed on all segmented results. An intraclass correlation coefficient was used to estimate the agreement between sessions. Wilcoxon signed rank test was used to assess the population mean rank differences across sessions. Mean-difference analysis was used to evaluate the difference intervals across scanners. Absolute percent difference was used to estimate the reproducibility errors across the MRI models. Kruskal-Wallis test was used to determine the across-scanner effect. Results The agreement in segmentation results for area, volume, and thickness measurements of all segmented anatomical labels was generally higher in Signa Excite and Verio models when compared with Sonata and TrioTim models. There were significant rank differences found across sessions in some labels of different measures. Smaller difference intervals in global volume measurements were noted on images acquired by Signa Excite and Verio models. For some brain regions, significant MRI model effects were observed on certain segmentation results. Conclusions Short-term scan-rescan reliability of automatic brain MRI morphometry is feasible in the clinical setting. However, since repeatability of software performance is contingent on the reproducibility of the scanner performance, the scanner performance must be calibrated before conducting such studies or before using such software for retrospective reviewing. PMID:26812647
Models of antimicrobial pressure on intestinal bacteria of the treated host populations.
Volkova, V V; Cazer, C L; Gröhn, Y T
2017-07-01
Antimicrobial drugs are used to treat pathogenic bacterial infections in animals and humans. The by-stander enteric bacteria of the treated host's intestine can become exposed to the drug or its metabolites reaching the intestine in antimicrobially active form. We consider which processes and variables need to be accounted for to project the antimicrobial concentrations in the host's intestine. Those include: the drug's fraction (inclusive of any active metabolites) excreted in bile; the drug's fractions and intestinal segments of excretion via other mechanisms; the rates and intestinal segments of the drug's absorption and re-absorption; the rates and intestinal segments of the drug's abiotic and biotic degradation in the intestine; the digesta passage time through the intestinal segments; the rates, mechanisms, and reversibility of the drug's sorption to the digesta and enteric microbiome; and the volume of luminal contents in the intestinal segments. For certain antimicrobials, the antimicrobial activity can further depend on the aeration and chemical conditions in the intestine. Model forms that incorporate the inter-individual variation in those relevant variables can support projections of the intestinal antimicrobial concentrations in populations of treated host, such as food animals. To illustrate the proposed modeling framework, we develop two examples of treatments of bovine respiratory disease in beef steers by oral chlortetracycline and injectable third-generation cephalosporin ceftiofur. The host's diet influences the digesta passage time, volume, and digesta and microbiome composition, and may influence the antimicrobial loss due to degradation and sorption in the intestine. We consider two diet compositions in the illustrative simulations. The examples highlight the extent of current ignorance and need for empirical data on the variables influencing the selective pressures imposed by antimicrobial treatments on the host's intestinal bacteria.
[Definition of nodal volumes in breast cancer treatment and segmentation guidelines].
Kirova, Y M; Castro Pena, P; Dendale, R; Campana, F; Bollet, M A; Fournier-Bidoz, N; Fourquet, A
2009-06-01
To assist in the determination of breast and nodal volumes in the setting of radiotherapy for breast cancer and establish segmentation guidelines. Materials and methods. Contrast metarial enhanced CT examinations were obtained in the treatment position in 25 patients to clearly define the target volumes. The clinical target volume (CTV) including the breast, internal mammary nodes, supraclavicular and subclavicular regions and axxilary region were segmented along with the brachial plexus and interpectoral nodes. The following critical organs were also segmented: heart, lungs, contralateral breast, thyroid, esophagus and humeral head. A correlation between clinical and imaging findings and meeting between radiation oncologists and breast specialists resulted in a better definition of irradiation volumes for breast and nodes with establishement of segmentation guidelines and creation of an anatomical atlas. A practical approach, based on anatomical criteria, is proposed to assist in the segmentation of breast and node volumes in the setting of breast cancer treatment along with a definition of irradiation volumes.
Zhu, F; Kuhlmann, M K; Kaysen, G A; Sarkar, S; Kaitwatcharachai, C; Khilnani, R; Stevens, L; Leonard, E F; Wang, J; Heymsfield, S; Levin, N W
2006-02-01
Discrepancies in body fluid estimates between segmental bioimpedance spectroscopy (SBIS) and gold-standard methods may be due to the use of a uniform value of tissue resistivity to compute extracellular fluid volume (ECV) and intracellular fluid volume (ICV). Discrepancies may also arise from the exclusion of fluid volumes of hands, feet, neck, and head from measurements due to electrode positions. The aim of this study was to define the specific resistivity of various body segments and to use those values for computation of ECV and ICV along with a correction for unmeasured fluid volumes. Twenty-nine maintenance hemodialysis patients (16 men) underwent body composition analysis including whole body MRI, whole body potassium (40K) content, deuterium, and sodium bromide dilution, and segmental and wrist-to-ankle bioimpedance spectroscopy, all performed on the same day before a hemodialysis. Segment-specific resistivity was determined from segmental fat-free mass (FFM; by MRI), hydration status of FFM (by deuterium and sodium bromide), tissue resistance (by SBIS), and segment length. Segmental FFM was higher and extracellular hydration of FFM was lower in men compared with women. Segment-specific resistivity values for arm, trunk, and leg all differed from the uniform resistivity used in traditional SBIS algorithms. Estimates for whole body ECV, ICV, and total body water from SBIS using segmental instead of uniform resistivity values and after adjustment for unmeasured fluid volumes of the body did not differ significantly from gold-standard measures. The uniform tissue resistivity values used in traditional SBIS algorithms result in underestimation of ECV, ICV, and total body water. Use of segmental resistivity values combined with adjustment for body volumes that are neglected by traditional SBIS technique significantly improves estimations of body fluid volume in hemodialysis patients.
3D geometric split-merge segmentation of brain MRI datasets.
Marras, Ioannis; Nikolaidis, Nikolaos; Pitas, Ioannis
2014-05-01
In this paper, a novel method for MRI volume segmentation based on region adaptive splitting and merging is proposed. The method, called Adaptive Geometric Split Merge (AGSM) segmentation, aims at finding complex geometrical shapes that consist of homogeneous geometrical 3D regions. In each volume splitting step, several splitting strategies are examined and the most appropriate is activated. A way to find the maximal homogeneity axis of the volume is also introduced. Along this axis, the volume splitting technique divides the entire volume in a number of large homogeneous 3D regions, while at the same time, it defines more clearly small homogeneous regions within the volume in such a way that they have greater probabilities of survival at the subsequent merging step. Region merging criteria are proposed to this end. The presented segmentation method has been applied to brain MRI medical datasets to provide segmentation results when each voxel is composed of one tissue type (hard segmentation). The volume splitting procedure does not require training data, while it demonstrates improved segmentation performance in noisy brain MRI datasets, when compared to the state of the art methods. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bioimpedance Measurement of Segmental Fluid Volumes and Hemodynamics
NASA Technical Reports Server (NTRS)
Montgomery, Leslie D.; Wu, Yi-Chang; Ku, Yu-Tsuan E.; Gerth, Wayne A.; DeVincenzi, D. (Technical Monitor)
2000-01-01
Bioimpedance has become a useful tool to measure changes in body fluid compartment volumes. An Electrical Impedance Spectroscopic (EIS) system is described that extends the capabilities of conventional fixed frequency impedance plethysmographic (IPG) methods to allow examination of the redistribution of fluids between the intracellular and extracellular compartments of body segments. The combination of EIS and IPG techniques was evaluated in the human calf, thigh, and torso segments of eight healthy men during 90 minutes of six degree head-down tilt (HDT). After 90 minutes HDT the calf and thigh segments significantly (P < 0.05) lost conductive volume (eight and four percent, respectively) while the torso significantly (P < 0.05) gained volume (approximately three percent). Hemodynamic responses calculated from pulsatile IPG data also showed a segmental pattern consistent with vascular fluid loss from the lower extremities and vascular engorgement in the torso. Lumped-parameter equivalent circuit analyses of EIS data for the calf and thigh indicated that the overall volume decreases in these segments arose from reduced extracellular volume that was not completely balanced by increased intracellular volume. The combined use of IPG and EIS techniques enables noninvasive tracking of multi-segment volumetric and hemodynamic responses to environmental and physiological stresses.
A Market Strategy Plan For Wayne County Community College. Volume 1.
ERIC Educational Resources Information Center
Nussbaum, Harvey; And Others
In response to a changing environment characterized by economic uncertainty, a declining population, heavy competition, and rising costs, Wayne County Community College (WCCC) developed a market strategy plan to more effectively position and publicize the college. The three main objectives of the plan were to identify WCCC's market segment,…
Xu, Zhoubing; Gertz, Adam L.; Burke, Ryan P.; Bansal, Neil; Kang, Hakmook; Landman, Bennett A.; Abramson, Richard G.
2016-01-01
OBJECTIVES Multi-atlas fusion is a promising approach for computer-assisted segmentation of anatomical structures. The purpose of this study was to evaluate the accuracy and time efficiency of multi-atlas segmentation for estimating spleen volumes on clinically-acquired CT scans. MATERIALS AND METHODS Under IRB approval, we obtained 294 deidentified (HIPAA-compliant) abdominal CT scans on 78 subjects from a recent clinical trial. We compared five pipelines for obtaining splenic volumes: Pipeline 1–manual segmentation of all scans, Pipeline 2–automated segmentation of all scans, Pipeline 3–automated segmentation of all scans with manual segmentation for outliers on a rudimentary visual quality check, Pipelines 4 and 5–volumes derived from a unidimensional measurement of craniocaudal spleen length and three-dimensional splenic index measurements, respectively. Using Pipeline 1 results as ground truth, the accuracy of Pipelines 2–5 (Dice similarity coefficient [DSC], Pearson correlation, R-squared, and percent and absolute deviation of volume from ground truth) were compared for point estimates of splenic volume and for change in splenic volume over time. Time cost was also compared for Pipelines 1–5. RESULTS Pipeline 3 was dominant in terms of both accuracy and time cost. With a Pearson correlation coefficient of 0.99, average absolute volume deviation 23.7 cm3, and 1 minute per scan, Pipeline 3 yielded the best results. The second-best approach was Pipeline 5, with a Pearson correlation coefficient 0.98, absolute deviation 46.92 cm3, and 1 minute 30 seconds per scan. Manual segmentation (Pipeline 1) required 11 minutes per scan. CONCLUSION A computer-automated segmentation approach with manual correction of outliers generated accurate splenic volumes with reasonable time efficiency. PMID:27519156
Seuss, Hannes; Janka, Rolf; Prümmer, Marcus; Cavallaro, Alexander; Hammon, Rebecca; Theis, Ragnar; Sandmair, Martin; Amann, Kerstin; Bäuerle, Tobias; Uder, Michael; Hammon, Matthias
2017-04-01
Volumetric analysis of the kidney parenchyma provides additional information for the detection and monitoring of various renal diseases. Therefore the purposes of the study were to develop and evaluate a semi-automated segmentation tool and a modified ellipsoid formula for volumetric analysis of the kidney in non-contrast T2-weighted magnetic resonance (MR)-images. Three readers performed semi-automated segmentation of the total kidney volume (TKV) in axial, non-contrast-enhanced T2-weighted MR-images of 24 healthy volunteers (48 kidneys) twice. A semi-automated threshold-based segmentation tool was developed to segment the kidney parenchyma. Furthermore, the three readers measured renal dimensions (length, width, depth) and applied different formulas to calculate the TKV. Manual segmentation served as a reference volume. Volumes of the different methods were compared and time required was recorded. There was no significant difference between the semi-automatically and manually segmented TKV (p = 0.31). The difference in mean volumes was 0.3 ml (95% confidence interval (CI), -10.1 to 10.7 ml). Semi-automated segmentation was significantly faster than manual segmentation, with a mean difference = 188 s (220 vs. 408 s); p < 0.05. Volumes did not differ significantly comparing the results of different readers. Calculation of TKV with a modified ellipsoid formula (ellipsoid volume × 0.85) did not differ significantly from the reference volume; however, the mean error was three times higher (difference of mean volumes -0.1 ml; CI -31.1 to 30.9 ml; p = 0.95). Applying the modified ellipsoid formula was the fastest way to get an estimation of the renal volume (41 s). Semi-automated segmentation and volumetric analysis of the kidney in native T2-weighted MR data delivers accurate and reproducible results and was significantly faster than manual segmentation. Applying a modified ellipsoid formula quickly provides an accurate kidney volume.
NASA Astrophysics Data System (ADS)
Martin, Spencer; Brophy, Mark; Palma, David; Louie, Alexander V.; Yu, Edward; Yaremko, Brian; Ahmad, Belal; Barron, John L.; Beauchemin, Steven S.; Rodrigues, George; Gaede, Stewart
2015-02-01
This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51 ± 1.92) to (97.27 ± 0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development.
Martin, Spencer; Brophy, Mark; Palma, David; Louie, Alexander V; Yu, Edward; Yaremko, Brian; Ahmad, Belal; Barron, John L; Beauchemin, Steven S; Rodrigues, George; Gaede, Stewart
2015-02-21
This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51 ± 1.92) to (97.27 ± 0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development.
Quantifying the interplay effect in prostate IMRT delivery using a convolution-based method.
Li, Haisen S; Chetty, Indrin J; Solberg, Timothy D
2008-05-01
The authors present a segment-based convolution method to account for the interplay effect between intrafraction organ motion and the multileaf collimator position for each particular segment in intensity modulated radiation therapy (IMRT) delivered in a step-and-shoot manner. In this method, the static dose distribution attributed to each segment is convolved with the probability density function (PDF) of motion during delivery of the segment, whereas in the conventional convolution method ("average-based convolution"), the static dose distribution is convolved with the PDF averaged over an entire fraction, an entire treatment course, or even an entire patient population. In the case of IMRT delivered in a step-and-shoot manner, the average-based convolution method assumes that in each segment the target volume experiences the same motion pattern (PDF) as that of population. In the segment-based convolution method, the dose during each segment is calculated by convolving the static dose with the motion PDF specific to that segment, allowing both intrafraction motion and the interplay effect to be accounted for in the dose calculation. Intrafraction prostate motion data from a population of 35 patients tracked using the Calypso system (Calypso Medical Technologies, Inc., Seattle, WA) was used to generate motion PDFs. These were then convolved with dose distributions from clinical prostate IMRT plans. For a single segment with a small number of monitor units, the interplay effect introduced errors of up to 25.9% in the mean CTV dose compared against the planned dose evaluated by using the PDF of the entire fraction. In contrast, the interplay effect reduced the minimum CTV dose by 4.4%, and the CTV generalized equivalent uniform dose by 1.3%, in single fraction plans. For entire treatment courses delivered in either a hypofractionated (five fractions) or conventional (> 30 fractions) regimen, the discrepancy in total dose due to interplay effect was negligible.
Volume Segmentation and Ghost Particles
NASA Astrophysics Data System (ADS)
Ziskin, Isaac; Adrian, Ronald
2011-11-01
Volume Segmentation Tomographic PIV (VS-TPIV) is a type of tomographic PIV in which images of particles in a relatively thick volume are segmented into images on a set of much thinner volumes that may be approximated as planes, as in 2D planar PIV. The planes of images can be analysed by standard mono-PIV, and the volume of flow vectors can be recreated by assembling the planes of vectors. The interrogation process is similar to a Holographic PIV analysis, except that the planes of image data are extracted from two-dimensional camera images of the volume of particles instead of three-dimensional holographic images. Like the tomographic PIV method using the MART algorithm, Volume Segmentation requires at least two cameras and works best with three or four. Unlike the MART method, Volume Segmentation does not require reconstruction of individual particle images one pixel at a time and it does not require an iterative process, so it operates much faster. As in all tomographic reconstruction strategies, ambiguities known as ghost particles are produced in the segmentation process. The effect of these ghost particles on the PIV measurement is discussed. This research was supported by Contract 79419-001-09, Los Alamos National Laboratory.
Igual, Laura; Soliva, Joan Carles; Escalera, Sergio; Gimeno, Roger; Vilarroya, Oscar; Radeva, Petia
2012-12-01
We present a fully automatic diagnostic imaging test for Attention-Deficit/Hyperactivity Disorder diagnosis assistance based on previously found evidences of caudate nucleus volumetric abnormalities. The proposed method consists of different steps: a new automatic method for external and internal segmentation of caudate based on Machine Learning methodologies; the definition of a set of new volume relation features, 3D Dissociated Dipoles, used for caudate representation and classification. We separately validate the contributions using real data from a pediatric population and show precise internal caudate segmentation and discrimination power of the diagnostic test, showing significant performance improvements in comparison to other state-of-the-art methods. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tu, Shu-Ju; Wang, Shun-Ping; Cheng, Fu-Chou; Weng, Chia-En; Huang, Wei-Tzu; Chang, Wei-Jeng; Chen, Ying-Ju
2017-01-01
The literature shows that bone mineral density (BMD) and the geometric architecture of trabecular bone in the femur may be affected by inadequate dietary intake of Mg. In this study, we used microcomputed tomography (micro-CT) to characterize and quantify the impact of a low-Mg diet on femoral trabecular bones in mice. Four-week-old C57BL/6J male mice were randomly assigned to 2 groups and supplied either a normal or low-Mg diet for 8weeks. Samples of plasma and urine were collected for biochemical analysis, and femur tissues were removed for micro-CT imaging. In addition to considering standard parameters, we regarded trabecular bone as a cylindrical rod and used computational algorithms for a technical assessment of the morphological characteristics of the bones. BMD (mg-HA/cm3) was obtained using a standard phantom. We observed a decline in the total tissue volume, bone volume, percent bone volume, fractal dimension, number of trabecular segments, number of connecting nodes, bone mineral content (mg-HA), and BMD, as well as an increase in the structural model index and surface-area-to-volume ratio in low-Mg mice. Subsequently, we examined the distributions of the trabecular segment length and radius, and a series of specific local maximums were identified. The biochemical analysis revealed a 43% (96%) decrease in Mg and a 40% (71%) decrease in Ca in plasma (urine excretion). This technical assessment performed using micro-CT revealed a lower population of femoral trabecular bones and a decrease in BMD at the distal metaphysis in the low-Mg mice. Examining the distributions of the length and radius of trabecular segments showed that the average length and radius of the trabecular segments in low-Mg mice are similar to those in normal mice.
Griffanti, Ludovica; Zamboni, Giovanna; Khan, Aamira; Li, Linxin; Bonifacio, Guendalina; Sundaresan, Vaanathi; Schulz, Ursula G; Kuker, Wilhelm; Battaglini, Marco; Rothwell, Peter M; Jenkinson, Mark
2016-11-01
Reliable quantification of white matter hyperintensities of presumed vascular origin (WMHs) is increasingly needed, given the presence of these MRI findings in patients with several neurological and vascular disorders, as well as in elderly healthy subjects. We present BIANCA (Brain Intensity AbNormality Classification Algorithm), a fully automated, supervised method for WMH detection, based on the k-nearest neighbour (k-NN) algorithm. Relative to previous k-NN based segmentation methods, BIANCA offers different options for weighting the spatial information, local spatial intensity averaging, and different options for the choice of the number and location of the training points. BIANCA is multimodal and highly flexible so that the user can adapt the tool to their protocol and specific needs. We optimised and validated BIANCA on two datasets with different MRI protocols and patient populations (a "predominantly neurodegenerative" and a "predominantly vascular" cohort). BIANCA was first optimised on a subset of images for each dataset in terms of overlap and volumetric agreement with a manually segmented WMH mask. The correlation between the volumes extracted with BIANCA (using the optimised set of options), the volumes extracted from the manual masks and visual ratings showed that BIANCA is a valid alternative to manual segmentation. The optimised set of options was then applied to the whole cohorts and the resulting WMH volume estimates showed good correlations with visual ratings and with age. Finally, we performed a reproducibility test, to evaluate the robustness of BIANCA, and compared BIANCA performance against existing methods. Our findings suggest that BIANCA, which will be freely available as part of the FSL package, is a reliable method for automated WMH segmentation in large cross-sectional cohort studies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Microfluidic device and method for focusing, segmenting, and dispensing of a fluid stream
Jacobson, Stephen C [Knoxville, TN; Ramsey, J Michael [Knoxville, TN
2008-09-09
A microfluidic device and method for forming and dispensing minute volume segments of a material are described. In accordance with the present invention, a microfluidic device and method are provided for spatially confining the material in a focusing element. The device is also adapted for segmenting the confined material into minute volume segments, and dispensing a volume segment to a waste or collection channel. The device further includes means for driving the respective streams of sample and focusing fluids through respective channels into a chamber, such that the focusing fluid streams spatially confine the sample material. The device may also include additional means for driving a minute volume segment of the spatially confined sample material into a collection channel in fluid communication with the waste reservoir.
Microfluidic device and method for focusing, segmenting, and dispensing of a fluid stream
Jacobson, Stephen C.; Ramsey, J. Michael
2004-09-14
A microfluidic device for forming and/or dispensing minute volume segments of a material is described. In accordance with one aspect of the present invention, a microfluidic device and method is provided for spatially confining the material in a focusing element. The device is also capable of segmenting the confined material into minute volume segments, and dispensing a volume segment to a waste or collection channel. The device further includes means for driving the respective streams of sample and focusing fluids through respective channels into a chamber, such that the focusing fluid streams spatially confine the sample material. The device may also include additional means for driving a minute volume segment of the spatially confined sample material into a collection channel in fluid communication with the waste reservoir.
Farooq, Zerwa; Behzadi, Ashkan Heshmatzadeh; Blumenfeld, Jon D; Zhao, Yize; Prince, Martin R
To compare MRI segmentation methods for measuring liver cyst volumes in autosomal dominant polycystic kidney disease (ADPKD). Liver cyst volumes in 42 ADPKD patients were measured using region growing, thresholding and cyst diameter techniques. Manual segmentation was the reference standard. Root mean square deviation was 113, 155, and 500 for cyst diameter, thresholding and region growing respectively. Thresholding error for cyst volumes below 500ml was 550% vs 17% for cyst volumes above 500ml (p<0.001). For measuring volume of a small number of cysts, cyst diameter and manual segmentation methods are recommended. For severe disease with numerous, large hepatic cysts, thresholding is an acceptable alternative. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Acosta, Oscar; Dowling, Jason; Cazoulat, Guillaume; Simon, Antoine; Salvado, Olivier; de Crevoisier, Renaud; Haigron, Pascal
The prediction of toxicity is crucial to managing prostate cancer radiotherapy (RT). This prediction is classically organ wise and based on the dose volume histograms (DVH) computed during the planning step, and using for example the mathematical Lyman Normal Tissue Complication Probability (NTCP) model. However, these models lack spatial accuracy, do not take into account deformations and may be inappropiate to explain toxicity events related with the distribution of the delivered dose. Producing voxel wise statistical models of toxicity might help to explain the risks linked to the dose spatial distribution but is challenging due to the difficulties lying on the mapping of organs and dose in a common template. In this paper we investigate the use of atlas based methods to perform the non-rigid mapping and segmentation of the individuals' organs at risk (OAR) from CT scans. To build a labeled atlas, 19 CT scans were selected from a population of patients treated for prostate cancer by radiotherapy. The prostate and the OAR (Rectum, Bladder, Bones) were then manually delineated by an expert and constituted the training data. After a number of affine and non rigid registration iterations, an average image (template) representing the whole population was obtained. The amount of consensus between labels was used to generate probabilistic maps for each organ. We validated the accuracy of the approach by segmenting the organs using the training data in a leave one out scheme. The agreement between the volumes after deformable registration and the manually segmented organs was on average above 60% for the organs at risk. The proposed methodology provides a way to map the organs from a whole population on a single template and sets the stage to perform further voxel wise analysis. With this method new and accurate predictive models of toxicity will be built.
Economic Analysis. Volume V. Course Segments 65-79.
ERIC Educational Resources Information Center
Sterling Inst., Washington, DC. Educational Technology Center.
The fifth volume of the multimedia, individualized course in economic analysis produced for the United States Naval Academy covers segments 65-79 of the course. Included in the volume are discussions of monopoly markets, monopolistic competition, oligopoly markets, and the theory of factor demand and supply. Other segments of the course, the…
Automated segmentation and dose-volume analysis with DICOMautomaton
NASA Astrophysics Data System (ADS)
Clark, H.; Thomas, S.; Moiseenko, V.; Lee, R.; Gill, B.; Duzenli, C.; Wu, J.
2014-03-01
Purpose: Exploration of historical data for regional organ dose sensitivity is limited by the effort needed to (sub-)segment large numbers of contours. A system has been developed which can rapidly perform autonomous contour sub-segmentation and generic dose-volume computations, substantially reducing the effort required for exploratory analyses. Methods: A contour-centric approach is taken which enables lossless, reversible segmentation and dramatically reduces computation time compared with voxel-centric approaches. Segmentation can be specified on a per-contour, per-organ, or per-patient basis, and can be performed along either an embedded plane or in terms of the contour's bounds (e.g., split organ into fractional-volume/dose pieces along any 3D unit vector). More complex segmentation techniques are available. Anonymized data from 60 head-and-neck cancer patients were used to compare dose-volume computations with Varian's EclipseTM (Varian Medical Systems, Inc.). Results: Mean doses and Dose-volume-histograms computed agree strongly with Varian's EclipseTM. Contours which have been segmented can be injected back into patient data permanently and in a Digital Imaging and Communication in Medicine (DICOM)-conforming manner. Lossless segmentation persists across such injection, and remains fully reversible. Conclusions: DICOMautomaton allows researchers to rapidly, accurately, and autonomously segment large amounts of data into intricate structures suitable for analyses of regional organ dose sensitivity.
Serag, Ahmed; Wilkinson, Alastair G.; Telford, Emma J.; Pataky, Rozalia; Sparrow, Sarah A.; Anblagan, Devasuda; Macnaught, Gillian; Semple, Scott I.; Boardman, James P.
2017-01-01
Quantitative volumes from brain magnetic resonance imaging (MRI) acquired across the life course may be useful for investigating long term effects of risk and resilience factors for brain development and healthy aging, and for understanding early life determinants of adult brain structure. Therefore, there is an increasing need for automated segmentation tools that can be applied to images acquired at different life stages. We developed an automatic segmentation method for human brain MRI, where a sliding window approach and a multi-class random forest classifier were applied to high-dimensional feature vectors for accurate segmentation. The method performed well on brain MRI data acquired from 179 individuals, analyzed in three age groups: newborns (38–42 weeks gestational age), children and adolescents (4–17 years) and adults (35–71 years). As the method can learn from partially labeled datasets, it can be used to segment large-scale datasets efficiently. It could also be applied to different populations and imaging modalities across the life course. PMID:28163680
Fallah, Faezeh; Machann, Jürgen; Martirosian, Petros; Bamberg, Fabian; Schick, Fritz; Yang, Bin
2017-04-01
To evaluate and compare conventional T1-weighted 2D turbo spin echo (TSE), T1-weighted 3D volumetric interpolated breath-hold examination (VIBE), and two-point 3D Dixon-VIBE sequences for automatic segmentation of visceral adipose tissue (VAT) volume at 3 Tesla by measuring and compensating for errors arising from intensity nonuniformity (INU) and partial volume effects (PVE). The body trunks of 28 volunteers with body mass index values ranging from 18 to 41.2 kg/m 2 (30.02 ± 6.63 kg/m 2 ) were scanned at 3 Tesla using three imaging techniques. Automatic methods were applied to reduce INU and PVE and to segment VAT. The automatically segmented VAT volumes obtained from all acquisitions were then statistically and objectively evaluated against the manually segmented (reference) VAT volumes. Comparing the reference volumes with the VAT volumes automatically segmented over the uncorrected images showed that INU led to an average relative volume difference of -59.22 ± 11.59, 2.21 ± 47.04, and -43.05 ± 5.01 % for the TSE, VIBE, and Dixon images, respectively, while PVE led to average differences of -34.85 ± 19.85, -15.13 ± 11.04, and -33.79 ± 20.38 %. After signal correction, differences of -2.72 ± 6.60, 34.02 ± 36.99, and -2.23 ± 7.58 % were obtained between the reference and the automatically segmented volumes. A paired-sample two-tailed t test revealed no significant difference between the reference and automatically segmented VAT volumes of the corrected TSE (p = 0.614) and Dixon (p = 0.969) images, but showed a significant VAT overestimation using the corrected VIBE images. Under similar imaging conditions and spatial resolution, automatically segmented VAT volumes obtained from the corrected TSE and Dixon images agreed with each other and with the reference volumes. These results demonstrate the efficacy of the signal correction methods and the similar accuracy of TSE and Dixon imaging for automatic volumetry of VAT at 3 Tesla.
Multi-Modal Glioblastoma Segmentation: Man versus Machine
Pica, Alessia; Schucht, Philippe; Beck, Jürgen; Verma, Rajeev Kumar; Slotboom, Johannes; Reyes, Mauricio; Wiest, Roland
2014-01-01
Background and Purpose Reproducible segmentation of brain tumors on magnetic resonance images is an important clinical need. This study was designed to evaluate the reliability of a novel fully automated segmentation tool for brain tumor image analysis in comparison to manually defined tumor segmentations. Methods We prospectively evaluated preoperative MR Images from 25 glioblastoma patients. Two independent expert raters performed manual segmentations. Automatic segmentations were performed using the Brain Tumor Image Analysis software (BraTumIA). In order to study the different tumor compartments, the complete tumor volume TV (enhancing part plus non-enhancing part plus necrotic core of the tumor), the TV+ (TV plus edema) and the contrast enhancing tumor volume CETV were identified. We quantified the overlap between manual and automated segmentation by calculation of diameter measurements as well as the Dice coefficients, the positive predictive values, sensitivity, relative volume error and absolute volume error. Results Comparison of automated versus manual extraction of 2-dimensional diameter measurements showed no significant difference (p = 0.29). Comparison of automated versus manual segmentation of volumetric segmentations showed significant differences for TV+ and TV (p<0.05) but no significant differences for CETV (p>0.05) with regard to the Dice overlap coefficients. Spearman's rank correlation coefficients (ρ) of TV+, TV and CETV showed highly significant correlations between automatic and manual segmentations. Tumor localization did not influence the accuracy of segmentation. Conclusions In summary, we demonstrated that BraTumIA supports radiologists and clinicians by providing accurate measures of cross-sectional diameter-based tumor extensions. The automated volume measurements were comparable to manual tumor delineation for CETV tumor volumes, and outperformed inter-rater variability for overlap and sensitivity. PMID:24804720
Du, Yiping P; Jin, Zhaoyang
2009-10-01
To develop a robust algorithm for tissue-air segmentation in magnetic resonance imaging (MRI) using the statistics of phase and magnitude of the images. A multivariate measure based on the statistics of phase and magnitude was constructed for tissue-air volume segmentation. The standard deviation of first-order phase difference and the standard deviation of magnitude were calculated in a 3 x 3 x 3 kernel in the image domain. To improve differentiation accuracy, the uniformity of phase distribution in the kernel was also calculated and linear background phase introduced by field inhomogeneity was corrected. The effectiveness of the proposed volume segmentation technique was compared to a conventional approach that uses the magnitude data alone. The proposed algorithm was shown to be more effective and robust in volume segmentation in both synthetic phantom and susceptibility-weighted images of human brain. Using our proposed volume segmentation method, veins in the peripheral regions of the brain were well depicted in the minimum-intensity projection of the susceptibility-weighted images. Using the additional statistics of phase, tissue-air volume segmentation can be substantially improved compared to that using the statistics of magnitude data alone. (c) 2009 Wiley-Liss, Inc.
Volumetric Assessment of Swallowing Muscles: A Comparison of CT and MRI Segmentation.
Sporns, Kim Barbara; Hanning, Uta; Schmidt, Rene; Muhle, Paul; Wirth, Rainer; Zimmer, Sebastian; Dziewas, Rainer; Suntrup-Krueger, Sonja; Sporns, Peter Bernhard; Heindel, Walter; Schwindt, Wolfram
2018-05-01
Recent retrospective studies have proposed a high correlation between atrophy of swallowing muscles, age, severity of dysphagia and aspiration status based on computed tomography (CT). However, ionizing radiation poses an ethical barrier to research in prospective non-patient populations. Hence, there is a need to prove the efficacy of techniques that rely on noninvasive methods and produce high-resolution soft tissue images such as magnetic resonance imaging (MRI). The objective of this study was therefore to compare the segmentation results of swallowing muscles using CT and MRI. Retrospective study of 21 patients (median age: 46.6; gender: 11 female) who underwent CT and MRI of the head and neck region within a time frame of less than 50 days because of suspected head and neck cancer using contrast agent. CT and MR images were segmented by two blinded readers using Medical Imaging Toolkit (MITK) and both modalities were tested (with the equivalence test) regarding the segmented muscle volumes. Adjustment for multiple testing was performed using the Bonferroni test and the potential time effect of the muscle volumes and the time interval between the modalities was assessed by a spearman correlation. The study was approved by the local ethics committee. The median volumes for each muscle belly of the digastric muscle derived from CT were 3051 mm 3 (left) and 2969 mm 3 (right), and from MRI they were 3218 mm 3 (left) and 3027 mm 3 (right). The median volume of the geniohyoid muscle was 6580 mm 3 on CT and 6648 mm 3 on MRI. The interrater reliability was high for all segmented muscles. The mean time interval between the CT and MRI examinations was 34 days (IQR 25; 41). The muscle differences of each muscle between the two modalities did not reveal significant correlation to the time interval between the examinations (digastric left r = 0.003 and digastric right r = -0.008; geniohyoid muscle r = 0.075). CT-based segmentation and MRI-based segmentation of the digastric and geniohyoid muscle are equally feasible. The potential advantage of MRI for prospective studies is the absence of ionizing radiation. · CT-based segmentation and MRI-based segmentation of the swallowing muscles are equally feasible.. · The advantage of MRI is the absence of ionizing radiation.. · MRI should therefore be deployed for future prospective studies.. · Sporns KB, Hanning U, Schmidt R et al. Volumetric Assessment of Swallowing Muscles: A Comparison of CT and MRI Segmentation. Fortschr Röntgenstr 2018; 190: 441 - 446. © Georg Thieme Verlag KG Stuttgart · New York.
Okariz, Ana; Guraya, Teresa; Iturrondobeitia, Maider; Ibarretxe, Julen
2017-12-01
A method is proposed and verified for selecting the optimum segmentation of a TEM reconstruction among the results of several segmentation algorithms. The selection criterion is the accuracy of the segmentation. To do this selection, a parameter for the comparison of the accuracies of the different segmentations has been defined. It consists of the mutual information value between the acquired TEM images of the sample and the Radon projections of the segmented volumes. In this work, it has been proved that this new mutual information parameter and the Jaccard coefficient between the segmented volume and the ideal one are correlated. In addition, the results of the new parameter are compared to the results obtained from another validated method to select the optimum segmentation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lyden, Hannah; Gimbel, Sarah I; Del Piero, Larissa; Tsai, A Bryna; Sachs, Matthew E; Kaplan, Jonas T; Margolin, Gayla; Saxbe, Darby
2016-01-01
Associations between brain structure and early adversity have been inconsistent in the literature. These inconsistencies may be partially due to methodological differences. Different methods of brain segmentation may produce different results, obscuring the relationship between early adversity and brain volume. Moreover, adolescence is a time of significant brain growth and certain brain areas have distinct rates of development, which may compromise the accuracy of automated segmentation approaches. In the current study, 23 adolescents participated in two waves of a longitudinal study. Family aggression was measured when the youths were 12 years old, and structural scans were acquired an average of 4 years later. Bilateral amygdalae and hippocampi were segmented using three different methods (manual tracing, FSL, and NeuroQuant). The segmentation estimates were compared, and linear regressions were run to assess the relationship between early family aggression exposure and all three volume segmentation estimates. Manual tracing results showed a positive relationship between family aggression and right amygdala volume, whereas FSL segmentation showed negative relationships between family aggression and both the left and right hippocampi. However, results indicate poor overlap between methods, and different associations were found between early family aggression exposure and brain volume depending on the segmentation method used.
Lyden, Hannah; Gimbel, Sarah I.; Del Piero, Larissa; Tsai, A. Bryna; Sachs, Matthew E.; Kaplan, Jonas T.; Margolin, Gayla; Saxbe, Darby
2016-01-01
Associations between brain structure and early adversity have been inconsistent in the literature. These inconsistencies may be partially due to methodological differences. Different methods of brain segmentation may produce different results, obscuring the relationship between early adversity and brain volume. Moreover, adolescence is a time of significant brain growth and certain brain areas have distinct rates of development, which may compromise the accuracy of automated segmentation approaches. In the current study, 23 adolescents participated in two waves of a longitudinal study. Family aggression was measured when the youths were 12 years old, and structural scans were acquired an average of 4 years later. Bilateral amygdalae and hippocampi were segmented using three different methods (manual tracing, FSL, and NeuroQuant). The segmentation estimates were compared, and linear regressions were run to assess the relationship between early family aggression exposure and all three volume segmentation estimates. Manual tracing results showed a positive relationship between family aggression and right amygdala volume, whereas FSL segmentation showed negative relationships between family aggression and both the left and right hippocampi. However, results indicate poor overlap between methods, and different associations were found between early family aggression exposure and brain volume depending on the segmentation method used. PMID:27656121
Mastmeyer, André; Engelke, Klaus; Fuchs, Christina; Kalender, Willi A
2006-08-01
We have developed a new hierarchical 3D technique to segment the vertebral bodies in order to measure bone mineral density (BMD) with high trueness and precision in volumetric CT datasets. The hierarchical approach starts with a coarse separation of the individual vertebrae, applies a variety of techniques to segment the vertebral bodies with increasing detail and ends with the definition of an anatomic coordinate system for each vertebral body, relative to which up to 41 trabecular and cortical volumes of interest are positioned. In a pre-segmentation step constraints consisting of Boolean combinations of simple geometric shapes are determined that enclose each individual vertebral body. Bound by these constraints viscous deformable models are used to segment the main shape of the vertebral bodies. Volume growing and morphological operations then capture the fine details of the bone-soft tissue interface. In the volumes of interest bone mineral density and content are determined. In addition, in the segmented vertebral bodies geometric parameters such as volume or the length of the main axes of inertia can be measured. Intra- and inter-operator precision errors of the segmentation procedure were analyzed using existing clinical patient datasets. Results for segmented volume, BMD, and coordinate system position were below 2.0%, 0.6%, and 0.7%, respectively. Trueness was analyzed using phantom scans. The bias of the segmented volume was below 4%; for BMD it was below 1.5%. The long-term goal of this work is improved fracture prediction and patient monitoring in the field of osteoporosis. A true 3D segmentation also enables an accurate measurement of geometrical parameters that may augment the clinical value of a pure BMD analysis.
Automatic partitioning of head CTA for enabling segmentation
NASA Astrophysics Data System (ADS)
Suryanarayanan, Srikanth; Mullick, Rakesh; Mallya, Yogish; Kamath, Vidya; Nagaraj, Nithin
2004-05-01
Radiologists perform a CT Angiography procedure to examine vascular structures and associated pathologies such as aneurysms. Volume rendering is used to exploit volumetric capabilities of CT that provides complete interactive 3-D visualization. However, bone forms an occluding structure and must be segmented out. The anatomical complexity of the head creates a major challenge in the segmentation of bone and vessel. An analysis of the head volume reveals varying spatial relationships between vessel and bone that can be separated into three sub-volumes: "proximal", "middle", and "distal". The "proximal" and "distal" sub-volumes contain good spatial separation between bone and vessel (carotid referenced here). Bone and vessel appear contiguous in the "middle" partition that remains the most challenging region for segmentation. The partition algorithm is used to automatically identify these partition locations so that different segmentation methods can be developed for each sub-volume. The partition locations are computed using bone, image entropy, and sinus profiles along with a rule-based method. The algorithm is validated on 21 cases (varying volume sizes, resolution, clinical sites, pathologies) using ground truth identified visually. The algorithm is also computationally efficient, processing a 500+ slice volume in 6 seconds (an impressive 0.01 seconds / slice) that makes it an attractive algorithm for pre-processing large volumes. The partition algorithm is integrated into the segmentation workflow. Fast and simple algorithms are implemented for processing the "proximal" and "distal" partitions. Complex methods are restricted to only the "middle" partition. The partitionenabled segmentation has been successfully tested and results are shown from multiple cases.
Dolz, Jose; Laprie, Anne; Ken, Soléakhéna; Leroy, Henri-Arthur; Reyns, Nicolas; Massoptier, Laurent; Vermandel, Maximilien
2016-01-01
To constrain the risk of severe toxicity in radiotherapy and radiosurgery, precise volume delineation of organs at risk is required. This task is still manually performed, which is time-consuming and prone to observer variability. To address these issues, and as alternative to atlas-based segmentation methods, machine learning techniques, such as support vector machines (SVM), have been recently presented to segment subcortical structures on magnetic resonance images (MRI). SVM is proposed to segment the brainstem on MRI in multicenter brain cancer context. A dataset composed by 14 adult brain MRI scans is used to evaluate its performance. In addition to spatial and probabilistic information, five different image intensity values (IIVs) configurations are evaluated as features to train the SVM classifier. Segmentation accuracy is evaluated by computing the Dice similarity coefficient (DSC), absolute volumes difference (AVD) and percentage volume difference between automatic and manual contours. Mean DSC for all proposed IIVs configurations ranged from 0.89 to 0.90. Mean AVD values were below 1.5 cm(3), where the value for best performing IIVs configuration was 0.85 cm(3), representing an absolute mean difference of 3.99% with respect to the manual segmented volumes. Results suggest consistent volume estimation and high spatial similarity with respect to expert delineations. The proposed approach outperformed presented methods to segment the brainstem, not only in volume similarity metrics, but also in segmentation time. Preliminary results showed that the approach might be promising for adoption in clinical use.
Improving cerebellar segmentation with statistical fusion
NASA Astrophysics Data System (ADS)
Plassard, Andrew J.; Yang, Zhen; Prince, Jerry L.; Claassen, Daniel O.; Landman, Bennett A.
2016-03-01
The cerebellum is a somatotopically organized central component of the central nervous system well known to be involved with motor coordination and increasingly recognized roles in cognition and planning. Recent work in multiatlas labeling has created methods that offer the potential for fully automated 3-D parcellation of the cerebellar lobules and vermis (which are organizationally equivalent to cortical gray matter areas). This work explores the trade offs of using different statistical fusion techniques and post hoc optimizations in two datasets with distinct imaging protocols. We offer a novel fusion technique by extending the ideas of the Selective and Iterative Method for Performance Level Estimation (SIMPLE) to a patch-based performance model. We demonstrate the effectiveness of our algorithm, Non- Local SIMPLE, for segmentation of a mixed population of healthy subjects and patients with severe cerebellar anatomy. Under the first imaging protocol, we show that Non-Local SIMPLE outperforms previous gold-standard segmentation techniques. In the second imaging protocol, we show that Non-Local SIMPLE outperforms previous gold standard techniques but is outperformed by a non-locally weighted vote with the deeper population of atlases available. This work advances the state of the art in open source cerebellar segmentation algorithms and offers the opportunity for routinely including cerebellar segmentation in magnetic resonance imaging studies that acquire whole brain T1-weighted volumes with approximately 1 mm isotropic resolution.
NASA Astrophysics Data System (ADS)
Söderberg, Per G.; Malmberg, Filip; Sandberg-Melin, Camilla
2017-02-01
The present study aimed to elucidate if comparison of angular segments of Pigment epithelium central limit- Inner limit of the retina Minimal Distance, measured over 2π radians in the frontal plane (PIMD-2π) between visits of a patient, renders sufficient precision for detection of loss of nerve fibers in the optic nerve head. An optic nerve head raster scanned cube was captured with a TOPCON 3D OCT 2000 (Topcon, Japan) device in one early to moderate stage glaucoma eye of each of 13 patients. All eyes were recorded at two visits less than 1 month apart. At each visit, 3 volumes were captured. Each volume was extracted from the OCT device for analysis. Then, angular PIMD was segmented three times over 2π radians in the frontal plane, resolved with a semi-automatic algorithm in 500 equally separated steps, PIMD-2π. It was found that individual segmentations within volumes, within visits, within subjects can be phase adjusted to each other in the frontal plane using cross-correlation. Cross correlation was also used to phase adjust volumes within visits within subjects and visits to each other within subjects. Then, PIMD-2π for each subject was split into 250 bundles of 2 adjacent PIMDs. Finally, the sources of variation for estimates of segments of PIMD-2π were derived with analysis of variance assuming a mixed model. The variation among adjacent PIMDS was found very small in relation to the variation among segmentations. The variation among visits was found insignificant in relation to the variation among volumes and the variance for segmentations was found to be on the order of 20 % of that for volumes. The estimated variances imply that, if 3 segmentations are averaged within a volume and at least 10 volumes are averaged within a visit, it is possible to estimate around a 10 % reduction of a PIMD-2π segment from baseline to a subsequent visit as significant. Considering a loss rate for a PIMD-2π segment of 23 μm/yr., 4 visits per year, and averaging 3 segmentations per volume and 3 volumes per visit, a significant reduction from baseline can be detected with a power of 80 % in about 18 months. At higher loss rate for a PIMD-2π segment, a significant difference from baseline can be detected earlier. Averaging over more volumes per visit considerably decreases the time for detection of a significant reduction of a segment of PIMD-2π. Increasing the number of segmentations averaged per visit only slightly reduces the time for detection of a significant reduction. It is concluded that phase adjustment in the frontal plane with cross correlation allows high precision estimates of a segment of PIMD-2π that imply substantially shorter followup time for detection of a significant change than mean deviation (MD) in a visual field estimated with the Humphrey perimeter or neural rim area (NRA) estimated with the Heidelberg retinal tomograph.
Vessel segmentation in 3D spectral OCT scans of the retina
NASA Astrophysics Data System (ADS)
Niemeijer, Meindert; Garvin, Mona K.; van Ginneken, Bram; Sonka, Milan; Abràmoff, Michael D.
2008-03-01
The latest generation of spectral optical coherence tomography (OCT) scanners is able to image 3D cross-sectional volumes of the retina at a high resolution and high speed. These scans offer a detailed view of the structure of the retina. Automated segmentation of the vessels in these volumes may lead to more objective diagnosis of retinal vascular disease including hypertensive retinopathy, retinopathy of prematurity. Additionally, vessel segmentation can allow color fundus images to be registered to these 3D volumes, possibly leading to a better understanding of the structure and localization of retinal structures and lesions. In this paper we present a method for automatically segmenting the vessels in a 3D OCT volume. First, the retina is automatically segmented into multiple layers, using simultaneous segmentation of their boundary surfaces in 3D. Next, a 2D projection of the vessels is produced by only using information from certain segmented layers. Finally, a supervised, pixel classification based vessel segmentation approach is applied to the projection image. We compared the influence of two methods for the projection on the performance of the vessel segmentation on 10 optic nerve head centered 3D OCT scans. The method was trained on 5 independent scans. Using ROC analysis, our proposed vessel segmentation system obtains an area under the curve of 0.970 when compared with the segmentation of a human observer.
Bayesian automated cortical segmentation for neonatal MRI
NASA Astrophysics Data System (ADS)
Chou, Zane; Paquette, Natacha; Ganesh, Bhavana; Wang, Yalin; Ceschin, Rafael; Nelson, Marvin D.; Macyszyn, Luke; Gaonkar, Bilwaj; Panigrahy, Ashok; Lepore, Natasha
2017-11-01
Several attempts have been made in the past few years to develop and implement an automated segmentation of neonatal brain structural MRI. However, accurate automated MRI segmentation remains challenging in this population because of the low signal-to-noise ratio, large partial volume effects and inter-individual anatomical variability of the neonatal brain. In this paper, we propose a learning method for segmenting the whole brain cortical grey matter on neonatal T2-weighted images. We trained our algorithm using a neonatal dataset composed of 3 fullterm and 4 preterm infants scanned at term equivalent age. Our segmentation pipeline combines the FAST algorithm from the FSL library software and a Bayesian segmentation approach to create a threshold matrix that minimizes the error of mislabeling brain tissue types. Our method shows promising results with our pilot training set. In both preterm and full-term neonates, automated Bayesian segmentation generates a smoother and more consistent parcellation compared to FAST, while successfully removing the subcortical structure and cleaning the edges of the cortical grey matter. This method show promising refinement of the FAST segmentation by considerably reducing manual input and editing required from the user, and further improving reliability and processing time of neonatal MR images. Further improvement will include a larger dataset of training images acquired from different manufacturers.
NASA Astrophysics Data System (ADS)
Karasawa, Kenichi; Oda, Masahiro; Hayashi, Yuichiro; Nimura, Yukitaka; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Rueckert, Daniel; Mori, Kensaku
2015-03-01
Abdominal organ segmentations from CT volumes are now widely used in the computer-aided diagnosis and surgery assistance systems. Among abdominal organs, the pancreas is especially difficult to segment because of its large individual differences of the shape and position. In this paper, we propose a new pancreas segmentation method from 3D abdominal CT volumes using patient-specific weighted-subspatial probabilistic atlases. First of all, we perform normalization of organ shapes in training volumes and an input volume. We extract the Volume Of Interest (VOI) of the pancreas from the training volumes and an input volume. We divide each training VOI and input VOI into some cubic regions. We use a nonrigid registration method to register these cubic regions of the training VOI to corresponding regions of the input VOI. Based on the registration results, we calculate similarities between each cubic region of the training VOI and corresponding region of the input VOI. We select cubic regions of training volumes having the top N similarities in each cubic region. We subspatially construct probabilistic atlases weighted by the similarities in each cubic region. After integrating these probabilistic atlases in cubic regions into one, we perform a rough-to-precise segmentation of the pancreas using the atlas. The results of the experiments showed that utilization of the training volumes having the top N similarities in each cubic region led good results of the pancreas segmentation. The Jaccard Index and the average surface distance of the result were 58.9% and 2.04mm on average, respectively.
Knowledge-based segmentation of pediatric kidneys in CT for measuring parenchymal volume
NASA Astrophysics Data System (ADS)
Brown, Matthew S.; Feng, Waldo C.; Hall, Theodore R.; McNitt-Gray, Michael F.; Churchill, Bernard M.
2000-06-01
The purpose of this work was to develop an automated method for segmenting pediatric kidneys in contrast-enhanced helical CT images and measuring the volume of the renal parenchyma. An automated system was developed to segment the abdomen, spine, aorta and kidneys. The expected size, shape, topology an X-ray attenuation of anatomical structures are stored as features in an anatomical model. These features guide 3-D threshold-based segmentation and then matching of extracted image regions to anatomical structures in the model. Following segmentation, the kidney volumes are calculated by summing included voxels. To validate the system, the kidney volumes of 4 swine were calculated using our approach and compared to the 'true' volumes measured after harvesting the kidneys. Automated volume calculations were also performed retrospectively in a cohort of 10 children. The mean difference between the calculated and measured values in the swine kidneys was 1.38 (S.D. plus or minus 0.44) cc. For the pediatric cases, calculated volumes ranged from 41.7 - 252.1 cc/kidney, and the mean ratio of right to left kidney volume was 0.96 (S.D. plus or minus 0.07). These results demonstrate the accuracy of the volumetric technique that may in the future provide an objective assessment of renal damage.
Hatt, Mathieu; Laurent, Baptiste; Fayad, Hadi; Jaouen, Vincent; Visvikis, Dimitris; Le Rest, Catherine Cheze
2018-04-01
Sphericity has been proposed as a parameter for characterizing PET tumour volumes, with complementary prognostic value with respect to SUV and volume in both head and neck cancer and lung cancer. The objective of the present study was to investigate its dependency on tumour delineation and the resulting impact on its prognostic value. Five segmentation methods were considered: two thresholds (40% and 50% of SUV max ), ant colony optimization, fuzzy locally adaptive Bayesian (FLAB), and gradient-aided region-based active contour. The accuracy of each method in extracting sphericity was evaluated using a dataset of 176 simulated, phantom and clinical PET images of tumours with associated ground truth. The prognostic value of sphericity and its complementary value with respect to volume for each segmentation method was evaluated in a cohort of 87 patients with stage II/III lung cancer. Volume and associated sphericity values were dependent on the segmentation method. The correlation between segmentation accuracy and sphericity error was moderate (|ρ| from 0.24 to 0.57). The accuracy in measuring sphericity was not dependent on volume (|ρ| < 0.4). In the patients with lung cancer, sphericity had prognostic value, although lower than that of volume, except for that derived using FLAB for which when combined with volume showed a small improvement over volume alone (hazard ratio 2.67, compared with 2.5). Substantial differences in patient prognosis stratification were observed depending on the segmentation method used. Tumour functional sphericity was found to be dependent on the segmentation method, although the accuracy in retrieving the true sphericity was not dependent on tumour volume. In addition, even accurate segmentation can lead to an inaccurate sphericity value, and vice versa. Sphericity had similar or lower prognostic value than volume alone in the patients with lung cancer, except when determined using the FLAB method for which there was a small improvement in stratification when the parameters were combined.
A novel approach to segmentation and measurement of medical image using level set methods.
Chen, Yao-Tien
2017-06-01
The study proposes a novel approach for segmentation and visualization plus value-added surface area and volume measurements for brain medical image analysis. The proposed method contains edge detection and Bayesian based level set segmentation, surface and volume rendering, and surface area and volume measurements for 3D objects of interest (i.e., brain tumor, brain tissue, or whole brain). Two extensions based on edge detection and Bayesian level set are first used to segment 3D objects. Ray casting and a modified marching cubes algorithm are then adopted to facilitate volume and surface visualization of medical-image dataset. To provide physicians with more useful information for diagnosis, the surface area and volume of an examined 3D object are calculated by the techniques of linear algebra and surface integration. Experiment results are finally reported in terms of 3D object extraction, surface and volume rendering, and surface area and volume measurements for medical image analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Looney, Pádraig; Stevenson, Gordon N; Nicolaides, Kypros H; Plasencia, Walter; Molloholli, Malid; Natsis, Stavros; Collins, Sally L
2018-06-07
We present a new technique to fully automate the segmentation of an organ from 3D ultrasound (3D-US) volumes, using the placenta as the target organ. Image analysis tools to estimate organ volume do exist but are too time consuming and operator dependant. Fully automating the segmentation process would potentially allow the use of placental volume to screen for increased risk of pregnancy complications. The placenta was segmented from 2,393 first trimester 3D-US volumes using a semiautomated technique. This was quality controlled by three operators to produce the "ground-truth" data set. A fully convolutional neural network (OxNNet) was trained using this ground-truth data set to automatically segment the placenta. OxNNet delivered state-of-the-art automatic segmentation. The effect of training set size on the performance of OxNNet demonstrated the need for large data sets. The clinical utility of placental volume was tested by looking at predictions of small-for-gestational-age babies at term. The receiver-operating characteristics curves demonstrated almost identical results between OxNNet and the ground-truth). Our results demonstrated good similarity to the ground-truth and almost identical clinical results for the prediction of SGA.
Queiroz, Polyane Mazucatto; Rovaris, Karla; Santaella, Gustavo Machado; Haiter-Neto, Francisco; Freitas, Deborah Queiroz
2017-01-01
To calculate root canal volume and surface area in microCT images, an image segmentation by selecting threshold values is required, which can be determined by visual or automatic methods. Visual determination is influenced by the operator's visual acuity, while the automatic method is done entirely by computer algorithms. To compare between visual and automatic segmentation, and to determine the influence of the operator's visual acuity on the reproducibility of root canal volume and area measurements. Images from 31 extracted human anterior teeth were scanned with a μCT scanner. Three experienced examiners performed visual image segmentation, and threshold values were recorded. Automatic segmentation was done using the "Automatic Threshold Tool" available in the dedicated software provided by the scanner's manufacturer. Volume and area measurements were performed using the threshold values determined both visually and automatically. The paired Student's t-test showed no significant difference between visual and automatic segmentation methods regarding root canal volume measurements (p=0.93) and root canal surface (p=0.79). Although visual and automatic segmentation methods can be used to determine the threshold and calculate root canal volume and surface, the automatic method may be the most suitable for ensuring the reproducibility of threshold determination.
Unsupervised fuzzy segmentation of 3D magnetic resonance brain images
NASA Astrophysics Data System (ADS)
Velthuizen, Robert P.; Hall, Lawrence O.; Clarke, Laurence P.; Bensaid, Amine M.; Arrington, J. A.; Silbiger, Martin L.
1993-07-01
Unsupervised fuzzy methods are proposed for segmentation of 3D Magnetic Resonance images of the brain. Fuzzy c-means (FCM) has shown promising results for segmentation of single slices. FCM has been investigated for volume segmentations, both by combining results of single slices and by segmenting the full volume. Different strategies and initializations have been tried. In particular, two approaches have been used: (1) a method by which, iteratively, the furthest sample is split off to form a new cluster center, and (2) the traditional FCM in which the membership grade matrix is initialized in some way. Results have been compared with volume segmentations by k-means and with two supervised methods, k-nearest neighbors and region growing. Results of individual segmentations are presented as well as comparisons on the application of the different methods to a number of tumor patient data sets.
Validation of Body Volume Acquisition by Using Elliptical Zone Method.
Chiu, C-Y; Pease, D L; Fawkner, S; Sanders, R H
2016-12-01
The elliptical zone method (E-Zone) can be used to obtain reliable body volume data including total body volume and segmental volumes with inexpensive and portable equipment. The purpose of this research was to assess the accuracy of body volume data obtained from E-Zone by comparing them with those acquired from the 3D photonic scanning method (3DPS). 17 male participants with diverse somatotypes were recruited. Each participant was scanned twice on the same day by a 3D whole-body scanner and photographed twice for the E-Zone analysis. The body volume data acquired from 3DPS was regarded as the reference against which the accuracy of the E-Zone was assessed. The relative technical error of measurement (TEM) of total body volume estimations was around 3% for E-Zone. E-Zone can estimate the segmental volumes of upper torso, lower torso, thigh, shank, upper arm and lower arm accurately (relative TEM<10%) but the accuracy for small segments including the neck, hand and foot were poor. In summary, E-Zone provides a reliable, inexpensive, portable, and simple method to obtain reasonable estimates of total body volume and to indicate segmental volume distribution. © Georg Thieme Verlag KG Stuttgart · New York.
Wagner, Maximilian E H; Gellrich, Nils-Claudius; Friese, Karl-Ingo; Becker, Matthias; Wolter, Franz-Erich; Lichtenstein, Juergen T; Stoetzer, Marcus; Rana, Majeed; Essig, Harald
2016-01-01
Objective determination of the orbital volume is important in the diagnostic process and in evaluating the efficacy of medical and/or surgical treatment of orbital diseases. Tools designed to measure orbital volume with computed tomography (CT) often cannot be used with cone beam CT (CBCT) because of inferior tissue representation, although CBCT has the benefit of greater availability and lower patient radiation exposure. Therefore, a model-based segmentation technique is presented as a new method for measuring orbital volume and compared to alternative techniques. Both eyes from thirty subjects with no known orbital pathology who had undergone CBCT as a part of routine care were evaluated (n = 60 eyes). Orbital volume was measured with manual, atlas-based, and model-based segmentation methods. Volume measurements, volume determination time, and usability were compared between the three methods. Differences in means were tested for statistical significance using two-tailed Student's t tests. Neither atlas-based (26.63 ± 3.15 mm(3)) nor model-based (26.87 ± 2.99 mm(3)) measurements were significantly different from manual volume measurements (26.65 ± 4.0 mm(3)). However, the time required to determine orbital volume was significantly longer for manual measurements (10.24 ± 1.21 min) than for atlas-based (6.96 ± 2.62 min, p < 0.001) or model-based (5.73 ± 1.12 min, p < 0.001) measurements. All three orbital volume measurement methods examined can accurately measure orbital volume, although atlas-based and model-based methods seem to be more user-friendly and less time-consuming. The new model-based technique achieves fully automated segmentation results, whereas all atlas-based segmentations at least required manipulations to the anterior closing. Additionally, model-based segmentation can provide reliable orbital volume measurements when CT image quality is poor.
Fully automatic multi-atlas segmentation of CTA for partial volume correction in cardiac SPECT/CT
NASA Astrophysics Data System (ADS)
Liu, Qingyi; Mohy-ud-Din, Hassan; Boutagy, Nabil E.; Jiang, Mingyan; Ren, Silin; Stendahl, John C.; Sinusas, Albert J.; Liu, Chi
2017-05-01
Anatomical-based partial volume correction (PVC) has been shown to improve image quality and quantitative accuracy in cardiac SPECT/CT. However, this method requires manual segmentation of various organs from contrast-enhanced computed tomography angiography (CTA) data. In order to achieve fully automatic CTA segmentation for clinical translation, we investigated the most common multi-atlas segmentation methods. We also modified the multi-atlas segmentation method by introducing a novel label fusion algorithm for multiple organ segmentation to eliminate overlap and gap voxels. To evaluate our proposed automatic segmentation, eight canine 99mTc-labeled red blood cell SPECT/CT datasets that incorporated PVC were analyzed, using the leave-one-out approach. The Dice similarity coefficient of each organ was computed. Compared to the conventional label fusion method, our proposed label fusion method effectively eliminated gaps and overlaps and improved the CTA segmentation accuracy. The anatomical-based PVC of cardiac SPECT images with automatic multi-atlas segmentation provided consistent image quality and quantitative estimation of intramyocardial blood volume, as compared to those derived using manual segmentation. In conclusion, our proposed automatic multi-atlas segmentation method of CTAs is feasible, practical, and facilitates anatomical-based PVC of cardiac SPECT/CT images.
Multi-scale hippocampal parcellation improves atlas-based segmentation accuracy
NASA Astrophysics Data System (ADS)
Plassard, Andrew J.; McHugo, Maureen; Heckers, Stephan; Landman, Bennett A.
2017-02-01
Known for its distinct role in memory, the hippocampus is one of the most studied regions of the brain. Recent advances in magnetic resonance imaging have allowed for high-contrast, reproducible imaging of the hippocampus. Typically, a trained rater takes 45 minutes to manually trace the hippocampus and delineate the anterior from the posterior segment at millimeter resolution. As a result, there has been a significant desire for automated and robust segmentation of the hippocampus. In this work we use a population of 195 atlases based on T1-weighted MR images with the left and right hippocampus delineated into the head and body. We initialize the multi-atlas segmentation to a region directly around each lateralized hippocampus to both speed up and improve the accuracy of registration. This initialization allows for incorporation of nearly 200 atlases, an accomplishment which would typically involve hundreds of hours of computation per target image. The proposed segmentation results in a Dice similiarity coefficient over 0.9 for the full hippocampus. This result outperforms a multi-atlas segmentation using the BrainCOLOR atlases (Dice 0.85) and FreeSurfer (Dice 0.75). Furthermore, the head and body delineation resulted in a Dice coefficient over 0.87 for both structures. The head and body volume measurements also show high reproducibility on the Kirby 21 reproducibility population (R2 greater than 0.95, p < 0.05 for all structures). This work signifies the first result in an ongoing work to develop a robust tool for measurement of the hippocampus and other temporal lobe structures.
NASA Astrophysics Data System (ADS)
Bruns, S.; Stipp, S. L. S.; Sørensen, H. O.
2017-09-01
Digital rock physics carries the dogmatic concept of having to segment volume images for quantitative analysis but segmentation rejects huge amounts of signal information. Information that is essential for the analysis of difficult and marginally resolved samples, such as materials with very small features, is lost during segmentation. In X-ray nanotomography reconstructions of Hod chalk we observed partial volume voxels with an abundance that limits segmentation based analysis. Therefore, we investigated the suitability of greyscale analysis for establishing statistical representative elementary volumes (sREV) for the important petrophysical parameters of this type of chalk, namely porosity, specific surface area and diffusive tortuosity, by using volume images without segmenting the datasets. Instead, grey level intensities were transformed to a voxel level porosity estimate using a Gaussian mixture model. A simple model assumption was made that allowed formulating a two point correlation function for surface area estimates using Bayes' theory. The same assumption enables random walk simulations in the presence of severe partial volume effects. The established sREVs illustrate that in compacted chalk, these simulations cannot be performed in binary representations without increasing the resolution of the imaging system to a point where the spatial restrictions of the represented sample volume render the precision of the measurement unacceptable. We illustrate this by analyzing the origins of variance in the quantitative analysis of volume images, i.e. resolution dependence and intersample and intrasample variance. Although we cannot make any claims on the accuracy of the approach, eliminating the segmentation step from the analysis enables comparative studies with higher precision and repeatability.
Automated 3D renal segmentation based on image partitioning
NASA Astrophysics Data System (ADS)
Yeghiazaryan, Varduhi; Voiculescu, Irina D.
2016-03-01
Despite several decades of research into segmentation techniques, automated medical image segmentation is barely usable in a clinical context, and still at vast user time expense. This paper illustrates unsupervised organ segmentation through the use of a novel automated labelling approximation algorithm followed by a hypersurface front propagation method. The approximation stage relies on a pre-computed image partition forest obtained directly from CT scan data. We have implemented all procedures to operate directly on 3D volumes, rather than slice-by-slice, because our algorithms are dimensionality-independent. The results picture segmentations which identify kidneys, but can easily be extrapolated to other body parts. Quantitative analysis of our automated segmentation compared against hand-segmented gold standards indicates an average Dice similarity coefficient of 90%. Results were obtained over volumes of CT data with 9 kidneys, computing both volume-based similarity measures (such as the Dice and Jaccard coefficients, true positive volume fraction) and size-based measures (such as the relative volume difference). The analysis considered both healthy and diseased kidneys, although extreme pathological cases were excluded from the overall count. Such cases are difficult to segment both manually and automatically due to the large amplitude of Hounsfield unit distribution in the scan, and the wide spread of the tumorous tissue inside the abdomen. In the case of kidneys that have maintained their shape, the similarity range lies around the values obtained for inter-operator variability. Whilst the procedure is fully automated, our tools also provide a light level of manual editing.
Kalpathy-Cramer, Jayashree; Zhao, Binsheng; Goldgof, Dmitry; Gu, Yuhua; Wang, Xingwei; Yang, Hao; Tan, Yongqiang; Gillies, Robert; Napel, Sandy
2016-08-01
Tumor volume estimation, as well as accurate and reproducible borders segmentation in medical images, are important in the diagnosis, staging, and assessment of response to cancer therapy. The goal of this study was to demonstrate the feasibility of a multi-institutional effort to assess the repeatability and reproducibility of nodule borders and volume estimate bias of computerized segmentation algorithms in CT images of lung cancer, and to provide results from such a study. The dataset used for this evaluation consisted of 52 tumors in 41 CT volumes (40 patient datasets and 1 dataset containing scans of 12 phantom nodules of known volume) from five collections available in The Cancer Imaging Archive. Three academic institutions developing lung nodule segmentation algorithms submitted results for three repeat runs for each of the nodules. We compared the performance of lung nodule segmentation algorithms by assessing several measurements of spatial overlap and volume measurement. Nodule sizes varied from 29 μl to 66 ml and demonstrated a diversity of shapes. Agreement in spatial overlap of segmentations was significantly higher for multiple runs of the same algorithm than between segmentations generated by different algorithms (p < 0.05) and was significantly higher on the phantom dataset compared to the other datasets (p < 0.05). Algorithms differed significantly in the bias of the measured volumes of the phantom nodules (p < 0.05) underscoring the need for assessing performance on clinical data in addition to phantoms. Algorithms that most accurately estimated nodule volumes were not the most repeatable, emphasizing the need to evaluate both their accuracy and precision. There were considerable differences between algorithms, especially in a subset of heterogeneous nodules, underscoring the recommendation that the same software be used at all time points in longitudinal studies.
MRI Brain Tumor Segmentation and Necrosis Detection Using Adaptive Sobolev Snakes.
Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen
2014-03-21
Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at different points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D diffusion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation.
MRI brain tumor segmentation and necrosis detection using adaptive Sobolev snakes
NASA Astrophysics Data System (ADS)
Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen
2014-03-01
Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at di erent points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D di usion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation.
Automated 3D Ultrasound Image Segmentation to Aid Breast Cancer Image Interpretation
Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A.; Yuan, Jie; Wang, Xueding; Carson, Paul L.
2015-01-01
Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer. PMID:26547117
Automated 3D ultrasound image segmentation for assistant diagnosis of breast cancer
NASA Astrophysics Data System (ADS)
Wang, Yuxin; Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A.; Du, Sidan; Yuan, Jie; Wang, Xueding; Carson, Paul L.
2016-04-01
Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.
Multi-atlas pancreas segmentation: Atlas selection based on vessel structure.
Karasawa, Ken'ichi; Oda, Masahiro; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Chu, Chengwen; Zheng, Guoyan; Rueckert, Daniel; Mori, Kensaku
2017-07-01
Automated organ segmentation from medical images is an indispensable component for clinical applications such as computer-aided diagnosis (CAD) and computer-assisted surgery (CAS). We utilize a multi-atlas segmentation scheme, which has recently been used in different approaches in the literature to achieve more accurate and robust segmentation of anatomical structures in computed tomography (CT) volume data. Among abdominal organs, the pancreas has large inter-patient variability in its position, size and shape. Moreover, the CT intensity of the pancreas closely resembles adjacent tissues, rendering its segmentation a challenging task. Due to this, conventional intensity-based atlas selection for pancreas segmentation often fails to select atlases that are similar in pancreas position and shape to those of the unlabeled target volume. In this paper, we propose a new atlas selection strategy based on vessel structure around the pancreatic tissue and demonstrate its application to a multi-atlas pancreas segmentation. Our method utilizes vessel structure around the pancreas to select atlases with high pancreatic resemblance to the unlabeled volume. Also, we investigate two types of applications of the vessel structure information to the atlas selection. Our segmentations were evaluated on 150 abdominal contrast-enhanced CT volumes. The experimental results showed that our approach can segment the pancreas with an average Jaccard index of 66.3% and an average Dice overlap coefficient of 78.5%. Copyright © 2017 Elsevier B.V. All rights reserved.
Semi-automated brain tumor and edema segmentation using MRI.
Xie, Kai; Yang, Jie; Zhang, Z G; Zhu, Y M
2005-10-01
Manual segmentation of brain tumors from magnetic resonance images is a challenging and time-consuming task. A semi-automated method has been developed for brain tumor and edema segmentation that will provide objective, reproducible segmentations that are close to the manual results. Additionally, the method segments non-enhancing brain tumor and edema from healthy tissues in magnetic resonance images. In this study, a semi-automated method was developed for brain tumor and edema segmentation and volume measurement using magnetic resonance imaging (MRI). Some novel algorithms for tumor segmentation from MRI were integrated in this medical diagnosis system. We exploit a hybrid level set (HLS) segmentation method driven by region and boundary information simultaneously, region information serves as a propagation force which is robust and boundary information serves as a stopping functional which is accurate. Ten different patients with brain tumors of different size, shape and location were selected, a total of 246 axial tumor-containing slices obtained from 10 patients were used to evaluate the effectiveness of segmentation methods. This method was applied to 10 non-enhancing brain tumors and satisfactory results were achieved. Two quantitative measures for tumor segmentation quality estimation, namely, correspondence ratio (CR) and percent matching (PM), were performed. For the segmentation of brain tumor, the volume total PM varies from 79.12 to 93.25% with the mean of 85.67+/-4.38% while the volume total CR varies from 0.74 to 0.91 with the mean of 0.84+/-0.07. For the segmentation of edema, the volume total PM varies from 72.86 to 87.29% with the mean of 79.54+/-4.18% while the volume total CR varies from 0.69 to 0.85 with the mean of 0.79+/-0.08. The HLS segmentation method perform better than the classical level sets (LS) segmentation method in PM and CR. The results of this research may have potential applications, both as a staging procedure and a method of evaluating tumor response during treatment, this method can be used as a clinical image analysis tool for doctors or radiologists.
Thomas, Marianna S; Newman, David; Leinhard, Olof Dahlqvist; Kasmai, Bahman; Greenwood, Richard; Malcolm, Paul N; Karlsson, Anette; Rosander, Johannes; Borga, Magnus; Toms, Andoni P
2014-09-01
To measure the test-retest reproducibility of an automated system for quantifying whole body and compartmental muscle volumes using wide bore 3 T MRI. Thirty volunteers stratified by body mass index underwent whole body 3 T MRI, two-point Dixon sequences, on two separate occasions. Water-fat separation was performed, with automated segmentation of whole body, torso, upper and lower leg volumes, and manually segmented lower leg muscle volumes. Mean automated total body muscle volume was 19·32 L (SD9·1) and 19·28 L (SD9·12) for first and second acquisitions (Intraclass correlation coefficient (ICC) = 1·0, 95% level of agreement -0·32-0·2 L). ICC for all automated test-retest muscle volumes were almost perfect (0·99-1·0) with 95% levels of agreement 1.8-6.6% of mean volume. Automated muscle volume measurements correlate closely with manual quantification (right lower leg: manual 1·68 L (2SD0·6) compared to automated 1·64 L (2SD 0·6), left lower leg: manual 1·69 L (2SD 0·64) compared to automated 1·63 L (SD0·61), correlation coefficients for automated and manual segmentation were 0·94-0·96). Fully automated whole body and compartmental muscle volume quantification can be achieved rapidly on a 3 T wide bore system with very low margins of error, excellent test-retest reliability and excellent correlation to manual segmentation in the lower leg. Sarcopaenia is an important reversible complication of a number of diseases. Manual quantification of muscle volume is time-consuming and expensive. Muscles can be imaged using in and out of phase MRI. Automated atlas-based segmentation can identify muscle groups. Automated muscle volume segmentation is reproducible and can replace manual measurements.
Comparison of in vivo 3D cone-beam computed tomography tooth volume measurement protocols.
Forst, Darren; Nijjar, Simrit; Flores-Mir, Carlos; Carey, Jason; Secanell, Marc; Lagravere, Manuel
2014-12-23
The objective of this study is to analyze a set of previously developed and proposed image segmentation protocols for precision in both intra- and inter-rater reliability for in vivo tooth volume measurements using cone-beam computed tomography (CBCT) images. Six 3D volume segmentation procedures were proposed and tested for intra- and inter-rater reliability to quantify maxillary first molar volumes. Ten randomly selected maxillary first molars were measured in vivo in random order three times with 10 days separation between measurements. Intra- and inter-rater agreement for all segmentation procedures was attained using intra-class correlation coefficient (ICC). The highest precision was for automated thresholding with manual refinements. A tooth volume measurement protocol for CBCT images employing automated segmentation with manual human refinement on a 2D slice-by-slice basis in all three planes of space possessed excellent intra- and inter-rater reliability. Three-dimensional volume measurements of the entire tooth structure are more precise than 3D volume measurements of only the dental roots apical to the cemento-enamel junction (CEJ).
Three-Dimensional Eyeball and Orbit Volume Modification After LeFort III Midface Distraction.
Smektala, Tomasz; Nysjö, Johan; Thor, Andreas; Homik, Aleksandra; Sporniak-Tutak, Katarzyna; Safranow, Krzysztof; Dowgierd, Krzysztof; Olszewski, Raphael
2015-07-01
The aim of our study was to evaluate orbital volume modification with LeFort III midface distraction in patients with craniosynostosis and its influence on eyeball volume and axial diameter modification. Orbital volume was assessed by the semiautomatic segmentation method based on deformable surface models and on 3-dimensional (3D) interaction with haptics. The eyeball volumes and diameters were automatically calculated after manual segmentation of computed tomographic scans with 3D slicer software. The mean, minimal, and maximal differences as well as the standard deviation and intraclass correlation coefficient (ICC) for intraobserver and interobserver measurements reliability were calculated. The Wilcoxon signed rank test was used to compare measured values before and after surgery. P < 0.05 was considered statistically significant. Intraobserver and interobserver ICC for haptic-aided semiautomatic orbital volume measurements were 0.98 and 0.99, respectively. The intraobserver and interobserver ICC values for manual segmentation of the eyeball volume were 0.87 and 0.86, respectively. The orbital volume increased significantly after surgery: 30.32% (mean, 5.96 mL) for the left orbit and 31.04% (mean, 6.31 mL) for the right orbit. The mean increase in eyeball volume was 12.3%. The mean increases in the eyeball axial dimensions were 7.3%, 9.3%, and 4.4% for the X-, Y-, and Z-axes, respectively. The Wilcoxon signed rank test showed that preoperative and postoperative eyeball volumes, as well as the diameters along the X- and Y-axes, were statistically significant. Midface distraction in patients with syndromic craniostenosis results in a significant increase (P < 0.05) in the orbit and eyeball volumes. The 2 methods (haptic-aided semiautomatic segmentation and manual 3D slicer segmentation) are reproducible techniques for orbit and eyeball volume measurements.
Brain tissue volumes in the general elderly population. The Rotterdam Scan Study.
Ikram, M Arfan; Vrooman, Henri A; Vernooij, Meike W; van der Lijn, Fedde; Hofman, Albert; van der Lugt, Aad; Niessen, Wiro J; Breteler, Monique M B
2008-06-01
We investigated how volumes of cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) varied with age, sex, small vessel disease and cardiovascular risk factors in the Rotterdam Scan Study. Participants (n=490; 60-90 years) were non-demented and 51.0% had hypertension, 4.9% had diabetes mellitus, 17.8% were current smoker and 54.0% were former smoker. We segmented brain MR-images into GM, normal WM, white matter lesion (WML) and CSF. Brain infarcts were rated visually. Volumes were expressed as percentage of intra-cranial volume. With increasing age, volumes of total brain, normal WM and total WM decreased; that of GM remained unchanged; and that of WML increased, in both men and women. Excluding persons with infarcts did not alter these results. Persons with larger load of small vessel disease had smaller brain volume, especially normal WM volume. Diastolic blood pressure, diabetes mellitus and current smoking were also related to smaller brain volume. In the elderly, higher age, small vessel disease and cardiovascular risk factors are associated with smaller brain volume, especially WM volume.
Tang, X; Liu, H; Chen, L; Wang, Q; Luo, B; Xiang, N; He, Y; Zhu, W; Zhang, J
2018-05-24
To investigate the accuracy of two semi-automatic segmentation measurements based on magnetic resonance imaging (MRI) three-dimensional (3D) Cube fast spin echo (FSE)-flex sequence in phantoms, and to evaluate the feasibility of determining the volumetric alterations of orbital fat (OF) and total extraocular muscles (TEM) in patients with thyroid-associated ophthalmopathy (TAO) by semi-automatic segmentation. Forty-four fatty (n=22) and lean (n=22) phantoms were scanned by using Cube FSE-flex sequence with a 3 T MRI system. Their volumes were measured by manual segmentation (MS) and two semi-automatic segmentation algorithms (regional growing [RG], multi-dimensional threshold [MDT]). Pearson correlation and Bland-Altman analysis were used to evaluate the measuring accuracy of MS, RG, and MDT in phantoms as compared with the true volume. Then, OF and TEM volumes of 15 TAO patients and 15 normal controls were measured using MDT. Paired-sample t-tests were used to compare the volumes and volume ratios of different orbital tissues between TAO patients and controls. Each segmentation (MS RG, MDT) has a significant correlation (p<0.01) with true volume. There was a minimal bias for MS, and a stronger agreement between MDT and the true volume than RG and the true volume both in fatty and lean phantoms. The reproducibility of Cube FSE-flex determined MDT was adequate. The volumetric ratios of OF/globe (p<0.01), TEM/globe (p<0.01), whole orbit/globe (p<0.01) and bone orbit/globe (p<0.01) were significantly greater in TAO patients than those in healthy controls. MRI Cube FSE-flex determined MDT is a relatively accurate semi-automatic segmentation that can be used to evaluate OF and TEM volumes in clinic. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
SU-F-J-95: Impact of Shape Complexity On the Accuracy of Gradient-Based PET Volume Delineation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dance, M; Wu, G; Gao, Y
2016-06-15
Purpose: Explore correlation of tumor complexity shape with PET target volume accuracy when delineated with gradient-based segmentation tool. Methods: A total of 24 clinically realistic digital PET Monte Carlo (MC) phantoms of NSCLC were used in the study. The phantom simulated 29 thoracic lesions (lung primary and mediastinal lymph nodes) of varying size, shape, location, and {sup 18}F-FDG activity. A program was developed to calculate a curvature vector along the outline and the standard deviation of this vector was used as a metric to quantify a shape’s “complexity score”. This complexity score was calculated for standard geometric shapes and MC-generatedmore » target volumes in PET phantom images. All lesions were contoured using a commercially available gradient-based segmentation tool and the differences in volume from the MC-generated volumes were calculated as the measure of the accuracy of segmentation. Results: The average absolute percent difference in volumes between the MC-volumes and gradient-based volumes was 11% (0.4%–48.4%). The complexity score showed strong correlation with standard geometric shapes. However, no relationship was found between the complexity score and the accuracy of segmentation by gradient-based tool on MC simulated tumors (R{sup 2} = 0.156). When the lesions were grouped into primary lung lesions and mediastinal/mediastinal adjacent lesions, the average absolute percent difference in volumes were 6% and 29%, respectively. The former group is more isolated and the latter is more surround by tissues with relatively high SUV background. Conclusion: The complexity shape of NSCLC lesions has little effect on the accuracy of the gradient-based segmentation method and thus is not a good predictor of uncertainty in target volume delineation. Location of lesion within a relatively high SUV background may play a more significant role in the accuracy of gradient-based segmentation.« less
Sugihara, Fumie; Murata, Satoru; Ueda, Tatsuo; Yasui, Daisuke; Yamaguchi, Hidenori; Miki, Izumi; Kawamoto, Chiaki; Uchida, Eiji; Kumita, Shin-Ichiro
2017-06-01
To investigate haemodynamic changes in hepatocellular carcinoma (HCC) and liver under hepatic artery occlusion. Thirty-eight HCC nodules in 25 patients were included. Computed tomography (CT) during hepatic arteriography (CTHA) with and without balloon occlusion of the hepatic artery was performed. CT attenuation and enhancement volume of HCC and liver with and without balloon occlusion were measured on CTHA. Influence of balloon position (segmental or subsegmental branch) was evaluated based on differences in HCC-to-liver attenuation ratio (H/L ratio) and enhancement volume of HCC and liver. In the segmental group (n = 20), H/L ratio and enhancement volume of HCC and liver were significantly lower with balloon occlusion than without balloon occlusion. However, in the subsegmental group (n = 18), H/L ratio was significantly higher and liver enhancement volume was significantly lower with balloon occlusion; HCC enhancement volume was similar with and without balloon occlusion. Rate of change in H/L ratio and enhancement volume of HCC and liver were lower in the segmental group than in the subsegmental group. There were significantly more perfusion defects in HCC in the segmental group. Hepatic artery occlusion causes haemodynamic changes in HCC and liver, especially with segmental occlusion. • Hepatic artery occlusion causes haemodynamic changes in hepatocellular carcinoma and liver. • Segmental occlusion decreased rate of change in hepatocellular carcinoma-to-liver attenuation ratio. • Subsegmental occlusion increased rate of change in hepatocellular carcinoma-to-liver attenuation ratio. • Hepatic artery occlusion decreased enhancement volume of hepatocellular carcinoma and liver. • Hepatic artery occlusion causes perfusion defects in hepatocellular carcinoma.
Padilla, Nelly; Forsman, Lea; Broström, Lina; Hellgren, Kerstin; Åden, Ulrika
2018-01-01
Objectives This exploratory study aimed to investigate associations between neonatal brain volumes and visual–motor integration (VMI) and fine motor skills in children born extremely preterm (EPT) when they reached 6½ years of age. Setting Prospective population-based cohort study in Stockholm, Sweden, during 3 years. Participants All children born before gestational age, 27 weeks, during 2004–2007 in Stockholm, without major morbidities and impairments, and who underwent MRI at term-equivalent age. Main outcome measures Brain volumes were calculated using morphometric analyses in regions known to be involved in VMI and fine motor functions. VMI was assessed with The Beery-Buktenica Developmental Test of Visual–Motor Integration—sixth edition and fine motor skills were assessed with the manual dexterity subtest from the Movement Assessment Battery for Children—second edition, at 6½ years. Associations between the brain volumes and VMI and fine motor skills were evaluated using partial correlation, adjusted for total cerebral parenchyma and sex. Results Out of 107 children born at gestational age <27 weeks, 83 were assessed at 6½ years and 66/83 were without major brain lesions or cerebral palsy and included in the analyses. A representative subsample underwent morphometric analyses: automatic segmentation (n=34) and atlas-based segmentation (n=26). The precentral gyrus was associated with both VMI (r=0.54, P=0.007) and fine motor skills (r=0.54, P=0.01). Associations were also seen between fine motor skills and the volume of the cerebellum (r=0.42, P=0.02), brainstem (r=0.47, P=0.008) and grey matter (r=−0.38, P=0.04). Conclusions Neonatal brain volumes in areas known to be involved in VMI and fine motor skills were associated with scores for these two functions when children born EPT without major brain lesions or cerebral palsy were evaluated at 6½ years of age. Establishing clear associations between early brain volume alterations and later VMI and/or fine motor skills could make early interventions possible. PMID:29455171
NASA Astrophysics Data System (ADS)
Gloger, Oliver; Tönnies, Klaus; Bülow, Robin; Völzke, Henry
2017-07-01
To develop the first fully automated 3D spleen segmentation framework derived from T1-weighted magnetic resonance (MR) imaging data and to verify its performance for spleen delineation and volumetry. This approach considers the issue of low contrast between spleen and adjacent tissue in non-contrast-enhanced MR images. Native T1-weighted MR volume data was performed on a 1.5 T MR system in an epidemiological study. We analyzed random subsamples of MR examinations without pathologies to develop and verify the spleen segmentation framework. The framework is modularized to include different kinds of prior knowledge into the segmentation pipeline. Classification by support vector machines differentiates between five different shape types in computed foreground probability maps and recognizes characteristic spleen regions in axial slices of MR volume data. A spleen-shape space generated by training produces subject-specific prior shape knowledge that is then incorporated into a final 3D level set segmentation method. Individually adapted shape-driven forces as well as image-driven forces resulting from refined foreground probability maps steer the level set successfully to the segment the spleen. The framework achieves promising segmentation results with mean Dice coefficients of nearly 0.91 and low volumetric mean errors of 6.3%. The presented spleen segmentation approach can delineate spleen tissue in native MR volume data. Several kinds of prior shape knowledge including subject-specific 3D prior shape knowledge can be used to guide segmentation processes achieving promising results.
The Segmental Morphometric Properties of the Horse Cervical Spinal Cord: A Study of Cadaver
Bahar, Sadullah; Bolat, Durmus; Selcuk, Muhammet Lutfi
2013-01-01
Although the cervical spinal cord (CSC) of the horse has particular importance in diseases of CNS, there is very little information about its segmental morphometry. The objective of the present study was to determine the morphometric features of the CSC segments in the horse and possible relationships among the morphometric features. The segmented CSC from five mature animals was used. Length, weight, diameter, and volume measurements of the segments were performed macroscopically. Lengths and diameters of segments were measured histologically, and area and volume measurements were performed using stereological methods. The length, weight, and volume of the CSC were 61.6 ± 3.2 cm, 107.2 ± 10.4 g, and 95.5 ± 8.3 cm3, respectively. The length of the segments was increased from C 1 to C 3, while it decreased from C 3 to C 8. The gross section (GS), white matter (WM), grey matter (GM), dorsal horn (DH), and ventral horn (VH) had the largest cross-section areas at C 8. The highest volume was found for the total segment and WM at C 4, GM, DH, and VH at C 7, and the central canal (CC) at C 3. The data obtained not only contribute to the knowledge of the normal anatomy of the CSC but may also provide reference data for veterinary pathologists and clinicians. PMID:23476145
Bidirectional segmentation of prostate capsule from ultrasound volumes: an improved strategy
NASA Astrophysics Data System (ADS)
Wei, Liyang; Narayanan, Ramkrishnan; Kumar, Dinesh; Fenster, Aaron; Barqawi, Albaha; Werahera, Priya; Crawford, E. David; Suri, Jasjit S.
2008-03-01
Prostate volume is an indirect indicator for several prostate diseases. Volume estimation is a desired requirement during prostate biopsy, therapy and clinical follow up. Image segmentation is thus necessary. Previously, discrete dynamic contour (DDC) was implemented in orthogonal unidirectional on the slice-by-slice basis for prostate boundary estimation. This suffered from the glitch that it needed stopping criteria during the propagation of segmentation procedure from slice-to-slice. To overcome this glitch, axial DDC was implemented and this suffered from the fact that central axis never remains fixed and wobbles during propagation of segmentation from slice-to-slice. The effect of this was a multi-fold reconstructed surface. This paper presents a bidirectional DDC approach, thereby removing the two glitches. Our bidirectional DDC protocol was tested on a clinical dataset on 28 3-D ultrasound image volumes acquired using side fire Philips transrectal ultrasound. We demonstrate the orthogonal bidirectional DDC strategy achieved the most accurate volume estimation compared with previously published orthogonal unidirectional DDC and axial DDC methods. Compared to the ground truth, we show that the mean volume estimation errors were: 18.48%, 9.21% and 7.82% for unidirectional, axial and bidirectional DDC methods, respectively. The segmentation architecture is implemented in Visual C++ in Windows environment.
Segmentation propagation for the automated quantification of ventricle volume from serial MRI
NASA Astrophysics Data System (ADS)
Linguraru, Marius George; Butman, John A.
2009-02-01
Accurate ventricle volume estimates could potentially improve the understanding and diagnosis of communicating hydrocephalus. Postoperative communicating hydrocephalus has been recognized in patients with brain tumors where the changes in ventricle volume can be difficult to identify, particularly over short time intervals. Because of the complex alterations of brain morphology in these patients, the segmentation of brain ventricles is challenging. Our method evaluates ventricle size from serial brain MRI examinations; we (i) combined serial images to increase SNR, (ii) automatically segmented this image to generate a ventricle template using fast marching methods and geodesic active contours, and (iii) propagated the segmentation using deformable registration of the original MRI datasets. By applying this deformation to the ventricle template, serial volume estimates were obtained in a robust manner from routine clinical images (0.93 overlap) and their variation analyzed.
NASA Astrophysics Data System (ADS)
Deng, Xiang; Huang, Haibin; Zhu, Lei; Du, Guangwei; Xu, Xiaodong; Sun, Yiyong; Xu, Chenyang; Jolly, Marie-Pierre; Chen, Jiuhong; Xiao, Jie; Merges, Reto; Suehling, Michael; Rinck, Daniel; Song, Lan; Jin, Zhengyu; Jiang, Zhaoxia; Wu, Bin; Wang, Xiaohong; Zhang, Shuai; Peng, Weijun
2008-03-01
Comprehensive quantitative evaluation of tumor segmentation technique on large scale clinical data sets is crucial for routine clinical use of CT based tumor volumetry for cancer diagnosis and treatment response evaluation. In this paper, we present a systematic validation study of a semi-automatic image segmentation technique for measuring tumor volume from CT images. The segmentation algorithm was tested using clinical data of 200 tumors in 107 patients with liver, lung, lymphoma and other types of cancer. The performance was evaluated using both accuracy and reproducibility. The accuracy was assessed using 7 commonly used metrics that can provide complementary information regarding the quality of the segmentation results. The reproducibility was measured by the variation of the volume measurements from 10 independent segmentations. The effect of disease type, lesion size and slice thickness of image data on the accuracy measures were also analyzed. Our results demonstrate that the tumor segmentation algorithm showed good correlation with ground truth for all four lesion types (r = 0.97, 0.99, 0.97, 0.98, p < 0.0001 for liver, lung, lymphoma and other respectively). The segmentation algorithm can produce relatively reproducible volume measurements on all lesion types (coefficient of variation in the range of 10-20%). Our results show that the algorithm is insensitive to lesion size (coefficient of determination close to 0) and slice thickness of image data(p > 0.90). The validation framework used in this study has the potential to facilitate the development of new tumor segmentation algorithms and assist large scale evaluation of segmentation techniques for other clinical applications.
Dreizin, David; Bodanapally, Uttam K; Neerchal, Nagaraj; Tirada, Nikki; Patlas, Michael; Herskovits, Edward
2016-11-01
Manually segmented traumatic pelvic hematoma volumes are strongly predictive of active bleeding at conventional angiography, but the method is time intensive, limiting its clinical applicability. We compared volumetric analysis using semi-automated region growing segmentation to manual segmentation and diameter-based size estimates in patients with pelvic hematomas after blunt pelvic trauma. A 14-patient cohort was selected in an anonymous randomized fashion from a dataset of patients with pelvic binders at MDCT, collected retrospectively as part of a HIPAA-compliant IRB-approved study from January 2008 to December 2013. To evaluate intermethod differences, one reader (R1) performed three volume measurements using the manual technique and three volume measurements using the semi-automated technique. To evaluate interobserver differences for semi-automated segmentation, a second reader (R2) performed three semi-automated measurements. One-way analysis of variance was used to compare differences in mean volumes. Time effort was also compared. Correlation between the two methods as well as two shorthand appraisals (greatest diameter, and the ABC/2 method for estimating ellipsoid volumes) was assessed with Spearman's rho (r). Intraobserver variability was lower for semi-automated compared to manual segmentation, with standard deviations ranging between ±5-32 mL and ±17-84 mL, respectively (p = 0.0003). There was no significant difference in mean volumes between the two readers' semi-automated measurements (p = 0.83); however, means were lower for the semi-automated compared with the manual technique (manual: mean and SD 309.6 ± 139 mL; R1 semi-auto: 229.6 ± 88.2 mL, p = 0.004; R2 semi-auto: 243.79 ± 99.7 mL, p = 0.021). Despite differences in means, the correlation between the two methods was very strong and highly significant (r = 0.91, p < 0.001). Correlations with diameter-based methods were only moderate and nonsignificant. Mean semi-automated segmentation time effort was 2 min and 6 s and 2 min and 35 s for R1 and R2, respectively, vs. 22 min and 8 s for manual segmentation. Semi-automated pelvic hematoma volumes correlate strongly with manually segmented volumes. Since semi-automated segmentation can be performed reliably and efficiently, volumetric analysis of traumatic pelvic hematomas is potentially valuable at the point-of-care.
NASA Astrophysics Data System (ADS)
Daryanani, Aditya; Dangi, Shusil; Ben-Zikri, Yehuda Kfir; Linte, Cristian A.
2016-03-01
Magnetic Resonance Imaging (MRI) is a standard-of-care imaging modality for cardiac function assessment and guidance of cardiac interventions thanks to its high image quality and lack of exposure to ionizing radiation. Cardiac health parameters such as left ventricular volume, ejection fraction, myocardial mass, thickness, and strain can be assessed by segmenting the heart from cardiac MRI images. Furthermore, the segmented pre-operative anatomical heart models can be used to precisely identify regions of interest to be treated during minimally invasive therapy. Hence, the use of accurate and computationally efficient segmentation techniques is critical, especially for intra-procedural guidance applications that rely on the peri-operative segmentation of subject-specific datasets without delaying the procedure workflow. Atlas-based segmentation incorporates prior knowledge of the anatomy of interest from expertly annotated image datasets. Typically, the ground truth atlas label is propagated to a test image using a combination of global and local registration. The high computational cost of non-rigid registration motivated us to obtain an initial segmentation using global transformations based on an atlas of the left ventricle from a population of patient MRI images and refine it using well developed technique based on graph cuts. Here we quantitatively compare the segmentations obtained from the global and global plus local atlases and refined using graph cut-based techniques with the expert segmentations according to several similarity metrics, including Dice correlation coefficient, Jaccard coefficient, Hausdorff distance, and Mean absolute distance error.
Weibull crack density coefficient for polydimensional stress states
NASA Technical Reports Server (NTRS)
Gross, Bernard; Gyekenyesi, John P.
1989-01-01
A structural ceramic analysis and reliability evaluation code has recently been developed encompassing volume and surface flaw induced fracture, modeled by the two-parameter Weibull probability density function. A segment of the software involves computing the Weibull polydimensional stress state crack density coefficient from uniaxial stress experimental fracture data. The relationship of the polydimensional stress coefficient to the uniaxial stress coefficient is derived for a shear-insensitive material with a random surface flaw population.
Multiclassifier fusion in human brain MR segmentation: modelling convergence.
Heckemann, Rolf A; Hajnal, Joseph V; Aljabar, Paul; Rueckert, Daniel; Hammers, Alexander
2006-01-01
Segmentations of MR images of the human brain can be generated by propagating an existing atlas label volume to the target image. By fusing multiple propagated label volumes, the segmentation can be improved. We developed a model that predicts the improvement of labelling accuracy and precision based on the number of segmentations used as input. Using a cross-validation study on brain image data as well as numerical simulations, we verified the model. Fit parameters of this model are potential indicators of the quality of a given label propagation method or the consistency of the input segmentations used.
Boundary fitting based segmentation of fluorescence microscopy images
NASA Astrophysics Data System (ADS)
Lee, Soonam; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.
2015-03-01
Segmentation is a fundamental step in quantifying characteristics, such as volume, shape, and orientation of cells and/or tissue. However, quantification of these characteristics still poses a challenge due to the unique properties of microscopy volumes. This paper proposes a 2D segmentation method that utilizes a combination of adaptive and global thresholding, potentials, z direction refinement, branch pruning, end point matching, and boundary fitting methods to delineate tubular objects in microscopy volumes. Experimental results demonstrate that the proposed method achieves better performance than an active contours based scheme.
NASA Astrophysics Data System (ADS)
Lemieux, Louis
2001-07-01
A new fully automatic algorithm for the segmentation of the brain and cerebro-spinal fluid (CSF) from T1-weighted volume MRI scans of the head was specifically developed in the context of serial intra-cranial volumetry. The method is an extension of a previously published brain extraction algorithm. The brain mask is used as a basis for CSF segmentation based on morphological operations, automatic histogram analysis and thresholding. Brain segmentation is then obtained by iterative tracking of the brain-CSF interface. Grey matter (GM), white matter (WM) and CSF volumes are calculated based on a model of intensity probability distribution that includes partial volume effects. Accuracy was assessed using a digital phantom scan. Reproducibility was assessed by segmenting pairs of scans from 20 normal subjects scanned 8 months apart and 11 patients with epilepsy scanned 3.5 years apart. Segmentation accuracy as measured by overlap was 98% for the brain and 96% for the intra-cranial tissues. The volume errors were: total brain (TBV): -1.0%, intra-cranial (ICV):0.1%, CSF: +4.8%. For repeated scans, matching resulted in improved reproducibility. In the controls, the coefficient of reliability (CR) was 1.5% for the TVB and 1.0% for the ICV. In the patients, the Cr for the ICV was 1.2%.
NASA Astrophysics Data System (ADS)
Shahzad, Rahil; Bos, Daniel; Budde, Ricardo P. J.; Pellikaan, Karlijn; Niessen, Wiro J.; van der Lugt, Aad; van Walsum, Theo
2017-05-01
Early structural changes to the heart, including the chambers and the coronary arteries, provide important information on pre-clinical heart disease like cardiac failure. Currently, contrast-enhanced cardiac computed tomography angiography (CCTA) is the preferred modality for the visualization of the cardiac chambers and the coronaries. In clinical practice not every patient undergoes a CCTA scan; many patients receive only a non-contrast-enhanced calcium scoring CT scan (CTCS), which has less radiation dose and does not require the administration of contrast agent. Quantifying cardiac structures in such images is challenging, as they lack the contrast present in CCTA scans. Such quantification would however be relevant, as it enables population based studies with only a CTCS scan. The purpose of this work is therefore to investigate the feasibility of automatic segmentation and quantification of cardiac structures viz whole heart, left atrium, left ventricle, right atrium, right ventricle and aortic root from CTCS scans. A fully automatic multi-atlas-based segmentation approach is used to segment the cardiac structures. Results show that the segmentation overlap between the automatic method and that of the reference standard have a Dice similarity coefficient of 0.91 on average for the cardiac chambers. The mean surface-to-surface distance error over all the cardiac structures is 1.4+/- 1.7 mm. The automatically obtained cardiac chamber volumes using the CTCS scans have an excellent correlation when compared to the volumes in corresponding CCTA scans, a Pearson correlation coefficient (R) of 0.95 is obtained. Our fully automatic method enables large-scale assessment of cardiac structures on non-contrast-enhanced CT scans.
Kloth, C; Thaiss, W M; Hetzel, J; Ditt, H; Grosse, U; Nikolaou, K; Horger, M
2016-07-01
To assess the impact of endobronchial coiling on the segment bronchus cross-sectional area and volumes in patients with lung emphysema using quantitative chest-CT measurements. Thirty patients (female = 15; median age = 65.36 years) received chest-CT before and after endobronchial coiling for lung volume reduction (LVR) between January 2010 and December 2014. Thin-slice (0.6 mm) non-enhanced image data sets were acquired both at end-inspiration and end-expiration using helical technique and 120 kV/100-150 mAs. Clinical response was defined as an increase in the walking distance (Six-minute walk test; 6MWT) after LVR-therapy. Additionally, pulmonary function test (PFT) measurements were used for clinical correlation. In the treated segmental bronchia, the cross-sectional lumen area showed significant reduction (p < 0.05) in inspiration and tendency towards enlargement in expiration (p > 0.05). In the ipsilateral lobes, the lumina showed no significant changes. In the contralateral lung, we found tendency towards increased cross-sectional area in inspiration (p = 0.06). Volumes of the treated segments correlated with the treated segmental bronchial lumina in expiration (r = 0.80, p < 0.001). Clinical correlation with changes in 6MWT/PFT showed a significant decrease of the inspiratory volume of the treated lobe in responders only. Endobronchial coiling causes significant decrease in the cross-sectional area of treated segment bronchi in inspiration and a slight increase in expiration accompanied by a volume reduction. • Endobronchial coiling has indirect impact on cross-sectional area of treated segment bronchi • Volume changes of treated lobes correlate with changes in bronchial cross-sectional area • Coil-induced effects reflect their stabilizing and stiffening impact on lung parenchyma • Endobronchial coiling reduces bronchial collapsing compensating the loss of elasticity.
A coarse-to-fine approach for pericardial effusion localization and segmentation in chest CT scans
NASA Astrophysics Data System (ADS)
Liu, Jiamin; Chellamuthu, Karthik; Lu, Le; Bagheri, Mohammadhadi; Summers, Ronald M.
2018-02-01
Pericardial effusion on CT scans demonstrates very high shape and volume variability and very low contrast to adjacent structures. This inhibits traditional automated segmentation methods from achieving high accuracies. Deep neural networks have been widely used for image segmentation in CT scans. In this work, we present a two-stage method for pericardial effusion localization and segmentation. For the first step, we localize the pericardial area from the entire CT volume, providing a reliable bounding box for the more refined segmentation step. A coarse-scaled holistically-nested convolutional networks (HNN) model is trained on entire CT volume. The resulting HNN per-pixel probability maps are then threshold to produce a bounding box covering the pericardial area. For the second step, a fine-scaled HNN model is trained only on the bounding box region for effusion segmentation to reduce the background distraction. Quantitative evaluation is performed on a dataset of 25 CT scans of patient (1206 images) with pericardial effusion. The segmentation accuracy of our two-stage method, measured by Dice Similarity Coefficient (DSC), is 75.59+/-12.04%, which is significantly better than the segmentation accuracy (62.74+/-15.20%) of only using the coarse-scaled HNN model.
[Target volume segmentation of PET images by an iterative method based on threshold value].
Castro, P; Huerga, C; Glaría, L A; Plaza, R; Rodado, S; Marín, M D; Mañas, A; Serrada, A; Núñez, L
2014-01-01
An automatic segmentation method is presented for PET images based on an iterative approximation by threshold value that includes the influence of both lesion size and background present during the acquisition. Optimal threshold values that represent a correct segmentation of volumes were determined based on a PET phantom study that contained different sizes spheres and different known radiation environments. These optimal values were normalized to background and adjusted by regression techniques to a two-variable function: lesion volume and signal-to-background ratio (SBR). This adjustment function was used to build an iterative segmentation method and then, based in this mention, a procedure of automatic delineation was proposed. This procedure was validated on phantom images and its viability was confirmed by retrospectively applying it on two oncology patients. The resulting adjustment function obtained had a linear dependence with the SBR and was inversely proportional and negative with the volume. During the validation of the proposed method, it was found that the volume deviations respect to its real value and CT volume were below 10% and 9%, respectively, except for lesions with a volume below 0.6 ml. The automatic segmentation method proposed can be applied in clinical practice to tumor radiotherapy treatment planning in a simple and reliable way with a precision close to the resolution of PET images. Copyright © 2013 Elsevier España, S.L.U. and SEMNIM. All rights reserved.
Fast and robust segmentation of the striatum using deep convolutional neural networks.
Choi, Hongyoon; Jin, Kyong Hwan
2016-12-01
Automated segmentation of brain structures is an important task in structural and functional image analysis. We developed a fast and accurate method for the striatum segmentation using deep convolutional neural networks (CNN). T1 magnetic resonance (MR) images were used for our CNN-based segmentation, which require neither image feature extraction nor nonlinear transformation. We employed two serial CNN, Global and Local CNN: The Global CNN determined approximate locations of the striatum. It performed a regression of input MR images fitted to smoothed segmentation maps of the striatum. From the output volume of Global CNN, cropped MR volumes which included the striatum were extracted. The cropped MR volumes and the output volumes of Global CNN were used for inputs of Local CNN. Local CNN predicted the accurate label of all voxels. Segmentation results were compared with a widely used segmentation method, FreeSurfer. Our method showed higher Dice Similarity Coefficient (DSC) (0.893±0.017 vs. 0.786±0.015) and precision score (0.905±0.018 vs. 0.690±0.022) than FreeSurfer-based striatum segmentation (p=0.06). Our approach was also tested using another independent dataset, which showed high DSC (0.826±0.038) comparable with that of FreeSurfer. Comparison with existing method Segmentation performance of our proposed method was comparable with that of FreeSurfer. The running time of our approach was approximately three seconds. We suggested a fast and accurate deep CNN-based segmentation for small brain structures which can be widely applied to brain image analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Regional growth and atlasing of the developing human brain
Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V.; Edwards, A. David; Counsell, Serena J.; Rueckert, Daniel
2016-01-01
Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45 weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. PMID:26499811
Regional growth and atlasing of the developing human brain.
Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V; Edwards, A David; Counsell, Serena J; Rueckert, Daniel
2016-01-15
Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Valente, João; Vieira, Pedro M; Couto, Carlos; Lima, Carlos S
2018-02-01
Poor brain extraction in Magnetic Resonance Imaging (MRI) has negative consequences in several types of brain post-extraction such as tissue segmentation and related statistical measures or pattern recognition algorithms. Current state of the art algorithms for brain extraction work on weighted T1 and T2, being not adequate for non-whole brain images such as the case of T2*FLASH@7T partial volumes. This paper proposes two new methods that work directly in T2*FLASH@7T partial volumes. The first is an improvement of the semi-automatic threshold-with-morphology approach adapted to incomplete volumes. The second method uses an improved version of a current implementation of the fuzzy c-means algorithm with bias correction for brain segmentation. Under high inhomogeneity conditions the performance of the first method degrades, requiring user intervention which is unacceptable. The second method performed well for all volumes, being entirely automatic. State of the art algorithms for brain extraction are mainly semi-automatic, requiring a correct initialization by the user and knowledge of the software. These methods can't deal with partial volumes and/or need information from atlas which is not available in T2*FLASH@7T. Also, combined volumes suffer from manipulations such as re-sampling which deteriorates significantly voxel intensity structures making segmentation tasks difficult. The proposed method can overcome all these difficulties, reaching good results for brain extraction using only T2*FLASH@7T volumes. The development of this work will lead to an improvement of automatic brain lesions segmentation in T2*FLASH@7T volumes, becoming more important when lesions such as cortical Multiple-Sclerosis need to be detected. Copyright © 2017 Elsevier B.V. All rights reserved.
Zheng, Yefeng; Barbu, Adrian; Georgescu, Bogdan; Scheuering, Michael; Comaniciu, Dorin
2008-11-01
We propose an automatic four-chamber heart segmentation system for the quantitative functional analysis of the heart from cardiac computed tomography (CT) volumes. Two topics are discussed: heart modeling and automatic model fitting to an unseen volume. Heart modeling is a nontrivial task since the heart is a complex nonrigid organ. The model must be anatomically accurate, allow manual editing, and provide sufficient information to guide automatic detection and segmentation. Unlike previous work, we explicitly represent important landmarks (such as the valves and the ventricular septum cusps) among the control points of the model. The control points can be detected reliably to guide the automatic model fitting process. Using this model, we develop an efficient and robust approach for automatic heart chamber segmentation in 3-D CT volumes. We formulate the segmentation as a two-step learning problem: anatomical structure localization and boundary delineation. In both steps, we exploit the recent advances in learning discriminative models. A novel algorithm, marginal space learning (MSL), is introduced to solve the 9-D similarity transformation search problem for localizing the heart chambers. After determining the pose of the heart chambers, we estimate the 3-D shape through learning-based boundary delineation. The proposed method has been extensively tested on the largest dataset (with 323 volumes from 137 patients) ever reported in the literature. To the best of our knowledge, our system is the fastest with a speed of 4.0 s per volume (on a dual-core 3.2-GHz processor) for the automatic segmentation of all four chambers.
Connection method of separated luminal regions of intestine from CT volumes
NASA Astrophysics Data System (ADS)
Oda, Masahiro; Kitasaka, Takayuki; Furukawa, Kazuhiro; Watanabe, Osamu; Ando, Takafumi; Hirooka, Yoshiki; Goto, Hidemi; Mori, Kensaku
2015-03-01
This paper proposes a connection method of separated luminal regions of the intestine for Crohn's disease diagnosis. Crohn's disease is an inflammatory disease of the digestive tract. Capsule or conventional endoscopic diagnosis is performed for Crohn's disease diagnosis. However, parts of the intestines may not be observed in the endoscopic diagnosis if intestinal stenosis occurs. Endoscopes cannot pass through the stenosed parts. CT image-based diagnosis is developed as an alternative choice of the Crohn's disease. CT image-based diagnosis enables physicians to observe the entire intestines even if stenosed parts exist. CAD systems for Crohn's disease using CT volumes are recently developed. Such CAD systems need to reconstruct separated luminal regions of the intestines to analyze intestines. We propose a connection method of separated luminal regions of the intestines segmented from CT volumes. The luminal regions of the intestines are segmented from a CT volume. The centerlines of the luminal regions are calculated by using a thinning process. We enumerate all the possible sequences of the centerline segments. In this work, we newly introduce a condition using distance between connected ends points of the centerline segments. This condition eliminates unnatural connections of the centerline segments. Also, this condition reduces processing time. After generating a sequence list of the centerline segments, the correct sequence is obtained by using an evaluation function. We connect the luminal regions based on the correct sequence. Our experiments using four CT volumes showed that our method connected 6.5 out of 8.0 centerline segments per case. Processing times of the proposed method were reduced from the previous method.
Im, Hyung-Jun; Bradshaw, Tyler; Solaiyappan, Meiyappan; Cho, Steve Y
2018-02-01
Numerous methods to segment tumors using 18 F-fluorodeoxyglucose positron emission tomography (FDG PET) have been introduced. Metabolic tumor volume (MTV) refers to the metabolically active volume of the tumor segmented using FDG PET, and has been shown to be useful in predicting patient outcome and in assessing treatment response. Also, tumor segmentation using FDG PET has useful applications in radiotherapy treatment planning. Despite extensive research on MTV showing promising results, MTV is not used in standard clinical practice yet, mainly because there is no consensus on the optimal method to segment tumors in FDG PET images. In this review, we discuss currently available methods to measure MTV using FDG PET, and assess the advantages and disadvantages of the methods.
NASA Astrophysics Data System (ADS)
Lee, Han Sang; Kim, Hyeun A.; Kim, Hyeonjin; Hong, Helen; Yoon, Young Cheol; Kim, Junmo
2016-03-01
In spite of its clinical importance in diagnosis of osteoarthritis, segmentation of cartilage in knee MRI remains a challenging task due to its shape variability and low contrast with surrounding soft tissues and synovial fluid. In this paper, we propose a multi-atlas segmentation of cartilage in knee MRI with sequential atlas registrations and locallyweighted voting (LWV). First, bone is segmented by sequential volume- and object-based registrations and LWV. Second, to overcome the shape variability of cartilage, cartilage is segmented by bone-mask-based registration and LWV. In experiments, the proposed method improved the bone segmentation by reducing misclassified bone region, and enhanced the cartilage segmentation by preventing cartilage leakage into surrounding similar intensity region, with the help of sequential registrations and LWV.
CT volumetry of the skeletal tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brindle, James M.; Alexandre Trindade, A.; Pichardo, Jose C.
2006-10-15
Computed tomography (CT) is an important and widely used modality in the diagnosis and treatment of various cancers. In the field of molecular radiotherapy, the use of spongiosa volume (combined tissues of the bone marrow and bone trabeculae) has been suggested as a means to improve the patient-specificity of bone marrow dose estimates. The noninvasive estimation of an organ volume comes with some degree of error or variation from the true organ volume. The present study explores the ability to obtain estimates of spongiosa volume or its surrogate via manual image segmentation. The variation among different segmentation raters was exploredmore » and found not to be statistically significant (p value >0.05). Accuracy was assessed by having several raters manually segment a polyvinyl chloride (PVC) pipe with known volumes. Segmentation of the outer region of the PVC pipe resulted in mean percent errors as great as 15% while segmentation of the pipe's inner region resulted in mean percent errors within {approx}5%. Differences between volumes estimated with the high-resolution CT data set (typical of ex vivo skeletal scans) and the low-resolution CT data set (typical of in vivo skeletal scans) were also explored using both patient CT images and a PVC pipe phantom. While a statistically significant difference (p value <0.002) between the high-resolution and low-resolution data sets was observed with excised femoral heads obtained following total hip arthroplasty, the mean difference between high-resolution and low-resolution data sets was found to be only 1.24 and 2.18 cm{sup 3} for spongiosa and cortical bone, respectively. With respect to differences observed with the PVC pipe, the variation between the high-resolution and low-resolution mean percent errors was a high as {approx}20% for the outer region volume estimates and only as high as {approx}6% for the inner region volume estimates. The findings from this study suggest that manual segmentation is a reasonably accurate and reliable means for the in vivo estimation of spongiosa volume. This work also provides a foundation for future studies where spongiosa volumes are estimated by various raters in more comprehensive CT data sets.« less
Fananapazir, Ghaneh; Bashir, Mustafa R; Marin, Daniele; Boll, Daniel T
2015-06-01
To evaluate the performance of a prototype, fully-automated post-processing solution for whole-liver and lobar segmentation based on MDCT datasets. A polymer liver phantom was used to assess accuracy of post-processing applications comparing phantom volumes determined via Archimedes' principle with MDCT segmented datasets. For the IRB-approved, HIPAA-compliant study, 25 patients were enrolled. Volumetry performance compared the manual approach with the automated prototype, assessing intraobserver variability, and interclass correlation for whole-organ and lobar segmentation using ANOVA comparison. Fidelity of segmentation was evaluated qualitatively. Phantom volume was 1581.0 ± 44.7 mL, manually segmented datasets estimated 1628.0 ± 47.8 mL, representing a mean overestimation of 3.0%, automatically segmented datasets estimated 1601.9 ± 0 mL, representing a mean overestimation of 1.3%. Whole-liver and segmental volumetry demonstrated no significant intraobserver variability for neither manual nor automated measurements. For whole-liver volumetry, automated measurement repetitions resulted in identical values; reproducible whole-organ volumetry was also achieved with manual segmentation, p(ANOVA) 0.98. For lobar volumetry, automated segmentation improved reproducibility over manual approach, without significant measurement differences for either methodology, p(ANOVA) 0.95-0.99. Whole-organ and lobar segmentation results from manual and automated segmentation showed no significant differences, p(ANOVA) 0.96-1.00. Assessment of segmentation fidelity found that segments I-IV/VI showed greater segmentation inaccuracies compared to the remaining right hepatic lobe segments. Automated whole-liver segmentation showed non-inferiority of fully-automated whole-liver segmentation compared to manual approaches with improved reproducibility and post-processing duration; automated dual-seed lobar segmentation showed slight tendencies for underestimating the right hepatic lobe volume and greater variability in edge detection for the left hepatic lobe compared to manual segmentation.
Mining volume measurement system
NASA Technical Reports Server (NTRS)
Heyman, Joseph Saul (Inventor)
1988-01-01
In a shaft with a curved or straight primary segment and smaller off-shooting segments, at least one standing wave is generated in the primary segment. The shaft has either an open end or a closed end and approximates a cylindrical waveguide. A frequency of a standing wave that represents the fundamental mode characteristic of the primary segment can be measured. Alternatively, a frequency differential between two successive harmonic modes that are characteristic of the primary segment can be measured. In either event, the measured frequency or frequency differential is characteristic of the length and thus the volume of the shaft based on length times the bore area.
CTC Sentinel. January 2008, Volume 1 Issue 2. A Profile of Tehrik-i-Taliban Pakistan
2008-01-01
virgins of paradise. Even senior Muntada al-Ansar administrators contributed eulogies in honor of Rahman, such as the notorious Saif al-Islam al...by large segments of the population. Gujarat has contributed further to Muslim alienation within India.17 One of India’s premier security...to commemorate a national holiday in central Baghdad were targeted by a suicide bomber, leaving nine people dead. – Reuters, January 6 January 7
Ahlgren, André; Wirestam, Ronnie; Petersen, Esben Thade; Ståhlberg, Freddy; Knutsson, Linda
2014-09-01
Quantitative perfusion MRI based on arterial spin labeling (ASL) is hampered by partial volume effects (PVEs), arising due to voxel signal cross-contamination between different compartments. To address this issue, several partial volume correction (PVC) methods have been presented. Most previous methods rely on segmentation of a high-resolution T1 -weighted morphological image volume that is coregistered to the low-resolution ASL data, making the result sensitive to errors in the segmentation and coregistration. In this work, we present a methodology for partial volume estimation and correction, using only low-resolution ASL data acquired with the QUASAR sequence. The methodology consists of a T1 -based segmentation method, with no spatial priors, and a modified PVC method based on linear regression. The presented approach thus avoids prior assumptions about the spatial distribution of brain compartments, while also avoiding coregistration between different image volumes. Simulations based on a digital phantom as well as in vivo measurements in 10 volunteers were used to assess the performance of the proposed segmentation approach. The simulation results indicated that QUASAR data can be used for robust partial volume estimation, and this was confirmed by the in vivo experiments. The proposed PVC method yielded probable perfusion maps, comparable to a reference method based on segmentation of a high-resolution morphological scan. Corrected gray matter (GM) perfusion was 47% higher than uncorrected values, suggesting a significant amount of PVEs in the data. Whereas the reference method failed to completely eliminate the dependence of perfusion estimates on the volume fraction, the novel approach produced GM perfusion values independent of GM volume fraction. The intra-subject coefficient of variation of corrected perfusion values was lowest for the proposed PVC method. As shown in this work, low-resolution partial volume estimation in connection with ASL perfusion estimation is feasible, and provides a promising tool for decoupling perfusion and tissue volume. Copyright © 2014 John Wiley & Sons, Ltd.
Le Troter, Arnaud; Fouré, Alexandre; Guye, Maxime; Confort-Gouny, Sylviane; Mattei, Jean-Pierre; Gondin, Julien; Salort-Campana, Emmanuelle; Bendahan, David
2016-04-01
Atlas-based segmentation is a powerful method for automatic structural segmentation of several sub-structures in many organs. However, such an approach has been very scarcely used in the context of muscle segmentation, and so far no study has assessed such a method for the automatic delineation of individual muscles of the quadriceps femoris (QF). In the present study, we have evaluated a fully automated multi-atlas method and a semi-automated single-atlas method for the segmentation and volume quantification of the four muscles of the QF and for the QF as a whole. The study was conducted in 32 young healthy males, using high-resolution magnetic resonance images (MRI) of the thigh. The multi-atlas-based segmentation method was conducted in 25 subjects. Different non-linear registration approaches based on free-form deformable (FFD) and symmetric diffeomorphic normalization algorithms (SyN) were assessed. Optimal parameters of two fusion methods, i.e., STAPLE and STEPS, were determined on the basis of the highest Dice similarity index (DSI) considering manual segmentation (MSeg) as the ground truth. Validation and reproducibility of this pipeline were determined using another MRI dataset recorded in seven healthy male subjects on the basis of additional metrics such as the muscle volume similarity values, intraclass coefficient, and coefficient of variation. Both non-linear registration methods (FFD and SyN) were also evaluated as part of a single-atlas strategy in order to assess longitudinal muscle volume measurements. The multi- and the single-atlas approaches were compared for the segmentation and the volume quantification of the four muscles of the QF and for the QF as a whole. Considering each muscle of the QF, the DSI of the multi-atlas-based approach was high 0.87 ± 0.11 and the best results were obtained with the combination of two deformation fields resulting from the SyN registration method and the STEPS fusion algorithm. The optimal variables for FFD and SyN registration methods were four templates and a kernel standard deviation ranging between 5 and 8. The segmentation process using a single-atlas-based method was more robust with DSI values higher than 0.9. From the vantage of muscle volume measurements, the multi-atlas-based strategy provided acceptable results regarding the QF muscle as a whole but highly variable results regarding individual muscle. On the contrary, the performance of the single-atlas-based pipeline for individual muscles was highly comparable to the MSeg, thereby indicating that this method would be adequate for longitudinal tracking of muscle volume changes in healthy subjects. In the present study, we demonstrated that both multi-atlas and single-atlas approaches were relevant for the segmentation of individual muscles of the QF in healthy subjects. Considering muscle volume measurements, the single-atlas method provided promising perspectives regarding longitudinal quantification of individual muscle volumes.
Automatic initialization and quality control of large-scale cardiac MRI segmentations.
Albà, Xènia; Lekadir, Karim; Pereañez, Marco; Medrano-Gracia, Pau; Young, Alistair A; Frangi, Alejandro F
2018-01-01
Continuous advances in imaging technologies enable ever more comprehensive phenotyping of human anatomy and physiology. Concomitant reduction of imaging costs has resulted in widespread use of imaging in large clinical trials and population imaging studies. Magnetic Resonance Imaging (MRI), in particular, offers one-stop-shop multidimensional biomarkers of cardiovascular physiology and pathology. A wide range of analysis methods offer sophisticated cardiac image assessment and quantification for clinical and research studies. However, most methods have only been evaluated on relatively small databases often not accessible for open and fair benchmarking. Consequently, published performance indices are not directly comparable across studies and their translation and scalability to large clinical trials or population imaging cohorts is uncertain. Most existing techniques still rely on considerable manual intervention for the initialization and quality control of the segmentation process, becoming prohibitive when dealing with thousands of images. The contributions of this paper are three-fold. First, we propose a fully automatic method for initializing cardiac MRI segmentation, by using image features and random forests regression to predict an initial position of the heart and key anatomical landmarks in an MRI volume. In processing a full imaging database, the technique predicts the optimal corrective displacements and positions in relation to the initial rough intersections of the long and short axis images. Second, we introduce for the first time a quality control measure capable of identifying incorrect cardiac segmentations with no visual assessment. The method uses statistical, pattern and fractal descriptors in a random forest classifier to detect failures to be corrected or removed from subsequent statistical analysis. Finally, we validate these new techniques within a full pipeline for cardiac segmentation applicable to large-scale cardiac MRI databases. The results obtained based on over 1200 cases from the Cardiac Atlas Project show the promise of fully automatic initialization and quality control for population studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Fetal brain volumetry through MRI volumetric reconstruction and segmentation
Estroff, Judy A.; Barnewolt, Carol E.; Connolly, Susan A.; Warfield, Simon K.
2013-01-01
Purpose Fetal MRI volumetry is a useful technique but it is limited by a dependency upon motion-free scans, tedious manual segmentation, and spatial inaccuracy due to thick-slice scans. An image processing pipeline that addresses these limitations was developed and tested. Materials and methods The principal sequences acquired in fetal MRI clinical practice are multiple orthogonal single-shot fast spin echo scans. State-of-the-art image processing techniques were used for inter-slice motion correction and super-resolution reconstruction of high-resolution volumetric images from these scans. The reconstructed volume images were processed with intensity non-uniformity correction and the fetal brain extracted by using supervised automated segmentation. Results Reconstruction, segmentation and volumetry of the fetal brains for a cohort of twenty-five clinically acquired fetal MRI scans was done. Performance metrics for volume reconstruction, segmentation and volumetry were determined by comparing to manual tracings in five randomly chosen cases. Finally, analysis of the fetal brain and parenchymal volumes was performed based on the gestational age of the fetuses. Conclusion The image processing pipeline developed in this study enables volume rendering and accurate fetal brain volumetry by addressing the limitations of current volumetry techniques, which include dependency on motion-free scans, manual segmentation, and inaccurate thick-slice interpolation. PMID:20625848
Beaton, L.; Mazzaferri, J.; Lalonde, F.; Hidalgo-Aguirre, M.; Descovich, D.; Lesk, M. R.; Costantino, S.
2015-01-01
We have developed a novel optical approach to determine pulsatile ocular volume changes using automated segmentation of the choroid, which, together with Dynamic Contour Tonometry (DCT) measurements of intraocular pressure (IOP), allows estimation of the ocular rigidity (OR) coefficient. Spectral Domain Optical Coherence Tomography (OCT) videos were acquired with Enhanced Depth Imaging (EDI) at 7Hz during ~50 seconds at the fundus. A novel segmentation algorithm based on graph search with an edge-probability weighting scheme was developed to measure choroidal thickness (CT) at each frame. Global ocular volume fluctuations were derived from frame-to-frame CT variations using an approximate eye model. Immediately after imaging, IOP and ocular pulse amplitude (OPA) were measured using DCT. OR was calculated from these peak pressure and volume changes. Our automated segmentation algorithm provides the first non-invasive method for determining ocular volume change due to pulsatile choroidal filling, and the estimation of the OR constant. Future applications of this method offer an important avenue to understanding the biomechanical basis of ocular pathophysiology. PMID:26137373
Quantification of osteolytic bone lesions in a preclinical rat trial
NASA Astrophysics Data System (ADS)
Fränzle, Andrea; Bretschi, Maren; Bäuerle, Tobias; Giske, Kristina; Hillengass, Jens; Bendl, Rolf
2013-10-01
In breast cancer, most of the patients who died, have developed bone metastasis as disease progression. Bone metastases in case of breast cancer are mainly bone destructive (osteolytic). To understand pathogenesis and to analyse response to different treatments, animal models, in our case rats, are examined. For assessment of treatment response to bone remodelling therapies exact segmentations of osteolytic lesions are needed. Manual segmentations are not only time-consuming but lack in reproducibility. Computerized segmentation tools are essential. In this paper we present an approach for the computerized quantification of osteolytic lesion volumes using a comparison to a healthy reference model. The presented qualitative and quantitative evaluation of the reconstructed bone volumes show, that the automatically segmented lesion volumes complete missing bone in a reasonable way.
NASA Astrophysics Data System (ADS)
Zhou, Chuan; Chan, Heang-Ping; Kuriakose, Jean W.; Chughtai, Aamer; Wei, Jun; Hadjiiski, Lubomir M.; Guo, Yanhui; Patel, Smita; Kazerooni, Ella A.
2012-03-01
Vessel segmentation is a fundamental step in an automated pulmonary embolism (PE) detection system. The purpose of this study is to improve the segmentation scheme for pulmonary vessels affected by PE and other lung diseases. We have developed a multiscale hierarchical vessel enhancement and segmentation (MHES) method for pulmonary vessel tree extraction based on the analysis of eigenvalues of Hessian matrices. However, it is difficult to segment the pulmonary vessels accurately under suboptimal conditions, such as vessels occluded by PEs, surrounded by lymphoid tissues or lung diseases, and crossing with other vessels. In this study, we developed a new vessel refinement method utilizing curved planar reformation (CPR) technique combined with optimal path finding method (MHES-CROP). The MHES segmented vessels straightened in the CPR volume was refined using adaptive gray level thresholding where the local threshold was obtained from least-square estimation of a spline curve fitted to the gray levels of the vessel along the straightened volume. An optimal path finding method based on Dijkstra's algorithm was finally used to trace the correct path for the vessel of interest. Two and eight CTPA scans were randomly selected as training and test data sets, respectively. Forty volumes of interest (VOIs) containing "representative" vessels were manually segmented by a radiologist experienced in CTPA interpretation and used as reference standard. The results show that, for the 32 test VOIs, the average percentage volume error relative to the reference standard was improved from 32.9+/-10.2% using the MHES method to 9.9+/-7.9% using the MHES-CROP method. The accuracy of vessel segmentation was improved significantly (p<0.05). The intraclass correlation coefficient (ICC) of the segmented vessel volume between the automated segmentation and the reference standard was improved from 0.919 to 0.988. Quantitative comparison of the MHES method and the MHES-CROP method with the reference standard was also evaluated by the Bland-Altman plot. This preliminary study indicates that the MHES-CROP method has the potential to improve PE detection.
Assessing the Effects of Software Platforms on Volumetric Segmentation of Glioblastoma
Dunn, William D.; Aerts, Hugo J.W.L.; Cooper, Lee A.; Holder, Chad A.; Hwang, Scott N.; Jaffe, Carle C.; Brat, Daniel J.; Jain, Rajan; Flanders, Adam E.; Zinn, Pascal O.; Colen, Rivka R.; Gutman, David A.
2017-01-01
Background Radiological assessments of biologically relevant regions in glioblastoma have been associated with genotypic characteristics, implying a potential role in personalized medicine. Here, we assess the reproducibility and association with survival of two volumetric segmentation platforms and explore how methodology could impact subsequent interpretation and analysis. Methods Post-contrast T1- and T2-weighted FLAIR MR images of 67 TCGA patients were segmented into five distinct compartments (necrosis, contrast-enhancement, FLAIR, post contrast abnormal, and total abnormal tumor volumes) by two quantitative image segmentation platforms - 3D Slicer and a method based on Velocity AI and FSL. We investigated the internal consistency of each platform by correlation statistics, association with survival, and concordance with consensus neuroradiologist ratings using ordinal logistic regression. Results We found high correlations between the two platforms for FLAIR, post contrast abnormal, and total abnormal tumor volumes (spearman’s r(67) = 0.952, 0.959, and 0.969 respectively). Only modest agreement was observed for necrosis and contrast-enhancement volumes (r(67) = 0.693 and 0.773 respectively), likely arising from differences in manual and automated segmentation methods of these regions by 3D Slicer and Velocity AI/FSL, respectively. Survival analysis based on AUC revealed significant predictive power of both platforms for the following volumes: contrast-enhancement, post contrast abnormal, and total abnormal tumor volumes. Finally, ordinal logistic regression demonstrated correspondence to manual ratings for several features. Conclusion Tumor volume measurements from both volumetric platforms produced highly concordant and reproducible estimates across platforms for general features. As automated or semi-automated volumetric measurements replace manual linear or area measurements, it will become increasingly important to keep in mind that measurement differences between segmentation platforms for more detailed features could influence downstream survival or radio genomic analyses. PMID:29600296
Johnson, Eileanoir B.; Gregory, Sarah; Johnson, Hans J.; Durr, Alexandra; Leavitt, Blair R.; Roos, Raymund A.; Rees, Geraint; Tabrizi, Sarah J.; Scahill, Rachael I.
2017-01-01
The selection of an appropriate segmentation tool is a challenge facing any researcher aiming to measure gray matter (GM) volume. Many tools have been compared, yet there is currently no method that can be recommended above all others; in particular, there is a lack of validation in disease cohorts. This work utilizes a clinical dataset to conduct an extensive comparison of segmentation tools. Our results confirm that all tools have advantages and disadvantages, and we present a series of considerations that may be of use when selecting a GM segmentation method, rather than a ranking of these tools. Seven segmentation tools were compared using 3 T MRI data from 20 controls, 40 premanifest Huntington’s disease (HD), and 40 early HD participants. Segmented volumes underwent detailed visual quality control. Reliability and repeatability of total, cortical, and lobular GM were investigated in repeated baseline scans. The relationship between each tool was also examined. Longitudinal within-group change over 3 years was assessed via generalized least squares regression to determine sensitivity of each tool to disease effects. Visual quality control and raw volumes highlighted large variability between tools, especially in occipital and temporal regions. Most tools showed reliable performance and the volumes were generally correlated. Results for longitudinal within-group change varied between tools, especially within lobular regions. These differences highlight the need for careful selection of segmentation methods in clinical neuroimaging studies. This guide acts as a primer aimed at the novice or non-technical imaging scientist providing recommendations for the selection of cohort-appropriate GM segmentation software. PMID:29066997
Johnson, Eileanoir B; Gregory, Sarah; Johnson, Hans J; Durr, Alexandra; Leavitt, Blair R; Roos, Raymund A; Rees, Geraint; Tabrizi, Sarah J; Scahill, Rachael I
2017-01-01
The selection of an appropriate segmentation tool is a challenge facing any researcher aiming to measure gray matter (GM) volume. Many tools have been compared, yet there is currently no method that can be recommended above all others; in particular, there is a lack of validation in disease cohorts. This work utilizes a clinical dataset to conduct an extensive comparison of segmentation tools. Our results confirm that all tools have advantages and disadvantages, and we present a series of considerations that may be of use when selecting a GM segmentation method, rather than a ranking of these tools. Seven segmentation tools were compared using 3 T MRI data from 20 controls, 40 premanifest Huntington's disease (HD), and 40 early HD participants. Segmented volumes underwent detailed visual quality control. Reliability and repeatability of total, cortical, and lobular GM were investigated in repeated baseline scans. The relationship between each tool was also examined. Longitudinal within-group change over 3 years was assessed via generalized least squares regression to determine sensitivity of each tool to disease effects. Visual quality control and raw volumes highlighted large variability between tools, especially in occipital and temporal regions. Most tools showed reliable performance and the volumes were generally correlated. Results for longitudinal within-group change varied between tools, especially within lobular regions. These differences highlight the need for careful selection of segmentation methods in clinical neuroimaging studies. This guide acts as a primer aimed at the novice or non-technical imaging scientist providing recommendations for the selection of cohort-appropriate GM segmentation software.
Random forest classification of large volume structures for visuo-haptic rendering in CT images
NASA Astrophysics Data System (ADS)
Mastmeyer, Andre; Fortmeier, Dirk; Handels, Heinz
2016-03-01
For patient-specific voxel-based visuo-haptic rendering of CT scans of the liver area, the fully automatic segmentation of large volume structures such as skin, soft tissue, lungs and intestine (risk structures) is important. Using a machine learning based approach, several existing segmentations from 10 segmented gold-standard patients are learned by random decision forests individually and collectively. The core of this paper is feature selection and the application of the learned classifiers to a new patient data set. In a leave-some-out cross-validation, the obtained full volume segmentations are compared to the gold-standard segmentations of the untrained patients. The proposed classifiers use a multi-dimensional feature space to estimate the hidden truth, instead of relying on clinical standard threshold and connectivity based methods. The result of our efficient whole-body section classification are multi-label maps with the considered tissues. For visuo-haptic simulation, other small volume structures would have to be segmented additionally. We also take a look into these structures (liver vessels). For an experimental leave-some-out study consisting of 10 patients, the proposed method performs much more efficiently compared to state of the art methods. In two variants of leave-some-out experiments we obtain best mean DICE ratios of 0.79, 0.97, 0.63 and 0.83 for skin, soft tissue, hard bone and risk structures. Liver structures are segmented with DICE 0.93 for the liver, 0.43 for blood vessels and 0.39 for bile vessels.
NASA Astrophysics Data System (ADS)
Agn, Mikael; Law, Ian; Munck af Rosenschöld, Per; Van Leemput, Koen
2016-03-01
We present a fully automated generative method for simultaneous brain tumor and organs-at-risk segmentation in multi-modal magnetic resonance images. The method combines an existing whole-brain segmentation technique with a spatial tumor prior, which uses convolutional restricted Boltzmann machines to model tumor shape. The method is not tuned to any specific imaging protocol and can simultaneously segment the gross tumor volume, peritumoral edema and healthy tissue structures relevant for radiotherapy planning. We validate the method on a manually delineated clinical data set of glioblastoma patients by comparing segmentations of gross tumor volume, brainstem and hippocampus. The preliminary results demonstrate the feasibility of the method.
SU-E-J-224: Multimodality Segmentation of Head and Neck Tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aristophanous, M; Yang, J; Beadle, B
2014-06-01
Purpose: Develop an algorithm that is able to automatically segment tumor volume in Head and Neck cancer by integrating information from CT, PET and MR imaging simultaneously. Methods: Twenty three patients that were recruited under an adaptive radiotherapy protocol had MR, CT and PET/CT scans within 2 months prior to start of radiotherapy. The patients had unresectable disease and were treated either with chemoradiotherapy or radiation therapy alone. Using the Velocity software, the PET/CT and MR (T1 weighted+contrast) scans were registered to the planning CT using deformable and rigid registration respectively. The PET and MR images were then resampled accordingmore » to the registration to match the planning CT. The resampled images, together with the planning CT, were fed into a multi-channel segmentation algorithm, which is based on Gaussian mixture models and solved with the expectation-maximization algorithm and Markov random fields. A rectangular region of interest (ROI) was manually placed to identify the tumor area and facilitate the segmentation process. The auto-segmented tumor contours were compared with the gross tumor volume (GTV) manually defined by the physician. The volume difference and Dice similarity coefficient (DSC) between the manual and autosegmented GTV contours were calculated as the quantitative evaluation metrics. Results: The multimodality segmentation algorithm was applied to all 23 patients. The volumes of the auto-segmented GTV ranged from 18.4cc to 32.8cc. The average (range) volume difference between the manual and auto-segmented GTV was −42% (−32.8%–63.8%). The average DSC value was 0.62, ranging from 0.39 to 0.78. Conclusion: An algorithm for the automated definition of tumor volume using multiple imaging modalities simultaneously was successfully developed and implemented for Head and Neck cancer. This development along with more accurate registration algorithms can aid physicians in the efforts to interpret the multitude of imaging information available in radiotherapy today. This project was supported by a grant by Varian Medical Systems.« less
NASA Astrophysics Data System (ADS)
Garg, Ishita; Karwoski, Ronald A.; Camp, Jon J.; Bartholmai, Brian J.; Robb, Richard A.
2005-04-01
Chronic obstructive pulmonary diseases (COPD) are debilitating conditions of the lung and are the fourth leading cause of death in the United States. Early diagnosis is critical for timely intervention and effective treatment. The ability to quantify particular imaging features of specific pathology and accurately assess progression or response to treatment with current imaging tools is relatively poor. The goal of this project was to develop automated segmentation techniques that would be clinically useful as computer assisted diagnostic tools for COPD. The lungs were segmented using an optimized segmentation threshold and the trachea was segmented using a fixed threshold characteristic of air. The segmented images were smoothed by a morphological close operation using spherical elements of different sizes. The results were compared to other segmentation approaches using an optimized threshold to segment the trachea. Comparison of the segmentation results from 10 datasets showed that the method of trachea segmentation using a fixed air threshold followed by morphological closing with spherical element of size 23x23x5 yielded the best results. Inclusion of greater number of pulmonary vessels in the lung volume is important for the development of computer assisted diagnostic tools because the physiological changes of COPD can result in quantifiable anatomic changes in pulmonary vessels. Using a fixed threshold to segment the trachea removed airways from the lungs to a better extent as compared to using an optimized threshold. Preliminary measurements gathered from patient"s CT scans suggest that segmented images can be used for accurate analysis of total lung volume and volumes of regional lung parenchyma. Additionally, reproducible segmentation allows for quantification of specific pathologic features, such as lower intensity pixels, which are characteristic of abnormal air spaces in diseases like emphysema.
NASA Astrophysics Data System (ADS)
Patra Yosandha, Fiet; Adi, Kusworo; Edi Widodo, Catur
2017-06-01
In this research, calculation process of the lung cancer volume of target based on computed tomography (CT) thorax images was done. Volume of the target calculation was done in purpose to treatment planning system in radiotherapy. The calculation of the target volume consists of gross tumor volume (GTV), clinical target volume (CTV), planning target volume (PTV) and organs at risk (OAR). The calculation of the target volume was done by adding the target area on each slices and then multiply the result with the slice thickness. Calculations of area using of digital image processing techniques with active contour segmentation method. This segmentation for contouring to obtain the target volume. The calculation of volume produced on each of the targets is 577.2 cm3 for GTV, 769.9 cm3 for CTV, 877.8 cm3 for PTV, 618.7 cm3 for OAR 1, 1,162 cm3 for OAR 2 right, and 1,597 cm3 for OAR 2 left. These values indicate that the image processing techniques developed can be implemented to calculate the lung cancer target volume based on CT thorax images. This research expected to help doctors and medical physicists in determining and contouring the target volume quickly and precisely.
NASA Astrophysics Data System (ADS)
Meng, Qier; Kitasaka, Takayuki; Oda, Masahiro; Mori, Kensaku
2017-03-01
Airway segmentation is an important step in analyzing chest CT volumes for computerized lung cancer detection, emphysema diagnosis, asthma diagnosis, and pre- and intra-operative bronchoscope navigation. However, obtaining an integrated 3-D airway tree structure from a CT volume is a quite challenging task. This paper presents a novel airway segmentation method based on intensity structure analysis and bronchi shape structure analysis in volume of interest (VOI). This method segments the bronchial regions by applying the cavity enhancement filter (CEF) to trace the bronchial tree structure from the trachea. It uses the CEF in each VOI to segment each branch and to predict the positions of VOIs which envelope the bronchial regions in next level. At the same time, a leakage detection is performed to avoid the leakage by analysing the pixel information and the shape information of airway candidate regions extracted in the VOI. Bronchial regions are finally obtained by unifying the extracted airway regions. The experiments results showed that the proposed method can extract most of the bronchial region in each VOI and led good results of the airway segmentation.
Hanaoka, Shouhei; Masutani, Yoshitaka; Nemoto, Mitsutaka; Nomura, Yukihiro; Miki, Soichiro; Yoshikawa, Takeharu; Hayashi, Naoto; Ohtomo, Kuni; Shimizu, Akinobu
2017-03-01
A fully automatic multiatlas-based method for segmentation of the spine and pelvis in a torso CT volume is proposed. A novel landmark-guided diffeomorphic demons algorithm is used to register a given CT image to multiple atlas volumes. This algorithm can utilize both grayscale image information and given landmark coordinate information optimally. The segmentation has four steps. Firstly, 170 bony landmarks are detected in the given volume. Using these landmark positions, an atlas selection procedure is performed to reduce the computational cost of the following registration. Then the chosen atlas volumes are registered to the given CT image. Finally, voxelwise label voting is performed to determine the final segmentation result. The proposed method was evaluated using 50 torso CT datasets as well as the public SpineWeb dataset. As a result, a mean distance error of [Formula: see text] and a mean Dice coefficient of [Formula: see text] were achieved for the whole spine and the pelvic bones, which are competitive with other state-of-the-art methods. From the experimental results, the usefulness of the proposed segmentation method was validated.
Hanken, Henning; Schablowsky, Clemens; Smeets, Ralf; Heiland, Max; Sehner, Susanne; Riecke, Björn; Nourwali, Ibrahim; Vorwig, Oliver; Gröbe, Alexander; Al-Dam, Ahmed
2015-04-01
The reconstruction of large facial bony defects using microvascular transplants requires extensive surgery to achieve full rehabilitation of form and function. The purpose of this study is to measure the agreement between virtual plans and the actual results of maxillofacial reconstruction. This retrospective cohort study included 30 subjects receiving maxillofacial reconstruction with a preoperative virtual planning. Parameters including defect size, position, angle and volume of the transplanted segments were compared between the virtual plan and the real outcome using paired t test. A total of 63 bone segments were transplanted. The mean differences between the virtual planning and the postoperative situation were for the defect sizes 1.17 mm (95 % confidence interval (CI) (-.21 to 2.56 mm); p = 0.094), for the resection planes 1.69 mm (95 % CI (1.26-2.11); p = 0.033) and 10.16° (95 % CI (8.36°-11.96°); p < 0.001) and for the planes of the donor segments 10.81° (95 % CI (9.44°-12.17°); p < 0.001) The orientation of the segments differed by 6.68° (95 % CI (5.7°-7.66°); p < 0.001) from the virtual plan; the length of the segments differed by -0.12 mm (95 % CI (0.89-0.65 mm); not significant (n.s.)), respectively, while the volume differed by 73.3 % (95 % CI (69.4-77.6 %); p < 0.001). The distance between the transplanted segments and the remaining bone was 1.49 mm (95 % CI (1.24-1.74); p < 0.001) and between the segments 1.49 mm (95 % CI (1.16-1.81); p < 0.001). Virtual plans for mandibular and maxillofacial reconstruction can be realised with excellent match. These highly satisfactory postoperative results are the basis for an optimal functional and aesthetic reconstruction in a single surgical procedure. The technique should be further investigated in larger study populations and should be further improved.
Superpixel guided active contour segmentation of retinal layers in OCT volumes
NASA Astrophysics Data System (ADS)
Bai, Fangliang; Gibson, Stuart J.; Marques, Manuel J.; Podoleanu, Adrian
2018-03-01
Retinal OCT image segmentation is a precursor to subsequent medical diagnosis by a clinician or machine learning algorithm. In the last decade, many algorithms have been proposed to detect retinal layer boundaries and simplify the image representation. Inspired by the recent success of superpixel methods for pre-processing natural images, we present a novel framework for segmentation of retinal layers in OCT volume data. In our framework, the region of interest (e.g. the fovea) is located using an adaptive-curve method. The cell layer boundaries are then robustly detected firstly using 1D superpixels, applied to A-scans, and then fitting active contours in B-scan images. Thereafter the 3D cell layer surfaces are efficiently segmented from the volume data. The framework was tested on healthy eye data and we show that it is capable of segmenting up to 12 layers. The experimental results imply the effectiveness of proposed method and indicate its robustness to low image resolution and intrinsic speckle noise.
Bolk, Jenny; Padilla, Nelly; Forsman, Lea; Broström, Lina; Hellgren, Kerstin; Åden, Ulrika
2018-02-17
This exploratory study aimed to investigate associations between neonatal brain volumes and visual-motor integration (VMI) and fine motor skills in children born extremely preterm (EPT) when they reached 6½ years of age. Prospective population-based cohort study in Stockholm, Sweden, during 3 years. All children born before gestational age, 27 weeks, during 2004-2007 in Stockholm, without major morbidities and impairments, and who underwent MRI at term-equivalent age. Brain volumes were calculated using morphometric analyses in regions known to be involved in VMI and fine motor functions. VMI was assessed with The Beery-Buktenica Developmental Test of Visual-Motor Integration-sixth edition and fine motor skills were assessed with the manual dexterity subtest from the Movement Assessment Battery for Children-second edition, at 6½ years. Associations between the brain volumes and VMI and fine motor skills were evaluated using partial correlation, adjusted for total cerebral parenchyma and sex. Out of 107 children born at gestational age <27 weeks, 83 were assessed at 6½ years and 66/83 were without major brain lesions or cerebral palsy and included in the analyses. A representative subsample underwent morphometric analyses: automatic segmentation (n=34) and atlas-based segmentation (n=26). The precentral gyrus was associated with both VMI (r=0.54, P=0.007) and fine motor skills (r=0.54, P=0.01). Associations were also seen between fine motor skills and the volume of the cerebellum (r=0.42, P=0.02), brainstem (r=0.47, P=0.008) and grey matter (r=-0.38, P=0.04). Neonatal brain volumes in areas known to be involved in VMI and fine motor skills were associated with scores for these two functions when children born EPT without major brain lesions or cerebral palsy were evaluated at 6½ years of age. Establishing clear associations between early brain volume alterations and later VMI and/or fine motor skills could make early interventions possible. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Lu, Chao; Zheng, Yefeng; Birkbeck, Neil; Zhang, Jingdan; Kohlberger, Timo; Tietjen, Christian; Boettger, Thomas; Duncan, James S; Zhou, S Kevin
2012-01-01
In this paper, we present a novel method by incorporating information theory into the learning-based approach for automatic and accurate pelvic organ segmentation (including the prostate, bladder and rectum). We target 3D CT volumes that are generated using different scanning protocols (e.g., contrast and non-contrast, with and without implant in the prostate, various resolution and position), and the volumes come from largely diverse sources (e.g., diseased in different organs). Three key ingredients are combined to solve this challenging segmentation problem. First, marginal space learning (MSL) is applied to efficiently and effectively localize the multiple organs in the largely diverse CT volumes. Second, learning techniques, steerable features, are applied for robust boundary detection. This enables handling of highly heterogeneous texture pattern. Third, a novel information theoretic scheme is incorporated into the boundary inference process. The incorporation of the Jensen-Shannon divergence further drives the mesh to the best fit of the image, thus improves the segmentation performance. The proposed approach is tested on a challenging dataset containing 188 volumes from diverse sources. Our approach not only produces excellent segmentation accuracy, but also runs about eighty times faster than previous state-of-the-art solutions. The proposed method can be applied to CT images to provide visual guidance to physicians during the computer-aided diagnosis, treatment planning and image-guided radiotherapy to treat cancers in pelvic region.
Meng, Qier; Kitasaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Ueno, Junji; Mori, Kensaku
2017-02-01
Airway segmentation plays an important role in analyzing chest computed tomography (CT) volumes for computerized lung cancer detection, emphysema diagnosis and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3D airway tree structure from a CT volume is quite a challenging task. Several researchers have proposed automated airway segmentation algorithms basically based on region growing and machine learning techniques. However, these methods fail to detect the peripheral bronchial branches, which results in a large amount of leakage. This paper presents a novel approach for more accurate extraction of the complex airway tree. This proposed segmentation method is composed of three steps. First, Hessian analysis is utilized to enhance the tube-like structure in CT volumes; then, an adaptive multiscale cavity enhancement filter is employed to detect the cavity-like structure with different radii. In the second step, support vector machine learning will be utilized to remove the false positive (FP) regions from the result obtained in the previous step. Finally, the graph-cut algorithm is used to refine the candidate voxels to form an integrated airway tree. A test dataset including 50 standard-dose chest CT volumes was used for evaluating our proposed method. The average extraction rate was about 79.1 % with the significantly decreased FP rate. A new method of airway segmentation based on local intensity structure and machine learning technique was developed. The method was shown to be feasible for airway segmentation in a computer-aided diagnosis system for a lung and bronchoscope guidance system.
Automatic segmentation of tumor-laden lung volumes from the LIDC database
NASA Astrophysics Data System (ADS)
O'Dell, Walter G.
2012-03-01
The segmentation of the lung parenchyma is often a critical pre-processing step prior to application of computer-aided detection of lung nodules. Segmentation of the lung volume can dramatically decrease computation time and reduce the number of false positive detections by excluding from consideration extra-pulmonary tissue. However, while many algorithms are capable of adequately segmenting the healthy lung, none have been demonstrated to work reliably well on tumor-laden lungs. Of particular challenge is to preserve tumorous masses attached to the chest wall, mediastinum or major vessels. In this role, lung volume segmentation comprises an important computational step that can adversely affect the performance of the overall CAD algorithm. An automated lung volume segmentation algorithm has been developed with the goals to maximally exclude extra-pulmonary tissue while retaining all true nodules. The algorithm comprises a series of tasks including intensity thresholding, 2-D and 3-D morphological operations, 2-D and 3-D floodfilling, and snake-based clipping of nodules attached to the chest wall. It features the ability to (1) exclude trachea and bowels, (2) snip large attached nodules using snakes, (3) snip small attached nodules using dilation, (4) preserve large masses fully internal to lung volume, (5) account for basal aspects of the lung where in a 2-D slice the lower sections appear to be disconnected from main lung, and (6) achieve separation of the right and left hemi-lungs. The algorithm was developed and trained to on the first 100 datasets of the LIDC image database.
Hamoud Al-Tamimi, Mohammed Sabbih; Sulong, Ghazali; Shuaib, Ibrahim Lutfi
2015-07-01
Resection of brain tumors is a tricky task in surgery due to its direct influence on the patients' survival rate. Determining the tumor resection extent for its complete information via-à-vis volume and dimensions in pre- and post-operative Magnetic Resonance Images (MRI) requires accurate estimation and comparison. The active contour segmentation technique is used to segment brain tumors on pre-operative MR images using self-developed software. Tumor volume is acquired from its contours via alpha shape theory. The graphical user interface is developed for rendering, visualizing and estimating the volume of a brain tumor. Internet Brain Segmentation Repository dataset (IBSR) is employed to analyze and determine the repeatability and reproducibility of tumor volume. Accuracy of the method is validated by comparing the estimated volume using the proposed method with that of gold-standard. Segmentation by active contour technique is found to be capable of detecting the brain tumor boundaries. Furthermore, the volume description and visualization enable an interactive examination of tumor tissue and its surrounding. Admirable features of our results demonstrate that alpha shape theory in comparison to other existing standard methods is superior for precise volumetric measurement of tumor. Copyright © 2015 Elsevier Inc. All rights reserved.
Sanchis-Moysi, Joaquin; Idoate, Fernando; Izquierdo, Mikel; Calbet, Jose A; Dorado, Cecilia
2013-03-01
The aim was to determine the volume and degree of asymmetry of quadratus lumborum (QL), obliques, and transversus abdominis; the last two considered conjointly (OT), in tennis and soccer players. The volume of QL and OT was determined using magnetic resonance imaging in professional tennis and soccer players, and in non-active controls (n = 8, 14, and 6, respectively). In tennis players the hypertrophy of OT was limited to proximal segments (cephalic segments), while in soccer players it was similar along longitudinal axis. In tennis players the hypertrophy was asymmetric (18% greater volume in the non-dominant than in the dominant OT, p = 0.001), while in soccer players and controls both sides had similar volumes (p > 0.05). In controls, the non-dominant QL was 15% greater than that of the dominant (p = 0.049). Tennis and soccer players had similar volumes in both sides of QL. Tennis alters the dominant-to-non-dominant balance in the muscle volume of the lateral abdominal wall. In tennis the hypertrophy is limited to proximal segments and is greater in the non-dominant side. Soccer, however, is associated to a symmetric hypertrophy of the lateral abdominal wall. Tennis and soccer elicit an asymmetric hypertrophy of QL.
Guo, Lu; Wang, Ping; Sun, Ranran; Yang, Chengwen; Zhang, Ning; Guo, Yu; Feng, Yuanming
2018-02-19
The diffusion and perfusion magnetic resonance (MR) images can provide functional information about tumour and enable more sensitive detection of the tumour extent. We aimed to develop a fuzzy feature fusion method for auto-segmentation of gliomas in radiotherapy planning using multi-parametric functional MR images including apparent diffusion coefficient (ADC), fractional anisotropy (FA) and relative cerebral blood volume (rCBV). For each functional modality, one histogram-based fuzzy model was created to transform image volume into a fuzzy feature space. Based on the fuzzy fusion result of the three fuzzy feature spaces, regions with high possibility belonging to tumour were generated automatically. The auto-segmentations of tumour in structural MR images were added in final auto-segmented gross tumour volume (GTV). For evaluation, one radiation oncologist delineated GTVs for nine patients with all modalities. Comparisons between manually delineated and auto-segmented GTVs showed that, the mean volume difference was 8.69% (±5.62%); the mean Dice's similarity coefficient (DSC) was 0.88 (±0.02); the mean sensitivity and specificity of auto-segmentation was 0.87 (±0.04) and 0.98 (±0.01) respectively. High accuracy and efficiency can be achieved with the new method, which shows potential of utilizing functional multi-parametric MR images for target definition in precision radiation treatment planning for patients with gliomas.
Antila, Kari; Nieminen, Heikki J; Sequeiros, Roberto Blanco; Ehnholm, Gösta
2014-07-01
Up to 25% of women suffer from uterine fibroids (UF) that cause infertility, pain, and discomfort. MR-guided high intensity focused ultrasound (MR-HIFU) is an emerging technique for noninvasive, computer-guided thermal ablation of UFs. The volume of induced necrosis is a predictor of the success of the treatment. However, accurate volume assessment by hand can be time consuming, and quick tools produce biased results. Therefore, fast and reliable tools are required in order to estimate the technical treatment outcome during the therapy event so as to predict symptom relief. A novel technique has been developed for the segmentation and volume assessment of the treated region. Conventional algorithms typically require user interaction ora priori knowledge of the target. The developed algorithm exploits the treatment plan, the coordinates of the intended ablation, for fully automatic segmentation with no user input. A good similarity to an expert-segmented manual reference was achieved (Dice similarity coefficient = 0.880 ± 0.074). The average automatic segmentation time was 1.6 ± 0.7 min per patient against an order of tens of minutes when done manually. The results suggest that the segmentation algorithm developed, requiring no user-input, provides a feasible and practical approach for the automatic evaluation of the boundary and volume of the HIFU-treated region.
Tooth segmentation system with intelligent editing for cephalometric analysis
NASA Astrophysics Data System (ADS)
Chen, Shoupu
2015-03-01
Cephalometric analysis is the study of the dental and skeletal relationship in the head, and it is used as an assessment and planning tool for improved orthodontic treatment of a patient. Conventional cephalometric analysis identifies bony and soft-tissue landmarks in 2D cephalometric radiographs, in order to diagnose facial features and abnormalities prior to treatment, or to evaluate the progress of treatment. Recent studies in orthodontics indicate that there are persistent inaccuracies and inconsistencies in the results provided using conventional 2D cephalometric analysis. Obviously, plane geometry is inappropriate for analyzing anatomical volumes and their growth; only a 3D analysis is able to analyze the three-dimensional, anatomical maxillofacial complex, which requires computing inertia systems for individual or groups of digitally segmented teeth from an image volume of a patient's head. For the study of 3D cephalometric analysis, the current paper proposes a system for semi-automatically segmenting teeth from a cone beam computed tomography (CBCT) volume with two distinct features, including an intelligent user-input interface for automatic background seed generation, and a graphics processing unit (GPU) acceleration mechanism for three-dimensional GrowCut volume segmentation. Results show a satisfying average DICE score of 0.92, with the use of the proposed tooth segmentation system, by 15 novice users who segmented a randomly sampled tooth set. The average GrowCut processing time is around one second per tooth, excluding user interaction time.
Nilsson, Henrik; Blomqvist, Lennart; Douglas, Lena; Nordell, Anders; Jacobsson, Hans; Hagen, Karin; Bergquist, Annika; Jonas, Eduard
2014-04-01
To evaluate dynamic hepatocyte-specific contrast-enhanced MRI (DHCE-MRI) for the assessment of global and segmental liver volume and function in patients with primary sclerosing cholangitis (PSC), and to explore the heterogeneous distribution of liver function in this patient group. Twelve patients with primary sclerosing cholangitis (PSC) and 20 healthy volunteers were examined using DHCE-MRI with Gd-EOB-DTPA. Segmental and total liver volume were calculated, and functional parameters (hepatic extraction fraction [HEF], input relative blood-flow [irBF], and mean transit time [MTT]) were calculated in each liver voxel using deconvolutional analysis. In each study subject, and incongruence score (IS) was constructed to describe the mismatch between segmental function and volume. Among patients, the liver function parameters were correlated to bile duct obstruction and to established scoring models for liver disease. Liver function was significantly more heterogeneously distributed in the patient group (IS 1.0 versus 0.4). There were significant correlations between biliary obstruction and segmental functional parameters (HEF rho -0.24; irBF rho -0.45), and the Mayo risk score correlated significantly with the total liver extraction capacity of Gd-EOB-DTPA (rho -0.85). The study demonstrates a new method to quantify total and segmental liver function using DHCE-MRI in patients with PSC. Copyright © 2013 Wiley Periodicals, Inc.
Automatically tracking neurons in a moving and deforming brain
Nguyen, Jeffrey P.; Linder, Ashley N.; Plummer, George S.; Shaevitz, Joshua W.
2017-01-01
Advances in optical neuroimaging techniques now allow neural activity to be recorded with cellular resolution in awake and behaving animals. Brain motion in these recordings pose a unique challenge. The location of individual neurons must be tracked in 3D over time to accurately extract single neuron activity traces. Recordings from small invertebrates like C. elegans are especially challenging because they undergo very large brain motion and deformation during animal movement. Here we present an automated computer vision pipeline to reliably track populations of neurons with single neuron resolution in the brain of a freely moving C. elegans undergoing large motion and deformation. 3D volumetric fluorescent images of the animal’s brain are straightened, aligned and registered, and the locations of neurons in the images are found via segmentation. Each neuron is then assigned an identity using a new time-independent machine-learning approach we call Neuron Registration Vector Encoding. In this approach, non-rigid point-set registration is used to match each segmented neuron in each volume with a set of reference volumes taken from throughout the recording. The way each neuron matches with the references defines a feature vector which is clustered to assign an identity to each neuron in each volume. Finally, thin-plate spline interpolation is used to correct errors in segmentation and check consistency of assigned identities. The Neuron Registration Vector Encoding approach proposed here is uniquely well suited for tracking neurons in brains undergoing large deformations. When applied to whole-brain calcium imaging recordings in freely moving C. elegans, this analysis pipeline located 156 neurons for the duration of an 8 minute recording and consistently found more neurons more quickly than manual or semi-automated approaches. PMID:28545068
Automatically tracking neurons in a moving and deforming brain.
Nguyen, Jeffrey P; Linder, Ashley N; Plummer, George S; Shaevitz, Joshua W; Leifer, Andrew M
2017-05-01
Advances in optical neuroimaging techniques now allow neural activity to be recorded with cellular resolution in awake and behaving animals. Brain motion in these recordings pose a unique challenge. The location of individual neurons must be tracked in 3D over time to accurately extract single neuron activity traces. Recordings from small invertebrates like C. elegans are especially challenging because they undergo very large brain motion and deformation during animal movement. Here we present an automated computer vision pipeline to reliably track populations of neurons with single neuron resolution in the brain of a freely moving C. elegans undergoing large motion and deformation. 3D volumetric fluorescent images of the animal's brain are straightened, aligned and registered, and the locations of neurons in the images are found via segmentation. Each neuron is then assigned an identity using a new time-independent machine-learning approach we call Neuron Registration Vector Encoding. In this approach, non-rigid point-set registration is used to match each segmented neuron in each volume with a set of reference volumes taken from throughout the recording. The way each neuron matches with the references defines a feature vector which is clustered to assign an identity to each neuron in each volume. Finally, thin-plate spline interpolation is used to correct errors in segmentation and check consistency of assigned identities. The Neuron Registration Vector Encoding approach proposed here is uniquely well suited for tracking neurons in brains undergoing large deformations. When applied to whole-brain calcium imaging recordings in freely moving C. elegans, this analysis pipeline located 156 neurons for the duration of an 8 minute recording and consistently found more neurons more quickly than manual or semi-automated approaches.
Rios Velazquez, Emmanuel; Meier, Raphael; Dunn, William D; Alexander, Brian; Wiest, Roland; Bauer, Stefan; Gutman, David A; Reyes, Mauricio; Aerts, Hugo J W L
2015-11-18
Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. MRI sets of 109 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA). Spearman's correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Auto-segmented sub-volumes showed moderate to high agreement with manually delineated volumes (range (r): 0.4 - 0.86). Also, the auto and manual volumes showed similar correlation with VASARI features (auto r = 0.35, 0.43 and 0.36; manual r = 0.17, 0.67, 0.41, for contrast-enhancing, necrosis and edema, respectively). The auto-segmented contrast-enhancing volume and post-contrast abnormal volume showed the highest AUC (0.66, CI: 0.55-0.77 and 0.65, CI: 0.54-0.76), comparable to manually defined volumes (0.64, CI: 0.53-0.75 and 0.63, CI: 0.52-0.74, respectively). BraTumIA and manual tumor sub-compartments showed comparable performance in terms of prognosis and correlation with VASARI features. This method can enable more reproducible definition and quantification of imaging based biomarkers and has potential in high-throughput medical imaging research.
Yang, Xiaofeng; Wu, Ning; Cheng, Guanghui; Zhou, Zhengyang; Yu, David S; Beitler, Jonathan J; Curran, Walter J; Liu, Tian
2014-12-01
To develop an automated magnetic resonance imaging (MRI) parotid segmentation method to monitor radiation-induced parotid gland changes in patients after head and neck radiation therapy (RT). The proposed method combines the atlas registration method, which captures the global variation of anatomy, with a machine learning technology, which captures the local statistical features, to automatically segment the parotid glands from the MRIs. The segmentation method consists of 3 major steps. First, an atlas (pre-RT MRI and manually contoured parotid gland mask) is built for each patient. A hybrid deformable image registration is used to map the pre-RT MRI to the post-RT MRI, and the transformation is applied to the pre-RT parotid volume. Second, the kernel support vector machine (SVM) is trained with the subject-specific atlas pair consisting of multiple features (intensity, gradient, and others) from the aligned pre-RT MRI and the transformed parotid volume. Third, the well-trained kernel SVM is used to differentiate the parotid from surrounding tissues in the post-RT MRIs by statistically matching multiple texture features. A longitudinal study of 15 patients undergoing head and neck RT was conducted: baseline MRI was acquired prior to RT, and the post-RT MRIs were acquired at 3-, 6-, and 12-month follow-up examinations. The resulting segmentations were compared with the physicians' manual contours. Successful parotid segmentation was achieved for all 15 patients (42 post-RT MRIs). The average percentage of volume differences between the automated segmentations and those of the physicians' manual contours were 7.98% for the left parotid and 8.12% for the right parotid. The average volume overlap was 91.1% ± 1.6% for the left parotid and 90.5% ± 2.4% for the right parotid. The parotid gland volume reduction at follow-up was 25% at 3 months, 27% at 6 months, and 16% at 12 months. We have validated our automated parotid segmentation algorithm in a longitudinal study. This segmentation method may be useful in future studies to address radiation-induced xerostomia in head and neck radiation therapy. Copyright © 2014 Elsevier Inc. All rights reserved.
Rios Velazquez, Emmanuel; Aerts, Hugo J W L; Gu, Yuhua; Goldgof, Dmitry B; De Ruysscher, Dirk; Dekker, Andre; Korn, René; Gillies, Robert J; Lambin, Philippe
2012-11-01
To assess the clinical relevance of a semiautomatic CT-based ensemble segmentation method, by comparing it to pathology and to CT/PET manual delineations by five independent radiation oncologists in non-small cell lung cancer (NSCLC). For 20 NSCLC patients (stages Ib-IIIb) the primary tumor was delineated manually on CT/PET scans by five independent radiation oncologists and segmented using a CT based semi-automatic tool. Tumor volume and overlap fractions between manual and semiautomatic-segmented volumes were compared. All measurements were correlated with the maximal diameter on macroscopic examination of the surgical specimen. Imaging data are available on www.cancerdata.org. High overlap fractions were observed between the semi-automatically segmented volumes and the intersection (92.5±9.0, mean±SD) and union (94.2±6.8) of the manual delineations. No statistically significant differences in tumor volume were observed between the semiautomatic segmentation (71.4±83.2 cm(3), mean±SD) and manual delineations (81.9±94.1 cm(3); p=0.57). The maximal tumor diameter of the semiautomatic-segmented tumor correlated strongly with the macroscopic diameter of the primary tumor (r=0.96). Semiautomatic segmentation of the primary tumor on CT demonstrated high agreement with CT/PET manual delineations and strongly correlated with the macroscopic diameter considered as the "gold standard". This method may be used routinely in clinical practice and could be employed as a starting point for treatment planning, target definition in multi-center clinical trials or for high throughput data mining research. This method is particularly suitable for peripherally located tumors. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Automatically measuring brain ventricular volume within PACS using artificial intelligence.
Yepes-Calderon, Fernando; Nelson, Marvin D; McComb, J Gordon
2018-01-01
The picture archiving and communications system (PACS) is currently the standard platform to manage medical images but lacks analytical capabilities. Staying within PACS, the authors have developed an automatic method to retrieve the medical data and access it at a voxel level, decrypted and uncompressed that allows analytical capabilities while not perturbing the system's daily operation. Additionally, the strategy is secure and vendor independent. Cerebral ventricular volume is important for the diagnosis and treatment of many neurological disorders. A significant change in ventricular volume is readily recognized, but subtle changes, especially over longer periods of time, may be difficult to discern. Clinical imaging protocols and parameters are often varied making it difficult to use a general solution with standard segmentation techniques. Presented is a segmentation strategy based on an algorithm that uses four features extracted from the medical images to create a statistical estimator capable of determining ventricular volume. When compared with manual segmentations, the correlation was 94% and holds promise for even better accuracy by incorporating the unlimited data available. The volume of any segmentable structure can be accurately determined utilizing the machine learning strategy presented and runs fully automatically within the PACS.
Partial volume segmentation in 3D of lesions and tissues in magnetic resonance images
NASA Astrophysics Data System (ADS)
Johnston, Brian; Atkins, M. Stella; Booth, Kellogg S.
1994-05-01
An important first step in diagnosis and treatment planning using tomographic imaging is differentiating and quantifying diseased as well as healthy tissue. One of the difficulties encountered in solving this problem to date has been distinguishing the partial volume constituents of each voxel in the image volume. Most proposed solutions to this problem involve analysis of planar images, in sequence, in two dimensions only. We have extended a model-based method of image segmentation which applies the technique of iterated conditional modes in three dimensions. A minimum of user intervention is required to train the algorithm. Partial volume estimates for each voxel in the image are obtained yielding fractional compositions of multiple tissue types for individual voxels. A multispectral approach is applied, where spatially registered data sets are available. The algorithm is simple and has been parallelized using a dataflow programming environment to reduce the computational burden. The algorithm has been used to segment dual echo MRI data sets of multiple sclerosis patients using lesions, gray matter, white matter, and cerebrospinal fluid as the partial volume constituents. The results of the application of the algorithm to these datasets is presented and compared to the manual lesion segmentation of the same data.
Sjöberg, Carl; Lundmark, Martin; Granberg, Christoffer; Johansson, Silvia; Ahnesjö, Anders; Montelius, Anders
2013-10-03
Semi-automated segmentation using deformable registration of selected atlas cases consisting of expert segmented patient images has been proposed to facilitate the delineation of lymph node regions for three-dimensional conformal and intensity-modulated radiotherapy planning of head and neck and prostate tumours. Our aim is to investigate if fusion of multiple atlases will lead to clinical workload reductions and more accurate segmentation proposals compared to the use of a single atlas segmentation, due to a more complete representation of the anatomical variations. Atlases for lymph node regions were constructed using 11 head and neck patients and 15 prostate patients based on published recommendations for segmentations. A commercial registration software (Velocity AI) was used to create individual segmentations through deformable registration. Ten head and neck patients, and ten prostate patients, all different from the atlas patients, were randomly chosen for the study from retrospective data. Each patient was first delineated three times, (a) manually by a radiation oncologist, (b) automatically using a single atlas segmentation proposal from a chosen atlas and (c) automatically by fusing the atlas proposals from all cases in the database using the probabilistic weighting fusion algorithm. In a subsequent step a radiation oncologist corrected the segmentation proposals achieved from step (b) and (c) without using the result from method (a) as reference. The time spent for editing the segmentations was recorded separately for each method and for each individual structure. Finally, the Dice Similarity Coefficient and the volume of the structures were used to evaluate the similarity between the structures delineated with the different methods. For the single atlas method, the time reduction compared to manual segmentation was 29% and 23% for head and neck and pelvis lymph nodes, respectively, while editing the fused atlas proposal resulted in time reductions of 49% and 34%. The average volume of the fused atlas proposals was only 74% of the manual segmentation for the head and neck cases and 82% for the prostate cases due to a blurring effect from the fusion process. After editing of the proposals the resulting volume differences were no longer statistically significant, although a slight influence by the proposals could be noticed since the average edited volume was still slightly smaller than the manual segmentation, 9% and 5%, respectively. Segmentation based on fusion of multiple atlases reduces the time needed for delineation of lymph node regions compared to the use of a single atlas segmentation. Even though the time saving is large, the quality of the segmentation is maintained compared to manual segmentation.
Singh, Ranjodh; Zhou, Zhiping; Tisnado, Jamie; Haque, Sofia; Peck, Kyung K; Young, Robert J; Tsiouris, Apostolos John; Thakur, Sunitha B; Souweidane, Mark M
2016-11-01
OBJECTIVE Accurately determining diffuse intrinsic pontine glioma (DIPG) tumor volume is clinically important. The aims of the current study were to 1) measure DIPG volumes using methods that require different degrees of subjective judgment; and 2) evaluate interobserver agreement of measurements made using these methods. METHODS Eight patients from a Phase I clinical trial testing convection-enhanced delivery (CED) of a therapeutic antibody were included in the study. Pre-CED, post-radiation therapy axial T2-weighted images were analyzed using 2 methods requiring high degrees of subjective judgment (picture archiving and communication system [PACS] polygon and Volume Viewer auto-contour methods) and 1 method requiring a low degree of subjective judgment (k-means clustering segmentation) to determine tumor volumes. Lin's concordance correlation coefficients (CCCs) were calculated to assess interobserver agreement. RESULTS The CCCs of measurements made by 2 observers with the PACS polygon and the Volume Viewer auto-contour methods were 0.9465 (lower 1-sided 95% confidence limit 0.8472) and 0.7514 (lower 1-sided 95% confidence limit 0.3143), respectively. Both were considered poor agreement. The CCC of measurements made using k-means clustering segmentation was 0.9938 (lower 1-sided 95% confidence limit 0.9772), which was considered substantial strength of agreement. CONCLUSIONS The poor interobserver agreement of PACS polygon and Volume Viewer auto-contour methods highlighted the difficulty in consistently measuring DIPG tumor volumes using methods requiring high degrees of subjective judgment. k-means clustering segmentation, which requires a low degree of subjective judgment, showed better interobserver agreement and produced tumor volumes with delineated borders.
NASA Astrophysics Data System (ADS)
Tsagaan, Baigalmaa; Abe, Keiichi; Goto, Masahiro; Yamamoto, Seiji; Terakawa, Susumu
2006-03-01
This paper presents a segmentation method of brain tissues from MR images, invented for our image-guided neurosurgery system under development. Our goal is to segment brain tissues for creating biomechanical model. The proposed segmentation method is based on 3-D region growing and outperforms conventional approaches by stepwise usage of intensity similarities between voxels in conjunction with edge information. Since the intensity and the edge information are complementary to each other in the region-based segmentation, we use them twice by performing a coarse-to-fine extraction. First, the edge information in an appropriate neighborhood of the voxel being considered is examined to constrain the region growing. The expanded region of the first extraction result is then used as the domain for the next processing. The intensity and the edge information of the current voxel only are utilized in the final extraction. Before segmentation, the intensity parameters of the brain tissues as well as partial volume effect are estimated by using expectation-maximization (EM) algorithm in order to provide an accurate data interpretation into the extraction. We tested the proposed method on T1-weighted MR images of brain and evaluated the segmentation effectiveness comparing the results with ground truths. Also, the generated meshes from the segmented brain volume by using mesh generating software are shown in this paper.
Hori, Daisuke; Katsuragawa, Shigehiko; Murakami, Ryuuji; Hirai, Toshinori
2010-04-20
We propose a computerized method for semi-automated segmentation of the gross tumor volume (GTV) of a glioblastoma multiforme (GBM) on brain MR images for radiotherapy planning (RTP). Three-dimensional (3D) MR images of 28 cases with a GBM were used in this study. First, a sphere volume of interest (VOI) including the GBM was selected by clicking a part of the GBM region in the 3D image. Then, the sphere VOI was transformed to a two-dimensional (2D) image by use of a spiral-scanning technique. We employed active contour models (ACM) to delineate an optimal outline of the GBM in the transformed 2D image. After inverse transform of the optimal outline to the 3D space, a morphological filter was applied to smooth the shape of the 3D segmented region. For evaluation of our computerized method, we compared the computer output with manually segmented regions, which were obtained by a therapeutic radiologist using a manual tracking method. In evaluating our segmentation method, we employed the Jaccard similarity coefficient (JSC) and the true segmentation coefficient (TSC) in volumes between the computer output and the manually segmented region. The mean and standard deviation of JSC and TSC were 74.2+/-9.8% and 84.1+/-7.1%, respectively. Our segmentation method provided a relatively accurate outline for GBM and would be useful for radiotherapy planning.
NASA Astrophysics Data System (ADS)
Cheng, Guanghui; Yang, Xiaofeng; Wu, Ning; Xu, Zhijian; Zhao, Hongfu; Wang, Yuefeng; Liu, Tian
2013-02-01
Xerostomia (dry mouth), resulting from radiation damage to the parotid glands, is one of the most common and distressing side effects of head-and-neck cancer radiotherapy. Recent MRI studies have demonstrated that the volume reduction of parotid glands is an important indicator for radiation damage and xerostomia. In the clinic, parotid-volume evaluation is exclusively based on physicians' manual contours. However, manual contouring is time-consuming and prone to inter-observer and intra-observer variability. Here, we report a fully automated multi-atlas-based registration method for parotid-gland delineation in 3D head-and-neck MR images. The multi-atlas segmentation utilizes a hybrid deformable image registration to map the target subject to multiple patients' images, applies the transformation to the corresponding segmented parotid glands, and subsequently uses the multiple patient-specific pairs (head-and-neck MR image and transformed parotid-gland mask) to train support vector machine (SVM) to reach consensus to segment the parotid gland of the target subject. This segmentation algorithm was tested with head-and-neck MRIs of 5 patients following radiotherapy for the nasopharyngeal cancer. The average parotid-gland volume overlapped 85% between the automatic segmentations and the physicians' manual contours. In conclusion, we have demonstrated the feasibility of an automatic multi-atlas based segmentation algorithm to segment parotid glands in head-and-neck MR images.
NASA Astrophysics Data System (ADS)
Luiza Bondar, M.; Hoogeman, Mischa; Schillemans, Wilco; Heijmen, Ben
2013-08-01
For online adaptive radiotherapy of cervical cancer, fast and accurate image segmentation is required to facilitate daily treatment adaptation. Our aim was twofold: (1) to test and compare three intra-patient automated segmentation methods for the cervix-uterus structure in CT-images and (2) to improve the segmentation accuracy by including prior knowledge on the daily bladder volume or on the daily coordinates of implanted fiducial markers. The tested methods were: shape deformation (SD) and atlas-based segmentation (ABAS) using two non-rigid registration methods: demons and a hierarchical algorithm. Tests on 102 CT-scans of 13 patients demonstrated that the segmentation accuracy significantly increased by including the bladder volume predicted with a simple 1D model based on a manually defined bladder top. Moreover, manually identified implanted fiducial markers significantly improved the accuracy of the SD method. For patients with large cervix-uterus volume regression, the use of CT-data acquired toward the end of the treatment was required to improve segmentation accuracy. Including prior knowledge, the segmentation results of SD (Dice similarity coefficient 85 ± 6%, error margin 2.2 ± 2.3 mm, average time around 1 min) and of ABAS using hierarchical non-rigid registration (Dice 82 ± 10%, error margin 3.1 ± 2.3 mm, average time around 30 s) support their use for image guided online adaptive radiotherapy of cervical cancer.
Bondar, M Luiza; Hoogeman, Mischa; Schillemans, Wilco; Heijmen, Ben
2013-08-07
For online adaptive radiotherapy of cervical cancer, fast and accurate image segmentation is required to facilitate daily treatment adaptation. Our aim was twofold: (1) to test and compare three intra-patient automated segmentation methods for the cervix-uterus structure in CT-images and (2) to improve the segmentation accuracy by including prior knowledge on the daily bladder volume or on the daily coordinates of implanted fiducial markers. The tested methods were: shape deformation (SD) and atlas-based segmentation (ABAS) using two non-rigid registration methods: demons and a hierarchical algorithm. Tests on 102 CT-scans of 13 patients demonstrated that the segmentation accuracy significantly increased by including the bladder volume predicted with a simple 1D model based on a manually defined bladder top. Moreover, manually identified implanted fiducial markers significantly improved the accuracy of the SD method. For patients with large cervix-uterus volume regression, the use of CT-data acquired toward the end of the treatment was required to improve segmentation accuracy. Including prior knowledge, the segmentation results of SD (Dice similarity coefficient 85 ± 6%, error margin 2.2 ± 2.3 mm, average time around 1 min) and of ABAS using hierarchical non-rigid registration (Dice 82 ± 10%, error margin 3.1 ± 2.3 mm, average time around 30 s) support their use for image guided online adaptive radiotherapy of cervical cancer.
Molar axis estimation from computed tomography images.
Dongxia Zhang; Yangzhou Gan; Zeyang Xia; Xinwen Zhou; Shoubin Liu; Jing Xiong; Guanglin Li
2016-08-01
Estimation of tooth axis is needed for some clinical dental treatment. Existing methods require to segment the tooth volume from Computed Tomography (CT) images, and then estimate the axis from the tooth volume. However, they may fail during estimating molar axis due to that the tooth segmentation from CT images is challenging and current segmentation methods may get poor segmentation results especially for these molars with angle which will result in the failure of axis estimation. To resolve this problem, this paper proposes a new method for molar axis estimation from CT images. The key innovation point is that: instead of estimating the 3D axis of each molar from the segmented volume, the method estimates the 3D axis from two projection images. The method includes three steps. (1) The 3D images of each molar are projected to two 2D image planes. (2) The molar contour are segmented and the contour's 2D axis are extracted in each 2D projection image. Principal Component Analysis (PCA) and a modified symmetry axis detection algorithm are employed to extract the 2D axis from the segmented molar contour. (3) A 3D molar axis is obtained by combining the two 2D axes. Experimental results verified that the proposed method was effective to estimate the axis of molar from CT images.
Garson, Christopher D; Li, Bing; Acton, Scott T; Hossack, John A
2008-06-01
The active surface technique using gradient vector flow allows semi-automated segmentation of ventricular borders. The accuracy of the algorithm depends on the optimal selection of several key parameters. We investigated the use of conservation of myocardial volume for quantitative assessment of each of these parameters using synthetic and in vivo data. We predicted that for a given set of model parameters, strong conservation of volume would correlate with accurate segmentation. The metric was most useful when applied to the gradient vector field weighting and temporal step-size parameters, but less effective in guiding an optimal choice of the active surface tension and rigidity parameters.
NASA Astrophysics Data System (ADS)
Zhu, Weifang; Zhang, Li; Shi, Fei; Xiang, Dehui; Wang, Lirong; Guo, Jingyun; Yang, Xiaoling; Chen, Haoyu; Chen, Xinjian
2017-07-01
Cystoid macular edema (CME) and macular hole (MH) are the leading causes for visual loss in retinal diseases. The volume of the CMEs can be an accurate predictor for visual prognosis. This paper presents an automatic method to segment the CMEs from the abnormal retina with coexistence of MH in three-dimensional-optical coherence tomography images. The proposed framework consists of preprocessing and CMEs segmentation. The preprocessing part includes denoising, intraretinal layers segmentation and flattening, and MH and vessel silhouettes exclusion. In the CMEs segmentation, a three-step strategy is applied. First, an AdaBoost classifier trained with 57 features is employed to generate the initialization results. Second, an automated shape-constrained graph cut algorithm is applied to obtain the refined results. Finally, cyst area information is used to remove false positives (FPs). The method was evaluated on 19 eyes with coexistence of CMEs and MH from 18 subjects. The true positive volume fraction, FP volume fraction, dice similarity coefficient, and accuracy rate for CMEs segmentation were 81.0%±7.8%, 0.80%±0.63%, 80.9%±5.7%, and 99.7%±0.1%, respectively.
Scalable and Interactive Segmentation and Visualization of Neural Processes in EM Datasets
Jeong, Won-Ki; Beyer, Johanna; Hadwiger, Markus; Vazquez, Amelio; Pfister, Hanspeter; Whitaker, Ross T.
2011-01-01
Recent advances in scanning technology provide high resolution EM (Electron Microscopy) datasets that allow neuroscientists to reconstruct complex neural connections in a nervous system. However, due to the enormous size and complexity of the resulting data, segmentation and visualization of neural processes in EM data is usually a difficult and very time-consuming task. In this paper, we present NeuroTrace, a novel EM volume segmentation and visualization system that consists of two parts: a semi-automatic multiphase level set segmentation with 3D tracking for reconstruction of neural processes, and a specialized volume rendering approach for visualization of EM volumes. It employs view-dependent on-demand filtering and evaluation of a local histogram edge metric, as well as on-the-fly interpolation and ray-casting of implicit surfaces for segmented neural structures. Both methods are implemented on the GPU for interactive performance. NeuroTrace is designed to be scalable to large datasets and data-parallel hardware architectures. A comparison of NeuroTrace with a commonly used manual EM segmentation tool shows that our interactive workflow is faster and easier to use for the reconstruction of complex neural processes. PMID:19834227
NASA Astrophysics Data System (ADS)
Pura, John A.; Hamilton, Allison M.; Vargish, Geoffrey A.; Butman, John A.; Linguraru, Marius George
2011-03-01
Accurate ventricle volume estimates could improve the understanding and diagnosis of postoperative communicating hydrocephalus. For this category of patients, associated changes in ventricle volume can be difficult to identify, particularly over short time intervals. We present an automated segmentation algorithm that evaluates ventricle size from serial brain MRI examination. The technique combines serial T1- weighted images to increase SNR and segments the means image to generate a ventricle template. After pre-processing, the segmentation is initiated by a fuzzy c-means clustering algorithm to find the seeds used in a combination of fast marching methods and geodesic active contours. Finally, the ventricle template is propagated onto the serial data via non-linear registration. Serial volume estimates were obtained in an automated robust and accurate manner from difficult data.
Amann, Michael; Andělová, Michaela; Pfister, Armanda; Mueller-Lenke, Nicole; Traud, Stefan; Reinhardt, Julia; Magon, Stefano; Bendfeldt, Kerstin; Kappos, Ludwig; Radue, Ernst-Wilhelm; Stippich, Christoph; Sprenger, Till
2015-01-01
Brain atrophy has been identified as an important contributing factor to the development of disability in multiple sclerosis (MS). In this respect, more and more interest is focussing on the role of deep grey matter (DGM) areas. Novel data analysis pipelines are available for the automatic segmentation of DGM using three-dimensional (3D) MRI data. However, in clinical trials, often no such high-resolution data are acquired and hence no conclusions regarding the impact of new treatments on DGM atrophy were possible so far. In this work, we used FMRIB's Integrated Registration and Segmentation Tool (FIRST) to evaluate the possibility of segmenting DGM structures using standard two-dimensional (2D) T1-weighted MRI. In a cohort of 70 MS patients, both 2D and 3D T1-weighted data were acquired. The thalamus, putamen, pallidum, nucleus accumbens, and caudate nucleus were bilaterally segmented using FIRST. Volumes were calculated for each structure and for the sum of basal ganglia (BG) as well as for the total DGM. The accuracy and reliability of the 2D data segmentation were compared with the respective results of 3D segmentations using volume difference, volume overlap and intra-class correlation coefficients (ICCs). The mean differences for the individual substructures were between 1.3% (putamen) and -25.2% (nucleus accumbens). The respective values for the BG were -2.7% and for DGM 1.3%. Mean volume overlap was between 89.1% (thalamus) and 61.5% (nucleus accumbens); BG: 84.1%; DGM: 86.3%. Regarding ICC, all structures showed good agreement with the exception of the nucleus accumbens. The results of the segmentation were additionally validated through expert manual delineation of the caudate nucleus and putamen in a subset of the 3D data. In conclusion, we demonstrate that subcortical segmentation of 2D data are feasible using FIRST. The larger subcortical GM structures can be segmented with high consistency. This forms the basis for the application of FIRST in large 2D MRI data sets of clinical trials in order to determine the impact of therapeutic interventions on DGM atrophy in MS.
Extreme liver resections with preservation of segment 4 only
Balzan, Silvio Marcio Pegoraro; Gava, Vinícius Grando; Magalhães, Marcelo Arbo; Dotto, Marcelo Luiz
2017-01-01
AIM To evaluate safety and outcomes of a new technique for extreme hepatic resections with preservation of segment 4 only. METHODS The new method of extreme liver resection consists of a two-stage hepatectomy. The first stage involves a right hepatectomy with middle hepatic vein preservation and induction of left lobe congestion; the second stage involves a left lobectomy. Thus, the remnant liver is represented by the segment 4 only (with or without segment 1, ± S1). Five patients underwent the new two-stage hepatectomy (congestion group). Data from volumetric assessment made before the second stage was compared with that of 10 matched patients (comparison group) that underwent a single-stage right hepatectomy with middle hepatic vein preservation. RESULTS The two stages of the procedure were successfully carried out on all 5 patients. For the congestion group, the overall volume of the left hemiliver had increased 103% (mean increase from 438 mL to 890 mL) at 4 wk after the first stage of the procedure. Hypertrophy of the future liver remnant (i.e., segment 4 ± S1) was higher than that of segments 2 and 3 (144% vs 54%, respectively, P < 0.05). The median remnant liver volume-to-body weight ratio was 0.3 (range, 0.28-0.40) before the first stage and 0.8 (range, 0.45-0.97) before the second stage. For the comparison group, the rate of hypertrophy of the left liver after right hepatectomy with middle hepatic vein preservation was 116% ± 34%. Hypertrophy rates of segments 2 and 3 (123% ± 47%) and of segment 4 (108% ± 60%, P > 0.05) were proportional. The mean preoperative volume of segments 2 and 3 was 256 ± 64 cc and increased to 572 ± 257 cc after right hepatectomy. Mean preoperative volume of segment 4 increased from 211 ± 75 cc to 439 ± 180 cc after surgery. CONCLUSION The proposed method for extreme hepatectomy with preservation of segment 4 only represents a technique that could allow complete resection of multiple bilateral liver metastases. PMID:28765703
Zhou, Jinghao; Yan, Zhennan; Lasio, Giovanni; Huang, Junzhou; Zhang, Baoshe; Sharma, Navesh; Prado, Karl; D'Souza, Warren
2015-12-01
To resolve challenges in image segmentation in oncologic patients with severely compromised lung, we propose an automated right lung segmentation framework that uses a robust, atlas-based active volume model with a sparse shape composition prior. The robust atlas is achieved by combining the atlas with the output of sparse shape composition. Thoracic computed tomography images (n=38) from patients with lung tumors were collected. The right lung in each scan was manually segmented to build a reference training dataset against which the performance of the automated segmentation method was assessed. The quantitative results of this proposed segmentation method with sparse shape composition achieved mean Dice similarity coefficient (DSC) of (0.72, 0.81) with 95% CI, mean accuracy (ACC) of (0.97, 0.98) with 95% CI, and mean relative error (RE) of (0.46, 0.74) with 95% CI. Both qualitative and quantitative comparisons suggest that this proposed method can achieve better segmentation accuracy with less variance than other atlas-based segmentation methods in the compromised lung segmentation. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
He, Nana; Zhang, Xiaolong; Zhao, Juanjuan; Zhao, Huilan; Qiang, Yan
2017-07-01
While the popular thin layer scanning technology of spiral CT has helped to improve diagnoses of lung diseases, the large volumes of scanning images produced by the technology also dramatically increase the load of physicians in lesion detection. Computer-aided diagnosis techniques like lesions segmentation in thin CT sequences have been developed to address this issue, but it remains a challenge to achieve high segmentation efficiency and accuracy without much involvement of human manual intervention. In this paper, we present our research on automated segmentation of lung parenchyma with an improved geodesic active contour model that is geodesic active contour model based on similarity (GACBS). Combining spectral clustering algorithm based on Nystrom (SCN) with GACBS, this algorithm first extracts key image slices, then uses these slices to generate an initial contour of pulmonary parenchyma of un-segmented slices with an interpolation algorithm, and finally segments lung parenchyma of un-segmented slices. Experimental results show that the segmentation results generated by our method are close to what manual segmentation can produce, with an average volume overlap ratio of 91.48%.
NASA Astrophysics Data System (ADS)
Veres, C.; Garsi, J. P.; Rubino, C.; Pouzoulet, F.; Bidault, F.; Chavaudra, J.; Bridier, A.; Ricard, M.; Ferreira, I.; Lefkopoulos, D.; de Vathaire, F.; Diallo, I.
2010-11-01
The aim of this study is to define criteria for accurate representation of the thyroid in human models used to represent external beam radiotherapy (EBRT) patients and evaluate the relationship between the volume of this organ and clinical and anthropometric characteristics. From CT images, we segmented the thyroid gland and calculated its volume for a population of 188 EBRT patients of both sexes, with ages ranging from 1 to 89 years. To evaluate uncertainties linked to measured volumes, experimental studies on the Livermore anthropomorphic phantom were performed. For our population of EBRT patients, we observed that in children, thyroid volume increased rapidly with age, from about 3 cm3 at 2 years to about 16 cm3 at 20. In adults, the mean thyroid gland volume was 23.5 ± 9 cm3 for males and 17.5 ± 8 cm3 for females. According to anthropometric parameters, the best fit for children was obtained by modeling the log of thyroid volume as a linear function of body surface area (BSA) (p < 0.0001) and age (p = 0.04) and for adults, as a linear function of BSA (p < 0.0001) and gender (p = 0.01). This work enabled us to demonstrate that BSA was the best indicator of thyroid volume for both males and females. These results should be taken into account when modeling the volume of the thyroid in human models used to represent EBRT patients for dosimetry in retrospective studies of the relationship between the estimated dose to the thyroid and long-term follow-up data on EBRT patients.
Fortmeier, Dirk; Mastmeyer, Andre; Schröder, Julian; Handels, Heinz
2016-01-01
This study presents a new visuo-haptic virtual reality (VR) training and planning system for percutaneous transhepatic cholangio-drainage (PTCD) based on partially segmented virtual patient models. We only use partially segmented image data instead of a full segmentation and circumvent the necessity of surface or volume mesh models. Haptic interaction with the virtual patient during virtual palpation, ultrasound probing and needle insertion is provided. Furthermore, the VR simulator includes X-ray and ultrasound simulation for image-guided training. The visualization techniques are GPU-accelerated by implementation in Cuda and include real-time volume deformations computed on the grid of the image data. Computation on the image grid enables straightforward integration of the deformed image data into the visualization components. To provide shorter rendering times, the performance of the volume deformation algorithm is improved by a multigrid approach. To evaluate the VR training system, a user evaluation has been performed and deformation algorithms are analyzed in terms of convergence speed with respect to a fully converged solution. The user evaluation shows positive results with increased user confidence after a training session. It is shown that using partially segmented patient data and direct volume rendering is suitable for the simulation of needle insertion procedures such as PTCD.
NASA Astrophysics Data System (ADS)
Nadège Ilembe Badouna, Audrey; Veres, Cristina; Haddy, Nadia; Bidault, François; Lefkopoulos, Dimitri; Chavaudra, Jean; Bridier, André; de Vathaire, Florent; Diallo, Ibrahima
2012-01-01
The aim of this paper was to determine anthropometric parameters leading to the least uncertain estimate of heart size when connecting a computational phantom to an external beam radiation therapy (EBRT) patient. From computed tomography images, we segmented the heart and calculated its total volume (THV) in a population of 270 EBRT patients of both sexes, aged 0.7-83 years. Our data were fitted using logistic growth functions. The patient age, height, weight, body mass index and body surface area (BSA) were used as explanatory variables. For both genders, good fits were obtained with both weight (R2 = 0.89 for males and 0.83 for females) and BSA (R2 = 0.90 for males and 0.84 for females). These results demonstrate that, among anthropometric parameters, weight plays an important role in predicting THV. These findings should be taken into account when assigning a computational phantom to a patient.
Touj, Sara; Houle, Sébastien; Ramla, Djamel; Jeffrey-Gauthier, Renaud; Hotta, Harumi; Bronchti, Gilles; Martinoli, Maria-Grazia; Piché, Mathieu
2017-06-03
Chronic pain is associated with autonomic disturbance. However, specific effects of chronic back pain on sympathetic regulation remain unknown. Chronic pain is also associated with structural changes in the anterior cingulate cortex (ACC), which may be linked to sympathetic dysregulation. The aim of this study was to determine whether sympathetic regulation and ACC surface and volume are affected in a rat model of chronic back pain, in which complete Freund Adjuvant (CFA) is injected in back muscles. Sympathetic regulation was assessed with renal blood flow (RBF) changes induced by electrical stimulation of a hind paw, while ACC structure was examined by measuring cortical surface and volume. RBF changes and ACC volume were compared between control rats and rats injected with CFA in back muscles segmental (T10) to renal sympathetic innervation or not (T2). In rats with CFA, chronic inflammation was observed in the affected muscles in addition to increased nuclear factor-kappa B (NF-kB) protein expression in corresponding spinal cord segments (p=0.01) as well as decreased ACC volume (p<0.05). In addition, intensity-dependent decreases in RBF during hind paw stimulation were attenuated by chronic pain at T2 (p's<0.05) and T10 (p's<0.05), but less so at T10 compared with T2 (p's<0.05). These results indicate that chronic back pain alters sympathetic functions through non-segmental mechanisms, possibly by altering descending regulatory pathways from ACC. Yet, segmental somato-sympathetic reflexes may compete with non-segmental processes depending on the back region affected by pain and according to the segmental organization of the sympathetic nervous system. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Alp, Murat; Cucinotta, Francis A.
2017-01-01
Changes to cognition, including memory, following radiation exposure are a concern for cosmic ray exposures to astronauts and in Hadron therapy with proton and heavy ion beams. The purpose of the present work is to develop computational methods to evaluate microscopic energy deposition (ED) in volumes representative of neuron cell structures, including segments of dendrites and spines, using a stochastic track structure model. A challenge for biophysical models of neuronal damage is the large sizes (>100 μm) and variability in volumes of possible dendritic segments and pre-synaptic elements (spines and filopodia). We consider cylindrical and spherical microscopic volumes of varying geometric parameters and aspect ratios from 0.5 to 5 irradiated by protons, and 3He and 12C particles at energies corresponding to a distance of 1 cm to the Bragg peak, which represent particles of interest in Hadron therapy as well as space radiation exposure. We investigate the optimal axis length of dendritic segments to evaluate microscopic ED and hit probabilities along the dendritic branches at a given macroscopic dose. Because of large computation times to analyze ED in volumes of varying sizes, we developed an analytical method to find the mean primary dose in spheres that can guide numerical methods to find the primary dose distribution for cylinders. Considering cylindrical segments of varying aspect ratio at constant volume, we assess the chord length distribution, mean number of hits and ED profiles by primary particles and secondary electrons (δ-rays). For biophysical modeling applications, segments on dendritic branches are proposed to have equal diameters and axes lengths along the varying diameter of a dendritic branch. PMID:28554507
NASA Astrophysics Data System (ADS)
Alp, Murat; Cucinotta, Francis A.
2017-05-01
Changes to cognition, including memory, following radiation exposure are a concern for cosmic ray exposures to astronauts and in Hadron therapy with proton and heavy ion beams. The purpose of the present work is to develop computational methods to evaluate microscopic energy deposition (ED) in volumes representative of neuron cell structures, including segments of dendrites and spines, using a stochastic track structure model. A challenge for biophysical models of neuronal damage is the large sizes (> 100 μm) and variability in volumes of possible dendritic segments and pre-synaptic elements (spines and filopodia). We consider cylindrical and spherical microscopic volumes of varying geometric parameters and aspect ratios from 0.5 to 5 irradiated by protons, and 3He and 12C particles at energies corresponding to a distance of 1 cm to the Bragg peak, which represent particles of interest in Hadron therapy as well as space radiation exposure. We investigate the optimal axis length of dendritic segments to evaluate microscopic ED and hit probabilities along the dendritic branches at a given macroscopic dose. Because of large computation times to analyze ED in volumes of varying sizes, we developed an analytical method to find the mean primary dose in spheres that can guide numerical methods to find the primary dose distribution for cylinders. Considering cylindrical segments of varying aspect ratio at constant volume, we assess the chord length distribution, mean number of hits and ED profiles by primary particles and secondary electrons (δ-rays). For biophysical modeling applications, segments on dendritic branches are proposed to have equal diameters and axes lengths along the varying diameter of a dendritic branch.
Alp, Murat; Cucinotta, Francis A
2017-05-01
Changes to cognition, including memory, following radiation exposure are a concern for cosmic ray exposures to astronauts and in Hadron therapy with proton and heavy ion beams. The purpose of the present work is to develop computational methods to evaluate microscopic energy deposition (ED) in volumes representative of neuron cell structures, including segments of dendrites and spines, using a stochastic track structure model. A challenge for biophysical models of neuronal damage is the large sizes (> 100µm) and variability in volumes of possible dendritic segments and pre-synaptic elements (spines and filopodia). We consider cylindrical and spherical microscopic volumes of varying geometric parameters and aspect ratios from 0.5 to 5 irradiated by protons, and 3 He and 12 C particles at energies corresponding to a distance of 1cm to the Bragg peak, which represent particles of interest in Hadron therapy as well as space radiation exposure. We investigate the optimal axis length of dendritic segments to evaluate microscopic ED and hit probabilities along the dendritic branches at a given macroscopic dose. Because of large computation times to analyze ED in volumes of varying sizes, we developed an analytical method to find the mean primary dose in spheres that can guide numerical methods to find the primary dose distribution for cylinders. Considering cylindrical segments of varying aspect ratio at constant volume, we assess the chord length distribution, mean number of hits and ED profiles by primary particles and secondary electrons (δ-rays). For biophysical modeling applications, segments on dendritic branches are proposed to have equal diameters and axes lengths along the varying diameter of a dendritic branch. Copyright © 2017. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soultan, D; Murphy, J; James, C
2015-06-15
Purpose: To assess the accuracy of internal target volume (ITV) segmentation of lung tumors for treatment planning of simultaneous integrated boost (SIB) radiotherapy as seen in 4D PET/CT images, using a novel 3D-printed phantom. Methods: The insert mimics high PET tracer uptake in the core and 50% uptake in the periphery, by using a porous design at the periphery. A lung phantom with the insert was placed on a programmable moving platform. Seven breathing waveforms of ideal and patient-specific respiratory motion patterns were fed to the platform, and 4D PET/CT scans were acquired of each of them. CT images weremore » binned into 10 phases, and PET images were binned into 5 phases following the clinical protocol. Two scenarios were investigated for segmentation: a gate 30–70 window, and no gating. The radiation oncologist contoured the outer ITV of the porous insert with on CT images, while the internal void volume with 100% uptake was contoured on PET images for being indistinguishable from the outer volume in CT images. Segmented ITVs were compared to the expected volumes based on known target size and motion. Results: 3 ideal breathing patterns, 2 regular-breathing patient waveforms, and 2 irregular-breathing patient waveforms were used for this study. 18F-FDG was used as the PET tracer. The segmented ITVs from CT closely matched the expected motion for both no gating and gate 30–70 window, with disagreement of contoured ITV with respect to the expected volume not exceeding 13%. PET contours were seen to overestimate volumes in all the cases, up to more than 40%. Conclusion: 4DPET images of a novel 3D printed phantom designed to mimic different uptake values were obtained. 4DPET contours overestimated ITV volumes in all cases, while 4DCT contours matched expected ITV volume values. Investigation of the cause and effects of the discrepancies is undergoing.« less
Brewer, S.K.; Rabeni, C.F.; Sowa, S.P.; Annis, G.
2007-01-01
Protecting and restoring fish populations on a regional basis are most effective if the multiscale factors responsible for the relative quality of a fishery are known. We spatially linked Missouri's statewide historical fish collections to environmental features in a geographic information system, which was used as a basis for modeling the importance of landscape and stream segment features in supporting a population of smallmouth bass Micropterus dolomieu. Decision tree analyses were used to develop probability-based models to predict statewide occurrence and within-range relative abundances. We were able to identify the range of smallmouth bass throughout Missouri and the probability of occurrence within that range by using a few broad landscape variables: the percentage of coarse-textured soils in the watershed, watershed relief, and the percentage of soils with low permeability in the watershed. The within-range relative abundance model included both landscape and stream segment variables. As with the statewide probability of occurrence model, soil permeability was particularly significant. The predicted relative abundance of smallmouth bass in stream segments containing low percentages of permeable soils was further influenced by channel gradient, stream size, spring-flow volume, and local slope. Assessment of model accuracy with an independent data set showed good concordance. A conceptual framework involving naturally occurring factors that affect smallmouth bass potential is presented as a comparative model for assessing transferability to other geographic areas and for studying potential land use and biotic effects. We also identify the benefits, caveats, and data requirements necessary to improve predictions and promote ecological understanding. ?? Copyright by the American Fisheries Society 2007.
Structural MRI correlates of apathy symptoms in older persons without dementia
Grool, Anne M.; Geerlings, Mirjam I.; Sigurdsson, Sigurdur; Eiriksdottir, Gudny; Jonsson, Palmi V.; Garcia, Melissa E.; Siggeirsdottir, Kristin; Harris, Tamara B.; Sigmundsson, Thordur; Gudnason, Vilmundur
2014-01-01
Objective: We aimed to investigate the relation between apathy symptoms and structural brain changes on MRI, including white matter lesions (WMLs) and atrophy, in a large cohort of older persons. Methods: Cross-sectional analyses are based on 4,354 persons without dementia (aged 76 ± 5 years) participating in the population-based Age, Gene/Environment Susceptibility–Reykjavik Study. Apathy symptoms were assessed with 3 items from the 15-item Geriatric Depression Scale. Brain volumes and total WML volume were estimated on 1.5-tesla MRI using an automated segmentation program; regional WML load was calculated using a semiquantitative scale. Regression analyses were adjusted for age, sex, education, intracranial volume, vascular risk factors, physical activity, brain infarcts, depressive symptoms, antidepressants, and cognitive status. Results: Compared to those with <2 apathy symptoms, participants with ≥2 apathy symptoms (49% of the cohort) had significantly smaller gray matter volumes (mean adjusted difference −3.6 mL, 95% confidence interval [CI] −6.2 to −1.0), particularly in the frontal and temporal lobes; smaller white matter volumes (mean adjusted difference −1.9 mL, 95% CI −3.6 to −0.3), mainly in the parietal lobe; and smaller thalamus volumes. They were also more likely to have WMLs in the frontal lobe (adjusted odds ratio = 1.08, 95% CI 0.9–1.3). Excluding participants with a depression diagnosis did not change the associations. Conclusions: In this older population without dementia, apathy symptoms are associated with a more diffuse loss of both gray and white matter volumes, independent of depression. PMID:24739783
Carles, Montserrat; Fechter, Tobias; Nemer, Ursula; Nanko, Norbert; Mix, Michael; Nestle, Ursula; Schaefer, Andrea
2015-12-21
PET/CT plays an important role in radiotherapy planning for lung tumors. Several segmentation algorithms have been proposed for PET tumor segmentation. However, most of them do not take into account respiratory motion and are not well validated. The aim of this work was to evaluate a semi-automated contrast-oriented algorithm (COA) for PET tumor segmentation adapted to retrospectively gated (4D) images. The evaluation involved a wide set of 4D-PET/CT acquisitions of dynamic experimental phantoms and lung cancer patients. In addition, segmentation accuracy of 4D-COA was compared with four other state-of-the-art algorithms. In phantom evaluation, the physical properties of the objects defined the gold standard. In clinical evaluation, the ground truth was estimated by the STAPLE (Simultaneous Truth and Performance Level Estimation) consensus of three manual PET contours by experts. Algorithm evaluation with phantoms resulted in: (i) no statistically significant diameter differences for different targets and movements (Δφ = 0.3 ± 1.6 mm); (ii) reproducibility for heterogeneous and irregular targets independent of user initial interaction and (iii) good segmentation agreement for irregular targets compared to manual CT delineation in terms of Dice Similarity Coefficient (DSC = 0.66 ± 0.04), Positive Predictive Value (PPV = 0.81 ± 0.06) and Sensitivity (Sen. = 0.49 ± 0.05). In clinical evaluation, the segmented volume was in reasonable agreement with the consensus volume (difference in volume (%Vol) = 40 ± 30, DSC = 0.71 ± 0.07 and PPV = 0.90 ± 0.13). High accuracy in target tracking position (ΔME) was obtained for experimental and clinical data (ΔME(exp) = 0 ± 3 mm; ΔME(clin) 0.3 ± 1.4 mm). In the comparison with other lung segmentation methods, 4D-COA has shown the highest volume accuracy in both experimental and clinical data. In conclusion, the accuracy in volume delineation, position tracking and its robustness on highly irregular target movements, make this algorithm a useful tool for 4D-PET based volume definition for radiotherapy planning of lung cancer and may help to improve the reproducibility in PET quantification for therapy response assessment and prognosis.
NASA Astrophysics Data System (ADS)
Carles, Montserrat; Fechter, Tobias; Nemer, Ursula; Nanko, Norbert; Mix, Michael; Nestle, Ursula; Schaefer, Andrea
2015-12-01
PET/CT plays an important role in radiotherapy planning for lung tumors. Several segmentation algorithms have been proposed for PET tumor segmentation. However, most of them do not take into account respiratory motion and are not well validated. The aim of this work was to evaluate a semi-automated contrast-oriented algorithm (COA) for PET tumor segmentation adapted to retrospectively gated (4D) images. The evaluation involved a wide set of 4D-PET/CT acquisitions of dynamic experimental phantoms and lung cancer patients. In addition, segmentation accuracy of 4D-COA was compared with four other state-of-the-art algorithms. In phantom evaluation, the physical properties of the objects defined the gold standard. In clinical evaluation, the ground truth was estimated by the STAPLE (Simultaneous Truth and Performance Level Estimation) consensus of three manual PET contours by experts. Algorithm evaluation with phantoms resulted in: (i) no statistically significant diameter differences for different targets and movements (Δ φ =0.3+/- 1.6 mm); (ii) reproducibility for heterogeneous and irregular targets independent of user initial interaction and (iii) good segmentation agreement for irregular targets compared to manual CT delineation in terms of Dice Similarity Coefficient (DSC = 0.66+/- 0.04 ), Positive Predictive Value (PPV = 0.81+/- 0.06 ) and Sensitivity (Sen. = 0.49+/- 0.05 ). In clinical evaluation, the segmented volume was in reasonable agreement with the consensus volume (difference in volume (%Vol) = 40+/- 30 , DSC = 0.71+/- 0.07 and PPV = 0.90+/- 0.13 ). High accuracy in target tracking position (Δ ME) was obtained for experimental and clinical data (Δ ME{{}\\text{exp}}=0+/- 3 mm; Δ ME{{}\\text{clin}}=0.3+/- 1.4 mm). In the comparison with other lung segmentation methods, 4D-COA has shown the highest volume accuracy in both experimental and clinical data. In conclusion, the accuracy in volume delineation, position tracking and its robustness on highly irregular target movements, make this algorithm a useful tool for 4D-PET based volume definition for radiotherapy planning of lung cancer and may help to improve the reproducibility in PET quantification for therapy response assessment and prognosis.
Automated segmentation of serous pigment epithelium detachment in SD-OCT images
NASA Astrophysics Data System (ADS)
Sun, Zhuli; Shi, Fei; Xiang, Dehui; Chen, Haoyu; Chen, Xinjian
2015-03-01
Pigment epithelium detachment (PED) is an important clinical manifestation of multiple chorio-retinal disease processes, which can cause the loss of central vision. A 3-D method is proposed to automatically segment serous PED in SD-OCT images. The proposed method consists of five steps: first, a curvature anisotropic diffusion filter is applied to remove speckle noise. Second, the graph search method is applied for abnormal retinal layer segmentation associated with retinal pigment epithelium (RPE) deformation. During this process, Bruch's membrane, which doesn't show in the SD-OCT images, is estimated with the convex hull algorithm. Third, the foreground and background seeds are automatically obtained from retinal layer segmentation result. Fourth, the serous PED is segmented based on the graph cut method. Finally, a post-processing step is applied to remove false positive regions based on mathematical morphology. The proposed method was tested on 20 SD-OCT volumes from 20 patients diagnosed with serous PED. The average true positive volume fraction (TPVF), false positive volume fraction (FPVF), dice similarity coefficient (DSC) and positive predictive value (PPV) are 97.19%, 0.03%, 96.34% and 95.59%, respectively. Linear regression analysis shows a strong correlation (r = 0.975) comparing the segmented PED volumes with the ground truth labeled by an ophthalmology expert. The proposed method can provide clinicians with accurate quantitative information, including shape, size and position of the PED regions, which can assist diagnose and treatment.
An automatic brain tumor segmentation tool.
Diaz, Idanis; Boulanger, Pierre; Greiner, Russell; Hoehn, Bret; Rowe, Lindsay; Murtha, Albert
2013-01-01
This paper introduces an automatic brain tumor segmentation method (ABTS) for segmenting multiple components of brain tumor using four magnetic resonance image modalities. ABTS's four stages involve automatic histogram multi-thresholding and morphological operations including geodesic dilation. Our empirical results, on 16 real tumors, show that ABTS works very effectively, achieving a Dice accuracy compared to expert segmentation of 81% in segmenting edema and 85% in segmenting gross tumor volume (GTV).
NASA Astrophysics Data System (ADS)
Li, Xiaobing; Qiu, Tianshuang; Lebonvallet, Stephane; Ruan, Su
2010-02-01
This paper presents a brain tumor segmentation method which automatically segments tumors from human brain MRI image volume. The presented model is based on the symmetry of human brain and level set method. Firstly, the midsagittal plane of an MRI volume is searched, the slices with potential tumor of the volume are checked out according to their symmetries, and an initial boundary of the tumor in the slice, in which the tumor is in the largest size, is determined meanwhile by watershed and morphological algorithms; Secondly, the level set method is applied to the initial boundary to drive the curve evolving and stopping to the appropriate tumor boundary; Lastly, the tumor boundary is projected one by one to its adjacent slices as initial boundaries through the volume for the whole tumor. The experiment results are compared with hand tracking of the expert and show relatively good accordance between both.
Automatic liver volume segmentation and fibrosis classification
NASA Astrophysics Data System (ADS)
Bal, Evgeny; Klang, Eyal; Amitai, Michal; Greenspan, Hayit
2018-02-01
In this work, we present an automatic method for liver segmentation and fibrosis classification in liver computed-tomography (CT) portal phase scans. The input is a full abdomen CT scan with an unknown number of slices, and the output is a liver volume segmentation mask and a fibrosis grade. A multi-stage analysis scheme is applied to each scan, including: volume segmentation, texture features extraction and SVM based classification. Data contains portal phase CT examinations from 80 patients, taken with different scanners. Each examination has a matching Fibroscan grade. The dataset was subdivided into two groups: first group contains healthy cases and mild fibrosis, second group contains moderate fibrosis, severe fibrosis and cirrhosis. Using our automated algorithm, we achieved an average dice index of 0.93 ± 0.05 for segmentation and a sensitivity of 0.92 and specificity of 0.81for classification. To the best of our knowledge, this is a first end to end automatic framework for liver fibrosis classification; an approach that, once validated, can have a great potential value in the clinic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Jinghao; Kim, Sung; Jabbour, Salma
2010-03-15
Purpose: In the external beam radiation treatment of prostate cancers, successful implementation of adaptive radiotherapy and conformal radiation dose delivery is highly dependent on precise and expeditious segmentation and registration of the prostate volume between the simulation and the treatment images. The purpose of this study is to develop a novel, fast, and accurate segmentation and registration method to increase the computational efficiency to meet the restricted clinical treatment time requirement in image guided radiotherapy. Methods: The method developed in this study used soft tissues to capture the transformation between the 3D planning CT (pCT) images and 3D cone-beam CTmore » (CBCT) treatment images. The method incorporated a global-to-local deformable mesh model based registration framework as well as an automatic anatomy-constrained robust active shape model (ACRASM) based segmentation algorithm in the 3D CBCT images. The global registration was based on the mutual information method, and the local registration was to minimize the Euclidian distance of the corresponding nodal points from the global transformation of deformable mesh models, which implicitly used the information of the segmented target volume. The method was applied on six data sets of prostate cancer patients. Target volumes delineated by the same radiation oncologist on the pCT and CBCT were chosen as the benchmarks and were compared to the segmented and registered results. The distance-based and the volume-based estimators were used to quantitatively evaluate the results of segmentation and registration. Results: The ACRASM segmentation algorithm was compared to the original active shape model (ASM) algorithm by evaluating the values of the distance-based estimators. With respect to the corresponding benchmarks, the mean distance ranged from -0.85 to 0.84 mm for ACRASM and from -1.44 to 1.17 mm for ASM. The mean absolute distance ranged from 1.77 to 3.07 mm for ACRASM and from 2.45 to 6.54 mm for ASM. The volume overlap ratio ranged from 79% to 91% for ACRASM and from 44% to 80% for ASM. These data demonstrated that the segmentation results of ACRASM were in better agreement with the corresponding benchmarks than those of ASM. The developed registration algorithm was quantitatively evaluated by comparing the registered target volumes from the pCT to the benchmarks on the CBCT. The mean distance and the root mean square error ranged from 0.38 to 2.2 mm and from 0.45 to 2.36 mm, respectively, between the CBCT images and the registered pCT. The mean overlap ratio of the prostate volumes ranged from 85.2% to 95% after registration. The average time of the ACRASM-based segmentation was under 1 min. The average time of the global transformation was from 2 to 4 min on two 3D volumes and the average time of the local transformation was from 20 to 34 s on two deformable superquadrics mesh models. Conclusions: A novel and fast segmentation and deformable registration method was developed to capture the transformation between the planning and treatment images for external beam radiotherapy of prostate cancers. This method increases the computational efficiency and may provide foundation to achieve real time adaptive radiotherapy.« less
Singh, Ranjodh; Zhou, Zhiping; Tisnado, Jamie; Haque, Sofia; Peck, Kyung K.; Young, Robert J.; Tsiouris, Apostolos John; Thakur, Sunitha B.; Souweidane, Mark M.
2017-01-01
OBJECTIVE Accurately determining diffuse intrinsic pontine glioma (DIPG) tumor volume is clinically important. The aims of the current study were to 1) measure DIPG volumes using methods that require different degrees of subjective judgment; and 2) evaluate interobserver agreement of measurements made using these methods. METHODS Eight patients from a Phase I clinical trial testing convection-enhanced delivery (CED) of a therapeutic antibody were included in the study. Pre-CED, post–radiation therapy axial T2-weighted images were analyzed using 2 methods requiring high degrees of subjective judgment (picture archiving and communication system [PACS] polygon and Volume Viewer auto-contour methods) and 1 method requiring a low degree of subjective judgment (k-means clustering segmentation) to determine tumor volumes. Lin’s concordance correlation coefficients (CCCs) were calculated to assess interobserver agreement. RESULTS The CCCs of measurements made by 2 observers with the PACS polygon and the Volume Viewer auto-contour methods were 0.9465 (lower 1-sided 95% confidence limit 0.8472) and 0.7514 (lower 1-sided 95% confidence limit 0.3143), respectively. Both were considered poor agreement. The CCC of measurements made using k-means clustering segmentation was 0.9938 (lower 1-sided 95% confidence limit 0.9772), which was considered substantial strength of agreement. CONCLUSIONS The poor interobserver agreement of PACS polygon and Volume Viewer auto-contour methods high-lighted the difficulty in consistently measuring DIPG tumor volumes using methods requiring high degrees of subjective judgment. k-means clustering segmentation, which requires a low degree of subjective judgment, showed better interob-server agreement and produced tumor volumes with delineated borders. PMID:27391980
Xu, Yupeng; Yan, Ke; Kim, Jinman; Wang, Xiuying; Li, Changyang; Su, Li; Yu, Suqin; Xu, Xun; Feng, Dagan David
2017-01-01
Worldwide, polypoidal choroidal vasculopathy (PCV) is a common vision-threatening exudative maculopathy, and pigment epithelium detachment (PED) is an important clinical characteristic. Thus, precise and efficient PED segmentation is necessary for PCV clinical diagnosis and treatment. We propose a dual-stage learning framework via deep neural networks (DNN) for automated PED segmentation in PCV patients to avoid issues associated with manual PED segmentation (subjectivity, manual segmentation errors, and high time consumption).The optical coherence tomography scans of fifty patients were quantitatively evaluated with different algorithms and clinicians. Dual-stage DNN outperformed existing PED segmentation methods for all segmentation accuracy parameters, including true positive volume fraction (85.74 ± 8.69%), dice similarity coefficient (85.69 ± 8.08%), positive predictive value (86.02 ± 8.99%) and false positive volume fraction (0.38 ± 0.18%). Dual-stage DNN achieves accurate PED quantitative information, works with multiple types of PEDs and agrees well with manual delineation, suggesting that it is a potential automated assistant for PCV management. PMID:28966847
Xu, Yupeng; Yan, Ke; Kim, Jinman; Wang, Xiuying; Li, Changyang; Su, Li; Yu, Suqin; Xu, Xun; Feng, Dagan David
2017-09-01
Worldwide, polypoidal choroidal vasculopathy (PCV) is a common vision-threatening exudative maculopathy, and pigment epithelium detachment (PED) is an important clinical characteristic. Thus, precise and efficient PED segmentation is necessary for PCV clinical diagnosis and treatment. We propose a dual-stage learning framework via deep neural networks (DNN) for automated PED segmentation in PCV patients to avoid issues associated with manual PED segmentation (subjectivity, manual segmentation errors, and high time consumption).The optical coherence tomography scans of fifty patients were quantitatively evaluated with different algorithms and clinicians. Dual-stage DNN outperformed existing PED segmentation methods for all segmentation accuracy parameters, including true positive volume fraction (85.74 ± 8.69%), dice similarity coefficient (85.69 ± 8.08%), positive predictive value (86.02 ± 8.99%) and false positive volume fraction (0.38 ± 0.18%). Dual-stage DNN achieves accurate PED quantitative information, works with multiple types of PEDs and agrees well with manual delineation, suggesting that it is a potential automated assistant for PCV management.
Wacker, Irene; Chockley, Peter; Bartels, Carolin; Spomer, Waldemar; Hofmann, Andreas; Gengenbach, Ulrich; Singh, Sachin; Thaler, Marlene; Grabher, Clemens; Schröder, Rasmus R
2015-08-01
For 3D reconstructions of whole immune cells from zebrafish, isolated from adult animals by FAC-sorting we employed array tomography on hundreds of serial sections deposited on silicon wafers. Image stacks were either recorded manually or automatically with the newly released ZEISS Atlas 5 Array Tomography platform on a Zeiss FEGSEM. To characterize different populations of immune cells, organelle inventories were created by segmenting individual cells. In addition, arrays were used for quantification of cell populations with respect to the various cell types they contained. The detection of immunological synapses in cocultures of cell populations from thymus or WKM with cancer cells helped to identify the cytotoxic nature of these cells. Our results demonstrate the practicality and benefit of AT for high-throughput ultrastructural imaging of substantial volumes. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Guo, Ting; Winterburn, Julie L; Pipitone, Jon; Duerden, Emma G; Park, Min Tae M; Chau, Vann; Poskitt, Kenneth J; Grunau, Ruth E; Synnes, Anne; Miller, Steven P; Mallar Chakravarty, M
2015-01-01
The hippocampus, a medial temporal lobe structure central to learning and memory, is particularly vulnerable in preterm-born neonates. To date, segmentation of the hippocampus for preterm-born neonates has not yet been performed early-in-life (shortly after birth when clinically stable). The present study focuses on the development and validation of an automatic segmentation protocol that is based on the MAGeT-Brain (Multiple Automatically Generated Templates) algorithm to delineate the hippocampi of preterm neonates on their brain MRIs acquired at not only term-equivalent age but also early-in-life. First, we present a three-step manual segmentation protocol to delineate the hippocampus for preterm neonates and apply this protocol on 22 early-in-life and 22 term images. These manual segmentations are considered the gold standard in assessing the automatic segmentations. MAGeT-Brain, automatic hippocampal segmentation pipeline, requires only a small number of input atlases and reduces the registration and resampling errors by employing an intermediate template library. We assess the segmentation accuracy of MAGeT-Brain in three validation studies, evaluate the hippocampal growth from early-in-life to term-equivalent age, and study the effect of preterm birth on the hippocampal volume. The first experiment thoroughly validates MAGeT-Brain segmentation in three sets of 10-fold Monte Carlo cross-validation (MCCV) analyses with 187 different groups of input atlases and templates. The second experiment segments the neonatal hippocampi on 168 early-in-life and 154 term images and evaluates the hippocampal growth rate of 125 infants from early-in-life to term-equivalent age. The third experiment analyzes the effect of gestational age (GA) at birth on the average hippocampal volume at early-in-life and term-equivalent age using linear regression. The final segmentations demonstrate that MAGeT-Brain consistently provides accurate segmentations in comparison to manually derived gold standards (mean Dice's Kappa > 0.79 and Euclidean distance <1.3 mm between centroids). Using this method, we demonstrate that the average volume of the hippocampus is significantly different (p < 0.0001) in early-in-life (621.8 mm(3)) and term-equivalent age (958.8 mm(3)). Using these differences, we generalize the hippocampal growth rate to 38.3 ± 11.7 mm(3)/week and 40.5 ± 12.9 mm(3)/week for the left and right hippocampi respectively. Not surprisingly, younger gestational age at birth is associated with smaller volumes of the hippocampi (p = 0.001). MAGeT-Brain is capable of segmenting hippocampi accurately in preterm neonates, even at early-in-life. Hippocampal asymmetry with a larger right side is demonstrated on early-in-life images, suggesting that this phenomenon has its onset in the 3rd trimester of gestation. Hippocampal volume assessed at the time of early-in-life and term-equivalent age is linearly associated with GA at birth, whereby smaller volumes are associated with earlier birth.
Guo, Ting; Winterburn, Julie L.; Pipitone, Jon; Duerden, Emma G.; Park, Min Tae M.; Chau, Vann; Poskitt, Kenneth J.; Grunau, Ruth E.; Synnes, Anne; Miller, Steven P.; Mallar Chakravarty, M.
2015-01-01
Introduction The hippocampus, a medial temporal lobe structure central to learning and memory, is particularly vulnerable in preterm-born neonates. To date, segmentation of the hippocampus for preterm-born neonates has not yet been performed early-in-life (shortly after birth when clinically stable). The present study focuses on the development and validation of an automatic segmentation protocol that is based on the MAGeT-Brain (Multiple Automatically Generated Templates) algorithm to delineate the hippocampi of preterm neonates on their brain MRIs acquired at not only term-equivalent age but also early-in-life. Methods First, we present a three-step manual segmentation protocol to delineate the hippocampus for preterm neonates and apply this protocol on 22 early-in-life and 22 term images. These manual segmentations are considered the gold standard in assessing the automatic segmentations. MAGeT-Brain, automatic hippocampal segmentation pipeline, requires only a small number of input atlases and reduces the registration and resampling errors by employing an intermediate template library. We assess the segmentation accuracy of MAGeT-Brain in three validation studies, evaluate the hippocampal growth from early-in-life to term-equivalent age, and study the effect of preterm birth on the hippocampal volume. The first experiment thoroughly validates MAGeT-Brain segmentation in three sets of 10-fold Monte Carlo cross-validation (MCCV) analyses with 187 different groups of input atlases and templates. The second experiment segments the neonatal hippocampi on 168 early-in-life and 154 term images and evaluates the hippocampal growth rate of 125 infants from early-in-life to term-equivalent age. The third experiment analyzes the effect of gestational age (GA) at birth on the average hippocampal volume at early-in-life and term-equivalent age using linear regression. Results The final segmentations demonstrate that MAGeT-Brain consistently provides accurate segmentations in comparison to manually derived gold standards (mean Dice's Kappa > 0.79 and Euclidean distance <1.3 mm between centroids). Using this method, we demonstrate that the average volume of the hippocampus is significantly different (p < 0.0001) in early-in-life (621.8 mm3) and term-equivalent age (958.8 mm3). Using these differences, we generalize the hippocampal growth rate to 38.3 ± 11.7 mm3/week and 40.5 ± 12.9 mm3/week for the left and right hippocampi respectively. Not surprisingly, younger gestational age at birth is associated with smaller volumes of the hippocampi (p = 0.001). Conclusions MAGeT-Brain is capable of segmenting hippocampi accurately in preterm neonates, even at early-in-life. Hippocampal asymmetry with a larger right side is demonstrated on early-in-life images, suggesting that this phenomenon has its onset in the 3rd trimester of gestation. Hippocampal volume assessed at the time of early-in-life and term-equivalent age is linearly associated with GA at birth, whereby smaller volumes are associated with earlier birth. PMID:26740912
Multi-atlas segmentation enables robust multi-contrast MRI spleen segmentation for splenomegaly
NASA Astrophysics Data System (ADS)
Huo, Yuankai; Liu, Jiaqi; Xu, Zhoubing; Harrigan, Robert L.; Assad, Albert; Abramson, Richard G.; Landman, Bennett A.
2017-02-01
Non-invasive spleen volume estimation is essential in detecting splenomegaly. Magnetic resonance imaging (MRI) has been used to facilitate splenomegaly diagnosis in vivo. However, achieving accurate spleen volume estimation from MR images is challenging given the great inter-subject variance of human abdomens and wide variety of clinical images/modalities. Multi-atlas segmentation has been shown to be a promising approach to handle heterogeneous data and difficult anatomical scenarios. In this paper, we propose to use multi-atlas segmentation frameworks for MRI spleen segmentation for splenomegaly. To the best of our knowledge, this is the first work that integrates multi-atlas segmentation for splenomegaly as seen on MRI. To address the particular concerns of spleen MRI, automated and novel semi-automated atlas selection approaches are introduced. The automated approach interactively selects a subset of atlases using selective and iterative method for performance level estimation (SIMPLE) approach. To further control the outliers, semi-automated craniocaudal length based SIMPLE atlas selection (L-SIMPLE) is proposed to introduce a spatial prior in a fashion to guide the iterative atlas selection. A dataset from a clinical trial containing 55 MRI volumes (28 T1 weighted and 27 T2 weighted) was used to evaluate different methods. Both automated and semi-automated methods achieved median DSC > 0.9. The outliers were alleviated by the L-SIMPLE (≍1 min manual efforts per scan), which achieved 0.9713 Pearson correlation compared with the manual segmentation. The results demonstrated that the multi-atlas segmentation is able to achieve accurate spleen segmentation from the multi-contrast splenomegaly MRI scans.
Multi-atlas Segmentation Enables Robust Multi-contrast MRI Spleen Segmentation for Splenomegaly.
Huo, Yuankai; Liu, Jiaqi; Xu, Zhoubing; Harrigan, Robert L; Assad, Albert; Abramson, Richard G; Landman, Bennett A
2017-02-11
Non-invasive spleen volume estimation is essential in detecting splenomegaly. Magnetic resonance imaging (MRI) has been used to facilitate splenomegaly diagnosis in vivo. However, achieving accurate spleen volume estimation from MR images is challenging given the great inter-subject variance of human abdomens and wide variety of clinical images/modalities. Multi-atlas segmentation has been shown to be a promising approach to handle heterogeneous data and difficult anatomical scenarios. In this paper, we propose to use multi-atlas segmentation frameworks for MRI spleen segmentation for splenomegaly. To the best of our knowledge, this is the first work that integrates multi-atlas segmentation for splenomegaly as seen on MRI. To address the particular concerns of spleen MRI, automated and novel semi-automated atlas selection approaches are introduced. The automated approach interactively selects a subset of atlases using selective and iterative method for performance level estimation (SIMPLE) approach. To further control the outliers, semi-automated craniocaudal length based SIMPLE atlas selection (L-SIMPLE) is proposed to introduce a spatial prior in a fashion to guide the iterative atlas selection. A dataset from a clinical trial containing 55 MRI volumes (28 T1 weighted and 27 T2 weighted) was used to evaluate different methods. Both automated and semi-automated methods achieved median DSC > 0.9. The outliers were alleviated by the L-SIMPLE (≈1 min manual efforts per scan), which achieved 0.9713 Pearson correlation compared with the manual segmentation. The results demonstrated that the multi-atlas segmentation is able to achieve accurate spleen segmentation from the multi-contrast splenomegaly MRI scans.
Pulmonary lobar volumetry using novel volumetric computer-aided diagnosis and computed tomography
Iwano, Shingo; Kitano, Mariko; Matsuo, Keiji; Kawakami, Kenichi; Koike, Wataru; Kishimoto, Mariko; Inoue, Tsutomu; Li, Yuanzhong; Naganawa, Shinji
2013-01-01
OBJECTIVES To compare the accuracy of pulmonary lobar volumetry using the conventional number of segments method and novel volumetric computer-aided diagnosis using 3D computed tomography images. METHODS We acquired 50 consecutive preoperative 3D computed tomography examinations for lung tumours reconstructed at 1-mm slice thicknesses. We calculated the lobar volume and the emphysematous lobar volume < −950 HU of each lobe using (i) the slice-by-slice method (reference standard), (ii) number of segments method, and (iii) semi-automatic and (iv) automatic computer-aided diagnosis. We determined Pearson correlation coefficients between the reference standard and the three other methods for lobar volumes and emphysematous lobar volumes. We also compared the relative errors among the three measurement methods. RESULTS Both semi-automatic and automatic computer-aided diagnosis results were more strongly correlated with the reference standard than the number of segments method. The correlation coefficients for automatic computer-aided diagnosis were slightly lower than those for semi-automatic computer-aided diagnosis because there was one outlier among 50 cases (2%) in the right upper lobe and two outliers among 50 cases (4%) in the other lobes. The number of segments method relative error was significantly greater than those for semi-automatic and automatic computer-aided diagnosis (P < 0.001). The computational time for automatic computer-aided diagnosis was 1/2 to 2/3 than that of semi-automatic computer-aided diagnosis. CONCLUSIONS A novel lobar volumetry computer-aided diagnosis system could more precisely measure lobar volumes than the conventional number of segments method. Because semi-automatic computer-aided diagnosis and automatic computer-aided diagnosis were complementary, in clinical use, it would be more practical to first measure volumes by automatic computer-aided diagnosis, and then use semi-automatic measurements if automatic computer-aided diagnosis failed. PMID:23526418
Blood-threshold CMR volume analysis of functional univentricular heart.
Secchi, Francesco; Alì, Marco; Petrini, Marcello; Pluchinotta, Francesca Romana; Cozzi, Andrea; Carminati, Mario; Sardanelli, Francesco
2018-05-01
To validate a blood-threshold (BT) segmentation software for cardiac magnetic resonance (CMR) cine images in patients with functional univentricular heart (FUH). We evaluated retrospectively 44 FUH patients aged 25 ± 8 years (mean ± standard deviation). For each patient, the epicardial contour of the single ventricle was manually segmented on cine images by two readers and an automated BT algorithm was independently applied to calculate end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), and cardiac mass (CM). Aortic flow analysis (AFA) was performed on through-plane images to obtain forward volumes and used as a benchmark. Reproducibility was tested in a subgroup of 24 randomly selected patients. Wilcoxon, Spearman, and Bland-Altman statistics were used. No significant difference was found between SV (median 57.7 ml; interquartile range 47.9-75.6) and aortic forward flow (57.4 ml; 48.9-80.4) (p = 0.123), with a high correlation (r = 0.789, p < 0.001). Intra-reader reproducibility was 86% for SV segmentation, and 96% for AFA. Inter-reader reproducibility was 85 and 96%, respectively. The BT segmentation provided an accurate and reproducible assessment of heart function in FUH patients.
Tam, Roger C; Traboulsee, Anthony; Riddehough, Andrew; Li, David K B
2012-01-01
The change in T 1-hypointense lesion ("black hole") volume is an important marker of pathological progression in multiple sclerosis (MS). Black hole boundaries often have low contrast and are difficult to determine accurately and most (semi-)automated segmentation methods first compute the T 2-hyperintense lesions, which are a superset of the black holes and are typically more distinct, to form a search space for the T 1w lesions. Two main potential sources of measurement noise in longitudinal black hole volume computation are partial volume and variability in the T 2w lesion segmentation. A paired analysis approach is proposed herein that uses registration to equalize partial volume and lesion mask processing to combine T 2w lesion segmentations across time. The scans of 247 MS patients are used to compare a selected black hole computation method with an enhanced version incorporating paired analysis, using rank correlation to a clinical variable (MS functional composite) as the primary outcome measure. The comparison is done at nine different levels of intensity as a previous study suggests that darker black holes may yield stronger correlations. The results demonstrate that paired analysis can strongly improve longitudinal correlation (from -0.148 to -0.303 in this sample) and may produce segmentations that are more sensitive to clinically relevant changes.
Pulmonary airways tree segmentation from CT examinations using adaptive volume of interest
NASA Astrophysics Data System (ADS)
Park, Sang Cheol; Kim, Won Pil; Zheng, Bin; Leader, Joseph K.; Pu, Jiantao; Tan, Jun; Gur, David
2009-02-01
Airways tree segmentation is an important step in quantitatively assessing the severity of and changes in several lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis. It can also be used in guiding bronchoscopy. The purpose of this study is to develop an automated scheme for segmenting the airways tree structure depicted on chest CT examinations. After lung volume segmentation, the scheme defines the first cylinder-like volume of interest (VOI) using a series of images depicting the trachea. The scheme then iteratively defines and adds subsequent VOIs using a region growing algorithm combined with adaptively determined thresholds in order to trace possible sections of airways located inside the combined VOI in question. The airway tree segmentation process is automatically terminated after the scheme assesses all defined VOIs in the iteratively assembled VOI list. In this preliminary study, ten CT examinations with 1.25mm section thickness and two different CT image reconstruction kernels ("bone" and "standard") were selected and used to test the proposed airways tree segmentation scheme. The experiment results showed that (1) adopting this approach affectively prevented the scheme from infiltrating into the parenchyma, (2) the proposed method reasonably accurately segmented the airways trees with lower false positive identification rate as compared with other previously reported schemes that are based on 2-D image segmentation and data analyses, and (3) the proposed adaptive, iterative threshold selection method for the region growing step in each identified VOI enables the scheme to segment the airways trees reliably to the 4th generation in this limited dataset with successful segmentation up to the 5th generation in a fraction of the airways tree branches.
NASA Astrophysics Data System (ADS)
Castillo, Richard; Castillo, Edward; McCurdy, Matthew; Gomez, Daniel R.; Block, Alec M.; Bergsma, Derek; Joy, Sarah; Guerrero, Thomas
2012-04-01
To determine the spatial overlap agreement between four-dimensional computed tomography (4D CT) ventilation and single photon emission computed tomography (SPECT) perfusion hypo-functioning pulmonary defect regions in a patient population with malignant airway stenosis. Treatment planning 4D CT images were obtained retrospectively for ten lung cancer patients with radiographically demonstrated airway obstruction due to gross tumor volume. Each patient also received a SPECT perfusion study within one week of the planning 4D CT, and prior to the initiation of treatment. Deformable image registration was used to map corresponding lung tissue elements between the extreme component phase images, from which quantitative three-dimensional (3D) images representing the local pulmonary specific ventilation were constructed. Semi-automated segmentation of the percentile perfusion distribution was performed to identify regional defects distal to the known obstructing lesion. Semi-automated segmentation was similarly performed by multiple observers to delineate corresponding defect regions depicted on 4D CT ventilation. Normalized Dice similarity coefficient (NDSC) indices were determined for each observer between SPECT perfusion and 4D CT ventilation defect regions to assess spatial overlap agreement. Tidal volumes determined from 4D CT ventilation were evaluated versus measurements obtained from lung parenchyma segmentation. Linear regression resulted in a linear fit with slope = 1.01 (R2 = 0.99). Respective values for the average DSC, NDSC1 mm and NDSC2 mm for all cases and multiple observers were 0.78, 0.88 and 0.99, indicating that, on average, spatial overlap agreement between ventilation and perfusion defect regions was comparable to the threshold for agreement within 1-2 mm uncertainty. Corresponding coefficients of variation for all metrics were similarly in the range: 0.10%-19%. This study is the first to quantitatively assess 3D spatial overlap agreement between clinically acquired SPECT perfusion and specific ventilation from 4D CT. Results suggest high correlation between methods within the sub-population of lung cancer patients with malignant airway stenosis.
Automatic segmentation of brain MRIs and mapping neuroanatomy across the human lifespan
NASA Astrophysics Data System (ADS)
Keihaninejad, Shiva; Heckemann, Rolf A.; Gousias, Ioannis S.; Rueckert, Daniel; Aljabar, Paul; Hajnal, Joseph V.; Hammers, Alexander
2009-02-01
A robust model for the automatic segmentation of human brain images into anatomically defined regions across the human lifespan would be highly desirable, but such structural segmentations of brain MRI are challenging due to age-related changes. We have developed a new method, based on established algorithms for automatic segmentation of young adults' brains. We used prior information from 30 anatomical atlases, which had been manually segmented into 83 anatomical structures. Target MRIs came from 80 subjects (~12 individuals/decade) from 20 to 90 years, with equal numbers of men, women; data from two different scanners (1.5T, 3T), using the IXI database. Each of the adult atlases was registered to each target MR image. By using additional information from segmentation into tissue classes (GM, WM and CSF) to initialise the warping based on label consistency similarity before feeding this into the previous normalised mutual information non-rigid registration, the registration became robust enough to accommodate atrophy and ventricular enlargement with age. The final segmentation was obtained by combination of the 30 propagated atlases using decision fusion. Kernel smoothing was used for modelling the structural volume changes with aging. Example linear correlation coefficients with age were, for lateral ventricular volume, rmale=0.76, rfemale=0.58 and, for hippocampal volume, rmale=-0.6, rfemale=-0.4 (allρ<0.01).
Kim, Youngwoo; Ge, Yinghui; Tao, Cheng; Zhu, Jianbing; Chapman, Arlene B.; Torres, Vicente E.; Yu, Alan S.L.; Mrug, Michal; Bennett, William M.; Flessner, Michael F.; Landsittel, Doug P.
2016-01-01
Background and objectives Our study developed a fully automated method for segmentation and volumetric measurements of kidneys from magnetic resonance images in patients with autosomal dominant polycystic kidney disease and assessed the performance of the automated method with the reference manual segmentation method. Design, setting, participants, & measurements Study patients were selected from the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease. At the enrollment of the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease Study in 2000, patients with autosomal dominant polycystic kidney disease were between 15 and 46 years of age with relatively preserved GFRs. Our fully automated segmentation method was on the basis of a spatial prior probability map of the location of kidneys in abdominal magnetic resonance images and regional mapping with total variation regularization and propagated shape constraints that were formulated into a level set framework. T2–weighted magnetic resonance image sets of 120 kidneys were selected from 60 patients with autosomal dominant polycystic kidney disease and divided into the training and test datasets. The performance of the automated method in reference to the manual method was assessed by means of two metrics: Dice similarity coefficient and intraclass correlation coefficient of segmented kidney volume. The training and test sets were swapped for crossvalidation and reanalyzed. Results Successful segmentation of kidneys was performed with the automated method in all test patients. The segmented kidney volumes ranged from 177.2 to 2634 ml (mean, 885.4±569.7 ml). The mean Dice similarity coefficient ±SD between the automated and manual methods was 0.88±0.08. The mean correlation coefficient between the two segmentation methods for the segmented volume measurements was 0.97 (P<0.001 for each crossvalidation set). The results from the crossvalidation sets were highly comparable. Conclusions We have developed a fully automated method for segmentation of kidneys from abdominal magnetic resonance images in patients with autosomal dominant polycystic kidney disease with varying kidney volumes. The performance of the automated method was in good agreement with that of manual method. PMID:26797708
Kim, Youngwoo; Ge, Yinghui; Tao, Cheng; Zhu, Jianbing; Chapman, Arlene B; Torres, Vicente E; Yu, Alan S L; Mrug, Michal; Bennett, William M; Flessner, Michael F; Landsittel, Doug P; Bae, Kyongtae T
2016-04-07
Our study developed a fully automated method for segmentation and volumetric measurements of kidneys from magnetic resonance images in patients with autosomal dominant polycystic kidney disease and assessed the performance of the automated method with the reference manual segmentation method. Study patients were selected from the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease. At the enrollment of the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease Study in 2000, patients with autosomal dominant polycystic kidney disease were between 15 and 46 years of age with relatively preserved GFRs. Our fully automated segmentation method was on the basis of a spatial prior probability map of the location of kidneys in abdominal magnetic resonance images and regional mapping with total variation regularization and propagated shape constraints that were formulated into a level set framework. T2-weighted magnetic resonance image sets of 120 kidneys were selected from 60 patients with autosomal dominant polycystic kidney disease and divided into the training and test datasets. The performance of the automated method in reference to the manual method was assessed by means of two metrics: Dice similarity coefficient and intraclass correlation coefficient of segmented kidney volume. The training and test sets were swapped for crossvalidation and reanalyzed. Successful segmentation of kidneys was performed with the automated method in all test patients. The segmented kidney volumes ranged from 177.2 to 2634 ml (mean, 885.4±569.7 ml). The mean Dice similarity coefficient ±SD between the automated and manual methods was 0.88±0.08. The mean correlation coefficient between the two segmentation methods for the segmented volume measurements was 0.97 (P<0.001 for each crossvalidation set). The results from the crossvalidation sets were highly comparable. We have developed a fully automated method for segmentation of kidneys from abdominal magnetic resonance images in patients with autosomal dominant polycystic kidney disease with varying kidney volumes. The performance of the automated method was in good agreement with that of manual method. Copyright © 2016 by the American Society of Nephrology.
Subregional volumes of the hippocampus in relation to cognitive function and risk of dementia.
Evans, Tavia E; Adams, Hieab H H; Licher, Silvan; Wolters, Frank J; van der Lugt, Aad; Ikram, M Kamran; O'Sullivan, Michael J; Vernooij, Meike W; Ikram, M Arfan
2018-05-18
Total hippocampal volume has been consistently linked to cognitive function and dementia. Yet, given its complex and parcellated internal structure, the role of subregions of the hippocampus in cognition and risk of dementia remains relatively underexplored. We studied subregions of the hippocampus in a large population-based cohort to further understand their role in cognitive impairment and dementia risk. We studied 5035 dementia- and stroke-free persons from the Rotterdam Study, aged over 45 years. All participants underwent magnetic resonance imaging (1.5 T) between 2005 and 2015. Automatic segmentation of the hippocampus and 12 of its subregions was performed using the FreeSurfer software (version 6.0). A cognitive test battery was performed, and participants were followed up for the development of dementia until 2015. Associations of hippocampal subregion volumes with cognition and incident dementia were examined using linear and Cox regression models, respectively. All analyses were adjusted for age, sex, education, and total hippocampal volume. Mean age was 64.3 years (SD 10.6) with 56% women. Smaller volumes of the hippocampal fimbria, presubiculum and subiculum showed the strongest associations with poor performance on several cognitive domains, including executive function but not memory. During a mean follow-up of 5.5 years, 76 persons developed dementia. Smaller subiculum volume was associated with risk of dementia adjusted for total volume (hazard ratio per SD decrease in volume: 1.75, 95% confidence interval 1.35; 2.26). In a community-dwelling non-demented population, we describe patterns of association between hippocampal subregions with cognition and risk of dementia. Specifically, the subiculum was associated with both poorer cognition and higher risk of dementia. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofeng; Wu, Ning; Cheng, Guanghui
Purpose: To develop an automated magnetic resonance imaging (MRI) parotid segmentation method to monitor radiation-induced parotid gland changes in patients after head and neck radiation therapy (RT). Methods and Materials: The proposed method combines the atlas registration method, which captures the global variation of anatomy, with a machine learning technology, which captures the local statistical features, to automatically segment the parotid glands from the MRIs. The segmentation method consists of 3 major steps. First, an atlas (pre-RT MRI and manually contoured parotid gland mask) is built for each patient. A hybrid deformable image registration is used to map the pre-RTmore » MRI to the post-RT MRI, and the transformation is applied to the pre-RT parotid volume. Second, the kernel support vector machine (SVM) is trained with the subject-specific atlas pair consisting of multiple features (intensity, gradient, and others) from the aligned pre-RT MRI and the transformed parotid volume. Third, the well-trained kernel SVM is used to differentiate the parotid from surrounding tissues in the post-RT MRIs by statistically matching multiple texture features. A longitudinal study of 15 patients undergoing head and neck RT was conducted: baseline MRI was acquired prior to RT, and the post-RT MRIs were acquired at 3-, 6-, and 12-month follow-up examinations. The resulting segmentations were compared with the physicians' manual contours. Results: Successful parotid segmentation was achieved for all 15 patients (42 post-RT MRIs). The average percentage of volume differences between the automated segmentations and those of the physicians' manual contours were 7.98% for the left parotid and 8.12% for the right parotid. The average volume overlap was 91.1% ± 1.6% for the left parotid and 90.5% ± 2.4% for the right parotid. The parotid gland volume reduction at follow-up was 25% at 3 months, 27% at 6 months, and 16% at 12 months. Conclusions: We have validated our automated parotid segmentation algorithm in a longitudinal study. This segmentation method may be useful in future studies to address radiation-induced xerostomia in head and neck radiation therapy.« less
Lesion identification using unified segmentation-normalisation models and fuzzy clustering
Seghier, Mohamed L.; Ramlackhansingh, Anil; Crinion, Jenny; Leff, Alexander P.; Price, Cathy J.
2008-01-01
In this paper, we propose a new automated procedure for lesion identification from single images based on the detection of outlier voxels. We demonstrate the utility of this procedure using artificial and real lesions. The scheme rests on two innovations: First, we augment the generative model used for combined segmentation and normalization of images, with an empirical prior for an atypical tissue class, which can be optimised iteratively. Second, we adopt a fuzzy clustering procedure to identify outlier voxels in normalised gray and white matter segments. These two advances suppress misclassification of voxels and restrict lesion identification to gray/white matter lesions respectively. Our analyses show a high sensitivity for detecting and delineating brain lesions with different sizes, locations, and textures. Our approach has important implications for the generation of lesion overlap maps of a given population and the assessment of lesion-deficit mappings. From a clinical perspective, our method should help to compute the total volume of lesion or to trace precisely lesion boundaries that might be pertinent for surgical or diagnostic purposes. PMID:18482850
Besemer, Abigail E; Titz, Benjamin; Grudzinski, Joseph J; Weichert, Jamey P; Kuo, John S; Robins, H Ian; Hall, Lance T; Bednarz, Bryan P
2017-07-06
Variations in tumor volume segmentation methods in targeted radionuclide therapy (TRT) may lead to dosimetric uncertainties. This work investigates the impact of PET and MRI threshold-based tumor segmentation on TRT dosimetry in patients with primary and metastatic brain tumors. In this study, PET/CT images of five brain cancer patients were acquired at 6, 24, and 48 h post-injection of 124 I-CLR1404. The tumor volume was segmented using two standardized uptake value (SUV) threshold levels, two tumor-to-background ratio (TBR) threshold levels, and a T1 Gadolinium-enhanced MRI threshold. The dice similarity coefficient (DSC), jaccard similarity coefficient (JSC), and overlap volume (OV) metrics were calculated to compare differences in the MRI and PET contours. The therapeutic 131 I-CLR1404 voxel-level dose distribution was calculated from the 124 I-CLR1404 activity distribution using RAPID, a Geant4 Monte Carlo internal dosimetry platform. The TBR, SUV, and MRI tumor volumes ranged from 2.3-63.9 cc, 0.1-34.7 cc, and 0.4-11.8 cc, respectively. The average ± standard deviation (range) was 0.19 ± 0.13 (0.01-0.51), 0.30 ± 0.17 (0.03-0.67), and 0.75 ± 0.29 (0.05-1.00) for the JSC, DSC, and OV, respectively. The DSC and JSC values were small and the OV values were large for both the MRI-SUV and MRI-TBR combinations because the regions of PET uptake were generally larger than the MRI enhancement. Notable differences in the tumor dose volume histograms were observed for each patient. The mean (standard deviation) 131 I-CLR1404 tumor doses ranged from 0.28-1.75 Gy GBq -1 (0.07-0.37 Gy GBq -1 ). The ratio of maximum-to-minimum mean doses for each patient ranged from 1.4-2.0. The tumor volume and the interpretation of the tumor dose is highly sensitive to the imaging modality, PET enhancement metric, and threshold level used for tumor volume segmentation. The large variations in tumor doses clearly demonstrate the need for standard protocols for multimodality tumor segmentation in TRT dosimetry.
NASA Astrophysics Data System (ADS)
Besemer, Abigail E.; Titz, Benjamin; Grudzinski, Joseph J.; Weichert, Jamey P.; Kuo, John S.; Robins, H. Ian; Hall, Lance T.; Bednarz, Bryan P.
2017-08-01
Variations in tumor volume segmentation methods in targeted radionuclide therapy (TRT) may lead to dosimetric uncertainties. This work investigates the impact of PET and MRI threshold-based tumor segmentation on TRT dosimetry in patients with primary and metastatic brain tumors. In this study, PET/CT images of five brain cancer patients were acquired at 6, 24, and 48 h post-injection of 124I-CLR1404. The tumor volume was segmented using two standardized uptake value (SUV) threshold levels, two tumor-to-background ratio (TBR) threshold levels, and a T1 Gadolinium-enhanced MRI threshold. The dice similarity coefficient (DSC), jaccard similarity coefficient (JSC), and overlap volume (OV) metrics were calculated to compare differences in the MRI and PET contours. The therapeutic 131I-CLR1404 voxel-level dose distribution was calculated from the 124I-CLR1404 activity distribution using RAPID, a Geant4 Monte Carlo internal dosimetry platform. The TBR, SUV, and MRI tumor volumes ranged from 2.3-63.9 cc, 0.1-34.7 cc, and 0.4-11.8 cc, respectively. The average ± standard deviation (range) was 0.19 ± 0.13 (0.01-0.51), 0.30 ± 0.17 (0.03-0.67), and 0.75 ± 0.29 (0.05-1.00) for the JSC, DSC, and OV, respectively. The DSC and JSC values were small and the OV values were large for both the MRI-SUV and MRI-TBR combinations because the regions of PET uptake were generally larger than the MRI enhancement. Notable differences in the tumor dose volume histograms were observed for each patient. The mean (standard deviation) 131I-CLR1404 tumor doses ranged from 0.28-1.75 Gy GBq-1 (0.07-0.37 Gy GBq-1). The ratio of maximum-to-minimum mean doses for each patient ranged from 1.4-2.0. The tumor volume and the interpretation of the tumor dose is highly sensitive to the imaging modality, PET enhancement metric, and threshold level used for tumor volume segmentation. The large variations in tumor doses clearly demonstrate the need for standard protocols for multimodality tumor segmentation in TRT dosimetry.
Berman, Daniel S; Abidov, Aiden; Kang, Xingping; Hayes, Sean W; Friedman, John D; Sciammarella, Maria G; Cohen, Ishac; Gerlach, James; Waechter, Parker B; Germano, Guido; Hachamovitch, Rory
2004-01-01
Recently, a 17-segment model of the left ventricle has been recommended as an optimally weighted approach for interpreting myocardial perfusion single photon emission computed tomography (SPECT). Methods to convert databases from previous 20- to new 17-segment data and criteria for abnormality for the 17-segment scores are needed. Initially, for derivation of the conversion algorithm, 65 patients were studied (algorithm population) (pilot group, n = 28; validation group, n = 37). Three conversion algorithms were derived: algorithm 1, which used mid, distal, and apical scores; algorithm 2, which used distal and apical scores alone; and algorithm 3, which used maximal scores of the distal septal, lateral, and apical segments in the 20-segment model for 3 corresponding segments of the 17-segment model. The prognosis population comprised 16,020 consecutive patients (mean age, 65 +/- 12 years; 41% women) who had exercise or vasodilator stress technetium 99m sestamibi myocardial perfusion SPECT and were followed up for 2.1 +/- 0.8 years. In this population, 17-segment scores were derived from 20-segment scores by use of algorithm 2, which demonstrated the best agreement with expert 17-segment reading in the algorithm population. The prognostic value of the 20- and 17-segment scores was compared by converting the respective summed scores into percent myocardium abnormal. Conversion algorithm 2 was found to be highly concordant with expert visual analysis by the 17-segment model (r = 0.982; kappa = 0.866) in the algorithm population. In the prognosis population, 456 cardiac deaths occurred during follow-up. When the conversion algorithm was applied, extent and severity of perfusion defects were nearly identical by 20- and derived 17-segment scores. The receiver operating characteristic curve areas by 20- and 17-segment perfusion scores were identical for predicting cardiac death (both 0.77 +/- 0.02, P = not significant). The optimal prognostic cutoff value for either 20- or derived 17-segment models was confirmed to be 5% myocardium abnormal, corresponding to a summed stress score greater than 3. Of note, the 17-segment model demonstrated a trend toward fewer mildly abnormal scans and more normal and severely abnormal scans. An algorithm for conversion of 20-segment perfusion scores to 17-segment scores has been developed that is highly concordant with expert visual analysis by the 17-segment model and provides nearly identical prognostic information. This conversion model may provide a mechanism for comparison of studies analyzed by the 17-segment system with previous studies analyzed by the 20-segment approach.
López-Linares, Karen; Aranjuelo, Nerea; Kabongo, Luis; Maclair, Gregory; Lete, Nerea; Ceresa, Mario; García-Familiar, Ainhoa; Macía, Iván; González Ballester, Miguel A
2018-05-01
Computerized Tomography Angiography (CTA) based follow-up of Abdominal Aortic Aneurysms (AAA) treated with Endovascular Aneurysm Repair (EVAR) is essential to evaluate the progress of the patient and detect complications. In this context, accurate quantification of post-operative thrombus volume is required. However, a proper evaluation is hindered by the lack of automatic, robust and reproducible thrombus segmentation algorithms. We propose a new fully automatic approach based on Deep Convolutional Neural Networks (DCNN) for robust and reproducible thrombus region of interest detection and subsequent fine thrombus segmentation. The DetecNet detection network is adapted to perform region of interest extraction from a complete CTA and a new segmentation network architecture, based on Fully Convolutional Networks and a Holistically-Nested Edge Detection Network, is presented. These networks are trained, validated and tested in 13 post-operative CTA volumes of different patients using a 4-fold cross-validation approach to provide more robustness to the results. Our pipeline achieves a Dice score of more than 82% for post-operative thrombus segmentation and provides a mean relative volume difference between ground truth and automatic segmentation that lays within the experienced human observer variance without the need of human intervention in most common cases. Copyright © 2018 Elsevier B.V. All rights reserved.
Tingelhoff, K; Moral, A I; Kunkel, M E; Rilk, M; Wagner, I; Eichhorn, K G; Wahl, F M; Bootz, F
2007-01-01
Segmentation of medical image data is getting more and more important over the last years. The results are used for diagnosis, surgical planning or workspace definition of robot-assisted systems. The purpose of this paper is to find out whether manual or semi-automatic segmentation is adequate for ENT surgical workflow or whether fully automatic segmentation of paranasal sinuses and nasal cavity is needed. We present a comparison of manual and semi-automatic segmentation of paranasal sinuses and the nasal cavity. Manual segmentation is performed by custom software whereas semi-automatic segmentation is realized by a commercial product (Amira). For this study we used a CT dataset of the paranasal sinuses which consists of 98 transversal slices, each 1.0 mm thick, with a resolution of 512 x 512 pixels. For the analysis of both segmentation procedures we used volume, extension (width, length and height), segmentation time and 3D-reconstruction. The segmentation time was reduced from 960 minutes with manual to 215 minutes with semi-automatic segmentation. We found highest variances segmenting nasal cavity. For the paranasal sinuses manual and semi-automatic volume differences are not significant. Dependent on the segmentation accuracy both approaches deliver useful results and could be used for e.g. robot-assisted systems. Nevertheless both procedures are not useful for everyday surgical workflow, because they take too much time. Fully automatic and reproducible segmentation algorithms are needed for segmentation of paranasal sinuses and nasal cavity.
Motion-aware stroke volume quantification in 4D PC-MRI data of the human aorta.
Köhler, Benjamin; Preim, Uta; Grothoff, Matthias; Gutberlet, Matthias; Fischbach, Katharina; Preim, Bernhard
2016-02-01
4D PC-MRI enables the noninvasive measurement of time-resolved, three-dimensional blood flow data that allow quantification of the hemodynamics. Stroke volumes are essential to assess the cardiac function and evolution of different cardiovascular diseases. The calculation depends on the wall position and vessel orientation, which both change during the cardiac cycle due to the heart muscle contraction and the pumped blood. However, current systems for the quantitative 4D PC-MRI data analysis neglect the dynamic character and instead employ a static 3D vessel approximation. We quantify differences between stroke volumes in the aorta obtained with and without consideration of its dynamics. We describe a method that uses the approximating 3D segmentation to automatically initialize segmentation algorithms that require regions inside and outside the vessel for each temporal position. This enables the use of graph cuts to obtain 4D segmentations, extract vessel surfaces including centerlines for each temporal position and derive motion information. The stroke volume quantification is compared using measuring planes in static (3D) vessels, planes with fixed angulation inside dynamic vessels (this corresponds to the common 2D PC-MRI) and moving planes inside dynamic vessels. Seven datasets with different pathologies such as aneurysms and coarctations were evaluated in close collaboration with radiologists. Compared to the experts' manual stroke volume estimations, motion-aware quantification performs, on average, 1.57% better than calculations without motion consideration. The mean difference between stroke volumes obtained with the different methods is 7.82%. Automatically obtained 4D segmentations overlap by 85.75% with manually generated ones. Incorporating motion information in the stroke volume quantification yields slight but not statistically significant improvements. The presented method is feasible for the clinical routine, since computation times are low and essential parts run fully automatically. The 4D segmentations can be used for other algorithms as well. The simultaneous visualization and quantification may support the understanding and interpretation of cardiac blood flow.
Molinari, Francesco; Pirronti, Tommaso; Sverzellati, Nicola; Diciotti, Stefano; Amato, Michele; Paolantonio, Guglielmo; Gentile, Luigia; Parapatt, George K; D'Argento, Francesco; Kuhnigk, Jan-Martin
2013-01-01
We aimed to compare the intra- and interoperator variability of lobar volumetry and emphysema scores obtained by semi-automated and manual segmentation techniques in lung emphysema patients. In two sessions held three months apart, two operators performed lobar volumetry of unenhanced chest computed tomography examinations of 47 consecutive patients with chronic obstructive pulmonary disease and lung emphysema. Both operators used the manual and semi-automated segmentation techniques. The intra- and interoperator variability of the volumes and emphysema scores obtained by semi-automated segmentation was compared with the variability obtained by manual segmentation of the five pulmonary lobes. The intra- and interoperator variability of the lobar volumes decreased when using semi-automated lobe segmentation (coefficients of repeatability for the first operator: right upper lobe, 147 vs. 96.3; right middle lobe, 137.7 vs. 73.4; right lower lobe, 89.2 vs. 42.4; left upper lobe, 262.2 vs. 54.8; and left lower lobe, 260.5 vs. 56.5; coefficients of repeatability for the second operator: right upper lobe, 61.4 vs. 48.1; right middle lobe, 56 vs. 46.4; right lower lobe, 26.9 vs. 16.7; left upper lobe, 61.4 vs. 27; and left lower lobe, 63.6 vs. 27.5; coefficients of reproducibility in the interoperator analysis: right upper lobe, 191.3 vs. 102.9; right middle lobe, 219.8 vs. 126.5; right lower lobe, 122.6 vs. 90.1; left upper lobe, 166.9 vs. 68.7; and left lower lobe, 168.7 vs. 71.6). The coefficients of repeatability and reproducibility of emphysema scores also decreased when using semi-automated segmentation and had ranges that varied depending on the target lobe and selected threshold of emphysema. Semi-automated segmentation reduces the intra- and interoperator variability of lobar volumetry and provides a more objective tool than manual technique for quantifying lung volumes and severity of emphysema.
Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images
Jain, Saurabh; Sima, Diana M.; Ribbens, Annemie; Cambron, Melissa; Maertens, Anke; Van Hecke, Wim; De Mey, Johan; Barkhof, Frederik; Steenwijk, Martijn D.; Daams, Marita; Maes, Frederik; Van Huffel, Sabine; Vrenken, Hugo; Smeets, Dirk
2015-01-01
The location and extent of white matter lesions on magnetic resonance imaging (MRI) are important criteria for diagnosis, follow-up and prognosis of multiple sclerosis (MS). Clinical trials have shown that quantitative values, such as lesion volumes, are meaningful in MS prognosis. Manual lesion delineation for the segmentation of lesions is, however, time-consuming and suffers from observer variability. In this paper, we propose MSmetrix, an accurate and reliable automatic method for lesion segmentation based on MRI, independent of scanner or acquisition protocol and without requiring any training data. In MSmetrix, 3D T1-weighted and FLAIR MR images are used in a probabilistic model to detect white matter (WM) lesions as an outlier to normal brain while segmenting the brain tissue into grey matter, WM and cerebrospinal fluid. The actual lesion segmentation is performed based on prior knowledge about the location (within WM) and the appearance (hyperintense on FLAIR) of lesions. The accuracy of MSmetrix is evaluated by comparing its output with expert reference segmentations of 20 MRI datasets of MS patients. Spatial overlap (Dice) between the MSmetrix and the expert lesion segmentation is 0.67 ± 0.11. The intraclass correlation coefficient (ICC) equals 0.8 indicating a good volumetric agreement between the MSmetrix and expert labelling. The reproducibility of MSmetrix' lesion volumes is evaluated based on 10 MS patients, scanned twice with a short interval on three different scanners. The agreement between the first and the second scan on each scanner is evaluated through the spatial overlap and absolute lesion volume difference between them. The spatial overlap was 0.69 ± 0.14 and absolute total lesion volume difference between the two scans was 0.54 ± 0.58 ml. Finally, the accuracy and reproducibility of MSmetrix compare favourably with other publicly available MS lesion segmentation algorithms, applied on the same data using default parameter settings. PMID:26106562
Semiautomatic segmentation of liver metastases on volumetric CT images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Jiayong; Schwartz, Lawrence H.; Zhao, Binsheng, E-mail: bz2166@cumc.columbia.edu
2015-11-15
Purpose: Accurate segmentation and quantification of liver metastases on CT images are critical to surgery/radiation treatment planning and therapy response assessment. To date, there are no reliable methods to perform such segmentation automatically. In this work, the authors present a method for semiautomatic delineation of liver metastases on contrast-enhanced volumetric CT images. Methods: The first step is to manually place a seed region-of-interest (ROI) in the lesion on an image. This ROI will (1) serve as an internal marker and (2) assist in automatically identifying an external marker. With these two markers, lesion contour on the image can be accuratelymore » delineated using traditional watershed transformation. Density information will then be extracted from the segmented 2D lesion and help determine the 3D connected object that is a candidate of the lesion volume. The authors have developed a robust strategy to automatically determine internal and external markers for marker-controlled watershed segmentation. By manually placing a seed region-of-interest in the lesion to be delineated on a reference image, the method can automatically determine dual threshold values to approximately separate the lesion from its surrounding structures and refine the thresholds from the segmented lesion for the accurate segmentation of the lesion volume. This method was applied to 69 liver metastases (1.1–10.3 cm in diameter) from a total of 15 patients. An independent radiologist manually delineated all lesions and the resultant lesion volumes served as the “gold standard” for validation of the method’s accuracy. Results: The algorithm received a median overlap, overestimation ratio, and underestimation ratio of 82.3%, 6.0%, and 11.5%, respectively, and a median average boundary distance of 1.2 mm. Conclusions: Preliminary results have shown that volumes of liver metastases on contrast-enhanced CT images can be accurately estimated by a semiautomatic segmentation method.« less
NASA Astrophysics Data System (ADS)
Wang, Jui-Kai; Kardon, Randy H.; Garvin, Mona K.
2015-03-01
In cases of optic-nerve-head edema, the presence of the swelling reduces the visibility of the underlying neural canal opening (NCO) within spectral-domain optical coherence tomography (SD-OCT) volumes. Consequently, traditional SD-OCT-based NCO segmentation methods often overestimate the size of the NCO. The visibility of the NCO can be improved using high-definition 2D raster scans, but such scans do not provide 3D contextual image information. In this work, we present a semi-automated approach for the segmentation of the NCO in cases of optic disc edema by combining image information from volumetric and high-definition raster SD-OCT image sequences. In particular, for each subject, five high-definition OCT B-scans and the OCT volume are first separately segmented, and then the five high-definition B-scans are automatically registered to the OCT volume. Next, six NCO points are placed (manually, in this work) in the central three high-definition OCT B-scans (two points for each central B-scans) and are automatically transferred into the OCT volume. Utilizing a combination of these mapped points and the 3D image information from the volumetric scans, a graph-based approach is used to identify the complete NCO on the OCT en-face image. The segmented NCO points using the new approach were significantly closer to expert-marked points than the segmented NCO points using a traditional approach (root mean square differences in pixels: 5.34 vs. 21.71, p < 0.001).
Automatic 3D liver location and segmentation via convolutional neural network and graph cut.
Lu, Fang; Wu, Fa; Hu, Peijun; Peng, Zhiyi; Kong, Dexing
2017-02-01
Segmentation of the liver from abdominal computed tomography (CT) images is an essential step in some computer-assisted clinical interventions, such as surgery planning for living donor liver transplant, radiotherapy and volume measurement. In this work, we develop a deep learning algorithm with graph cut refinement to automatically segment the liver in CT scans. The proposed method consists of two main steps: (i) simultaneously liver detection and probabilistic segmentation using 3D convolutional neural network; (ii) accuracy refinement of the initial segmentation with graph cut and the previously learned probability map. The proposed approach was validated on forty CT volumes taken from two public databases MICCAI-Sliver07 and 3Dircadb1. For the MICCAI-Sliver07 test dataset, the calculated mean ratios of volumetric overlap error (VOE), relative volume difference (RVD), average symmetric surface distance (ASD), root-mean-square symmetric surface distance (RMSD) and maximum symmetric surface distance (MSD) are 5.9, 2.7 %, 0.91, 1.88 and 18.94 mm, respectively. For the 3Dircadb1 dataset, the calculated mean ratios of VOE, RVD, ASD, RMSD and MSD are 9.36, 0.97 %, 1.89, 4.15 and 33.14 mm, respectively. The proposed method is fully automatic without any user interaction. Quantitative results reveal that the proposed approach is efficient and accurate for hepatic volume estimation in a clinical setup. The high correlation between the automatic and manual references shows that the proposed method can be good enough to replace the time-consuming and nonreproducible manual segmentation method.
Barba-J, Leiner; Escalante-Ramírez, Boris; Vallejo Venegas, Enrique; Arámbula Cosío, Fernando
2018-05-01
Analysis of cardiac images is a fundamental task to diagnose heart problems. Left ventricle (LV) is one of the most important heart structures used for cardiac evaluation. In this work, we propose a novel 3D hierarchical multiscale segmentation method based on a local active contour (AC) model and the Hermite transform (HT) for LV analysis in cardiac magnetic resonance (MR) and computed tomography (CT) volumes in short axis view. Features such as directional edges, texture, and intensities are analyzed using the multiscale HT space. A local AC model is configured using the HT coefficients and geometrical constraints. The endocardial and epicardial boundaries are used for evaluation. Segmentation of the endocardium is controlled using elliptical shape constraints. The final endocardial shape is used to define the geometrical constraints for segmentation of the epicardium. We follow the assumption that epicardial and endocardial shapes are similar in volumes with short axis view. An initialization scheme based on a fuzzy C-means algorithm and mathematical morphology was designed. The algorithm performance was evaluated using cardiac MR and CT volumes in short axis view demonstrating the feasibility of the proposed method.
NASA Astrophysics Data System (ADS)
Jang, Yujin; Hong, Helen; Chung, Jin Wook; Yoon, Young Ho
2012-02-01
We propose an effective technique for the extraction of liver boundary based on multi-planar anatomy and deformable surface model in abdominal contrast-enhanced CT images. Our method is composed of four main steps. First, for extracting an optimal volume circumscribing a liver, lower and side boundaries are defined by positional information of pelvis and rib. An upper boundary is defined by separating the lungs and heart from CT images. Second, for extracting an initial liver volume, optimal liver volume is smoothed by anisotropic diffusion filtering and is segmented using adaptively selected threshold value. Third, for removing neighbor organs from initial liver volume, morphological opening and connected component labeling are applied to multiple planes. Finally, for refining the liver boundaries, deformable surface model is applied to a posterior liver surface and missing left robe in previous step. Then, probability summation map is generated by calculating regional information of the segmented liver in coronal plane, which is used for restoring the inaccurate liver boundaries. Experimental results show that our segmentation method can accurately extract liver boundaries without leakage to neighbor organs in spite of various liver shape and ambiguous boundary.
Integrating segmentation methods from the Insight Toolkit into a visualization application.
Martin, Ken; Ibáñez, Luis; Avila, Lisa; Barré, Sébastien; Kaspersen, Jon H
2005-12-01
The Insight Toolkit (ITK) initiative from the National Library of Medicine has provided a suite of state-of-the-art segmentation and registration algorithms ideally suited to volume visualization and analysis. A volume visualization application that effectively utilizes these algorithms provides many benefits: it allows access to ITK functionality for non-programmers, it creates a vehicle for sharing and comparing segmentation techniques, and it serves as a visual debugger for algorithm developers. This paper describes the integration of image processing functionalities provided by the ITK into VolView, a visualization application for high performance volume rendering. A free version of this visualization application is publicly available and is available in the online version of this paper. The process for developing ITK plugins for VolView according to the publicly available API is described in detail, and an application of ITK VolView plugins to the segmentation of Abdominal Aortic Aneurysms (AAAs) is presented. The source code of the ITK plugins is also publicly available and it is included in the online version.
Selecting exposure measures in crash rate prediction for two-lane highway segments.
Qin, Xiao; Ivan, John N; Ravishanker, Nalini
2004-03-01
A critical part of any risk assessment is identifying how to represent exposure to the risk involved. Recent research shows that the relationship between crash count and traffic volume is non-linear; consequently, a simple crash rate computed as the ratio of crash count to volume is not proper for comparing the safety of sites with different traffic volumes. To solve this problem, we describe a new approach for relating traffic volume and crash incidence. Specifically, we disaggregate crashes into four types: (1) single-vehicle, (2) multi-vehicle same direction, (3) multi-vehicle opposite direction, and (4) multi-vehicle intersecting, and define candidate exposure measures for each that we hypothesize will be linear with respect to each crash type. This paper describes initial investigation using crash and physical characteristics data for highway segments in Michigan from the Highway Safety Information System (HSIS). We use zero-inflated-Poisson (ZIP) modeling to estimate models for predicting counts for each of the above crash types as a function of the daily volume, segment length, speed limit and roadway width. We found that the relationship between crashes and the daily volume (AADT) is non-linear and varies by crash type, and is significantly different from the relationship between crashes and segment length for all crash types. Our research will provide information to improve accuracy of crash predictions and, thus, facilitate more meaningful comparison of the safety record of seemingly similar highway locations.
Garteiser, Philippe; Doblas, Sabrina; Towner, Rheal A; Griffin, Timothy M
2013-11-01
To use an automated water-suppressed magnetic resonance imaging (MRI) method to objectively assess adipose tissue (AT) volumes in whole body and specific regional body components (subcutaneous, thoracic and peritoneal) of obese and lean mice. Water-suppressed MR images were obtained on a 7T, horizontal-bore MRI system in whole bodies (excluding head) of 26 week old male C57BL6J mice fed a control (10% kcal fat) or high-fat diet (60% kcal fat) for 20 weeks. Manual (outlined regions) versus automated (Gaussian fitting applied to threshold-weighted images) segmentation procedures were compared for whole body AT and regional AT volumes (i.e., subcutaneous, thoracic, and peritoneal). The AT automated segmentation method was compared to dual-energy X-ray (DXA) analysis. The average AT volumes for whole body and individual compartments correlated well between the manual outlining and the automated methods (R2>0.77, p<0.05). Subcutaneous, peritoneal, and total body AT volumes were increased 2-3 fold and thoracic AT volume increased more than 5-fold in diet-induced obese mice versus controls (p<0.05). MRI and DXA-based method comparisons were highly correlative (R2=0.94, p<0.0001). Automated AT segmentation of water-suppressed MRI data using a global Gaussian filtering algorithm resulted in a fairly accurate assessment of total and regional AT volumes in a pre-clinical mouse model of obesity. © 2013 Elsevier Inc. All rights reserved.
Automated tumor volumetry using computer-aided image segmentation.
Gaonkar, Bilwaj; Macyszyn, Luke; Bilello, Michel; Sadaghiani, Mohammed Salehi; Akbari, Hamed; Atthiah, Mark A; Ali, Zarina S; Da, Xiao; Zhan, Yiqang; O'Rourke, Donald; Grady, Sean M; Davatzikos, Christos
2015-05-01
Accurate segmentation of brain tumors, and quantification of tumor volume, is important for diagnosis, monitoring, and planning therapeutic intervention. Manual segmentation is not widely used because of time constraints. Previous efforts have mainly produced methods that are tailored to a particular type of tumor or acquisition protocol and have mostly failed to produce a method that functions on different tumor types and is robust to changes in scanning parameters, resolution, and image quality, thereby limiting their clinical value. Herein, we present a semiautomatic method for tumor segmentation that is fast, accurate, and robust to a wide variation in image quality and resolution. A semiautomatic segmentation method based on the geodesic distance transform was developed and validated by using it to segment 54 brain tumors. Glioblastomas, meningiomas, and brain metastases were segmented. Qualitative validation was based on physician ratings provided by three clinical experts. Quantitative validation was based on comparing semiautomatic and manual segmentations. Tumor segmentations obtained using manual and automatic methods were compared quantitatively using the Dice measure of overlap. Subjective evaluation was performed by having human experts rate the computerized segmentations on a 0-5 rating scale where 5 indicated perfect segmentation. The proposed method addresses a significant, unmet need in the field of neuro-oncology. Specifically, this method enables clinicians to obtain accurate and reproducible tumor volumes without the need for manual segmentation. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
Automated Tumor Volumetry Using Computer-Aided Image Segmentation
Bilello, Michel; Sadaghiani, Mohammed Salehi; Akbari, Hamed; Atthiah, Mark A.; Ali, Zarina S.; Da, Xiao; Zhan, Yiqang; O'Rourke, Donald; Grady, Sean M.; Davatzikos, Christos
2015-01-01
Rationale and Objectives Accurate segmentation of brain tumors, and quantification of tumor volume, is important for diagnosis, monitoring, and planning therapeutic intervention. Manual segmentation is not widely used because of time constraints. Previous efforts have mainly produced methods that are tailored to a particular type of tumor or acquisition protocol and have mostly failed to produce a method that functions on different tumor types and is robust to changes in scanning parameters, resolution, and image quality, thereby limiting their clinical value. Herein, we present a semiautomatic method for tumor segmentation that is fast, accurate, and robust to a wide variation in image quality and resolution. Materials and Methods A semiautomatic segmentation method based on the geodesic distance transform was developed and validated by using it to segment 54 brain tumors. Glioblastomas, meningiomas, and brain metastases were segmented. Qualitative validation was based on physician ratings provided by three clinical experts. Quantitative validation was based on comparing semiautomatic and manual segmentations. Results Tumor segmentations obtained using manual and automatic methods were compared quantitatively using the Dice measure of overlap. Subjective evaluation was performed by having human experts rate the computerized segmentations on a 0–5 rating scale where 5 indicated perfect segmentation. Conclusions The proposed method addresses a significant, unmet need in the field of neuro-oncology. Specifically, this method enables clinicians to obtain accurate and reproducible tumor volumes without the need for manual segmentation. PMID:25770633
3D tumor measurement in cone-beam CT breast imaging
NASA Astrophysics Data System (ADS)
Chen, Zikuan; Ning, Ruola
2004-05-01
Cone-beam CT breast imaging provides a digital volume representation of a breast. With a digital breast volume, the immediate task is to extract the breast tissue information, especially for suspicious tumors, preferably in an automatic manner or with minimal user interaction. This paper reports a program for three-dimensional breast tissue analysis. It consists of volumetric segmentation (by globally thresholding), subsegmentation (connection-based separation), and volumetric component measurement (volume, surface, shape, and other geometrical specifications). A combination scheme of multi-thresholding and binary volume morphology is proposed to fast determine the surface gradients, which may be interpreted as the surface evolution (outward growth or inward shrinkage) for a tumor volume. This scheme is also used to optimize the volumetric segmentation. With a binary volume, we decompose the foreground into components according to spatial connectedness. Since this decomposition procedure is performed after volumetric segmentation, it is called subsegmentation. The subsegmentation brings the convenience for component visualization and measurement, in the whole support space, without interference from others. Upon the tumor component identification, we measure the following specifications: volume, surface area, roundness, elongation, aspect, star-shapedness, and location (centroid). A 3D morphological operation is used to extract the cluster shell and, by delineating the corresponding volume from the grayscale volume, to measure the shell stiffness. This 3D tissue measurement is demonstrated with a tumor-borne breast specimen (a surgical part).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heeswijk, Miriam M. van; Department of Surgery, Maastricht University Medical Centre, Maastricht; Lambregts, Doenja M.J., E-mail: d.lambregts@nki.nl
Purpose: Diffusion-weighted imaging (DWI) tumor volumetry is promising for rectal cancer response assessment, but an important drawback is that manual per-slice tumor delineation can be highly time consuming. This study investigated whether manual DWI-volumetry can be reproduced using a (semi)automated segmentation approach. Methods and Materials: Seventy-nine patients underwent magnetic resonance imaging (MRI) that included DWI (highest b value [b1000 or b1100]) before and after chemoradiation therapy (CRT). Tumor volumes were assessed on b1000 (or b1100) DWI before and after CRT by means of (1) automated segmentation (by 2 inexperienced readers), (2) semiautomated segmentation (manual adjustment of the volumes obtained bymore » method 1 by 2 radiologists), and (3) manual segmentation (by 2 radiologists); this last assessment served as the reference standard. Intraclass correlation coefficients (ICC) and Dice similarity indices (DSI) were calculated to evaluate agreement between different methods and observers. Measurement times (from a radiologist's perspective) were recorded for each method. Results: Tumor volumes were not significantly different among the 3 methods, either before or after CRT (P=.08 to .92). ICCs compared to manual segmentation were 0.80 to 0.91 and 0.53 to 0.66 before and after CRT, respectively, for the automated segmentation and 0.91 to 0.97 and 0.61 to 0.75, respectively, for the semiautomated method. Interobserver agreement (ICC) pre and post CRT was 0.82 and 0.59 for automated segmentation, 0.91 and 0.73 for semiautomated segmentation, and 0.91 and 0.75 for manual segmentation, respectively. Mean DSI between the automated and semiautomated method were 0.83 and 0.58 pre-CRT and post-CRT, respectively; DSI between the automated and manual segmentation were 0.68 and 0.42 and 0.70 and 0.41 between the semiautomated and manual segmentation, respectively. Median measurement time for the radiologists was 0 seconds (pre- and post-CRT) for the automated method, 41 to 69 seconds (pre-CRT) and 60 to 67 seconds (post-CRT) for the semiautomated method, and 180 to 296 seconds (pre-CRT) and 84 to 91 seconds (post-CRT) for the manual method. Conclusions: DWI volumetry using a semiautomated segmentation approach is promising and a potentially time-saving alternative to manual tumor delineation, particularly for primary tumor volumetry. Once further optimized, it could be a helpful tool for tumor response assessment in rectal cancer.« less
van Heeswijk, Miriam M; Lambregts, Doenja M J; van Griethuysen, Joost J M; Oei, Stanley; Rao, Sheng-Xiang; de Graaff, Carla A M; Vliegen, Roy F A; Beets, Geerard L; Papanikolaou, Nikos; Beets-Tan, Regina G H
2016-03-15
Diffusion-weighted imaging (DWI) tumor volumetry is promising for rectal cancer response assessment, but an important drawback is that manual per-slice tumor delineation can be highly time consuming. This study investigated whether manual DWI-volumetry can be reproduced using a (semi)automated segmentation approach. Seventy-nine patients underwent magnetic resonance imaging (MRI) that included DWI (highest b value [b1000 or b1100]) before and after chemoradiation therapy (CRT). Tumor volumes were assessed on b1000 (or b1100) DWI before and after CRT by means of (1) automated segmentation (by 2 inexperienced readers), (2) semiautomated segmentation (manual adjustment of the volumes obtained by method 1 by 2 radiologists), and (3) manual segmentation (by 2 radiologists); this last assessment served as the reference standard. Intraclass correlation coefficients (ICC) and Dice similarity indices (DSI) were calculated to evaluate agreement between different methods and observers. Measurement times (from a radiologist's perspective) were recorded for each method. Tumor volumes were not significantly different among the 3 methods, either before or after CRT (P=.08 to .92). ICCs compared to manual segmentation were 0.80 to 0.91 and 0.53 to 0.66 before and after CRT, respectively, for the automated segmentation and 0.91 to 0.97 and 0.61 to 0.75, respectively, for the semiautomated method. Interobserver agreement (ICC) pre and post CRT was 0.82 and 0.59 for automated segmentation, 0.91 and 0.73 for semiautomated segmentation, and 0.91 and 0.75 for manual segmentation, respectively. Mean DSI between the automated and semiautomated method were 0.83 and 0.58 pre-CRT and post-CRT, respectively; DSI between the automated and manual segmentation were 0.68 and 0.42 and 0.70 and 0.41 between the semiautomated and manual segmentation, respectively. Median measurement time for the radiologists was 0 seconds (pre- and post-CRT) for the automated method, 41 to 69 seconds (pre-CRT) and 60 to 67 seconds (post-CRT) for the semiautomated method, and 180 to 296 seconds (pre-CRT) and 84 to 91 seconds (post-CRT) for the manual method. DWI volumetry using a semiautomated segmentation approach is promising and a potentially time-saving alternative to manual tumor delineation, particularly for primary tumor volumetry. Once further optimized, it could be a helpful tool for tumor response assessment in rectal cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
Automated detection and segmentation of follicles in 3D ultrasound for assisted reproduction
NASA Astrophysics Data System (ADS)
Narayan, Nikhil S.; Sivanandan, Srinivasan; Kudavelly, Srinivas; Patwardhan, Kedar A.; Ramaraju, G. A.
2018-02-01
Follicle quantification refers to the computation of the number and size of follicles in 3D ultrasound volumes of the ovary. This is one of the key factors in determining hormonal dosage during female infertility treatments. In this paper, we propose an automated algorithm to detect and segment follicles in 3D ultrasound volumes of the ovary for quantification. In a first of its kind attempt, we employ noise-robust phase symmetry feature maps as likelihood function to perform mean-shift based follicle center detection. Max-flow algorithm is used for segmentation and gray weighted distance transform is employed for post-processing the results. We have obtained state-of-the-art results with a true positive detection rate of >90% on 26 3D volumes with 323 follicles.
Ithapu, Vamsi; Singh, Vikas; Lindner, Christopher; Austin, Benjamin P; Hinrichs, Chris; Carlsson, Cynthia M; Bendlin, Barbara B; Johnson, Sterling C
2014-08-01
Precise detection and quantification of white matter hyperintensities (WMH) observed in T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Images (MRI) is of substantial interest in aging, and age-related neurological disorders such as Alzheimer's disease (AD). This is mainly because WMH may reflect co-morbid neural injury or cerebral vascular disease burden. WMH in the older population may be small, diffuse, and irregular in shape, and sufficiently heterogeneous within and across subjects. Here, we pose hyperintensity detection as a supervised inference problem and adapt two learning models, specifically, Support Vector Machines and Random Forests, for this task. Using texture features engineered by texton filter banks, we provide a suite of effective segmentation methods for this problem. Through extensive evaluations on healthy middle-aged and older adults who vary in AD risk, we show that our methods are reliable and robust in segmenting hyperintense regions. A measure of hyperintensity accumulation, referred to as normalized effective WMH volume, is shown to be associated with dementia in older adults and parental family history in cognitively normal subjects. We provide an open source library for hyperintensity detection and accumulation (interfaced with existing neuroimaging tools), that can be adapted for segmentation problems in other neuroimaging studies. Copyright © 2014 Wiley Periodicals, Inc.
Ma, Zelan; Chen, Xin; Huang, Yanqi; He, Lan; Liang, Cuishan; Liang, Changhong; Liu, Zaiyi
2015-01-01
Accurate and repeatable measurement of the gross tumour volume(GTV) of subcutaneous xenografts is crucial in the evaluation of anti-tumour therapy. Formula and image-based manual segmentation methods are commonly used for GTV measurement but are hindered by low accuracy and reproducibility. 3D Slicer is open-source software that provides semiautomatic segmentation for GTV measurements. In our study, subcutaneous GTVs from nude mouse xenografts were measured by semiautomatic segmentation with 3D Slicer based on morphological magnetic resonance imaging(mMRI) or diffusion-weighted imaging(DWI)(b = 0,20,800 s/mm2) . These GTVs were then compared with those obtained via the formula and image-based manual segmentation methods with ITK software using the true tumour volume as the standard reference. The effects of tumour size and shape on GTVs measurements were also investigated. Our results showed that, when compared with the true tumour volume, segmentation for DWI(P = 0.060–0.671) resulted in better accuracy than that mMRI(P < 0.001) and the formula method(P < 0.001). Furthermore, semiautomatic segmentation for DWI(intraclass correlation coefficient, ICC = 0.9999) resulted in higher reliability than manual segmentation(ICC = 0.9996–0.9998). Tumour size and shape had no effects on GTV measurement across all methods. Therefore, DWI-based semiautomatic segmentation, which is accurate and reproducible and also provides biological information, is the optimal GTV measurement method in the assessment of anti-tumour treatments. PMID:26489359
NASA Astrophysics Data System (ADS)
Heydarian, Mohammadreza; Kirby, Miranda; Wheatley, Andrew; Fenster, Aaron; Parraga, Grace
2012-03-01
A semi-automated method for generating hyperpolarized helium-3 (3He) measurements of individual slice (2D) or whole lung (3D) gas distribution was developed. 3He MRI functional images were segmented using two-dimensional (2D) and three-dimensional (3D) hierarchical K-means clustering of the 3He MRI signal and in addition a seeded region-growing algorithm was employed for segmentation of the 1H MRI thoracic cavity volume. 3He MRI pulmonary function measurements were generated following two-dimensional landmark-based non-rigid registration of the 3He and 1H pulmonary images. We applied this method to MRI of healthy subjects and subjects with chronic obstructive lung disease (COPD). The results of hierarchical K-means 2D and 3D segmentation were compared to an expert observer's manual segmentation results using linear regression, Pearson correlations and the Dice similarity coefficient. 2D hierarchical K-means segmentation of ventilation volume (VV) and ventilation defect volume (VDV) was strongly and significantly correlated with manual measurements (VV: r=0.98, p<.0001 VDV: r=0.97, p<.0001) and mean Dice coefficients were greater than 92% for all subjects. 3D hierarchical K-means segmentation of VV and VDV was also strongly and significantly correlated with manual measurements (VV: r=0.98, p<.0001 VDV: r=0.64, p<.0001) and the mean Dice coefficients were greater than 91% for all subjects. Both 2D and 3D semi-automated segmentation of 3He MRI gas distribution provides a way to generate novel pulmonary function measurements.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-13
... Population Segments of the Bearded Seal AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... population segments (DPS) of the bearded seal (Erignathus barbatus) as threatened species under the... spotted seals (Phoca largha) under the ESA (73 FR 16617). On May 28, 2008, we received a petition from the...
Rios Piedra, Edgar A; Taira, Ricky K; El-Saden, Suzie; Ellingson, Benjamin M; Bui, Alex A T; Hsu, William
2016-02-01
Brain tumor analysis is moving towards volumetric assessment of magnetic resonance imaging (MRI), providing a more precise description of disease progression to better inform clinical decision-making and treatment planning. While a multitude of segmentation approaches exist, inherent variability in the results of these algorithms may incorrectly indicate changes in tumor volume. In this work, we present a systematic approach to characterize variability in tumor boundaries that utilizes equivalence tests as a means to determine whether a tumor volume has significantly changed over time. To demonstrate these concepts, 32 MRI studies from 8 patients were segmented using four different approaches (statistical classifier, region-based, edge-based, knowledge-based) to generate different regions of interest representing tumor extent. We showed that across all studies, the average Dice coefficient for the superset of the different methods was 0.754 (95% confidence interval 0.701-0.808) when compared to a reference standard. We illustrate how variability obtained by different segmentations can be used to identify significant changes in tumor volume between sequential time points. Our study demonstrates that variability is an inherent part of interpreting tumor segmentation results and should be considered as part of the interpretation process.
Robust hepatic vessel segmentation using multi deep convolution network
NASA Astrophysics Data System (ADS)
Kitrungrotsakul, Titinunt; Han, Xian-Hua; Iwamoto, Yutaro; Foruzan, Amir Hossein; Lin, Lanfen; Chen, Yen-Wei
2017-03-01
Extraction of blood vessels of the organ is a challenging task in the area of medical image processing. It is really difficult to get accurate vessel segmentation results even with manually labeling by human being. The difficulty of vessels segmentation is the complicated structure of blood vessels and its large variations that make them hard to recognize. In this paper, we present deep artificial neural network architecture to automatically segment the hepatic vessels from computed tomography (CT) image. We proposed novel deep neural network (DNN) architecture for vessel segmentation from a medical CT volume, which consists of three deep convolution neural networks to extract features from difference planes of CT data. The three networks have share features at the first convolution layer but will separately learn their own features in the second layer. All three networks will join again at the top layer. To validate effectiveness and efficiency of our proposed method, we conduct experiments on 12 CT volumes which training data are randomly generate from 5 CT volumes and 7 using for test. Our network can yield an average dice coefficient 0.830, while 3D deep convolution neural network can yield around 0.7 and multi-scale can yield only 0.6.
Wang, Jinke; Guo, Haoyan
2016-01-01
This paper presents a fully automatic framework for lung segmentation, in which juxta-pleural nodule problem is brought into strong focus. The proposed scheme consists of three phases: skin boundary detection, rough segmentation of lung contour, and pulmonary parenchyma refinement. Firstly, chest skin boundary is extracted through image aligning, morphology operation, and connective region analysis. Secondly, diagonal-based border tracing is implemented for lung contour segmentation, with maximum cost path algorithm used for separating the left and right lungs. Finally, by arc-based border smoothing and concave-based border correction, the refined pulmonary parenchyma is obtained. The proposed scheme is evaluated on 45 volumes of chest scans, with volume difference (VD) 11.15 ± 69.63 cm 3 , volume overlap error (VOE) 3.5057 ± 1.3719%, average surface distance (ASD) 0.7917 ± 0.2741 mm, root mean square distance (RMSD) 1.6957 ± 0.6568 mm, maximum symmetric absolute surface distance (MSD) 21.3430 ± 8.1743 mm, and average time-cost 2 seconds per image. The preliminary results on accuracy and complexity prove that our scheme is a promising tool for lung segmentation with juxta-pleural nodules.
Hoyng, Lieke L; Frings, Virginie; Hoekstra, Otto S; Kenny, Laura M; Aboagye, Eric O; Boellaard, Ronald
2015-01-01
Positron emission tomography (PET) with (18)F-3'-deoxy-3'-fluorothymidine ([(18)F]FLT) can be used to assess tumour proliferation. A kinetic-filtering (KF) classification algorithm has been suggested for segmentation of tumours in dynamic [(18)F]FLT PET data. The aim of the present study was to evaluate KF segmentation and its test-retest performance in [(18)F]FLT PET in non-small cell lung cancer (NSCLC) patients. Nine NSCLC patients underwent two 60-min dynamic [(18)F]FLT PET scans within 7 days prior to treatment. Dynamic scans were reconstructed with filtered back projection (FBP) as well as with ordered subsets expectation maximisation (OSEM). Twenty-eight lesions were identified by an experienced physician. Segmentation was performed using KF applied to the dynamic data set and a source-to-background corrected 50% threshold (A50%) was applied to the sum image of the last three frames (45- to 60-min p.i.). Furthermore, several adaptations of KF were tested. Both for KF and A50% test-retest (TRT) variability of metabolically active tumour volume and standard uptake value (SUV) were evaluated. KF performed better on OSEM- than on FBP-reconstructed PET images. The original KF implementation segmented 15 out of 28 lesions, whereas A50% segmented each lesion. Adapted KF versions, however, were able to segment 26 out of 28 lesions. In the best performing adapted versions, metabolically active tumour volume and SUV TRT variability was similar to those of A50%. KF misclassified certain tumour areas as vertebrae or liver tissue, which was shown to be related to heterogeneous [(18)F]FLT uptake areas within the tumour. For [(18)F]FLT PET studies in NSCLC patients, KF and A50% show comparable tumour volume segmentation performance. The KF method needs, however, a site-specific optimisation. The A50% is therefore a good alternative for tumour segmentation in NSCLC [(18)F]FLT PET studies in multicentre studies. Yet, it was observed that KF has the potential to subsegment lesions in high and low proliferative areas.
Automated measurements of metabolic tumor volume and metabolic parameters in lung PET/CT imaging
NASA Astrophysics Data System (ADS)
Orologas, F.; Saitis, P.; Kallergi, M.
2017-11-01
Patients with lung tumors or inflammatory lung disease could greatly benefit in terms of treatment and follow-up by PET/CT quantitative imaging, namely measurements of metabolic tumor volume (MTV), standardized uptake values (SUVs) and total lesion glycolysis (TLG). The purpose of this study was the development of an unsupervised or partially supervised algorithm using standard image processing tools for measuring MTV, SUV, and TLG from lung PET/CT scans. Automated metabolic lesion volume and metabolic parameter measurements were achieved through a 5 step algorithm: (i) The segmentation of the lung areas on the CT slices, (ii) the registration of the CT segmented lung regions on the PET images to define the anatomical boundaries of the lungs on the functional data, (iii) the segmentation of the regions of interest (ROIs) on the PET images based on adaptive thresholding and clinical criteria, (iv) the estimation of the number of pixels and pixel intensities in the PET slices of the segmented ROIs, (v) the estimation of MTV, SUVs, and TLG from the previous step and DICOM header data. Whole body PET/CT scans of patients with sarcoidosis were used for training and testing the algorithm. Lung area segmentation on the CT slices was better achieved with semi-supervised techniques that reduced false positive detections significantly. Lung segmentation results agreed with the lung volumes published in the literature while the agreement between experts and algorithm in the segmentation of the lesions was around 88%. Segmentation results depended on the image resolution selected for processing. The clinical parameters, SUV (either mean or max or peak) and TLG estimated by the segmented ROIs and DICOM header data provided a way to correlate imaging data to clinical and demographic data. In conclusion, automated MTV, SUV, and TLG measurements offer powerful analysis tools in PET/CT imaging of the lungs. Custom-made algorithms are often a better approach than the manufacturer’s general analysis software at much lower cost. Relatively simple processing techniques could lead to customized, unsupervised or partially supervised methods that can successfully perform the desirable analysis and adapt to the specific disease requirements.
A low-cost three-dimensional laser surface scanning approach for defining body segment parameters.
Pandis, Petros; Bull, Anthony Mj
2017-11-01
Body segment parameters are used in many different applications in ergonomics as well as in dynamic modelling of the musculoskeletal system. Body segment parameters can be defined using different methods, including techniques that involve time-consuming manual measurements of the human body, used in conjunction with models or equations. In this study, a scanning technique for measuring subject-specific body segment parameters in an easy, fast, accurate and low-cost way was developed and validated. The scanner can obtain the body segment parameters in a single scanning operation, which takes between 8 and 10 s. The results obtained with the system show a standard deviation of 2.5% in volumetric measurements of the upper limb of a mannequin and 3.1% difference between scanning volume and actual volume. Finally, the maximum mean error for the moment of inertia by scanning a standard-sized homogeneous object was 2.2%. This study shows that a low-cost system can provide quick and accurate subject-specific body segment parameter estimates.
Nielsen, Flemming K; Egund, Niels; Jørgensen, Anette; Peters, David A; Jurik, Anne Grethe
2016-11-16
Bone marrow lesions (BMLs) in knee osteoarthritis (OA) can be assessed using fluid sensitive and contrast enhanced sequences. The association between BMLs and symptoms has been investigated in several studies but only using fluid sensitive sequences. Our aims were to assess BMLs by contrast enhanced MRI sequences in comparison with a fluid sensitive STIR sequence using two different segmentation methods and to analyze the association between the MR findings and disability and pain. Twenty-two patients (mean age 61 years, range 41-79 years) with medial femoro-tibial knee OA obtained MRI and filled out a WOMAC questionnaire at baseline and follow-up (median interval of 334 days). STIR, dynamic contrast enhanced-MRI (DCE-MRI) and fat saturated T1 post-contrast (T1 CE FS) MRI sequences were obtained. All STIR and T1 CE FS sequences were assessed independently by two readers for STIR-BMLs and contrast enhancing areas of BMLs (CEA-BMLs) using manual segmentation and computer assisted segmentation, and the measurements were compared. DCE-MRIs were assessed for the relative distribution of voxels with an inflammatory enhancement pattern, N voxel , in the bone marrow. All findings were compared to WOMAC scores, including pain and overall symptoms, and changes from baseline to follow-up were analyzed. The average volume of CEA-BML was smaller than the STIR-BML volume by manual segmentation. The opposite was found for computer assisted segmentation where the average CEA-BML volume was larger than the STIR-BML volume. The contradictory finding by computer assisted segmentation was partly caused by a number of outliers with an apparent generally increased signal intensity in the anterior parts of the femoral condyle and tibial plateau causing an overestimation of the CEA-BML volume. Both CEA-BML, STIR-BML and N voxel were significantly correlated with symptoms and to a similar degree. A significant reduction in total WOMAC score was seen at follow-up, but no significant changes were observed for either CEA-BML, STIR-BML or N voxel . Neither the degree nor the volume of contrast enhancement in BMLs seems to add any clinical information compared to BMLs visualized by fluid sensitive sequences. Manual segmentation may be needed to obtain valid CEA-BML measurements.
Bridging stylized facts in finance and data non-stationarities
NASA Astrophysics Data System (ADS)
Camargo, Sabrina; Duarte Queirós, Sílvio M.; Anteneodo, Celia
2013-04-01
Employing a recent technique which allows the representation of nonstationary data by means of a juxtaposition of locally stationary paths of different length, we introduce a comprehensive analysis of the key observables in a financial market: the trading volume and the price fluctuations. From the segmentation procedure we are able to introduce a quantitative description of statistical features of these two quantities, which are often named stylized facts, namely the tails of the distribution of trading volume and price fluctuations and a dynamics compatible with the U-shaped profile of the volume in a trading section and the slow decay of the autocorrelation function. The segmentation of the trading volume series provides evidence of slow evolution of the fluctuating parameters of each patch, pointing to the mixing scenario. Assuming that long-term features are the outcome of a statistical mixture of simple local forms, we test and compare different probability density functions to provide the long-term distribution of the trading volume, concluding that the log-normal gives the best agreement with the empirical distribution. Moreover, the segmentation of the magnitude price fluctuations are quite different from the results for the trading volume, indicating that changes in the statistics of price fluctuations occur at a faster scale than in the case of trading volume.
DIVWAG Model Documentation. Volume II. Programmer/Analyst Manual. Part 3. Chapter 9 Through 12.
1976-07-01
entered through a routine, NAM2, that calls the segment controlling routine NBARAS. (4) Segment 3, controlled by the routine NFIRE , simulates round...nuclear fire, NAM calls in sequence the routines NFIRE (segment 3), ASUNIT (segment 2), SASSMT (segment 4), and NFIRE (segment 3). These calls simulate...this is a call to NFIRE (ISEG equals one or two), control goes to block L2. (2) Block 2. If this is to assess a unit passing through a nuclear barrier
Lung lobe modeling and segmentation with individualized surface meshes
NASA Astrophysics Data System (ADS)
Blaffert, Thomas; Barschdorf, Hans; von Berg, Jens; Dries, Sebastian; Franz, Astrid; Klinder, Tobias; Lorenz, Cristian; Renisch, Steffen; Wiemker, Rafael
2008-03-01
An automated segmentation of lung lobes in thoracic CT images is of interest for various diagnostic purposes like the quantification of emphysema or the localization of tumors within the lung. Although the separating lung fissures are visible in modern multi-slice CT-scanners, their contrast in the CT-image often does not separate the lobes completely. This makes it impossible to build a reliable segmentation algorithm without additional information. Our approach uses general anatomical knowledge represented in a geometrical mesh model to construct a robust lobe segmentation, which even gives reasonable estimates of lobe volumes if fissures are not visible at all. The paper describes the generation of the lung model mesh including lobes by an average volume model, its adaptation to individual patient data using a special fissure feature image, and a performance evaluation over a test data set showing an average segmentation accuracy of 1 to 3 mm.
Geiger, Daniel; Bae, Won C.; Statum, Sheronda; Du, Jiang; Chung, Christine B.
2014-01-01
Objective Temporomandibular dysfunction involves osteoarthritis of the TMJ, including degeneration and morphologic changes of the mandibular condyle. Purpose of this study was to determine accuracy of novel 3D-UTE MRI versus micro-CT (μCT) for quantitative evaluation of mandibular condyle morphology. Material & Methods Nine TMJ condyle specimens were harvested from cadavers (2M, 3F; Age 85 ± 10 yrs., mean±SD). 3D-UTE MRI (TR=50ms, TE=0.05 ms, 104 μm isotropic-voxel) was performed using a 3-T MR scanner and μCT (18 μm isotropic-voxel) was performed. MR datasets were spatially-registered with μCT dataset. Two observers segmented bony contours of the condyles. Fibrocartilage was segmented on MR dataset. Using a custom program, bone and fibrocartilage surface coordinates, Gaussian curvature, volume of segmented regions and fibrocartilage thickness were determined for quantitative evaluation of joint morphology. Agreement between techniques (MRI vs. μCT) and observers (MRI vs. MRI) for Gaussian curvature, mean curvature and segmented volume of the bone were determined using intraclass correlation correlation (ICC) analyses. Results Between MRI and μCT, the average deviation of surface coordinates was 0.19±0.15 mm, slightly higher than spatial resolution of MRI. Average deviation of the Gaussian curvature and volume of segmented regions, from MRI to μCT, was 5.7±6.5% and 6.6±6.2%, respectively. ICC coefficients (MRI vs. μCT) for Gaussian curvature, mean curvature and segmented volumes were respectively 0.892, 0.893 and 0.972. Between observers (MRI vs. MRI), the ICC coefficients were 0.998, 0.999 and 0.997 respectively. Fibrocartilage thickness was 0.55±0.11 mm, as previously described in literature for grossly normal TMJ samples. Conclusion 3D-UTE MR quantitative evaluation of TMJ condyle morphology ex-vivo, including surface, curvature and segmented volume, shows high correlation against μCT and between observers. In addition, UTE MRI allows quantitative evaluation of the fibrocartilaginous condylar component. PMID:24092237
Outdoor recreation activity trends by volume segments: U.S. and Northeast market analyses, 1982-1989
Rodney B. Warnick
1992-01-01
The purpose of this review was to examine volume segmentation within three selected outdoor recreational activities -- swimming, hunting and downhill skiing over an eight-year period, from 1982 through 1989 at the national level and within the Northeast Region of the U.S.; and to determine if trend patterns existed within any of these activities when the market size...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-21
... the DPS policy, a population segment of a vertebrate species may be considered discrete if it.... Significance Under the DPS policy, a discrete population segment of a vertebrate species may be considered significant if there is: (1) Persistence of the discrete population segment in an ecological setting unusual...
Chen, Yasheng; Juttukonda, Meher; Su, Yi; Benzinger, Tammie; Rubin, Brian G.; Lee, Yueh Z.; Lin, Weili; Shen, Dinggang; Lalush, David
2015-01-01
Purpose To develop a positron emission tomography (PET) attenuation correction method for brain PET/magnetic resonance (MR) imaging by estimating pseudo computed tomographic (CT) images from T1-weighted MR and atlas CT images. Materials and Methods In this institutional review board–approved and HIPAA-compliant study, PET/MR/CT images were acquired in 20 subjects after obtaining written consent. A probabilistic air segmentation and sparse regression (PASSR) method was developed for pseudo CT estimation. Air segmentation was performed with assistance from a probabilistic air map. For nonair regions, the pseudo CT numbers were estimated via sparse regression by using atlas MR patches. The mean absolute percentage error (MAPE) on PET images was computed as the normalized mean absolute difference in PET signal intensity between a method and the reference standard continuous CT attenuation correction method. Friedman analysis of variance and Wilcoxon matched-pairs tests were performed for statistical comparison of MAPE between the PASSR method and Dixon segmentation, CT segmentation, and population averaged CT atlas (mean atlas) methods. Results The PASSR method yielded a mean MAPE ± standard deviation of 2.42% ± 1.0, 3.28% ± 0.93, and 2.16% ± 1.75, respectively, in the whole brain, gray matter, and white matter, which were significantly lower than the Dixon, CT segmentation, and mean atlas values (P < .01). Moreover, 68.0% ± 16.5, 85.8% ± 12.9, and 96.0% ± 2.5 of whole-brain volume had within ±2%, ±5%, and ±10% percentage error by using PASSR, respectively, which was significantly higher than other methods (P < .01). Conclusion PASSR outperformed the Dixon, CT segmentation, and mean atlas methods by reducing PET error owing to attenuation correction. © RSNA, 2014 PMID:25521778
A semi-automatic method for left ventricle volume estimate: an in vivo validation study
NASA Technical Reports Server (NTRS)
Corsi, C.; Lamberti, C.; Sarti, A.; Saracino, G.; Shiota, T.; Thomas, J. D.
2001-01-01
This study aims to the validation of the left ventricular (LV) volume estimates obtained by processing volumetric data utilizing a segmentation model based on level set technique. The validation has been performed by comparing real-time volumetric echo data (RT3DE) and magnetic resonance (MRI) data. A validation protocol has been defined. The validation protocol was applied to twenty-four estimates (range 61-467 ml) obtained from normal and pathologic subjects, which underwent both RT3DE and MRI. A statistical analysis was performed on each estimate and on clinical parameters as stroke volume (SV) and ejection fraction (EF). Assuming MRI estimates (x) as a reference, an excellent correlation was found with volume measured by utilizing the segmentation procedure (y) (y=0.89x + 13.78, r=0.98). The mean error on SV was 8 ml and the mean error on EF was 2%. This study demonstrated that the segmentation technique is reliably applicable on human hearts in clinical practice.
Peterson, Jeffrey R.; Blieden, Lauren S.; Chuang, Alice Z.; Baker, Laura A.; Rigi, Mohammed; Feldman, Robert M.; Bell, Nicholas P.
2016-01-01
Purpose Define criteria for iris-related parameters in an adult open angle population as measured with swept source Fourier domain anterior segment optical coherence tomography (ASOCT). Methods Ninety-eight eyes of 98 participants with open angles were included and stratified into 5 age groups (18–35, 36–45, 46–55, 56–65, and 66–79 years). ASOCT scans with 3D mode angle analysis were taken with the CASIA SS-1000 (Tomey Corporation, Nagoya, Japan) and analyzed using the Anterior Chamber Analysis and Interpretation software. Anterior iris surface length (AISL), length of scleral spur landmark (SSL) to pupillary margin (SSL-to-PM), iris contour ratio (ICR = AISL/SSL-to-PM), pupil radius, radius of iris centroid (RICe), and iris volume were measured. Outcome variables were summarized for all eyes and age groups, and mean values among age groups were compared using one-way analysis of variance. Stepwise regression analysis was used to investigate demographic and ocular characteristic factors that affected each iris-related parameter. Results Mean (±SD) values were 2.24 mm (±0.46), 4.06 mm (±0.27), 3.65 mm (±0.48), 4.16 mm (±0.47), 1.14 (±0.04), 1.51 mm2 (±0.23), and 38.42 μL (±4.91) for pupillary radius, RICe, SSL-to-PM, AISL, ICR, iris cross-sectional area, and iris volume, respectively. Both pupillary radius (P = 0.002) and RICe (P = 0.027) decreased with age, while SSL-to-PM (P = 0.002) and AISL increased with age (P = 0.001). ICR (P = 0.54) and iris volume (P = 0.49) were not affected by age. Conclusion This study establishes reference values for iris-related parameters in an adult open angle population, which will be useful for future studies examining the role of iris changes in pathologic states. PMID:26815917
Peterson, Jeffrey R; Blieden, Lauren S; Chuang, Alice Z; Baker, Laura A; Rigi, Mohammed; Feldman, Robert M; Bell, Nicholas P
2016-01-01
Define criteria for iris-related parameters in an adult open angle population as measured with swept source Fourier domain anterior segment optical coherence tomography (ASOCT). Ninety-eight eyes of 98 participants with open angles were included and stratified into 5 age groups (18-35, 36-45, 46-55, 56-65, and 66-79 years). ASOCT scans with 3D mode angle analysis were taken with the CASIA SS-1000 (Tomey Corporation, Nagoya, Japan) and analyzed using the Anterior Chamber Analysis and Interpretation software. Anterior iris surface length (AISL), length of scleral spur landmark (SSL) to pupillary margin (SSL-to-PM), iris contour ratio (ICR = AISL/SSL-to-PM), pupil radius, radius of iris centroid (RICe), and iris volume were measured. Outcome variables were summarized for all eyes and age groups, and mean values among age groups were compared using one-way analysis of variance. Stepwise regression analysis was used to investigate demographic and ocular characteristic factors that affected each iris-related parameter. Mean (±SD) values were 2.24 mm (±0.46), 4.06 mm (±0.27), 3.65 mm (±0.48), 4.16 mm (±0.47), 1.14 (±0.04), 1.51 mm2 (±0.23), and 38.42 μL (±4.91) for pupillary radius, RICe, SSL-to-PM, AISL, ICR, iris cross-sectional area, and iris volume, respectively. Both pupillary radius (P = 0.002) and RICe (P = 0.027) decreased with age, while SSL-to-PM (P = 0.002) and AISL increased with age (P = 0.001). ICR (P = 0.54) and iris volume (P = 0.49) were not affected by age. This study establishes reference values for iris-related parameters in an adult open angle population, which will be useful for future studies examining the role of iris changes in pathologic states.
Kamson, David O.; Juhász, Csaba; Shin, Joseph; Behen, Michael E.; Guy, William C.; Chugani, Harry T.; Jeong, Jeong-Won
2014-01-01
Background Reorganization of the corticospinal tract (CST) after early damage can limit motor deficit. In this study, we explored patterns of structural CST reorganization in children with Sturge-Weber syndrome. Methods Five children (age 1.5-7 years) with motor deficit due to unilateral Sturge-Weber syndrome were studied prospectively and longitudinally (1-2 years follow-up). CST segments belonging to hand and leg movements were separated, and their volume was measured by diffusion tensor imaging (DTI) tractography using a recently validated method. CST segmental volumes were normalized and compared between the SWS children and age-matched healthy controls. Volume changes during follow-up were also compared to clinical motor symptoms. Results In the SWS children, hand-related (but not leg-related) CST volumes were consistently decreased in the affected cerebral hemisphere at baseline. At follow-up, two distinct patterns of hand CST volume changes emerged: (i) Two children with extensive frontal lobe damage showed a CST volume decrease in the lesional hemisphere and a concomitant increase in the non-lesional (contralateral) hemisphere. These children developed good hand grasp but no fine motor skills. (ii) The three other children, with relative sparing of the frontal lobe, showed an interval increase of the normalized hand CST volume in the affected hemisphere; these children showed no gross motor deficit at follow-up. Conclusions DTI tractography can detect differential abnormalities in the hand CST segment both ipsi- and contralateral to the lesion. Interval increase in the CST hand segment suggests structural reorganization, whose pattern may determine clinical motor outcome and could guide strategies for early motor intervention. PMID:24507695
Kamson, David O; Juhász, Csaba; Shin, Joseph; Behen, Michael E; Guy, William C; Chugani, Harry T; Jeong, Jeong-Won
2014-04-01
Reorganization of the corticospinal tract after early damage can limit motor deficit. In this study, we explored patterns of structural corticospinal tract reorganization in children with Sturge-Weber syndrome. Five children (age 1.5-7 years) with motor deficit resulting from unilateral Sturge-Weber syndrome were studied prospectively and longitudinally (1-2 years follow-up). Corticospinal tract segments belonging to hand and leg movements were separated and their volume was measured by diffusion tensor imaging tractography using a recently validated method. Corticospinal tract segmental volumes were normalized and compared between the Sturge-Weber syndrome children and age-matched healthy controls. Volume changes during follow-up were also compared with clinical motor symptoms. In the Sturge-Weber syndrome children, hand-related (but not leg-related) corticospinal tract volumes were consistently decreased in the affected cerebral hemisphere at baseline. At follow-up, two distinct patterns of hand corticospinal tract volume changes emerged. (1) Two children with extensive frontal lobe damage showed a corticospinal tract volume decrease in the lesional hemisphere and a concomitant increase in the nonlesional (contralateral) hemisphere. These children developed good hand grasp but no fine motor skills. (2) The three other children, with relative sparing of the frontal lobe, showed an interval increase of the normalized hand corticospinal tract volume in the affected hemisphere; these children showed no gross motor deficit at follow-up. Diffusion tensor imaging tractography can detect differential abnormalities in the hand corticospinal tract segment both ipsi- and contralateral to the lesion. Interval increase in the corticospinal tract hand segment suggests structural reorganization, whose pattern may determine clinical motor outcome and could guide strategies for early motor intervention. Copyright © 2014 Elsevier Inc. All rights reserved.
Quantitative Neuroimaging Software for Clinical Assessment of Hippocampal Volumes on MR Imaging
Ahdidan, Jamila; Raji, Cyrus A.; DeYoe, Edgar A.; Mathis, Jedidiah; Noe, Karsten Ø.; Rimestad, Jens; Kjeldsen, Thomas K.; Mosegaard, Jesper; Becker, James T.; Lopez, Oscar
2015-01-01
Background: Multiple neurological disorders including Alzheimer’s disease (AD), mesial temporal sclerosis, and mild traumatic brain injury manifest with volume loss on brain MRI. Subtle volume loss is particularly seen early in AD. While prior research has demonstrated the value of this additional information from quantitative neuroimaging, very few applications have been approved for clinical use. Here we describe a US FDA cleared software program, NeuroreaderTM, for assessment of clinical hippocampal volume on brain MRI. Objective: To present the validation of hippocampal volumetrics on a clinical software program. Method: Subjects were drawn (n = 99) from the Alzheimer Disease Neuroimaging Initiative study. Volumetric brain MR imaging was acquired in both 1.5 T (n = 59) and 3.0 T (n = 40) scanners in participants with manual hippocampal segmentation. Fully automated hippocampal segmentation and measurement was done using a multiple atlas approach. The Dice Similarity Coefficient (DSC) measured the level of spatial overlap between NeuroreaderTM and gold standard manual segmentation from 0 to 1 with 0 denoting no overlap and 1 representing complete agreement. DSC comparisons between 1.5 T and 3.0 T scanners were done using standard independent samples T-tests. Results: In the bilateral hippocampus, mean DSC was 0.87 with a range of 0.78–0.91 (right hippocampus) and 0.76–0.91 (left hippocampus). Automated segmentation agreement with manual segmentation was essentially equivalent at 1.5 T (DSC = 0.879) versus 3.0 T (DSC = 0.872). Conclusion: This work provides a description and validation of a software program that can be applied in measuring hippocampal volume, a biomarker that is frequently abnormal in AD and other neurological disorders. PMID:26484924
Ahlers, C; Simader, C; Geitzenauer, W; Stock, G; Stetson, P; Dastmalchi, S; Schmidt-Erfurth, U
2008-02-01
A limited number of scans compromise conventional optical coherence tomography (OCT) to track chorioretinal disease in its full extension. Failures in edge-detection algorithms falsify the results of retinal mapping even further. High-definition-OCT (HD-OCT) is based on raster scanning and was used to visualise the localisation and volume of intra- and sub-pigment-epithelial (RPE) changes in fibrovascular pigment epithelial detachments (fPED). Two different scanning patterns were evaluated. 22 eyes with fPED were imaged using a frequency-domain, high-speed prototype of the Cirrus HD-OCT. The axial resolution was 6 mum, and the scanning speed was 25 kA scans/s. Two different scanning patterns covering an area of 6 x 6 mm in the macular retina were compared. Three-dimensional topographic reconstructions and volume calculations were performed using MATLAB-based automatic segmentation software. Detailed information about layer-specific distribution of fluid accumulation and volumetric measurements can be obtained for retinal- and sub-RPE volumes. Both raster scans show a high correlation (p<0.01; R2>0.89) of measured values, that is PED volume/area, retinal volume and mean retinal thickness. Quality control of the automatic segmentation revealed reasonable results in over 90% of the examinations. Automatic segmentation allows for detailed quantitative and topographic analysis of the RPE and the overlying retina. In fPED, the 128 x 512 scanning-pattern shows mild advantages when compared with the 256 x 256 scan. Together with the ability for automatic segmentation, HD-OCT clearly improves the clinical monitoring of chorioretinal disease by adding relevant new parameters. HD-OCT is likely capable of enhancing the understanding of pathophysiology and benefits of treatment for current anti-CNV strategies in future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R.; Salmanpour, Aryan
Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., themore » first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.« less
Keller, Simon S; O'Muircheartaigh, Jonathan; Traynor, Catherine; Towgood, Karren; Barker, Gareth J; Richardson, Mark P
2014-02-01
Thalamic abnormality in temporal lobe epilepsy (TLE) is well known from imaging studies, but evidence is lacking regarding connectivity profiles of the thalamus and their involvement in the disease process. We used a novel multisequence magnetic resonance imaging (MRI) protocol to elucidate the relationship between mesial temporal and thalamic pathology in TLE. For 23 patients with TLE and 23 healthy controls, we performed T1 -weighted (for analysis of tissue structure), diffusion tensor imaging (tissue connectivity), and T1 and T2 relaxation (tissue integrity) MRI across the whole brain. We used connectivity-based segmentation to determine connectivity patterns of thalamus to ipsilateral cortical regions (occipital, parietal, prefrontal, postcentral, precentral, and temporal). We subsequently determined volumes, mean tractography streamlines, and mean T1 and T2 relaxometry values for each thalamic segment preferentially connecting to a given cortical region, and of the hippocampus and entorhinal cortex. As expected, patients had significant volume reduction and increased T2 relaxation time in ipsilateral hippocampus and entorhinal cortex. There was bilateral volume loss, mean streamline reduction, and T2 increase of the thalamic segment preferentially connected to temporal lobe, corresponding to anterior, dorsomedial, and pulvinar thalamic regions, with no evidence of significant change in any other thalamic segments. Left and right thalamotemporal segment volume and T2 were significantly correlated with volume and T2 of ipsilateral (epileptogenic), but not contralateral (nonepileptogenic), mesial temporal structures. These convergent and robust data indicate that thalamic abnormality in TLE is restricted to the area of the thalamus that is preferentially connected to the epileptogenic temporal lobe. The degree of thalamic pathology is related to the extent of mesial temporal lobe damage in TLE. © 2014 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R.; Salmanpour, Aryan
2013-12-15
Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., themore » first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.« less
Segmental Interactions between Polymers and Small Molecules in Batteries and Biofuel Purification
NASA Astrophysics Data System (ADS)
Balsara, Nitash
2015-03-01
Polymers such as poly(ethylene oxide) (PEO) and poly(dimethyl siloxane) (PDMS) have the potential to play an important role in the emerging clean energy landscape. Mixtures of PEO and lithium salts are the most widely studied non-flammable electrolyte for rechargeable lithium batteries. PDMS membranes are ideally suited for purifying bioethanol and biobutanol from fermentation broths. The ability of PEO and PDMS to function in these applications depends on segmental interactions between the polymeric host and small molecule guests. One experimental approach for studying these interactions is X-ray absorption spectroscopy (XAS). Models for interpreting XAS spectra of amorphous mixtures and charged species such as salts must quantify the effect of segmental interactions on the electronic structure of the atoms of interest (e.g. sulfur). This combination of experiment and theory is used to determine the species formed in during charging and discharging lithium-sulfur batteries; the theoretical specific energy of lithium-sulfur batteries is a factor of four larger than that of current lithium-ion batteries. Selective transport of alcohols in PDMS-containing membranes is controlled by the size, shape, and connectivity of sub-nanometer cavities or free volume that form and disappear spontaneously as the chain segments undergo Brownian motion. We demonstrate that self-assembly of PDMS-containing block copolymers can be used to control segmental relaxation, which, in turn, affects free volume. Positron annihilation was used to determine the size distribution of free volume cavities in the PDMS-containing block copolymers. The effect of this artificial free volume on selective permeation of alcohols formed by fermentation of sugars derived from lignocellulosic biomass is studied. Molecular dynamics simulations are needed to understand the relationship between self-assembly, free volume, and transport in block copolymers.
Miri, Mohammad Saleh; Abràmoff, Michael D; Kwon, Young H; Sonka, Milan; Garvin, Mona K
2017-07-01
Bruch's membrane opening-minimum rim width (BMO-MRW) is a recently proposed structural parameter which estimates the remaining nerve fiber bundles in the retina and is superior to other conventional structural parameters for diagnosing glaucoma. Measuring this structural parameter requires identification of BMO locations within spectral domain-optical coherence tomography (SD-OCT) volumes. While most automated approaches for segmentation of the BMO either segment the 2D projection of BMO points or identify BMO points in individual B-scans, in this work, we propose a machine-learning graph-based approach for true 3D segmentation of BMO from glaucomatous SD-OCT volumes. The problem is formulated as an optimization problem for finding a 3D path within the SD-OCT volume. In particular, the SD-OCT volumes are transferred to the radial domain where the closed loop BMO points in the original volume form a path within the radial volume. The estimated location of BMO points in 3D are identified by finding the projected location of BMO points using a graph-theoretic approach and mapping the projected locations onto the Bruch's membrane (BM) surface. Dynamic programming is employed in order to find the 3D BMO locations as the minimum-cost path within the volume. In order to compute the cost function needed for finding the minimum-cost path, a random forest classifier is utilized to learn a BMO model, obtained by extracting intensity features from the volumes in the training set, and computing the required 3D cost function. The proposed method is tested on 44 glaucoma patients and evaluated using manual delineations. Results show that the proposed method successfully identifies the 3D BMO locations and has significantly smaller errors compared to the existing 3D BMO identification approaches. Published by Elsevier B.V.
Patterns of care for clinically distinct segments of high cost Medicare beneficiaries.
Clough, Jeffrey D; Riley, Gerald F; Cohen, Melissa; Hanley, Sheila M; Sanghavi, Darshak; DeWalt, Darren A; Rajkumar, Rahul; Conway, Patrick H
2016-09-01
Efforts to improve the efficiency of care for the Medicare population commonly target high cost beneficiaries. We describe and evaluate a novel management approach, population segmentation, for identifying and managing high cost beneficiaries. A retrospective cross-sectional analysis of 6,919,439 Medicare fee-for-service beneficiaries in 2012. We defined and characterized eight distinct clinical population segments, and assessed heterogeneity in managing practitioners. The eight segments comprised 9.8% of the population and 47.6% of annual Medicare payments. The eight segments included 61% and 69% of the population in the top decile and top 5% of annual Medicare payments. The positive-predictive values within each segment for meeting thresholds of Medicare payments ranged from 72% to 100%, 30% to 83%, and 14% to 56% for the upper quartile, upper decile, and upper 5% of Medicare payments respectively. Sensitivity and positive-predictive values were substantially improved over predictive algorithms based on historical utilization patterns and comorbidities. The mean [95% confidence interval] number of unique practitioners and practices delivering E&M services ranged from 1.82 [1.79-1.84] to 6.94 [6.91-6.98] and 1.48 [1.46-1.50] to 4.98 [4.95-5.00] respectively. The percentage of cognitive services delivered by primary care practitioners ranged from 23.8% to 67.9% across segments, with significant variability among specialty types. Most high cost Medicare beneficiaries can be identified based on a single clinical reason and are managed by different practitioners. Population segmentation holds potential to improve efficiency in the Medicare population by identifying opportunities to improve care for specific populations and managing clinicians, and forecasting and evaluating the impact of specific interventions. Copyright © 2015 Elsevier Inc. All rights reserved.
A new fractional order derivative based active contour model for colon wall segmentation
NASA Astrophysics Data System (ADS)
Chen, Bo; Li, Lihong C.; Wang, Huafeng; Wei, Xinzhou; Huang, Shan; Chen, Wensheng; Liang, Zhengrong
2018-02-01
Segmentation of colon wall plays an important role in advancing computed tomographic colonography (CTC) toward a screening modality. Due to the low contrast of CT attenuation around colon wall, accurate segmentation of the boundary of both inner and outer wall is very challenging. In this paper, based on the geodesic active contour model, we develop a new model for colon wall segmentation. First, tagged materials in CTC images were automatically removed via a partial volume (PV) based electronic colon cleansing (ECC) strategy. We then present a new fractional order derivative based active contour model to segment the volumetric colon wall from the cleansed CTC images. In this model, the regionbased Chan-Vese model is incorporated as an energy term to the whole model so that not only edge/gradient information but also region/volume information is taken into account in the segmentation process. Furthermore, a fractional order differentiation derivative energy term is also developed in the new model to preserve the low frequency information and improve the noise immunity of the new segmentation model. The proposed colon wall segmentation approach was validated on 16 patient CTC scans. Experimental results indicate that the present scheme is very promising towards automatically segmenting colon wall, thus facilitating computer aided detection of initial colonic polyp candidates via CTC.
NASA Technical Reports Server (NTRS)
Czabaj, M. W.; Riccio, M. L.; Whitacre, W. W.
2014-01-01
A combined experimental and computational study aimed at high-resolution 3D imaging, visualization, and numerical reconstruction of fiber-reinforced polymer microstructures at the fiber length scale is presented. To this end, a sample of graphite/epoxy composite was imaged at sub-micron resolution using a 3D X-ray computed tomography microscope. Next, a novel segmentation algorithm was developed, based on concepts adopted from computer vision and multi-target tracking, to detect and estimate, with high accuracy, the position of individual fibers in a volume of the imaged composite. In the current implementation, the segmentation algorithm was based on Global Nearest Neighbor data-association architecture, a Kalman filter estimator, and several novel algorithms for virtualfiber stitching, smoothing, and overlap removal. The segmentation algorithm was used on a sub-volume of the imaged composite, detecting 508 individual fibers. The segmentation data were qualitatively compared to the tomographic data, demonstrating high accuracy of the numerical reconstruction. Moreover, the data were used to quantify a) the relative distribution of individual-fiber cross sections within the imaged sub-volume, and b) the local fiber misorientation relative to the global fiber axis. Finally, the segmentation data were converted using commercially available finite element (FE) software to generate a detailed FE mesh of the composite volume. The methodology described herein demonstrates the feasibility of realizing an FE-based, virtual-testing framework for graphite/fiber composites at the constituent level.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-22
... Population Segments of the Bearded Seal AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... Segments (DPSs) of the bearded seal (Erignathus barbatus) as threatened under the Endangered Species Act of... Segments (DPSs) of the bearded seal as threatened under the ESA. Based on the status of these DPSs, we also...
Wu, Xiaofan; Maehara, Akiko; He, Yong; Xu, Kai; Oviedo, Carlos; Witzenbichler, Bernhard; Lansky, Alexandra J; Dressler, Ovidiu; Parise, Helen; Stone, Gregg W; Mintz, Gary S
2013-08-01
Vessel expansion and axial plaque redistribution or distal plaque embolization contribute to the increase in lumen dimensions after stent implantation. Preintervention and postintervention grayscale volumetric intravascular ultrasound was used to study 43 de novo native coronary lesions treated with TAXUS or Express bare metal stents in the HORIZONS-AMI Trial. There was a decrease in lesion segment plaque + media (P + M) volume (-19.5 ± 22.2 mm(3) ) that was associated with a decrease in overall analysis segment (lesion plus 5 mm long proximal and distal reference segments) P + M volume (-17.5 ± 21.0 mm(3) ) that was greater than the shift of plaque from the lesion to the proximal and distal reference segments (1.9 ± 4.5 mm(3) , P < 0.0001). Overall analysis segment P + M volume decreased more in the angiographic thrombus (+) versus the thrombus (-) group (27.4 ± 23.4 vs. -8.9 ± 14.3 mm(3) , P = 0.003), whereas plaque shift to the reference segments showed no significant difference between the two groups (1.5 ± 5.2 vs. 2.3 ± 3.9 mm(3) , P = 0.590). Compared with the angiographic thrombus (-) group, patients in the thrombus (+) group more often developed no reflow (25% vs. 0%, P = 0.012) and had a higher preintervention CK-MB (P = 0.011), postintervention CK-MB (P < 0.001), and periprocedural (post-PCI minus pre-PCI) elevation of CK-MB (P = 0.001). In acute myocardial infarction lesions, there was a marked poststenting reduction in overall plaque volume that was significantly greater in patients with angiographic thrombus than without thrombus and may have explained a greater periprocedural rise in CK-MB. © 2013 Wiley Periodicals, Inc.
The error analysis of Lobular and segmental division of right liver by volume measurement.
Zhang, Jianfei; Lin, Weigang; Chi, Yanyan; Zheng, Nan; Xu, Qiang; Zhang, Guowei; Yu, Shengbo; Li, Chan; Wang, Bin; Sui, Hongjin
2017-07-01
The aim of this study is to explore the inconsistencies between right liver volume as measured by imaging and the actual anatomical appearance of the right lobe. Five healthy donated livers were studied. The liver slices were obtained with hepatic segments multicolor-infused through the portal vein. In the slices, the lobes were divided by two methods: radiological landmarks and real anatomical boundaries. The areas of the right anterior lobe (RAL) and right posterior lobe (RPL) on each slice were measured using Photoshop CS5 and AutoCAD, and the volumes of the two lobes were calculated. There was no statistically significant difference between the volumes of the RAL or RPL as measured by the radiological landmarks (RL) and anatomical boundaries (AB) methods. However, the curves of the square error value of the RAL and RPL measured using CT showed that the three lowest points were at the cranial, intermediate, and caudal levels. The U- or V-shaped curves of the square error rate of the RAL and RPL revealed that the lowest value is at the intermediate level and the highest at the cranial and caudal levels. On CT images, less accurate landmarks were used to divide the RAL and RPL at the cranial and caudal layers. The measured volumes of hepatic segments VIII and VI would be less than their true values, and the measured volumes of hepatic segments VII and V would be greater than their true values, according to radiological landmarks. Clin. Anat. 30:585-590, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Wan, Yong; Otsuna, Hideo; Holman, Holly A; Bagley, Brig; Ito, Masayoshi; Lewis, A Kelsey; Colasanto, Mary; Kardon, Gabrielle; Ito, Kei; Hansen, Charles
2017-05-26
Image segmentation and registration techniques have enabled biologists to place large amounts of volume data from fluorescence microscopy, morphed three-dimensionally, onto a common spatial frame. Existing tools built on volume visualization pipelines for single channel or red-green-blue (RGB) channels have become inadequate for the new challenges of fluorescence microscopy. For a three-dimensional atlas of the insect nervous system, hundreds of volume channels are rendered simultaneously, whereas fluorescence intensity values from each channel need to be preserved for versatile adjustment and analysis. Although several existing tools have incorporated support of multichannel data using various strategies, the lack of a flexible design has made true many-channel visualization and analysis unavailable. The most common practice for many-channel volume data presentation is still converting and rendering pseudosurfaces, which are inaccurate for both qualitative and quantitative evaluations. Here, we present an alternative design strategy that accommodates the visualization and analysis of about 100 volume channels, each of which can be interactively adjusted, selected, and segmented using freehand tools. Our multichannel visualization includes a multilevel streaming pipeline plus a triple-buffer compositing technique. Our method also preserves original fluorescence intensity values on graphics hardware, a crucial feature that allows graphics-processing-unit (GPU)-based processing for interactive data analysis, such as freehand segmentation. We have implemented the design strategies as a thorough restructuring of our original tool, FluoRender. The redesign of FluoRender not only maintains the existing multichannel capabilities for a greatly extended number of volume channels, but also enables new analysis functions for many-channel data from emerging biomedical-imaging techniques.
CT liver volumetry using geodesic active contour segmentation with a level-set algorithm
NASA Astrophysics Data System (ADS)
Suzuki, Kenji; Epstein, Mark L.; Kohlbrenner, Ryan; Obajuluwa, Ademola; Xu, Jianwu; Hori, Masatoshi; Baron, Richard
2010-03-01
Automatic liver segmentation on CT images is challenging because the liver often abuts other organs of a similar density. Our purpose was to develop an accurate automated liver segmentation scheme for measuring liver volumes. We developed an automated volumetry scheme for the liver in CT based on a 5 step schema. First, an anisotropic smoothing filter was applied to portal-venous phase CT images to remove noise while preserving the liver structure, followed by an edge enhancer to enhance the liver boundary. By using the boundary-enhanced image as a speed function, a fastmarching algorithm generated an initial surface that roughly estimated the liver shape. A geodesic-active-contour segmentation algorithm coupled with level-set contour-evolution refined the initial surface so as to more precisely fit the liver boundary. The liver volume was calculated based on the refined liver surface. Hepatic CT scans of eighteen prospective liver donors were obtained under a liver transplant protocol with a multi-detector CT system. Automated liver volumes obtained were compared with those manually traced by a radiologist, used as "gold standard." The mean liver volume obtained with our scheme was 1,520 cc, whereas the mean manual volume was 1,486 cc, with the mean absolute difference of 104 cc (7.0%). CT liver volumetrics based on an automated scheme agreed excellently with "goldstandard" manual volumetrics (intra-class correlation coefficient was 0.95) with no statistically significant difference (p(F<=f)=0.32), and required substantially less completion time. Our automated scheme provides an efficient and accurate way of measuring liver volumes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, J; Vuong, T; Tomic, N
2016-06-15
Purpose: The goal of this study is to test the possible use of the analytical decomposition of differential uptake volume histograms (dUVHs) obtained from FDG-PET/CT data to isolate sub-volumes within a tumor known as biological target volumes (BTVs). Methods: : A retrospective study was conducted on a cohort of 20 histo-pathologically confirmed rectal adenocarcinoma patients having PET/CT scans for staging. All patients (T3N0) underwent pre-operative endorectal brachytherapy. After surgery, patients were restaged: 10 patients were T0N0 and 10 were restaged as remaining T3N0. The extent of the disease was sampled in order to create dUVHs; subsequently decomposed into the fewestmore » number of analytical Gaussian functions. Results: With the assumption that each function fit corresponded to a single sub-volume within the tumor, six sub-volumes were found to consistently emerge. The first two sub-volumes were influenced by contouring and were not considered in the analysis. For the T3N0 population, abundances for volumes V3-V6 were 63.6%±11.3%, 25.7%±8.4%, 6.1%±4.9%, and 4.7%±2.6%. For the T0N0 population, they were 50.2%±6.8%, 33.4%±4.3%, 11.8%±7.6%, and 4.7%±2.4%. The two populations were compared using two tailed T-tests: volumes 3 and 4 were statistically different with p values of 0.021 and 0.056 respectively. V6 was located at 8.63 ± 2.2 for T0N0 and 6.14 ± 0.78 for T3N0 group (p=0.016). Conclusion: We described a method for dUVH decomposition using FDG-PET images of rectal adenocarcinoma patients that subsequently went for pre-operative brachytherapy. In addition to extracting different sub-volumes corresponding to different FDG uptake levels, we observed different abundances of two sub-volumes as well as positions of the maximum uptake between the two patient groups. In addition to opening the door to further investigation into underlying physiological phenotypes of segmented subvolumes and their use for biological radiotherapy treatment planning, this method may also provide parameters that could correlate to clinical outcomes in radiotherapy patients.« less
Tracking fuzzy borders using geodesic curves with application to liver segmentation on planning CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Yading, E-mail: yading.yuan@mssm.edu; Chao, Ming; Sheu, Ren-Dih
Purpose: This work aims to develop a robust and efficient method to track the fuzzy borders between liver and the abutted organs where automatic liver segmentation usually suffers, and to investigate its applications in automatic liver segmentation on noncontrast-enhanced planning computed tomography (CT) images. Methods: In order to track the fuzzy liver–chestwall and liver–heart borders where oversegmentation is often found, a starting point and an ending point were first identified on the coronal view images; the fuzzy border was then determined as a geodesic curve constructed by minimizing the gradient-weighted path length between these two points near the fuzzy border.more » The minimization of path length was numerically solved by fast-marching method. The resultant fuzzy borders were incorporated into the authors’ automatic segmentation scheme, in which the liver was initially estimated by a patient-specific adaptive thresholding and then refined by a geodesic active contour model. By using planning CT images of 15 liver patients treated with stereotactic body radiation therapy, the liver contours extracted by the proposed computerized scheme were compared with those manually delineated by a radiation oncologist. Results: The proposed automatic liver segmentation method yielded an average Dice similarity coefficient of 0.930 ± 0.015, whereas it was 0.912 ± 0.020 if the fuzzy border tracking was not used. The application of fuzzy border tracking was found to significantly improve the segmentation performance. The mean liver volume obtained by the proposed method was 1727 cm{sup 3}, whereas it was 1719 cm{sup 3} for manual-outlined volumes. The computer-generated liver volumes achieved excellent agreement with manual-outlined volumes with correlation coefficient of 0.98. Conclusions: The proposed method was shown to provide accurate segmentation for liver in the planning CT images where contrast agent is not applied. The authors’ results also clearly demonstrated that the application of tracking the fuzzy borders could significantly reduce contour leakage during active contour evolution.« less
Interactive Medical Volume Visualization for Surgical Operations
2001-10-25
the preprocessing and processing stages, related medical brain tissues, which are skull, white matter, gray matter and pathology ( tumor ), are segmented ...from 12 or 16 bit data depths. NMR segmentation plays an important role in our work, because, classifying brain tissues from NMR slices requires an...performing segmentation of brain structures. Our segmentation process uses Self Organizing Feature Maps (SOFM) [12]. In SOM, on the contrary to Feedback
Automatic segmentation of the puborectalis muscle in 3D transperineal ultrasound.
van den Noort, Frieda; Grob, Anique T M; Slump, Cornelis H; van der Vaart, Carl H; van Stralen, Marijn
2017-10-11
The introduction of 3D analysis of the puborectalis muscle, for diagnostic purposes, into daily practice is hindered by the need for appropriate training of the observers. Automatic 3D segmentation of the puborectalis muscle in 3D transperineal ultrasound may aid to its adaption in clinical practice. A manual 3D segmentation protocol was developed to segment the puborectalis muscle. The data of 20 women, in their first trimester of pregnancy, was used to validate the reproducibility of this protocol. For automatic segmentation, active appearance models of the puborectalis muscle were developed. Those models were trained using manual segmentation data of 50 women. The performance of both manual and automatic segmentation was analyzed by measuring the overlap and distance between the segmentations. Also, the interclass correlation coefficients and their 95% confidence intervals were determined for mean echogenicity and volume of the puborectalis muscle. The ICC values of mean echogenicity (0.968-0.991) and volume (0.626-0.910) are good to very good for both automatic and manual segmentation. The results of overlap and distance for manual segmentation are as expected, showing only few pixels (2-3) mismatch on average and a reasonable overlap. Based on overlap and distance 5 mismatches in automatic segmentation were detected, resulting in an automatic segmentation a success rate of 90%. In conclusion, this study presents a reliable manual and automatic 3D segmentation of the puborectalis muscle. This will facilitate future investigation of the puborectalis muscle. It also allows for reliable measurements of clinically potentially valuable parameters like mean echogenicity. This article is protected by copyright. All rights reserved.
Pleural effusion segmentation in thin-slice CT
NASA Astrophysics Data System (ADS)
Donohue, Rory; Shearer, Andrew; Bruzzi, John; Khosa, Huma
2009-02-01
A pleural effusion is excess fluid that collects in the pleural cavity, the fluid-filled space that surrounds the lungs. Surplus amounts of such fluid can impair breathing by limiting the expansion of the lungs during inhalation. Measuring the fluid volume is indicative of the effectiveness of any treatment but, due to the similarity to surround regions, fragments of collapsed lung present and topological changes; accurate quantification of the effusion volume is a difficult imaging problem. A novel code is presented which performs conditional region growth to accurately segment the effusion shape across a dataset. We demonstrate the applicability of our technique in the segmentation of pleural effusion and pulmonary masses.
Development of automatic visceral fat volume calculation software for CT volume data.
Nemoto, Mitsutaka; Yeernuer, Tusufuhan; Masutani, Yoshitaka; Nomura, Yukihiro; Hanaoka, Shouhei; Miki, Soichiro; Yoshikawa, Takeharu; Hayashi, Naoto; Ohtomo, Kuni
2014-01-01
To develop automatic visceral fat volume calculation software for computed tomography (CT) volume data and to evaluate its feasibility. A total of 24 sets of whole-body CT volume data and anthropometric measurements were obtained, with three sets for each of four BMI categories (under 20, 20 to 25, 25 to 30, and over 30) in both sexes. True visceral fat volumes were defined on the basis of manual segmentation of the whole-body CT volume data by an experienced radiologist. Software to automatically calculate visceral fat volumes was developed using a region segmentation technique based on morphological analysis with CT value threshold. Automatically calculated visceral fat volumes were evaluated in terms of the correlation coefficient with the true volumes and the error relative to the true volume. Automatic visceral fat volume calculation results of all 24 data sets were obtained successfully and the average calculation time was 252.7 seconds/case. The correlation coefficients between the true visceral fat volume and the automatically calculated visceral fat volume were over 0.999. The newly developed software is feasible for calculating visceral fat volumes in a reasonable time and was proved to have high accuracy.
Multicenter reliability of semiautomatic retinal layer segmentation using OCT
Oberwahrenbrock, Timm; Traber, Ghislaine L.; Lukas, Sebastian; Gabilondo, Iñigo; Nolan, Rachel; Songster, Christopher; Balk, Lisanne; Petzold, Axel; Paul, Friedemann; Villoslada, Pablo; Brandt, Alexander U.; Green, Ari J.
2018-01-01
Objective To evaluate the inter-rater reliability of semiautomated segmentation of spectral domain optical coherence tomography (OCT) macular volume scans. Methods Macular OCT volume scans of left eyes from 17 subjects (8 patients with MS and 9 healthy controls) were automatically segmented by Heidelberg Eye Explorer (v1.9.3.0) beta-software (Spectralis Viewing Module v6.0.0.7), followed by manual correction by 5 experienced operators from 5 different academic centers. The mean thicknesses within a 6-mm area around the fovea were computed for the retinal nerve fiber layer, ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer, outer plexiform layer (OPL), and outer nuclear layer (ONL). Intraclass correlation coefficients (ICCs) were calculated for mean layer thickness values. Spatial distribution of ICC values for the segmented volume scans was investigated using heat maps. Results Agreement between raters was good (ICC > 0.84) for all retinal layers, particularly inner retinal layers showed excellent agreement across raters (ICC > 0.96). Spatial distribution of ICC showed highest values in the perimacular area, whereas the ICCs were poorer for the foveola and the more peripheral macular area. The automated segmentation of the OPL and ONL required the most correction and showed the least agreement, whereas differences were less prominent for the remaining layers. Conclusions Automated segmentation with manual correction of macular OCT scans is highly reliable when performed by experienced raters and can thus be applied in multicenter settings. Reliability can be improved by restricting analysis to the perimacular area and compound segmentation of GCL and IPL. PMID:29552598
Self-assessed performance improves statistical fusion of image labels
Bryan, Frederick W.; Xu, Zhoubing; Asman, Andrew J.; Allen, Wade M.; Reich, Daniel S.; Landman, Bennett A.
2014-01-01
Purpose: Expert manual labeling is the gold standard for image segmentation, but this process is difficult, time-consuming, and prone to inter-individual differences. While fully automated methods have successfully targeted many anatomies, automated methods have not yet been developed for numerous essential structures (e.g., the internal structure of the spinal cord as seen on magnetic resonance imaging). Collaborative labeling is a new paradigm that offers a robust alternative that may realize both the throughput of automation and the guidance of experts. Yet, distributing manual labeling expertise across individuals and sites introduces potential human factors concerns (e.g., training, software usability) and statistical considerations (e.g., fusion of information, assessment of confidence, bias) that must be further explored. During the labeling process, it is simple to ask raters to self-assess the confidence of their labels, but this is rarely done and has not been previously quantitatively studied. Herein, the authors explore the utility of self-assessment in relation to automated assessment of rater performance in the context of statistical fusion. Methods: The authors conducted a study of 66 volumes manually labeled by 75 minimally trained human raters recruited from the university undergraduate population. Raters were given 15 min of training during which they were shown examples of correct segmentation, and the online segmentation tool was demonstrated. The volumes were labeled 2D slice-wise, and the slices were unordered. A self-assessed quality metric was produced by raters for each slice by marking a confidence bar superimposed on the slice. Volumes produced by both voting and statistical fusion algorithms were compared against a set of expert segmentations of the same volumes. Results: Labels for 8825 distinct slices were obtained. Simple majority voting resulted in statistically poorer performance than voting weighted by self-assessed performance. Statistical fusion resulted in statistically indistinguishable performance from self-assessed weighted voting. The authors developed a new theoretical basis for using self-assessed performance in the framework of statistical fusion and demonstrated that the combined sources of information (both statistical assessment and self-assessment) yielded statistically significant improvement over the methods considered separately. Conclusions: The authors present the first systematic characterization of self-assessed performance in manual labeling. The authors demonstrate that self-assessment and statistical fusion yield similar, but complementary, benefits for label fusion. Finally, the authors present a new theoretical basis for combining self-assessments with statistical label fusion. PMID:24593721
Oghli, Mostafa Ghelich; Dehlaghi, Vahab; Zadeh, Ali Mohammad; Fallahi, Alireza; Pooyan, Mohammad
2014-07-01
Assessment of cardiac right-ventricle functions plays an essential role in diagnosis of arrhythmogenic right ventricular dysplasia (ARVD). Among clinical tests, cardiac magnetic resonance imaging (MRI) is now becoming the most valid imaging technique to diagnose ARVD. Fatty infiltration of the right ventricular free wall can be visible on cardiac MRI. Finding right-ventricle functional parameters from cardiac MRI images contains segmentation of right-ventricle in each slice of end diastole and end systole phases of cardiac cycle and calculation of end diastolic and end systolic volume and furthermore other functional parameters. The main problem of this task is the segmentation part. We used a robust method based on deformable model that uses shape information for segmentation of right-ventricle in short axis MRI images. After segmentation of right-ventricle from base to apex in end diastole and end systole phases of cardiac cycle, volume of right-ventricle in these phases calculated and then, ejection fraction calculated. We performed a quantitative evaluation of clinical cardiac parameters derived from the automatic segmentation by comparison against a manual delineation of the ventricles. The manually and automatically determined quantitative clinical parameters were statistically compared by means of linear regression. This fits a line to the data such that the root-mean-square error (RMSE) of the residuals is minimized. The results show low RMSE for Right Ventricle Ejection Fraction and Volume (≤ 0.06 for RV EF, and ≤ 10 mL for RV volume). Evaluation of segmentation results is also done by means of four statistical measures including sensitivity, specificity, similarity index and Jaccard index. The average value of similarity index is 86.87%. The Jaccard index mean value is 83.85% which shows a good accuracy of segmentation. The average of sensitivity is 93.9% and mean value of the specificity is 89.45%. These results show the reliability of proposed method in these cases that manual segmentation is inapplicable. Huge shape variety of right-ventricle led us to use a shape prior based method and this work can develop by four-dimensional processing for determining the first ventricular slices.
A simulation study of factors controlling white sturgeon recruitment in the Snake River
Jager, H.I.; Van Winkle, W.; Chandler, James Angus; Lepla, K.B.; Bates, P.; Counihan, T.D.
2002-01-01
Five of the nine populations of white sturgeon Acipenser transmontanus, located between dams on the Middle Snake River, have declined from historical levels and are now at risk of extinction. One step towards more effectively protecting and managing these nine populations is ranking factors that influence recruitment in each of these river segments. We developed a model to suggest which of seven mechanistic factors contribute most to lost recruitment in each river segment: (1) temperature-related mortality during incubation, (2) flow-related mortality during incubation, (3) downstream export of larvae, (4) limitation of juvenile and adult habitat, (5) mortality of all ages during summer episodes of poor water quality in reservoirs, (6) entrainment mortality of juveniles and adults, and (7) angling mortality. We simulated recruitment with, and without, each of the seven factors, over a typical series of hydrologic years. We found a hierarchical pattern of limitation. In the first tier, river segments with severe water quality problems grouped together. Poor water quality during summer had a strong negative effect on recruitment in the river segments between Swan Falls Dam and Hell's Canyon Dam. In the second tier, river segments with better water quality divided into short river segments and longer river segments. Populations in short river segments were limited by larval export. Populations in longer river segments tended to be less strongly limited by any one factor. We also found that downstream effects could be important, suggesting that linked populations cannot be viewed in isolation. In two cases, the effects of a factor on an upstream population had a significant influence on its downstream neighbors. ?? 2002 by the American Fisheries Society.
20 CFR 668.650 - Can INA grantees exclude segments of the eligible population?
Code of Federal Regulations, 2014 CFR
2014-04-01
... eligible population? 668.650 Section 668.650 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION... eligible population? (a) No, INA grantees cannot exclude segments of the eligible population. INA grantees... population within the service area for which the grantee was designated an equitable opportunity to receive...
20 CFR 668.650 - Can INA grantees exclude segments of the eligible population?
Code of Federal Regulations, 2012 CFR
2012-04-01
... eligible population? 668.650 Section 668.650 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION... eligible population? (a) No, INA grantees cannot exclude segments of the eligible population. INA grantees... population within the service area for which the grantee was designated an equitable opportunity to receive...
20 CFR 668.650 - Can INA grantees exclude segments of the eligible population?
Code of Federal Regulations, 2013 CFR
2013-04-01
... eligible population? 668.650 Section 668.650 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION... eligible population? (a) No, INA grantees cannot exclude segments of the eligible population. INA grantees... population within the service area for which the grantee was designated an equitable opportunity to receive...
Rundo, Leonardo; Stefano, Alessandro; Militello, Carmelo; Russo, Giorgio; Sabini, Maria Gabriella; D'Arrigo, Corrado; Marletta, Francesco; Ippolito, Massimo; Mauri, Giancarlo; Vitabile, Salvatore; Gilardi, Maria Carla
2017-06-01
Nowadays, clinical practice in Gamma Knife treatments is generally based on MRI anatomical information alone. However, the joint use of MRI and PET images can be useful for considering both anatomical and metabolic information about the lesion to be treated. In this paper we present a co-segmentation method to integrate the segmented Biological Target Volume (BTV), using [ 11 C]-Methionine-PET (MET-PET) images, and the segmented Gross Target Volume (GTV), on the respective co-registered MR images. The resulting volume gives enhanced brain tumor information to be used in stereotactic neuro-radiosurgery treatment planning. GTV often does not match entirely with BTV, which provides metabolic information about brain lesions. For this reason, PET imaging is valuable and it could be used to provide complementary information useful for treatment planning. In this way, BTV can be used to modify GTV, enhancing Clinical Target Volume (CTV) delineation. A novel fully automatic multimodal PET/MRI segmentation method for Leksell Gamma Knife ® treatments is proposed. This approach improves and combines two computer-assisted and operator-independent single modality methods, previously developed and validated, to segment BTV and GTV from PET and MR images, respectively. In addition, the GTV is utilized to combine the superior contrast of PET images with the higher spatial resolution of MRI, obtaining a new BTV, called BTV MRI . A total of 19 brain metastatic tumors, undergone stereotactic neuro-radiosurgery, were retrospectively analyzed. A framework for the evaluation of multimodal PET/MRI segmentation is also presented. Overlap-based and spatial distance-based metrics were considered to quantify similarity concerning PET and MRI segmentation approaches. Statistics was also included to measure correlation among the different segmentation processes. Since it is not possible to define a gold-standard CTV according to both MRI and PET images without treatment response assessment, the feasibility and the clinical value of BTV integration in Gamma Knife treatment planning were considered. Therefore, a qualitative evaluation was carried out by three experienced clinicians. The achieved experimental results showed that GTV and BTV segmentations are statistically correlated (Spearman's rank correlation coefficient: 0.898) but they have low similarity degree (average Dice Similarity Coefficient: 61.87 ± 14.64). Therefore, volume measurements as well as evaluation metrics values demonstrated that MRI and PET convey different but complementary imaging information. GTV and BTV could be combined to enhance treatment planning. In more than 50% of cases the CTV was strongly or moderately conditioned by metabolic imaging. Especially, BTV MRI enhanced the CTV more accurately than BTV in 25% of cases. The proposed fully automatic multimodal PET/MRI segmentation method is a valid operator-independent methodology helping the clinicians to define a CTV that includes both metabolic and morphologic information. BTV MRI and GTV should be considered for a comprehensive treatment planning. Copyright © 2017 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-10
... subspecies to which it belongs. A population segment of a vertebrate species may be considered discrete if it... mechanisms). If a population segment is found to be discrete under one or more of the above conditions, its... include, but is not limited to: (1) Persistence of the discrete population segment in an ecological...
Dolz, Jose; Betrouni, Nacim; Quidet, Mathilde; Kharroubi, Dris; Leroy, Henri A; Reyns, Nicolas; Massoptier, Laurent; Vermandel, Maximilien
2016-09-01
Delineation of organs at risk (OARs) is a crucial step in surgical and treatment planning in brain cancer, where precise OARs volume delineation is required. However, this task is still often manually performed, which is time-consuming and prone to observer variability. To tackle these issues a deep learning approach based on stacking denoising auto-encoders has been proposed to segment the brainstem on magnetic resonance images in brain cancer context. Additionally to classical features used in machine learning to segment brain structures, two new features are suggested. Four experts participated in this study by segmenting the brainstem on 9 patients who underwent radiosurgery. Analysis of variance on shape and volume similarity metrics indicated that there were significant differences (p<0.05) between the groups of manual annotations and automatic segmentations. Experimental evaluation also showed an overlapping higher than 90% with respect to the ground truth. These results are comparable, and often higher, to those of the state of the art segmentation methods but with a considerably reduction of the segmentation time. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarti, D.; Hendrix, P.E.; Wilkie, W.L.
1987-01-01
Maturing markets and the accompanying increase in competition, sophistication of customers, and differentiation of products and services have forced companies to focus their marketing efforts on segments in which they can prosper. The experience in these companies has revealed that market segmentation, although simple in concept, is not so easily implemented. It is reasonable to anticipate substantial benefits from additional market segmentation within each of the classes traditionally distinguished in the industry - residential, commercial, and industrial. Segmentation is also likely to prove useful for utilities facing quite different marketing environments, e.g., in terms of demand patterns (number of customers,more » winter- and summer-peaking, etc.), capacity, and degree of regulatory and competitive pressures. Within utilities, those charged with developing and implementing segmentation strategies face some difficult issues. The primary objective of this monograph is to provide some answers to these questions. This monograph is intended to provide utility researchers with a guide to the design and execution of market segmentation research in utility markets. Several composite cases, drawn from actual studies conducted by electric utilities, are used to illustrate the discussion.« less
Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET.
Hatt, M; Lamare, F; Boussion, N; Turzo, A; Collet, C; Salzenstein, F; Roux, C; Jarritt, P; Carson, K; Cheze-Le Rest, C; Visvikis, D
2007-06-21
Accurate volume of interest (VOI) estimation in PET is crucial in different oncology applications such as response to therapy evaluation and radiotherapy treatment planning. The objective of our study was to evaluate the performance of the proposed algorithm for automatic lesion volume delineation; namely the fuzzy hidden Markov chains (FHMC), with that of current state of the art in clinical practice threshold based techniques. As the classical hidden Markov chain (HMC) algorithm, FHMC takes into account noise, voxel intensity and spatial correlation, in order to classify a voxel as background or functional VOI. However the novelty of the fuzzy model consists of the inclusion of an estimation of imprecision, which should subsequently lead to a better modelling of the 'fuzzy' nature of the object of interest boundaries in emission tomography data. The performance of the algorithms has been assessed on both simulated and acquired datasets of the IEC phantom, covering a large range of spherical lesion sizes (from 10 to 37 mm), contrast ratios (4:1 and 8:1) and image noise levels. Both lesion activity recovery and VOI determination tasks were assessed in reconstructed images using two different voxel sizes (8 mm3 and 64 mm3). In order to account for both the functional volume location and its size, the concept of % classification errors was introduced in the evaluation of volume segmentation using the simulated datasets. Results reveal that FHMC performs substantially better than the threshold based methodology for functional volume determination or activity concentration recovery considering a contrast ratio of 4:1 and lesion sizes of <28 mm. Furthermore differences between classification and volume estimation errors evaluated were smaller for the segmented volumes provided by the FHMC algorithm. Finally, the performance of the automatic algorithms was less susceptible to image noise levels in comparison to the threshold based techniques. The analysis of both simulated and acquired datasets led to similar results and conclusions as far as the performance of segmentation algorithms under evaluation is concerned.
Jurrus, Elizabeth; Watanabe, Shigeki; Giuly, Richard J.; Paiva, Antonio R. C.; Ellisman, Mark H.; Jorgensen, Erik M.; Tasdizen, Tolga
2013-01-01
Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated process first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes. PMID:22644867
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jurrus, Elizabeth R.; Watanabe, Shigeki; Giuly, Richard J.
2013-01-01
Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated processmore » first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes.« less
AUTOMATED CELL SEGMENTATION WITH 3D FLUORESCENCE MICROSCOPY IMAGES.
Kong, Jun; Wang, Fusheng; Teodoro, George; Liang, Yanhui; Zhu, Yangyang; Tucker-Burden, Carol; Brat, Daniel J
2015-04-01
A large number of cell-oriented cancer investigations require an effective and reliable cell segmentation method on three dimensional (3D) fluorescence microscopic images for quantitative analysis of cell biological properties. In this paper, we present a fully automated cell segmentation method that can detect cells from 3D fluorescence microscopic images. Enlightened by fluorescence imaging techniques, we regulated the image gradient field by gradient vector flow (GVF) with interpolated and smoothed data volume, and grouped voxels based on gradient modes identified by tracking GVF field. Adaptive thresholding was then applied to voxels associated with the same gradient mode where voxel intensities were enhanced by a multiscale cell filter. We applied the method to a large volume of 3D fluorescence imaging data of human brain tumor cells with (1) small cell false detection and missing rates for individual cells; and (2) trivial over and under segmentation incidences for clustered cells. Additionally, the concordance of cell morphometry structure between automated and manual segmentation was encouraging. These results suggest a promising 3D cell segmentation method applicable to cancer studies.
Development of Image Segmentation Methods for Intracranial Aneurysms
Qian, Yi; Morgan, Michael
2013-01-01
Though providing vital means for the visualization, diagnosis, and quantification of decision-making processes for the treatment of vascular pathologies, vascular segmentation remains a process that continues to be marred by numerous challenges. In this study, we validate eight aneurysms via the use of two existing segmentation methods; the Region Growing Threshold and Chan-Vese model. These methods were evaluated by comparison of the results obtained with a manual segmentation performed. Based upon this validation study, we propose a new Threshold-Based Level Set (TLS) method in order to overcome the existing problems. With divergent methods of segmentation, we discovered that the volumes of the aneurysm models reached a maximum difference of 24%. The local artery anatomical shapes of the aneurysms were likewise found to significantly influence the results of these simulations. In contrast, however, the volume differences calculated via use of the TLS method remained at a relatively low figure, at only around 5%, thereby revealing the existence of inherent limitations in the application of cerebrovascular segmentation. The proposed TLS method holds the potential for utilisation in automatic aneurysm segmentation without the setting of a seed point or intensity threshold. This technique will further enable the segmentation of anatomically complex cerebrovascular shapes, thereby allowing for more accurate and efficient simulations of medical imagery. PMID:23606905
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, P; Labby, Z; Bayliss, R A
Purpose: To develop a plan comparison tool that will ensure robustness and deliverability through analysis of baseline and online-adaptive radiotherapy plans using similarity metrics. Methods: The ViewRay MRIdian treatment planning system allows export of a plan file that contains plan and delivery information. A software tool was developed to read and compare two plans, providing information and metrics to assess their similarity. In addition to performing direct comparisons (e.g. demographics, ROI volumes, number of segments, total beam-on time), the tool computes and presents histograms of derived metrics (e.g. step-and-shoot segment field sizes, segment average leaf gaps). Such metrics were investigatedmore » for their ability to predict that an online-adapted plan reasonably similar to a baseline plan where deliverability has already been established. Results: In the realm of online-adaptive planning, comparing ROI volumes offers a sanity check to verify observations found during contouring. Beyond ROI analysis, it has been found that simply editing contours and re-optimizing to adapt treatment can produce a delivery that is substantially different than the baseline plan (e.g. number of segments increased by 31%), with no changes in optimization parameters and only minor changes in anatomy. Currently the tool can quickly identify large omissions or deviations from baseline expectations. As our online-adaptive patient population increases, we will continue to develop and refine quantitative acceptance criteria for adapted plans and relate them historical delivery QA measurements. Conclusion: The plan comparison tool is in clinical use and reports a wide range of comparison metrics, illustrating key differences between two plans. This independent check is accomplished in seconds and can be performed in parallel to other tasks in the online-adaptive workflow. Current use prevents large planning or delivery errors from occurring, and ongoing refinements will lead to increased assurance of plan quality.« less
Perugini, E; Rapezzi, C; Piva, T; Leone, O; Bacchi‐Reggiani, L; Riva, L; Salvi, F; Lovato, L; Branzi, A; Fattori, R
2006-01-01
Objective To investigate the prevalence and distribution of gadolinium (Gd) enhancement at cardiac magnetic resonance (CMR) imaging in patients with cardiac amyloidosis (CA) and to look for associations with clinical, morphological, and functional features. Patients and design 21 patients with definitely diagnosed CA (nine with immunoglobulin light chain amyloidosis and 12 transthyretin related) underwent Gd‐CMR. Results Gd enhancement was detected in 16 of 21 (76%) patients. Sixty six of 357 (18%) segments were enhanced, more often at the mid ventricular level. Transmural extension of enhancement within each patient significantly correlated with left ventricular (LV) end systolic volume (r = 0.58). The number of enhanced segments correlated with LV end diastolic volume (r = 0.76), end systolic volume (r = 0.6), and left atrial size (r = 0.56). Segments with > 50% extensive transmural enhancement more often were severely hypokinetic or akinetic (p = 0.001). Patients with > 2 enhanced segments had significantly lower 12 lead QRS voltage and Sokolow‐Lyon index. No relation was apparent with any other clinical, morphological, functional, or histological characteristics. Conclusion Gd enhancement is common but not universally present in CA, probably due to expansion of infiltrated interstitium. The segmental and transmural distribution of the enhancement is highly variable, and mid‐ventricular regions are more often involved. Enhancement appears to be associated with impaired segmental and global contractility and a larger atrium. PMID:15939726
SU-C-207B-04: Automated Segmentation of Pectoral Muscle in MR Images of Dense Breasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verburg, E; Waard, SN de; Veldhuis, WB
Purpose: To develop and evaluate a fully automated method for segmentation of the pectoral muscle boundary in Magnetic Resonance Imaging (MRI) of dense breasts. Methods: Segmentation of the pectoral muscle is an important part of automatic breast image analysis methods. Current methods for segmenting the pectoral muscle in breast MRI have difficulties delineating the muscle border correctly in breasts with a large proportion of fibroglandular tissue (i.e., dense breasts). Hence, an automated method based on dynamic programming was developed, incorporating heuristics aimed at shape, location and gradient features.To assess the method, the pectoral muscle was segmented in 91 randomly selectedmore » participants (mean age 56.6 years, range 49.5–75.2 years) from a large MRI screening trial in women with dense breasts (ACR BI-RADS category 4). Each MR dataset consisted of 178 or 179 T1-weighted images with voxel size 0.64 × 0.64 × 1.00 mm3. All images (n=16,287) were reviewed and scored by a radiologist. In contrast to volume overlap coefficients, such as DICE, the radiologist detected deviations in the segmented muscle border and determined whether the result would impact the ability to accurately determine the volume of fibroglandular tissue and detection of breast lesions. Results: According to the radiologist’s scores, 95.5% of the slices did not mask breast tissue in such way that it could affect detection of breast lesions or volume measurements. In 13.1% of the slices a deviation in the segmented muscle border was present which would not impact breast lesion detection. In 70 datasets (78%) at least 95% of the slices were segmented in such a way it would not affect detection of breast lesions, and in 60 (66%) datasets this was 100%. Conclusion: Dynamic programming with dedicated heuristics shows promising potential to segment the pectoral muscle in women with dense breasts.« less
Quantification of regional fat volume in rat MRI
NASA Astrophysics Data System (ADS)
Sacha, Jaroslaw P.; Cockman, Michael D.; Dufresne, Thomas E.; Trokhan, Darren
2003-05-01
Multiple initiatives in the pharmaceutical and beauty care industries are directed at identifying therapies for weight management. Body composition measurements are critical for such initiatives. Imaging technologies that can be used to measure body composition noninvasively include DXA (dual energy x-ray absorptiometry) and MRI (magnetic resonance imaging). Unlike other approaches, MRI provides the ability to perform localized measurements of fat distribution. Several factors complicate the automatic delineation of fat regions and quantification of fat volumes. These include motion artifacts, field non-uniformity, brightness and contrast variations, chemical shift misregistration, and ambiguity in delineating anatomical structures. We have developed an approach to deal practically with those challenges. The approach is implemented in a package, the Fat Volume Tool, for automatic detection of fat tissue in MR images of the rat abdomen, including automatic discrimination between abdominal and subcutaneous regions. We suppress motion artifacts using masking based on detection of implicit landmarks in the images. Adaptive object extraction is used to compensate for intensity variations. This approach enables us to perform fat tissue detection and quantification in a fully automated manner. The package can also operate in manual mode, which can be used for verification of the automatic analysis or for performing supervised segmentation. In supervised segmentation, the operator has the ability to interact with the automatic segmentation procedures to touch-up or completely overwrite intermediate segmentation steps. The operator's interventions steer the automatic segmentation steps that follow. This improves the efficiency and quality of the final segmentation. Semi-automatic segmentation tools (interactive region growing, live-wire, etc.) improve both the accuracy and throughput of the operator when working in manual mode. The quality of automatic segmentation has been evaluated by comparing the results of fully automated analysis to manual analysis of the same images. The comparison shows a high degree of correlation that validates the quality of the automatic segmentation approach.
Automated choroid segmentation of three-dimensional SD-OCT images by incorporating EDI-OCT images.
Chen, Qiang; Niu, Sijie; Fang, Wangyi; Shuai, Yuanlu; Fan, Wen; Yuan, Songtao; Liu, Qinghuai
2018-05-01
The measurement of choroidal volume is more related with eye diseases than choroidal thickness, because the choroidal volume can reflect the diseases comprehensively. The purpose is to automatically segment choroid for three-dimensional (3D) spectral domain optical coherence tomography (SD-OCT) images. We present a novel choroid segmentation strategy for SD-OCT images by incorporating the enhanced depth imaging OCT (EDI-OCT) images. The down boundary of the choroid, namely choroid-sclera junction (CSJ), is almost invisible in SD-OCT images, while visible in EDI-OCT images. During the SD-OCT imaging, the EDI-OCT images can be generated for the same eye. Thus, we present an EDI-OCT-driven choroid segmentation method for SD-OCT images, where the choroid segmentation results of the EDI-OCT images are used to estimate the average choroidal thickness and to improve the construction of the CSJ feature space of the SD-OCT images. We also present a whole registration method between EDI-OCT and SD-OCT images based on retinal thickness and Bruch's Membrane (BM) position. The CSJ surface is obtained with a 3D graph search in the CSJ feature space. Experimental results with 768 images (6 cubes, 128 B-scan images for each cube) from 2 healthy persons, 2 age-related macular degeneration (AMD) and 2 diabetic retinopathy (DR) patients, and 210 B-scan images from other 8 healthy persons and 21 patients demonstrate that our method can achieve high segmentation accuracy. The mean choroid volume difference and overlap ratio for 6 cubes between our proposed method and outlines drawn by experts were -1.96µm3 and 88.56%, respectively. Our method is effective for the 3D choroid segmentation of SD-OCT images because the segmentation accuracy and stability are compared with the manual segmentation. Copyright © 2017. Published by Elsevier B.V.
Liukkonen, Mimmi K; Mononen, Mika E; Tanska, Petri; Saarakkala, Simo; Nieminen, Miika T; Korhonen, Rami K
2017-10-01
Manual segmentation of articular cartilage from knee joint 3D magnetic resonance images (MRI) is a time consuming and laborious task. Thus, automatic methods are needed for faster and reproducible segmentations. In the present study, we developed a semi-automatic segmentation method based on radial intensity profiles to generate 3D geometries of knee joint cartilage which were then used in computational biomechanical models of the knee joint. Six healthy volunteers were imaged with a 3T MRI device and their knee cartilages were segmented both manually and semi-automatically. The values of cartilage thicknesses and volumes produced by these two methods were compared. Furthermore, the influences of possible geometrical differences on cartilage stresses and strains in the knee were evaluated with finite element modeling. The semi-automatic segmentation and 3D geometry construction of one knee joint (menisci, femoral and tibial cartilages) was approximately two times faster than with manual segmentation. Differences in cartilage thicknesses, volumes, contact pressures, stresses, and strains between segmentation methods in femoral and tibial cartilage were mostly insignificant (p > 0.05) and random, i.e. there were no systematic differences between the methods. In conclusion, the devised semi-automatic segmentation method is a quick and accurate way to determine cartilage geometries; it may become a valuable tool for biomechanical modeling applications with large patient groups.
Saito, Atsushi; Nawano, Shigeru; Shimizu, Akinobu
2017-05-01
This paper addresses joint optimization for segmentation and shape priors, including translation, to overcome inter-subject variability in the location of an organ. Because a simple extension of the previous exact optimization method is too computationally complex, we propose a fast approximation for optimization. The effectiveness of the proposed approximation is validated in the context of gallbladder segmentation from a non-contrast computed tomography (CT) volume. After spatial standardization and estimation of the posterior probability of the target organ, simultaneous optimization of the segmentation, shape, and location priors is performed using a branch-and-bound method. Fast approximation is achieved by combining sampling in the eigenshape space to reduce the number of shape priors and an efficient computational technique for evaluating the lower bound. Performance was evaluated using threefold cross-validation of 27 CT volumes. Optimization in terms of translation of the shape prior significantly improved segmentation performance. The proposed method achieved a result of 0.623 on the Jaccard index in gallbladder segmentation, which is comparable to that of state-of-the-art methods. The computational efficiency of the algorithm is confirmed to be good enough to allow execution on a personal computer. Joint optimization of the segmentation, shape, and location priors was proposed, and it proved to be effective in gallbladder segmentation with high computational efficiency.
Hippocampal volumetry: Normative data in the Indian population.
Mohandas, Aravind Narayan; Bharath, Rose Dawn; Prathyusha, Parthipulli Vasuki; Gupta, Arun K
2014-07-01
Mesial temporal sclerosis (MTS) is the most common cause of temporal lobe epilepsy. Quantitative analysis of the hippocampus using volumetry is commonly being used in the diagnosis of MTS and is being used as a marker in prognostication of seizure control. Although normative data for hippocampal volume (HV) is available for the western population, no such data is available for the Indian population. The aim of the study was to establish normative data for HV for the Indian population, which can aid in the accurate diagnosis of MTS. Magnetic resonance imaging (MRI) scans of 200 healthy volunteers were acquired using a 3 Tesla (3T) MRI scanner. Manual segmentation and volumetry was done using Siemens Syngo software. The data was analyzed using two tailed t-test to detect associations between HV and age, gender, and education. The data so obtained was also correlated with the data available from the rest of the world. A mean HV of 2.411 cm(3) (standard deviation -0.299) was found in the study, which was significantly smaller when compared to the data from the western population. The right hippocampus was larger than the left, with a mean volume of 2.424 cm(3) and 2.398 cm(3), respectively. HV was detected to be significantly higher in males. No association was found between HV and age and education. The values obtained in this study may be adopted as a standard in the evaluation of patients with intractable epilepsy.
Automated posterior cranial fossa volumetry by MRI: applications to Chiari malformation type I.
Bagci, A M; Lee, S H; Nagornaya, N; Green, B A; Alperin, N
2013-09-01
Quantification of PCF volume and the degree of PCF crowdedness were found beneficial for differential diagnosis of tonsillar herniation and prediction of surgical outcome in CMI. However, lack of automated methods limits the clinical use of PCF volumetry. An atlas-based method for automated PCF segmentation tailored for CMI is presented. The method performance is assessed in terms of accuracy and spatial overlap with manual segmentation. The degree of association between PCF volumes and the lengths of previously proposed linear landmarks is reported. T1-weighted volumetric MR imaging data with 1-mm isotropic resolution obtained with the use of a 3T scanner from 14 patients with CMI and 3 healthy subjects were used for the study. Manually delineated PCF from 9 patients was used to establish a CMI-specific reference for an atlas-based automated PCF parcellation approach. Agreement between manual and automated segmentation of 5 different CMI datasets was verified by means of the t test. Measurement reproducibility was established through the use of 2 repeated scans from 3 healthy subjects. Degree of linear association between PCF volume and 6 linear landmarks was determined by means of Pearson correlation. PCF volumes measured by use of the automated method and with manual delineation were similar, 196.2 ± 8.7 mL versus 196.9 ± 11.0 mL, respectively. The mean relative difference of -0.3 ± 1.9% was not statistically significant. Low measurement variability, with a mean absolute percentage value of 0.6 ± 0.2%, was achieved. None of the PCF linear landmarks were significantly associated with PCF volume. PCF and tissue content volumes can be reliably measured in patients with CMI by use of an atlas-based automated segmentation method.
McCracken, D Jay; Higginbotham, Raymond A; Boulter, Jason H; Liu, Yuan; Wells, John A; Halani, Sameer H; Saindane, Amit M; Oyesiku, Nelson M; Barrow, Daniel L; Olson, Jeffrey J
2017-06-01
Sphenoid wing meningiomas (SWMs) can encase arteries of the circle of Willis, increasing their susceptibility to intraoperative vascular injury and severe ischemic complications. To demonstrate the effect of circumferential vascular encasement in SWM on postoperative ischemia. A retrospective review of 75 patients surgically treated for SWM from 2009 to 2015 was undertaken to determine the degree of circumferential vascular encasement (0°-360°) as assessed by preoperative magnetic resonance imaging (MRI). A novel grading system describing "maximum" and "total" arterial encasement scores was created. Postoperative MRIs were reviewed for total ischemia volume measured on sequential diffusion-weighted images. Of the 75 patients, 89.3% had some degree of vascular involvement with a median maximum encasement score of 3.0 (2.0-3.0) in the internal carotid artery (ICA), M1, M2, and A1 segments; 76% of patients had some degree of ischemia with median infarct volume of 3.75 cm 3 (0.81-9.3 cm 3 ). Univariate analysis determined risk factors associated with larger infarction volume, which were encasement of the supraclinoid ICA ( P < .001), M1 segment ( P < .001), A1 segment ( P = .015), and diabetes ( P = .019). As the maximum encasement score increased from 1 to 5 in each of the significant arterial segments, so did mean and median infarction volume ( P < .001). Risk for devastating ischemic injury >62 cm 3 was found when the ICA, M1, and A1 vessels all had ≥360° involvement ( P = .001). Residual tumor was associated with smaller infarct volumes ( P = .022). As infarction volume increased, so did modified Rankin Score at discharge ( P = .025). Subtotal resection should be considered in SWM with significant vascular encasement of proximal arteries to limit postoperative ischemic complications. Copyright © 2017 by the Congress of Neurological Surgeons
Gompelmann, Daniela; Shah, Pallav L; Valipour, Arschang; Herth, Felix J F
2018-06-12
Bronchoscopic thermal vapor ablation (BTVA) represents one of the endoscopic lung volume reduction (ELVR) techniques that aims at hyperinflation reduction in patients with advanced emphysema to improve respiratory mechanics. By targeted segmental vapor ablation, an inflammatory response leads to tissue and volume reduction of the most diseased emphysematous segments. So far, BTVA has been demonstrated in several single-arm trials and 1 multinational randomized controlled trial to improve lung function, exercise capacity, and quality of life in patients with upper lobe-predominant emphysema irrespective of the collateral ventilation. In this review, we emphasize the practical aspects of this ELVR method. Patients with upper lobe-predominant emphysema, forced expiratory volume in 1 second (FEV1) between 20 and 45% of predicted, residual volume (RV) > 175% of predicted, and carbon monoxide diffusing capacity (DLCO) ≥20% of predicted can be considered for BTVA treatment. Prior to the procedure, a special software assists in identifying the target segments with the highest emphysema index, volume and the highest heterogeneity index to the untreated ipsilateral lung lobes. The procedure may be performed under deep sedation or preferably under general anesthesia. After positioning of the BTVA catheter and occlusion of the target segment by the occlusion balloon, heated water vapor is delivered in a predetermined specified time according to the vapor dose. After the procedure, patients should be strictly monitored to proactively detect symptoms of localized inflammatory reaction that may temporarily worsen the clinical status of the patient and to detect complications. As the data are still very limited, BTVA should be performed within clinical trials or comprehensive registries where the product is commercially available. © 2018 S. Karger AG, Basel.
20 CFR 668.650 - Can INA grantees exclude segments of the eligible population?
Code of Federal Regulations, 2010 CFR
2010-04-01
... eligible population? 668.650 Section 668.650 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION... population? (a) No, INA grantees cannot exclude segments of the eligible population. INA grantees must document in their Two Year Plan that a system is in place to afford all members of the eligible population...
20 CFR 668.650 - Can INA grantees exclude segments of the eligible population?
Code of Federal Regulations, 2011 CFR
2011-04-01
... eligible population? 668.650 Section 668.650 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION... population? (a) No, INA grantees cannot exclude segments of the eligible population. INA grantees must document in their Two Year Plan that a system is in place to afford all members of the eligible population...
Hippocampal subfield segmentation in temporal lobe epilepsy: Relation to outcomes.
Kreilkamp, B A K; Weber, B; Elkommos, S B; Richardson, M P; Keller, S S
2018-06-01
To investigate the clinical and surgical outcome correlates of preoperative hippocampal subfield volumes in patients with refractory temporal lobe epilepsy (TLE) using a new magnetic resonance imaging (MRI) multisequence segmentation technique. We recruited 106 patients with TLE and hippocampal sclerosis (HS) who underwent conventional T1-weighted and T2 short TI inversion recovery MRI. An automated hippocampal segmentation algorithm was used to identify twelve subfields in each hippocampus. A total of 76 patients underwent amygdalohippocampectomy and postoperative seizure outcome assessment using the standardized ILAE classification. Semiquantitative hippocampal internal architecture (HIA) ratings were correlated with hippocampal subfield volumes. Patients with left TLE had smaller volumes of the contralateral presubiculum and hippocampus-amygdala transition area compared to those with right TLE. Patients with right TLE had reduced contralateral hippocampal tail volumes and improved outcomes. In all patients, there were no significant relationships between hippocampal subfield volumes and clinical variables such as duration and age at onset of epilepsy. There were no significant differences in any hippocampal subfield volumes between patients who were rendered seizure free and those with persistent postoperative seizure symptoms. Ipsilateral but not contralateral HIA ratings were significantly correlated with gross hippocampal and subfield volumes. Our results suggest that ipsilateral hippocampal subfield volumes are not related to the chronicity/severity of TLE. We did not find any hippocampal subfield volume or HIA rating differences in patients with optimal and unfavorable outcomes. In patients with TLE and HS, sophisticated analysis of hippocampal architecture on MRI may have limited value for prediction of postoperative outcome. © 2018 The Authors. Acta Neurologica Scandinavica Published by John Wiley & Sons Ltd.
Measurement of pelvic osteolytic lesions in follow-up studies after total hip arthroplasty
NASA Astrophysics Data System (ADS)
Castaneda, Benjamin; Tamez-Pena, Jose G.; Totterman, Saara; O'Keefe, Regis; Looney, R. John
2006-03-01
Previous studies have demonstrated the plausibility of using volumetric computerized tomography to provide an accurate representation and measurement of volume for pelvic osteolytic lesions following total hip joint replacement. These studies have been performed manually (or computed-assisted) by expert radiologists with the disadvantage of poor reproducibility of the experiment. The purpose of this work is to minimize the effect of user interaction in these experiments by introducing Laplacian level set methods in the volume segmentation process and using temporal articulated registration in order to follow the evolution of a lesion over time. Laplacian level set methods reduce the inter and intra-observer variability by attaching the segmented contour to edges defined in the image while keeping smoothness. The registration process allows the information of the lesion from the first visit to be used in the segmentation process of the current visit. This work compares the automated results on 7 volunteers versus the volume measured manually. Results have shown that the proposed technique is able to track osteolytic lesions and detect changes in volume over time. Intra-reader and inter-observer variabilities were reduced.
Reproducibility of myelin content-based human habenula segmentation at 3 Tesla.
Kim, Joo-Won; Naidich, Thomas P; Joseph, Joshmi; Nair, Divya; Glasser, Matthew F; O'halloran, Rafael; Doucet, Gaelle E; Lee, Won Hee; Krinsky, Hannah; Paulino, Alejandro; Glahn, David C; Anticevic, Alan; Frangou, Sophia; Xu, Junqian
2018-03-26
In vivo morphological study of the human habenula, a pair of small epithalamic nuclei adjacent to the dorsomedial thalamus, has recently gained significant interest for its role in reward and aversion processing. However, segmenting the habenula from in vivo magnetic resonance imaging (MRI) is challenging due to the habenula's small size and low anatomical contrast. Although manual and semi-automated habenula segmentation methods have been reported, the test-retest reproducibility of the segmented habenula volume and the consistency of the boundaries of habenula segmentation have not been investigated. In this study, we evaluated the intra- and inter-site reproducibility of in vivo human habenula segmentation from 3T MRI (0.7-0.8 mm isotropic resolution) using our previously proposed semi-automated myelin contrast-based method and its fully-automated version, as well as a previously published manual geometry-based method. The habenula segmentation using our semi-automated method showed consistent boundary definition (high Dice coefficient, low mean distance, and moderate Hausdorff distance) and reproducible volume measurement (low coefficient of variation). Furthermore, the habenula boundary in our semi-automated segmentation from 3T MRI agreed well with that in the manual segmentation from 7T MRI (0.5 mm isotropic resolution) of the same subjects. Overall, our proposed semi-automated habenula segmentation showed reliable and reproducible habenula localization, while its fully-automated version offers an efficient way for large sample analysis. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhou, Chuan; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Chughtai, Aamer; Wei, Jun; Kazerooni, Ella A.
2016-03-01
We are developing an automated method to identify the best quality segment among the corresponding segments in multiple-phase cCTA. The coronary artery trees are automatically extracted from different cCTA phases using our multi-scale vessel segmentation and tracking method. An automated registration method is then used to align the multiple-phase artery trees. The corresponding coronary artery segments are identified in the registered vessel trees and are straightened by curved planar reformation (CPR). Four features are extracted from each segment in each phase as quality indicators in the original CT volume and the straightened CPR volume. Each quality indicator is used as a voting classifier to vote the corresponding segments. A newly designed weighted voting ensemble (WVE) classifier is finally used to determine the best-quality coronary segment. An observer preference study is conducted with three readers to visually rate the quality of the vessels in 1 to 6 rankings. Six and 10 cCTA cases are used as training and test set in this preliminary study. For the 10 test cases, the agreement between automatically identified best-quality (AI-BQ) segments and radiologist's top 2 rankings is 79.7%, and between AI-BQ and the other two readers are 74.8% and 83.7%, respectively. The results demonstrated that the performance of our automated method was comparable to those of experienced readers for identification of the best-quality coronary segments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, F.; Graduate Program in Biomedical Engineering, University of Western Ontario, London, Ontario N6A 5B9; Svenningsen, S.
Purpose: Pulmonary magnetic-resonance-imaging (MRI) and x-ray computed-tomography have provided strong evidence of spatially and temporally persistent lung structure-function abnormalities in asthmatics. This has generated a shift in their understanding of lung disease and supports the use of imaging biomarkers as intermediate endpoints of asthma severity and control. In particular, pulmonary {sup 1}H MRI can be used to provide quantitative lung structure-function measurements longitudinally and in response to treatment. However, to translate such biomarkers of asthma, robust methods are required to segment the lung from pulmonary {sup 1}H MRI. Therefore, their objective was to develop a pulmonary {sup 1}H MRI segmentationmore » algorithm to provide regional measurements with the precision and speed required to support clinical studies. Methods: The authors developed a method to segment the left and right lung from {sup 1}H MRI acquired in 20 asthmatics including five well-controlled and 15 severe poorly controlled participants who provided written informed consent to a study protocol approved by Health Canada. Same-day spirometry and plethysmography measurements of lung function and volume were acquired as well as {sup 1}H MRI using a whole-body radiofrequency coil and fast spoiled gradient-recalled echo sequence at a fixed lung volume (functional residual capacity + 1 l). We incorporated the left-to-right lung volume proportion prior based on the Potts model and derived a volume-proportion preserved Potts model, which was approximated through convex relaxation and further represented by a dual volume-proportion preserved max-flow model. The max-flow model led to a linear problem with convex and linear equality constraints that implicitly encoded the proportion prior. To implement the algorithm, {sup 1}H MRI was resampled into ∼3 × 3 × 3 mm{sup 3} isotropic voxel space. Two observers placed seeds on each lung and on the background of 20 pulmonary {sup 1}H MR images in a randomized dataset, on five occasions, five consecutive days in a row. Segmentation accuracy was evaluated using the Dice-similarity-coefficient (DSC) of the segmented thoracic cavity with comparison to five-rounds of manual segmentation by an expert observer. The authors also evaluated the root-mean-squared-error (RMSE) of the Euclidean distance between lung surfaces, the absolute, and percent volume error. Reproducibility was measured using the coefficient of variation (CoV) and intraclass correlation coefficient (ICC) for two observers who repeated segmentation measurements five-times. Results: For five well-controlled asthmatics, forced expiratory volume in 1 s (FEV{sub 1})/forced vital capacity (FVC) was 83% ± 7% and FEV{sub 1} was 86 ± 9%{sub pred}. For 15 severe, poorly controlled asthmatics, FEV{sub 1}/FV C = 66% ± 17% and FEV{sub 1} = 72 ± 27%{sub pred}. The DSC for algorithm and manual segmentation was 91% ± 3%, 92% ± 2% and 91% ± 2% for the left, right, and whole lung, respectively. RMSE was 4.0 ± 1.0 mm for each of the left, right, and whole lung. The absolute (percent) volume errors were 0.1 l (∼6%) for each of right and left lung and ∼0.2 l (∼6%) for whole lung. Intra- and inter-CoV (ICC) were <0.5% (>0.91%) for DSC and <4.5% (>0.93%) for RMSE. While segmentation required 10 s including ∼6 s for user interaction, the smallest detectable difference was 0.24 l for algorithm measurements which was similar to manual measurements. Conclusions: This lung segmentation approach provided the necessary and sufficient precision and accuracy required for research and clinical studies.« less
Shi, Y; Qi, F; Xue, Z; Chen, L; Ito, K; Matsuo, H; Shen, D
2008-04-01
This paper presents a new deformable model using both population-based and patient-specific shape statistics to segment lung fields from serial chest radiographs. There are two novelties in the proposed deformable model. First, a modified scale invariant feature transform (SIFT) local descriptor, which is more distinctive than the general intensity and gradient features, is used to characterize the image features in the vicinity of each pixel. Second, the deformable contour is constrained by both population-based and patient-specific shape statistics, and it yields more robust and accurate segmentation of lung fields for serial chest radiographs. In particular, for segmenting the initial time-point images, the population-based shape statistics is used to constrain the deformable contour; as more subsequent images of the same patient are acquired, the patient-specific shape statistics online collected from the previous segmentation results gradually takes more roles. Thus, this patient-specific shape statistics is updated each time when a new segmentation result is obtained, and it is further used to refine the segmentation results of all the available time-point images. Experimental results show that the proposed method is more robust and accurate than other active shape models in segmenting the lung fields from serial chest radiographs.
Comparison of volume estimation methods for pancreatic islet cells
NASA Astrophysics Data System (ADS)
Dvořák, JiřÃ.; Å vihlík, Jan; Habart, David; Kybic, Jan
2016-03-01
In this contribution we study different methods of automatic volume estimation for pancreatic islets which can be used in the quality control step prior to the islet transplantation. The total islet volume is an important criterion in the quality control. Also, the individual islet volume distribution is interesting -- it has been indicated that smaller islets can be more effective. A 2D image of a microscopy slice containing the islets is acquired. The input of the volume estimation methods are segmented images of individual islets. The segmentation step is not discussed here. We consider simple methods of volume estimation assuming that the islets have spherical or ellipsoidal shape. We also consider a local stereological method, namely the nucleator. The nucleator does not rely on any shape assumptions and provides unbiased estimates if isotropic sections through the islets are observed. We present a simulation study comparing the performance of the volume estimation methods in different scenarios and an experimental study comparing the methods on a real dataset.
Lee, Ki Nam; Yoon, Seong Kuk; Sohn, Choon Hee; Choi, Pil Jo; Webb, W Richard
2002-01-01
To evaluate the influence of lung volume on dependent lung opacity seen at thin-section CT. In thirteen healthy volunteers, thin-section CT scans were performed at three levels (upper, mid, and lower portion of the lung) and at different lung volumes (10, 30, 50, and 100% vital capacity), using spirometric gated CT. Using a three-point scale, two radiologists determined whether dependent opacity was present, and estimated its degree. Regional lung attenuation at a level 2 cm above the diaphragm was determined using semiautomatic segmentation, and the diameter of a branch of the right lower posterior basal segmental artery was measured at each different vital capacity. At all three anatomic levels, dependent opacity occurred significantly more often at lower vital capacities (10, 30%) than at 100% vital capacity (p = 0.001). Visually estimated dependent opacity was significantly related to regional lung attenuation (p < 0.0001), which in dependent areas progressively increased as vital capacity decreased (p < 0.0001). The presence of dependent opacity and regional lung attenuation of a dependent area correlated significantly with increased diameter of a segmental arterial branch (r = 0.493 and p = 0.0002; r = 0.486 and p = 0.0003, respectively). Visual estimation and CT measurements of dependent opacity obtained by semiautomatic segmentation are significantly influenced by lung volume and are related to vascular diameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thibault, Isabelle; Department of Radiation Oncology, Centre Hospitalier de L'Universite de Québec–Université Laval, Quebec, Quebec; Whyne, Cari M.
Purpose: To determine a threshold of vertebral body (VB) osteolytic or osteoblastic tumor involvement that would predict vertebral compression fracture (VCF) risk after stereotactic body radiation therapy (SBRT), using volumetric image-segmentation software. Methods and Materials: A computational semiautomated skeletal metastasis segmentation process refined in our laboratory was applied to the pretreatment planning CT scan of 100 vertebral segments in 55 patients treated with spine SBRT. Each VB was segmented and the percentage of lytic and/or blastic disease by volume determined. Results: The cumulative incidence of VCF at 3 and 12 months was 14.1% and 17.3%, respectively. The median follow-up was 7.3 months (range,more » 0.6-67.6 months). In all, 56% of segments were determined lytic, 23% blastic, and 21% mixed, according to clinical radiologic determination. Within these 3 clinical cohorts, the segmentation-determined mean percentages of lytic and blastic tumor were 8.9% and 6.0%, 0.2% and 26.9%, and 3.4% and 15.8% by volume, respectively. On the basis of the entire cohort (n=100), a significant association was observed for the osteolytic percentage measures and the occurrence of VCF (P<.001) but not for the osteoblastic measures. The most significant lytic disease threshold was observed at ≥11.6% (odds ratio 37.4, 95% confidence interval 9.4-148.9). On multivariable analysis, ≥11.6% lytic disease (P<.001), baseline VCF (P<.001), and SBRT with ≥20 Gy per fraction (P=.014) were predictive. Conclusions: Pretreatment lytic VB disease volumetric measures, independent of the blastic component, predict for SBRT-induced VCF. Larger-scale trials evaluating our software are planned to validate the results.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-07
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA852 Endangered and Threatened Species; 5-Year Reviews for 4 Distinct Population Segments of Steelhead in California... agency's Viable Salmonid Population framework, which relies on evaluating four key population parameters...
Semi-automatic segmentation of brain tumors using population and individual information.
Wu, Yao; Yang, Wei; Jiang, Jun; Li, Shuanqian; Feng, Qianjin; Chen, Wufan
2013-08-01
Efficient segmentation of tumors in medical images is of great practical importance in early diagnosis and radiation plan. This paper proposes a novel semi-automatic segmentation method based on population and individual statistical information to segment brain tumors in magnetic resonance (MR) images. First, high-dimensional image features are extracted. Neighborhood components analysis is proposed to learn two optimal distance metrics, which contain population and patient-specific information, respectively. The probability of each pixel belonging to the foreground (tumor) and the background is estimated by the k-nearest neighborhood classifier under the learned optimal distance metrics. A cost function for segmentation is constructed through these probabilities and is optimized using graph cuts. Finally, some morphological operations are performed to improve the achieved segmentation results. Our dataset consists of 137 brain MR images, including 68 for training and 69 for testing. The proposed method overcomes segmentation difficulties caused by the uneven gray level distribution of the tumors and even can get satisfactory results if the tumors have fuzzy edges. Experimental results demonstrate that the proposed method is robust to brain tumor segmentation.
Michigan urban trunkline segments safety performance functions (SPFs) : final report.
DOT National Transportation Integrated Search
2016-07-01
This study involves the development of safety performance functions (SPFs) for urban and suburban trunkline segments in the : state of Michigan. Extensive databases were developed through the integration of traffic crash information, traffic volumes,...
Multi-atlas and label fusion approach for patient-specific MRI based skull estimation.
Torrado-Carvajal, Angel; Herraiz, Joaquin L; Hernandez-Tamames, Juan A; San Jose-Estepar, Raul; Eryaman, Yigitcan; Rozenholc, Yves; Adalsteinsson, Elfar; Wald, Lawrence L; Malpica, Norberto
2016-04-01
MRI-based skull segmentation is a useful procedure for many imaging applications. This study describes a methodology for automatic segmentation of the complete skull from a single T1-weighted volume. The skull is estimated using a multi-atlas segmentation approach. Using a whole head computed tomography (CT) scan database, the skull in a new MRI volume is detected by nonrigid image registration of the volume to every CT, and combination of the individual segmentations by label-fusion. We have compared Majority Voting, Simultaneous Truth and Performance Level Estimation (STAPLE), Shape Based Averaging (SBA), and the Selective and Iterative Method for Performance Level Estimation (SIMPLE) algorithms. The pipeline has been evaluated quantitatively using images from the Retrospective Image Registration Evaluation database (reaching an overlap of 72.46 ± 6.99%), a clinical CT-MR dataset (maximum overlap of 78.31 ± 6.97%), and a whole head CT-MRI pair (maximum overlap 78.68%). A qualitative evaluation has also been performed on MRI acquisition of volunteers. It is possible to automatically segment the complete skull from MRI data using a multi-atlas and label fusion approach. This will allow the creation of complete MRI-based tissue models that can be used in electromagnetic dosimetry applications and attenuation correction in PET/MR. © 2015 Wiley Periodicals, Inc.
Multi-stage learning for robust lung segmentation in challenging CT volumes.
Sofka, Michal; Wetzl, Jens; Birkbeck, Neil; Zhang, Jingdan; Kohlberger, Timo; Kaftan, Jens; Declerck, Jérôme; Zhou, S Kevin
2011-01-01
Simple algorithms for segmenting healthy lung parenchyma in CT are unable to deal with high density tissue common in pulmonary diseases. To overcome this problem, we propose a multi-stage learning-based approach that combines anatomical information to predict an initialization of a statistical shape model of the lungs. The initialization first detects the carina of the trachea, and uses this to detect a set of automatically selected stable landmarks on regions near the lung (e.g., ribs, spine). These landmarks are used to align the shape model, which is then refined through boundary detection to obtain fine-grained segmentation. Robustness is obtained through hierarchical use of discriminative classifiers that are trained on a range of manually annotated data of diseased and healthy lungs. We demonstrate fast detection (35s per volume on average) and segmentation of 2 mm accuracy on challenging data.
External stent for repair of secondary tracheomalacia.
Johnston, M R; Loeber, N; Hillyer, P; Stephenson, L W; Edmunds, L H
1980-09-01
Tracheomalacia was created in anesthetized piglets by submucosal resection of 3 to 5 tracheal cartilages. Measurements of airway pressure and flow showed that expiratory airway resistance is maximal at low lung volumes and is significantly increased by creation of the malacic segment. Cervical flexion increases expiratory airway resistance, whereas hyperextension of the neck reduces resistance toward normal. External stenting of the malacic segment reduces expiratory airway resistance, and the combination of external stenting and hyperextension restores airway resistance to normal except at low lung volume. Two patients with secondary tracheomalacia required tracheostomy and could not be decannulated after the indication for the tracheostomy was corrected. Both were successfully decannulated after external stenting of the malacic segment with rib grafts. Postoperative measurements of expiratory pulmonary resistance show a marked decrease from preoperative measurements. External stenting of symptomatic tracheomalacia reduces expiratory airway resistance by supporting and stretching the malacic segment and is preferable to prolonged internal stenting or tracheal resection.
Lube, Juliane; Cotofana, Sebastian; Bechmann, Ingo; Milani, Thomas L; Özkurtul, Orkun; Sakai, Tatsuo; Steinke, Hanno; Hammer, Niels
2016-01-01
Muscle volumes are of crucial interest when attempting to analyze individual physical performance and disease- or age-related alterations in muscle morphology. However, very little reference data are available in the literature on pelvis and lower extremity muscle volumes originating from healthy and young individuals. Furthermore, it is of interest if representative muscle volumes, covering large anatomical regions, can be obtained using magnetic resonance imaging (MRI) in a setting similar to the clinical routine. Our objective was therefore to provide encompassing, bilateral, 3-T MRI-based datasets on muscle volumes of the pelvis and the lower limb muscles. T1-weighted 3-T MRI records were obtained bilaterally from six young and healthy participants. Three-dimensional volumes were compiled from 28 muscles and muscle groups of each participant before the muscle volumes were computed. Muscle volumes were obtained from 28 muscles and muscle groups of the pelvis and lower extremity. Volumes were larger in male than in female participants. Volumes of the dominant and non-dominant sides were similar in both genders. The obtained results were in line with volumetric data obtained from smaller anatomical areas, thus extending the available datasets. This study provides an encompassing and feasible approach to obtain data on the muscle volumes of pelvic and limb muscles of healthy, young, and physically active individuals. The respective data form a basis to determine effects of therapeutic approaches, progression of diseases, or technical applications like automated segmentation algorithms applied to different populations.
Lymph node segmentation on CT images by a shape model guided deformable surface methodh
NASA Astrophysics Data System (ADS)
Maleike, Daniel; Fabel, Michael; Tetzlaff, Ralf; von Tengg-Kobligk, Hendrik; Heimann, Tobias; Meinzer, Hans-Peter; Wolf, Ivo
2008-03-01
With many tumor entities, quantitative assessment of lymph node growth over time is important to make therapy choices or to evaluate new therapies. The clinical standard is to document diameters on transversal slices, which is not the best measure for a volume. We present a new algorithm to segment (metastatic) lymph nodes and evaluate the algorithm with 29 lymph nodes in clinical CT images. The algorithm is based on a deformable surface search, which uses statistical shape models to restrict free deformation. To model lymph nodes, we construct an ellipsoid shape model, which strives for a surface with strong gradients and user-defined gray values. The algorithm is integrated into an application, which also allows interactive correction of the segmentation results. The evaluation shows that the algorithm gives good results in the majority of cases and is comparable to time-consuming manual segmentation. The median volume error was 10.1% of the reference volume before and 6.1% after manual correction. Integrated into an application, it is possible to perform lymph node volumetry for a whole patient within the 10 to 15 minutes time limit imposed by clinical routine.
Patient Segmentation Analysis Offers Significant Benefits For Integrated Care And Support.
Vuik, Sabine I; Mayer, Erik K; Darzi, Ara
2016-05-01
Integrated care aims to organize care around the patient instead of the provider. It is therefore crucial to understand differences across patients and their needs. Segmentation analysis that uses big data can help divide a patient population into distinct groups, which can then be targeted with care models and intervention programs tailored to their needs. In this article we explore the potential applications of patient segmentation in integrated care. We propose a framework for population strategies in integrated care-whole populations, subpopulations, and high-risk populations-and show how patient segmentation can support these strategies. Through international case examples, we illustrate practical considerations such as choosing a segmentation logic, accessing data, and tailoring care models. Important issues for policy makers to consider are trade-offs between simplicity and precision, trade-offs between customized and off-the-shelf solutions, and the availability of linked data sets. We conclude that segmentation can provide many benefits to integrated care, and we encourage policy makers to support its use. Project HOPE—The People-to-People Health Foundation, Inc.
Pectoral muscle segmentation in breast tomosynthesis with deep learning
NASA Astrophysics Data System (ADS)
Rodriguez-Ruiz, Alejandro; Teuwen, Jonas; Chung, Kaman; Karssemeijer, Nico; Chevalier, Margarita; Gubern-Merida, Albert; Sechopoulos, Ioannis
2018-02-01
Digital breast tomosynthesis (DBT) has superior detection performance than mammography (DM) for population-based breast cancer screening, but the higher number of images that must be reviewed poses a challenge for its implementation. This may be ameliorated by creating a twodimensional synthetic mammographic image (SM) from the DBT volume, containing the most relevant information. When creating a SM, it is of utmost importance to have an accurate lesion localization detection algorithm, while segmenting fibroglandular tissue could also be beneficial. These tasks encounter an extra challenge when working with images in the medio-lateral oblique view, due to the presence of the pectoral muscle, which has similar radiographic density. In this work, we present an automatic pectoral muscle segmentation model based on a u-net deep learning architecture, trained with 136 DBT images acquired with a single system (different BIRADS ® densities and pathological findings). The model was tested on 36 DBT images from that same system resulting in a dice similarity coefficient (DSC) of 0.977 (0.967-0.984). In addition, the model was tested on 125 images from two different systems and three different modalities (DBT, SM, DM), obtaining DSCs between 0.947 and 0.970, a range determined visually to provide adequate segmentations. For reference, a resident radiologist independently annotated a mix of 25 cases obtaining a DSC of 0.971. The results suggest the possibility of using this model for inter-manufacturer DBT, DM and SM tasks that benefit from the segmentation of the pectoral muscle, such as SM generation, computer aided detection systems, or patient dosimetry algorithms.
Müller-Eschner, Matthias; Müller, Tobias; Biesdorf, Andreas; Wörz, Stefan; Rengier, Fabian; Böckler, Dittmar; Kauczor, Hans-Ulrich; Rohr, Karl; von Tengg-Kobligk, Hendrik
2014-04-01
Native-MR angiography (N-MRA) is considered an imaging alternative to contrast enhanced MR angiography (CE-MRA) for patients with renal insufficiency. Lower intraluminal contrast in N-MRA often leads to failure of the segmentation process in commercial algorithms. This study introduces an in-house 3D model-based segmentation approach used to compare both sequences by automatic 3D lumen segmentation, allowing for evaluation of differences of aortic lumen diameters as well as differences in length comparing both acquisition techniques at every possible location. Sixteen healthy volunteers underwent 1.5-T-MR Angiography (MRA). For each volunteer, two different MR sequences were performed, CE-MRA: gradient echo Turbo FLASH sequence and N-MRA: respiratory-and-cardiac-gated, T2-weighted 3D SSFP. Datasets were segmented using a 3D model-based ellipse-fitting approach with a single seed point placed manually above the celiac trunk. The segmented volumes were manually cropped from left subclavian artery to celiac trunk to avoid error due to side branches. Diameters, volumes and centerline length were computed for intraindividual comparison. For statistical analysis the Wilcoxon-Signed-Ranked-Test was used. Average centerline length obtained based on N-MRA was 239.0±23.4 mm compared to 238.6±23.5 mm for CE-MRA without significant difference (P=0.877). Average maximum diameter obtained based on N-MRA was 25.7±3.3 mm compared to 24.1±3.2 mm for CE-MRA (P<0.001). In agreement with the difference in diameters, volumes obtained based on N-MRA (100.1±35.4 cm(3)) were consistently and significantly larger compared to CE-MRA (89.2±30.0 cm(3)) (P<0.001). 3D morphometry shows highly similar centerline lengths for N-MRA and CE-MRA, but systematically higher diameters and volumes for N-MRA.
Müller-Eschner, Matthias; Müller, Tobias; Biesdorf, Andreas; Wörz, Stefan; Rengier, Fabian; Böckler, Dittmar; Kauczor, Hans-Ulrich; Rohr, Karl
2014-01-01
Introduction Native-MR angiography (N-MRA) is considered an imaging alternative to contrast enhanced MR angiography (CE-MRA) for patients with renal insufficiency. Lower intraluminal contrast in N-MRA often leads to failure of the segmentation process in commercial algorithms. This study introduces an in-house 3D model-based segmentation approach used to compare both sequences by automatic 3D lumen segmentation, allowing for evaluation of differences of aortic lumen diameters as well as differences in length comparing both acquisition techniques at every possible location. Methods and materials Sixteen healthy volunteers underwent 1.5-T-MR Angiography (MRA). For each volunteer, two different MR sequences were performed, CE-MRA: gradient echo Turbo FLASH sequence and N-MRA: respiratory-and-cardiac-gated, T2-weighted 3D SSFP. Datasets were segmented using a 3D model-based ellipse-fitting approach with a single seed point placed manually above the celiac trunk. The segmented volumes were manually cropped from left subclavian artery to celiac trunk to avoid error due to side branches. Diameters, volumes and centerline length were computed for intraindividual comparison. For statistical analysis the Wilcoxon-Signed-Ranked-Test was used. Results Average centerline length obtained based on N-MRA was 239.0±23.4 mm compared to 238.6±23.5 mm for CE-MRA without significant difference (P=0.877). Average maximum diameter obtained based on N-MRA was 25.7±3.3 mm compared to 24.1±3.2 mm for CE-MRA (P<0.001). In agreement with the difference in diameters, volumes obtained based on N-MRA (100.1±35.4 cm3) were consistently and significantly larger compared to CE-MRA (89.2±30.0 cm3) (P<0.001). Conclusions 3D morphometry shows highly similar centerline lengths for N-MRA and CE-MRA, but systematically higher diameters and volumes for N-MRA. PMID:24834406
Burghard, Philipp; Plank, Fabian; Beyer, Christoph; Müller, Silvana; Dörler, Jakob; Zaruba, Marc-Michael; Pölzl, Leo; Pölzl, Gerhard; Klauser, Andrea; Rauch, Stefan; Barbieri, Fabian; Langer, Christian-Ekkehardt; Schgoer, Wilfried; Williamson, Eric E; Feuchtner, Gudrun
2018-06-04
To evaluate right ventricle (RV) function by coronary computed tomography angiography (CTA) using a novel automated three-dimensional (3D) RV volume segmentation tool in comparison with clinical reference modalities. Twenty-six patients with severe end-stage heart failure [left ventricle (LV) ejection fraction (EF) <35%] referred to CTA were enrolled. A specific individually tailored biphasic contrast agent injection protocol was designed (80%/20% high/low flow) was designed. Measurement of RV function [EF, end-diastolic volume (EDV), end-systolic volume (ESV)] by CTA was compared with tricuspid annular plane systolic excursion (TAPSE) by transthoracic echocardiography (TTE) and right heart invasive catheterisation (IC). Automated 3D RV volume segmentation was successful in 26 (100%) patients. Read-out time was 3 min 33 s (range, 1 min 50s-4 min 33s). RV EF by CTA was stronger correlated with right atrial pressure (RAP) by IC (r = -0.595; p = 0.006) but weaker with TAPSE (r = 0.366, p = 0.94). When comparing TAPSE with RAP by IC (r = -0.317, p = 0.231), a weak-to-moderate non-significant inverse correlation was found. Interobserver correlation was high with r = 0.96 (p < 0.001), r = 0.86 (p < 0.001) and r = 0.72 (p = 0.001) for RV EDV, ESV and EF, respectively. CT attenuation of the right atrium (RA) and right ventricle (RV) was 196.9 ± 75.3 and 217.5 ± 76.1 HU, respectively. Measurement of RV function by CTA using a novel 3D volumetric segmentation tool is fast and reliable by applying a dedicated biphasic injection protocol. The RV EF from CTA is a closer surrogate of RAP than TAPSE by TTE. • Evaluation of RV function by cardiac CTA by using a novel 3D volume segmentation tool is fast and reliable. • A biphasic contrast agent injection protocol ensures homogenous RV contrast attenuation. • Cardiac CT is a valuable alternative modality to CMR for the evaluation of RV function.
Ogris, Kathrin; Petrovic, Andreas; Scheicher, Sylvia; Sprenger, Hanna; Urschler, Martin; Hassler, Eva Maria; Yen, Kathrin; Scheurer, Eva
2017-06-01
In legal medicine, reliable localization and analysis of hematomas in subcutaneous fatty tissue is required for forensic reconstruction. Due to the absence of ionizing radiation, magnetic resonance imaging (MRI) is particularly suited to examining living persons with forensically relevant injuries. However, there is limited experience regarding MRI signal properties of hemorrhage in soft tissue. The aim of this study was to evaluate MR sequences with respect to their ability to show high contrast between hematomas and subcutaneous fatty tissue as well as to reliably determine the volume of artificial hematomas. Porcine tissue models were prepared by injecting blood into the subcutaneous fatty tissue to create artificial hematomas. MR images were acquired at 3T and four blinded observers conducted manual segmentation of the hematomas. To assess segmentability, the agreement of measured volume with the known volume of injected blood was statistically analyzed. A physically motivated normalization taking into account partial volume effect was applied to the data to ensure comparable results among differently sized hematomas. The inversion recovery sequence exhibited the best segmentability rate, whereas the T1T2w turbo spin echo sequence showed the most accurate results regarding volume estimation. Both sequences led to reproducible volume estimations. This study demonstrates that MRI is a promising forensic tool to assess and visualize even very small amounts of blood in soft tissue. The presented results enable the improvement of protocols for detection and volume determination of hemorrhage in forensically relevant cases and also provide fundamental knowledge for future in-vivo examinations.
Twelve automated thresholding methods for segmentation of PET images: a phantom study.
Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M
2012-06-21
Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical (18)F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.
Twelve automated thresholding methods for segmentation of PET images: a phantom study
NASA Astrophysics Data System (ADS)
Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M.
2012-06-01
Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical 18F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.
Population segmentation: an approach to reducing childhood obesity inequalities.
Mahmood, Hashum; Lowe, Susan
2017-05-01
The aims of this study are threefold: (1) to investigate the relationship between socio-economic status (inequality) and childhood obesity prevalence within Birmingham local authority, (2) to identify any change in childhood obesity prevalence between deprivation quintiles and (3) to analyse individualised Birmingham National Child Measurement Programme (NCMP) data using a population segmentation tool to better inform obesity prevention strategies. Data from the NCMP for Birmingham (2010/2011 and 2014/2015) were analysed using the deprivation scores from the Income Domain Affecting Children Index (IDACI 2010). The percentage of children with excess weight was calculated for each local deprivation quintile. Population segmentation was carried out using the Experian's Mosaic Public Sector 6 (MPS6) segmentation tool. Childhood obesity levels have remained static at the national and Birmingham level. For Year 6 pupils, obesity levels have increased in the most deprived deprivation quintiles for boys and girls. The most affluent quintile shows a decreasing trend of obesity prevalence for boys and girls in both year groups. For the middle quintiles, the results show fluctuating trends. This research highlighted the link in Birmingham between obesity and socio-economic factors with the gap increasing between deprivation quintiles. Obesity is a complex problem that cannot simply be addressed through targeting most deprived populations, rather through a range of effective interventions tailored for the various population segments that reside within communities. Using population segmentation enables a more nuanced understanding of the potential barriers and levers within populations on their readiness for change. The segmentation of childhood obesity data will allow utilisation of social marketing methodology that will facilitate identification of suitable methods for interventions and motivate individuals to sustain behavioural change. Sequentially, it will also inform policy makers to commission the most appropriate interventions.
1994-07-01
REQUIRED MIX OF SEGMENTS OR INDIVIDUAL DATA ELEMENTS TO BE EXTRACTED. IN SEGMENT R ON AN INTERROGATION TRANSACTION (LTI), DATA RECORD NUMBER (DRN 0950) ONLY...and zation and Marketing input DICs. insert the Continuation Indicator Code (DRN 8555) in position 80 of this record. Maximum of OF The assigned NSN...for Procurement KFR, File Data Minus Security Classified Characteristics Data KFC 8.5-2 DoD 4100.39-M Volume 8 CHAPTER 5 ALPHABETIC INDEX OF DIC
NASA Astrophysics Data System (ADS)
Xu, Robert S.; Michailovich, Oleg V.; Solovey, Igor; Salama, Magdy M. A.
2010-03-01
Prostate specific antigen density is an established parameter for indicating the likelihood of prostate cancer. To this end, the size and volume of the gland have become pivotal quantities used by clinicians during the standard cancer screening process. As an alternative to manual palpation, an increasing number of volume estimation methods are based on the imagery data of the prostate. The necessity to process large volumes of such data requires automatic segmentation algorithms, which can accurately and reliably identify the true prostate region. In particular, transrectal ultrasound (TRUS) imaging has become a standard means of assessing the prostate due to its safe nature and high benefit-to-cost ratio. Unfortunately, modern TRUS images are still plagued by many ultrasound imaging artifacts such as speckle noise and shadowing, which results in relatively low contrast and reduced SNR of the acquired images. Consequently, many modern segmentation methods incorporate prior knowledge about the prostate geometry to enhance traditional segmentation techniques. In this paper, a novel approach to the problem of TRUS segmentation, particularly the definition of the prostate shape prior, is presented. The proposed approach is based on the concept of distribution tracking, which provides a unified framework for tracking both photometric and morphological features of the prostate. In particular, the tracking of morphological features defines a novel type of "weak" shape priors. The latter acts as a regularization force, which minimally bias the segmentation procedure, while rendering the final estimate stable and robust. The value of the proposed methodology is demonstrated in a series of experiments.
Kim, Hyungjin; Lee, Sang Min; Lee, Hyun-Ju; Goo, Jin Mo
2013-01-01
Objective To compare the segmentation capability of the 2 currently available commercial volumetry software programs with specific segmentation algorithms for pulmonary ground-glass nodules (GGNs) and to assess their measurement accuracy. Materials and Methods In this study, 55 patients with 66 GGNs underwent unenhanced low-dose CT. GGN segmentation was performed by using 2 volumetry software programs (LungCARE, Siemens Healthcare; LungVCAR, GE Healthcare). Successful nodule segmentation was assessed visually and morphologic features of GGNs were evaluated to determine factors affecting segmentation by both types of software. In addition, the measurement accuracy of the software programs was investigated by using an anthropomorphic chest phantom containing simulated GGNs. Results The successful nodule segmentation rate was significantly higher in LungCARE (90.9%) than in LungVCAR (72.7%) (p = 0.012). Vascular attachment was a negatively influencing morphologic feature of nodule segmentation for both software programs. As for measurement accuracy, mean relative volume measurement errors in nodules ≥ 10 mm were 14.89% with LungCARE and 19.96% with LungVCAR. The mean relative attenuation measurement errors in nodules ≥ 10 mm were 3.03% with LungCARE and 5.12% with LungVCAR. Conclusion LungCARE shows significantly higher segmentation success rates than LungVCAR. Measurement accuracy of volume and attenuation of GGNs is acceptable in GGNs ≥ 10 mm by both software programs. PMID:23901328
2D/3D fetal cardiac dataset segmentation using a deformable model.
Dindoyal, Irving; Lambrou, Tryphon; Deng, Jing; Todd-Pokropek, Andrew
2011-07-01
To segment the fetal heart in order to facilitate the 3D assessment of the cardiac function and structure. Ultrasound acquisition typically results in drop-out artifacts of the chamber walls. The authors outline a level set deformable model to automatically delineate the small fetal cardiac chambers. The level set is penalized from growing into an adjacent cardiac compartment using a novel collision detection term. The region based model allows simultaneous segmentation of all four cardiac chambers from a user defined seed point placed in each chamber. The segmented boundaries are automatically penalized from intersecting at walls with signal dropout. Root mean square errors of the perpendicular distances between the algorithm's delineation and manual tracings are within 2 mm which is less than 10% of the length of a typical fetal heart. The ejection fractions were determined from the 3D datasets. We validate the algorithm using a physical phantom and obtain volumes that are comparable to those from physically determined means. The algorithm segments volumes with an error of within 13% as determined using a physical phantom. Our original work in fetal cardiac segmentation compares automatic and manual tracings to a physical phantom and also measures inter observer variation.
Huo, Yuankai; Xu, Zhoubing; Bao, Shunxing; Bermudez, Camilo; Plassard, Andrew J.; Liu, Jiaqi; Yao, Yuang; Assad, Albert; Abramson, Richard G.; Landman, Bennett A.
2018-01-01
Spleen volume estimation using automated image segmentation technique may be used to detect splenomegaly (abnormally enlarged spleen) on Magnetic Resonance Imaging (MRI) scans. In recent years, Deep Convolutional Neural Networks (DCNN) segmentation methods have demonstrated advantages for abdominal organ segmentation. However, variations in both size and shape of the spleen on MRI images may result in large false positive and false negative labeling when deploying DCNN based methods. In this paper, we propose the Splenomegaly Segmentation Network (SSNet) to address spatial variations when segmenting extraordinarily large spleens. SSNet was designed based on the framework of image-to-image conditional generative adversarial networks (cGAN). Specifically, the Global Convolutional Network (GCN) was used as the generator to reduce false negatives, while the Markovian discriminator (PatchGAN) was used to alleviate false positives. A cohort of clinically acquired 3D MRI scans (both T1 weighted and T2 weighted) from patients with splenomegaly were used to train and test the networks. The experimental results demonstrated that a mean Dice coefficient of 0.9260 and a median Dice coefficient of 0.9262 using SSNet on independently tested MRI volumes of patients with splenomegaly.
NASA Astrophysics Data System (ADS)
Wierts, R.; Jentzen, W.; Quick, H. H.; Wisselink, H. J.; Pooters, I. N. A.; Wildberger, J. E.; Herrmann, K.; Kemerink, G. J.; Backes, W. H.; Mottaghy, F. M.
2018-01-01
The aim was to investigate the quantitative performance of 124I PET/MRI for pre-therapy lesion dosimetry in differentiated thyroid cancer (DTC). Phantom measurements were performed on a PET/MRI system (Biograph mMR, Siemens Healthcare) using 124I and 18F. The PET calibration factor and the influence of radiofrequency coil attenuation were determined using a cylindrical phantom homogeneously filled with radioactivity. The calibration factor was 1.00 ± 0.02 for 18F and 0.88 ± 0.02 for 124I. Near the radiofrequency surface coil an underestimation of less than 5% in radioactivity concentration was observed. Soft-tissue sphere recovery coefficients were determined using the NEMA IEC body phantom. Recovery coefficients were systematically higher for 18F than for 124I. In addition, the six spheres of the phantom were segmented using a PET-based iterative segmentation algorithm. For all 124I measurements, the deviations in segmented lesion volume and mean radioactivity concentration relative to the actual values were smaller than 15% and 25%, respectively. The effect of MR-based attenuation correction (three- and four-segment µ-maps) on bone lesion quantification was assessed using radioactive spheres filled with a K2HPO4 solution mimicking bone lesions. The four-segment µ-map resulted in an underestimation of the imaged radioactivity concentration of up to 15%, whereas the three-segment µ-map resulted in an overestimation of up to 10%. For twenty lesions identified in six patients, a comparison of 124I PET/MRI to PET/CT was performed with respect to segmented lesion volume and radioactivity concentration. The interclass correlation coefficients showed excellent agreement in segmented lesion volume and radioactivity concentration (0.999 and 0.95, respectively). In conclusion, it is feasible that accurate quantitative 124I PET/MRI could be used to perform radioiodine pre-therapy lesion dosimetry in DTC.
Atalay, Hasan Anıl; Canat, Lutfi; Bayraktarlı, Recep; Alkan, Ilter; Can, Osman; Altunrende, Fatih
2017-06-23
We analyzed our stone-free rates of PNL with regard to stone burden and its ratio to the renal collecting system volume. Data of 164 patients who underwent PNL were analyzed retrospectively. Volume segmentation of renal collecting system and stones were done using 3D segmentation software with the images obtained from CT data. Analyzed stone volume (ASV) and renal collecting system volume (RCSV) were measured and the ASV-to-RCSV ratio was calculated after the creation of a 3D surface volume rendering of renal stones and the collecting system. Univariate and multivariate statistical analyses were performed to determine factors affecting stone-free rates; also we assessed the predictive accuracy of the ASV-to-RCSV ratio using the receiving operating curve (ROC) and AUC. The stone-free rate of PNL monotherapy was 53% (164 procedures).The ASV-to-RCSV ratio and calyx number with stones were the most influential predictors of stone-free status (OR 4.15, 95% CI 2.24-7.24, <0.001, OR 2.62, 95% CI 1.38-4.97, p < 0.001, respectively). Other factors associated with the stone-free rate were maximum stone size (p < 0.029), stone surface area (p < 0.010), and stone burden volume (p < 0.001). Predictive accuracy of the ASV-to-RCSV ratio was AUC 0.76. Stone burden volume distribution in the renal collecting system, which is calculated using the 3D volume segmentation method, is a significant determinant of the stone-free rate before PCNL surgery. It could be used as a single guide variable by the clinician before renal stone surgery to predict extra requirements for stone clearance.
Influence of stapling the intersegmental planes on lung volume and function after segmentectomy.
Tao, Hiroyuki; Tanaka, Toshiki; Hayashi, Tatsuro; Yoshida, Kumiko; Furukawa, Masashi; Yoshiyama, Koichi; Okabe, Kazunori
2016-10-01
Dividing the intersegmental planes with a stapler during pulmonary segmentectomy leads to volume loss in the remnant segment. The aim of this study was to assess the influence of segment division methods on preserved lung volume and pulmonary function after segmentectomy. Using image analysis software on computed tomography (CT) images of 41 patients, the ratio of remnant segment and ipsilateral lung volume to their preoperative values (R-seg and R-ips) was calculated. The ratio of postoperative actual forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) per those predicted values based on three-dimensional volumetry (R-FEV1 and R-FVC) was also calculated. Differences in actual/predicted ratios of lung volume and pulmonary function for each of the division methods were analysed. We also investigated the correlations of the actual/predicted ratio of remnant lung volume with that of postoperative pulmonary function. The intersegmental planes were divided by either electrocautery or with a stapler in 22 patients and with a stapler alone in 19 patients. Mean values of R-seg and R-ips were 82.7 (37.9-140.2) and 104.9 (77.5-129.2)%, respectively. The mean values of R-FEV1 and R-FVC were 103.9 (83.7-135.1) and 103.4 (82.2-125.1)%, respectively. There were no correlations between the actual/predicted ratio of remnant lung volume and pulmonary function based on the division method. Both R-FEV1 and R-FVC were correlated not with R-seg, but with R-ips. Stapling does not lead to less preserved volume or function than electrocautery in the division of the intersegmental planes. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Renal cortex segmentation using optimal surface search with novel graph construction.
Li, Xiuli; Chen, Xinjian; Yao, Jianhua; Zhang, Xing; Tian, Jie
2011-01-01
In this paper, we propose a novel approach to solve the renal cortex segmentation problem, which has rarely been studied. In this study, the renal cortex segmentation problem is handled as a multiple-surfaces extraction problem, which is solved using the optimal surface search method. We propose a novel graph construction scheme in the optimal surface search to better accommodate multiple surfaces. Different surface sub-graphs are constructed according to their properties, and inter-surface relationships are also modeled in the graph. The proposed method was tested on 17 clinical CT datasets. The true positive volume fraction (TPVF) and false positive volume fraction (FPVF) are 74.10% and 0.08%, respectively. The experimental results demonstrate the effectiveness of the proposed method.
Volume estimation of brain abnormalities in MRI data
NASA Astrophysics Data System (ADS)
Suprijadi, Pratama, S. H.; Haryanto, F.
2014-02-01
The abnormality of brain tissue always becomes a crucial issue in medical field. This medical condition can be recognized through segmentation of certain region from medical images obtained from MRI dataset. Image processing is one of computational methods which very helpful to analyze the MRI data. In this study, combination of segmentation and rendering image were used to isolate tumor and stroke. Two methods of thresholding were employed to segment the abnormality occurrence, followed by filtering to reduce non-abnormality area. Each MRI image is labeled and then used for volume estimations of tumor and stroke-attacked area. The algorithms are shown to be successful in isolating tumor and stroke in MRI images, based on thresholding parameter and stated detection accuracy.
NASA Astrophysics Data System (ADS)
Bolan, B. A.; Soles, C. L.; Hristov, H. A.; Gidley, D. W.; Yee, A. F.
1996-03-01
A new method is proposed for the evaluation of the hole volume in amorphous polymers based upon PALS data measured over a temperature of 110 to 480 K. Extrapolation of the "open hole" volume to 0 K allows its separation into that attributed to the segmental motions of the polymer chains (dynamic) and that due to inefficient packing (static). The dynamic hole volume is correlated to thermodynamic volume/density fluctuations and its temperature dependencies are in good agreement with SAXS data. Several thermosetting epoxy materials are also studied over a similar temperature range with the "open hole" volume being separated into its dynamic and static components. How these two components affect diffusional properties of these systems is examined in detail. It is also shown that the o-Ps can localize in a nearly 100material (PET), we therefore conclude that PALS measures more than the "free volume" necessary for segmental motion. Work supported by the Air Force Office of Scientific Research (AFOSR) grant # F49620-95-1-0037.
Kline, Timothy L; Korfiatis, Panagiotis; Edwards, Marie E; Blais, Jaime D; Czerwiec, Frank S; Harris, Peter C; King, Bernard F; Torres, Vicente E; Erickson, Bradley J
2017-08-01
Deep learning techniques are being rapidly applied to medical imaging tasks-from organ and lesion segmentation to tissue and tumor classification. These techniques are becoming the leading algorithmic approaches to solve inherently difficult image processing tasks. Currently, the most critical requirement for successful implementation lies in the need for relatively large datasets that can be used for training the deep learning networks. Based on our initial studies of MR imaging examinations of the kidneys of patients affected by polycystic kidney disease (PKD), we have generated a unique database of imaging data and corresponding reference standard segmentations of polycystic kidneys. In the study of PKD, segmentation of the kidneys is needed in order to measure total kidney volume (TKV). Automated methods to segment the kidneys and measure TKV are needed to increase measurement throughput and alleviate the inherent variability of human-derived measurements. We hypothesize that deep learning techniques can be leveraged to perform fast, accurate, reproducible, and fully automated segmentation of polycystic kidneys. Here, we describe a fully automated approach for segmenting PKD kidneys within MR images that simulates a multi-observer approach in order to create an accurate and robust method for the task of segmentation and computation of TKV for PKD patients. A total of 2000 cases were used for training and validation, and 400 cases were used for testing. The multi-observer ensemble method had mean ± SD percent volume difference of 0.68 ± 2.2% compared with the reference standard segmentations. The complete framework performs fully automated segmentation at a level comparable with interobserver variability and could be considered as a replacement for the task of segmentation of PKD kidneys by a human.
Automated tissue segmentation of MR brain images in the presence of white matter lesions.
Valverde, Sergi; Oliver, Arnau; Roura, Eloy; González-Villà, Sandra; Pareto, Deborah; Vilanova, Joan C; Ramió-Torrentà, Lluís; Rovira, Àlex; Lladó, Xavier
2017-01-01
Over the last few years, the increasing interest in brain tissue volume measurements on clinical settings has led to the development of a wide number of automated tissue segmentation methods. However, white matter lesions are known to reduce the performance of automated tissue segmentation methods, which requires manual annotation of the lesions and refilling them before segmentation, which is tedious and time-consuming. Here, we propose a new, fully automated T1-w/FLAIR tissue segmentation approach designed to deal with images in the presence of WM lesions. This approach integrates a robust partial volume tissue segmentation with WM outlier rejection and filling, combining intensity and probabilistic and morphological prior maps. We evaluate the performance of this method on the MRBrainS13 tissue segmentation challenge database, which contains images with vascular WM lesions, and also on a set of Multiple Sclerosis (MS) patient images. On both databases, we validate the performance of our method with other state-of-the-art techniques. On the MRBrainS13 data, the presented approach was at the time of submission the best ranked unsupervised intensity model method of the challenge (7th position) and clearly outperformed the other unsupervised pipelines such as FAST and SPM12. On MS data, the differences in tissue segmentation between the images segmented with our method and the same images where manual expert annotations were used to refill lesions on T1-w images before segmentation were lower or similar to the best state-of-the-art pipeline incorporating automated lesion segmentation and filling. Our results show that the proposed pipeline achieved very competitive results on both vascular and MS lesions. A public version of this approach is available to download for the neuro-imaging community. Copyright © 2016 Elsevier B.V. All rights reserved.
Concurrent Tumor Segmentation and Registration with Uncertainty-based Sparse non-Uniform Graphs
Parisot, Sarah; Wells, William; Chemouny, Stéphane; Duffau, Hugues; Paragios, Nikos
2014-01-01
In this paper, we present a graph-based concurrent brain tumor segmentation and atlas to diseased patient registration framework. Both segmentation and registration problems are modeled using a unified pairwise discrete Markov Random Field model on a sparse grid superimposed to the image domain. Segmentation is addressed based on pattern classification techniques, while registration is performed by maximizing the similarity between volumes and is modular with respect to the matching criterion. The two problems are coupled by relaxing the registration term in the tumor area, corresponding to areas of high classification score and high dissimilarity between volumes. In order to overcome the main shortcomings of discrete approaches regarding appropriate sampling of the solution space as well as important memory requirements, content driven samplings of the discrete displacement set and the sparse grid are considered, based on the local segmentation and registration uncertainties recovered by the min marginal energies. State of the art results on a substantial low-grade glioma database demonstrate the potential of our method, while our proposed approach shows maintained performance and strongly reduced complexity of the model. PMID:24717540
Brain segmentation and the generation of cortical surfaces
NASA Technical Reports Server (NTRS)
Joshi, M.; Cui, J.; Doolittle, K.; Joshi, S.; Van Essen, D.; Wang, L.; Miller, M. I.
1999-01-01
This paper describes methods for white matter segmentation in brain images and the generation of cortical surfaces from the segmentations. We have developed a system that allows a user to start with a brain volume, obtained by modalities such as MRI or cryosection, and constructs a complete digital representation of the cortical surface. The methodology consists of three basic components: local parametric modeling and Bayesian segmentation; surface generation and local quadratic coordinate fitting; and surface editing. Segmentations are computed by parametrically fitting known density functions to the histogram of the image using the expectation maximization algorithm [DLR77]. The parametric fits are obtained locally rather than globally over the whole volume to overcome local variations in gray levels. To represent the boundary of the gray and white matter we use triangulated meshes generated using isosurface generation algorithms [GH95]. A complete system of local parametric quadratic charts [JWM+95] is superimposed on the triangulated graph to facilitate smoothing and geodesic curve tracking. Algorithms for surface editing include extraction of the largest closed surface. Results for several macaque brains are presented comparing automated and hand surface generation. Copyright 1999 Academic Press.
Engine Hydraulic Stability. [injector model for analyzing combustion instability
NASA Technical Reports Server (NTRS)
Kesselring, R. C.; Sprouse, K. M.
1977-01-01
An analytical injector model was developed specifically to analyze combustion instability coupling between the injector hydraulics and the combustion process. This digital computer dynamic injector model will, for any imposed chamber of inlet pressure profile with a frequency ranging from 100 to 3000 Hz (minimum) accurately predict/calculate the instantaneous injector flowrates. The injector system is described in terms of which flow segments enter and leave each pressure node. For each flow segment, a resistance, line lengths, and areas are required as inputs (the line lengths and areas are used in determining inertance). For each pressure node, volume and acoustic velocity are required as inputs (volume and acoustic velocity determine capacitance). The geometric criteria for determining inertances of flow segments and capacitance of pressure nodes was set. Also, a technique was developed for analytically determining time averaged steady-state pressure drops and flowrates for every flow segment in an injector when such data is not known. These pressure drops and flowrates are then used in determining the linearized flow resistance for each line segment of flow.
Haufe, Stefan; Huang, Yu; Parra, Lucas C
2015-08-01
In electroencephalographic (EEG) source imaging as well as in transcranial current stimulation (TCS), it is common to model the head using either three-shell boundary element (BEM) or more accurate finite element (FEM) volume conductor models. Since building FEMs is computationally demanding and labor intensive, they are often extensively reused as templates even for subjects with mismatching anatomies. BEMs can in principle be used to efficiently build individual volume conductor models; however, the limiting factor for such individualization are the high acquisition costs of structural magnetic resonance images. Here, we build a highly detailed (0.5mm(3) resolution, 6 tissue type segmentation, 231 electrodes) FEM based on the ICBM152 template, a nonlinear average of 152 adult human heads, which we call ICBM-NY. We show that, through more realistic electrical modeling, our model is similarly accurate as individual BEMs. Moreover, through using an unbiased population average, our model is also more accurate than FEMs built from mismatching individual anatomies. Our model is made available in Matlab format.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-01
... population segment must meet in order to be considered a DPS (61 FR 4721): 1. It must be discrete in relation... which it belongs. Determining if a population is discrete requires either one of the following... population is deemed discrete, then the population segment is evaluated in terms of significance, which may...
20 CFR 632.87 - Equitable provision of services to the eligible population and significant segments.
Code of Federal Regulations, 2011 CFR
2011-04-01
... eligible population and significant segments. 632.87 Section 632.87 Employees' Benefits EMPLOYMENT AND... Program Design and Management § 632.87 Equitable provision of services to the eligible population and... system is in place to afford all members of the eligible population within the service area for which the...
20 CFR 632.87 - Equitable provision of services to the eligible population and significant segments.
Code of Federal Regulations, 2012 CFR
2012-04-01
... eligible population and significant segments. 632.87 Section 632.87 Employees' Benefits EMPLOYMENT AND... Program Design and Management § 632.87 Equitable provision of services to the eligible population and... system is in place to afford all members of the eligible population within the service area for which the...
20 CFR 632.87 - Equitable provision of services to the eligible population and significant segments.
Code of Federal Regulations, 2010 CFR
2010-04-01
... eligible population and significant segments. 632.87 Section 632.87 Employees' Benefits EMPLOYMENT AND... Program Design and Management § 632.87 Equitable provision of services to the eligible population and... system is in place to afford all members of the eligible population within the service area for which the...
Souto Bayarri, M; Masip Capdevila, L; Remuiñan Pereira, C; Suárez-Cuenca, J J; Martínez Monzonís, A; Couto Pérez, M I; Carreira Villamor, J M
2015-01-01
To compare the methods of right ventricle segmentation in the short-axis and 4-chamber planes in cardiac magnetic resonance imaging and to correlate the findings with those of the tricuspid annular plane systolic excursion (TAPSE) method in echocardiography. We used a 1.5T MRI scanner to study 26 patients with diverse cardiovascular diseases. In all MRI studies, we obtained cine-mode images from the base to the apex in both the short-axis and 4-chamber planes using steady-state free precession sequences and 6mm thick slices. In all patients, we quantified the end-diastolic volume, end-systolic volume, and the ejection fraction of the right ventricle. On the same day as the cardiac magnetic resonance imaging study, 14 patients also underwent echocardiography with TAPSE calculation of right ventricular function. No statistically significant differences were found in the volumes and function of the right ventricle calculated using the 2 segmentation methods. The correlation between the volume estimations by the two segmentation methods was excellent (r=0,95); the correlation for the ejection fraction was slightly lower (r=0,8). The correlation between the cardiac magnetic resonance imaging estimate of right ventricular ejection fraction and TAPSE was very low (r=0,2, P<.01). Both ventricular segmentation methods quantify right ventricular function adequately. The correlation with the echocardiographic method is low. Copyright © 2012 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
de Hoop, Bartjan; Gietema, Hester; van Ginneken, Bram; Zanen, Pieter; Groenewegen, Gerard; Prokop, Mathias
2009-04-01
We compared interexamination variability of CT lung nodule volumetry with six currently available semi-automated software packages to determine the minimum change needed to detect the growth of solid lung nodules. We had ethics committee approval. To simulate a follow-up examination with zero growth, we performed two low-dose unenhanced CT scans in 20 patients referred for pulmonary metastases. Between examinations, patients got off and on the table. Volumes of all pulmonary nodules were determined on both examinations using six nodule evaluation software packages. Variability (upper limit of the 95% confidence interval of the Bland-Altman plot) was calculated for nodules for which segmentation was visually rated as adequate. We evaluated 214 nodules (mean diameter 10.9 mm, range 3.3 mm-30.0 mm). Software packages provided adequate segmentation in 71% to 86% of nodules (p < 0.001). In case of adequate segmentation, variability in volumetry between scans ranged from 16.4% to 22.3% for the various software packages. Variability with five to six software packages was significantly less for nodules >or=8 mm in diameter (range 12.9%-17.1%) than for nodules <8 mm (range 18.5%-25.6%). Segmented volumes of each package were compared to each of the other packages. Systematic volume differences were detected in 11/15 comparisons. This hampers comparison of nodule volumes between software packages.
NASA Astrophysics Data System (ADS)
Kobayashi, Yusuke; Watanabe, Teiji
2017-04-01
This study has three objectives: (1) to estimate changes of the eroded volume of mountain trails from 2014 to 2016 by making DSMs, (2) to understand a relationship between the trail erosion and micro-topography, and (3) to predict the volume of soil that can be eroded in future. Trail erosion has been investigated near Mt. Hokkai-dake in Daisetzuzan National Park, Hokkaido, northern Japan, with a drone (UAV) from 2014 to 2016. Seven segments with the soil erosion from starting sites to ending sites were selected to make DSMs and Orthophotographs by Agisoft, which is one of the Structure from Motion (SfM) software. Then, at fourteen points in each of the seven segments were selected to estimate the volume of soil that can be eroded in the future by PANDA2, a soil compaction penetrometer. The eroded volume in the segment with the largest eroded value attained 274.67 m3 for the two-year period although extremely heavy rain hit this area in the 2016 summer. The result obtained by PANDA2 shows that soil more than 100 cm in depth will be potentially eroded at four points in three years to one hundred years.
Malherbe, Stephanus T; Dupont, Patrick; Kant, Ilse; Ahlers, Petri; Kriel, Magdalena; Loxton, André G; Chen, Ray Y; Via, Laura E; Thienemann, Friedrich; Wilkinson, Robert J; Barry, Clifton E; Griffith-Richards, Stephanie; Ellman, Annare; Ronacher, Katharina; Winter, Jill; Walzl, Gerhard; Warwick, James M
2018-06-25
There is a growing interest in the use of 18 F-FDG PET-CT to monitor tuberculosis (TB) treatment response. However, TB causes complex and widespread pathology, which is challenging to segment and quantify in a reproducible manner. To address this, we developed a technique to standardise uptake (Z-score), segment and quantify tuberculous lung lesions on PET and CT concurrently, in order to track changes over time. We used open source tools and created a MATLAB script. The technique was optimised on a training set of five pulmonary tuberculosis (PTB) cases after standard TB therapy and 15 control patients with lesion-free lungs. We compared the proposed method to a fixed threshold (SUV > 1) and manual segmentation by two readers and piloted the technique successfully on scans of five control patients and five PTB cases (four cured and one failed treatment case), at diagnosis and after 1 and 6 months of treatment. There was a better correlation between the Z-score-based segmentation and manual segmentation than SUV > 1 and manual segmentation in terms of overall spatial overlap (measured in Dice similarity coefficient) and specificity (1 minus false positive volume fraction). However, SUV > 1 segmentation appeared more sensitive. Both the Z-score and SUV > 1 showed very low variability when measuring change over time. In addition, total glycolytic activity, calculated using segmentation by Z-score and lesion-to-background ratio, correlated well with traditional total glycolytic activity calculations. The technique quantified various PET and CT parameters, including the total glycolytic activity index, metabolic lesion volume, lesion volumes at different CT densities and combined PET and CT parameters. The quantified metrics showed a marked decrease in the cured cases, with changes already apparent at month one, but remained largely unchanged in the failed treatment case. Our technique is promising to segment and quantify the lung scans of pulmonary tuberculosis patients in a semi-automatic manner, appropriate for measuring treatment response. Further validation is required in larger cohorts.
Liu, Ting; Maurovich-Horvat, Pál; Mayrhofer, Thomas; Puchner, Stefan B; Lu, Michael T; Ghemigian, Khristine; Kitslaar, Pieter H; Broersen, Alexander; Pursnani, Amit; Hoffmann, Udo; Ferencik, Maros
2018-02-01
Semi-automated software can provide quantitative assessment of atherosclerotic plaques on coronary CT angiography (CTA). The relationship between established qualitative high-risk plaque features and quantitative plaque measurements has not been studied. We analyzed the association between quantitative plaque measurements and qualitative high-risk plaque features on coronary CTA. We included 260 patients with plaque who underwent coronary CTA in the Rule Out Myocardial Infarction/Ischemia Using Computer Assisted Tomography (ROMICAT) II trial. Quantitative plaque assessment and qualitative plaque characterization were performed on a per coronary segment basis. Quantitative coronary plaque measurements included plaque volume, plaque burden, remodeling index, and diameter stenosis. In qualitative analysis, high-risk plaque was present if positive remodeling, low CT attenuation plaque, napkin-ring sign or spotty calcium were detected. Univariable and multivariable logistic regression analyses were performed to assess the association between quantitative and qualitative high-risk plaque assessment. Among 888 segments with coronary plaque, high-risk plaque was present in 391 (44.0%) segments by qualitative analysis. In quantitative analysis, segments with high-risk plaque had higher total plaque volume, low CT attenuation plaque volume, plaque burden and remodeling index. Quantitatively assessed low CT attenuation plaque volume (odds ratio 1.12 per 1 mm 3 , 95% CI 1.04-1.21), positive remodeling (odds ratio 1.25 per 0.1, 95% CI 1.10-1.41) and plaque burden (odds ratio 1.53 per 0.1, 95% CI 1.08-2.16) were associated with high-risk plaque. Quantitative coronary plaque characteristics (low CT attenuation plaque volume, positive remodeling and plaque burden) measured by semi-automated software correlated with qualitative assessment of high-risk plaque features.
Differential effects of lower body negative pressure and upright tilt on splanchnic blood volume
Taneja, Indu; Moran, Christopher; Medow, Marvin S.; Glover, June L.; Montgomery, Leslie D.; Stewart, Julian M.
2015-01-01
Upright posture and lower body negative pressure (LBNP) both induce reductions in central blood volume. However, regional circulatory responses to postural changes and LBNP may differ. Therefore, we studied regional blood flow and blood volume changes in 10 healthy subjects undergoing graded lower-body negative pressure (−10 to −50 mmHg) and 8 subjects undergoing incremental head-up tilt (HUT; 20°, 40°, and 70°) on separate days. We continuously measured blood pressure (BP), heart rate, and regional blood volumes and blood flows in the thoracic, splanchnic, pelvic, and leg segments by impedance plethysmography and calculated regional arterial resistances. Neither LBNP nor HUT altered systolic BP, whereas pulse pressure decreased significantly. Blood flow decreased in all segments, whereas peripheral resistances uniformly and significantly increased with both HUT and LBNP. Thoracic volume decreased while pelvic and leg volumes increased with HUT and LBNP. However, splanchnic volume changes were directionally opposite with stepwise decreases in splanchnic volume with LBNP and stepwise increases in splanchnic volume during HUT. Splanchnic emptying in LBNP models regional vascular changes during hemorrhage. Splanchnic filling may limit the ability of the splanchnic bed to respond to thoracic hypovolemia during upright posture. PMID:17085534
Ciernik, I Frank; Brown, Derek W; Schmid, Daniel; Hany, Thomas; Egli, Peter; Davis, J Bernard
2007-02-01
Volumetric assessment of PET signals becomes increasingly relevant for radiotherapy (RT) planning. Here, we investigate the utility of 18F-choline PET signals to serve as a structure for semi-automatic segmentation for forward treatment planning of prostate cancer. 18F-choline PET and CT scans of ten patients with histologically proven prostate cancer without extracapsular growth were acquired using a combined PET/CT scanner. Target volumes were manually delineated on CT images using standard software. Volumes were also obtained from 18F-choline PET images using an asymmetrical segmentation algorithm. PTVs were derived from CT 18F-choline PET based clinical target volumes (CTVs) by automatic expansion and comparative planning was performed. As a read-out for dose given to non-target structures, dose to the rectal wall was assessed. Planning target volumes (PTVs) derived from CT and 18F-choline PET yielded comparable results. Optimal matching of CT and 18F-choline PET derived volumes in the lateral and cranial-caudal directions was obtained using a background-subtracted signal thresholds of 23.0+/-2.6%. In antero-posterior direction, where adaptation compensating for rectal signal overflow was required, optimal matching was achieved with a threshold of 49.5+/-4.6%. 3D-conformal planning with CT or 18F-choline PET resulted in comparable doses to the rectal wall. Choline PET signals of the prostate provide adequate spatial information amendable to standardized asymmetrical region growing algorithms for PET-based target volume definition for external beam RT.
NASA Astrophysics Data System (ADS)
Natawidjaja, Danny Hilman; Bradley, Kyle; Daryono, Mudrik R.; Aribowo, Sonny; Herrin, Jason
2017-12-01
Over the last decade, studies of natural hazards in Sumatra have focused primarily on great earthquakes and associated tsunamis produced by rupture of the Sunda megathrust. However, the Sumatran Fault and the active volcanic arc present proximal hazards to populations on mainland Sumatra. At present, there is little reliable information on the maximum magnitudes and recurrence intervals of Sumatran Fault earthquakes, or the frequency of paroxysmal caldera-forming (VEI 7-8) eruptions. Here, we present new radiocarbon dates of paleosols buried under the voluminous Ranau Tuff that constrain the large caldera-forming eruption to around 33,830-33,450 calender year BP (95% probability). We use the lateral displacement of river channels incised into the Ranau Tuff to constrain the long-term slip rate of two segments of the Sumatran Fault. South of Ranau Lake, the Kumering segment preserves isochronous right-lateral channel offsets of approximately 350 ± 50 m, yielding a minimum slip rate of 10.4 ± 1.5 mm/year for the primary active fault trace. South of Suoh pull-apart depression, the West Semangko segment offsets the Semangko River by 230 ± 60 m, yielding an inferred slip rate of 6.8 ± 1.8 mm/year. Compared with previous studies, these results indicate more recent high-volume volcanism in South Sumatra and increased seismic potency of the southernmost segments of the Sumatran Fault Zone.
Automated aortic calcification detection in low-dose chest CT images
NASA Astrophysics Data System (ADS)
Xie, Yiting; Htwe, Yu Maw; Padgett, Jennifer; Henschke, Claudia; Yankelevitz, David; Reeves, Anthony P.
2014-03-01
The extent of aortic calcification has been shown to be a risk indicator for vascular events including cardiac events. We have developed a fully automated computer algorithm to segment and measure aortic calcification in low-dose noncontrast, non-ECG gated, chest CT scans. The algorithm first segments the aorta using a pre-computed Anatomy Label Map (ALM). Then based on the segmented aorta, aortic calcification is detected and measured in terms of the Agatston score, mass score, and volume score. The automated scores are compared with reference scores obtained from manual markings. For aorta segmentation, the aorta is modeled as a series of discrete overlapping cylinders and the aortic centerline is determined using a cylinder-tracking algorithm. Then the aortic surface location is detected using the centerline and a triangular mesh model. The segmented aorta is used as a mask for the detection of aortic calcification. For calcification detection, the image is first filtered, then an elevated threshold of 160 Hounsfield units (HU) is used within the aorta mask region to reduce the effect of noise in low-dose scans, and finally non-aortic calcification voxels (bony structures, calcification in other organs) are eliminated. The remaining candidates are considered as true aortic calcification. The computer algorithm was evaluated on 45 low-dose non-contrast CT scans. Using linear regression, the automated Agatston score is 98.42% correlated with the reference Agatston score. The automated mass and volume score is respectively 98.46% and 98.28% correlated with the reference mass and volume score.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios Velazquez, E; Meier, R; Dunn, W
Purpose: Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. Methods: MRI sets of 67 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA), including necrosis, edema, contrast enhancing and non-enhancing tumor. Spearman’s correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Results: Auto-segmented sub-volumes showedmore » high agreement with manually delineated volumes (range (r): 0.65 – 0.91). Also showed higher correlation with VASARI features (auto r = 0.35, 0.60 and 0.59; manual r = 0.29, 0.50, 0.43, for contrast-enhancing, necrosis and edema, respectively). The contrast-enhancing volume and post-contrast abnormal volume showed the highest C-index (0.73 and 0.72), comparable to manually defined volumes (p = 0.22 and p = 0.07, respectively). The non-enhancing region defined by BraTumIA showed a significantly higher prognostic value (CI = 0.71) than the edema (CI = 0.60), both of which could not be distinguished by manual delineation. Conclusion: BraTumIA tumor sub-compartments showed higher correlation with VASARI data, and equivalent performance in terms of prognosis compared to manual sub-volumes. This method can enable more reproducible definition and quantification of imaging based biomarkers and has a large potential in high-throughput medical imaging research.« less
Schinagl, Dominic A X; Vogel, Wouter V; Hoffmann, Aswin L; van Dalen, Jorn A; Oyen, Wim J; Kaanders, Johannes H A M
2007-11-15
Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with (18)F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may improve definition of the gross tumor volume (GTV). In this study, five methods for tumor delineation on FDG-PET are compared with CT-based delineation. Seventy-eight patients with Stages II-IV squamous cell carcinoma of the head and neck area underwent coregistered CT and FDG-PET. The primary tumor was delineated on CT, and five PET-based GTVs were obtained: visual interpretation, applying an isocontour of a standardized uptake value of 2.5, using a fixed threshold of 40% and 50% of the maximum signal intensity, and applying an adaptive threshold based on the signal-to-background ratio. Absolute GTV volumes were compared, and overlap analyses were performed. The GTV method of applying an isocontour of a standardized uptake value of 2.5 failed to provide successful delineation in 45% of cases. For the other PET delineation methods, volume and shape of the GTV were influenced heavily by the choice of segmentation tool. On average, all threshold-based PET-GTVs were smaller than on CT. Nevertheless, PET frequently detected significant tumor extension outside the GTV delineated on CT (15-34% of PET volume). The choice of segmentation tool for target-volume definition of head and neck cancer based on FDG-PET images is not trivial because it influences both volume and shape of the resulting GTV. With adequate delineation, PET may add significantly to CT- and physical examination-based GTV definition.
Wang, Li; Shi, Feng; Gao, Yaozong; Li, Gang; Gilmore, John H.; Lin, Weili; Shen, Dinggang
2014-01-01
Segmentation of infant brain MR images is challenging due to poor spatial resolution, severe partial volume effect, and the ongoing maturation and myelination process. During the first year of life, the brain image contrast between white and gray matters undergoes dramatic changes. In particular, the image contrast inverses around 6–8 months of age, where the white and gray matter tissues are isointense in T1 and T2 weighted images and hence exhibit the extremely low tissue contrast, posing significant challenges for automated segmentation. In this paper, we propose a general framework that adopts sparse representation to fuse the multi-modality image information and further incorporate the anatomical constraints for brain tissue segmentation. Specifically, we first derive an initial segmentation from a library of aligned images with ground-truth segmentations by using sparse representation in a patch-based fashion for the multi-modality T1, T2 and FA images. The segmentation result is further iteratively refined by integration of the anatomical constraint. The proposed method was evaluated on 22 infant brain MR images acquired at around 6 months of age by using a leave-one-out cross-validation, as well as other 10 unseen testing subjects. Our method achieved a high accuracy for the Dice ratios that measure the volume overlap between automated and manual segmentations, i.e., 0.889±0.008 for white matter and 0.870±0.006 for gray matter. PMID:24291615
Evaluation metrics for bone segmentation in ultrasound
NASA Astrophysics Data System (ADS)
Lougheed, Matthew; Fichtinger, Gabor; Ungi, Tamas
2015-03-01
Tracked ultrasound is a safe alternative to X-ray for imaging bones. The interpretation of bony structures is challenging as ultrasound has no specific intensity characteristic of bones. Several image segmentation algorithms have been devised to identify bony structures. We propose an open-source framework that would aid in the development and comparison of such algorithms by quantitatively measuring segmentation performance in the ultrasound images. True-positive and false-negative metrics used in the framework quantify algorithm performance based on correctly segmented bone and correctly segmented boneless regions. Ground-truth for these metrics are defined manually and along with the corresponding automatically segmented image are used for the performance analysis. Manually created ground truth tests were generated to verify the accuracy of the analysis. Further evaluation metrics for determining average performance per slide and standard deviation are considered. The metrics provide a means of evaluating accuracy of frames along the length of a volume. This would aid in assessing the accuracy of the volume itself and the approach to image acquisition (positioning and frequency of frame). The framework was implemented as an open-source module of the 3D Slicer platform. The ground truth tests verified that the framework correctly calculates the implemented metrics. The developed framework provides a convenient way to evaluate bone segmentation algorithms. The implementation fits in a widely used application for segmentation algorithm prototyping. Future algorithm development will benefit by monitoring the effects of adjustments to an algorithm in a standard evaluation framework.
Combining watershed and graph cuts methods to segment organs at risk in radiotherapy
NASA Astrophysics Data System (ADS)
Dolz, Jose; Kirisli, Hortense A.; Viard, Romain; Massoptier, Laurent
2014-03-01
Computer-aided segmentation of anatomical structures in medical images is a valuable tool for efficient radiation therapy planning (RTP). As delineation errors highly affect the radiation oncology treatment, it is crucial to delineate geometric structures accurately. In this paper, a semi-automatic segmentation approach for computed tomography (CT) images, based on watershed and graph-cuts methods, is presented. The watershed pre-segmentation groups small areas of similar intensities in homogeneous labels, which are subsequently used as input for the graph-cuts algorithm. This methodology does not require of prior knowledge of the structure to be segmented; even so, it performs well with complex shapes and low intensity. The presented method also allows the user to add foreground and background strokes in any of the three standard orthogonal views - axial, sagittal or coronal - making the interaction with the algorithm easy and fast. Hence, the segmentation information is propagated within the whole volume, providing a spatially coherent result. The proposed algorithm has been evaluated using 9 CT volumes, by comparing its segmentation performance over several organs - lungs, liver, spleen, heart and aorta - to those of manual delineation from experts. A Dicés coefficient higher than 0.89 was achieved in every case. That demonstrates that the proposed approach works well for all the anatomical structures analyzed. Due to the quality of the results, the introduction of the proposed approach in the RTP process will be a helpful tool for organs at risk (OARs) segmentation.
Reduced anterior insula, enlarged amygdala in alcoholism and associated depleted von Economo neurons
Senatorov, Vladimir V.; Damadzic, Ruslan; Mann, Claire L.; Schwandt, Melanie L.; George, David T.; Hommer, Daniel W.; Heilig, Markus
2015-01-01
The insula, a structure involved in higher order representation of interoceptive states, has recently been implicated in drug craving and social stress. Here, we performed brain magnetic resonance imaging to measure volumes of the insula and amygdala, a structure with reciprocal insular connections, in 26 alcohol-dependent patients and 24 healthy volunteers (aged 22–56 years, nine females in each group). We used an established morphometry method to quantify total and regional insular volumes. Volumetric measurements of the amygdala were obtained using a model-based segmentation/registration tool. In alcohol-dependent patients, anterior insula volumes were bilaterally reduced compared to healthy volunteers (left by 10%, right by 11%, normalized to total brain volumes). Furthermore, alcohol-dependent patients, compared with healthy volunteers, had bilaterally increased amygdala volumes. The left amygdala was increased by 28% and the right by 29%, normalized to total brain volumes. Post-mortem studies of the anterior insula showed that the reduced anterior insular volume may be associated with a population of von Economo neurons, which were 60% diminished in subjects with a history of alcoholism (n = 6) as compared to subjects without a history of alcoholism (n = 6) (aged 32–56 years, all males). The pattern of neuroanatomical change observed in our alcohol-dependent patients might result in a loss of top-down control of amygdala function, potentially contributing to impaired social cognition as well as an inability to control negatively reinforced alcohol seeking and use. PMID:25367022
Wang, Jieqiong; Miao, Wen; Li, Jing; Li, Meng; Zhen, Zonglei; Sabel, Bernhard; Xian, Junfang; He, Huiguang
2015-11-30
The lateral geniculate nucleus (LGN) is a key relay center of the visual system. Because the LGN morphology is affected by different diseases, it is of interest to analyze its morphology by segmentation. However, existing LGN segmentation methods are non-automatic, inefficient and prone to experimenters' bias. To address these problems, we proposed an automatic LGN segmentation algorithm based on T1-weighted imaging. First, the prior information of LGN was used to create a prior mask. Then region growing was applied to delineate LGN. We evaluated this automatic LGN segmentation method by (1) comparison with manually segmented LGN, (2) anatomically locating LGN in the visual system via LGN-based tractography, (3) application to control and glaucoma patients. The similarity coefficients of automatic segmented LGN and manually segmented one are 0.72 (0.06) for the left LGN and 0.77 (0.07) for the right LGN. LGN-based tractography shows the subcortical pathway seeding from LGN passes the optic tract and also reaches V1 through the optic radiation, which is consistent with the LGN location in the visual system. In addition, LGN asymmetry as well as LGN atrophy along with age is observed in normal controls. The investigation of glaucoma effects on LGN volumes demonstrates that the bilateral LGN volumes shrink in patients. The automatic LGN segmentation is objective, efficient, valid and applicable. Experiment results proved the validity and applicability of the algorithm. Our method will speed up the research on visual system and greatly enhance studies of different vision-related diseases. Copyright © 2015 Elsevier B.V. All rights reserved.
[Automated detection and volumetric segmentation of the spleen in CT scans].
Hammon, M; Dankerl, P; Kramer, M; Seifert, S; Tsymbal, A; Costa, M J; Janka, R; Uder, M; Cavallaro, A
2012-08-01
To introduce automated detection and volumetric segmentation of the spleen in spiral CT scans with the THESEUS-MEDICO software. The consistency between automated volumetry (aV), estimated volume determination (eV) and manual volume segmentation (mV) was evaluated. Retrospective evaluation of the CAD system based on methods like "marginal space learning" and "boosting algorithms". 3 consecutive spiral CT scans (thoraco-abdominal; portal-venous contrast agent phase; 1 or 5 mm slice thickness) of 15 consecutive lymphoma patients were included. The eV: 30 cm³ + 0.58 (width × length × thickness of the spleen) and the mV as the reference standard were determined by an experienced radiologist. The aV could be performed in all CT scans within 15.2 (± 2.4) seconds. The average splenic volume measured by aV was 268.21 ± 114.67 cm³ compared to 281.58 ± 130.21 cm³ in mV and 268.93 ± 104.60 cm³ in eV. The correlation coefficient was 0.99 (coefficient of determination (R²) = 0.98) for aV and mV, 0.91 (R² = 0.83) for mV and eV and 0.91 (R² = 0.82) for aV and eV. There was an almost perfect correlation of the changes in splenic volume measured with the new aV and mV (0.92; R² = 0.84), mV and eV (0.95; R² = 0.91) and aV and eV (0.83; R² = 0.69) between two time points. The automated detection and volumetric segmentation software rapidly provides an accurate measurement of the splenic volume in CT scans. Knowledge about splenic volume and its change between two examinations provides valuable clinical information without effort for the radiologist. © Georg Thieme Verlag KG Stuttgart · New York.
Automatic liver segmentation from abdominal CT volumes using graph cuts and border marching.
Liao, Miao; Zhao, Yu-Qian; Liu, Xi-Yao; Zeng, Ye-Zhan; Zou, Bei-Ji; Wang, Xiao-Fang; Shih, Frank Y
2017-05-01
Identifying liver regions from abdominal computed tomography (CT) volumes is an important task for computer-aided liver disease diagnosis and surgical planning. This paper presents a fully automatic method for liver segmentation from CT volumes based on graph cuts and border marching. An initial slice is segmented by density peak clustering. Based on pixel- and patch-wise features, an intensity model and a PCA-based regional appearance model are developed to enhance the contrast between liver and background. Then, these models as well as the location constraint estimated iteratively are integrated into graph cuts in order to segment the liver in each slice automatically. Finally, a vessel compensation method based on the border marching is used to increase the segmentation accuracy. Experiments are conducted on a clinical data set we created and also on the MICCAI2007 Grand Challenge liver data. The results show that the proposed intensity, appearance models, and the location constraint are significantly effective for liver recognition, and the undersegmented vessels can be compensated by the border marching based method. The segmentation performances in terms of VOE, RVD, ASD, RMSD, and MSD as well as the average running time achieved by our method on the SLIVER07 public database are 5.8 ± 3.2%, -0.1 ± 4.1%, 1.0 ± 0.5mm, 2.0 ± 1.2mm, 21.2 ± 9.3mm, and 4.7 minutes, respectively, which are superior to those of existing methods. The proposed method does not require time-consuming training process and statistical model construction, and is capable of dealing with complicated shapes and intensity variations successfully. Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, Hyuk; Lee, Sang Kil; Park, Jun Chul; Shin, Sung Kwan; Lee, Yong Chan
2013-01-01
There are heterogeneous subgroups among those with heartburn, and data on these individuals are relatively scant. We aimed to evaluate the effect of acid challenge on the segmental contractions of esophageal smooth muscle in endoscopy-negative patients with normal esophageal acid exposure. High-resolution esophageal manometry (HRM) was performed on 30 endoscopy-negative patients with heartburn accompanied by normal esophageal acid exposure using 10 water swallows followed by 10 acidic pomegranate juice swallows. Patients were classified into functional heartburn (FH) and hypersensitive esophagus (HE) groups based on the results of 24-hr impedance pH testing. HRM topographic plots were analyzed and maximal wave amplitude and pressure volumes were measured for proximal and distal smooth muscle segments. The pressure volume of the distal smooth muscle segment in the HE group measured during acidic swallows was higher than during water swallows (2224.1 ± 68.2 mmHg/cm per s versus 2105.6 ± 66.4 mmHg/cm per s, P = 0.027). A prominent shift in the pressure volume to the distal smooth muscle segment was observed in the HE group compared with the FH group (segmental ratio: 2.72 ± 0.08 versus 2.39 ± 0.07, P = 0.005). Manometric measurements during acidic swallows revealed that this shift was augmented in the HE group. The optimal ratio of pomegranate juice swallowing for discrimination of FH from HE was 2.82, with a sensitivity of 88.9% and a specificity of 100%. Hypercontractile response of distal smooth muscle segment to acid swallowing was more prominent in the HE group than the FH group. © 2012 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.
3D prostate TRUS segmentation using globally optimized volume-preserving prior.
Qiu, Wu; Rajchl, Martin; Guo, Fumin; Sun, Yue; Ukwatta, Eranga; Fenster, Aaron; Yuan, Jing
2014-01-01
An efficient and accurate segmentation of 3D transrectal ultrasound (TRUS) images plays an important role in the planning and treatment of the practical 3D TRUS guided prostate biopsy. However, a meaningful segmentation of 3D TRUS images tends to suffer from US speckles, shadowing and missing edges etc, which make it a challenging task to delineate the correct prostate boundaries. In this paper, we propose a novel convex optimization based approach to extracting the prostate surface from the given 3D TRUS image, while preserving a new global volume-size prior. We, especially, study the proposed combinatorial optimization problem by convex relaxation and introduce its dual continuous max-flow formulation with the new bounded flow conservation constraint, which results in an efficient numerical solver implemented on GPUs. Experimental results using 12 patient 3D TRUS images show that the proposed approach while preserving the volume-size prior yielded a mean DSC of 89.5% +/- 2.4%, a MAD of 1.4 +/- 0.6 mm, a MAXD of 5.2 +/- 3.2 mm, and a VD of 7.5% +/- 6.2% in - 1 minute, deomonstrating the advantages of both accuracy and efficiency. In addition, the low standard deviation of the segmentation accuracy shows a good reliability of the proposed approach.
Link, Daphna; Braginsky, Michael B; Joskowicz, Leo; Ben Sira, Liat; Harel, Shaul; Many, Ariel; Tarrasch, Ricardo; Malinger, Gustavo; Artzi, Moran; Kapoor, Cassandra; Miller, Elka; Ben Bashat, Dafna
2018-01-01
Accurate fetal brain volume estimation is of paramount importance in evaluating fetal development. The aim of this study was to develop an automatic method for fetal brain segmentation from magnetic resonance imaging (MRI) data, and to create for the first time a normal volumetric growth chart based on a large cohort. A semi-automatic segmentation method based on Seeded Region Growing algorithm was developed and applied to MRI data of 199 typically developed fetuses between 18 and 37 weeks' gestation. The accuracy of the algorithm was tested against a sub-cohort of ground truth manual segmentations. A quadratic regression analysis was used to create normal growth charts. The sensitivity of the method to identify developmental disorders was demonstrated on 9 fetuses with intrauterine growth restriction (IUGR). The developed method showed high correlation with manual segmentation (r2 = 0.9183, p < 0.001) as well as mean volume and volume overlap differences of 4.77 and 18.13%, respectively. New reference data on 199 normal fetuses were created, and all 9 IUGR fetuses were at or below the third percentile of the normal growth chart. The proposed method is fast, accurate, reproducible, user independent, applicable with retrospective data, and is suggested for use in routine clinical practice. © 2017 S. Karger AG, Basel.
Automated segmentation of cardiac visceral fat in low-dose non-contrast chest CT images
NASA Astrophysics Data System (ADS)
Xie, Yiting; Liang, Mingzhu; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.
2015-03-01
Cardiac visceral fat was segmented from low-dose non-contrast chest CT images using a fully automated method. Cardiac visceral fat is defined as the fatty tissues surrounding the heart region, enclosed by the lungs and posterior to the sternum. It is measured by constraining the heart region with an Anatomy Label Map that contains robust segmentations of the lungs and other major organs and estimating the fatty tissue within this region. The algorithm was evaluated on 124 low-dose and 223 standard-dose non-contrast chest CT scans from two public datasets. Based on visual inspection, 343 cases had good cardiac visceral fat segmentation. For quantitative evaluation, manual markings of cardiac visceral fat regions were made in 3 image slices for 45 low-dose scans and the Dice similarity coefficient (DSC) was computed. The automated algorithm achieved an average DSC of 0.93. Cardiac visceral fat volume (CVFV), heart region volume (HRV) and their ratio were computed for each case. The correlation between cardiac visceral fat measurement and coronary artery and aortic calcification was also evaluated. Results indicated the automated algorithm for measuring cardiac visceral fat volume may be an alternative method to the traditional manual assessment of thoracic region fat content in the assessment of cardiovascular disease risk.
Computer simulation of storm runoff for three watersheds in Albuquerque, New Mexico
Knutilla, R.L.; Veenhuis, J.E.
1994-01-01
Rainfall-runoff data from three watersheds were selected for calibration and verification of the U.S. Geological Survey's Distributed Routing Rainfall-Runoff Model. The watersheds chosen are residentially developed. The conceptually based model uses an optimization process that adjusts selected parameters to achieve the best fit between measured and simulated runoff volumes and peak discharges. Three of these optimization parameters represent soil-moisture conditions, three represent infiltration, and one accounts for effective impervious area. Each watershed modeled was divided into overland-flow segments and channel segments. The overland-flow segments were further subdivided to reflect pervious and impervious areas. Each overland-flow and channel segment was assigned representative values of area, slope, percentage of imperviousness, and roughness coefficients. Rainfall-runoff data for each watershed were separated into two sets for use in calibration and verification. For model calibration, seven input parameters were optimized to attain a best fit of the data. For model verification, parameter values were set using values from model calibration. The standard error of estimate for calibration of runoff volumes ranged from 19 to 34 percent, and for peak discharge calibration ranged from 27 to 44 percent. The standard error of estimate for verification of runoff volumes ranged from 26 to 31 percent, and for peak discharge verification ranged from 31 to 43 percent.
Segmentation of organs at risk in CT volumes of head, thorax, abdomen, and pelvis
NASA Astrophysics Data System (ADS)
Han, Miaofei; Ma, Jinfeng; Li, Yan; Li, Meiling; Song, Yanli; Li, Qiang
2015-03-01
Accurate segmentation of organs at risk (OARs) is a key step in treatment planning system (TPS) of image guided radiation therapy. We are developing three classes of methods to segment 17 organs at risk throughout the whole body, including brain, brain stem, eyes, mandible, temporomandibular joints, parotid glands, spinal cord, lungs, trachea, heart, livers, kidneys, spleen, prostate, rectum, femoral heads, and skin. The three classes of segmentation methods include (1) threshold-based methods for organs of large contrast with adjacent structures such as lungs, trachea, and skin; (2) context-driven Generalized Hough Transform-based methods combined with graph cut algorithm for robust localization and segmentation of liver, kidneys and spleen; and (3) atlas and registration-based methods for segmentation of heart and all organs in CT volumes of head and pelvis. The segmentation accuracy for the seventeen organs was subjectively evaluated by two medical experts in three levels of score: 0, poor (unusable in clinical practice); 1, acceptable (minor revision needed); and 2, good (nearly no revision needed). A database was collected from Ruijin Hospital, Huashan Hospital, and Xuhui Central Hospital in Shanghai, China, including 127 head scans, 203 thoracic scans, 154 abdominal scans, and 73 pelvic scans. The percentages of "good" segmentation results were 97.6%, 92.9%, 81.1%, 87.4%, 85.0%, 78.7%, 94.1%, 91.1%, 81.3%, 86.7%, 82.5%, 86.4%, 79.9%, 72.6%, 68.5%, 93.2%, 96.9% for brain, brain stem, eyes, mandible, temporomandibular joints, parotid glands, spinal cord, lungs, trachea, heart, livers, kidneys, spleen, prostate, rectum, femoral heads, and skin, respectively. Various organs at risk can be reliably segmented from CT scans by use of the three classes of segmentation methods.
1982-10-15
the two may interact. L1 *1 -35- REFERENCES [1] Arnold, Stephen J. (1979), "A Test for Clusters," Journal of Marketing Research , November, pp 545-551...of Marketing Research , August, pp 405-412. APPENDIX A RESULTS OF FACTOR ANALYSIS OF LIFE GOALS . . . . . -37- Ft-M AnSIS CF FEq. LIFE GOALS GM"L...Volume 5, Pre-intervention Recruiting Environ- ment, 1981. [9] Wind, Yoram (1978), "Issues and Advances in Segmentation Research," Journal of Marketing
Segmenting the Adult Education Market.
ERIC Educational Resources Information Center
Aurand, Tim
1994-01-01
Describes market segmentation and how the principles of segmentation can be applied to the adult education market. Indicates that applying segmentation techniques to adult education programs results in programs that are educationally and financially satisfying and serve an appropriate population. (JOW)
Whole-brain voxel-based morphometry in Kallmann syndrome associated with mirror movements.
Koenigkam-Santos, M; Santos, A C; Borduqui, T; Versiani, B R; Hallak, J E C; Crippa, J A S; Castro, M
2008-10-01
There are 2 main hypotheses concerning the cause of mirror movements (MM) in Kallmann syndrome (KS): abnormal development of the primary motor system, involving the ipsilateral corticospinal tract; and lack of contralateral motor cortex inhibitory mechanisms, mainly through the corpus callosum. The purpose of our study was to determine white and gray matter volume changes in a KS population by using optimized voxel-based morphometry (VBM) and to investigate the relationship between the abnormalities and the presence of MM, addressing the 2 mentioned hypotheses. T1-weighted volumetric images from 21 patients with KS and 16 matched control subjects were analyzed with optimized VBM. Images were segmented and spatially normalized, and these deformation parameters were then applied to the original images before the second segmentation. Patients were divided into groups with and without MM, and a t test statistic was then applied on a voxel-by-voxel basis between the groups and controls to evaluate significant differences. When considering our hypothesis a priori, we found that 2 areas of increased gray matter volume, in the left primary motor and sensorimotor cortex, were demonstrated only in patients with MM, when compared with healthy controls. Regarding white matter alterations, no areas of altered volume involving the corpus callosum or the projection of the corticospinal tract were demonstrated. The VBM study did not show significant white matter changes in patients with KS but showed gray matter alterations in keeping with a hypertrophic response to a deficient pyramidal decussation in patients with MM. In addition, gray matter alterations were observed in patients without MM, which can represent more complex mechanisms determining the presence or absence of this symptom.
Li, Jonathan G.; Liu, Chihray; Olivier, Kenneth R.; Dempsey, James F.
2009-01-01
The aim of this study was to investigate the relative accuracy of megavoltage photon‐beam dose calculations employing either five bulk densities or independent voxel densities determined by calibration of the CT Houndsfield number. Full‐resolution CT and bulk density treatment plans were generated for 70 lung or esophageal cancer tumors (66 cases) using a commercial treatment planning system with an adaptive convolution dose calculation algorithm (Pinnacle3, Philips Medicals Systems). Bulk densities were applied to segmented regions. Individual and population average densities were compared to the full‐resolution plan for each case. Monitor units were kept constant and no normalizations were employed. Dose volume histograms (DVH) and dose difference distributions were examined for all cases. The average densities of the segmented air, lung, fat, soft tissue, and bone for the entire set were found to be 0.14, 0.26, 0.89, 1.02, and 1.12 g/cm3, respectively. In all cases, the normal tissue DVH agreed to better than 2% in dose. In 62 of 70 DVHs of the planning target volume (PTV), agreement to better than 3% in dose was observed. Six cases demonstrated emphysema, one with bullous formations and one with a hiatus hernia having a large volume of gas. These required the additional assignment of density to the emphysemic lung and inflammatory changes to the lung, the regions of collapsed lung, the bullous formations, and the hernia gas. Bulk tissue density dose calculation provides an accurate method of heterogeneous dose calculation. However, patients with advanced emphysema may require high‐resolution CT studies for accurate treatment planning. PACS number: 87.53.Tf
Dense volumetric detection and segmentation of mediastinal lymph nodes in chest CT images
NASA Astrophysics Data System (ADS)
Oda, Hirohisa; Roth, Holger R.; Bhatia, Kanwal K.; Oda, Masahiro; Kitasaka, Takayuki; Iwano, Shingo; Homma, Hirotoshi; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi; Schnabel, Julia A.; Mori, Kensaku
2018-02-01
We propose a novel mediastinal lymph node detection and segmentation method from chest CT volumes based on fully convolutional networks (FCNs). Most lymph node detection methods are based on filters for blob-like structures, which are not specific for lymph nodes. The 3D U-Net is a recent example of the state-of-the-art 3D FCNs. The 3D U-Net can be trained to learn appearances of lymph nodes in order to output lymph node likelihood maps on input CT volumes. However, it is prone to oversegmentation of each lymph node due to the strong data imbalance between lymph nodes and the remaining part of the CT volumes. To moderate the balance of sizes between the target classes, we train the 3D U-Net using not only lymph node annotations but also other anatomical structures (lungs, airways, aortic arches, and pulmonary arteries) that can be extracted robustly in an automated fashion. We applied the proposed method to 45 cases of contrast-enhanced chest CT volumes. Experimental results showed that 95.5% of lymph nodes were detected with 16.3 false positives per CT volume. The segmentation results showed that the proposed method can prevent oversegmentation, achieving an average Dice score of 52.3 +/- 23.1%, compared to the baseline method with 49.2 +/- 23.8%, respectively.
Measurement of complex joint trajectories using slice-to-volume 2D/3D registration and cine MR
NASA Astrophysics Data System (ADS)
Bloch, C.; Figl, M.; Gendrin, C.; Weber, C.; Unger, E.; Aldrian, S.; Birkfellner, W.
2010-02-01
A method for studying the in vivo kinematics of complex joints is presented. It is based on automatic fusion of single slice cine MR images capturing the dynamics and a static MR volume. With the joint at rest the 3D scan is taken. In the data the anatomical compartments are identified and segmented resulting in a 3D volume of each individual part. In each of the cine MR images the joint parts are segmented and their pose and position are derived using a 2D/3D slice-to-volume registration to the volumes. The method is tested on the carpal joint because of its complexity and the small but complex motion of its compartments. For a first study a human cadaver hand was scanned and the method was evaluated with artificially generated slice images. Starting from random initial positions of about 5 mm translational and 12° rotational deviation, 70 to 90 % of the registrations converged successfully to a deviation better than 0.5 mm and 5°. First evaluations using real data from a cine MR were promising. The feasibility of the method was demonstrated. However we experienced difficulties with the segmentation of the cine MR images. We therefore plan to examine different parameters for the image acquisition in future studies.
Altazi, Baderaldeen A; Zhang, Geoffrey G; Fernandez, Daniel C; Montejo, Michael E; Hunt, Dylan; Werner, Joan; Biagioli, Matthew C; Moros, Eduardo G
2017-11-01
Site-specific investigations of the role of radiomics in cancer diagnosis and therapy are emerging. We evaluated the reproducibility of radiomic features extracted from 18 Flourine-fluorodeoxyglucose ( 18 F-FDG) PET images for three parameters: manual versus computer-aided segmentation methods, gray-level discretization, and PET image reconstruction algorithms. Our cohort consisted of pretreatment PET/CT scans from 88 cervical cancer patients. Two board-certified radiation oncologists manually segmented the metabolic tumor volume (MTV 1 and MTV 2 ) for each patient. For comparison, we used a graphical-based method to generate semiautomated segmented volumes (GBSV). To address any perturbations in radiomic feature values, we down-sampled the tumor volumes into three gray-levels: 32, 64, and 128 from the original gray-level of 256. Finally, we analyzed the effect on radiomic features on PET images of eight patients due to four PET 3D-reconstruction algorithms: maximum likelihood-ordered subset expectation maximization (OSEM) iterative reconstruction (IR) method, fourier rebinning-ML-OSEM (FOREIR), FORE-filtered back projection (FOREFBP), and 3D-Reprojection (3DRP) analytical method. We extracted 79 features from all segmentation method, gray-levels of down-sampled volumes, and PET reconstruction algorithms. The features were extracted using gray-level co-occurrence matrices (GLCM), gray-level size zone matrices (GLSZM), gray-level run-length matrices (GLRLM), neighborhood gray-tone difference matrices (NGTDM), shape-based features (SF), and intensity histogram features (IHF). We computed the Dice coefficient between each MTV and GBSV to measure segmentation accuracy. Coefficient values close to one indicate high agreement, and values close to zero indicate low agreement. We evaluated the effect on radiomic features by calculating the mean percentage differences (d¯) between feature values measured from each pair of parameter elements (i.e. segmentation methods: MTV 1 -MTV 2 , MTV 1 -GBSV, MTV 2 -GBSV; gray-levels: 64-32, 64-128, and 64-256; reconstruction algorithms: OSEM-FORE-OSEM, OSEM-FOREFBP, and OSEM-3DRP). We used |d¯| as a measure of radiomic feature reproducibility level, where any feature scored |d¯| ±SD ≤ |25|% ± 35% was considered reproducible. We used Bland-Altman analysis to evaluate the mean, standard deviation (SD), and upper/lower reproducibility limits (U/LRL) for radiomic features in response to variation in each testing parameter. Furthermore, we proposed U/LRL as a method to classify the level of reproducibility: High- ±1% ≤ U/LRL ≤ ±30%; Intermediate- ±30% < U/LRL ≤ ±45%; Low- ±45 < U/LRL ≤ ±50%. We considered any feature below the low level as nonreproducible (NR). Finally, we calculated the interclass correlation coefficient (ICC) to evaluate the reliability of radiomic feature measurements for each parameter. The segmented volumes of 65 patients (81.3%) scored Dice coefficient >0.75 for all three volumes. The result outcomes revealed a tendency of higher radiomic feature reproducibility among segmentation pair MTV 1 -GBSV than MTV 2 -GBSV, gray-level pairs of 64-32 and 64-128 than 64-256, and reconstruction algorithm pairs of OSEM-FOREIR and OSEM-FOREFBP than OSEM-3DRP. Although the choice of cervical tumor segmentation method, gray-level value, and reconstruction algorithm may affect radiomic features, some features were characterized by high reproducibility through all testing parameters. The number of radiomic features that showed insensitivity to variations in segmentation methods, gray-level discretization, and reconstruction algorithms was 10 (13%), 4 (5%), and 1 (1%), respectively. These results suggest that a careful analysis of the effects of these parameters is essential prior to any radiomics clinical application. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Classification of microscopy images of Langerhans islets
NASA Astrophysics Data System (ADS)
Å vihlík, Jan; Kybic, Jan; Habart, David; Berková, Zuzana; Girman, Peter; Kříž, Jan; Zacharovová, Klára
2014-03-01
Evaluation of images of Langerhans islets is a crucial procedure for planning an islet transplantation, which is a promising diabetes treatment. This paper deals with segmentation of microscopy images of Langerhans islets and evaluation of islet parameters such as area, diameter, or volume (IE). For all the available images, the ground truth and the islet parameters were independently evaluated by four medical experts. We use a pixelwise linear classifier (perceptron algorithm) and SVM (support vector machine) for image segmentation. The volume is estimated based on circle or ellipse fitting to individual islets. The segmentations were compared with the corresponding ground truth. Quantitative islet parameters were also evaluated and compared with parameters given by medical experts. We can conclude that accuracy of the presented fully automatic algorithm is fully comparable with medical experts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubey, P., E-mail: purushd@barc.gov.in; Sharma, V. K.; Mitra, S.
Synthetic hydroxyapatite (HAp) is an important material in biomedical engineering due to its excellent biocompatibility and bioactivity. Here we report dynamics of cetyltrimethylammonium bromide (CTAB) in HAp composite, prepared by co-precipitation method, as studied by quasielastic neutron scattering (QENS) technique. It is found that the observed dynamics involved two time scales associated with fast torsional motion and segmental motion of the CTAB monomers. In addition to segmental motion of the hydrogen atoms, few undergo torsional motion as well. Torsional dynamics was described by a 2-fold jump diffusion model. The segmental dynamics of CTAB has been described assumimg the hydrogen atomsmore » undergoing diffusion inside a sphere of confined volume. While the diffusivity is found to increase with temperature, the spherical volumes within which the hydrogen atoms are undergoing diffusion remain almost unchanged.« less
Model Uncertainty and Test of a Segmented Mirror Telescope
2014-03-01
Optical Telescope project EOM: equation of motion FCA: fine control actuator FCD: Face-Centered Cubic Design FEA: finite element analysis FEM: finite...housed in a dark tent to isolate the telescope from stray light, air currents, or dust and other debris. However, the closed volume is prone to...is composed of six hexagonal segments that each have six coarse control actuators (CCA) for segment phasing control, three fine control actuators
3-D segmentation of retinal blood vessels in spectral-domain OCT volumes of the optic nerve head
NASA Astrophysics Data System (ADS)
Lee, Kyungmoo; Abràmoff, Michael D.; Niemeijer, Meindert; Garvin, Mona K.; Sonka, Milan
2010-03-01
Segmentation of retinal blood vessels can provide important information for detecting and tracking retinal vascular diseases including diabetic retinopathy, arterial hypertension, arteriosclerosis and retinopathy of prematurity (ROP). Many studies on 2-D segmentation of retinal blood vessels from a variety of medical images have been performed. However, 3-D segmentation of retinal blood vessels from spectral-domain optical coherence tomography (OCT) volumes, which is capable of providing geometrically accurate vessel models, to the best of our knowledge, has not been previously studied. The purpose of this study is to develop and evaluate a method that can automatically detect 3-D retinal blood vessels from spectral-domain OCT scans centered on the optic nerve head (ONH). The proposed method utilized a fast multiscale 3-D graph search to segment retinal surfaces as well as a triangular mesh-based 3-D graph search to detect retinal blood vessels. An experiment on 30 ONH-centered OCT scans (15 right eye scans and 15 left eye scans) from 15 subjects was performed, and the mean unsigned error in 3-D of the computer segmentations compared with the independent standard obtained from a retinal specialist was 3.4 +/- 2.5 voxels (0.10 +/- 0.07 mm).
van 't Klooster, Ronald; de Koning, Patrick J H; Dehnavi, Reza Alizadeh; Tamsma, Jouke T; de Roos, Albert; Reiber, Johan H C; van der Geest, Rob J
2012-01-01
To develop and validate an automated segmentation technique for the detection of the lumen and outer wall boundaries in MR vessel wall studies of the common carotid artery. A new segmentation method was developed using a three-dimensional (3D) deformable vessel model requiring only one single user interaction by combining 3D MR angiography (MRA) and 2D vessel wall images. This vessel model is a 3D cylindrical Non-Uniform Rational B-Spline (NURBS) surface which can be deformed to fit the underlying image data. Image data of 45 subjects was used to validate the method by comparing manual and automatic segmentations. Vessel wall thickness and volume measurements obtained by both methods were compared. Substantial agreement was observed between manual and automatic segmentation; over 85% of the vessel wall contours were segmented successfully. The interclass correlation was 0.690 for the vessel wall thickness and 0.793 for the vessel wall volume. Compared with manual image analysis, the automated method demonstrated improved interobserver agreement and inter-scan reproducibility. Additionally, the proposed automated image analysis approach was substantially faster. This new automated method can reduce analysis time and enhance reproducibility of the quantification of vessel wall dimensions in clinical studies. Copyright © 2011 Wiley Periodicals, Inc.
Yang, Jinzhong; Beadle, Beth M; Garden, Adam S; Schwartz, David L; Aristophanous, Michalis
2015-09-01
To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to the planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation-maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the "ground truth" for quantitative evaluation. The median multichannel segmented GTV of the primary tumor was 15.7 cm(3) (range, 6.6-44.3 cm(3)), while the PET segmented GTV was 10.2 cm(3) (range, 2.8-45.1 cm(3)). The median physician-defined GTV was 22.1 cm(3) (range, 4.2-38.4 cm(3)). The median difference between the multichannel segmented and physician-defined GTVs was -10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was -19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented and physician-defined GTVs was 0.75 (range, 0.55-0.84), and the median sensitivity and positive predictive value between them were 0.76 and 0.81, respectively. The authors developed an automated multimodality segmentation algorithm for tumor volume delineation and validated this algorithm for head and neck cancer radiotherapy. The multichannel segmented GTV agreed well with the physician-defined GTV. The authors expect that their algorithm will improve the accuracy and consistency in target definition for radiotherapy.
National Geocoding Converter File 1 : Volume 3. Montana to Wyoming.
DOT National Transportation Integrated Search
1974-01-01
This file contains a record for each county, county equivalent (as defined by the Census Bureau), SMSA county segment and SPLC county segment in the U.S. A record identifies for an area all major county codes and the associated county aggregate codes
National Geocoding Converter File 1 : Volume 1. Structure & Content.
DOT National Transportation Integrated Search
1974-01-01
This file contains a record for each county, county equivalent (as defined by the Census Bureau), SMSA county segment and SPLC county segment in the U.S. A record identifies for an area all major county codes and the associated county aggregate codes
NASA Technical Reports Server (NTRS)
Orr, R. S.
1984-01-01
Tracking and data acquisition system (TDAS) requirements, TDAS architectural goals, enhanced TDAS subsystems, constellation and networking options, TDAS spacecraft options, crosslink implementation, baseline TDAS space segment architecture, and treat model development/security analysis are addressed.
Plexiform neurofibroma tissue classification
NASA Astrophysics Data System (ADS)
Weizman, L.; Hoch, L.; Ben Sira, L.; Joskowicz, L.; Pratt, L.; Constantini, S.; Ben Bashat, D.
2011-03-01
Plexiform Neurofibroma (PN) is a major complication of NeuroFibromatosis-1 (NF1), a common genetic disease that involving the nervous system. PNs are peripheral nerve sheath tumors extending along the length of the nerve in various parts of the body. Treatment decision is based on tumor volume assessment using MRI, which is currently time consuming and error prone, with limited semi-automatic segmentation support. We present in this paper a new method for the segmentation and tumor mass quantification of PN from STIR MRI scans. The method starts with a user-based delineation of the tumor area in a single slice and automatically detects the PN lesions in the entire image based on the tumor connectivity. Experimental results on seven datasets yield a mean volume overlap difference of 25% as compared to manual segmentation by expert radiologist with a mean computation and interaction time of 12 minutes vs. over an hour for manual annotation. Since the user interaction in the segmentation process is minimal, our method has the potential to successfully become part of the clinical workflow.
Siozopoulos, Achilleas; Thomaidis, Vasilios; Prassopoulos, Panos; Fiska, Aliki
2018-02-01
Literature includes a number of studies using structural MRI (sMRI) to determine the volume of the amygdala, which is modified in various pathologic conditions. The reported values vary widely mainly because of different anatomical approaches to the complex. This study aims at estimating of the normal amygdala volume from sMRI scans using a recent anatomical definition described in a study based on post-mortem material. The amygdala volume has been calculated in 106 healthy subjects, using sMRI and anatomical-based segmentation. The resulting volumes have been analyzed for differences related to hemisphere, sex, and age. The mean amygdalar volume was estimated at 1.42 cm 3 . The mean right amygdala volume has been found larger than the left, but the difference for the raw values was within the limits of the method error. No intersexual differences or age-related alterations have been observed. The study provides a method for determining the boundaries of the amygdala in sMRI scans based on recent anatomical considerations and an estimation of the mean normal amygdala volume from a quite large number of scans for future use in comparative studies.
Left ventricular endocardial surface detection based on real-time 3D echocardiographic data
NASA Technical Reports Server (NTRS)
Corsi, C.; Borsari, M.; Consegnati, F.; Sarti, A.; Lamberti, C.; Travaglini, A.; Shiota, T.; Thomas, J. D.
2001-01-01
OBJECTIVE: A new computerized semi-automatic method for left ventricular (LV) chamber segmentation is presented. METHODS: The LV is imaged by real-time three-dimensional echocardiography (RT3DE). The surface detection model, based on level set techniques, is applied to RT3DE data for image analysis. The modified level set partial differential equation we use is solved by applying numerical methods for conservation laws. The initial conditions are manually established on some slices of the entire volume. The solution obtained for each slice is a contour line corresponding with the boundary between LV cavity and LV endocardium. RESULTS: The mathematical model has been applied to sequences of frames of human hearts (volume range: 34-109 ml) imaged by 2D and reconstructed off-line and RT3DE data. Volume estimation obtained by this new semi-automatic method shows an excellent correlation with those obtained by manual tracing (r = 0.992). Dynamic change of LV volume during the cardiac cycle is also obtained. CONCLUSION: The volume estimation method is accurate; edge based segmentation, image completion and volume reconstruction can be accomplished. The visualization technique also allows to navigate into the reconstructed volume and to display any section of the volume.
Brain tumor locating in 3D MR volume using symmetry
NASA Astrophysics Data System (ADS)
Dvorak, Pavel; Bartusek, Karel
2014-03-01
This work deals with the automatic determination of a brain tumor location in 3D magnetic resonance volumes. The aim of this work is not the precise segmentation of the tumor and its parts but only the detection of its location. This work is the first step in the tumor segmentation process, an important topic in neuro-image processing. The algorithm expects 3D magnetic resonance volumes of brain containing a tumor. The detection is based on locating the area that breaks the left-right symmetry of the brain. This is done by multi-resolution comparing of corresponding regions in left and right hemisphere. The output of the computation is the probabilistic map of the tumor location. The created algorithm was tested on 80 volumes from publicly available BRATS databases containing 3D brain volumes afflicted by a brain tumor. These pathological structures had various sizes and shapes and were located in various parts of the brain. The locating performance of the algorithm was 85% for T1-weighted volumes, 91% for T1-weighted contrast enhanced volumes, 96% for FLAIR and T2-wieghted volumes and 95% for their combinations.
Paproki, A; Engstrom, C; Chandra, S S; Neubert, A; Fripp, J; Crozier, S
2014-09-01
To validate an automatic scheme for the segmentation and quantitative analysis of the medial meniscus (MM) and lateral meniscus (LM) in magnetic resonance (MR) images of the knee. We analysed sagittal water-excited double-echo steady-state MR images of the knee from a subset of the Osteoarthritis Initiative (OAI) cohort. The MM and LM were automatically segmented in the MR images based on a deformable model approach. Quantitative parameters including volume, subluxation and tibial-coverage were automatically calculated for comparison (Wilcoxon tests) between knees with variable radiographic osteoarthritis (rOA), medial and lateral joint space narrowing (mJSN, lJSN) and pain. Automatic segmentations and estimated parameters were evaluated for accuracy using manual delineations of the menisci in 88 pathological knee MR examinations at baseline and 12 months time-points. The median (95% confidence-interval (CI)) Dice similarity index (DSI) (2 ∗|Auto ∩ Manual|/(|Auto|+|Manual|)∗ 100) between manual and automated segmentations for the MM and LM volumes were 78.3% (75.0-78.7), 83.9% (82.1-83.9) at baseline and 75.3% (72.8-76.9), 83.0% (81.6-83.5) at 12 months. Pearson coefficients between automatic and manual segmentation parameters ranged from r = 0.70 to r = 0.92. MM in rOA/mJSN knees had significantly greater subluxation and smaller tibial-coverage than no-rOA/no-mJSN knees. LM in rOA knees had significantly greater volumes and tibial-coverage than no-rOA knees. Our automated method successfully segmented the menisci in normal and osteoarthritic knee MR images and detected meaningful morphological differences with respect to rOA and joint space narrowing (JSN). Our approach will facilitate analyses of the menisci in prospective MR cohorts such as the OAI for investigations into pathophysiological changes occurring in early osteoarthritis (OA) development. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodsitt, Mitchell M., E-mail: goodsitt@umich.edu; Shenoy, Apeksha; Howard, David
2014-05-15
Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correctionmore » factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2–1.3 times greater in the medium body than in the small body phantom and 1.3–1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6–1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3–2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results for external calibrations exhibited much larger RMS errors than size matched internal calibration. Use of an average body size external-to-internal calibration correction factor reduced the errors to closer to those for internal calibration. RMS errors of less than 30% or about 0.01 for the bone and 0.1 for the red marrow volume fractions would likely be satisfactory for human studies. Such accuracies were achieved for 3 × 3 segmentation of 5 mm slice images for: (a) internal calibration with 4 times dose for all size body phantoms, (b) internal calibration with 2 times dose for the small and medium size body phantoms, and (c) corrected external calibration with 4 times dose and all size body phantoms. Conclusions: Phantom studies are promising and demonstrate the potential to use dual energy quantitative CT to estimate the spatial distributions of red marrow and bone within the vertebral spongiosa.« less
Goodsitt, Mitchell M.; Shenoy, Apeksha; Shen, Jincheng; Howard, David; Schipper, Matthew J.; Wilderman, Scott; Christodoulou, Emmanuel; Chun, Se Young; Dewaraja, Yuni K.
2014-01-01
Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correction factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2–1.3 times greater in the medium body than in the small body phantom and 1.3–1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6–1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3–2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results for external calibrations exhibited much larger RMS errors than size matched internal calibration. Use of an average body size external-to-internal calibration correction factor reduced the errors to closer to those for internal calibration. RMS errors of less than 30% or about 0.01 for the bone and 0.1 for the red marrow volume fractions would likely be satisfactory for human studies. Such accuracies were achieved for 3 × 3 segmentation of 5 mm slice images for: (a) internal calibration with 4 times dose for all size body phantoms, (b) internal calibration with 2 times dose for the small and medium size body phantoms, and (c) corrected external calibration with 4 times dose and all size body phantoms. Conclusions: Phantom studies are promising and demonstrate the potential to use dual energy quantitative CT to estimate the spatial distributions of red marrow and bone within the vertebral spongiosa. PMID:24784380
Low-Cost Space Structure (LCSS) Experiment. Volume I of II.
1996-06-01
Cell Multiline laser - 2 100 Hold spots at BSM2 (tilts optica Tilt spots fixed offset path of (1/segment) w.r.t. 1 segment only) each other with off...Piston/Fine Piston Sensor Multiline Laser 3 Piston 1 BSM2 (pistons LEC segment w.r.t. optical path of other to 1 segment only) increase sharpness 7 LGSS...independent steering and pistoning of one beamline with respect to the other with the fixed mirror M2 and tilt/piston mirror BSM2 pair. The telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sommer, C. M., E-mail: christof.sommer@med.uni-heidelberg.de; Kortes, N.; Zelzer, S.
2011-02-15
The purpose of this study was to evaluate the effect of renal artery embolization with small and narrowly calibrated microparticles on the coagulation diameter, volume, and shape of radiofrequency ablations (RFAs) in porcine kidneys. Forty-eight RFAs were performed in 24 kidneys of 12 pigs. In 6 animals, bilateral renal artery embolization was performed with small and narrowly calibrated microparticles. Upper and lower kidney poles were ablated with identical system parameters. Applying three-dimensional segmentation software, RFAs were segmented on registered 2 mm-thin macroscopic slices. Length, depth, width, volume{sub s}egmented, and volume{sub c}alculated were determined to describe the size of the RFAs.more » To evaluate the shape of the RFAs, depth-to-width ratio (perfect symmetry-to-lesion length was indicated by a ratio of 1), sphericity ratio (perfect sphere was indicated by a sphericity ratio of 1), eccentricity (perfect sphere was indicated by an eccentricity of 0), and circularity (perfect circle was indicated by a circularity of 1) were determined. Embolized compared with nonembolized RFAs showed significantly greater depth (23.4 {+-} 3.6 vs. 17.2 {+-} 1.8 mm; p < 0.001) and width (20.1 {+-} 2.9 vs. 12.6 {+-} 3.7 mm; p < 0.001); significantly larger volume{sub s}egmented (8.6 {+-} 3.2 vs. 3.0 {+-} 0.7 ml; p < 0.001) and volume{sub c}alculated (8.4 {+-} 3.0 ml vs. 3.3 {+-} 1.1 ml; p < 0.001); significantly lower depth-to-width (1.17 {+-} 0.10 vs. 1.48 {+-} 0.44; p < 0.05), sphericity (1.55 {+-} 0.44 vs. 1.96 {+-} 0.43; p < 0.01), and eccentricity (0.84 {+-} 0.61 vs. 1.73 {+-} 0.91; p < 0.01) ratios; and significantly greater circularity (0.62 {+-} 0.14 vs. 0.45 {+-} 0.16; p < 0.01). Renal artery embolization with small and narrowly calibrated microparticles affected the coagulation diameter, volume, and shape of RFAs in porcine kidneys. Embolized RFAs were significantly larger and more spherical compared with nonembolized RFAs.« less
A quantification strategy for missing bone mass in case of osteolytic bone lesions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fränzle, Andrea, E-mail: a.fraenzle@dkfz.de; Giske, Kristina; Bretschi, Maren
Purpose: Most of the patients who died of breast cancer have developed bone metastases. To understand the pathogenesis of bone metastases and to analyze treatment response of different bone remodeling therapies, preclinical animal models are examined. In breast cancer, bone metastases are often bone destructive. To assess treatment response of bone remodeling therapies, the volumes of these lesions have to be determined during the therapy process. The manual delineation of missing structures, especially if large parts are missing, is very time-consuming and not reproducible. Reproducibility is highly important to have comparable results during the therapy process. Therefore, a computerized approachmore » is needed. Also for the preclinical research, a reproducible measurement of the lesions is essential. Here, the authors present an automated segmentation method for the measurement of missing bone mass in a preclinical rat model with bone metastases in the hind leg bones based on 3D CT scans. Methods: The affected bone structure is compared to a healthy model. Since in this preclinical rat trial the metastasis only occurs on the right hind legs, which is assured by using vessel clips, the authors use the left body side as a healthy model. The left femur is segmented with a statistical shape model which is initialised using the automatically segmented medullary cavity. The left tibia and fibula are segmented using volume growing starting at the tibia medullary cavity and stopping at the femur boundary. Masked images of both segmentations are mirrored along the median plane and transferred manually to the position of the affected bone by rigid registration. Affected bone and healthy model are compared based on their gray values. If the gray value of a voxel indicates bone mass in the healthy model and no bone in the affected bone, this voxel is considered to be osteolytic. Results: The lesion segmentations complete the missing bone structures in a reasonable way. The mean ratiov{sub r}/v{sub m} of the reconstructed bone volume v{sub r} and the healthy model bone volume v{sub m} is 1.07, which indicates a good reconstruction of the modified bone. Conclusions: The qualitative and quantitative comparison of manual and semi-automated segmentation results have shown that comparing a modified bone structure with a healthy model can be used to identify and measure missing bone mass in a reproducible way.« less
Qin, Wan
2017-01-01
Accurate measurement of edema volume is essential for the investigation of tissue response and recovery following a traumatic injury. The measurements must be noninvasive and repetitive over time so as to monitor tissue response throughout the healing process. Such techniques are particularly necessary for the evaluation of therapeutics that are currently in development to suppress or prevent edema formation. In this study, we propose to use optical coherence tomography (OCT) technique to image and quantify edema in a mouse ear model where the injury is induced by a superficial-thickness burn. Extraction of edema volume is achieved by an attenuation compensation algorithm performed on the three-dimensional OCT images, followed by two segmentation procedures. In addition to edema volume, the segmentation method also enables accurate thickness mapping of edematous tissue, which is an important characteristic of the external symptoms of edema. To the best of our knowledge, this is the first method for noninvasively measuring absolute edema volume. PMID:27282161
Loarie, Thomas M; Applegate, David; Kuenne, Christopher B; Choi, Lawrence J; Horowitz, Diane P
2003-01-01
Market segmentation analysis identifies discrete segments of the population whose beliefs are consistent with exhibited behaviors such as purchase choice. This study applies market segmentation analysis to low myopes (-1 to -3 D with less than 1 D cylinder) in their consideration and choice of a refractive surgery procedure to discover opportunities within the market. A quantitative survey based on focus group research was sent to a demographically balanced sample of myopes using contact lenses and/or glasses. A variable reduction process followed by a clustering analysis was used to discover discrete belief-based segments. The resulting segments were validated both analytically and through in-market testing. Discontented individuals who wear contact lenses are the primary target for vision correction surgery. However, 81% of the target group is apprehensive about laser in situ keratomileusis (LASIK). They are nervous about the procedure and strongly desire reversibility and exchangeability. There exists a large untapped opportunity for vision correction surgery within the low myope population. Market segmentation analysis helped determine how to best meet this opportunity through repositioning existing procedures or developing new vision correction technology, and could also be applied to identify opportunities in other vision correction populations.
Self-Paced Physics, Segment 18.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
Eighty-seven problems are included in this volume which is arranged to match study segments 2 through 14. The subject matter is related to projectiles, simple harmonic motion, kinetic friction, multiple pulley arrangements, motion on inclined planes, circular motion, potential energy, kinetic energy, center of mass, Newton's laws, elastic and…
Decreased frontal white-matter volume in chronic substance abuse.
Schlaepfer, Thomas E; Lancaster, Eric; Heidbreder, Rebecca; Strain, Eric C; Kosel, Markus; Fisch, Hans-Ulrich; Pearlson, Godfrey D
2006-04-01
There is quite a body of work assessing functional brain changes in chronic substance abuse, much less is known about structural brain abnormalities in this patient population. In this study we used magnetic resonance imaging (MRI) to determine if structural brain differences exist in patients abusing illicit drugs compared to healthy controls. Sixteen substance abusers who abused heroin, cocaine and cannabis but not alcohol and 16 age-, sex- and race-matched controls were imaged on a MRI scanner. Contiguous, 5-mm-thick axial slices were acquired with simultaneous T2 and proton density sequences. Volumes were estimated for total grey and white matter, frontal grey and white matter, ventricles, and CSF using two different methods: a conventional segmentation and a stereological method based on the Cavalieri principle. Overall brain volume differences were corrected for by expressing the volumes of interest as a percentage of total brain volume. Volume measures obtained with the two methods were highly correlated (r=0.65, p<0.001). Substance abusers had significantly less frontal white-matter volume percentage than controls. There were no significant differences in any of the other brain volumes measured. This difference in frontal lobe white matter might be explained by a direct neurotoxic effect of drug use on white matter, a pre-existing abnormality in the development of the frontal lobe or a combination of both effects. This last explanation might be compelling based on the fact that newer concepts on shared aspects of some neuropsychiatric disorders focus on the promotion and inhibition of the process of myelination throughout brain development and subsequent degeneration.
Men, Kuo; Chen, Xinyuan; Zhang, Ye; Zhang, Tao; Dai, Jianrong; Yi, Junlin; Li, Yexiong
2017-01-01
Radiotherapy is one of the main treatment methods for nasopharyngeal carcinoma (NPC). It requires exact delineation of the nasopharynx gross tumor volume (GTVnx), the metastatic lymph node gross tumor volume (GTVnd), the clinical target volume (CTV), and organs at risk in the planning computed tomography images. However, this task is time-consuming and operator dependent. In the present study, we developed an end-to-end deep deconvolutional neural network (DDNN) for segmentation of these targets. The proposed DDNN is an end-to-end architecture enabling fast training and testing. It consists of two important components: an encoder network and a decoder network. The encoder network was used to extract the visual features of a medical image and the decoder network was used to recover the original resolution by deploying deconvolution. A total of 230 patients diagnosed with NPC stage I or stage II were included in this study. Data from 184 patients were chosen randomly as a training set to adjust the parameters of DDNN, and the remaining 46 patients were the test set to assess the performance of the model. The Dice similarity coefficient (DSC) was used to quantify the segmentation results of the GTVnx, GTVnd, and CTV. In addition, the performance of DDNN was compared with the VGG-16 model. The proposed DDNN method outperformed the VGG-16 in all the segmentation. The mean DSC values of DDNN were 80.9% for GTVnx, 62.3% for the GTVnd, and 82.6% for CTV, whereas VGG-16 obtained 72.3, 33.7, and 73.7% for the DSC values, respectively. DDNN can be used to segment the GTVnx and CTV accurately. The accuracy for the GTVnd segmentation was relatively low due to the considerable differences in its shape, volume, and location among patients. The accuracy is expected to increase with more training data and combination of MR images. In conclusion, DDNN has the potential to improve the consistency of contouring and streamline radiotherapy workflows, but careful human review and a considerable amount of editing will be required.
Zito, Felicia; De Bernardi, Elisabetta; Soffientini, Chiara; Canzi, Cristina; Casati, Rosangela; Gerundini, Paolo; Baselli, Giuseppe
2012-09-01
In recent years, segmentation algorithms and activity quantification methods have been proposed for oncological (18)F-fluorodeoxyglucose (FDG) PET. A full assessment of these algorithms, necessary for a clinical transfer, requires a validation on data sets provided with a reliable ground truth as to the imaged activity distribution, which must be as realistic as possible. The aim of this work is to propose a strategy to simulate lesions of uniform uptake and irregular shape in an anthropomorphic phantom, with the possibility to easily obtain a ground truth as to lesion activity and borders. Lesions were simulated with samples of clinoptilolite, a family of natural zeolites of irregular shape, able to absorb aqueous solutions of (18)F-FDG, available in a wide size range, and nontoxic. Zeolites were soaked in solutions of (18)F-FDG for increasing times up to 120 min and their absorptive properties were characterized as function of soaking duration, solution concentration, and zeolite dry weight. Saturated zeolites were wrapped in Parafilm, positioned inside an Alderson thorax-abdomen phantom and imaged with a PET-CT scanner. The ground truth for the activity distribution of each zeolite was obtained by segmenting high-resolution finely aligned CT images, on the basis of independently obtained volume measurements. The fine alignment between CT and PET was validated by comparing the CT-derived ground truth to a set of zeolites' PET threshold segmentations in terms of Dice index and volume error. The soaking time necessary to achieve saturation increases with zeolite dry weight, with a maximum of about 90 min for the largest sample. At saturation, a linear dependence of the uptake normalized to the solution concentration on zeolite dry weight (R(2) = 0.988), as well as a uniform distribution of the activity over the entire zeolite volume from PET imaging were demonstrated. These findings indicate that the (18)F-FDG solution is able to saturate the zeolite pores and that the concentration does not influence the distribution uniformity of both solution and solute, at least at the trace concentrations used for zeolite activation. An additional proof of uniformity of zeolite saturation was obtained observing a correspondence between uptake and adsorbed volume of solution, corresponding to about 27.8% of zeolite volume. As to the ground truth for zeolites positioned inside the phantom, the segmentation of finely aligned CT images provided reliable borders, as demonstrated by a mean absolute volume error of 2.8% with respect to the PET threshold segmentation corresponding to the maximum Dice. The proposed methodology allowed obtaining an experimental phantom data set that can be used as a feasible tool to test and validate quantification and segmentation algorithms for PET in oncology. The phantom is currently under consideration for being included in a benchmark designed by AAPM TG211, which will be available to the community to evaluate PET automatic segmentation methods.
Multi-temporal MRI carpal bone volumes analysis by principal axes registration
NASA Astrophysics Data System (ADS)
Ferretti, Roberta; Dellepiane, Silvana
2016-03-01
In this paper, a principal axes registration technique is presented, with the relevant application to segmented volumes. The purpose of the proposed registration is to compare multi-temporal volumes of carpal bones from Magnetic Resonance Imaging (MRI) acquisitions. Starting from the study of the second-order moment matrix, the eigenvectors are calculated to allow the rotation of volumes with respect to reference axes. Then the volumes are spatially translated to become perfectly overlapped. A quantitative evaluation of the results obtained is carried out by computing classical indices from the confusion matrix, which depict similarity measures between the volumes of the same organ as extracted from MRI acquisitions executed at different moments. Within the medical field, the way a registration can be used to compare multi-temporal images is of great interest, since it provides the physician with a tool which allows a visual monitoring of a disease evolution. The segmentation method used herein is based on the graph theory and is a robust, unsupervised and parameters independent method. Patients affected by rheumatic diseases have been considered.
Concurrent tumor segmentation and registration with uncertainty-based sparse non-uniform graphs.
Parisot, Sarah; Wells, William; Chemouny, Stéphane; Duffau, Hugues; Paragios, Nikos
2014-05-01
In this paper, we present a graph-based concurrent brain tumor segmentation and atlas to diseased patient registration framework. Both segmentation and registration problems are modeled using a unified pairwise discrete Markov Random Field model on a sparse grid superimposed to the image domain. Segmentation is addressed based on pattern classification techniques, while registration is performed by maximizing the similarity between volumes and is modular with respect to the matching criterion. The two problems are coupled by relaxing the registration term in the tumor area, corresponding to areas of high classification score and high dissimilarity between volumes. In order to overcome the main shortcomings of discrete approaches regarding appropriate sampling of the solution space as well as important memory requirements, content driven samplings of the discrete displacement set and the sparse grid are considered, based on the local segmentation and registration uncertainties recovered by the min marginal energies. State of the art results on a substantial low-grade glioma database demonstrate the potential of our method, while our proposed approach shows maintained performance and strongly reduced complexity of the model. Copyright © 2014 Elsevier B.V. All rights reserved.
Three-dimensional murine airway segmentation in micro-CT images
NASA Astrophysics Data System (ADS)
Shi, Lijun; Thiesse, Jacqueline; McLennan, Geoffrey; Hoffman, Eric A.; Reinhardt, Joseph M.
2007-03-01
Thoracic imaging for small animals has emerged as an important tool for monitoring pulmonary disease progression and therapy response in genetically engineered animals. Micro-CT is becoming the standard thoracic imaging modality in small animal imaging because it can produce high-resolution images of the lung parenchyma, vasculature, and airways. Segmentation, measurement, and visualization of the airway tree is an important step in pulmonary image analysis. However, manual analysis of the airway tree in micro-CT images can be extremely time-consuming since a typical dataset is usually on the order of several gigabytes in size. Automated and semi-automated tools for micro-CT airway analysis are desirable. In this paper, we propose an automatic airway segmentation method for in vivo micro-CT images of the murine lung and validate our method by comparing the automatic results to manual tracing. Our method is based primarily on grayscale morphology. The results show good visual matches between manually segmented and automatically segmented trees. The average true positive volume fraction compared to manual analysis is 91.61%. The overall runtime for the automatic method is on the order of 30 minutes per volume compared to several hours to a few days for manual analysis.
Identification and analysis the illegal dumping spot of solid waste at Ciliwung segment 5 riverbanks
NASA Astrophysics Data System (ADS)
Indrawati, D.; Purwaningrum, P.
2018-01-01
Ciliwung River is the main river in the area of Jakarta that is divided into six segments across West Java and Jakarta. The study focuses on the fifth segment which is 30 km long, covering from Kelapa Dua Depok to Manggarai, South Jakarta. The survey of the river consists of 3 sub-segments: Lenteng Agung, Pejaten Timur and Manggarai. Objectives of the study are to describe the characteristics and typology of the residential surrounding the Ciliwung Segment 5 Riverbank, to identification the illegal dumping spot of solid waste, to measure the volume and composition of solid waste in the riverbank, to decide solid waste management for residential area surrounding river banks to control the river pollution. The study shows that there are 11 illegal dumping spot of solid waste consisting of 4.37 m3 solid waste volume. The average composition of solid waste consists of 44% organic, 14% woods, 12% papers, 11% plastics, 3% rubbers, 1% metals and 2% others. To control the river pollution efforts are restoring the function of riverbanks to become green open space area, installing the trash rack into the river, to manage domestic solid waste based on 3R (Reduce, Reuse, Recycle) concept.
A Scalable Framework For Segmenting Magnetic Resonance Images
Hore, Prodip; Goldgof, Dmitry B.; Gu, Yuhua; Maudsley, Andrew A.; Darkazanli, Ammar
2009-01-01
A fast, accurate and fully automatic method of segmenting magnetic resonance images of the human brain is introduced. The approach scales well allowing fast segmentations of fine resolution images. The approach is based on modifications of the soft clustering algorithm, fuzzy c-means, that enable it to scale to large data sets. Two types of modifications to create incremental versions of fuzzy c-means are discussed. They are much faster when compared to fuzzy c-means for medium to extremely large data sets because they work on successive subsets of the data. They are comparable in quality to application of fuzzy c-means to all of the data. The clustering algorithms coupled with inhomogeneity correction and smoothing are used to create a framework for automatically segmenting magnetic resonance images of the human brain. The framework is applied to a set of normal human brain volumes acquired from different magnetic resonance scanners using different head coils, acquisition parameters and field strengths. Results are compared to those from two widely used magnetic resonance image segmentation programs, Statistical Parametric Mapping and the FMRIB Software Library (FSL). The results are comparable to FSL while providing significant speed-up and better scalability to larger volumes of data. PMID:20046893
Worker, Amanda; Dima, Danai; Combes, Anna; Crum, William R; Streffer, Johannes; Einstein, Steven; Mehta, Mitul A; Barker, Gareth J; C R Williams, Steve; O'daly, Owen
2018-04-01
The hippocampal formation is a complex brain structure that is important in cognitive processes such as memory, mood, reward processing and other executive functions. Histological and neuroimaging studies have implicated the hippocampal region in neuropsychiatric disorders as well as in neurodegenerative diseases. This highly plastic limbic region is made up of several subregions that are believed to have different functional roles. Therefore, there is a growing interest in imaging the subregions of the hippocampal formation rather than modelling the hippocampus as a homogenous structure, driving the development of new automated analysis tools. Consequently, there is a pressing need to understand the stability of the measures derived from these new techniques. In this study, an automated hippocampal subregion segmentation pipeline, released as a developmental version of Freesurfer (v6.0), was applied to T1-weighted magnetic resonance imaging (MRI) scans of 22 healthy older participants, scanned on 3 separate occasions and a separate longitudinal dataset of 40 Alzheimer's disease (AD) patients. Test-retest reliability of hippocampal subregion volumes was assessed using the intra-class correlation coefficient (ICC), percentage volume difference and percentage volume overlap (Dice). Sensitivity of the regional estimates to longitudinal change was estimated using linear mixed effects (LME) modelling. The results show that out of the 24 hippocampal subregions, 20 had ICC scores of 0.9 or higher in both samples; these regions include the molecular layer, granule cell layer of the dentate gyrus, CA1, CA3 and the subiculum (ICC > 0.9), whilst the hippocampal fissure and fimbria had lower ICC scores (0.73-0.88). Furthermore, LME analysis of the independent AD dataset demonstrated sensitivity to group and individual differences in the rate of volume change over time in several hippocampal subregions (CA1, molecular layer, CA3, hippocampal tail, fissure and presubiculum). These results indicate that this automated segmentation method provides a robust method with which to measure hippocampal subregions, and may be useful in tracking disease progression and measuring the effects of pharmacological intervention. © 2018 Wiley Periodicals, Inc.
4D-CT motion estimation using deformable image registration and 5D respiratory motion modeling.
Yang, Deshan; Lu, Wei; Low, Daniel A; Deasy, Joseph O; Hope, Andrew J; El Naqa, Issam
2008-10-01
Four-dimensional computed tomography (4D-CT) imaging technology has been developed for radiation therapy to provide tumor and organ images at the different breathing phases. In this work, a procedure is proposed for estimating and modeling the respiratory motion field from acquired 4D-CT imaging data and predicting tissue motion at the different breathing phases. The 4D-CT image data consist of series of multislice CT volume segments acquired in ciné mode. A modified optical flow deformable image registration algorithm is used to compute the image motion from the CT segments to a common full volume 3D-CT reference. This reference volume is reconstructed using the acquired 4D-CT data at the end-of-exhalation phase. The segments are optimally aligned to the reference volume according to a proposed a priori alignment procedure. The registration is applied using a multigrid approach and a feature-preserving image downsampling maxfilter to achieve better computational speed and higher registration accuracy. The registration accuracy is about 1.1 +/- 0.8 mm for the lung region according to our verification using manually selected landmarks and artificially deformed CT volumes. The estimated motion fields are fitted to two 5D (spatial 3D+tidal volume+airflow rate) motion models: forward model and inverse model. The forward model predicts tissue movements and the inverse model predicts CT density changes as a function of tidal volume and airflow rate. A leave-one-out procedure is used to validate these motion models. The estimated modeling prediction errors are about 0.3 mm for the forward model and 0.4 mm for the inverse model.
Video Segmentation Descriptors for Event Recognition
2014-12-08
Velastin, 3D Extended Histogram of Oriented Gradients (3DHOG) for Classification of Road Users in Urban Scenes , BMVC, 2009. [3] M.-Y. Chen and A. Hauptmann...computed on 3D volume outputted by the hierarchical segmentation . Each video is described as follows. Each supertube is temporally divided in n-frame...strength of these descriptors is their adaptability to the scene variations since they are grounded on a video segmentation . This makes them naturally robust
Comerci, M; Elefante, A; Strianese, D; Senese, R; Bonavolontà, P; Alfano, B; Bonavolontà, B; Brunetti, A
2013-08-01
This study was designed to validate a novel semi-automated segmentation method to measure regional intra-orbital fat tissue volume in Graves' ophthalmopathy. Twenty-four orbits from 12 patients with Graves' ophthalmopathy, 24 orbits from 12 controls, ten orbits from five MRI study simulations and two orbits from a digital model were used. Following manual region of interest definition of the orbital volumes performed by two operators with different levels of expertise, an automated procedure calculated intra-orbital fat tissue volumes (global and regional, with automated definition of four quadrants). In patients with Graves' disease, clinical activity score and degree of exophthalmos were measured and correlated with intra-orbital fat volumes. Operator performance was evaluated and statistical analysis of the measurements was performed. Accurate intra-orbital fat volume measurements were obtained with coefficients of variation below 5%. The mean operator difference in total fat volume measurements was 0.56%. Patients had significantly higher intra-orbital fat volumes than controls (p<0.001 using Student's t test). Fat volumes and clinical score were significantly correlated (p<0.001). The semi-automated method described here can provide accurate, reproducible intra-orbital fat measurements with low inter-operator variation and good correlation with clinical data.
Semiautomated Segmentation of Polycystic Kidneys in T2-Weighted MR Images.
Kline, Timothy L; Edwards, Marie E; Korfiatis, Panagiotis; Akkus, Zeynettin; Torres, Vicente E; Erickson, Bradley J
2016-09-01
The objective of the present study is to develop and validate a fast, accurate, and reproducible method that will increase and improve institutional measurement of total kidney volume and thereby avoid the higher costs, increased operator processing time, and inherent subjectivity associated with manual contour tracing. We developed a semiautomated segmentation approach, known as the minimal interaction rapid organ segmentation (MIROS) method, which results in human interaction during measurement of total kidney volume on MR images being reduced to a few minutes. This software tool automatically steps through slices and requires rough definition of kidney boundaries supplied by the user. The approach was verified on T2-weighted MR images of 40 patients with autosomal dominant polycystic kidney disease of varying degrees of severity. The MIROS approach required less than 5 minutes of user interaction in all cases. When compared with the ground-truth reference standard, MIROS showed no significant bias and had low variability (mean ± 2 SD, 0.19% ± 6.96%). The MIROS method will greatly facilitate future research studies in which accurate and reproducible measurements of cystic organ volumes are needed.
A CAD System for Hemorrhagic Stroke.
Nowinski, Wieslaw L; Qian, Guoyu; Hanley, Daniel F
2014-09-01
Computer-aided detection/diagnosis (CAD) is a key component of routine clinical practice, increasingly used for detection, interpretation, quantification and decision support. Despite a critical need, there is no clinically accepted CAD system for stroke yet. Here we introduce a CAD system for hemorrhagic stroke. This CAD system segments, quantifies, and displays hematoma in 2D/3D, and supports evacuation of hemorrhage by thrombolytic treatment monitoring progression and quantifying clot removal. It supports seven-step workflow: select patient, add a new study, process patient's scans, show segmentation results, plot hematoma volumes, show 3D synchronized time series hematomas, and generate report. The system architecture contains four components: library, tools, application with user interface, and hematoma segmentation algorithm. The tools include a contour editor, 3D surface modeler, 3D volume measure, histogramming, hematoma volume plot, and 3D synchronized time-series hematoma display. The CAD system has been designed and implemented in C++. It has also been employed in the CLEAR and MISTIE phase-III, multicenter clinical trials. This stroke CAD system is potentially useful in research and clinical applications, particularly for clinical trials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deboodt, Tyler; Ideker, Jason H.; Isgor, O. Burkan
2017-12-01
The use of x-ray computed tomography (CT) as a standalone method has primarily been used to characterize pore structure, cracking and mechanical damage in cementitious systems due to low contrast in the hydrated phases. These limitations have resulted in the inability to extract quantifiable information on such phases. The goal of this research was to address the limitations caused by low contrast and improving the ability to distinguish the four primary hydrated phases in portland cement; C-S-H, calcium hydroxide, monosulfate, and ettringite. X-ray CT on individual layers, binary mixtures of phases, and quaternary mixtures of phases to represent a hydratedmore » portland cement paste were imaged with synchrotron radiation. Known masses of each phase were converted to a volume and compared to the segmented image volumes. It was observed that adequate contrast in binary mixing of phases allowed for segmentation, and subsequent image analysis indicated quantifiable volumes could be extracted from the tomographic volume. However, low contrast was observed when C-S-H and monosulfate were paired together leading to difficulties segmenting in an unbiased manner. Quantification of phases in quaternary mixtures included larger errors than binary mixes due to histogram overlaps of monosulfate, C-S-H, and calcium hydroxide.« less
Hull, D.E.
1982-07-02
An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.
Hull, Donald E.
1984-01-01
An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.
NASA Astrophysics Data System (ADS)
Saris, Anne E. C. M.; Nillesen, Maartje M.; Lopata, Richard G. P.; de Korte, Chris L.
2013-03-01
Automated segmentation of 3D echocardiographic images in patients with congenital heart disease is challenging, because the boundary between blood and cardiac tissue is poorly defined in some regions. Cardiologists mentally incorporate movement of the heart, using temporal coherence of structures to resolve ambiguities. Therefore, we investigated the merit of temporal cross-correlation for automated segmentation over the entire cardiac cycle. Optimal settings for maximum cross-correlation (MCC) calculation, based on a 3D cross-correlation based displacement estimation algorithm, were determined to obtain the best contrast between blood and myocardial tissue over the entire cardiac cycle. Resulting envelope-based as well as RF-based MCC values were used as additional external force in a deformable model approach, to segment the left-ventricular cavity in entire systolic phase. MCC values were tested against, and combined with, adaptive filtered, demodulated RF-data. Segmentation results were compared with manually segmented volumes using a 3D Dice Similarity Index (3DSI). Results in 3D pediatric echocardiographic images sequences (n = 4) demonstrate that incorporation of temporal information improves segmentation. The use of MCC values, either alone or in combination with adaptive filtered, demodulated RF-data, resulted in an increase of the 3DSI in 75% of the cases (average 3DSI increase: 0.71 to 0.82). Results might be further improved by optimizing MCC-contrast locally, in regions with low blood-tissue contrast. Reducing underestimation of the endocardial volume due to MCC processing scheme (choice of window size) and consequential border-misalignment, could also lead to more accurate segmentations. Furthermore, increasing the frame rate will also increase MCC-contrast and thus improve segmentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Chuan, E-mail: chuan@umich.edu; Chan, Heang-
Purpose: The authors are developing an automated method to identify the best-quality coronary arterial segment from multiple-phase coronary CT angiography (cCTA) acquisitions, which may be used by either interpreting physicians or computer-aided detection systems to optimally and efficiently utilize the diagnostic information available in multiple-phase cCTA for the detection of coronary artery disease. Methods: After initialization with a manually identified seed point, each coronary artery tree is automatically extracted from multiple cCTA phases using our multiscale coronary artery response enhancement and 3D rolling balloon region growing vessel segmentation and tracking method. The coronary artery trees from multiple phases are thenmore » aligned by a global registration using an affine transformation with quadratic terms and nonlinear simplex optimization, followed by a local registration using a cubic B-spline method with fast localized optimization. The corresponding coronary arteries among the available phases are identified using a recursive coronary segment matching method. Each of the identified vessel segments is transformed by the curved planar reformation (CPR) method. Four features are extracted from each corresponding segment as quality indicators in the original computed tomography volume and the straightened CPR volume, and each quality indicator is used as a voting classifier for the arterial segment. A weighted voting ensemble (WVE) classifier is designed to combine the votes of the four voting classifiers for each corresponding segment. The segment with the highest WVE vote is then selected as the best-quality segment. In this study, the training and test sets consisted of 6 and 20 cCTA cases, respectively, each with 6 phases, containing a total of 156 cCTA volumes and 312 coronary artery trees. An observer preference study was also conducted with one expert cardiothoracic radiologist and four nonradiologist readers to visually rank vessel segment quality. The performance of our automated method was evaluated by comparing the automatically identified best-quality segments identified by the computer to those selected by the observers. Results: For the 20 test cases, 254 groups of corresponding vessel segments were identified after multiple phase registration and recursive matching. The AI-BQ segments agreed with the radiologist’s top 2 ranked segments in 78.3% of the 254 groups (Cohen’s kappa 0.60), and with the 4 nonradiologist observers in 76.8%, 84.3%, 83.9%, and 85.8% of the 254 groups. In addition, 89.4% of the AI-BQ segments agreed with at least two observers’ top 2 rankings, and 96.5% agreed with at least one observer’s top 2 rankings. In comparison, agreement between the four observers’ top ranked segment and the radiologist’s top 2 ranked segments were 79.9%, 80.7%, 82.3%, and 76.8%, respectively, with kappa values ranging from 0.56 to 0.68. Conclusions: The performance of our automated method for selecting the best-quality coronary segments from a multiple-phase cCTA acquisition was comparable to the selection made by human observers. This study demonstrates the potential usefulness of the automated method in clinical practice, enabling interpreting physicians to fully utilize the best available information in cCTA for diagnosis of coronary disease, without requiring manual search through the multiple phases and minimizing the variability in image phase selection for evaluation of coronary artery segments across the diversity of human readers with variations in expertise.« less
Computerized tongue image segmentation via the double geo-vector flow
2014-01-01
Background Visual inspection for tongue analysis is a diagnostic method in traditional Chinese medicine (TCM). Owing to the variations in tongue features, such as color, texture, coating, and shape, it is difficult to precisely extract the tongue region in images. This study aims to quantitatively evaluate tongue diagnosis via automatic tongue segmentation. Methods Experiments were conducted using a clinical image dataset provided by the Laboratory of Traditional Medical Syndromes, Shanghai University of TCM. First, a clinical tongue image was refined by a saliency window. Second, we initialized the tongue area as the upper binary part and lower level set matrix. Third, a double geo-vector flow (DGF) was proposed to detect the tongue edge and segment the tongue region in the image, such that the geodesic flow was evaluated in the lower part, and the geo-gradient vector flow was evaluated in the upper part. Results The performance of the DGF was evaluated using 100 images. The DGF exhibited better results compared with other representative studies, with its true-positive volume fraction reaching 98.5%, its false-positive volume fraction being 1.51%, and its false-negative volume fraction being 1.42%. The errors between the proposed automatic segmentation results and manual contours were 0.29 and 1.43% in terms of the standard boundary error metrics of Hausdorff distance and mean distance, respectively. Conclusions By analyzing the time complexity of the DGF and evaluating its performance via standard boundary and area error metrics, we have shown both efficiency and effectiveness of the DGF for automatic tongue image segmentation. PMID:24507094
Computerized tongue image segmentation via the double geo-vector flow.
Shi, Miao-Jing; Li, Guo-Zheng; Li, Fu-Feng; Xu, Chao
2014-02-08
Visual inspection for tongue analysis is a diagnostic method in traditional Chinese medicine (TCM). Owing to the variations in tongue features, such as color, texture, coating, and shape, it is difficult to precisely extract the tongue region in images. This study aims to quantitatively evaluate tongue diagnosis via automatic tongue segmentation. Experiments were conducted using a clinical image dataset provided by the Laboratory of Traditional Medical Syndromes, Shanghai University of TCM. First, a clinical tongue image was refined by a saliency window. Second, we initialized the tongue area as the upper binary part and lower level set matrix. Third, a double geo-vector flow (DGF) was proposed to detect the tongue edge and segment the tongue region in the image, such that the geodesic flow was evaluated in the lower part, and the geo-gradient vector flow was evaluated in the upper part. The performance of the DGF was evaluated using 100 images. The DGF exhibited better results compared with other representative studies, with its true-positive volume fraction reaching 98.5%, its false-positive volume fraction being 1.51%, and its false-negative volume fraction being 1.42%. The errors between the proposed automatic segmentation results and manual contours were 0.29 and 1.43% in terms of the standard boundary error metrics of Hausdorff distance and mean distance, respectively. By analyzing the time complexity of the DGF and evaluating its performance via standard boundary and area error metrics, we have shown both efficiency and effectiveness of the DGF for automatic tongue image segmentation.
NASA Astrophysics Data System (ADS)
Chupin, Marie; Hasboun, Dominique; Mukuna-Bantumbakulu, Romain; Bardinet, Eric; Baillet, Sylvain; Kinkingnéhun, Serge; Lemieux, Louis; Dubois, Bruno; Garnero, Line
2006-03-01
The hippocampus (Hc) and the amygdala (Am) are two cerebral structures that play a central role in main cognitive processes. Their segmentation allows atrophy in specific neurological illnesses to be quantified, but is made difficult by the complexity of the structures. In this work, a new algorithm for the simultaneous segmentation of Hc and Am based on competitive homotopic region deformations is presented. The deformations are constrained by relational priors derived from anatomical knowledge, namely probabilities for each structure around automatically retrieved landmarks at the border of the objects. The approach is designed to perform well on data from diseased subjects. The segmentation is initialized by extracting a bounding box and positioning two seeds; total execution time for both sides is between 10 and 15 minutes including initialization for the two structures. We present the results of validation based on comparison with manual segmentation, using volume error, spatial overlap and border distance measures. For 8 young healthy subjects the mean volume error was 7% for Hc and 11% for Am, the overlap: 84% for Hc and 83% for Am, the maximal distance: 4.2mm for Hc and 3.1mm for Am; for 4 Alzheimer's disease patients the mean volume error was 9% for Hc and Am, the overlap: 83% for Hc and 78% for Am, the maximal distance: 6mm for Hc and 4.4mm for Am. We conclude that the performance of the proposed method compares favourably with that of other published approaches in terms of accuracy and has a short execution time.
Ventriculogram segmentation using boosted decision trees
NASA Astrophysics Data System (ADS)
McDonald, John A.; Sheehan, Florence H.
2004-05-01
Left ventricular status, reflected in ejection fraction or end systolic volume, is a powerful prognostic indicator in heart disease. Quantitative analysis of these and other parameters from ventriculograms (cine xrays of the left ventricle) is infrequently performed due to the labor required for manual segmentation. None of the many methods developed for automated segmentation has achieved clinical acceptance. We present a method for semi-automatic segmentation of ventriculograms based on a very accurate two-stage boosted decision-tree pixel classifier. The classifier determines which pixels are inside the ventricle at key ED (end-diastole) and ES (end-systole) frames. The test misclassification rate is about 1%. The classifier is semi-automatic, requiring a user to select 3 points in each frame: the endpoints of the aortic valve and the apex. The first classifier stage is 2 boosted decision-trees, trained using features such as gray-level statistics (e.g. median brightness) and image geometry (e.g. coordinates relative to user supplied 3 points). Second stage classifiers are trained using the same features as the first, plus the output of the first stage. Border pixels are determined from the segmented images using dilation and erosion. A curve is then fit to the border pixels, minimizing a penalty function that trades off fidelity to the border pixels with smoothness. ED and ES volumes, and ejection fraction are estimated from border curves using standard area-length formulas. On independent test data, the differences between automatic and manual volumes (and ejection fractions) are similar in size to the differences between two human observers.
Unifying framework for multimodal brain MRI segmentation based on Hidden Markov Chains.
Bricq, S; Collet, Ch; Armspach, J P
2008-12-01
In the frame of 3D medical imaging, accurate segmentation of multimodal brain MR images is of interest for many brain disorders. However, due to several factors such as noise, imaging artifacts, intrinsic tissue variation and partial volume effects, tissue classification remains a challenging task. In this paper, we present a unifying framework for unsupervised segmentation of multimodal brain MR images including partial volume effect, bias field correction, and information given by a probabilistic atlas. Here-proposed method takes into account neighborhood information using a Hidden Markov Chain (HMC) model. Due to the limited resolution of imaging devices, voxels may be composed of a mixture of different tissue types, this partial volume effect is included to achieve an accurate segmentation of brain tissues. Instead of assigning each voxel to a single tissue class (i.e., hard classification), we compute the relative amount of each pure tissue class in each voxel (mixture estimation). Further, a bias field estimation step is added to the proposed algorithm to correct intensity inhomogeneities. Furthermore, atlas priors were incorporated using probabilistic brain atlas containing prior expectations about the spatial localization of different tissue classes. This atlas is considered as a complementary sensor and the proposed method is extended to multimodal brain MRI without any user-tunable parameter (unsupervised algorithm). To validate this new unifying framework, we present experimental results on both synthetic and real brain images, for which the ground truth is available. Comparison with other often used techniques demonstrates the accuracy and the robustness of this new Markovian segmentation scheme.
Angelini, Elsa D; Homma, Shunichi; Pearson, Gregory; Holmes, Jeffrey W; Laine, Andrew F
2005-09-01
Among screening modalities, echocardiography is the fastest, least expensive and least invasive method for imaging the heart. A new generation of three-dimensional (3-D) ultrasound (US) technology has been developed with real-time 3-D (RT3-D) matrix phased-array transducers. These transducers allow interactive 3-D visualization of cardiac anatomy and fast ventricular volume estimation without tomographic interpolation as required with earlier 3-D US acquisition systems. However, real-time acquisition speed is performed at the cost of decreasing spatial resolution, leading to echocardiographic data with poor definition of anatomical structures and high levels of speckle noise. The poor quality of the US signal has limited the acceptance of RT3-D US technology in clinical practice, despite the wealth of information acquired by this system, far greater than with any other existing echocardiography screening modality. We present, in this work, a clinical study for segmentation of right and left ventricular volumes using RT3-D US. A preprocessing of the volumetric data sets was performed using spatiotemporal brushlet denoising, as presented in previous articles Two deformable-model segmentation methods were implemented in 2-D using a parametric formulation and in 3-D using an implicit formulation with a level set implementation for extraction of endocardial surfaces on denoised RT3-D US data. A complete and rigorous validation of the segmentation methods was carried out for quantification of left and right ventricular volumes and ejection fraction, including comparison of measurements with cardiac magnetic resonance imaging as the reference. Results for volume and ejection fraction measurements report good performance of quantification of cardiac function on RT3-D data compared with magnetic resonance imaging with better performance of semiautomatic segmentation methods than with manual tracing on the US data.
TED: A Tolerant Edit Distance for segmentation evaluation.
Funke, Jan; Klein, Jonas; Moreno-Noguer, Francesc; Cardona, Albert; Cook, Matthew
2017-02-15
In this paper, we present a novel error measure to compare a computer-generated segmentation of images or volumes against ground truth. This measure, which we call Tolerant Edit Distance (TED), is motivated by two observations that we usually encounter in biomedical image processing: (1) Some errors, like small boundary shifts, are tolerable in practice. Which errors are tolerable is application dependent and should be explicitly expressible in the measure. (2) Non-tolerable errors have to be corrected manually. The effort needed to do so should be reflected by the error measure. Our measure is the minimal weighted sum of split and merge operations to apply to one segmentation such that it resembles another segmentation within specified tolerance bounds. This is in contrast to other commonly used measures like Rand index or variation of information, which integrate small, but tolerable, differences. Additionally, the TED provides intuitive numbers and allows the localization and classification of errors in images or volumes. We demonstrate the applicability of the TED on 3D segmentations of neurons in electron microscopy images where topological correctness is arguable more important than exact boundary locations. Furthermore, we show that the TED is not just limited to evaluation tasks. We use it as the loss function in a max-margin learning framework to find parameters of an automatic neuron segmentation algorithm. We show that training to minimize the TED, i.e., to minimize crucial errors, leads to higher segmentation accuracy compared to other learning methods. Copyright © 2016. Published by Elsevier Inc.
Sidman, Richard L.
1957-01-01
Fragments of freshly obtained retinas of several vertebrate species were studied by refractometry, with reference to the structure of the rods and cones. The findings allowed a reassessment of previous descriptions based mainly on fixed material. The refractometric method was used also to measure the refractice indices and to calculate the concentrations of solids and water in the various cell segments. The main quantitative data were confirmed by interference microscopy. When examined by the method of refractometry the outer segments of freshly prepared retinal rods appear homogeneous. Within a few minutes a single eccentric longitudinal fiber appears, and transverse striations may develop. These changes are attributed to imbibition of water and swelling in structures normally too small for detection by light microscopy. The central "core" of outer segments and the chromophobic disc between outer and inner segments appear to be artifacts resulting from shrinkage during dehydration. The fresh outer segments of cones, and the inner segments of rods and cones also are described and illustrated. The volumes, refractive indices, concentrations of solids, and wet and dry weights of various segments of the photoreceptor cells were tabulated. Rod outer segments of the different species vary more than 100-fold in volume and mass but all have concentrations of solids of 40 to 43 per cent. Cone outer segments contain only about 30 per cent solids. The myoids, paraboloids, and ellipsoids of the inner segments likewise have characteristic refractive indices and concentrations of solids. Some of the limitations and particular virtues of refractometry as a method for quantitative analysis of living cells are discussed in comparison with more conventional biochemical techniques. Also the shapes and refractive indices of the various segments of photoreceptor cells are considered in relation to the absorption and transmission of light. The Stiles-Crawford effect can be accounted for on the basis of the structure of cone cells. PMID:13416308
Segmenting patients and physicians using preferences from discrete choice experiments.
Deal, Ken
2014-01-01
People often form groups or segments that have similar interests and needs and seek similar benefits from health providers. Health organizations need to understand whether the same health treatments, prevention programs, services, and products should be applied to everyone in the relevant population or whether different treatments need to be provided to each of several segments that are relatively homogeneous internally but heterogeneous among segments. Our objective was to explain the purposes, benefits, and methods of segmentation for health organizations, and to illustrate the process of segmenting health populations based on preference coefficients from a discrete choice conjoint experiment (DCE) using an example study of prevention of cyberbullying among university students. We followed a two-level procedure for investigating segmentation incorporating several methods for forming segments in Level 1 using DCE preference coefficients and testing their quality, reproducibility, and usability by health decision makers. Covariates (demographic, behavioral, lifestyle, and health state variables) were included in Level 2 to further evaluate quality and to support the scoring of large databases and developing typing tools for assigning those in the relevant population, but not in the sample, to the segments. Several segmentation solution candidates were found during the Level 1 analysis, and the relationship of the preference coefficients to the segments was investigated using predictive methods. Those segmentations were tested for their quality and reproducibility and three were found to be very close in quality. While one seemed better than others in the Level 1 analysis, another was very similar in quality and proved ultimately better in predicting segment membership using covariates in Level 2. The two segments in the final solution were profiled for attributes that would support the development and acceptance of cyberbullying prevention programs among university students. Those segments were very different-where one wanted substantial penalties against cyberbullies and were willing to devote time to a prevention program, while the other felt no need to be involved in prevention and wanted only minor penalties. Segmentation recognizes key differences in why patients and physicians prefer different health programs and treatments. A viable segmentation solution may lead to adapting prevention programs and treatments for each targeted segment and/or to educating and communicating to better inform those in each segment of the program/treatment benefits. Segment members' revealed preferences showing behavioral changes provide the ultimate basis for evaluating the segmentation benefits to the health organization.
Hardin, Megan E.; Come, Carolyn E.; San José Estépar, Raúl; Ross, James C.; Kurugol, Sila; Okajima, Yuka; Han, MeiLan K.; Kim, Victor; Ramsdell, Joe; Silverman, Edwin K.; Crapo, James D.; Lynch, David A.; Make, Barry; Barr, R. Graham; Hersh, Craig P.; Washko, George R.
2014-01-01
Rationale and Objectives: Asthma is associated with chronic airflow obstruction. Our goal was to assess the association of computed tomographic measures of airway wall volume and lumen volume with the FEV1 and chronic airflow obstruction in smokers with childhood-onset asthma. Methods: We analyzed clinical, lung function, and volumetric computed tomographic airway volume data from 7,266 smokers, including 590 with childhood-onset asthma. Small wall volume and small lumen volume of segmental airways were defined as measures 1 SD below the mean. We assessed the association between small wall volume, small lumen volume, FEV1, and chronic airflow obstruction (post-bronchodilator FEV1/FVC ratio < 0.7) using linear and logistic models. Measurements and Main Results: Compared with subjects without childhood-onset asthma, those with childhood-onset asthma had smaller wall volume and lumen volume (P < 0.0001) of segmental airways. Among subjects with childhood-onset asthma, those with the smallest wall volume and lumen volume had the lowest FEV1 and greatest odds of chronic airflow obstruction. A similar tendency was seen in those without childhood-onset asthma. When comparing these two groups, both small wall volume and small lumen volume were more strongly associated with FEV1 and chronic airflow obstruction among subjects with childhood-asthma in multivariate models. Conclusion: In smokers with childhood-onset asthma, smaller airways are associated with reduced lung function and chronic airflow obstruction. Clinical trial registered with www.clinicaltrials.gov (NCT00608764). PMID:25296268
Diaz, Alejandro A; Hardin, Megan E; Come, Carolyn E; San José Estépar, Raúl; Ross, James C; Kurugol, Sila; Okajima, Yuka; Han, MeiLan K; Kim, Victor; Ramsdell, Joe; Silverman, Edwin K; Crapo, James D; Lynch, David A; Make, Barry; Barr, R Graham; Hersh, Craig P; Washko, George R
2014-11-01
Asthma is associated with chronic airflow obstruction. Our goal was to assess the association of computed tomographic measures of airway wall volume and lumen volume with the FEV1 and chronic airflow obstruction in smokers with childhood-onset asthma. We analyzed clinical, lung function, and volumetric computed tomographic airway volume data from 7,266 smokers, including 590 with childhood-onset asthma. Small wall volume and small lumen volume of segmental airways were defined as measures 1 SD below the mean. We assessed the association between small wall volume, small lumen volume, FEV1, and chronic airflow obstruction (post-bronchodilator FEV1/FVC ratio < 0.7) using linear and logistic models. Compared with subjects without childhood-onset asthma, those with childhood-onset asthma had smaller wall volume and lumen volume (P < 0.0001) of segmental airways. Among subjects with childhood-onset asthma, those with the smallest wall volume and lumen volume had the lowest FEV1 and greatest odds of chronic airflow obstruction. A similar tendency was seen in those without childhood-onset asthma. When comparing these two groups, both small wall volume and small lumen volume were more strongly associated with FEV1 and chronic airflow obstruction among subjects with childhood-asthma in multivariate models. In smokers with childhood-onset asthma, smaller airways are associated with reduced lung function and chronic airflow obstruction. Clinical trial registered with www.clinicaltrials.gov (NCT00608764).
Nitzsche, Björn; Frey, Stephen; Collins, Louis D.; Seeger, Johannes; Lobsien, Donald; Dreyer, Antje; Kirsten, Holger; Stoffel, Michael H.; Fonov, Vladimir S.; Boltze, Johannes
2015-01-01
Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs, and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM) that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams) were acquired on a 1.5 T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight (BW), age, and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM) and white (WM) matter as well as cerebrospinal fluid (CSF) classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM). Overall, a positive correlation of GM volume and BW explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species. PMID:26089780
FLIS Procedures Manual. Document Identifier Code Input/Output Formats (Fixed Length). Volume 8.
1997-04-01
DATA ELE- MENTS. SEGMENT R MAY BE REPEATED A MAXIMUM OF THREE (3) TIMES IN ORDER TO ACQUIRE THE REQUIRED MIX OF SEGMENTS OR INDIVIDUAL DATA ELEMENTS TO...preceding record. Marketing input DICs. QI Next DRN of appropriate segment will be QF The assigned NSN or PSCN being can- reflected in accordance with Table...Classified KFC Notification of Possible Duplicate (Sub- KRP Characteristics Data mitter) Follow-Up Interrogation LFU Notification of Return, SSR Transaction
A Study of the Effectiveness of the Army’s National Advertising Expenditures. Volume 3. Appendices.
1981-08-31
N W Ayer Incorpor- ated to study the effectiveness of the Army’s national recruitment advertising . N W Ayer’s Marketing Services Department undertook...Army priorities for the quality of the recruit mix required investigating the differential impact of advertising on key market segments. Segmentation... market segment. Three key considerations in specifying the advertising variables are that ’ *individual media components were analyzed to account for
Knee cartilage extraction and bone-cartilage interface analysis from 3D MRI data sets
NASA Astrophysics Data System (ADS)
Tamez-Pena, Jose G.; Barbu-McInnis, Monica; Totterman, Saara
2004-05-01
This works presents a robust methodology for the analysis of the knee joint cartilage and the knee bone-cartilage interface from fused MRI sets. The proposed approach starts by fusing a set of two 3D MR images the knee. Although the proposed method is not pulse sequence dependent, the first sequence should be programmed to achieve good contrast between bone and cartilage. The recommended second pulse sequence is one that maximizes the contrast between cartilage and surrounding soft tissues. Once both pulse sequences are fused, the proposed bone-cartilage analysis is done in four major steps. First, an unsupervised segmentation algorithm is used to extract the femur, the tibia, and the patella. Second, a knowledge based feature extraction algorithm is used to extract the femoral, tibia and patellar cartilages. Third, a trained user corrects cartilage miss-classifications done by the automated extracted cartilage. Finally, the final segmentation is the revisited using an unsupervised MAP voxel relaxation algorithm. This final segmentation has the property that includes the extracted bone tissue as well as all the cartilage tissue. This is an improvement over previous approaches where only the cartilage was segmented. Furthermore, this approach yields very reproducible segmentation results in a set of scan-rescan experiments. When these segmentations were coupled with a partial volume compensated surface extraction algorithm the volume, area, thickness measurements shows precisions around 2.6%
Use of Mechanical Turk as a MapReduce Framework for Macular OCT Segmentation.
Lee, Aaron Y; Lee, Cecilia S; Keane, Pearse A; Tufail, Adnan
2016-01-01
Purpose. To evaluate the feasibility of using Mechanical Turk as a massively parallel platform to perform manual segmentations of macular spectral domain optical coherence tomography (SD-OCT) images using a MapReduce framework. Methods. A macular SD-OCT volume of 61 slice images was map-distributed to Amazon Mechanical Turk. Each Human Intelligence Task was set to $0.01 and required the user to draw five lines to outline the sublayers of the retinal OCT image after being shown example images. Each image was submitted twice for segmentation, and interrater reliability was calculated. The interface was created using custom HTML5 and JavaScript code, and data analysis was performed using R. An automated pipeline was developed to handle the map and reduce steps of the framework. Results. More than 93,500 data points were collected using this framework for the 61 images submitted. Pearson's correlation of interrater reliability was 0.995 (p < 0.0001) and coefficient of determination was 0.991. The cost of segmenting the macular volume was $1.21. A total of 22 individual Mechanical Turk users provided segmentations, each completing an average of 5.5 HITs. Each HIT was completed in an average of 4.43 minutes. Conclusions. Amazon Mechanical Turk provides a cost-effective, scalable, high-availability infrastructure for manual segmentation of OCT images.
Use of Mechanical Turk as a MapReduce Framework for Macular OCT Segmentation
Lee, Aaron Y.; Lee, Cecilia S.; Keane, Pearse A.; Tufail, Adnan
2016-01-01
Purpose. To evaluate the feasibility of using Mechanical Turk as a massively parallel platform to perform manual segmentations of macular spectral domain optical coherence tomography (SD-OCT) images using a MapReduce framework. Methods. A macular SD-OCT volume of 61 slice images was map-distributed to Amazon Mechanical Turk. Each Human Intelligence Task was set to $0.01 and required the user to draw five lines to outline the sublayers of the retinal OCT image after being shown example images. Each image was submitted twice for segmentation, and interrater reliability was calculated. The interface was created using custom HTML5 and JavaScript code, and data analysis was performed using R. An automated pipeline was developed to handle the map and reduce steps of the framework. Results. More than 93,500 data points were collected using this framework for the 61 images submitted. Pearson's correlation of interrater reliability was 0.995 (p < 0.0001) and coefficient of determination was 0.991. The cost of segmenting the macular volume was $1.21. A total of 22 individual Mechanical Turk users provided segmentations, each completing an average of 5.5 HITs. Each HIT was completed in an average of 4.43 minutes. Conclusions. Amazon Mechanical Turk provides a cost-effective, scalable, high-availability infrastructure for manual segmentation of OCT images. PMID:27293877
Cuberas-Borrós, Gemma; Pineda, Victor; Aguadé-Bruix, Santiago; Romero-Farina, Guillermo; Pizzi, M Nazarena; de León, Gustavo; Castell-Conesa, Joan; García-Dorado, David; Candell-Riera, Jaume
2013-09-01
The aim of this study was to compare magnetic resonance and gated-SPECT myocardial perfusion imaging in patients with chronic myocardial infarction. Magnetic resonance imaging and gated-SPECT were performed in 104 patients (mean age, 61 [12] years; 87.5% male) with a previous infarction. Left ventricular volumes and ejection fraction and classic late gadolinium enhancement viability criteria (<75% transmurality) were correlated with those of gated-SPECT (uptake >50%) in the 17 segments of the left ventricle. Motion, thickening, and ischemia on SPECT were analyzed in segments showing nonviable tissue or equivocal enhancement features (50%-75% transmurality). A good correlation was observed between the 2 techniques for volumes, ejection fraction (P<.05), and estimated necrotic mass (P<.01). In total, 82 of 264 segments (31%) with >75% enhancement had >50% single SPECT uptake. Of the 106 equivocal segments on magnetic resonance imaging, 68 (64%) had >50% uptake, 41 (38.7%) had normal motion, 46 (43.4%) had normal thickening, and 17 (16%) had ischemic criteria on SPECT. A third of nonviable segments on magnetic resonance imaging showed >50% uptake on SPECT. Gated-SPECT can be useful in the analysis of motion, thickening, and ischemic criteria in segments with questionable viability on magnetic resonance imaging. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.
Cordova, James S; Schreibmann, Eduard; Hadjipanayis, Costas G; Guo, Ying; Shu, Hui-Kuo G; Shim, Hyunsuk; Holder, Chad A
2014-01-01
Standard-of-care therapy for glioblastomas, the most common and aggressive primary adult brain neoplasm, is maximal safe resection, followed by radiation and chemotherapy. Because maximizing resection may be beneficial for these patients, improving tumor extent of resection (EOR) with methods such as intraoperative 5-aminolevulinic acid fluorescence-guided surgery (FGS) is currently under evaluation. However, it is difficult to reproducibly judge EOR in these studies due to the lack of reliable tumor segmentation methods, especially for postoperative magnetic resonance imaging (MRI) scans. Therefore, a reliable, easily distributable segmentation method is needed to permit valid comparison, especially across multiple sites. We report a segmentation method that combines versatile region-of-interest blob generation with automated clustering methods. We applied this to glioblastoma cases undergoing FGS and matched controls to illustrate the method's reliability and accuracy. Agreement and interrater variability between segmentations were assessed using the concordance correlation coefficient, and spatial accuracy was determined using the Dice similarity index and mean Euclidean distance. Fuzzy C-means clustering with three classes was the best performing method, generating volumes with high agreement with manual contouring and high interrater agreement preoperatively and postoperatively. The proposed segmentation method allows tumor volume measurements of contrast-enhanced T1-weighted images in the unbiased, reproducible fashion necessary for quantifying EOR in multicenter trials. PMID:24772206
Radio Frequency Ablation Registration, Segmentation, and Fusion Tool
McCreedy, Evan S.; Cheng, Ruida; Hemler, Paul F.; Viswanathan, Anand; Wood, Bradford J.; McAuliffe, Matthew J.
2008-01-01
The Radio Frequency Ablation Segmentation Tool (RFAST) is a software application developed using NIH's Medical Image Processing Analysis and Visualization (MIPAV) API for the specific purpose of assisting physicians in the planning of radio frequency ablation (RFA) procedures. The RFAST application sequentially leads the physician through the steps necessary to register, fuse, segment, visualize and plan the RFA treatment. Three-dimensional volume visualization of the CT dataset with segmented 3D surface models enables the physician to interactively position the ablation probe to simulate burns and to semi-manually simulate sphere packing in an attempt to optimize probe placement. PMID:16871716
The 80:20 phenomenon: help or hindrance to planning caries prevention programmes?
Tickle, Martin
2002-03-01
to compare the outcomes of population segmentation analyses according to caries experience using the distribution of dmft and the Super Profiles geodemographic classification. The study population consisted of all 15,747 children in seven districts in the North West Region, England who were examined in whole population surveys during the 1995/6 NHS epidemiological survey of 5-year-old children. Market penetration analyses were used to segment this population according to caries experience by their dmft score and by the Super Profiles geodemographic classification. Lorenz curves were plotted and Gini coefficients were calculated from the outputs. When dmft was used to segment the population approximately 80% of carious teeth were found in some 42% of the total population, producing a Lorenz Curve with a Gini coefficient of 66%. The population was then segmented using Super Profiles Target Markets. The target markets were ranked according to caries experience and the denominator population living in each of these area types. Some 81% of the total population dmft was found in the topmost ranked 73.8% of the total population. The resultant Lorenz curve produced a Gini coefficient of 16.2%. About half of the population disease was confined to a minority of the population but not to the extent of 80% of the disease in 20% of the population. Although these high risk children were more commonly found in underprivileged area types, they did not live exclusively in a small number of deprived areas. These findings shed doubt on the wisdom of a targeted approach to oral health promotion and disease prevention programmes.
Maibach, Edward W; Leiserowitz, Anthony; Roser-Renouf, Connie; Mertz, C K
2011-03-10
Achieving national reductions in greenhouse gas emissions will require public support for climate and energy policies and changes in population behaviors. Audience segmentation--a process of identifying coherent groups within a population--can be used to improve the effectiveness of public engagement campaigns. In Fall 2008, we conducted a nationally representative survey of American adults (n = 2,164) to identify audience segments for global warming public engagement campaigns. By subjecting multiple measures of global warming beliefs, behaviors, policy preferences, and issue engagement to latent class analysis, we identified six distinct segments ranging in size from 7 to 33% of the population. These six segments formed a continuum, from a segment of people who were highly worried, involved and supportive of policy responses (18%), to a segment of people who were completely unconcerned and strongly opposed to policy responses (7%). Three of the segments (totaling 70%) were to varying degrees concerned about global warming and supportive of policy responses, two (totaling 18%) were unsupportive, and one was largely disengaged (12%), having paid little attention to the issue. Certain behaviors and policy preferences varied greatly across these audiences, while others did not. Using discriminant analysis, we subsequently developed 36-item and 15-item instruments that can be used to categorize respondents with 91% and 84% accuracy, respectively. In late 2008, Americans supported a broad range of policies and personal actions to reduce global warming, although there was wide variation among the six identified audiences. To enhance the impact of campaigns, government agencies, non-profit organizations, and businesses seeking to engage the public can selectively target one or more of these audiences rather than address an undifferentiated general population. Our screening instruments are available to assist in that process.
Tang, An; Chen, Joshua; Le, Thuy-Anh; Changchien, Christopher; Hamilton, Gavin; Middleton, Michael S.; Loomba, Rohit; Sirlin, Claude B.
2014-01-01
Purpose To explore the cross-sectional and longitudinal relationships between fractional liver fat content, liver volume, and total liver fat burden. Methods In 43 adults with non-alcoholic steatohepatitis participating in a clinical trial, liver volume was estimated by segmentation of magnitude-based low-flip-angle multiecho GRE images. The liver mean proton density fat fraction (PDFF) was calculated. The total liver fat index (TLFI) was estimated as the product of liver mean PDFF and liver volume. Linear regression analyses were performed. Results Cross-sectional analyses revealed statistically significant relationships between TLFI and liver mean PDFF (R2 = 0.740 baseline/0.791 follow-up, P < 0.001 baseline/P < 0.001 follow-up), and between TLFI and liver volume (R2 = 0.352/0.452, P < 0.001/< 0.001). Longitudinal analyses revealed statistically significant relationships between liver volume change and liver mean PDFF change (R2 = 0.556, P < 0.001), between TLFI change and liver mean PDFF change (R2 = 0.920, P < 0.001), and between TLFI change and liver volume change (R2 = 0.735, P < 0.001). Conclusion Liver segmentation in combination with MRI-based PDFF estimation may be used to monitor liver volume, liver mean PDFF, and TLFI in a clinical trial. PMID:25015398
NASA Astrophysics Data System (ADS)
Li, Lu; Narayanan, Ramakrishnan; Miller, Steve; Shen, Feimo; Barqawi, Al B.; Crawford, E. David; Suri, Jasjit S.
2008-02-01
Real-time knowledge of capsule volume of an organ provides a valuable clinical tool for 3D biopsy applications. It is challenging to estimate this capsule volume in real-time due to the presence of speckles, shadow artifacts, partial volume effect and patient motion during image scans, which are all inherent in medical ultrasound imaging. The volumetric ultrasound prostate images are sliced in a rotational manner every three degrees. The automated segmentation method employs a shape model, which is obtained from training data, to delineate the middle slices of volumetric prostate images. Then a "DDC" algorithm is applied to the rest of the images with the initial contour obtained. The volume of prostate is estimated with the segmentation results. Our database consists of 36 prostate volumes which are acquired using a Philips ultrasound machine using a Side-fire transrectal ultrasound (TRUS) probe. We compare our automated method with the semi-automated approach. The mean volumes using the semi-automated and complete automated techniques were 35.16 cc and 34.86 cc, with the error of 7.3% and 7.6% compared to the volume obtained by the human estimated boundary (ideal boundary), respectively. The overall system, which was developed using Microsoft Visual C++, is real-time and accurate.
Using deep learning to segment breast and fibroglandular tissue in MRI volumes.
Dalmış, Mehmet Ufuk; Litjens, Geert; Holland, Katharina; Setio, Arnaud; Mann, Ritse; Karssemeijer, Nico; Gubern-Mérida, Albert
2017-02-01
Automated segmentation of breast and fibroglandular tissue (FGT) is required for various computer-aided applications of breast MRI. Traditional image analysis and computer vision techniques, such atlas, template matching, or, edge and surface detection, have been applied to solve this task. However, applicability of these methods is usually limited by the characteristics of the images used in the study datasets, while breast MRI varies with respect to the different MRI protocols used, in addition to the variability in breast shapes. All this variability, in addition to various MRI artifacts, makes it a challenging task to develop a robust breast and FGT segmentation method using traditional approaches. Therefore, in this study, we investigated the use of a deep-learning approach known as "U-net." We used a dataset of 66 breast MRI's randomly selected from our scientific archive, which includes five different MRI acquisition protocols and breasts from four breast density categories in a balanced distribution. To prepare reference segmentations, we manually segmented breast and FGT for all images using an in-house developed workstation. We experimented with the application of U-net in two different ways for breast and FGT segmentation. In the first method, following the same pipeline used in traditional approaches, we trained two consecutive (2C) U-nets: first for segmenting the breast in the whole MRI volume and the second for segmenting FGT inside the segmented breast. In the second method, we used a single 3-class (3C) U-net, which performs both tasks simultaneously by segmenting the volume into three regions: nonbreast, fat inside the breast, and FGT inside the breast. For comparison, we applied two existing and published methods to our dataset: an atlas-based method and a sheetness-based method. We used Dice Similarity Coefficient (DSC) to measure the performances of the automated methods, with respect to the manual segmentations. Additionally, we computed Pearson's correlation between the breast density values computed based on manual and automated segmentations. The average DSC values for breast segmentation were 0.933, 0.944, 0.863, and 0.848 obtained from 3C U-net, 2C U-nets, atlas-based method, and sheetness-based method, respectively. The average DSC values for FGT segmentation obtained from 3C U-net, 2C U-nets, and atlas-based methods were 0.850, 0.811, and 0.671, respectively. The correlation between breast density values based on 3C U-net and manual segmentations was 0.974. This value was significantly higher than 0.957 as obtained from 2C U-nets (P < 0.0001, Steiger's Z-test with Bonferoni correction) and 0.938 as obtained from atlas-based method (P = 0.0016). In conclusion, we applied a deep-learning method, U-net, for segmenting breast and FGT in MRI in a dataset that includes a variety of MRI protocols and breast densities. Our results showed that U-net-based methods significantly outperformed the existing algorithms and resulted in significantly more accurate breast density computation. © 2016 American Association of Physicists in Medicine.
Low, Lian Leng; Kwan, Yu Heng; Liu, Nan; Jing, Xuan; Low, Edwin Cheng Tee; Thumboo, Julian
2017-11-23
Segmenting the population into groups that are relatively homogeneous in healthcare characteristics or needs is crucial to facilitate integrated care and resource planning. We aimed to evaluate the feasibility of segmenting the population into discrete, non-overlapping groups using a practical expert and literature driven approach. We hypothesized that this approach is feasible utilizing the electronic health record (EHR) in SingHealth. In addition to well-defined segments of "Mostly healthy", "Serious acute illness but curable" and "End of life" segments that are also present in the Ministry of Health Singapore framework, patients with chronic diseases were segmented into "Stable chronic disease", "Complex chronic diseases without frequent hospital admissions", and "Complex chronic diseases with frequent hospital admissions". Using the electronic health record (EHR), we applied this framework to all adult patients who had a healthcare encounter in the Singapore Health Services Regional Health System in 2012. ICD-9, 10 and polyclinic codes were used to define chronic diseases with a comprehensive look-back period of 5 years. Outcomes (hospital admissions, emergency attendances, specialist outpatient clinic attendances and mortality) were analyzed for years 2012 to 2015. Eight hundred twenty five thousand eight hundred seventy four patients were included in this study with the majority being healthy without chronic diseases. The most common chronic disease was hypertension. Patients with "complex chronic disease" with frequent hospital admissions segment represented 0.6% of the eligible population, but accounted for the highest hospital admissions (4.33 ± 2.12 admissions; p < 0.001) and emergency attendances (ED) (3.21 ± 3.16 ED visits; p < 0.001) per patient, and a high mortality rate (16%). Patients with metastatic disease accounted for the highest specialist outpatient clinic attendances (27.48 ± 23.68 visits; p < 0.001) per patient despite their relatively shorter course of illness and high one-year mortality rate (33%). This practical segmentation framework can potentially distinguish among groups of patients, and highlighted the high disease burden of patients with chronic diseases. Further research to validate this approach of population segmentation is needed.
Increase in mean platelet volume in patients with myocardial bridge.
Bilen, Emine; Tanboga, Ibrahim Halil; Kurt, Mustafa; Kocak, Umran; Ayhan, Huseyin; Keles, Telat; Bozkurt, Engin
2013-01-01
Myocardial bridge is associated with atherosclerosis altered in shear stress and endothelial dysfunction. Mean platelet volume (MPV), a determinant of platelet activation, is shown to be related with atherosclerosis and endothelial dysfunction. In this study, we aimed to evaluate platelet function assessed by MPV in patients with myocardial bridge. Forty-two patients with myocardial bridge in the left anterior descending artery (LAD) and 43 age- and gender-matched healthy participants were included in the study. Myocardial bridging was defined as an intramyocardial systolic compression or milking of a segment of an epicardial coronary artery on angiography. For the entire study population, MPV was measured using an automatic blood counter. The study population consisted of 42 patients with myocardial bridge (52.7 ± 10.2, 76.2% male) and 43 age- and sex-matched healthy control participants (52.1 ± 10.4, 74.4% male). Compared to the control group, MPV value was significantly higher in patients with myocardial bridge (8.9 ± 1.24 vs 8.3 ± 0.78; P = .01). Further, there were no significant differences between groups regarding hemoglobin level, platelet count, fasting blood glucose, and creatinine levels. Our study findings indicated that myocardial bridge is associated with elevated MPV values. Our results might partly explain the increased cardiovascular events in patients with myocardial bridge.
Irradiation of the prostate and pelvic lymph nodes with an adaptive algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, A. B.; Chen, J.; Nguyen, T. B.
2012-02-15
Purpose: The simultaneous treatment of pelvic lymph nodes and the prostate in radiotherapy for prostate cancer is complicated by the independent motion of these two target volumes. In this work, the authors study a method to adapt intensity modulated radiation therapy (IMRT) treatment plans so as to compensate for this motion by adaptively morphing the multileaf collimator apertures and adjusting the segment weights. Methods: The study used CT images, tumor volumes, and normal tissue contours from patients treated in our institution. An IMRT treatment plan was then created using direct aperture optimization to deliver 45 Gy to the pelvic lymphmore » nodes and 50 Gy to the prostate and seminal vesicles. The prostate target volume was then shifted in either the anterior-posterior direction or in the superior-inferior direction. The treatment plan was adapted by adjusting the aperture shapes with or without re-optimizing the segment weighting. The dose to the target volumes was then determined for the adapted plan. Results: Without compensation for prostate motion, 1 cm shifts of the prostate resulted in an average decrease of 14% in D-95%. If the isocenter is simply shifted to match the prostate motion, the prostate receives the correct dose but the pelvic lymph nodes are underdosed by 14% {+-} 6%. The use of adaptive morphing (with or without segment weight optimization) reduces the average change in D-95% to less than 5% for both the pelvic lymph nodes and the prostate. Conclusions: Adaptive morphing with and without segment weight optimization can be used to compensate for the independent motion of the prostate and lymph nodes when combined with daily imaging or other methods to track the prostate motion. This method allows the delivery of the correct dose to both the prostate and lymph nodes with only small changes to the dose delivered to the target volumes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Antong; Deeley, Matthew A.; Niermann, Kenneth J.
2010-12-15
Purpose: Intensity-modulated radiation therapy (IMRT) is the state of the art technique for head and neck cancer treatment. It requires precise delineation of the target to be treated and structures to be spared, which is currently done manually. The process is a time-consuming task of which the delineation of lymph node regions is often the longest step. Atlas-based delineation has been proposed as an alternative, but, in the authors' experience, this approach is not accurate enough for routine clinical use. Here, the authors improve atlas-based segmentation results obtained for level II-IV lymph node regions using an active shape model (ASM)more » approach. Methods: An average image volume was first created from a set of head and neck patient images with minimally enlarged nodes. The average image volume was then registered using affine, global, and local nonrigid transformations to the other volumes to establish a correspondence between surface points in the atlas and surface points in each of the other volumes. Once the correspondence was established, the ASMs were created for each node level. The models were then used to first constrain the results obtained with an atlas-based approach and then to iteratively refine the solution. Results: The method was evaluated through a leave-one-out experiment. The ASM- and atlas-based segmentations were compared to manual delineations via the Dice similarity coefficient (DSC) for volume overlap and the Euclidean distance between manual and automatic 3D surfaces. The mean DSC value obtained with the ASM-based approach is 10.7% higher than with the atlas-based approach; the mean and median surface errors were decreased by 13.6% and 12.0%, respectively. Conclusions: The ASM approach is effective in reducing segmentation errors in areas of low CT contrast where purely atlas-based methods are challenged. Statistical analysis shows that the improvements brought by this approach are significant.« less
Castelvecchio, Serenella; Careri, Giulia; Ambrogi, Federico; Camporeale, Antonia; Menicanti, Lorenzo; Secchi, Francesco; Lombardi, Massimo
2018-01-01
Post-infarction myocardial scar causes adverse left ventricular remodelling and negatively affects the prognosis. We sought to investigate whether scar extent and location obtained by cardiac magnetic resonance may affect the reverse remodelling and survival of heart failure patients undergoing surgical ventricular reconstruction. From January 2011 to December 2015, 151 consecutive patients with previous myocardial infarction and left ventricular remodelling underwent surgical ventricular reconstruction at our Institution, of which 88 (58%) patients had a preoperative protocol-standardized late gadolinium enhancement (LGE)-cardiac magnetic resonance examination during the week before surgery. We excluded 40 patients with devices (26%), 15 patients with irregular heart rhythm (permanent atrial fibrillation, 10% not included in the device group) or mixed contraindications (severe claustrophobia or presence of material magnetic resonance not compatible). Among the 145 survivors, 11 patients received an implantable cardioverter defibrillator after surgery (mostly for persistent low ejection fraction) and were excluded as well, yielding a total of 59 patients (48 men, aged 65 ± 9 years) who repeated a protocol-standardized LGE-cardiac magnetic resonance examination even 6 months postoperatively and therefore represent the study population. Patients were grouped according to the presence of LGE in the antero-basal left ventricular segments (Group A) or the absence of LGE in the same segments (Group B). The postoperative left ventricular end-systolic volume index was considered the primary end-point. After surgery, left ventricular end-systolic volume index and end-diastolic volume index significantly decreased (P < 0.001, for both), while diastolic sphericity index and ejection fraction significantly increased (P = 0.015 and P < 0.001, respectively). The presence of LGE in the antero-basal left ventricular segments (10 patients, Group A) was the only independent predictor of outcome (P = 0.02) at multivariate analysis, being the postoperative left ventricular end-systolic volume index significantly higher compared to that of patients of Group B (49 patients) (78 ± 26 ml/m2 vs 55 ± 20 ml/m2, P = 0.003). Furthermore, patients with a postoperative left ventricular end-systolic volume index >60 ml/m2 showed a higher risk of cardiac events (hazard ratio = 3.67, P = 0.02). In patients undergoing surgical ventricular reconstruction, LGE scar location affects the left ventricular reverse remodelling, which in turn might limit the survival benefit. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Mulder, Emma R; de Jong, Remko A; Knol, Dirk L; van Schijndel, Ronald A; Cover, Keith S; Visser, Pieter J; Barkhof, Frederik; Vrenken, Hugo
2014-05-15
To measure hippocampal volume change in Alzheimer's disease (AD) or mild cognitive impairment (MCI), expert manual delineation is often used because of its supposed accuracy. It has been suggested that expert outlining yields poorer reproducibility as compared to automated methods, but this has not been investigated. To determine the reproducibilities of expert manual outlining and two common automated methods for measuring hippocampal atrophy rates in healthy aging, MCI and AD. From the Alzheimer's Disease Neuroimaging Initiative (ADNI), 80 subjects were selected: 20 patients with AD, 40 patients with mild cognitive impairment (MCI) and 20 healthy controls (HCs). Left and right hippocampal volume change between baseline and month-12 visit was assessed by using expert manual delineation, and by the automated software packages FreeSurfer (longitudinal processing stream) and FIRST. To assess reproducibility of the measured hippocampal volume change, both back-to-back (BTB) MPRAGE scans available for each visit were analyzed. Hippocampal volume change was expressed in μL, and as a percentage of baseline volume. Reproducibility of the 1-year hippocampal volume change was estimated from the BTB measurements by using linear mixed model to calculate the limits of agreement (LoA) of each method, reflecting its measurement uncertainty. Using the delta method, approximate p-values were calculated for the pairwise comparisons between methods. Statistical analyses were performed both with inclusion and exclusion of visibly incorrect segmentations. Visibly incorrect automated segmentation in either one or both scans of a longitudinal scan pair occurred in 7.5% of the hippocampi for FreeSurfer and in 6.9% of the hippocampi for FIRST. After excluding these failed cases, reproducibility analysis for 1-year percentage volume change yielded LoA of ±7.2% for FreeSurfer, ±9.7% for expert manual delineation, and ±10.0% for FIRST. Methods ranked the same for reproducibility of 1-year μL volume change, with LoA of ±218 μL for FreeSurfer, ±319 μL for expert manual delineation, and ±333 μL for FIRST. Approximate p-values indicated that reproducibility was better for FreeSurfer than for manual or FIRST, and that manual and FIRST did not differ. Inclusion of failed automated segmentations led to worsening of reproducibility of both automated methods for 1-year raw and percentage volume change. Quantitative reproducibility values of 1-year microliter and percentage hippocampal volume change were roughly similar between expert manual outlining, FIRST and FreeSurfer, but FreeSurfer reproducibility was statistically significantly superior to both manual outlining and FIRST after exclusion of failed segmentations. Copyright © 2014 Elsevier Inc. All rights reserved.
Sampling-based ensemble segmentation against inter-operator variability
NASA Astrophysics Data System (ADS)
Huo, Jing; Okada, Kazunori; Pope, Whitney; Brown, Matthew
2011-03-01
Inconsistency and a lack of reproducibility are commonly associated with semi-automated segmentation methods. In this study, we developed an ensemble approach to improve reproducibility and applied it to glioblastoma multiforme (GBM) brain tumor segmentation on T1-weigted contrast enhanced MR volumes. The proposed approach combines samplingbased simulations and ensemble segmentation into a single framework; it generates a set of segmentations by perturbing user initialization and user-specified internal parameters, then fuses the set of segmentations into a single consensus result. Three combination algorithms were applied: majority voting, averaging and expectation-maximization (EM). The reproducibility of the proposed framework was evaluated by a controlled experiment on 16 tumor cases from a multicenter drug trial. The ensemble framework had significantly better reproducibility than the individual base Otsu thresholding method (p<.001).
Characterization of Human Torso Vascular Morphometry in Normotensive and Hypotensive Trauma Patients
2015-07-01
Aorta Wall Measures Merged for Analysis Landmarks & User-aided Segmentation 5cm Volume...with Centerline Measures AORTA PROCESSING VENA CAVA PROCESSING Basic Morphomics Scan Identification Aorta Centerline Segmented Aorta and Vena...Analysis 49 Data Presentation Aorta Radius Popula/on Normotensive Hypotensive
Anthropometric Relationships of Body and Body Segment Moments of Inertia
1980-12-01
platform balanced on a knife edge ( Borelli , 1679). While weight, volume, center of mass and moments of inertia of the whole body can be measured in a...Segments, Paper No. 720964, SAE Transactions, Vol. 81, Sect. 4, pp. 2818-2833. Borelli , J. A., 1679, De Motu Animalium. Lugduni Batavorum. Braune, W
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jinzhong; Aristophanous, Michalis, E-mail: MAristophanous@mdanderson.org; Beadle, Beth M.
2015-09-15
Purpose: To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Methods: Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to themore » planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation–maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the “ground truth” for quantitative evaluation. Results: The median multichannel segmented GTV of the primary tumor was 15.7 cm{sup 3} (range, 6.6–44.3 cm{sup 3}), while the PET segmented GTV was 10.2 cm{sup 3} (range, 2.8–45.1 cm{sup 3}). The median physician-defined GTV was 22.1 cm{sup 3} (range, 4.2–38.4 cm{sup 3}). The median difference between the multichannel segmented and physician-defined GTVs was −10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was −19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented and physician-defined GTVs was 0.75 (range, 0.55–0.84), and the median sensitivity and positive predictive value between them were 0.76 and 0.81, respectively. Conclusions: The authors developed an automated multimodality segmentation algorithm for tumor volume delineation and validated this algorithm for head and neck cancer radiotherapy. The multichannel segmented GTV agreed well with the physician-defined GTV. The authors expect that their algorithm will improve the accuracy and consistency in target definition for radiotherapy.« less
Bural, Gonca; Torigian, Drew; Basu, Sandip; Houseni, Mohamed; Zhuge, Ying; Rubello, Domenico; Udupa, Jayaram; Alavi, Abass
2015-12-01
Our aim was to explore a novel quantitative method [based upon an MRI-based image segmentation that allows actual calculation of grey matter, white matter and cerebrospinal fluid (CSF) volumes] for overcoming the difficulties associated with conventional techniques for measuring actual metabolic activity of the grey matter. We included four patients with normal brain MRI and fluorine-18 fluorodeoxyglucose (F-FDG)-PET scans (two women and two men; mean age 46±14 years) in this analysis. The time interval between the two scans was 0-180 days. We calculated the volumes of grey matter, white matter and CSF by using a novel segmentation technique applied to the MRI images. We measured the mean standardized uptake value (SUV) representing the whole metabolic activity of the brain from the F-FDG-PET images. We also calculated the white matter SUV from the upper transaxial slices (centrum semiovale) of the F-FDG-PET images. The whole brain volume was calculated by summing up the volumes of the white matter, grey matter and CSF. The global cerebral metabolic activity was calculated by multiplying the mean SUV with total brain volume. The whole brain white matter metabolic activity was calculated by multiplying the mean SUV for the white matter by the white matter volume. The global cerebral metabolic activity only reflects those of the grey matter and the white matter, whereas that of the CSF is zero. We subtracted the global white matter metabolic activity from that of the whole brain, resulting in the global grey matter metabolism alone. We then divided the grey matter global metabolic activity by grey matter volume to accurately calculate the SUV for the grey matter alone. The brain volumes ranged between 1546 and 1924 ml. The mean SUV for total brain was 4.8-7. Total metabolic burden of the brain ranged from 5565 to 9617. The mean SUV for white matter was 2.8-4.1. On the basis of these measurements we generated the grey matter SUV, which ranged from 8.1 to 11.3. The accurate metabolic activity of the grey matter can be calculated using the novel segmentation technique that we applied to MRI. By combining these quantitative data with those generated from F-FDG-PET images we were able to calculate the accurate metabolic activity of the grey matter. These types of measurements will be of great value in accurate analysis of the data from patients with neuropsychiatric disorders.
Egger, Jan; Kappus, Christoph; Freisleben, Bernd; Nimsky, Christopher
2012-08-01
In this contribution, a medical software system for volumetric analysis of different cerebral pathologies in magnetic resonance imaging (MRI) data is presented. The software system is based on a semi-automatic segmentation algorithm and helps to overcome the time-consuming process of volume determination during monitoring of a patient. After imaging, the parameter settings-including a seed point-are set up in the system and an automatic segmentation is performed by a novel graph-based approach. Manually reviewing the result leads to reseeding, adding seed points or an automatic surface mesh generation. The mesh is saved for monitoring the patient and for comparisons with follow-up scans. Based on the mesh, the system performs a voxelization and volume calculation, which leads to diagnosis and therefore further treatment decisions. The overall system has been tested with different cerebral pathologies-glioblastoma multiforme, pituitary adenomas and cerebral aneurysms- and evaluated against manual expert segmentations using the Dice Similarity Coefficient (DSC). Additionally, intra-physician segmentations have been performed to provide a quality measure for the presented system.
Carbone, V; Fluit, R; Pellikaan, P; van der Krogt, M M; Janssen, D; Damsgaard, M; Vigneron, L; Feilkas, T; Koopman, H F J M; Verdonschot, N
2015-03-18
When analyzing complex biomechanical problems such as predicting the effects of orthopedic surgery, subject-specific musculoskeletal models are essential to achieve reliable predictions. The aim of this paper is to present the Twente Lower Extremity Model 2.0, a new comprehensive dataset of the musculoskeletal geometry of the lower extremity, which is based on medical imaging data and dissection performed on the right lower extremity of a fresh male cadaver. Bone, muscle and subcutaneous fat (including skin) volumes were segmented from computed tomography and magnetic resonance images scans. Inertial parameters were estimated from the image-based segmented volumes. A complete cadaver dissection was performed, in which bony landmarks, attachments sites and lines-of-action of 55 muscle actuators and 12 ligaments, bony wrapping surfaces, and joint geometry were measured. The obtained musculoskeletal geometry dataset was finally implemented in the AnyBody Modeling System (AnyBody Technology A/S, Aalborg, Denmark), resulting in a model consisting of 12 segments, 11 joints and 21 degrees of freedom, and including 166 muscle-tendon elements for each leg. The new TLEM 2.0 dataset was purposely built to be easily combined with novel image-based scaling techniques, such as bone surface morphing, muscle volume registration and muscle-tendon path identification, in order to obtain subject-specific musculoskeletal models in a quick and accurate way. The complete dataset, including CT and MRI scans and segmented volume and surfaces, is made available at http://www.utwente.nl/ctw/bw/research/projects/TLEMsafe for the biomechanical community, in order to accelerate the development and adoption of subject-specific models on large scale. TLEM 2.0 is freely shared for non-commercial use only, under acceptance of the TLEMsafe Research License Agreement. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shimol, Eli Ben; Joskowicz, Leo; Eliahou, Ruth; Shoshan, Yigal
2018-02-01
Stereotactic radiosurgery (SRS) is a common treatment for intracranial meningiomas. SRS is planned on a pre-therapy gadolinium-enhanced T1-weighted MRI scan (Gd-T1w MRI) in which the meningioma contours have been delineated. Post-SRS therapy serial Gd-T1w MRI scans are then acquired for longitudinal treatment evaluation. Accurate tumor volume change quantification is required for treatment efficacy evaluation and for treatment continuation. We present a new algorithm for the automatic segmentation and volumetric assessment of meningioma in post-therapy Gd-T1w MRI scans. The inputs are the pre- and post-therapy Gd-T1w MRI scans and the meningioma delineation in the pre-therapy scan. The output is the meningioma delineations and volumes in the post-therapy scan. The algorithm uses the pre-therapy scan and its meningioma delineation to initialize an extended Chan-Vese active contour method and as a strong patient-specific intensity and shape prior for the post-therapy scan meningioma segmentation. The algorithm is automatic, obviates the need for independent tumor localization and segmentation initialization, and incorporates the same tumor delineation criteria in both the pre- and post-therapy scans. Our experimental results on retrospective pre- and post-therapy scans with a total of 32 meningiomas with volume ranges 0.4-26.5 cm[Formula: see text] yield a Dice coefficient of [Formula: see text]% with respect to ground-truth delineations in post-therapy scans created by two clinicians. These results indicate a high correspondence to the ground-truth delineations. Our algorithm yields more reliable and accurate tumor volume change measurements than other stand-alone segmentation methods. It may be a useful tool for quantitative meningioma prognosis evaluation after SRS.
NASA Astrophysics Data System (ADS)
Park, Seyoun; Robinson, Adam; Quon, Harry; Kiess, Ana P.; Shen, Colette; Wong, John; Plishker, William; Shekhar, Raj; Lee, Junghoon
2016-03-01
In this paper, we propose a CT-CBCT registration method to accurately predict the tumor volume change based on daily cone-beam CTs (CBCTs) during radiotherapy. CBCT is commonly used to reduce patient setup error during radiotherapy, but its poor image quality impedes accurate monitoring of anatomical changes. Although physician's contours drawn on the planning CT can be automatically propagated to daily CBCTs by deformable image registration (DIR), artifacts in CBCT often cause undesirable errors. To improve the accuracy of the registration-based segmentation, we developed a DIR method that iteratively corrects CBCT intensities by local histogram matching. Three popular DIR algorithms (B-spline, demons, and optical flow) with the intensity correction were implemented on a graphics processing unit for efficient computation. We evaluated their performances on six head and neck (HN) cancer cases. For each case, four trained scientists manually contoured the nodal gross tumor volume (GTV) on the planning CT and every other fraction CBCTs to which the propagated GTV contours by DIR were compared. The performance was also compared with commercial image registration software based on conventional mutual information (MI), VelocityAI (Varian Medical Systems Inc.). The volume differences (mean±std in cc) between the average of the manual segmentations and automatic segmentations are 3.70+/-2.30 (B-spline), 1.25+/-1.78 (demons), 0.93+/-1.14 (optical flow), and 4.39+/-3.86 (VelocityAI). The proposed method significantly reduced the estimation error by 9% (B-spline), 38% (demons), and 51% (optical flow) over the results using VelocityAI. Although demonstrated only on HN nodal GTVs, the results imply that the proposed method can produce improved segmentation of other critical structures over conventional methods.
Progressive disease in glioblastoma: Benefits and limitations of semi-automated volumetry
Alber, Georgina; Bette, Stefanie; Kaesmacher, Johannes; Boeckh-Behrens, Tobias; Gempt, Jens; Ringel, Florian; Specht, Hanno M.; Meyer, Bernhard; Zimmer, Claus
2017-01-01
Purpose Unambiguous evaluation of glioblastoma (GB) progression is crucial, both for clinical trials as well as day by day routine management of GB patients. 3D-volumetry in the follow-up of GB provides quantitative data on tumor extent and growth, and therefore has the potential to facilitate objective disease assessment. The present study investigated the utility of absolute changes in volume (delta) or regional, segmentation-based subtractions for detecting disease progression in longitudinal MRI follow-ups. Methods 165 high resolution 3-Tesla MRIs of 30 GB patients (23m, mean age 60.2y) were retrospectively included in this single center study. Contrast enhancement (CV) and tumor-related signal alterations in FLAIR images (FV) were semi-automatically segmented. Delta volume (dCV, dFV) and regional subtractions (sCV, sFV) were calculated. Disease progression was classified for every follow-up according to histopathologic results, decisions of the local multidisciplinary CNS tumor board and a consensus rating of the neuro-radiologic report. Results A generalized logistic mixed model for disease progression (yes / no) with dCV, dFV, sCV and sFV as input variables revealed that only dCV was significantly associated with prediction of disease progression (P = .005). Delta volume had a better accuracy than regional, segmentation-based subtractions (79% versus 72%) and a higher area under the curve by trend in ROC curves (.83 versus .75). Conclusion Absolute volume changes of the contrast enhancing tumor part were the most accurate volumetric determinant to detect progressive disease in assessment of GB and outweighed FLAIR changes as well as regional, segmentation-based image subtractions. This parameter might be useful in upcoming objective response criteria for glioblastoma. PMID:28245291
Ni, Yao; Liu, Xia-Lin; Wu, Ming-Xing; Lin, Ying; Sun, Yu-Ying; He, Chang; Liu, Yi-Zhi
2011-01-01
To quantify the changes in the lens profile with accommodation in different age groups. The Pentacam HR system was used to obtain the images of the anterior eye segment from 23 young and 15 presbyopic emmetropic subjects in unaccommodated (with an accommodation stimulus of 0.0D) and accommodated (with an accommodation stimulus of 5.0D for the young group and 1.0D for the presbyopic group) states. The phakic crystalline lens shape, including curvature of crystalline lens and central lens thickness (CLT), and the measurements of anterior segment length (ASL), central anterior chamber depth (CACD) were investigated. The anterior chamber volume (ACV) was also measured. The reduction of CACD and ACV were significant in both groups after accommodation stimulus. From the profile of anterior eye segment, a significant decrease in anterior crystalline lens radii of curvature (-2.52mm) and a mean increase in CLT (0.222mm) and ASL (0.108mm) were found in the young group with an accommodation stimulus of 5.0D. However, no statistically significant changes of CLT, ASL, or crystalline lens radii of curvature were found in the presbyopic group. Our data showed that the shallowing of anterior chamber during accommodation was caused by the forward bulging of the anterior lens surface, rather than by anterior shifting of lens position in either young or presbyopic subjects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S; Robinson, A; Kiess, A
2015-06-15
Purpose: The purpose of this study is to develop an accurate and effective technique to predict and monitor volume changes of the tumor and organs at risk (OARs) from daily cone-beam CTs (CBCTs). Methods: While CBCT is typically used to minimize the patient setup error, its poor image quality impedes accurate monitoring of daily anatomical changes in radiotherapy. Reconstruction artifacts in CBCT often cause undesirable errors in registration-based contour propagation from the planning CT, a conventional way to estimate anatomical changes. To improve the registration and segmentation accuracy, we developed a new deformable image registration (DIR) that iteratively corrects CBCTmore » intensities using slice-based histogram matching during the registration process. Three popular DIR algorithms (hierarchical B-spline, demons, optical flow) augmented by the intensity correction were implemented on a graphics processing unit for efficient computation, and their performances were evaluated on six head and neck (HN) cancer cases. Four trained scientists manually contoured nodal gross tumor volume (GTV) on the planning CT and every other fraction CBCTs for each case, to which the propagated GTV contours by DIR were compared. The performance was also compared with commercial software, VelocityAI (Varian Medical Systems Inc.). Results: Manual contouring showed significant variations, [-76, +141]% from the mean of all four sets of contours. The volume differences (mean±std in cc) between the average manual segmentation and four automatic segmentations are 3.70±2.30(B-spline), 1.25±1.78(demons), 0.93±1.14(optical flow), and 4.39±3.86 (VelocityAI). In comparison to the average volume of the manual segmentations, the proposed approach significantly reduced the estimation error by 9%(B-spline), 38%(demons), and 51%(optical flow) over the conventional mutual information based method (VelocityAI). Conclusion: The proposed CT-CBCT registration with local CBCT intensity correction can accurately predict the tumor volume change with reduced errors. Although demonstrated only on HN nodal GTVs, the results imply improved accuracy for other critical structures. This work was supported by NIH/NCI under grant R42CA137886.« less
Norman, Berk; Pedoia, Valentina; Majumdar, Sharmila
2018-03-27
Purpose To analyze how automatic segmentation translates in accuracy and precision to morphology and relaxometry compared with manual segmentation and increases the speed and accuracy of the work flow that uses quantitative magnetic resonance (MR) imaging to study knee degenerative diseases such as osteoarthritis (OA). Materials and Methods This retrospective study involved the analysis of 638 MR imaging volumes from two data cohorts acquired at 3.0 T: (a) spoiled gradient-recalled acquisition in the steady state T1 ρ -weighted images and (b) three-dimensional (3D) double-echo steady-state (DESS) images. A deep learning model based on the U-Net convolutional network architecture was developed to perform automatic segmentation. Cartilage and meniscus compartments were manually segmented by skilled technicians and radiologists for comparison. Performance of the automatic segmentation was evaluated on Dice coefficient overlap with the manual segmentation, as well as by the automatic segmentations' ability to quantify, in a longitudinally repeatable way, relaxometry and morphology. Results The models produced strong Dice coefficients, particularly for 3D-DESS images, ranging between 0.770 and 0.878 in the cartilage compartments to 0.809 and 0.753 for the lateral meniscus and medial meniscus, respectively. The models averaged 5 seconds to generate the automatic segmentations. Average correlations between manual and automatic quantification of T1 ρ and T2 values were 0.8233 and 0.8603, respectively, and 0.9349 and 0.9384 for volume and thickness, respectively. Longitudinal precision of the automatic method was comparable with that of the manual one. Conclusion U-Net demonstrates efficacy and precision in quickly generating accurate segmentations that can be used to extract relaxation times and morphologic characterization and values that can be used in the monitoring and diagnosis of OA. © RSNA, 2018 Online supplemental material is available for this article.
Three-Dimensions Segmentation of Pulmonary Vascular Trees for Low Dose CT Scans
NASA Astrophysics Data System (ADS)
Lai, Jun; Huang, Ying; Wang, Ying; Wang, Jun
2016-12-01
Due to the low contrast and the partial volume effects, providing an accurate and in vivo analysis for pulmonary vascular trees from low dose CT scans is a challenging task. This paper proposes an automatic integration segmentation approach for the vascular trees in low dose CT scans. It consists of the following steps: firstly, lung volumes are acquired by the knowledge based method from the CT scans, and then the data are smoothed by the 3D Gaussian filter; secondly, two or three seeds are gotten by the adaptive 2D segmentation and the maximum area selecting from different position scans; thirdly, each seed as the start voxel is inputted for a quick multi-seeds 3D region growing to get vascular trees; finally, the trees are refined by the smooth filter. Through skeleton analyzing for the vascular trees, the results show that the proposed method can provide much better and lower level vascular branches.
Aubry, S; Pousse, A; Sarliève, P; Laborie, L; Delabrousse, E; Kastler, B
2006-11-01
To model vertebrae in 3D to improve radioanatomic knowledge of the spine with the vascular and nerve environment and simulate CT-guided interventions. Vertebra acquisitions were made with multidetector CT. We developed segmentation software and specific viewer software using the Delphi programming environment. This segmentation software makes it possible to model 3D high-resolution segments of vertebrae and their environment from multidetector CT acquisitions. Then the specific viewer software provides multiplanar reconstructions of the CT volume and the possibility to select different 3D objects of interest. This software package improves radiologists' radioanatomic knowledge through a new 3D anatomy presentation. Furthermore, the possibility of inserting virtual 3D objects in the volume can simulate CT-guided intervention. The first volumetric radioanatomic software has been born. Furthermore, it simulates CT-guided intervention and consequently has the potential to facilitate learning interventions using CT guidance.
Candell-Riera, Jaume; Romero-Farina, Guillermo; Milá, Marta; Aguadé-Bruix, Santiago
2008-10-01
The objective of this study was to use low-dose dobutamine (LDD) gated single-photon emission computed tomography (SPECT) to evaluate segmental thickening of the left ventricle (LV) and its relationship with changes in ejection fraction (EF) and ventricular volumes in patients with ischemic cardiomyopathy. This prospective multicenter study involved 89 patients with ischemic cardiomyopathy (i.e., EF < or =40%) who underwent LDD gated-SPECT at rest. The LV was divided into 17 segments and systolic thickening was assessed in a total of 1513 segments during LDD infusion. RESULTS; A significant increase in LVEF (33.2% vs. 30.8%; P< .001) was observed during LDD infusion and occurred at the expense of a reduction in end-systolic volume (130.5 mL vs. 136.4 mL; P=.005). The increase in EF was > or =5% in 33.7% of patients, while the EF decreased by > or =5% in 5.6% of patients. With LDD infusion, both an improvement in > or =3 segments with severely decreased baseline thickening (odds ratio [OR] = 18.3; 95% confidence interval [CI], 5.3-63) and an improvement in > or =10 segments with mild-to-moderate alterations in baseline thickening (OR = 4.53; 95% CI, 1.26-16.16) were associated with a > or =5% increase in LVEF. During the assessment of global left ventricular contractile reserve by LDD gated-SPECT, attention should be paid not only to the behavior of segments with severely decreased baseline thickening, which are generally regarded as indicating viability, but also to segments with mild-to-moderate alterations and to those in which thickening decreases.
An interactive toolbox for atlas-based segmentation and coding of volumetric images
NASA Astrophysics Data System (ADS)
Menegaz, G.; Luti, S.; Duay, V.; Thiran, J.-Ph.
2007-03-01
Medical imaging poses the great challenge of having compression algorithms that are lossless for diagnostic and legal reasons and yet provide high compression rates for reduced storage and transmission time. The images usually consist of a region of interest representing the part of the body under investigation surrounded by a "background", which is often noisy and not of diagnostic interest. In this paper, we propose a ROI-based 3D coding system integrating both the segmentation and the compression tools. The ROI is extracted by an atlas based 3D segmentation method combining active contours with information theoretic principles, and the resulting segmentation map is exploited for ROI based coding. The system is equipped with a GUI allowing the medical doctors to supervise the segmentation process and eventually reshape the detected contours at any point. The process is initiated by the user through the selection of either one pre-de.ned reference image or one image of the volume to be used as the 2D "atlas". The object contour is successively propagated from one frame to the next where it is used as the initial border estimation. In this way, the entire volume is segmented based on a unique 2D atlas. The resulting 3D segmentation map is exploited for adaptive coding of the different image regions. Two coding systems were considered: the JPEG3D standard and the 3D-SPITH. The evaluation of the performance with respect to both segmentation and coding proved the high potential of the proposed system in providing an integrated, low-cost and computationally effective solution for CAD and PAC systems.
2012-01-01
Background This study illustrates an evidence-based method for the segmentation analysis of patients that could greatly improve the approach to population-based medicine, by filling a gap in the empirical analysis of this topic. Segmentation facilitates individual patient care in the context of the culture, health status, and the health needs of the entire population to which that patient belongs. Because many health systems are engaged in developing better chronic care management initiatives, patient profiles are critical to understanding whether some patients can move toward effective self-management and can play a central role in determining their own care, which fosters a sense of responsibility for their own health. A review of the literature on patient segmentation provided the background for this research. Method First, we conducted a literature review on patient satisfaction and segmentation to build a survey. Then, we performed 3,461 surveys of outpatient services users. The key structures on which the subjects’ perception of outpatient services was based were extrapolated using principal component factor analysis with varimax rotation. After the factor analysis, segmentation was performed through cluster analysis to better analyze the influence of individual attitudes on the results. Results Four segments were identified through factor and cluster analysis: the “unpretentious,” the “informed and supported,” the “experts” and the “advanced” patients. Their policies and managerial implications are outlined. Conclusions With this research, we provide the following: – a method for profiling patients based on common patient satisfaction surveys that is easily replicable in all health systems and contexts; – a proposal for segments based on the results of a broad-based analysis conducted in the Italian National Health System (INHS). Segments represent profiles of patients requiring different strategies for delivering health services. Their knowledge and analysis might support an effort to build an effective population-based medicine approach. PMID:23256543
End-to-end workflow for finite element analysis of tumor treating fields in glioblastomas
NASA Astrophysics Data System (ADS)
Timmons, Joshua J.; Lok, Edwin; San, Pyay; Bui, Kevin; Wong, Eric T.
2017-11-01
Tumor Treating Fields (TTFields) therapy is an approved modality of treatment for glioblastoma. Patient anatomy-based finite element analysis (FEA) has the potential to reveal not only how these fields affect tumor control but also how to improve efficacy. While the automated tools for segmentation speed up the generation of FEA models, multi-step manual corrections are required, including removal of disconnected voxels, incorporation of unsegmented structures and the addition of 36 electrodes plus gel layers matching the TTFields transducers. Existing approaches are also not scalable for the high throughput analysis of large patient volumes. A semi-automated workflow was developed to prepare FEA models for TTFields mapping in the human brain. Magnetic resonance imaging (MRI) pre-processing, segmentation, electrode and gel placement, and post-processing were all automated. The material properties of each tissue were applied to their corresponding mask in silico using COMSOL Multiphysics (COMSOL, Burlington, MA, USA). The fidelity of the segmentations with and without post-processing was compared against the full semi-automated segmentation workflow approach using Dice coefficient analysis. The average relative differences for the electric fields generated by COMSOL were calculated in addition to observed differences in electric field-volume histograms. Furthermore, the mesh file formats in MPHTXT and NASTRAN were also compared using the differences in the electric field-volume histogram. The Dice coefficient was less for auto-segmentation without versus auto-segmentation with post-processing, indicating convergence on a manually corrected model. An existent but marginal relative difference of electric field maps from models with manual correction versus those without was identified, and a clear advantage of using the NASTRAN mesh file format was found. The software and workflow outlined in this article may be used to accelerate the investigation of TTFields in glioblastoma patients by facilitating the creation of FEA models derived from patient MRI datasets.
NASA Astrophysics Data System (ADS)
Mazonakis, Michalis; Grinias, Elias; Pagonidis, Konstantin; Tziritas, George; Damilakis, John
2010-02-01
The purpose of this study was to develop and evaluate a semiautomatic method for left ventricular (LV) segmentation on cine MR images and subsequent estimation of cardiac parameters. The study group comprised cardiac MR examinations of 18 consecutive patients with known or suspected coronary artery disease. The new method allowed the automatic detection of the LV endocardial and epicardial boundaries on each short-axis cine MR image using a Bayesian flooding segmentation algorithm and weighted least-squares B-splines minimization. Manual editing of the automatic contours could be performed for unsatisfactory segmentation results. The end-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF) and LV mass estimated by the new method were compared with the reference values obtained by manually tracing the LV cavity borders. The reproducibility of the new method was determined using data from two independent observers. The mean number of endocardial and epicardial outlines not requiring any manual adjustment was more than 80% and 76% of the total contour number per study, respectively. The mean segmentation time including the required manual corrections was 2.3 ± 0.7 min per patient. LV volumes estimated by the semiautomatic method were significantly lower than those by manual tracing (P < 0.05), whereas no difference was found for EF and LV mass (P > 0.05). LV indices estimated by the two methods were well correlated (r >= 0.80). The mean difference between manual and semiautomatic method for estimating EDV, ESV, EF and LV mass was 6.1 ± 7.2 ml, 3.0 ± 5.2 ml, -0.6 ± 4.3% and -6.2 ± 12.2 g, respectively. The intraobserver and interobserver variability associated with the semiautomatic determination of LV indices was 0.5-1.2% and 0.8-3.9%, respectively. The estimation of LV parameters with the new semiautomatic segmentation method is technically feasible, highly reproducible and time effective.
Yang, C; Paulson, E; Li, X
2012-06-01
To develop and evaluate a tool that can improve the accuracy of contour transfer between different image modalities under challenging conditions of low image contrast and large image deformation, comparing to a few commonly used methods, for radiation treatment planning. The software tool includes the following steps and functionalities: (1) accepting input of images of different modalities, (2) converting existing contours on reference images (e.g., MRI) into delineated volumes and adjusting the intensity within the volumes to match target images (e.g., CT) intensity distribution for enhanced similarity metric, (3) registering reference and target images using appropriate deformable registration algorithms (e.g., B-spline, demons) and generate deformed contours, (4) mapping the deformed volumes on target images, calculating mean, variance, and center of mass as the initialization parameters for consecutive fuzzy connectedness (FC) image segmentation on target images, (5) generate affinity map from FC segmentation, (6) achieving final contours by modifying the deformed contours using the affinity map with a gradient distance weighting algorithm. The tool was tested with the CT and MR images of four pancreatic cancer patients acquired at the same respiration phase to minimize motion distortion. Dice's Coefficient was calculated against direct delineation on target image. Contours generated by various methods, including rigid transfer, auto-segmentation, deformable only transfer and proposed method, were compared. Fuzzy connected image segmentation needs careful parameter initialization and user involvement. Automatic contour transfer by multi-modality deformable registration leads up to 10% of accuracy improvement over the rigid transfer. Two extra proposed steps of adjusting intensity distribution and modifying the deformed contour with affinity map improve the transfer accuracy further to 14% averagely. Deformable image registration aided by contrast adjustment and fuzzy connectedness segmentation improves the contour transfer accuracy between multi-modality images, particularly with large deformation and low image contrast. © 2012 American Association of Physicists in Medicine.
An Analysis of Image Segmentation Time in Beam’s-Eye-View Treatment Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chun; Spelbring, D.R.; Chen, George T.Y.
In this work we tabulate and histogram the image segmentation time for beam’s eye view (BEV) treatment planning in our center. The average time needed to generate contours on CT images delineating normal structures and treatment target volumes is calculated using a data base containing over 500 patients’ BEV plans. The average number of contours and total image segmentation time needed for BEV plans in three common treatment sites, namely, head/neck, lung/chest, and prostate, were estimated.
1981-05-01
and herbs , shrubs, and finally climax vegetation. Old fields are good habitat for a variety of successional groups of animals, however agricultural use...and wild water pepper contributed to the vegetation of the last six segments, indicating considerable soil moisture. Vegetation of Marsh 3 The data of...grass, cattail, and wild water pepper followed, beginning at about segment 9. Pale smartweed was present in a transition zone in segments 28 through 32
Wu, Ren-Yi; Nongpiur, Monisha E; He, Ming-Guang; Sakata, Lisandro M; Friedman, David S; Chan, Yiong-Huak; Lavanya, Raghavan; Wong, Tien-Yin; Aung, Tin
2011-05-01
To describe the measurement of anterior chamber area and anterior chamber volume by anterior-segment optical coherence tomography and to investigate the association of these parameters with the presence of narrow angles. This was a cross-sectional study of subjects aged at least 50 years without ophthalmic symptoms recruited from a community clinic. All participants underwent standardized ocular examination and anterior-segment optical coherence tomography. Customized software was used to measure anterior chamber area (cross-sectional area bounded by the corneal endothelium, anterior surface of iris, and lens within the pupil) and anterior chamber volume (calculated by rotating the anterior chamber area 360° around a vertical axis through the midpoint of the anterior chamber area). An eye was considered to have narrow angles if the posterior pigmented trabecular meshwork was not visible for at least 180° on gonioscopy with the eye in the primary position. A total of 1922 subjects were included in the final analyses, 317 (16.5%) of whom had narrow angles. Mean anterior chamber area (15.6 vs 21.1 mm(2); P < .001) and anterior chamber volume (97.6 vs 142.1 mm(3); P < .001) were smaller in eyes with narrow angles compared with those in eyes without narrow angles. After adjusting for age, sex, anterior chamber depth, axial length, and pupil size, smaller anterior chamber area (odds ratio, 53.2; 95% confidence interval, 27.1-104.5) and anterior chamber volume (odds ratio, 40.2; 95% confidence interval, 21.5-75.2) were significantly associated with the presence of narrow angles. Smaller anterior chamber area and anterior chamber volume were independently associated with narrow angles in Singaporeans, even after controlling for other known ocular risk factors.
Multimodal segmentation of optic disc and cup from stereo fundus and SD-OCT images
NASA Astrophysics Data System (ADS)
Miri, Mohammad Saleh; Lee, Kyungmoo; Niemeijer, Meindert; Abràmoff, Michael D.; Kwon, Young H.; Garvin, Mona K.
2013-03-01
Glaucoma is one of the major causes of blindness worldwide. One important structural parameter for the diagnosis and management of glaucoma is the cup-to-disc ratio (CDR), which tends to become larger as glaucoma progresses. While approaches exist for segmenting the optic disc and cup within fundus photographs, and more recently, within spectral-domain optical coherence tomography (SD-OCT) volumes, no approaches have been reported for the simultaneous segmentation of these structures within both modalities combined. In this work, a multimodal pixel-classification approach for the segmentation of the optic disc and cup within fundus photographs and SD-OCT volumes is presented. In particular, after segmentation of other important structures (such as the retinal layers and retinal blood vessels) and fundus-to-SD-OCT image registration, features are extracted from both modalities and a k-nearest-neighbor classification approach is used to classify each pixel as cup, rim, or background. The approach is evaluated on 70 multimodal image pairs from 35 subjects in a leave-10%-out fashion (by subject). A significant improvement in classification accuracy is obtained using the multimodal approach over that obtained from the corresponding unimodal approach (97.8% versus 95.2%; p < 0:05; paired t-test).
Two methods of Haustral fold detection from computed tomographic virtual colonoscopy images
NASA Astrophysics Data System (ADS)
Chowdhury, Ananda S.; Tan, Sovira; Yao, Jianhua; Linguraru, Marius G.; Summers, Ronald M.
2009-02-01
Virtual colonoscopy (VC) has gained popularity as a new colon diagnostic method over the last decade. VC is a new, less invasive alternative to the usually practiced optical colonoscopy for colorectal polyp and cancer screening, the second major cause of cancer related deaths in industrial nations. Haustral (colonic) folds serve as important landmarks for virtual endoscopic navigation in the existing computer-aided-diagnosis (CAD) system. In this paper, we propose and compare two different methods of haustral fold detection from volumetric computed tomographic virtual colonoscopy images. The colon lumen is segmented from the input using modified region growing and fuzzy connectedness. The first method for fold detection uses a level set that evolves on a mesh representation of the colon surface. The colon surface is obtained from the segmented colon lumen using the Marching Cubes algorithm. The second method for fold detection, based on a combination of heat diffusion and fuzzy c-means algorithm, is employed on the segmented colon volume. Folds obtained on the colon volume using this method are then transferred to the corresponding colon surface. After experimentation with different datasets, results are found to be promising. The results also demonstrate that the first method has a tendency of slight under-segmentation while the second method tends to slightly over-segment the folds.
Student beats the teacher: deep neural networks for lateral ventricles segmentation in brain MR
NASA Astrophysics Data System (ADS)
Ghafoorian, Mohsen; Teuwen, Jonas; Manniesing, Rashindra; Leeuw, Frank-Erik d.; van Ginneken, Bram; Karssemeijer, Nico; Platel, Bram
2018-03-01
Ventricular volume and its progression are known to be linked to several brain diseases such as dementia and schizophrenia. Therefore accurate measurement of ventricle volume is vital for longitudinal studies on these disorders, making automated ventricle segmentation algorithms desirable. In the past few years, deep neural networks have shown to outperform the classical models in many imaging domains. However, the success of deep networks is dependent on manually labeled data sets, which are expensive to acquire especially for higher dimensional data in the medical domain. In this work, we show that deep neural networks can be trained on muchcheaper-to-acquire pseudo-labels (e.g., generated by other automated less accurate methods) and still produce more accurate segmentations compared to the quality of the labels. To show this, we use noisy segmentation labels generated by a conventional region growing algorithm to train a deep network for lateral ventricle segmentation. Then on a large manually annotated test set, we show that the network significantly outperforms the conventional region growing algorithm which was used to produce the training labels for the network. Our experiments report a Dice Similarity Coefficient (DSC) of 0.874 for the trained network compared to 0.754 for the conventional region growing algorithm (p < 0.001).
Mann, Dwayne L; Edwards, Bradley A; Joosten, Simon A; Hamilton, Garun S; Landry, Shane; Sands, Scott A; Wilson, Stephen J; Terrill, Philip I
2017-10-01
Short pauses or "transition-periods" at the end of expiration and prior to subsequent inspiration are commonly observed during sleep in humans. However, the role of transition periods in regulating ventilation during physiological challenges such as partial airway obstruction (PAO) has not been investigated. Twenty-nine obstructive sleep apnea patients and eight controls underwent overnight polysomnography with an epiglottic catheter. Sustained-PAO segments (increased epiglottic pressure over ≥5 breaths without increased peak inspiratory flow) and unobstructed reference segments were manually scored during apnea-free non-REM sleep. Nasal pressure data was computationally segmented into inspiratory (T I , shortest period achieving 95% inspiratory volume), expiratory (T E , shortest period achieving 95% expiratory volume), and inter-breath transition period (T Trans , period between T E and subsequent T I ). Compared with reference segments, sustained-PAO segments had a mean relative reduction in T Trans (-24.7±17.6%, P<0.001), elevated T I (11.8±10.5%, P<0.001), and a small reduction in T E (-3.9±8.0, P≤0.05). Compensatory increases in inspiratory period during PAO are primarily explained by reduced transition period and not by reduced expiratory period. Copyright © 2017 Elsevier B.V. All rights reserved.
Computer-aided pulmonary image analysis in small animal models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ziyue; Mansoor, Awais; Mollura, Daniel J.
Purpose: To develop an automated pulmonary image analysis framework for infectious lung diseases in small animal models. Methods: The authors describe a novel pathological lung and airway segmentation method for small animals. The proposed framework includes identification of abnormal imaging patterns pertaining to infectious lung diseases. First, the authors’ system estimates an expected lung volume by utilizing a regression function between total lung capacity and approximated rib cage volume. A significant difference between the expected lung volume and the initial lung segmentation indicates the presence of severe pathology, and invokes a machine learning based abnormal imaging pattern detection system next.more » The final stage of the proposed framework is the automatic extraction of airway tree for which new affinity relationships within the fuzzy connectedness image segmentation framework are proposed by combining Hessian and gray-scale morphological reconstruction filters. Results: 133 CT scans were collected from four different studies encompassing a wide spectrum of pulmonary abnormalities pertaining to two commonly used small animal models (ferret and rabbit). Sensitivity and specificity were greater than 90% for pathological lung segmentation (average dice similarity coefficient > 0.9). While qualitative visual assessments of airway tree extraction were performed by the participating expert radiologists, for quantitative evaluation the authors validated the proposed airway extraction method by using publicly available EXACT’09 data set. Conclusions: The authors developed a comprehensive computer-aided pulmonary image analysis framework for preclinical research applications. The proposed framework consists of automatic pathological lung segmentation and accurate airway tree extraction. The framework has high sensitivity and specificity; therefore, it can contribute advances in preclinical research in pulmonary diseases.« less
Cha, Kenny H; Hadjiiski, Lubomir M; Samala, Ravi K; Chan, Heang-Ping; Cohan, Richard H; Caoili, Elaine M; Paramagul, Chintana; Alva, Ajjai; Weizer, Alon Z
2016-12-01
Assessing the response of bladder cancer to neoadjuvant chemotherapy is crucial for reducing morbidity and increasing quality of life of patients. Changes in tumor volume during treatment is generally used to predict treatment outcome. We are developing a method for bladder cancer segmentation in CT using a pilot data set of 62 cases. 65 000 regions of interests were extracted from pre-treatment CT images to train a deep-learning convolution neural network (DL-CNN) for tumor boundary detection using leave-one-case-out cross-validation. The results were compared to our previous AI-CALS method. For all lesions in the data set, the longest diameter and its perpendicular were measured by two radiologists, and 3D manual segmentation was obtained from one radiologist. The World Health Organization (WHO) criteria and the Response Evaluation Criteria In Solid Tumors (RECIST) were calculated, and the prediction accuracy of complete response to chemotherapy was estimated by the area under the receiver operating characteristic curve (AUC). The AUCs were 0.73 ± 0.06, 0.70 ± 0.07, and 0.70 ± 0.06, respectively, for the volume change calculated using DL-CNN segmentation, the AI-CALS and the manual contours. The differences did not achieve statistical significance. The AUCs using the WHO criteria were 0.63 ± 0.07 and 0.61 ± 0.06, while the AUCs using RECIST were 0.65 ± 007 and 0.63 ± 0.06 for the two radiologists, respectively. Our results indicate that DL-CNN can produce accurate bladder cancer segmentation for calculation of tumor size change in response to treatment. The volume change performed better than the estimations from the WHO criteria and RECIST for the prediction of complete response.
Cha, Kenny H.; Hadjiiski, Lubomir M.; Samala, Ravi K.; Chan, Heang-Ping; Cohan, Richard H.; Caoili, Elaine M.; Paramagul, Chintana; Alva, Ajjai; Weizer, Alon Z.
2017-01-01
Assessing the response of bladder cancer to neoadjuvant chemotherapy is crucial for reducing morbidity and increasing quality of life of patients. Changes in tumor volume during treatment is generally used to predict treatment outcome. We are developing a method for bladder cancer segmentation in CT using a pilot data set of 62 cases. 65 000 regions of interests were extracted from pre-treatment CT images to train a deep-learning convolution neural network (DL-CNN) for tumor boundary detection using leave-one-case-out cross-validation. The results were compared to our previous AI-CALS method. For all lesions in the data set, the longest diameter and its perpendicular were measured by two radiologists, and 3D manual segmentation was obtained from one radiologist. The World Health Organization (WHO) criteria and the Response Evaluation Criteria In Solid Tumors (RECIST) were calculated, and the prediction accuracy of complete response to chemotherapy was estimated by the area under the receiver operating characteristic curve (AUC). The AUCs were 0.73 ± 0.06, 0.70 ± 0.07, and 0.70 ± 0.06, respectively, for the volume change calculated using DL-CNN segmentation, the AI-CALS and the manual contours. The differences did not achieve statistical significance. The AUCs using the WHO criteria were 0.63 ± 0.07 and 0.61 ± 0.06, while the AUCs using RECIST were 0.65 ± 007 and 0.63 ± 0.06 for the two radiologists, respectively. Our results indicate that DL-CNN can produce accurate bladder cancer segmentation for calculation of tumor size change in response to treatment. The volume change performed better than the estimations from the WHO criteria and RECIST for the prediction of complete response. PMID:28105470
Automatic cortical segmentation in the developing brain.
Xue, Hui; Srinivasan, Latha; Jiang, Shuzhou; Rutherford, Mary; Edwards, A David; Rueckert, Daniel; Hajnal, Jo V
2007-01-01
The segmentation of neonatal cortex from magnetic resonance (MR) images is much more challenging than the segmentation of cortex in adults. The main reason is the inverted contrast between grey matter (GM) and white matter (WM) that occurs when myelination is incomplete. This causes mislabeled partial volume voxels, especially at the interface between GM and cerebrospinal fluid (CSF). We propose a fully automatic cortical segmentation algorithm, detecting these mislabeled voxels using a knowledge-based approach and correcting errors by adjusting local priors to favor the correct classification. Our results show that the proposed algorithm corrects errors in the segmentation of both GM and WM compared to the classic EM scheme. The segmentation algorithm has been tested on 25 neonates with the gestational ages ranging from approximately 27 to 45 weeks. Quantitative comparison to the manual segmentation demonstrates good performance of the method (mean Dice similarity: 0.758 +/- 0.037 for GM and 0.794 +/- 0.078 for WM).
A Review of Algorithms for Segmentation of Optical Coherence Tomography from Retina
Kafieh, Raheleh; Rabbani, Hossein; Kermani, Saeed
2013-01-01
Optical coherence tomography (OCT) is a recently established imaging technique to describe different information about the internal structures of an object and to image various aspects of biological tissues. OCT image segmentation is mostly introduced on retinal OCT to localize the intra-retinal boundaries. Here, we review some of the important image segmentation methods for processing retinal OCT images. We may classify the OCT segmentation approaches into five distinct groups according to the image domain subjected to the segmentation algorithm. Current researches in OCT segmentation are mostly based on improving the accuracy and precision, and on reducing the required processing time. There is no doubt that current 3-D imaging modalities are now moving the research projects toward volume segmentation along with 3-D rendering and visualization. It is also important to develop robust methods capable of dealing with pathologic cases in OCT imaging. PMID:24083137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoot, A. J. A. J. van de, E-mail: a.j.schootvande@amc.uva.nl; Schooneveldt, G.; Wognum, S.
Purpose: The aim of this study is to develop and validate a generic method for automatic bladder segmentation on cone beam computed tomography (CBCT), independent of gender and treatment position (prone or supine), using only pretreatment imaging data. Methods: Data of 20 patients, treated for tumors in the pelvic region with the entire bladder visible on CT and CBCT, were divided into four equally sized groups based on gender and treatment position. The full and empty bladder contour, that can be acquired with pretreatment CT imaging, were used to generate a patient-specific bladder shape model. This model was used tomore » guide the segmentation process on CBCT. To obtain the bladder segmentation, the reference bladder contour was deformed iteratively by maximizing the cross-correlation between directional grey value gradients over the reference and CBCT bladder edge. To overcome incorrect segmentations caused by CBCT image artifacts, automatic adaptations were implemented. Moreover, locally incorrect segmentations could be adapted manually. After each adapted segmentation, the bladder shape model was expanded and new shape patterns were calculated for following segmentations. All available CBCTs were used to validate the segmentation algorithm. The bladder segmentations were validated by comparison with the manual delineations and the segmentation performance was quantified using the Dice similarity coefficient (DSC), surface distance error (SDE) and SD of contour-to-contour distances. Also, bladder volumes obtained by manual delineations and segmentations were compared using a Bland-Altman error analysis. Results: The mean DSC, mean SDE, and mean SD of contour-to-contour distances between segmentations and manual delineations were 0.87, 0.27 cm and 0.22 cm (female, prone), 0.85, 0.28 cm and 0.22 cm (female, supine), 0.89, 0.21 cm and 0.17 cm (male, supine) and 0.88, 0.23 cm and 0.17 cm (male, prone), respectively. Manual local adaptations improved the segmentation results significantly (p < 0.01) based on DSC (6.72%) and SD of contour-to-contour distances (0.08 cm) and decreased the 95% confidence intervals of the bladder volume differences. Moreover, expanding the shape model improved the segmentation results significantly (p < 0.01) based on DSC and SD of contour-to-contour distances. Conclusions: This patient-specific shape model based automatic bladder segmentation method on CBCT is accurate and generic. Our segmentation method only needs two pretreatment imaging data sets as prior knowledge, is independent of patient gender and patient treatment position and has the possibility to manually adapt the segmentation locally.« less
Denoising and 4D visualization of OCT images
Gargesha, Madhusudhana; Jenkins, Michael W.; Rollins, Andrew M.; Wilson, David L.
2009-01-01
We are using Optical Coherence Tomography (OCT) to image structure and function of the developing embryonic heart in avian models. Fast OCT imaging produces very large 3D (2D + time) and 4D (3D volumes + time) data sets, which greatly challenge ones ability to visualize results. Noise in OCT images poses additional challenges. We created an algorithm with a quick, data set specific optimization for reduction of both shot and speckle noise and applied it to 3D visualization and image segmentation in OCT. When compared to baseline algorithms (median, Wiener, orthogonal wavelet, basic non-orthogonal wavelet), a panel of experts judged the new algorithm to give much improved volume renderings concerning both noise and 3D visualization. Specifically, the algorithm provided a better visualization of the myocardial and endocardial surfaces, and the interaction of the embryonic heart tube with surrounding tissue. Quantitative evaluation using an image quality figure of merit also indicated superiority of the new algorithm. Noise reduction aided semi-automatic 2D image segmentation, as quantitatively evaluated using a contour distance measure with respect to an expert segmented contour. In conclusion, the noise reduction algorithm should be quite useful for visualization and quantitative measurements (e.g., heart volume, stroke volume, contraction velocity, etc.) in OCT embryo images. With its semi-automatic, data set specific optimization, we believe that the algorithm can be applied to OCT images from other applications. PMID:18679509
Accurate airway segmentation based on intensity structure analysis and graph-cut
NASA Astrophysics Data System (ADS)
Meng, Qier; Kitsaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Mori, Kensaku
2016-03-01
This paper presents a novel airway segmentation method based on intensity structure analysis and graph-cut. Airway segmentation is an important step in analyzing chest CT volumes for computerized lung cancer detection, emphysema diagnosis, asthma diagnosis, and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3-D airway tree structure from a CT volume is quite challenging. Several researchers have proposed automated algorithms basically based on region growing and machine learning techniques. However these methods failed to detect the peripheral bronchi branches. They caused a large amount of leakage. This paper presents a novel approach that permits more accurate extraction of complex bronchial airway region. Our method are composed of three steps. First, the Hessian analysis is utilized for enhancing the line-like structure in CT volumes, then a multiscale cavity-enhancement filter is employed to detect the cavity-like structure from the previous enhanced result. In the second step, we utilize the support vector machine (SVM) to construct a classifier for removing the FP regions generated. Finally, the graph-cut algorithm is utilized to connect all of the candidate voxels to form an integrated airway tree. We applied this method to sixteen cases of 3D chest CT volumes. The results showed that the branch detection rate of this method can reach about 77.7% without leaking into the lung parenchyma areas.
An accurate segmentation method for volumetry of brain tumor in 3D MRI
NASA Astrophysics Data System (ADS)
Wang, Jiahui; Li, Qiang; Hirai, Toshinori; Katsuragawa, Shigehiko; Li, Feng; Doi, Kunio
2008-03-01
Accurate volumetry of brain tumors in magnetic resonance imaging (MRI) is important for evaluating the interval changes in tumor volumes during and after treatment, and also for planning of radiation therapy. In this study, an automated volumetry method for brain tumors in MRI was developed by use of a new three-dimensional (3-D) image segmentation technique. First, the central location of a tumor was identified by a radiologist, and then a volume of interest (VOI) was determined automatically. To substantially simplify tumor segmentation, we transformed the 3-D image of the tumor into a two-dimensional (2-D) image by use of a "spiral-scanning" technique, in which a radial line originating from the center of the tumor scanned the 3-D image spirally from the "north pole" to the "south pole". The voxels scanned by the radial line provided a transformed 2-D image. We employed dynamic programming to delineate an "optimal" outline of the tumor in the transformed 2-D image. We then transformed the optimal outline back into 3-D image space to determine the volume of the tumor. The volumetry method was trained and evaluated by use of 16 cases with 35 brain tumors. The agreement between tumor volumes provided by computer and a radiologist was employed as a performance metric. Our method provided relatively accurate results with a mean agreement value of 88%.
A supervoxel-based segmentation method for prostate MR images.
Tian, Zhiqiang; Liu, Lizhi; Zhang, Zhenfeng; Xue, Jianru; Fei, Baowei
2017-02-01
Segmentation of the prostate on MR images has many applications in prostate cancer management. In this work, we propose a supervoxel-based segmentation method for prostate MR images. A supervoxel is a set of pixels that have similar intensities, locations, and textures in a 3D image volume. The prostate segmentation problem is considered as assigning a binary label to each supervoxel, which is either the prostate or background. A supervoxel-based energy function with data and smoothness terms is used to model the label. The data term estimates the likelihood of a supervoxel belonging to the prostate by using a supervoxel-based shape feature. The geometric relationship between two neighboring supervoxels is used to build the smoothness term. The 3D graph cut is used to minimize the energy function to get the labels of the supervoxels, which yields the prostate segmentation. A 3D active contour model is then used to get a smooth surface by using the output of the graph cut as an initialization. The performance of the proposed algorithm was evaluated on 30 in-house MR image data and PROMISE12 dataset. The mean Dice similarity coefficients are 87.2 ± 2.3% and 88.2 ± 2.8% for our 30 in-house MR volumes and the PROMISE12 dataset, respectively. The proposed segmentation method yields a satisfactory result for prostate MR images. The proposed supervoxel-based method can accurately segment prostate MR images and can have a variety of application in prostate cancer diagnosis and therapy. © 2016 American Association of Physicists in Medicine.
Schlaeger, Sarah; Freitag, Friedemann; Klupp, Elisabeth; Dieckmeyer, Michael; Weidlich, Dominik; Inhuber, Stephanie; Deschauer, Marcus; Schoser, Benedikt; Bublitz, Sarah; Montagnese, Federica; Zimmer, Claus; Rummeny, Ernst J; Karampinos, Dimitrios C; Kirschke, Jan S; Baum, Thomas
2018-01-01
Magnetic resonance imaging (MRI) can non-invasively assess muscle anatomy, exercise effects and pathologies with different underlying causes such as neuromuscular diseases (NMD). Quantitative MRI including fat fraction mapping using chemical shift encoding-based water-fat MRI has emerged for reliable determination of muscle volume and fat composition. The data analysis of water-fat images requires segmentation of the different muscles which has been mainly performed manually in the past and is a very time consuming process, currently limiting the clinical applicability. An automatization of the segmentation process would lead to a more time-efficient analysis. In the present work, the manually segmented thigh magnetic resonance imaging database MyoSegmenTUM is presented. It hosts water-fat MR images of both thighs of 15 healthy subjects and 4 patients with NMD with a voxel size of 3.2x2x4 mm3 with the corresponding segmentation masks for four functional muscle groups: quadriceps femoris, sartorius, gracilis, hamstrings. The database is freely accessible online at https://osf.io/svwa7/?view_only=c2c980c17b3a40fca35d088a3cdd83e2. The database is mainly meant as ground truth which can be used as training and test dataset for automatic muscle segmentation algorithms. The segmentation allows extraction of muscle cross sectional area (CSA) and volume. Proton density fat fraction (PDFF) of the defined muscle groups from the corresponding images and quadriceps muscle strength measurements/neurological muscle strength rating can be used for benchmarking purposes.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-21
... Critical Habitat for the Sonoma County Distinct Population Segment of the California Tiger Salamander... Sonoma County Distinct Population Segment of the California tiger salamander (Ambystoma californiense... (ac) (22,580 hectares (ha)) of land as critical habitat for the Sonoma California tiger salamander. We...
Social Marketing, Stages of Change, and Public Health Smoking Interventions
ERIC Educational Resources Information Center
Diehr, Paula; Hannon, Peggy; Pizacani, Barbara; Forehand, Mark; Meischke, Hendrika; Curry, Susan; Martin, Diane P.; Weaver, Marcia R.; Harris, Jeffrey
2011-01-01
As a "thought experiment," the authors used a modified stages of change model for smoking to define homogeneous segments within various hypothetical populations. The authors then estimated the population effect of public health interventions that targeted the different segments. Under most assumptions, interventions that emphasized primary and…
Design unbiased estimation in line intersect sampling using segmented transects
David L.R. Affleck; Timothy G. Gregoire; Harry T. Valentine; Harry T. Valentine
2005-01-01
In many applications of line intersect sampling. transects consist of multiple, connected segments in a prescribed configuration. The relationship between the transect configuration and the selection probability of a population element is illustrated and a consistent sampling protocol, applicable to populations composed of arbitrarily shaped elements, is proposed. It...
Environmental Pollution Control: Two Views from the General Population
ERIC Educational Resources Information Center
Althoff, Phillip; Greig, William H.
1977-01-01
Citizens exhibitied concern about pollution, a low level of trust in governmental and industrial efforts, and a low level of dedication to environmental protection. Demands to clean up the environment came from one segment of the population while demands to solve the energy crisis came from other segments. (AJ)
What approach to brain partial volume correction is best for PET/MRI?
NASA Astrophysics Data System (ADS)
Hutton, B. F.; Thomas, B. A.; Erlandsson, K.; Bousse, A.; Reilhac-Laborde, A.; Kazantsev, D.; Pedemonte, S.; Vunckx, K.; Arridge, S. R.; Ourselin, S.
2013-02-01
Many partial volume correction approaches make use of anatomical information, readily available in PET/MRI systems but it is not clear what approach is best. Seven novel approaches to partial volume correction were evaluated, including several post-reconstruction methods and several reconstruction methods that incorporate anatomical information. These were compared with an MRI-independent approach (reblurred van Cittert ) and uncorrected data. Monte Carlo PET data were generated for activity distributions representing both 18F FDG and amyloid tracer uptake. Post-reconstruction methods provided the best recovery with ideal segmentation but were particularly sensitive to mis-registration. Alternative approaches performed better in maintaining lesion contrast (unseen in MRI) with good noise control. These were also relatively insensitive to mis-registration errors. The choice of method will depend on the specific application and reliability of segmentation and registration algorithms.
Delpon, Grégory; Escande, Alexandre; Ruef, Timothée; Darréon, Julien; Fontaine, Jimmy; Noblet, Caroline; Supiot, Stéphane; Lacornerie, Thomas; Pasquier, David
2016-01-01
Automated atlas-based segmentation (ABS) algorithms present the potential to reduce the variability in volume delineation. Several vendors offer software that are mainly used for cranial, head and neck, and prostate cases. The present study will compare the contours produced by a radiation oncologist to the contours computed by different automated ABS algorithms for prostate bed cases, including femoral heads, bladder, and rectum. Contour comparison was evaluated by different metrics such as volume ratio, Dice coefficient, and Hausdorff distance. Results depended on the volume of interest showed some discrepancies between the different software. Automatic contours could be a good starting point for the delineation of organs since efficient editing tools are provided by different vendors. It should become an important help in the next few years for organ at risk delineation. PMID:27536556
Registration of 3D fetal neurosonography and MRI☆
Kuklisova-Murgasova, Maria; Cifor, Amalia; Napolitano, Raffaele; Papageorghiou, Aris; Quaghebeur, Gerardine; Rutherford, Mary A.; Hajnal, Joseph V.; Noble, J. Alison; Schnabel, Julia A.
2013-01-01
We propose a method for registration of 3D fetal brain ultrasound with a reconstructed magnetic resonance fetal brain volume. This method, for the first time, allows the alignment of models of the fetal brain built from magnetic resonance images with 3D fetal brain ultrasound, opening possibilities to develop new, prior information based image analysis methods for 3D fetal neurosonography. The reconstructed magnetic resonance volume is first segmented using a probabilistic atlas and a pseudo ultrasound image volume is simulated from the segmentation. This pseudo ultrasound image is then affinely aligned with clinical ultrasound fetal brain volumes using a robust block-matching approach that can deal with intensity artefacts and missing features in the ultrasound images. A qualitative and quantitative evaluation demonstrates good performance of the method for our application, in comparison with other tested approaches. The intensity average of 27 ultrasound images co-aligned with the pseudo ultrasound template shows good correlation with anatomy of the fetal brain as seen in the reconstructed magnetic resonance image. PMID:23969169
3D robust Chan-Vese model for industrial computed tomography volume data segmentation
NASA Astrophysics Data System (ADS)
Liu, Linghui; Zeng, Li; Luan, Xiao
2013-11-01
Industrial computed tomography (CT) has been widely applied in many areas of non-destructive testing (NDT) and non-destructive evaluation (NDE). In practice, CT volume data to be dealt with may be corrupted by noise. This paper addresses the segmentation of noisy industrial CT volume data. Motivated by the research on the Chan-Vese (CV) model, we present a region-based active contour model that draws upon intensity information in local regions with a controllable scale. In the presence of noise, a local energy is firstly defined according to the intensity difference within a local neighborhood. Then a global energy is defined to integrate local energy with respect to all image points. In a level set formulation, this energy is represented by a variational level set function, where a surface evolution equation is derived for energy minimization. Comparative analysis with the CV model indicates the comparable performance of the 3D robust Chan-Vese (RCV) model. The quantitative evaluation also shows the segmentation accuracy of 3D RCV. In addition, the efficiency of our approach is validated under several types of noise, such as Poisson noise, Gaussian noise, salt-and-pepper noise and speckle noise.
Review methods for image segmentation from computed tomography images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamat, Nurwahidah; Rahman, Wan Eny Zarina Wan Abdul; Soh, Shaharuddin Cik
Image segmentation is a challenging process in order to get the accuracy of segmentation, automation and robustness especially in medical images. There exist many segmentation methods that can be implemented to medical images but not all methods are suitable. For the medical purposes, the aims of image segmentation are to study the anatomical structure, identify the region of interest, measure tissue volume to measure growth of tumor and help in treatment planning prior to radiation therapy. In this paper, we present a review method for segmentation purposes using Computed Tomography (CT) images. CT images has their own characteristics that affectmore » the ability to visualize anatomic structures and pathologic features such as blurring of the image and visual noise. The details about the methods, the goodness and the problem incurred in the methods will be defined and explained. It is necessary to know the suitable segmentation method in order to get accurate segmentation. This paper can be a guide to researcher to choose the suitable segmentation method especially in segmenting the images from CT scan.« less