The demographic consequences of growing older and bigger in oyster populations.
Moore, Jacob L; Lipcius, Romuald N; Puckett, Brandon; Schreiber, Sebastian J
2016-10-01
Structured population models, particularly size- or age-structured, have a long history of informing conservation and natural resource management. While size is often easier to measure than age and is the focus of many management strategies, age-structure can have important effects on population dynamics that are not captured in size-only models. However, relatively few studies have included the simultaneous effects of both age- and size-structure. To better understand how population structure, particularly that of age and size, impacts restoration and management decisions, we developed and compared a size-structured integral projection model (IPM) and an age- and size-structured IPM, using a population of Crassostrea gigas oysters in the northeastern Pacific Ocean. We analyzed sensitivity of model results across values of local retention that give populations decreasing in size to populations increasing in size. We found that age- and size-structured models yielded the best fit to the demographic data and provided more reliable results about long-term demography. Elasticity analysis showed that population growth rate was most sensitive to changes in the survival of both large (>175 mm shell length) and small (<75 mm shell length) oysters, indicating that a maximum size limit, in addition to a minimum size limit, could be an effective strategy for maintaining a sustainable population. In contrast, the purely size-structured model did not detect the importance of large individuals. Finally, patterns in stable age and stable size distributions differed between populations decreasing in size due to limited local retention and populations increasing in size due to high local retention. These patterns can be used to determine population status and restoration success. The methodology described here provides general insight into the necessity of including both age- and size-structure into modeling frameworks when using population models to inform restoration and management decisions. © 2016 by the Ecological Society of America.
Temperature-dependent body size effects determine population responses to climate warming.
Lindmark, Max; Huss, Magnus; Ohlberger, Jan; Gårdmark, Anna
2018-02-01
Current understanding of animal population responses to rising temperatures is based on the assumption that biological rates such as metabolism, which governs fundamental ecological processes, scale independently with body size and temperature, despite empirical evidence for interactive effects. Here, we investigate the consequences of interactive temperature- and size scaling of vital rates for the dynamics of populations experiencing warming using a stage-structured consumer-resource model. We show that interactive scaling alters population and stage-specific responses to rising temperatures, such that warming can induce shifts in population regulation and stage-structure, influence community structure and govern population responses to mortality. Analysing experimental data for 20 fish species, we found size-temperature interactions in intraspecific scaling of metabolic rate to be common. Given the evidence for size-temperature interactions and the ubiquity of size structure in animal populations, we argue that accounting for size-specific temperature effects is pivotal for understanding how warming affects animal populations and communities. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Qin, E-mail: zhuqin@fudan.edu.cn; Peng Xizhe, E-mail: xzpeng@fudan.edu.cn
This study examines the impacts of population size, population structure, and consumption level on carbon emissions in China from 1978 to 2008. To this end, we expanded the stochastic impacts by regression on population, affluence, and technology model and used the ridge regression method, which overcomes the negative influences of multicollinearity among independent variables under acceptable bias. Results reveal that changes in consumption level and population structure were the major impact factors, not changes in population size. Consumption level and carbon emissions were highly correlated. In terms of population structure, urbanization, population age, and household size had distinct effects onmore » carbon emissions. Urbanization increased carbon emissions, while the effect of age acted primarily through the expansion of the labor force and consequent overall economic growth. Shrinking household size increased residential consumption, resulting in higher carbon emissions. Households, rather than individuals, are a more reasonable explanation for the demographic impact on carbon emissions. Potential social policies for low carbon development are also discussed. - Highlights: Black-Right-Pointing-Pointer We examine the impacts of population change on carbon emissions in China. Black-Right-Pointing-Pointer We expand the STIRPAT model by containing population structure factors in the model. Black-Right-Pointing-Pointer The population structure includes age structure, urbanization level, and household size. Black-Right-Pointing-Pointer The ridge regression method is used to estimate the model with multicollinearity. Black-Right-Pointing-Pointer The population structure plays a more important role compared with the population size.« less
Temperature-driven regime shifts in the dynamics of size-structured populations.
Ohlberger, Jan; Edeline, Eric; Vøllestad, Leif Asbjørn; Stenseth, Nils C; Claessen, David
2011-02-01
Global warming impacts virtually all biota and ecosystems. Many of these impacts are mediated through direct effects of temperature on individual vital rates. Yet how this translates from the individual to the population level is still poorly understood, hampering the assessment of global warming impacts on population structure and dynamics. Here, we study the effects of temperature on intraspecific competition and cannibalism and the population dynamical consequences in a size-structured fish population. We use a physiologically structured consumer-resource model in which we explicitly model the temperature dependencies of the consumer vital rates and the resource population growth rate. Our model predicts that increased temperature decreases resource density despite higher resource growth rates, reflecting stronger intraspecific competition among consumers. At a critical temperature, the consumer population dynamics destabilize and shift from a stable equilibrium to competition-driven generation cycles that are dominated by recruits. As a consequence, maximum age decreases and the proportion of younger and smaller-sized fish increases. These model predictions support the hypothesis of decreasing mean body sizes due to increased temperatures. We conclude that in size-structured fish populations, global warming may increase competition, favor smaller size classes, and induce regime shifts that destabilize population and community dynamics.
Population inertia and its sensitivity to changes in vital rates and population structure
Koons, David N.; Holmes, Randall R.; Grand, James B.
2007-01-01
Because the (st)age structure of a population may rarely be stable, studies of transient population dynamics and population momentum are becoming ever more popular. Yet, studies of "population momentum" are restricted in the sense that they describe the inertia of population size resulting from a demographic transition to the stationary population growth rate. Although rarely mentioned, inertia in population size is a general phenomenon and can be produced by any demographic transition or perturbation. Because population size is of central importance in demography, conservation, and management, formulas relating the sensitivity of population inertia to changes in underlying vital rates and population structure could provide much-needed insight into the dynamics of populations with unstable (st)age structure. Here, we derive such formulas, which are readily computable, and provide examples of their potential use in studies of life history and applied arenas of population study. ?? 2007 by the Ecological Society of America.
Zhang, Lai; Andersen, Ken H; Dieckmann, Ulf; Brännström, Åke
2015-09-07
We investigate how four types of interference competition - which alternatively affect foraging, metabolism, survival, and reproduction - impact the ecology and evolution of size-structured populations. Even though all four types of interference competition reduce population biomass, interference competition at intermediate intensity sometimes significantly increases the abundance of adult individuals and the population׳s reproduction rate. We find that foraging and metabolic interference evolutionarily favor smaller maturation size when interference is weak and larger maturation size when interference is strong. The evolutionary response to survival interference and reproductive interference is always larger maturation size. We also investigate how the four types of interference competition impact the evolutionary dynamics and resultant diversity and trophic structure of size-structured communities. Like other types of trait-mediated competition, all four types of interference competition can induce disruptive selection and thus promote initial diversification. Even though foraging interference and reproductive interference are more potent in promoting initial diversification, they catalyze the formation of diverse communities with complex trophic structure only at high levels of interference intensity. By contrast, survival interference does so already at intermediate levels, while reproductive interference can only support relatively smaller communities with simpler trophic structure. Taken together, our results show how the type and intensity of interference competition jointly affect coexistence patterns in structured population models. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stand structure and dynamics of sand pine differ between the Florida panhandle and peninsula
Drewa, P.B.; Platt, W.J.; Kwit, C.; Doyle, T.W.
2008-01-01
Size and age structures of stand populations of numerous tree species exhibit uneven or reverse J-distributions that can persist after non-catastrophic disturbance, especially windstorms. Among disjunct populations of conspecific trees, alternative distributions are also possible and may be attributed to more localized variation in disturbance. Regional differences in structure and demography among disjunct populations of sand pine (Pinus clausa (Chapm. ex Engelm.) Vasey ex Sarg.) in the Florida panhandle and peninsula may result from variation in hurricane regimes associated with each of these populations. We measured size, age, and growth rates of trees from panhandle and peninsula populations and then compiled size and age class distributions. We also characterized hurricanes in both regions over the past century. Size and age structures of panhandle populations were unevenly distributed and exhibited continuous recruitment; peninsula populations were evenly sized and aged and exhibited only periodic recruitment. Since hurricane regimes were similar between regions, historical fire regimes may have been responsible for regional differences in structure of sand pine populations. We hypothesize that fires were locally nonexistent in coastal panhandle populations, while periodic high intensity fires occurred in peninsula populations over the past century. Such differences in local fire regimes could have resulted in the absence of hurricane effects in the peninsula. Increased intensity of hurricanes in the panhandle and current fire suppression patterns in the peninsula may shift characteristics of sand pine stands in both regions. ?? 2007 Springer Science+Business Media B.V.
Hansen, Michael J.; Nate, Nancy A.
2014-01-01
We evaluated the dynamics of walleye Sander vitreus population size structure, as indexed by the proportional size distribution (PSD) of quality-length fish, in Escanaba Lake during 1967–2003 and in 204 other lakes in northern Wisconsin during 1990–2011. We estimated PSD from angler-caught walleyes in Escanaba Lake and from spring electrofishing in 204 other lakes, and then related PSD to annual estimates of recruitment to age-3, length at age 3, and annual angling exploitation rate. In Escanaba Lake during 1967–2003, annual estimates of PSD were highly dynamic, growth (positively) explained 35% of PSD variation, recruitment explained only 3% of PSD variation, and exploitation explained only 7% of PSD variation. In 204 other northern Wisconsin lakes during 1990–2011, PSD varied widely among lakes, recruitment (negatively) explained 29% of PSD variation, growth (positively) explained 21% of PSD variation, and exploitation explained only 4% of PSD variation. We conclude that population size structure was most strongly driven by recruitment and growth, rather than exploitation, in northern Wisconsin walleye populations. Studies of other species over wide spatial and temporal ranges of recruitment, growth, and mortality are needed to determine which dynamic rate most strongly influences population size structure of other species. Our findings indicate a need to be cautious about assuming exploitation is a strong driver of walleye population size structure.
Kerrigan, Elizabeth A.; Irwin, Andrew J.
2015-01-01
Climate change over the last two centuries has been associated with significant shifts in diatom community structure in lakes from the high arctic to temperate latitudes. To test the hypotheses that recent climate warming selects for species of smaller size within communities and a decrease in the average size of species within populations, we quantified the size of individual diatom valves from 10 depths in a sediment core covering the last ∼200 years from a pristine subarctic lake. Over the last ∼200 years, changes in the relative abundance of species of different average size and changes in the average valve size of populations of species contribute equally to the changes in community size structure, but are often opposite in sign, compensating for one another and moderating temporal changes in community size structure. In the surface sediments that correspond to the recent decades when air temperatures have warmed, the mean size of valves in the diatom community has significantly decreased due to an increase in the proportion of smaller-sized planktonic diatom species. PMID:26157637
Size and shape in Melipona quadrifasciata anthidioides Lepeletier, 1836 (Hymenoptera; Meliponini).
Nunes, L A; Passos, G B; Carvalho, C A L; Araújo, E D
2013-11-01
This study aimed to identify differences in wing shape among populations of Melipona quadrifasciata anthidioides obtained in 23 locations in the semi-arid region of Bahia state (Brazil). Analysis of the Procrustes distances among mean wing shapes indicated that population structure did not determine shape variation. Instead, populations were structured geographically according to wing size. The Partial Mantel Test between morphometric (shape and size) distance matrices and altitude, taking geographic distances into account, was used for a more detailed understanding of size and shape determinants. A partial Mantel test between morphometris (shape and size) variation and altitude, taking geographic distances into account, revealed that size (but not shape) is largely influenced by altitude (r = 0.54 p < 0.01). These results indicate greater evolutionary constraints for the shape variation, which must be directly associated with aerodynamic issues in this structure. The size, however, indicates that the bees tend to have larger wings in populations located at higher altitudes.
Lázaro-Nogal, Ana; Matesanz, Silvia; García-Fernández, Alfredo; Traveset, Anna; Valladares, Fernando
2017-09-01
The effect of population size on population genetic diversity and structure has rarely been studied jointly with other factors such as the position of a population within the species' distribution range or the presence of mutualistic partners influencing dispersal. Understanding these determining factors for genetic variation is critical for conservation of relict plants that are generally suffering from genetic deterioration. Working with 16 populations of the vulnerable relict shrub Cneorum tricoccon throughout the majority of its western Mediterranean distribution range, and using nine polymorphic microsatellite markers, we examined the effects of periphery (peripheral vs. central), population size (large vs. small), and seed disperser (introduced carnivores vs. endemic lizards) on the genetic diversity and population structure of the species. Contrasting genetic variation ( H E : 0.04-0.476) was found across populations. Peripheral populations showed lower genetic diversity, but this was dependent on population size. Large peripheral populations showed high levels of genetic diversity, whereas small central populations were less diverse. Significant isolation by distance was detected, indicating that the effect of long-distance gene flow is limited relative to that of genetic drift, probably due to high selfing rates ( F IS = 0.155-0.887), restricted pollen flow, and ineffective seed dispersal. Bayesian clustering also supported the strong population differentiation and highly fragmented structure. Contrary to expectations, the type of disperser showed no significant effect on either population genetic diversity or structure. Our results challenge the idea of an effect of periphery per se that can be mainly explained by population size, drawing attention to the need of integrative approaches considering different determinants of genetic variation. Furthermore, the very low genetic diversity observed in several small populations and the strong among-population differentiation highlight the conservation value of large populations throughout the species' range, particularly in light of climate change and direct human threats.
Structured population dynamics: continuous size and discontinuous stage structures.
Buffoni, Giuseppe; Pasquali, Sara
2007-04-01
A nonlinear stochastic model for the dynamics of a population with either a continuous size structure or a discontinuous stage structure is formulated in the Eulerian formalism. It takes into account dispersion effects due to stochastic variability of the development process of the individuals. The discrete equations of the numerical approximation are derived, and an analysis of the existence and stability of the equilibrium states is performed. An application to a copepod population is illustrated; numerical results of Eulerian and Lagrangian models are compared.
Population estimates of extended family structure and size.
Garceau, Anne; Wideroff, Louise; McNeel, Timothy; Dunn, Marsha; Graubard, Barry I
2008-01-01
Population-based estimates of biological family size can be useful for planning genetic studies, assessing how distributions of relatives affect disease associations with family history and estimating prevalence of potential family support. Mean family size per person is estimated from a population-based telephone survey (n = 1,019). After multivariate adjustment for demographic variables, older and non-White respondents reported greater mean numbers of total, first- and second-degree relatives. Females reported more total and first-degree relatives, while less educated respondents reported more second-degree relatives. Demographic differences in family size have implications for genetic research. Therefore, periodic collection of family structure data in representative populations would be useful. Copyright 2008 S. Karger AG, Basel.
Cousseau, L; Husemann, M; Foppen, R; Vangestel, C; Lens, L
2016-01-01
Dutch house sparrow (Passer domesticus) densities dropped by nearly 50% since the early 1980s, and similar collapses in population sizes have been reported across Europe. Whether, and to what extent, such relatively recent demographic changes are accompanied by concomitant shifts in the genetic population structure of this species needs further investigation. Therefore, we here explore temporal shifts in genetic diversity, genetic structure and effective sizes of seven Dutch house sparrow populations. To allow the most powerful statistical inference, historical populations were resampled at identical locations and each individual bird was genotyped using nine polymorphic microsatellites. Although the demographic history was not reflected by a reduction in genetic diversity, levels of genetic differentiation increased over time, and the original, panmictic population (inferred from the museum samples) diverged into two distinct genetic clusters. Reductions in census size were supported by a substantial reduction in effective population size, although to a smaller extent. As most studies of contemporary house sparrow populations have been unable to identify genetic signatures of recent population declines, results of this study underpin the importance of longitudinal genetic surveys to unravel cryptic genetic patterns. PMID:27273323
Fukaya, Keiichi; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi
2014-11-01
Explanations for why population dynamics vary across the range of a species reflect two contrasting hypotheses: (i) temporal variability of populations is larger in the centre of the range compared to the margins because overcompensatory density dependence destabilizes population dynamics and (ii) population variability is larger near the margins, where populations are more susceptible to environmental fluctuations. In both of these hypotheses, positions within the range are assumed to affect population variability. In contrast, the fact that population variability is often related to mean population size implies that the spatial structure of the population size within the range of a species may also be a useful predictor of the spatial variation in temporal variability of population size over the range of the species. To explore how population temporal variability varies spatially and the underlying processes responsible for the spatial variation, we focused on the intertidal barnacle Chthamalus dalli and examined differences in its population dynamics along the tidal levels it inhabits. Changes in coverage of barnacle populations were monitored for 10.5 years at 25 plots spanning the elevational range of this species. Data were analysed by fitting a population dynamics model to estimate the effects of density-dependent and density-independent processes on population growth. We also examined the temporal mean-variance relationship of population size with parameters estimated from the population dynamics model. We found that the relative variability of populations tended to increase from the centre of the elevational range towards the margins because of an increase in the magnitude of stochastic fluctuations of growth rates. Thus, our results supported hypothesis (2). We also found that spatial variations in temporal population variability were well characterized by Taylor's power law, the relative population variability being inversely related to the mean population size. Results suggest that understanding the population dynamics of a species over its range may be facilitated by taking the spatial structure of population size into account as well as by considering changes in population processes as a function of position within the range of the species. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Inferring population structure and demographic history using Y-STR data from worldwide populations.
Xu, Hongyang; Wang, Chuan-Chao; Shrestha, Rukesh; Wang, Ling-Xiang; Zhang, Manfei; He, Yungang; Kidd, Judith R; Kidd, Kenneth K; Jin, Li; Li, Hui
2015-02-01
The Y chromosome is one of the best genetic materials to explore the evolutionary history of human populations. Global analyses of Y chromosomal short tandem repeats (STRs) data can reveal very interesting world population structures and histories. However, previous Y-STR works tended to focus on small geographical ranges or only included limited sample sizes. In this study, we have investigated population structure and demographic history using 17 Y chromosomal STRs data of 979 males from 44 worldwide populations. The largest genetic distances have been observed between pairs of African and non-African populations. American populations with the lowest genetic diversities also showed large genetic distances and coancestry coefficients with other populations, whereas Eurasian populations displayed close genetic affinities. African populations tend to have the oldest time to the most recent common ancestors (TMRCAs), the largest effective population sizes and the earliest expansion times, whereas the American, Siberian, Melanesian, and isolated Atayal populations have the most recent TMRCAs and expansion times, and the smallest effective population sizes. This clear geographic pattern is well consistent with serial founder model for the origin of populations outside Africa. The Y-STR dataset presented here provides the most detailed view of worldwide population structure and human male demographic history, and additionally will be of great benefit to future forensic applications and population genetic studies.
Genetic conservation in applied tree breeding programs.
R. Johnson; B. St. Clair; S. Lipow
2001-01-01
This paper reviews how population size and structure impacts the maintenance of genetic variation in breeding and gene resource populations. We discuss appropriate population sizes for low frequency alleles and point out some examples of low frequency alleles in the literature. Development of appropriate breeding populations and gene resource populations are discussed...
The concurrent evolution of cooperation and the population structures that support it.
Powers, Simon T; Penn, Alexandra S; Watson, Richard A
2011-06-01
The evolution of cooperation often depends upon population structure, yet nearly all models of cooperation implicitly assume that this structure remains static. This is a simplifying assumption, because most organisms possess genetic traits that affect their population structure to some degree. These traits, such as a group size preference, affect the relatedness of interacting individuals and hence the opportunity for kin or group selection. We argue that models that do not explicitly consider their evolution cannot provide a satisfactory account of the origin of cooperation, because they cannot explain how the prerequisite population structures arise. Here, we consider the concurrent evolution of genetic traits that affect population structure, with those that affect social behavior. We show that not only does population structure drive social evolution, as in previous models, but that the opportunity for cooperation can in turn drive the creation of population structures that support it. This occurs through the generation of linkage disequilibrium between socio-behavioral and population-structuring traits, such that direct kin selection on social behavior creates indirect selection pressure on population structure. We illustrate our argument with a model of the concurrent evolution of group size preference and social behavior. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Filin, I
2009-06-01
Using diffusion processes, I model stochastic individual growth, given exogenous hazards and starvation risk. By maximizing survival to final size, optimal life histories (e.g. switching size for habitat/dietary shift) are determined by two ratios: mean growth rate over growth variance (diffusion coefficient) and mortality rate over mean growth rate; all are size dependent. For example, switching size decreases with either ratio, if both are positive. I provide examples and compare with previous work on risk-sensitive foraging and the energy-predation trade-off. I then decompose individual size into reversibly and irreversibly growing components, e.g. reserves and structure. I provide a general expression for optimal structural growth, when reserves grow stochastically. I conclude that increased growth variance of reserves delays structural growth (raises threshold size for its commencement) but may eventually lead to larger structures. The effect depends on whether the structural trait is related to foraging or defence. Implications for population dynamics are discussed.
Social structural consequences of population growth.
Adams, R E
1981-01-01
Estimates from archaeological data of the numbers in the elite classes, nonelite occupational specialists, density of population, city size, and size of political units in the ancient Maya civilization suggest that there was a quantum shift in rate of development in the Early Classic period, associated with intensification of agriculture, and that the social structure approximated to a generalized feudal pattern.
Suárez-Montes, Pilar; Chávez-Pesqueira, Mariana
2016-01-01
Introduction Theory predicts that habitat fragmentation, by reducing population size and increasing isolation among remnant populations, can alter their genetic diversity and structure. A cascade of effects is expected: genetic drift and inbreeding after a population bottleneck, changes in biotic interactions that may affect, as in the case of plants, pollen dynamics, mating system, reproductive success. The detection of the effects of contemporary habitat fragmentation on the genetic structure of populations are conditioned by the magnitude of change, given the few number of generations since the onset of fragmentation, especially for long-lived organisms. However, the present-day genetic structure of populations may bear the signature of past demography events. Here, we examine the effects of rainforest fragmentation on the genetic diversity, population structure, mating system (outcrossing rate), indirect gene flow and contemporary pollen dynamics in the understory herb Aphelandra aurantiaca. Also, we assessed its present-day genetic structure under different past demographic scenarios. Methods Twelve populations of A. aurantiaca were sampled in large (4), medium (3), and small (5) forest fragments in the lowland tropical rainforest at Los Tuxtlas region. Variation at 11 microsatellite loci was assessed in 28–30 reproductive plants per population. In two medium- and two large-size fragments we estimated the density of reproductive plants, and the mating system by analyzing the progeny of different mother plants per population. Results Despite prevailing habitat fragmentation, populations of A. aurantiaca possess high genetic variation (He = 0.61), weak genetic structure (Rst = 0.037), and slight inbreeding in small fragments. Effective population sizes (Ne) were large, but slightly lower in small fragments. Migrants derive mostly from large and medium size fragments. Gene dispersal is highly restricted but long distance gene dispersal events were detected. Aphelandra aurantiaca shows a mixed mating system (tm = 0.81) and the outcrossing rate have not been affected by habitat fragmentation. A strong pollen pool structure was detected due to few effective pollen donors (Nep) and low distance pollen movement, pointing that most plants received pollen from close neighbors. Past demographic fluctuations may have affected the present population genetic structure as Bayesian coalescent analysis revealed the signature of past population expansion, possibly during warmer conditions after the last glacial maximum. Discussion Habitat fragmentation has not increased genetic differentiation or reduced genetic diversity of A. aurantiaca despite dozens of generations since the onset of fragmentation in the region of Los Tuxtlas. Instead, past population expansion is compatible with the lack of observed genetic structure. The predicted negative effects of rainforest fragmentation on genetic diversity and population structure of A. aurantiaca seem to have been buffered owing to its large effective populations and long-distance dispersal events. In particular, its mixed-mating system, mostly of outcrossing, suggests high efficiency of pollinators promoting connectivity and reducing inbreeding. However, some results point that the effects of fragmentation are underway, as two small fragments showed higher membership probabilities to their population of origin, suggesting genetic isolation. Our findings underscore the importance of fragment size to maintain genetic connectivity across the landscape. PMID:28028460
Argentina, Jane E.; Angermeier, Paul L.; Hallerman, Eric M.; Welsh, Stuart A.
2018-01-01
Connectivity among stream fish populations allows for exchange of genetic material and helps maintain genetic diversity, adaptive potential and population stability over time. Changes in species demographics and population connectivity have the potential to permanently alter the genetic patterns of stream fish, although these changes through space and time are variable and understudied in small‐bodied freshwater fish.As a spatially widespread, common species of benthic freshwater fish, the variegate darter (Etheostoma variatum) is a model species for documenting how patterns of genetic structure and diversity respond to increasing isolation due to large dams and how scale of study may shape our understanding of these patterns. We sampled variegate darters from 34 sites across their range in the North American Ohio River basin and examined how patterns of genetic structure and diversity within and between populations responded to historical population changes and dams within and between populations.Spatial scale and configuration of genetic structure varied across the eight identified populations, from tributaries within a watershed, to a single watershed, to multiple watersheds that encompass Ohio River mainstem habitats. This multiwatershed pattern of population structuring suggests genetic dispersal across large distances was and may continue to be common, although some populations remain isolated despite no apparent structural dispersal barriers. Populations with low effective population sizes and evidence of past population bottlenecks showed low allelic richness, but diversity patterns were not related to watershed size, a surrogate for habitat availability. Pairwise genetic differentiation (FST) increased with fluvial distance and was related to both historic and contemporary processes. Genetic diversity changes were influenced by underlying population size and stability, and while instream barriers were not strong determinants of genetic structuring or loss of genetic diversity, they reduce population connectivity and may impact long‐term population persistence.The broad spatial scale of this study demonstrated the large spatial extent of some variegate darter populations and indicated that dispersal is more extensive than expected given the movement patterns typically observed for small‐bodied, benthic fish. Dam impacts depended on underlying population size and stability, with larger populations more resilient to genetic drift and allelic richness loss than smaller populations.Other darters that inhabit large river habitats may show similar patterns in landscape‐scale studies, and large river barriers may impact populations of small‐bodied fish more than previously expected. Estimation of dispersal rates and behaviours is critical to conservation of imperilled riverine species such as darters.
Muscarella, Robert A.; Murray, Kevin L.; Ortt, Derek; Russell, Amy L.; Fleming, Theodore H.
2011-01-01
Observed patterns of genetic structure result from the interactions of demographic, physical, and historical influences on gene flow. The particular strength of various factors in governing gene flow, however, may differ between species in biologically relevant ways. We investigated the role of demographic factors (population size and sex-biased dispersal) and physical features (geographic distance, island size and climatological winds) on patterns of genetic structure and gene flow for two lineages of Greater Antillean bats. We used microsatellite genetic data to estimate demographic characteristics, infer population genetic structure, and estimate gene flow among island populations of Erophylla sezekorni/E. bombifrons and Macrotus waterhousii (Chiroptera: Phyllostomidae). Using a landscape genetics approach, we asked if geographic distance, island size, or climatological winds mediate historical gene flow in this system. Samples from 13 islands spanning Erophylla's range clustered into five genetically distinct populations. Samples of M. waterhousii from eight islands represented eight genetically distinct populations. While we found evidence that a majority of historical gene flow between genetic populations was asymmetric for both lineages, we were not able to entirely rule out incomplete lineage sorting in generating this pattern. We found no evidence of contemporary gene flow except between two genetic populations of Erophylla. Both lineages exhibited significant isolation by geographic distance. Patterns of genetic structure and gene flow, however, were not explained by differences in relative effective population sizes, island area, sex-biased dispersal (tested only for Erophylla), or surface-level climatological winds. Gene flow among islands appears to be highly restricted, particularly for M. waterhousii, and we suggest that this species deserves increased taxonomic attention and conservation concern. PMID:21445291
Temporal analysis of genetic structure to assess population dynamics of reintroduced swift foxes.
Cullingham, Catherine I; Moehrenschlager, Axel
2013-12-01
Reintroductions are increasingly used to reestablish species, but a paucity of long-term postrelease monitoring has limited understanding of whether and when viable populations subsequently persist. We conducted temporal genetic analyses of reintroduced populations of swift foxes (Vulpes velox) in Canada (Alberta and Saskatchewan) and the United States (Montana). We used samples collected 4 years apart, 17 years from the initiation of the reintroduction, and 3 years after the conclusion of releases. To assess program success, we genotyped 304 hair samples, subsampled from the known range in 2000 and 2001, and 2005 and 2006, at 7 microsatellite loci. We compared diversity, effective population size, and genetic connectivity over time in each population. Diversity remained stable over time and there was evidence of increasing effective population size. We determined population structure in both periods after correcting for differences in sample sizes. The geographic distribution of these populations roughly corresponded with the original release locations, which suggests the release sites had residual effects on the population structure. However, given that both reintroduction sites had similar source populations, habitat fragmentation, due to cropland, may be associated with the population structure we found. Although our results indicate growing, stable populations, future connectivity analyses are warranted to ensure both populations are not subject to negative small-population effects. Our results demonstrate the importance of multiple sampling years to fully capture population dynamics of reintroduced populations. Análisis Temporal de la Estructura Genética para Evaluar la Dinámica Poblacional de Zorros (Vulpes velox) Reintroducidos. © 2013 Society for Conservation Biology.
A size-structured model of bacterial growth and reproduction.
Ellermeyer, S F; Pilyugin, S S
2012-01-01
We consider a size-structured bacterial population model in which the rate of cell growth is both size- and time-dependent and the average per capita reproduction rate is specified as a model parameter. It is shown that the model admits classical solutions. The population-level and distribution-level behaviours of these solutions are then determined in terms of the model parameters. The distribution-level behaviour is found to be different from that found in similar models of bacterial population dynamics. Rather than convergence to a stable size distribution, we find that size distributions repeat in cycles. This phenomenon is observed in similar models only under special assumptions on the functional form of the size-dependent growth rate factor. Our main results are illustrated with examples, and we also provide an introductory study of the bacterial growth in a chemostat within the framework of our model.
NASA Astrophysics Data System (ADS)
Kazemzadeh Azad, Saeid
2018-01-01
In spite of considerable research work on the development of efficient algorithms for discrete sizing optimization of steel truss structures, only a few studies have addressed non-algorithmic issues affecting the general performance of algorithms. For instance, an important question is whether starting the design optimization from a feasible solution is fruitful or not. This study is an attempt to investigate the effect of seeding the initial population with feasible solutions on the general performance of metaheuristic techniques. To this end, the sensitivity of recently proposed metaheuristic algorithms to the feasibility of initial candidate designs is evaluated through practical discrete sizing of real-size steel truss structures. The numerical experiments indicate that seeding the initial population with feasible solutions can improve the computational efficiency of metaheuristic structural optimization algorithms, especially in the early stages of the optimization. This paves the way for efficient metaheuristic optimization of large-scale structural systems.
Integral projection models for finite populations in a stochastic environment.
Vindenes, Yngvild; Engen, Steinar; Saether, Bernt-Erik
2011-05-01
Continuous types of population structure occur when continuous variables such as body size or habitat quality affect the vital parameters of individuals. These structures can give rise to complex population dynamics and interact with environmental conditions. Here we present a model for continuously structured populations with finite size, including both demographic and environmental stochasticity in the dynamics. Using recent methods developed for discrete age-structured models we derive the demographic and environmental variance of the population growth as functions of a continuous state variable. These two parameters, together with the expected population growth rate, are used to define a one-dimensional diffusion approximation of the population dynamics. Thus, a substantial reduction in complexity is achieved as the dynamics of the complex structured model can be described by only three population parameters. We provide methods for numerical calculation of the model parameters and demonstrate the accuracy of the diffusion approximation by computer simulation of specific examples. The general modeling framework makes it possible to analyze and predict future dynamics and extinction risk of populations with various types of structure, and to explore consequences of changes in demography caused by, e.g., climate change or different management decisions. Our results are especially relevant for small populations that are often of conservation concern.
Response of a tropical tree to non-timber forest products harvest and reduction in habitat size
Kouagou, M’Mouyohoun; Natta, Armand K.; Gado, Choukouratou
2017-01-01
Non-timber forest products (NTFPs) are widely harvested by local people for their livelihood. Harvest often takes place in human disturbed ecosystems. However, our understanding of NTFPs harvesting impacts in fragmented habitats is limited. We assessed the impacts of fruit harvest, and reduction in habitat size on the population structures of Pentadesma butyracea Sabine (Clusiaceae) across two contrasting ecological regions (dry vs. moist) in Benin. In each region, we selected three populations for each of the three fruit harvesting intensities (low, medium and high). Harvesting intensities were estimated as the proportion of fruits harvested per population. Pentadesma butyracea is found in gallery forests along rivers and streams. We used the width of gallery forests as a measure of habitat size. We found negative effects of fruit harvest on seedling and adult density but no significant effect on population size class distribution in both ecological regions. The lack of significant effect of fruit harvest on population structure may be explained by the ability of P. butyracea to compensate for the negative effect of fruit harvesting by increasing clonal reproduction. Our results suggest that using tree density and population structure to assess the ecological impacts of harvesting clonal plants should be done with caution. PMID:28850624
Response of a tropical tree to non-timber forest products harvest and reduction in habitat size.
Gaoue, Orou G; Kouagou, M'Mouyohoun; Natta, Armand K; Gado, Choukouratou
2017-01-01
Non-timber forest products (NTFPs) are widely harvested by local people for their livelihood. Harvest often takes place in human disturbed ecosystems. However, our understanding of NTFPs harvesting impacts in fragmented habitats is limited. We assessed the impacts of fruit harvest, and reduction in habitat size on the population structures of Pentadesma butyracea Sabine (Clusiaceae) across two contrasting ecological regions (dry vs. moist) in Benin. In each region, we selected three populations for each of the three fruit harvesting intensities (low, medium and high). Harvesting intensities were estimated as the proportion of fruits harvested per population. Pentadesma butyracea is found in gallery forests along rivers and streams. We used the width of gallery forests as a measure of habitat size. We found negative effects of fruit harvest on seedling and adult density but no significant effect on population size class distribution in both ecological regions. The lack of significant effect of fruit harvest on population structure may be explained by the ability of P. butyracea to compensate for the negative effect of fruit harvesting by increasing clonal reproduction. Our results suggest that using tree density and population structure to assess the ecological impacts of harvesting clonal plants should be done with caution.
Simulated population responses of common carp to commercial exploitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Michael J.; Hennen, Matthew J.; Brown, Michael L.
2011-12-01
Common carp Cyprinus carpio is a widespread invasive species that can become highly abundant and impose deleterious ecosystem effects. Thus, aquatic resource managers are interested in controlling common carp populations. Control of invasive common carp populations is difficult, due in part to the inherent uncertainty of how populations respond to exploitation. To understand how common carp populations respond to exploitation, we evaluated common carp population dynamics (recruitment, growth, and mortality) in three natural lakes in eastern South Dakota. Common carp exhibited similar population dynamics across these three systems that were characterized by consistent recruitment (ages 3 to 15 years present),more » fast growth (K = 0.37 to 0.59), and low mortality (A = 1 to 7%). We then modeled the effects of commercial exploitation on size structure, abundance, and egg production to determine its utility as a management tool to control populations. All three populations responded similarly to exploitation simulations with a 575-mm length restriction, representing commercial gear selectivity. Simulated common carp size structure modestly declined (9 to 37%) in all simulations. Abundance of common carp declined dramatically (28 to 56%) at low levels of exploitation (0 to 20%) but exploitation >40% had little additive effect and populations were only reduced by 49 to 79% despite high exploitation (>90%). Maximum lifetime egg production was reduced from 77 to 89% at a moderate level of exploitation (40%), indicating the potential for recruitment overfishing. Exploitation further reduced common carp size structure, abundance, and egg production when simulations were not size selective. Our results provide insights to how common carp populations may respond to exploitation. Although commercial exploitation may be able to partially control populations, an integrated removal approach that removes all sizes of common carp has a greater chance of controlling population abundance and reducing perturbations induced by this invasive species.« less
Kirillov, A A; Kirillova, N Yu
2015-01-01
Variability of the body size in females of the Cosmocerca ornata (Dujardin, 1845), a parasite of marsh frogs, is studied. The influence of both biotic (age, sex and a phenotype of the host, density of the parasite population) and abiotic (a season of the year, water temperature) factors on the formation of the body size structure in the C. ornata hemipopulation (infrapopulation) is demonstrated. The body size structure of the C. ornata hemipopulation is characterized by the low level of individual variability as within certain subpopulation groups of amphibians (sex, age and phenotype), so within the population of marsh frogs as a whole. The more distinct are the differences in biology and ecology of these host subpopulations, the more pronounced is the variability in the body size of C ornata.
Riccioni, Giulia; Landi, Monica; Ferrara, Giorgia; Milano, Ilaria; Cariani, Alessia; Zane, Lorenzo; Sella, Massimo; Barbujani, Guido; Tinti, Fausto
2010-01-01
Fishery genetics have greatly changed our understanding of population dynamics and structuring in marine fish. In this study, we show that the Atlantic Bluefin tuna (ABFT, Thunnus thynnus), an oceanic predatory species exhibiting highly migratory behavior, large population size, and high potential for dispersal during early life stages, displays significant genetic differences over space and time, both at the fine and large scales of variation. We compared microsatellite variation of contemporary (n = 256) and historical (n = 99) biological samples of ABFTs of the central-western Mediterranean Sea, the latter dating back to the early 20th century. Measures of genetic differentiation and a general heterozygote deficit suggest that differences exist among population samples, both now and 96–80 years ago. Thus, ABFTs do not represent a single panmictic population in the Mediterranean Sea. Statistics designed to infer changes in population size, both from current and past genetic variation, suggest that some Mediterranean ABFT populations, although still not severely reduced in their genetic potential, might have suffered from demographic declines. The short-term estimates of effective population size are straddled on the minimum threshold (effective population size = 500) indicated to maintain genetic diversity and evolutionary potential across several generations in natural populations. PMID:20080643
Inferring demographic structure with moccasin size data from the Promontory Caves, Utah.
Billinger, Michael; Ives, John W
2015-01-01
The moccasin assemblage Julian Steward recovered from the Promontory caves in 1930-31 provides a novel example in which material culture can be used to understand the structure of an AD thirteenth century population. Several studies shed light on the relationship between shoe size, foot size, and stature. We develop an anthropometric model for understanding the composition of the Promontory Cave population by using moccasin size as a proxy for foot size. We then predict the stature of the individual who would have worn a moccasin. Stature is closely related to age for children, subadults and adult males. Although there are predictable sex and age factors biasing moccasin discard practices, moccasin dimensions suggest a relatively large proportion of children and subadults occupied the Promontory caves. This bison and antelope hunting population appears to have thrived during its stay on Promontory Point. © 2014 Wiley Periodicals, Inc.
Bruggeman, Douglas J; Wiegand, Thorsten; Fernández, Néstor
2010-09-01
The relative influence of habitat loss, fragmentation and matrix heterogeneity on the viability of populations is a critical area of conservation research that remains unresolved. Using simulation modelling, we provide an analysis of the influence both patch size and patch isolation have on abundance, effective population size (N(e)) and F(ST). An individual-based, spatially explicit population model based on 15 years of field work on the red-cockaded woodpecker (Picoides borealis) was applied to different landscape configurations. The variation in landscape patterns was summarized using spatial statistics based on O-ring statistics. By regressing demographic and genetics attributes that emerged across the landscape treatments against proportion of total habitat and O-ring statistics, we show that O-ring statistics provide an explicit link between population processes, habitat area, and critical thresholds of fragmentation that affect those processes. Spatial distances among land cover classes that affect biological processes translated into critical scales at which the measures of landscape structure correlated best with genetic indices. Therefore our study infers pattern from process, which contrasts with past studies of landscape genetics. We found that population genetic structure was more strongly affected by fragmentation than population size, which suggests that examining only population size may limit recognition of fragmentation effects that erode genetic variation. If effective population size is used to set recovery goals for endangered species, then habitat fragmentation effects may be sufficiently strong to prevent evaluation of recovery based on the ratio of census:effective population size alone.
Local extinction and recolonization, species effective population size, and modern human origins.
Eller, Elise; Hawks, John; Relethford, John H
2004-10-01
A primary objection from a population genetics perspective to a multiregional model of modern human origins is that the model posits a large census size, whereas genetic data suggest a small effective population size. The relationship between census size and effective size is complex, but arguments based on an island model of migration show that if the effective population size reflects the number of breeding individuals and the effects of population subdivision, then an effective population size of 10,000 is inconsistent with the census size of 500,000 to 1,000,000 that has been suggested by archeological evidence. However, these models have ignored the effects of population extinction and recolonization, which increase the expected variance among demes and reduce the inbreeding effective population size. Using models developed for population extinction and recolonization, we show that a large census size consistent with the multiregional model can be reconciled with an effective population size of 10,000, but genetic variation among demes must be high, reflecting low interdeme migration rates and a colonization process that involves a small number of colonists or kin-structured colonization. Ethnographic and archeological evidence is insufficient to determine whether such demographic conditions existed among Pleistocene human populations, and further work needs to be done. More realistic models that incorporate isolation by distance and heterogeneity in extinction rates and effective deme sizes also need to be developed. However, if true, a process of population extinction and recolonization has interesting implications for human demographic history.
Fishing degrades size structure of coral reef fish communities.
Robinson, James P W; Williams, Ivor D; Edwards, Andrew M; McPherson, Jana; Yeager, Lauren; Vigliola, Laurent; Brainard, Russell E; Baum, Julia K
2017-03-01
Fishing pressure on coral reef ecosystems has been frequently linked to reductions of large fishes and reef fish biomass. Associated impacts on overall community structure are, however, less clear. In size-structured aquatic ecosystems, fishing impacts are commonly quantified using size spectra, which describe the distribution of individual body sizes within a community. We examined the size spectra and biomass of coral reef fish communities at 38 US-affiliated Pacific islands that ranged in human presence from near pristine to human population centers. Size spectra 'steepened' steadily with increasing human population and proximity to market due to a reduction in the relative biomass of large fishes and an increase in the dominance of small fishes. Reef fish biomass was substantially lower on inhabited islands than uninhabited ones, even at inhabited islands with the lowest levels of human presence. We found that on populated islands size spectra exponents decreased (analogous to size spectra steepening) linearly with declining biomass, whereas on uninhabited islands there was no relationship. Size spectra were steeper in regions of low sea surface temperature but were insensitive to variation in other environmental and geomorphic covariates. In contrast, reef fish biomass was highly sensitive to oceanographic conditions, being influenced by both oceanic productivity and sea surface temperature. Our results suggest that community size structure may be a more robust indicator than fish biomass to increasing human presence and that size spectra are reliable indicators of exploitation impacts across regions of different fish community compositions, environmental drivers, and fisheries types. Size-based approaches that link directly to functional properties of fish communities, and are relatively insensitive to abiotic variation across biogeographic regions, offer great potential for developing our understanding of fishing impacts in coral reef ecosystems. © 2016 John Wiley & Sons Ltd.
Animal social networks as substrate for cultural behavioural diversity.
Whitehead, Hal; Lusseau, David
2012-02-07
We used individual-based stochastic models to examine how social structure influences the diversity of socially learned behaviour within a non-human population. For continuous behavioural variables we modelled three forms of dyadic social learning, averaging the behavioural value of the two individuals, random transfer of information from one individual to the other, and directional transfer from the individual with highest behavioural value to the other. Learning had potential error. We also examined the transfer of categorical behaviour between individuals with random directionality and two forms of error, the adoption of a randomly chosen existing behavioural category or the innovation of a new type of behaviour. In populations without social structuring the diversity of culturally transmitted behaviour increased with learning error and population size. When the populations were structured socially either by making individuals members of permanent social units or by giving them overlapping ranges, behavioural diversity increased with network modularity under all scenarios, although the proportional increase varied considerably between continuous and categorical behaviour, with transmission mechanism, and population size. Although functions of the form e(c)¹(m)⁻(c)² + (c)³(Log(N)) predicted the mean increase in diversity with modularity (m) and population size (N), behavioural diversity could be highly unpredictable both between simulations with the same set of parameters, and within runs. Errors in social learning and social structuring generally promote behavioural diversity. Consequently, social learning may be considered to produce culture in populations whose social structure is sufficiently modular. Copyright © 2011 Elsevier Ltd. All rights reserved.
Capello, Katia; Bortolotti, Laura; Lanari, Manuela; Baioni, Elisa; Mutinelli, Franco; Vascellari, Marta
2015-01-01
The knowledge of the size and demographic structure of animal populations is a necessary prerequisite for any population-based epidemiological study, especially to ascertain and interpret prevalence data, to implement surveillance plans in controlling zoonotic diseases and, moreover, to provide accurate estimates of tumours incidence data obtained by population-based registries. The main purpose of this study was to provide an accurate estimate of the size and structure of the canine population in Veneto region (north-eastern Italy), using the Lincoln-Petersen version of the capture-recapture methodology. The Regional Canine Demographic Registry (BAC) and a sample survey of households of Veneto Region were the capture and recapture sources, respectively. The secondary purpose was to estimate the size and structure of the feline population in the same region, using the same survey applied for dog population. A sample of 2465 randomly selected households was drawn and submitted to a questionnaire using the CATI technique, in order to obtain information about the ownership of dogs and cats. If the dog was declared to be identified, owner's information was used to recapture the dog in the BAC. The study was conducted in Veneto Region during 2011, when the dog population recorded in the BAC was 605,537. Overall, 616 households declared to possess at least one dog (25%), with a total of 805 dogs and an average per household of 1.3. The capture-recapture analysis showed that 574 dogs (71.3%, 95% CI: 68.04-74.40%) had been recaptured in both sources, providing a dog population estimate of 849,229 (95% CI: 814,747-889,394), 40% higher than that registered in the BAC. Concerning cats, 455 of 2465 (18%, 95% CI: 17-20%) households declared to possess at least one cat at the time of the telephone interview, with a total of 816 cats. The mean number of cats per household was equal to 1.8, providing an estimate of the cat population in Veneto region equal to 663,433 (95% CI: 626,585-737,159). The estimate of the size and structure of owned canine and feline populations in Veneto region provide useful data to perform epidemiological studies and monitoring plans in this area. Copyright © 2014 Elsevier B.V. All rights reserved.
Effects of sample size on estimates of population growth rates calculated with matrix models.
Fiske, Ian J; Bruna, Emilio M; Bolker, Benjamin M
2008-08-28
Matrix models are widely used to study the dynamics and demography of populations. An important but overlooked issue is how the number of individuals sampled influences estimates of the population growth rate (lambda) calculated with matrix models. Even unbiased estimates of vital rates do not ensure unbiased estimates of lambda-Jensen's Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of lambda due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among size classes lead to biases in estimates of lambda. Using data from a long-term field study of plant demography, we simulated the effects of sampling variance by drawing vital rates and calculating lambda for increasingly larger populations drawn from a total population of 3842 plants. We then compared these estimates of lambda with those based on the entire population and calculated the resulting bias. Finally, we conducted a review of the literature to determine the sample sizes typically used when parameterizing matrix models used to study plant demography. We found significant bias at small sample sizes when survival was low (survival = 0.5), and that sampling with a more-realistic inverse J-shaped population structure exacerbated this bias. However our simulations also demonstrate that these biases rapidly become negligible with increasing sample sizes or as survival increases. For many of the sample sizes used in demographic studies, matrix models are probably robust to the biases resulting from sampling variance of vital rates. However, this conclusion may depend on the structure of populations or the distribution of sampling effort in ways that are unexplored. We suggest more intensive sampling of populations when individual survival is low and greater sampling of stages with high elasticities.
van Mantgem, P.J.; Stephenson, N.L.
2005-01-01
1 We assess the use of simple, size-based matrix population models for projecting population trends for six coniferous tree species in the Sierra Nevada, California. We used demographic data from 16 673 trees in 15 permanent plots to create 17 separate time-invariant, density-independent population projection models, and determined differences between trends projected from initial surveys with a 5-year interval and observed data during two subsequent 5-year time steps. 2 We detected departures from the assumptions of the matrix modelling approach in terms of strong growth autocorrelations. We also found evidence of observation errors for measurements of tree growth and, to a more limited degree, recruitment. Loglinear analysis provided evidence of significant temporal variation in demographic rates for only two of the 17 populations. 3 Total population sizes were strongly predicted by model projections, although population dynamics were dominated by carryover from the previous 5-year time step (i.e. there were few cases of recruitment or death). Fractional changes to overall population sizes were less well predicted. Compared with a null model and a simple demographic model lacking size structure, matrix model projections were better able to predict total population sizes, although the differences were not statistically significant. Matrix model projections were also able to predict short-term rates of survival, growth and recruitment. Mortality frequencies were not well predicted. 4 Our results suggest that simple size-structured models can accurately project future short-term changes for some tree populations. However, not all populations were well predicted and these simple models would probably become more inaccurate over longer projection intervals. The predictive ability of these models would also be limited by disturbance or other events that destabilize demographic rates. ?? 2005 British Ecological Society.
Pérez-Figueroa, A; Fernández, C; Amaro, R; Hermida, M; San Miguel, E
2015-08-01
Variability at 20 microsatellite loci was examined to assess the population genetic structure, gene flow, and effective population size (N(e)) in three populations of three-spined stickleback (Gasterosteus aculeatus) from the upper basin of the Miño River in Galicia, NW Spain, where this species is threatened. The three populations showed similar levels of genetic diversity. There is a significant genetic differentiation between the three populations, but also significant gene flow. N(e) estimates based on linkage disequilibrium yielded values of 355 for the Miño River population and 241 and 311 for the Rato and Guisande Rivers, respectively, although we expect that these are overestimates. N(e) estimates based on temporal methods, considering gene flow or not, for the tributaries yielded values of 30-56 and 47-56 for the Rato and Guisande Rivers, respectively. Estimated census size (N(c)) for the Rato River was 880 individuals. This yielded a N(e)/N(c) estimate of 3-6 % for temporal estimation of N(e), which is within the empirical range observed in freshwater fishes. We suggest that the three populations analyzed have a sufficient level of genetic diversity with some genetic structure. Additionally, the absence of physical barriers suggests that conservation efforts and monitoring should focus in the whole basin as a unit.
Dunham, Kylee; Grand, James B.
2016-01-01
We examined the effects of complexity and priors on the accuracy of models used to estimate ecological and observational processes, and to make predictions regarding population size and structure. State-space models are useful for estimating complex, unobservable population processes and making predictions about future populations based on limited data. To better understand the utility of state space models in evaluating population dynamics, we used them in a Bayesian framework and compared the accuracy of models with differing complexity, with and without informative priors using sequential importance sampling/resampling (SISR). Count data were simulated for 25 years using known parameters and observation process for each model. We used kernel smoothing to reduce the effect of particle depletion, which is common when estimating both states and parameters with SISR. Models using informative priors estimated parameter values and population size with greater accuracy than their non-informative counterparts. While the estimates of population size and trend did not suffer greatly in models using non-informative priors, the algorithm was unable to accurately estimate demographic parameters. This model framework provides reasonable estimates of population size when little to no information is available; however, when information on some vital rates is available, SISR can be used to obtain more precise estimates of population size and process. Incorporating model complexity such as that required by structured populations with stage-specific vital rates affects precision and accuracy when estimating latent population variables and predicting population dynamics. These results are important to consider when designing monitoring programs and conservation efforts requiring management of specific population segments.
Larson, Wesley A; Seeb, Lisa W; Everett, Meredith V; Waples, Ryan K; Templin, William D; Seeb, James E
2014-01-01
Recent advances in population genomics have made it possible to detect previously unidentified structure, obtain more accurate estimates of demographic parameters, and explore adaptive divergence, potentially revolutionizing the way genetic data are used to manage wild populations. Here, we identified 10 944 single-nucleotide polymorphisms using restriction-site-associated DNA (RAD) sequencing to explore population structure, demography, and adaptive divergence in five populations of Chinook salmon (Oncorhynchus tshawytscha) from western Alaska. Patterns of population structure were similar to those of past studies, but our ability to assign individuals back to their region of origin was greatly improved (>90% accuracy for all populations). We also calculated effective size with and without removing physically linked loci identified from a linkage map, a novel method for nonmodel organisms. Estimates of effective size were generally above 1000 and were biased downward when physically linked loci were not removed. Outlier tests based on genetic differentiation identified 733 loci and three genomic regions under putative selection. These markers and genomic regions are excellent candidates for future research and can be used to create high-resolution panels for genetic monitoring and population assignment. This work demonstrates the utility of genomic data to inform conservation in highly exploited species with shallow population structure. PMID:24665338
Putz, Christina M; Schmid, Christoph; Reisch, Christoph
2015-09-01
The endangered plant species Dianthus gratianopolitanus exhibits a highly fragmented distribution range comprising many isolated populations. Based upon this pattern of distribution, we selected a study region in Switzerland with a lower magnitude of isolation (Swiss Jura) and another study region in Germany with a higher degree of isolation (Franconian Jura). In each region, we chose ten populations to analyze population structure, reproduction, and genetic variation in a comparative approach. Therefore, we determined population density, cushion size, and cushion density to analyze population structure, investigated reproductive traits, including number of flowers, capsules, and germination rate, and analyzed amplified fragment length polymorphisms to study genetic variation. Population and cushion density were credibly higher in German than in Swiss populations, whereas reproductive traits and genetic variation within populations were similar in both study regions. However, genetic variation among populations and isolation by distance were stronger in Germany than in Switzerland. Generally, cushion size and density as well as flower and capsule production increased with population size and density, whereas genetic variation decreased with population density. In contrast to our assumptions, we observed denser populations and cushions in the region with the higher magnitude of isolation, whereas reproductive traits and genetic variation within populations were comparable in both regions. This corroborates the assumption that stronger isolation must not necessarily result in the loss of fitness and genetic variation. Furthermore, it supports our conclusion that the protection of strongly isolated populations contributes essentially to the conservation of a species' full evolutionary potential.
Influences of population size and density on birthplace effects.
Hancock, David J; Coutinho, Patrícia; Côté, Jean; Mesquita, Isabel
2018-01-01
Contextual influences on talent development (e.g., birthplace effects) have become a topic of interest for sport scientists. Birthplace effects occur when being born in a certain city size leads to participation or performance advantages, typically for those born in smaller or mid-sized cities. The purpose of this study was to investigate birthplace effects in Portuguese volleyball players by analysing city size, as well as population density - an important but infrequently used variable. Participants included 4062 volleyball players (M age = 33), 53.2% of whom were men. Using Portuguese national census data from 1981, we compared participants (within each sex) across five population categories. In addition, we used ANOVAs to study expertise and population density. Results indicated that men and women athletes born in districts of 200,000-399,999 were 2.4 times more likely to attain elite volleyball status, while all other districts decreased the odds of expert development. For men, being born in high-density areas resulted in less chance of achieving expertise, whereas there were no differences for women. The results suggest that athletes' infrastructure and social structure play an important role in talent development, and that these structures are influenced by total population and population density, respectively.
Nilsen, Erlend B; Strand, Olav
2018-01-01
We developed a model for estimating demographic rates and population abundance based on multiple data sets revealing information about population age- and sex structure. Such models have previously been described in the literature as change-in-ratio models, but we extend the applicability of the models by i) using time series data allowing the full temporal dynamics to be modelled, by ii) casting the model in an explicit hierarchical modelling framework, and by iii) estimating parameters based on Bayesian inference. Based on sensitivity analyses we conclude that the approach developed here is able to obtain estimates of demographic rate with high precision whenever unbiased data of population structure are available. Our simulations revealed that this was true also when data on population abundance are not available or not included in the modelling framework. Nevertheless, when data on population structure are biased due to different observability of different age- and sex categories this will affect estimates of all demographic rates. Estimates of population size is particularly sensitive to such biases, whereas demographic rates can be relatively precisely estimated even with biased observation data as long as the bias is not severe. We then use the models to estimate demographic rates and population abundance for two Norwegian reindeer (Rangifer tarandus) populations where age-sex data were available for all harvested animals, and where population structure surveys were carried out in early summer (after calving) and late fall (after hunting season), and population size is counted in winter. We found that demographic rates were similar regardless whether we include population count data in the modelling, but that the estimated population size is affected by this decision. This suggest that monitoring programs that focus on population age- and sex structure will benefit from collecting additional data that allow estimation of observability for different age- and sex classes. In addition, our sensitivity analysis suggests that focusing monitoring towards changes in demographic rates might be more feasible than monitoring abundance in many situations where data on population age- and sex structure can be collected.
NASA Astrophysics Data System (ADS)
van der Plas-Duivesteijn, Suzanne J.; Smit, Femmie J. L.; van Alphen, Jacques J. M.; Kraaijeveld, Ken
2015-03-01
Conservation management in the North Sea is often motivated by the population size of marine mammals, like harbor porpoises Phocoena phocoena. In the Dutch part of the North Sea, sighting and stranding data are used to estimate population sizes, but these data give little insight into genetic structuring of the population. In this study we investigated genetic structure among animals stranded at different locations and times of year. We also tested whether there is a link between stranding and necropsy data, and genetic diversity. We made use of both mitochondrial (mtDNA) and microsatellite DNA analysis of samples from dead stranded porpoises along the Dutch coast during 2007. mtDNA analysis showed 6 variable positions in the control region, defining 3 different haplotypes. mtDNA haplotypes were not randomly distributed along the Dutch coastline. However, microsatellite analysis showed that these mtDNA haplotypes did not represent separate groups on a nuclear level. Furthermore, microsatellite analysis revealed no genotypic differences between seasons, locations or genders. The results of this study indicate that the Dutch population is panmictic. In contrast, heterozygosity levels were low, indicating some level of inbreeding in this population. However, this was not corroborated by other indices of inbreeding. This research provided insight into genetic structuring of stranded porpoises in 2007, but data from multiple years should be included to be able to help estimate population sizes.
An assessment of sauger population characteristics on two Tennessee River reservoirs
Graham, Christy L.; Bettoli, Phillip William; Churchill, Timothy N.
2015-01-01
In 1992, a 356-mm minimum length limit (MLL) was enacted on Kentucky Lake and a 381-mm MLL was enacted on Watts Bar Lake, two mainstem reservoirs on the Tennessee River, in an attempt to reduce exploitation and improve the size structure of the sauger (Sander canadensis) populations. The objectives of this study were to compare sauger population characteristics immediately following (1993–1994) and 15 years after (2008–2009) the regulations took effect, examine spatial and temporal patterns in growth, examine recruitment patterns in each reservoir using a recruitment variability index (RVI), and assess the current likelihood of overfishing. Saugers were collected with experimental gill nets in each reservoir and aged using otoliths. A Beverton-Holt yield-per-recruit model was used to simulate angler yields and estimate the likelihood of growth overfishing. Recruitment overfishing was assessed by examining spawning potential ratios under various MLL and exploitation rate scenarios. The sauger population in Kentucky Lake experienced modest improvements in size and age structure over the 15 years following enactment of more restrictive harvest regulations, whereas the population in Watts Bar Lake changed very little, if at all, in terms of size and age structure. Mean lengths of age-3 sauger were significantly greater in Watts Bar Lake than in Kentucky Lake in both time periods. The RVI values indicated that between 1993 and 2009 the sauger in Kentucky Lake displayed more stable recruitment than the Watts Bar Lake population. Neither population exhibited signs of growth overfishing in 2008–09 under the current length limits; however, the Watts Bar Lake population would be susceptible to recruitment overfishing at high (>40%) exploitation rates if natural mortality was as low as 20%. These analyses have demonstrated that the Watts Bar Lake and Kentucky Lake populations, in terms of size and age structure, have remained relatively stable over 15+ years and the MLLs appear to be conserving the stocks.
NASA Astrophysics Data System (ADS)
Drolet, David; Barbeau, Myriam A.
2012-05-01
Spatial variation in biotic and abiotic conditions, and differences in dispersive behavior of different life history stages can result in the formation of zones with different demography for infaunal and epifaunal species within vast intertidal flats. In this study, we evaluated within-mudflat homogeneity of the infaunal amphipod Corophium volutator found in the mud (residents), colonizing artificially disturbed areas (immigrants), and caught in the water column (swimmers) on a large mudflat in the upper Bay of Fundy, Canada. Densities of residents, immigrants, and swimmers were well structured in space (both along and across shore). Occasionally, significant differences in size structure, sex ratio, and proportion of ovigerous females were found at different intertidal levels, but these were short-lived. Comparisons of size and sex structure of residents, immigrants, and swimmers revealed occasional marked differences, with small juveniles and large adult males moving most. However, this size-bias in movement did not translate into zones with different population dynamics, suggesting that ample dispersal, through swimming and drifting in the water column, homogenized the population and masked potential effects of variation in environmental conditions. We therefore conclude that the mudflat represents one homogeneous population.
Kinetic theory of age-structured stochastic birth-death processes
NASA Astrophysics Data System (ADS)
Greenman, Chris D.; Chou, Tom
2016-01-01
Classical age-structured mass-action models such as the McKendrick-von Foerster equation have been extensively studied but are unable to describe stochastic fluctuations or population-size-dependent birth and death rates. Stochastic theories that treat semi-Markov age-dependent processes using, e.g., the Bellman-Harris equation do not resolve a population's age structure and are unable to quantify population-size dependencies. Conversely, current theories that include size-dependent population dynamics (e.g., mathematical models that include carrying capacity such as the logistic equation) cannot be easily extended to take into account age-dependent birth and death rates. In this paper, we present a systematic derivation of a new, fully stochastic kinetic theory for interacting age-structured populations. By defining multiparticle probability density functions, we derive a hierarchy of kinetic equations for the stochastic evolution of an aging population undergoing birth and death. We show that the fully stochastic age-dependent birth-death process precludes factorization of the corresponding probability densities, which then must be solved by using a Bogoliubov--Born--Green--Kirkwood--Yvon-like hierarchy. Explicit solutions are derived in three limits: no birth, no death, and steady state. These are then compared with their corresponding mean-field results. Our results generalize both deterministic models and existing master equation approaches by providing an intuitive and efficient way to simultaneously model age- and population-dependent stochastic dynamics applicable to the study of demography, stem cell dynamics, and disease evolution.
Lande, Russell; Engen, Steinar; Sæther, Bernt-Erik
2017-10-31
We analyze the stochastic demography and evolution of a density-dependent age- (or stage-) structured population in a fluctuating environment. A positive linear combination of age classes (e.g., weighted by body mass) is assumed to act as the single variable of population size, [Formula: see text], exerting density dependence on age-specific vital rates through an increasing function of population size. The environment fluctuates in a stationary distribution with no autocorrelation. We show by analysis and simulation of age structure, under assumptions often met by vertebrate populations, that the stochastic dynamics of population size can be accurately approximated by a univariate model governed by three key demographic parameters: the intrinsic rate of increase and carrying capacity in the average environment, [Formula: see text] and [Formula: see text], and the environmental variance in population growth rate, [Formula: see text] Allowing these parameters to be genetically variable and to evolve, but assuming that a fourth parameter, [Formula: see text], measuring the nonlinearity of density dependence, remains constant, the expected evolution maximizes [Formula: see text] This shows that the magnitude of environmental stochasticity governs the classical trade-off between selection for higher [Formula: see text] versus higher [Formula: see text] However, selection also acts to decrease [Formula: see text], so the simple life-history trade-off between [Formula: see text]- and [Formula: see text]-selection may be obscured by additional trade-offs between them and [Formula: see text] Under the classical logistic model of population growth with linear density dependence ([Formula: see text]), life-history evolution in a fluctuating environment tends to maximize the average population size. Published under the PNAS license.
Puechmaille, Sebastien J
2016-05-01
Inferences of population structure and more precisely the identification of genetically homogeneous groups of individuals are essential to the fields of ecology, evolutionary biology and conservation biology. Such population structure inferences are routinely investigated via the program structure implementing a Bayesian algorithm to identify groups of individuals at Hardy-Weinberg and linkage equilibrium. While the method is performing relatively well under various population models with even sampling between subpopulations, the robustness of the method to uneven sample size between subpopulations and/or hierarchical levels of population structure has not yet been tested despite being commonly encountered in empirical data sets. In this study, I used simulated and empirical microsatellite data sets to investigate the impact of uneven sample size between subpopulations and/or hierarchical levels of population structure on the detected population structure. The results demonstrated that uneven sampling often leads to wrong inferences on hierarchical structure and downward-biased estimates of the true number of subpopulations. Distinct subpopulations with reduced sampling tended to be merged together, while at the same time, individuals from extensively sampled subpopulations were generally split, despite belonging to the same panmictic population. Four new supervised methods to detect the number of clusters were developed and tested as part of this study and were found to outperform the existing methods using both evenly and unevenly sampled data sets. Additionally, a subsampling strategy aiming to reduce sampling unevenness between subpopulations is presented and tested. These results altogether demonstrate that when sampling evenness is accounted for, the detection of the correct population structure is greatly improved. © 2016 John Wiley & Sons Ltd.
Critical patch-size for two-sex populations.
Andreguetto Maciel, Gabriel; Mendes Coutinho, Renato; André Kraenkel, Roberto
2018-06-01
As environments become increasingly degraded, mainly due to human activities, species are often subject to isolated habitats surrounded by unfavorable regions. Since the pioneering work by Skellam [25] mathematical models have provided useful insights into the population persistence in such cases. Most of these models, however, neglect the sex structure of populations and the differences between males and females. In this work we investigate, through a reaction-diffusion system, the dynamics of a sex-structured population in a single semipermeable patch. The critical patch size for persistence is determined from implicit relationships between model parameters. The effects of the various growth and movement parameters are also investigated. Copyright © 2018 Elsevier Inc. All rights reserved.
Laconcha, Urtzi; Iriondo, Mikel; Arrizabalaga, Haritz; Manzano, Carmen; Markaide, Pablo; Montes, Iratxe; Zarraonaindia, Iratxe; Velado, Igor; Bilbao, Eider; Goñi, Nicolas; Santiago, Josu; Domingo, Andrés; Karakulak, Saadet; Oray, Işık; Estonba, Andone
2015-01-01
In the present study we have investigated the population genetic structure of albacore (Thunnus alalunga, Bonnaterre 1788) and assessed the loss of genetic diversity, likely due to overfishing, of albacore population in the North Atlantic Ocean. For this purpose, 1,331 individuals from 26 worldwide locations were analyzed by genotyping 75 novel nuclear SNPs. Our results indicated the existence of four genetically homogeneous populations delimited within the Mediterranean Sea, the Atlantic Ocean, the Indian Ocean and the Pacific Ocean. Current definition of stocks allows the sustainable management of albacore since no stock includes more than one genetic entity. In addition, short- and long-term effective population sizes were estimated for the North Atlantic Ocean albacore population, and results showed no historical decline for this population. Therefore, the genetic diversity and, consequently, the adaptive potential of this population have not been significantly affected by overfishing.
Laconcha, Urtzi; Iriondo, Mikel; Arrizabalaga, Haritz; Manzano, Carmen; Markaide, Pablo; Montes, Iratxe; Zarraonaindia, Iratxe; Velado, Igor; Bilbao, Eider; Goñi, Nicolas; Santiago, Josu; Domingo, Andrés; Karakulak, Saadet; Oray, Işık; Estonba, Andone
2015-01-01
In the present study we have investigated the population genetic structure of albacore (Thunnus alalunga, Bonnaterre 1788) and assessed the loss of genetic diversity, likely due to overfishing, of albacore population in the North Atlantic Ocean. For this purpose, 1,331 individuals from 26 worldwide locations were analyzed by genotyping 75 novel nuclear SNPs. Our results indicated the existence of four genetically homogeneous populations delimited within the Mediterranean Sea, the Atlantic Ocean, the Indian Ocean and the Pacific Ocean. Current definition of stocks allows the sustainable management of albacore since no stock includes more than one genetic entity. In addition, short- and long-term effective population sizes were estimated for the North Atlantic Ocean albacore population, and results showed no historical decline for this population. Therefore, the genetic diversity and, consequently, the adaptive potential of this population have not been significantly affected by overfishing. PMID:26090851
Estoup, Arnaud; Jarne, Philippe; Cornuet, Jean-Marie
2002-09-01
Homoplasy has recently attracted the attention of population geneticists, as a consequence of the popularity of highly variable stepwise mutating markers such as microsatellites. Microsatellite alleles generally refer to DNA fragments of different size (electromorphs). Electromorphs are identical in state (i.e. have identical size), but are not necessarily identical by descent due to convergent mutation(s). Homoplasy occurring at microsatellites is thus referred to as size homoplasy. Using new analytical developments and computer simulations, we first evaluate the effect of the mutation rate, the mutation model, the effective population size and the time of divergence between populations on size homoplasy at the within and between population levels. We then review the few experimental studies that used various molecular techniques to detect size homoplasious events at some microsatellite loci. The relationship between this molecularly accessible size homoplasy size and the actual amount of size homoplasy is not trivial, the former being considerably influenced by the molecular structure of microsatellite core sequences. In a third section, we show that homoplasy at microsatellite electromorphs does not represent a significant problem for many types of population genetics analyses realized by molecular ecologists, the large amount of variability at microsatellite loci often compensating for their homoplasious evolution. The situations where size homoplasy may be more problematic involve high mutation rates and large population sizes together with strong allele size constraints.
Zalewski, Andrzej; Zalewska, Hanna; Lunneryd, Sven-Gunnar; André, Carl; Mikusiński, Grzegorz
2016-01-01
Eradication and population reductions are often used to mitigate the negative impacts of non-native invasive species on native biodiversity. However, monitoring the effectiveness of non-native species control programmes is necessary to evaluate the efficacy of these measures. Genetic monitoring could provide valuable insights into temporal changes in demographic, ecological, and evolutionary processes in invasive populations being subject to control programmes. Such programmes should cause a decrease in effective population size and/or in genetic diversity of the targeted non-native species and an increase in population genetic structuring over time. We used microsatellite DNA data from American mink (Neovison vison) to determine whether the removal of this predator on the Koster Islands archipelago and the nearby Swedish mainland affected genetic variation over six consecutive years of mink culling by trappers as part of a population control programme. We found that on Koster Islands allelic richness decreased (from on average 4.53 to 3.55), genetic structuring increased, and effective population size did not change. In contrast, the mink population from the Swedish coast showed no changes in genetic diversity or structure, suggesting the stability of this population over 6 years of culling. Effective population size did not change over time but was higher on the coast than on the islands across all years. Migration rates from the islands to the coast were almost two times higher than from the coast to the islands. Most migrants leaving the coast were localised on the southern edge of the archipelago, as expected from the direction of the sea current between the two sites. Genetic monitoring provided valuable information on temporal changes in the population of American mink suggesting that this approach can be used to evaluate and improve control programmes of invasive vertebrates.
Fishing and temperature effects on the size structure of exploited fish stocks.
Tu, Chen-Yi; Chen, Kuan-Ting; Hsieh, Chih-Hao
2018-05-08
Size structure of fish stock plays an important role in maintaining sustainability of the population. Size distribution of an exploited stock is predicted to shift toward small individuals caused by size-selective fishing and/or warming; however, their relative contribution remains relatively unexplored. In addition, existing analyses on size structure have focused on univariate size-based indicators (SBIs), such as mean length, evenness of size classes, or the upper 95-percentile of the length frequency distribution; these approaches may not capture full information of size structure. To bridge the gap, we used the variation partitioning approach to examine how the size structure (composition of size classes) responded to fishing, warming and the interaction. We analyzed 28 exploited stocks in the West US, Alaska and North Sea. Our result shows fishing has the most prominent effect on the size structure of the exploited stocks. In addition, the fish stocks experienced higher variability in fishing is more responsive to the temperature effect in their size structure, suggesting that fishing may elevate the sensitivity of exploited stocks in responding to environmental effects. The variation partitioning approach provides complementary information to univariate SBIs in analyzing size structure.
Proietti, Maira C; Reisser, Julia; Marins, Luis Fernando; Rodriguez-Zarate, Clara; Marcovaldi, Maria A; Monteiro, Danielle S; Pattiaratchi, Charitha; Secchi, Eduardo R
2014-01-01
Understanding the connections between sea turtle populations is fundamental for their effective conservation. Brazil hosts important hawksbill feeding areas, but few studies have focused on how they connect with nesting populations in the Atlantic. Here, we (1) characterized mitochondrial DNA control region haplotypes of immature hawksbills feeding along the coast of Brazil (five areas ranging from equatorial to temperate latitudes, 157 skin samples), (2) analyzed genetic structure among Atlantic hawksbill feeding populations, and (3) inferred natal origins of hawksbills in Brazilian waters using genetic, oceanographic, and population size information. We report ten haplotypes for the sampled Brazilian sites, most of which were previously observed at other Atlantic feeding grounds and rookeries. Genetic profiles of Brazilian feeding areas were significantly different from those in other regions (Caribbean and Africa), and a significant structure was observed between Brazilian feeding grounds grouped into areas influenced by the South Equatorial/North Brazil Current and those influenced by the Brazil Current. Our genetic analysis estimates that the studied Brazilian feeding aggregations are mostly composed of animals originating from the domestic rookeries Bahia and Pipa, but some contributions from African and Caribbean rookeries were also observed. Oceanographic data corroborated the local origins, but showed higher connection with West Africa and none with the Caribbean. High correlation was observed between origins estimated through genetics/rookery size and oceanographic/rookery size data, demonstrating that ocean currents and population sizes influence haplotype distribution of Brazil's hawksbill populations. The information presented here highlights the importance of national conservation strategies and international cooperation for the recovery of endangered hawksbill turtle populations.
Proietti, Maira C.; Reisser, Julia; Marins, Luis Fernando; Rodriguez-Zarate, Clara; Marcovaldi, Maria A.; Monteiro, Danielle S.; Pattiaratchi, Charitha; Secchi, Eduardo R.
2014-01-01
Understanding the connections between sea turtle populations is fundamental for their effective conservation. Brazil hosts important hawksbill feeding areas, but few studies have focused on how they connect with nesting populations in the Atlantic. Here, we (1) characterized mitochondrial DNA control region haplotypes of immature hawksbills feeding along the coast of Brazil (five areas ranging from equatorial to temperate latitudes, 157 skin samples), (2) analyzed genetic structure among Atlantic hawksbill feeding populations, and (3) inferred natal origins of hawksbills in Brazilian waters using genetic, oceanographic, and population size information. We report ten haplotypes for the sampled Brazilian sites, most of which were previously observed at other Atlantic feeding grounds and rookeries. Genetic profiles of Brazilian feeding areas were significantly different from those in other regions (Caribbean and Africa), and a significant structure was observed between Brazilian feeding grounds grouped into areas influenced by the South Equatorial/North Brazil Current and those influenced by the Brazil Current. Our genetic analysis estimates that the studied Brazilian feeding aggregations are mostly composed of animals originating from the domestic rookeries Bahia and Pipa, but some contributions from African and Caribbean rookeries were also observed. Oceanographic data corroborated the local origins, but showed higher connection with West Africa and none with the Caribbean. High correlation was observed between origins estimated through genetics/rookery size and oceanographic/rookery size data, demonstrating that ocean currents and population sizes influence haplotype distribution of Brazil's hawksbill populations. The information presented here highlights the importance of national conservation strategies and international cooperation for the recovery of endangered hawksbill turtle populations. PMID:24558419
NASA Astrophysics Data System (ADS)
Reid, K.; Murphy, E. J.; Loeb, V.; Hewitt, R. P.
2002-07-01
Understanding the demographics of Antarctic krill over large scales may be complicated by regional differences in the processes that govern population structure. The influence of regional differences in growth and mortality on population size structure was examined using data on the length-frequency distribution of krill in the Scotia Sea using samples from the South Shetland Islands and South Georgia collected annually from 1991 to 2000. A correction function, which took account of the higher growth rate at South Georgia, produced a consistent similarity in the position of the modal size classes that was not present in the raw data. Optimising the mortality rate, to minimise the differences in the growth corrected length-frequency distribution, suggested a higher mortality rate at South Georgia that the South Shetlands. The intra-specific variations in growth and mortality rates are consistent with published values and with other Euphausiids species. Having accounted for the demographic plasticity, it is apparent that strong recruitment of the smallest size class of krill is represented in both populations simultaneously. It appears that first-year krill are advected into different regions of the Scotia Sea where the resultant population size structure is determined by regional differences in growth and mortality. The majority of the commercial harvest of krill in the Antarctic occurs in a relatively small number of regional fisheries within the Scotia Sea and is managed using population models based on a single set of demographic parameters. Where substantial differences in these parameters exist between fishing areas, the calculation of catch limits should take these differences into account.
NASA Astrophysics Data System (ADS)
Rubal, Marcos; Veiga, Puri; Moreira, Juan; Sousa-Pinto, Isabel
2014-03-01
The intertidal gastropod Phorcus sauciatus is a subtropical grazer that reaches its northern boundary in the Iberian Peninsula. Distribution of P. sauciatus along the Iberian Peninsula shows, however, gaps in its distribution. The present study was aimed at detecting possible recent changes on the population structure and distribution of P. sauciatus along the north-west Atlantic coast of the Iberian Peninsula. To achieve this aim, we adopted a qualitative sampling design to explore the presence of P. sauciatus along a region within its historical gap of distribution (north Portuguese coast). In addition, a quantitative sampling design was adopted to test hypotheses about the abundance and size structure of P. sauciatus populations among regions with different historical records of its abundance and among shores with different exposure. Results showed that P. sauciatus was present along the north Portuguese coast. However, the abundance and size structure of the newly settled populations were significantly different to those of the historically recorded populations. Moreover, P. sauciatus was able to establish populations at sheltered shores. Considering these results, we propose models for the distribution of P. sauciatus along the Iberian Peninsula, based on effects of sea surface temperature, and to explain the size-frequency of their populations based on their density.
Influence of plant size on female-biased sex allocation in a single-flowered, nectarless herb
Xiong, Ying-Ze; Xie, Meng; Huang, Shuang-Quan
2016-01-01
Relative allocation to female and male function in hermaphroditic species often departs from strict equisexuality. Increased femaleness with plant size in animal-pollinated species has been proposed in theory and demonstrated in empirical studies. However, such size-dependent sex allocation (SDS) has not been observed in some insect-pollinated species, throwing doubt on the generalization of SDS, that large plants have decelerated male function investment. Himalayan mayapple Podophyllum hexandrum (Berberidaceae) produces a single terminal flower and no nectar, providing a simple system for studying SDS without the confounding effects of flower number and nectar production. To investigate the SDS in P. hexandrum, plant size, biomass of floral organs (stamens, pistils and petals) and gamete production (pollen and ovule number) were measured in four populations in Yunnan Province, northwest China. Isometric allocation to female and male function with plant size was found in two populations, but the prediction of SDS was supported in the other two populations. Using pollen and ovule production as the allocation currency, allocation to female and male function was isometric in all studied populations. Resources allocated to attractive (petals) and sexual (pistils and stamens) structures did not show a significantly disproportionate increase with plant size in three of the four studied populations. The general pattern of isometric allocation to female and male function and to attractive and sexual structures could be attributed to the species being capable of automatic self-pollination, related to low pollen loss, minor deleterious effect of selfing and low importance of attractive structures. However, in further studies, careful consideration should be given to the different currencies used to estimate sex allocation. PMID:26602988
Size and age structure of anadromous and landlocked populations of Rainbow Smelt
O'Malley, Andrew; Enterline, Claire; Zydlewski, Joseph D.
2017-01-01
Rainbow Smelt Osmerus mordax are widely distributed in both anadromous and landlocked populations throughout northeastern North America; abundance, size at age, and maximum size vary widely among populations and life histories. In the present study, size at age, von Bertalanffy growth parameters, population age distributions, and precision and bias in age assessment based on scales and sectioned otoliths were compared between ecotypes and among populations of Rainbow Smelt. To compare the ecotypes, we collected spawning adults from four anadromous and three landlocked populations in Maine during spring 2014. A significant bias was identified in only one of four scale comparisons but in four of seven otolith comparisons; however, a comparable level of precision was indicated. Anadromous populations had larger and more variable size at age and von Bertalanffy growth parameters than landlocked fish. Populations were composed of ages 1–4; six populations were dominated by age-2 or age-3 individuals, and one population was dominated by age-1 fish. These data suggest the presence of considerable plasticity among populations. A latitudinal gradient was observed in the anadromous Rainbow Smelt, which may show signs of population stress at the southern extent of their distribution.
77 FR 13097 - Endangered Species; File Nos. 15661, 10027, and 15685
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-05
... population structure, size class composition, foraging ecology, and migration patterns for green and... of green and hawksbill sea turtles focusing on distribution and abundance, ecology, health, and... and population structure, foraging ecology, habitat use, and movements. Researchers may capture...
Gómez, Giovan F.; Márquez, Edna J.; Gutiérrez, Lina A.; Conn, Jan E.; Correa, Margarita M.
2015-01-01
Anopheles albimanus is a major malaria mosquito vector in Colombia. In the present study, wing variability (size and shape) in An. albimanus populations from Colombian Maracaibo and Chocó bio-geographical eco-regions and the relationship of these phenotypic traits with environmental factors were evaluated. Microsatellite and morphometric data facilitated a comparison of the genetic and phenetic structure of this species. Wing size was influenced by elevation and relative humidity, whereas wing shape was affected by these two variables and also by rainfall, latitude, temperature and eco-region. Significant differences in mean shape between populations and eco-regions were detected, but they were smaller than those at the intra-population level. Correct assignment based on wing shape was low at the population level (<58%) and only slightly higher (>70%) at the eco-regional level, supporting the low population structure inferred from microsatellite data. Wing size was similar among populations with no significant differences between eco-regions. Population relationships in the genetic tree did not agree with those from the morphometric data; however, both datasets consistently reinforced a panmictic population of An. albimanus. Overall, site-specific population differentiation is not strongly supported by wing traits or genotypic data. We hypothesize that the metapopulation structure of An. albimanus throughout these Colombian eco-regions is favoring plasticity in wing traits, a relevant characteristic of species living under variable environmental conditions and colonizing new habitats. PMID:24704285
Dodd, C.K.
1997-01-01
Hypotheses in the chelonian literature suggest that in species with sexual size dimorphism, the smaller sex will mature at a smaller size and a younger age than the larger sex, sex ratios should be biased in favor of the earlier maturing sex, and deviations from a 1:1 sex ratio result from maturation of the smaller sex at a younger age. I tested these hypotheses using data collected from 1991 to 1995 on an insular (Egmont Key) population of Florida box turtles, Terrapene carolina bauri. Contrary to predictions, the earlier maturing sex (males) grew to larger sizes than the late maturing sex. Males were significantly larger than females in mean carapace length but not mean body mass. Sex ratios were not balanced, favoring the earlier maturing sex (1.6 males:1 female), but the sex-ratio imbalance did not result from faster maturation of the smaller sex. The imbalance in the sex ratio in Egmont Key's box turtles is not the result of sampling biases; it may result from nest placement. Size-class structure and sex ratios can provide valuable insights into the status and trends of populations of long-lived turtles.
Vella, Adriana
2016-01-01
The objective of this study is to describe the genetic population structure and demographic history of the endangered marine fish, Epinephelus marginatus, within Malta’s Fisheries Management Zone for the purpose of localised conservation planning. Epinephelus marginatus is a long-lived, sedentary, reef-associated protogynous hermaphrodite with high commercial and recreational value that is at risk of extinction throughout its global distribution. Based on global trends, population substructuring and gaps in local knowledge this has led to an increased interest in evaluation of local stock. Assessment of Maltese demography was based on historical and contemporary catch landings data whilst genetic population structure and regional connectivity patterns were evaluated by examining 175 individuals collected within the central Mediterranean region between 2002 and 2009 using 14 nuclear microsatellite loci. Demographic stock assessment of Maltese E. marginatus’ revealed a 99% decline in catch landings between 1947 and 2009 within the Fisheries Management Zone. A contemporary modest mean size was observed, 3 ± 3 kg, where approximately 17% of the population was juvenile, 68% female/sex-changing and 15% were male with a male-to-female sex ratio of 1:5. Genetic analysis describes the overall population of E. marginatus’ within the Fisheries Management Zone as decreasing in size (ƟH = 2.2), which has gone through a significant size reduction in the past (M = 0.41) and consequently shows signs of moderate inbreeding (FIS = 0.10, p < 0.001) with an estimated effective population size of 130 individuals. Results of spatially explicit Bayesian genetic cluster analysis detected two geographically distinct subpopulations within Malta’s Fisheries Management Zone and that they are connected to a larger network of E. marginatus’ within the Sicily Channel. Results suggest conservation management should be designed to reflect E. marginatus’ within Malta’s Fisheries Management Zone as two management units. PMID:27463811
Mendez, Fernando L
2017-04-01
Difference in male and female effective population sizes has, at times, been attributed to both sexes having unequal variance in their number of offspring. Such difference is paralleled by the relative effective sizes of autosomes, sex chromosomes, and mitochondrial DNA. I develop a simple framework to calculate the inbreeding effective population sizes for loci with different modes of inheritance. In this framework, I separate the effects due to mating strategy and those due to genetic transmission. I then show that, in addition to differences in the variance in offspring number, skew in the male/female effective sizes can also be caused by family composition. This approach can be used to illustrate the effect of induced behaviors on the relative male and female effective population sizes. In particular, I show the impact of the one-child policy formerly implemented in the People's Republic of China on the relative male and female effective population sizes. Furthermore, I argue that, under some strong constraints on family structure, the concepts of male and female effective population sizes are invalid. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lercari, D.; Defeo, O.
1999-10-01
Sandy beaches are ecosystems which are heavily affected by human activities. An example of this is freshwater discharges, which are known to change salinity, temperature and nutrient regimes and degrade nearshore environments. However, the effects of this kind of disturbance on sandy beach fauna have been little studied. This paper reports the spatial effects of a man-made freshwater canal discharge on the population structure, abundance and reproductive characteristics of the sandy beach mole crab Emerita brasiliensis. Along the 22 km of sandy beach sampled, the mole crab showed a marked longshore variability in population structure and abundance. Abundance of different population components (juveniles, males, females and ovigerous females) significantly decreased towards the canal. Population structure by sex and size, individual weight, fecundity and female maturity patterns at size also displayed a non-linear response to the distance from the freshwater discharge. Only the size structure of males did not follow this pattern. For males, spatial heterogeneity enhanced the detection of density-dependence at less disturbed sites. The authors conclude that artificial freshwater discharges could significantly influence the distribution, abundance and life-history traits of the biota of sandy beaches, and that further study of these ecosystems should include human activities as important factors affecting spatial and temporal trends. The need to consider different spatial and temporal scales in order to detect the effect of anthropogenically-driven impacts in sandy beach populations is stressed.
A kinetic theory for age-structured stochastic birth-death processes
NASA Astrophysics Data System (ADS)
Chou, Tom; Greenman, Chris
Classical age-structured mass-action models such as the McKendrick-von Foerster equation have been extensively studied but they are structurally unable to describe stochastic fluctuations or population-size-dependent birth and death rates. Conversely, current theories that include size-dependent population dynamics (e.g., carrying capacity) cannot be easily extended to take into account age-dependent birth and death rates. In this paper, we present a systematic derivation of a new fully stochastic kinetic theory for interacting age-structured populations. By defining multiparticle probability density functions, we derive a hierarchy of kinetic equations for the stochastic evolution of an aging population undergoing birth and death. We show that the fully stochastic age-dependent birth-death process precludes factorization of the corresponding probability densities, which then must be solved by using a BBGKY-like hierarchy. Our results generalize both deterministic models and existing master equation approaches by providing an intuitive and efficient way to simultaneously model age- and population-dependent stochastic dynamics applicable to the study of demography, stem cell dynamics, and disease evolution. NSF.
Determinants of genetic structure in a nonequilibrium metapopulation of the plant Silene latifolia.
Fields, Peter D; Taylor, Douglas R
2014-01-01
Population genetic differentiation will be influenced by the demographic history of populations, opportunities for migration among neighboring demes and founder effects associated with repeated extinction and recolonization. In natural populations, these factors are expected to interact with each other and their magnitudes will vary depending on the spatial distribution and age structure of local demes. Although each of these effects has been individually identified as important in structuring genetic variance, their relative magnitude is seldom estimated in nature. We conducted a population genetic analysis in a metapopulation of the angiosperm, Silene latifolia, from which we had more than 20 years of data on the spatial distribution, demographic history, and extinction and colonization of demes. We used hierarchical Bayesian methods to disentangle which features of the populations contributed to among population variation in allele frequencies, including the magnitude and direction of their effects. We show that population age, long-term size and degree of connectivity all combine to affect the distribution of genetic variance; small, recently-founded, isolated populations contributed most to increase FST in the metapopulation. However, the effects of population size and population age are best understood as being modulated through the effects of connectivity to other extant populations, i.e. FST diminishes as populations age, but at a rate that depends how isolated the population is. These spatial and temporal correlates of population structure give insight into how migration, founder effect and within-deme genetic drift have combined to enhance and restrict genetic divergence in a natural metapopulation.
NASA Astrophysics Data System (ADS)
Biswas, Katja
2017-09-01
A computational method is presented which is capable to obtain low lying energy structures of topological amorphous systems. The method merges a differential mutation genetic algorithm with simulated annealing. This is done by incorporating a thermal selection criterion, which makes it possible to reliably obtain low lying minima with just a small population size and is suitable for multimodal structural optimization. The method is tested on the structural optimization of amorphous graphene from unbiased atomic starting configurations. With just a population size of six systems, energetically very low structures are obtained. While each of the structures represents a distinctly different arrangement of the atoms, their properties, such as energy, distribution of rings, radial distribution function, coordination number, and distribution of bond angles, are very similar.
Wood, Dustin A.; Halstead, Brian J.; Casazza, Michael L.; Hansen, Eric C.; Wylie, Glenn D.; Vandergast, Amy
2015-01-01
Anthropogenic habitat fragmentation can disrupt the ability of species to disperse across landscapes, which can alter the levels and distribution of genetic diversity within populations and negatively impact long-term viability. The giant gartersnake (Thamnophis gigas) is a state and federally threatened species that historically occurred in the wetland habitats of California’s Great Central Valley. Despite the loss of 93 % of historic wetlands throughout the Central Valley, giant gartersnakes continue to persist in relatively small, isolated patches of highly modified agricultural wetlands. Gathering information regarding genetic diversity and effective population size represents an essential component for conservation management programs aimed at this species. Previous mitochondrial sequence studies have revealed historical patterns of differentiation, yet little is known about contemporary population structure and diversity. On the basis of 15 microsatellite loci, we estimate population structure and compare indices of genetic diversity among populations spanning seven drainage basins within the Central Valley. We sought to understand how habitat loss may have affected genetic differentiation, genetic diversity and effective population size, and what these patterns suggest in terms of management and restoration actions. We recovered five genetic clusters that were consistent with regional drainage basins, although three northern basins within the Sacramento Valley formed a single genetic cluster. Our results show that northern drainage basin populations have higher connectivity than among central and southern basins populations, and that greater differentiation exists among the more geographically isolated populations in the central and southern portion of the species’ range. Genetic diversity measures among basins were significantly different, and were generally lower in southern basin populations. Levels of inbreeding and evidence of population bottlenecks were detected in about half the populations we sampled, and effective population size estimates were well below recommended minimum thresholds to avoid inbreeding. Efforts focused on maintaining and enhancing existing wetlands to facilitate dispersal between basins and increase local effective population sizes may be critical for these otherwise isolated populations.
Hazlitt, S L; Sigg, D P; Eldridge, M D B; Goldizen, A W
2006-09-01
Ecological genetic studies have demonstrated that spatial patterns of mating dispersal, the dispersal of gametes through mating behaviour, can facilitate inbreeding avoidance and strongly influence the structure of populations, particularly in highly philopatric species. Elements of breeding group dynamics, such as strong structuring and sex-biased dispersal among groups, can also minimize inbreeding and positively influence levels of genetic diversity within populations. Rock-wallabies are highly philopatric mid-sized mammals whose strong dependence on rocky terrain has resulted in series of discreet, small colonies in the landscape. Populations show no signs of inbreeding and maintain high levels of genetic diversity despite strong patterns of limited gene flow within and among colonies. We used this species to investigate the importance of mating dispersal and breeding group structure to inbreeding avoidance within a 'small' population. We examined the spatial patterns of mating dispersal, the extent of kinship within breeding groups, and the degree of relatedness among brush-tailed rock-wallaby breeding pairs within a colony in southeast Queensland. Parentage data revealed remarkably restricted mating dispersal and strong breeding group structuring for a mid-sized mammal. Breeding groups showed significant levels of female kinship with evidence of male dispersal among groups. We found no evidence for inbreeding avoidance through mate choice; however, anecdotal data suggest the importance of life history traits to inbreeding avoidance between first-degree relatives. We suggest that the restricted pattern of mating dispersal and strong breeding group structuring facilitates inbreeding avoidance within colonies. These results provide insight into the population structure and maintenance of genetic diversity within colonies of the threatened brush-tailed rock-wallaby.
Population dynamics of HIV-1 inferred from gene sequences.
Grassly, N C; Harvey, P H; Holmes, E C
1999-01-01
A method for the estimation of population dynamic history from sequence data is described and used to investigate the past population dynamics of HIV-1 subtypes A and B. Using both gag and env gene alignments the effective population size of each subtype is estimated and found to be surprisingly small. This may be a result of the selective sweep of mutations through the population, or may indicate an important role of genetic drift in the fixation of mutations. The implications of these results for the spread of drug-resistant mutations and transmission dynamics, and also the roles of selection and recombination in shaping HIV-1 genetic diversity, are discussed. A larger estimated effective population size for subtype A may be the result of differences in time of origin, transmission dynamics, and/or population structure. To investigate the importance of population structure a model of population subdivision was fitted to each subtype, although the improvement in likelihood was found to be nonsignificant. PMID:9927440
Mokhtar-Jamaï, Kenza; Coma, Rafel; Wang, Jinliang; Zuberer, Frederic; Féral, Jean-Pierre; Aurelle, Didier
2013-01-01
Dispersal and mating features strongly influence the evolutionary dynamics and the spatial genetic structure (SGS) of marine populations. For the first time in a marine invertebrate, we examined individual reproductive success, by conducting larval paternity assignments after a natural spawning event, combined with a small-scale SGS analysis within a population of the gorgonian Paramuricea clavata. Thirty four percent of the larvae were sired by male colonies surrounding the brooding female colonies, revealing that the bulk of the mating was accomplished by males from outside the studied area. Male success increased with male height and decreased with increasing male to female distance. The parentage analyses, with a strong level of self-recruitment (25%), unveiled the occurrence of a complex family structure at a small spatial scale, consistent with the limited larval dispersal of this species. However, no evidence of small scale SGS was revealed despite this family structure. Furthermore, temporal genetic structure was not observed, which appears to be related to the rather large effective population size. The low level of inbreeding found suggests a pattern of random mating in this species, which disagrees with expectations that limited larval dispersal should lead to biparental inbreeding. Surface brooding and investment in sexual reproduction in P. clavata contribute to multiple paternity (on average 6.4 fathers were assigned per brood), which enhance genetic diversity of the brood. Several factors may have contributed to the lack of biparental inbreeding in our study such as (i) the lack of sperm limitation at a small scale, (ii) multiple paternity, and (iii) the large effective population size. Thus, our results indicate that limited larval dispersal and complex family structure do not necessarily lead to biparental inbreeding and SGS. In the framework of conservation purposes, our results suggested that colony size, proximity among colonies and the population size should be taken into consideration for restoration projects. PMID:23789084
A robust measure of HIV-1 population turnover within chronically infected individuals.
Achaz, G; Palmer, S; Kearney, M; Maldarelli, F; Mellors, J W; Coffin, J M; Wakeley, J
2004-10-01
A simple nonparameteric test for population structure was applied to temporally spaced samples of HIV-1 sequences from the gag-pol region within two chronically infected individuals. The results show that temporal structure can be detected for samples separated by about 22 months or more. The performance of the method, which was originally proposed to detect geographic structure, was tested for temporally spaced samples using neutral coalescent simulations. Simulations showed that the method is robust to variation in samples sizes and mutation rates, to the presence/absence of recombination, and that the power to detect temporal structure is high. By comparing levels of temporal structure in simulations to the levels observed in real data, we estimate the effective intra-individual population size of HIV-1 to be between 10(3) and 10(4) viruses, which is in agreement with some previous estimates. Using this estimate and a simple measure of sequence diversity, we estimate an effective neutral mutation rate of about 5 x 10(-6) per site per generation in the gag-pol region. The definition and interpretation of estimates of such "effective" population parameters are discussed.
Lake whitefish and lake herring population structure and niche in ten south-central Ontario lakes
Carl, Leon M.; McGuiness, Fiona
2006-01-01
This study compares simple fish communities of ten oligotrophic lakes in south-central Ontario. Species densities and population size structure vary significantly among these lake communities depending on fish species present beyond the littoral zone. Lake whitefish are fewer and larger in the presence of lake herring than in their absence. Diet analysis indicates that lake whitefish shift from feeding on both plankton and benthic prey when lake herring are absent to a primarily benthic feeding niche in the presence of lake herring. When benthic round whitefish are present, lake whitefish size and density decline and they move lower in the lake compared to round whitefish. Burbot are also fewer and larger in lakes with lake herring than in lakes without herring. Burbot, in turn, appear to influence the population structure of benthic coregonine species. Lower densities of benthic lake whitefish and round whitefish are found in lakes containing large benthic burbot than in lakes with either small burbot or where burbot are absent. Predation on the pelagic larvae of burbot and lake whitefish by planktivorous lake herring alters the size and age structure of these populations. As life history theory predicts, those species with poor larval survival appear to adopt a bet-hedging life history strategy of long-lived individuals as a reproductive reserve.
Optimal control of Atlantic population Canada geese
Hauser, C.E.; Runge, M.C.; Cooch, E.G.; Johnson, F.A.; Harvey, W.F.
2007-01-01
Management of Canada geese (Branta canadensis) can be a balance between providing sustained harvest opportunity while not allowing populations to become overabundant and cause damage. In this paper, we focus on the Atlantic population of Canada geese and use stochastic dynamic programming to determine the optimal harvest strategy over a range of plausible models for population dynamics. There is evidence to suggest that the population exhibits significant age structure, and it is possible to reconstruct age structure from surveys. Consequently the harvest strategy is a function of the age composition, as well as the abundance, of the population. The objective is to maximize harvest while maintaining the number of breeding adults in the population between specified upper and lower limits. In addition, the total harvest capacity is limited and there is uncertainty about the strength of density-dependence. We find that under a density-independent model, harvest is maximized by maintaining the breeding population at the highest acceptable abundance. However if harvest capacity is limited, then the optimal long-term breeding population size is lower than the highest acceptable level, to reduce the risk of the population growing to an unacceptably large size. Under the proposed density-dependent model, harvest is maximized by maintaining the breeding population at an intermediate level between the bounds on acceptable population size; limits to harvest capacity have little effect on the optimal long-term population size. It is clear that the strength of density-dependence and constraints on harvest significantly affect the optimal harvest strategy for this population. Model discrimination might be achieved in the long term, while continuing to meet management goals, by adopting an adaptive management strategy.
Population demography of an endangered lizard, the Blue Mountains Water Skink
2013-01-01
Background Information on the age structure within populations of an endangered species can facilitate effective management. The Blue Mountains Water Skink (Eulamprus leuraensis) is a viviparous scincid lizard that is restricted to < 40 isolated montane swamps in south-eastern Australia. We used skeletochronology of phalanges (corroborated by mark-recapture data) to estimate ages of 222 individuals from 13 populations. Results These lizards grow rapidly, from neonatal size (30 mm snout-vent length) to adult size (about 70 mm SVL) within two to three years. Fecundity is low (mean 2.9 offspring per litter) and is affected by maternal body length and age. Offspring quality may decline with maternal age, based upon captive-born neonates (older females gave birth to slower offspring). In contrast to its broadly sympatric (and abundant) congener E. tympanum, E. leuraensis is short-lived (maximum 6 years, vs 15 years for E. tympanum). Litter size and offspring size are similar in the two species, but female E. leuraensis reproduce annually whereas many E. tympanum produce litters biennially. Thus, a low survival rate (rather than delayed maturation or low annual fecundity) is the key reason why E. leuraensis is endangered. Our 13 populations exhibited similar growth rates and population age structures despite substantial variation in elevation, geographic location and swamp size. However, larger populations (based on a genetic estimate of effective population size) contained older lizards, and thus a wider variance in ages. Conclusion Our study suggests that low adult survival rates, as well as specialisation on a rare and fragmented habitat type (montane swamps) contribute to the endangered status of the Blue Mountains Water Skink. PMID:23402634
Food-web models predict species abundances in response to habitat change.
Gotelli, Nicholas J; Ellison, Aaron M
2006-10-01
Plant and animal population sizes inevitably change following habitat loss, but the mechanisms underlying these changes are poorly understood. We experimentally altered habitat volume and eliminated top trophic levels of the food web of invertebrates that inhabit rain-filled leaves of the carnivorous pitcher plant Sarracenia purpurea. Path models that incorporated food-web structure better predicted population sizes of food-web constituents than did simple keystone species models, models that included only autecological responses to habitat volume, or models including both food-web structure and habitat volume. These results provide the first experimental confirmation that trophic structure can determine species abundances in the face of habitat loss.
A demographic study of the exponential distribution applied to uneven-aged forests
Jeffrey H. Gove
2016-01-01
A demographic approach based on a size-structured version of the McKendrick-Von Foerster equation is used to demonstrate a theoretical link between the population size distribution and the underlying vital rates (recruitment, mortality and diameter growth) for the population of individuals whose diameter distribution is negative exponential. This model supports the...
Genetic structure of Culex erraticus populations across the Americas.
Mendenhall, Ian H; Bahl, Justin; Blum, Michael J; Wesson, Dawn M
2012-05-01
Culex erraticus (Dyar & Knab) is a potential competent vector for several arboviruses such as Eastern and Venezuelan equine encephalitis viruses and West Nile virus. It therefore may play a role in the maintenance and spread of viral populations in areas of concern, including the United States where it occurs in >33 states. However, little information is available on potential barriers to movement across the species' distribution. Here, we analyze genetic variation among Cx. erraticus collected from Colombia, Guatemala, and nine locations in the United States to better understand population structure and connectivity. Comparative sequence analysis of the second internal transcribed spacer and mitochondrial NADH dehydrogenase genes identified two major lineages of sampled populations. One lineage represented the central and eastern United States, whereas the other corresponded to Central America, South America, and the western United States. Hierarchical analysis of genetic variation provided further evidence of regional population structure, although the majority of genetic variation was found to reside within populations, suggestive of large population sizes. Although significant physical barriers such as the Chihuahuan Desert probably constrain the spread of Cx. erraticus, large population sizes and connectivity within regions remain important risk factors that probably contribute to the movement of arboviruses within and between these regions.
Understanding Past Population Dynamics: Bayesian Coalescent-Based Modeling with Covariates
Gill, Mandev S.; Lemey, Philippe; Bennett, Shannon N.; Biek, Roman; Suchard, Marc A.
2016-01-01
Effective population size characterizes the genetic variability in a population and is a parameter of paramount importance in population genetics and evolutionary biology. Kingman’s coalescent process enables inference of past population dynamics directly from molecular sequence data, and researchers have developed a number of flexible coalescent-based models for Bayesian nonparametric estimation of the effective population size as a function of time. Major goals of demographic reconstruction include identifying driving factors of effective population size, and understanding the association between the effective population size and such factors. Building upon Bayesian nonparametric coalescent-based approaches, we introduce a flexible framework that incorporates time-varying covariates that exploit Gaussian Markov random fields to achieve temporal smoothing of effective population size trajectories. To approximate the posterior distribution, we adapt efficient Markov chain Monte Carlo algorithms designed for highly structured Gaussian models. Incorporating covariates into the demographic inference framework enables the modeling of associations between the effective population size and covariates while accounting for uncertainty in population histories. Furthermore, it can lead to more precise estimates of population dynamics. We apply our model to four examples. We reconstruct the demographic history of raccoon rabies in North America and find a significant association with the spatiotemporal spread of the outbreak. Next, we examine the effective population size trajectory of the DENV-4 virus in Puerto Rico along with viral isolate count data and find similar cyclic patterns. We compare the population history of the HIV-1 CRF02_AG clade in Cameroon with HIV incidence and prevalence data and find that the effective population size is more reflective of incidence rate. Finally, we explore the hypothesis that the population dynamics of musk ox during the Late Quaternary period were related to climate change. [Coalescent; effective population size; Gaussian Markov random fields; phylodynamics; phylogenetics; population genetics. PMID:27368344
Canales-Aguirre, Cristian B.; Galleguillos, Ricardo; Oyarzun, Fernanda X.; Hernández, Cristián E.
2018-01-01
Previous studies of population genetic structure in Dissostichus eleginoides have shown that oceanographic and geographic discontinuities drive in this species population differentiation. Studies have focused on the genetics of D. eleginoides in the Southern Ocean; however, there is little knowledge of their genetic variation along the South American continental shelf. In this study, we used a panel of six microsatellites to test whether D. eleginoides shows population genetic structuring in this region. We hypothesized that this species would show zero or very limited genetic structuring due to the habitat continuity along the South American shelf from Peru in the Pacific Ocean to the Falkland Islands in the Atlantic Ocean. We used Bayesian and traditional analyses to evaluate population genetic structure, and we estimated the number of putative migrants and effective population size. Consistent with our predictions, our results showed no significant genetic structuring among populations of the South American continental shelf but supported two significant and well-defined genetic clusters of D. eleginoides between regions (South American continental shelf and South Georgia clusters). Genetic connectivity between these two clusters was 11.3% of putative migrants from the South American cluster to the South Georgia Island and 0.7% in the opposite direction. Effective population size was higher in locations from the South American continental shelf as compared with the South Georgia Island. Overall, our results support that the continuity of the deep-sea habitat along the continental shelf and the biological features of the study species are plausible drivers of intraspecific population genetic structuring across the distribution of D. eleginoides on the South American continental shelf. PMID:29362690
Inferring population-level contact heterogeneity from common epidemic data
Stack, J. Conrad; Bansal, Shweta; Kumar, V. S. Anil; Grenfell, Bryan
2013-01-01
Models of infectious disease spread that incorporate contact heterogeneity through contact networks are an important tool for epidemiologists studying disease dynamics and assessing intervention strategies. One of the challenges of contact network epidemiology has been the difficulty of collecting individual and population-level data needed to develop an accurate representation of the underlying host population's contact structure. In this study, we evaluate the utility of common epidemiological measures (R0, epidemic peak size, duration and final size) for inferring the degree of heterogeneity in a population's unobserved contact structure through a Bayesian approach. We test the method using ground truth data and find that some of these epidemiological metrics are effective at classifying contact heterogeneity. The classification is also consistent across pathogen transmission probabilities, and so can be applied even when this characteristic is unknown. In particular, the reproductive number, R0, turns out to be a poor classifier of the degree heterogeneity, while, unexpectedly, final epidemic size is a powerful predictor of network structure across the range of heterogeneity. We also evaluate our framework on empirical epidemiological data from past and recent outbreaks to demonstrate its application in practice and to gather insights about the relevance of particular contact structures for both specific systems and general classes of infectious disease. We thus introduce a simple approach that can shed light on the unobserved connectivity of a host population given epidemic data. Our study has the potential to inform future data-collection efforts and study design by driving our understanding of germane epidemic measures, and highlights a general inferential approach to learning about host contact structure in contemporary or historic populations of humans and animals. PMID:23034353
Variation in Age and Size in Fennoscandian Three-Spined Sticklebacks (Gasterosteus aculeatus)
DeFaveri, Jacquelin; Merilä, Juha
2013-01-01
Average age and maximum life span of breeding adult three-spined sticklebacks (Gasterosteus aculeatus) were determined in eight Fennoscandian localities with the aid of skeletochronology. The average age varied from 1.8 to 3.6 years, and maximum life span from three to six years depending on the locality. On average, fish from marine populations were significantly older than those from freshwater populations, but variation within habitat types was large. We also found significant differences in mean body size among different habitat types and populations, but only the population differences remained significant after accounting for variation due to age effects. These results show that generation length and longevity in three-spined sticklebacks can vary significantly from one locality to another, and that population differences in mean body size cannot be explained as a simple consequence of differences in population age structure. We also describe a nanistic population from northern Finland exhibiting long life span and small body size. PMID:24260496
Variation in age and size in Fennoscandian three-spined sticklebacks (Gasterosteus aculeatus).
DeFaveri, Jacquelin; Merilä, Juha
2013-01-01
Average age and maximum life span of breeding adult three-spined sticklebacks (Gasterosteus aculeatus) were determined in eight Fennoscandian localities with the aid of skeletochronology. The average age varied from 1.8 to 3.6 years, and maximum life span from three to six years depending on the locality. On average, fish from marine populations were significantly older than those from freshwater populations, but variation within habitat types was large. We also found significant differences in mean body size among different habitat types and populations, but only the population differences remained significant after accounting for variation due to age effects. These results show that generation length and longevity in three-spined sticklebacks can vary significantly from one locality to another, and that population differences in mean body size cannot be explained as a simple consequence of differences in population age structure. We also describe a nanistic population from northern Finland exhibiting long life span and small body size.
Historical habitat connectivity affects current genetic structure in a grassland species.
Münzbergová, Z; Cousins, S A O; Herben, T; Plačková, I; Mildén, M; Ehrlén, J
2013-01-01
Many recent studies have explored the effects of present and past landscape structure on species distribution and diversity. However, we know little about the effects of past landscape structure on distribution of genetic diversity within and between populations of a single species. Here we describe the relationship between present and past landscape structure (landscape connectivity and habitat size estimated from historical maps) and current genetic structure in a perennial herb, Succisa pratensis. We used allozymes as co-dominant markers to estimate genetic diversity and deviation from Hardy-Weinberg equilibrium in 31 populations distributed within a 5 km(2) agricultural landscape. The results showed that current genetic diversity of populations was related to habitat suitability, habitat age, habitat size and habitat connectivity in the past. The effects of habitat age and past connectivity on genetic diversity were in most cases also significant after taking the current landscape structure into account. Moreover, current genetic similarity between populations was affected by past connectivity after accounting for current landscape structure. In both cases, the oldest time layer (1850) was the most informative. Most populations showed heterozygote excess, indicating disequilibrium due to recent gene flow or selection against homozygotes. These results suggest that habitat age and past connectivity are important determinants of distribution of genetic diversity between populations at a scale of a few kilometres. Landscape history may significantly contribute to our understanding of distribution of current genetic structure within species and the genetic structure may be used to better understand landscape history, even at a small scale. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Bordehore, Cesar; Fuentes, Verónica L; Segarra, Jose G; Acevedo, Melisa; Canepa, Antonio; Raventós, Josep
2015-01-01
Frequently, population ecology of marine organisms uses a descriptive approach in which their sizes and densities are plotted over time. This approach has limited usefulness for design strategies in management or modelling different scenarios. Population projection matrix models are among the most widely used tools in ecology. Unfortunately, for the majority of pelagic marine organisms, it is difficult to mark individuals and follow them over time to determine their vital rates and built a population projection matrix model. Nevertheless, it is possible to get time-series data to calculate size structure and densities of each size, in order to determine the matrix parameters. This approach is known as a "demographic inverse problem" and it is based on quadratic programming methods, but it has rarely been used on aquatic organisms. We used unpublished field data of a population of cubomedusae Carybdea marsupialis to construct a population projection matrix model and compare two different management strategies to lower population to values before year 2008 when there was no significant interaction with bathers. Those strategies were by direct removal of medusae and by reducing prey. Our results showed that removal of jellyfish from all size classes was more effective than removing only juveniles or adults. When reducing prey, the highest efficiency to lower the C. marsupialis population occurred when prey depletion affected prey of all medusae sizes. Our model fit well with the field data and may serve to design an efficient management strategy or build hypothetical scenarios such as removal of individuals or reducing prey. TThis This sdfsdshis method is applicable to other marine or terrestrial species, for which density and population structure over time are available.
Naveda-Rodríguez, Adrián; Vargas, Félix Hernán; Kohn, Sebastián; Zapata-Ríos, Galo
2016-01-01
The Andean Condor (Vultur gryphus) in Ecuador is classified as Critically Endangered. Before 2015, standardized and systematic estimates of geographic distribution, population size and structure were not available for this species, hampering the assessment of its current status and hindering the design and implementation of effective conservation actions. In this study, we performed the first quantitative assessment of geographic distribution, population size and population viability of Andean Condor in Ecuador. We used a methodological approach that included an ecological niche model to study geographic distribution, a simultaneous survey of 70 roosting sites to estimate population size and a population viability analysis (PVA) for the next 100 years. Geographic distribution in the form of extent of occurrence was 49 725 km2. During a two-day census, 93 Andean Condors were recorded and a population of 94 to 102 individuals was estimated. In this population, adult-to-immature ratio was 1:0.5. In the modeled PVA scenarios, the probability of extinction, mean time to extinction and minimum population size varied from zero to 100%, 63 years and 193 individuals, respectively. Habitat loss is the greatest threat to the conservation of Andean Condor populations in Ecuador. Population size reduction in scenarios that included habitat loss began within the first 15 years of this threat. Population reinforcement had no effects on the recovery of Andean Condor populations given the current status of the species in Ecuador. The population size estimate presented in this study is the lower than those reported previously in other countries where the species occur. The inferences derived from the population viability analysis have implications for Condor management in Ecuador. This study highlights the need to redirect efforts from captive breeding and population reinforcement to habitat conservation.
Naveda-Rodríguez, Adrián; Vargas, Félix Hernán; Kohn, Sebastián; Zapata-Ríos, Galo
2016-01-01
The Andean Condor (Vultur gryphus) in Ecuador is classified as Critically Endangered. Before 2015, standardized and systematic estimates of geographic distribution, population size and structure were not available for this species, hampering the assessment of its current status and hindering the design and implementation of effective conservation actions. In this study, we performed the first quantitative assessment of geographic distribution, population size and population viability of Andean Condor in Ecuador. We used a methodological approach that included an ecological niche model to study geographic distribution, a simultaneous survey of 70 roosting sites to estimate population size and a population viability analysis (PVA) for the next 100 years. Geographic distribution in the form of extent of occurrence was 49 725 km2. During a two-day census, 93 Andean Condors were recorded and a population of 94 to 102 individuals was estimated. In this population, adult-to-immature ratio was 1:0.5. In the modeled PVA scenarios, the probability of extinction, mean time to extinction and minimum population size varied from zero to 100%, 63 years and 193 individuals, respectively. Habitat loss is the greatest threat to the conservation of Andean Condor populations in Ecuador. Population size reduction in scenarios that included habitat loss began within the first 15 years of this threat. Population reinforcement had no effects on the recovery of Andean Condor populations given the current status of the species in Ecuador. The population size estimate presented in this study is the lower than those reported previously in other countries where the species occur. The inferences derived from the population viability analysis have implications for Condor management in Ecuador. This study highlights the need to redirect efforts from captive breeding and population reinforcement to habitat conservation. PMID:26986004
Leroux, Robin A; Dutton, Peter H; Abreu-Grobois, F Alberto; Lagueux, Cynthia J; Campbell, Cathi L; Delcroix, Eric; Chevalier, Johan; Horrocks, Julia A; Hillis-Starr, Zandy; Troëng, Sebastian; Harrison, Emma; Stapleton, Seth
2012-01-01
Management of the critically endangered hawksbill turtle in the Wider Caribbean (WC) has been hampered by knowledge gaps regarding stock structure. We carried out a comprehensive stock structure re-assessment of 11 WC hawksbill rookeries using longer mtDNA sequences, larger sample sizes (N = 647), and additional rookeries compared to previous surveys. Additional variation detected by 740 bp sequences between populations allowed us to differentiate populations such as Barbados-Windward and Guadeloupe (F (st) = 0.683, P < 0.05) that appeared genetically indistinguishable based on shorter 380 bp sequences. POWSIM analysis showed that longer sequences improved power to detect population structure and that when N < 30, increasing the variation detected was as effective in increasing power as increasing sample size. Geographic patterns of genetic variation suggest a model of periodic long-distance colonization coupled with region-wide dispersal and subsequent secondary contact within the WC. Mismatch analysis results for individual clades suggest a general population expansion in the WC following a historic bottleneck about 100 000-300 000 years ago. We estimated an effective female population size (N (ef)) of 6000-9000 for the WC, similar to the current estimated numbers of breeding females, highlighting the importance of these regional rookeries to maintaining genetic diversity in hawksbills. Our results provide a basis for standardizing future work to 740 bp sequence reads and establish a more complete baseline for determining stock boundaries in this migratory marine species. Finally, our findings illustrate the value of maintaining an archive of specimens for re-analysis as new markers become available.
Genetic structure, spatial organization, and dispersal in two populations of bat-eared foxes
Kamler, Jan F; Gray, Melissa M; Oh, Annie; Macdonald, David W
2013-01-01
We incorporated radio-telemetry data with genetic analysis of bat-eared foxes (Otocyon megalotis) from individuals in 32 different groups to examine relatedness and spatial organization in two populations in South Africa that differed in density, home-range sizes, and group sizes. Kin clustering occurred only for female dyads in the high-density population. Relatedness was negatively correlated with distance only for female dyads in the high-density population, and for male and mixed-sex dyads in the low-density population. Home-range overlap of neighboring female dyads was significantly greater in the high compared to low-density population, whereas overlap within other dyads was similar between populations. Amount of home-range overlap between neighbors was positively correlated with genetic relatedness for all dyad-site combinations, except for female and male dyads in the low-density population. Foxes from all age and sex classes dispersed, although females (mostly adults) dispersed farther than males. Yearlings dispersed later in the high-density population, and overall exhibited a male-biased dispersal pattern. Our results indicated that genetic structure within populations of bat-eared foxes was sex-biased, and was interrelated to density and group sizes, as well as sex-biases in philopatry and dispersal distances. We conclude that a combination of male-biased dispersal rates, adult dispersals, and sex-biased dispersal distances likely helped to facilitate inbreeding avoidance in this evolutionarily unique species of Canidae. PMID:24101981
Environmental factors influence both abundance and genetic diversity in a widespread bird species
Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael
2013-01-01
Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations. PMID:24363897
2013-01-01
Background Effective population sizes of 140 populations (including 60 dog breeds, 40 sheep breeds, 20 cattle breeds and 20 horse breeds) were computed using pedigree information and six different computation methods. Simple demographical information (number of breeding males and females), variance of progeny size, or evolution of identity by descent probabilities based on coancestry or inbreeding were used as well as identity by descent rate between two successive generations or individual identity by descent rate. Results Depending on breed and method, effective population sizes ranged from 15 to 133 056, computation method and interaction between computation method and species showing a significant effect on effective population size (P < 0.0001). On average, methods based on number of breeding males and females and variance of progeny size produced larger values (4425 and 356, respectively), than those based on identity by descent probabilities (average values between 93 and 203). Since breeding practices and genetic substructure within dog breeds increased inbreeding, methods taking into account the evolution of inbreeding produced lower effective population sizes than those taking into account evolution of coancestry. The correlation level between the simplest method (number of breeding males and females, requiring no genealogical information) and the most sophisticated one ranged from 0.44 to 0.60 according to species. Conclusions When choosing a method to compute effective population size, particular attention should be paid to the species and the specific genetic structure of the population studied. PMID:23281913
Psychology and Population: An Overview.
ERIC Educational Resources Information Center
Fawcett, James T.
Psychology and Population is defined as the study of individual dispositions and behavior that affect the size, structure and dispersion of the population, and the way in which acts of individuals enter into the dynamics of population change. Even this definition was viewed as inadequate, ignoring, as it does, the reciprocal effect of population…
Effect of population growth on changes in the agrarian structure of rural Bangladesh.
Chaudhury, R H
1981-01-01
The author examines available information on the effect of population growth on the agrarian structure of Bangladesh. Trends and patterns of land distribution over time are reviewed. The effects of changes in land distribution on productivity are investigated, and the relationship between family size and land ownership is analyzed.
Kobayashi, Yutaka; Ohtsuki, Hisashi; Wakano, Joe Y
2016-10-01
It has long been debated if population size is a crucial determinant of the level of culture. While empirical results are mixed, recent theoretical studies suggest that social connectedness between people may be a more important factor than the size of the entire population. These models, however, do not take into account evolutionary responses of learning strategies determining the mode of transmission and innovation and are hence not suitable for predicting the long-term implications of parameters of interest. In the present paper, to address this issue, we provide a gene-culture coevolution model, in which the microscopic learning process of each individual is explicitly described as a continuous-time stochastic process and time allocation to social and individual learning is allowed to evolve. We have found that social connectedness has a larger impact on the equilibrium level of culture than population size especially when connectedness is weak and population size is large. This result, combined with those of previous culture-only models, points to the importance of studying separate effects of population size and internal social structure to better understand spatiotemporal variation in the level of culture. Copyright © 2016 Elsevier Inc. All rights reserved.
Size increment of jumbo flying squid Dosidicus gigas mature females in Peruvian waters, 1989-2004
NASA Astrophysics Data System (ADS)
Argüelles, Juan; Tafur, Ricardo; Taipe, Anatolio; Villegas, Piero; Keyl, Friedeman; Dominguez, Noel; Salazar, Martín
2008-10-01
Changes in population structure of the jumbo flying squid Dosidicus gigas in Peruvian waters were studied based on size-at-maturity from 1989 to 2004. From 1989 to 1999, mature squid belonging to the medium-sized group prevailed, but from 2001 on, mature squids were larger. This change is not related to the changes in sea surface temperature and we hypothesized that it was caused by the population increase of mesopelagic fishes as prey.
Landscape Pattern Determines Neighborhood Size and Structure within a Lizard Population
Ryberg, Wade A.; Hill, Michael T.; Painter, Charles W.; Fitzgerald, Lee A.
2013-01-01
Although defining population structure according to discrete habitat patches is convenient for metapopulation theories, taking this approach may overlook structure within populations continuously distributed across landscapes. For example, landscape features within habitat patches direct the movement of organisms and define the density distribution of individuals, which can generate spatial structure and localized dynamics within populations as well as among them. Here, we use the neighborhood concept, which describes population structure relative to the scale of individual movements, to illustrate how localized dynamics within a population of lizards (Sceloporus arenicolus) arise in response to variation in landscape pattern within a continuous habitat patch. Our results emphasize links between individual movements at small scales and the emergence of spatial structure within populations which resembles metapopulation dynamics at larger scales. We conclude that population dynamics viewed in a landscape context must consider the explicit distribution and movement of individuals within continuous habitat as well as among habitat patches. PMID:23441217
Food-Web Models Predict Species Abundances in Response to Habitat Change
Gotelli, Nicholas J; Ellison, Aaron M
2006-01-01
Plant and animal population sizes inevitably change following habitat loss, but the mechanisms underlying these changes are poorly understood. We experimentally altered habitat volume and eliminated top trophic levels of the food web of invertebrates that inhabit rain-filled leaves of the carnivorous pitcher plant Sarracenia purpurea. Path models that incorporated food-web structure better predicted population sizes of food-web constituents than did simple keystone species models, models that included only autecological responses to habitat volume, or models including both food-web structure and habitat volume. These results provide the first experimental confirmation that trophic structure can determine species abundances in the face of habitat loss. PMID:17002518
García-Grajales, Jesús; Silva, Alejandra Buenrostro
2014-03-01
Population ecology of Crocodylus acutus (Reptilia: Crocodylidae) in Palmasola lagoon, Oaxaca, Mexico. Abundance and population structure are important parameters to evaluate and compare the conservation status of a population over time in a given area. This study describes the population abundance and structure of Crocodylus acutus in Palmasola lagoon, Oaxaca. The field works consisted of night surveys during the new moon phase, between the 21:00 and 24:00h. These were conducted during the dry and wet seasons and counted the number of individuals to obtain population estimates. Recorded encounter rates ranged from 32 to 109.3ind./ km in 40 journeys deployed with an average time of 18 minutes browsing. The estimated population size using the Messel's model ranged from 32.7 to 93 individuals. For both seasons, there was a marked dominance of subadults, followed by juveniles and to a lesser extent adult individuals, as well as undetermined individuals (i.e. unknown body/size/length), in both seasons. There was also a significant association with mangrove areas (26.1%) by juveniles; the subadults's individual use of superficial water (22.7%) and mangrove areas (15.7%); meanwhile the adults were observed on superficial water (9.7%). This information contributes to our understanding of the population ecology of C. acutus in the Palmasola lagoon where the estimated population size seems to show higher values when compared to other reports in the country.
Population structure in the Arab world and its impact on integration and development trends.
El-hallak, M N
1986-12-01
The author examines three issues: "population structure in the Arab world; trends making for integration and unity among the Arab countries; and economic and social development trends." Data from the United Nations for 1985 and from recent censuses are used to discuss population size, growth, and spatial distribution; the labor force; age and sex distribution; and fertility, mortality, and natural increase. Figures are presented separately for 22 Arab countries. Attention is then given to the relationships between population structure and economic and social development and between development and Arab unity and integration. excerpt
Defectors Can Create Conditions That Rescue Cooperation
Waite, Adam James; Cannistra, Caroline; Shou, Wenying
2015-01-01
Cooperation based on the production of costly common goods is observed throughout nature. This is puzzling, as cooperation is vulnerable to exploitation by defectors which enjoy a fitness advantage by consuming the common good without contributing fairly. Depletion of the common good can lead to population collapse and the destruction of cooperation. However, population collapse implies small population size, which, in a structured population, is known to favor cooperation. This happens because small population size increases variability in cooperator frequency across different locations. Since individuals in cooperator-dominated locations (which are most likely cooperators) will grow more than those in defector-dominated locations (which are most likely defectors), cooperators can outgrow defectors globally despite defectors outgrowing cooperators in each location. This raises the possibility that defectors can lead to conditions that sometimes rescue cooperation from defector-induced destruction. We demonstrate multiple mechanisms through which this can occur, using an individual-based approach to model stochastic birth, death, migration, and mutation events. First, during defector-induced population collapse, defectors occasionally go extinct before cooperators by chance, which allows cooperators to grow. Second, empty locations, either preexisting or created by defector-induced population extinction, can favor cooperation because they allow cooperator but not defector migrants to grow. These factors lead to the counterintuitive result that the initial presence of defectors sometimes allows better survival of cooperation compared to when defectors are initially absent. Finally, we find that resource limitation, inducible by defectors, can select for mutations adaptive to resource limitation. When these mutations are initially present at low levels or continuously generated at a moderate rate, they can favor cooperation by further reducing local population size. We predict that in a structured population, small population sizes precipitated by defectors provide a “built-in” mechanism for the persistence of cooperation. PMID:26690946
The potential influence of morphology on the evolutionary divergence of an acoustic signal
Pitchers, W. R.; Klingenberg, C.P.; Tregenza, Tom; Hunt, J.; Dworkin, I.
2014-01-01
The evolution of acoustic behaviour and that of the morphological traits mediating its production are often coupled. Lack of variation in the underlying morphology of signalling traits has the potential to constrain signal evolution. This relationship is particularly likely in field crickets, where males produce acoustic advertisement signals to attract females by stridulating with specialized structures on their forewings. In this study, we characterise the size and geometric shape of the forewings of males from six allopatric populations of the black field cricket (Teleogryllus commodus) known to have divergent advertisement calls. We sample from each of these populations using both wild-caught and common-garden reared cohorts, allowing us to test for multivariate relationships between wing morphology and call structure. We show that the allometry of shape has diverged across populations. However, there was a surprisingly small amount of covariation between wing shape and call structure within populations. Given the importance of male size for sexual selection in crickets, the divergence we observe among populations has the potential to influence the evolution of advertisement calls in this species. PMID:25223712
Leite, Marcos de Miranda Leão; Rezende, Carla Ferreira; Silva, José Roberto Feitosa
2013-12-01
The mangrove crab Ucides cordatus is an important resource of estuarine regions along the Brazilian coast. U. cordatus is distributed from Florida, U.S.A., to the coast of Santa Catarina, Brazil. The species plays an important role in processing leaf litter in the mangroves, which optimizes the processes of energy transfer and nutrient cycling, and is considered a keystone species in the ecosystem. Population declines have been reported in different parts of the Brazilian coast. In the present study we evaluated aspects of the population structure, sex ratio and size at morphological sexual maturity. We analyzed 977 specimens collected monthly over 24 months (2010-2012), in a mangrove of the Jaguaribe River, in the municipality of Aracati on the East coast of Ceará state, Northeastern Brazil. The study area has a mild semiarid tropical climate, with mean temperatures between 26 and 28 degrees C. The area is located within the eco-region of the semiarid Northeast coast, where mangroves occur in small areas and estuaries are affected by mesomareal regimes. The population structure was evaluated by the frequency distribution of size classes in each month, and the overall sex ratio was analyzed using the chi-square test. Size at morphological sexual maturity was estimated based on the allometry of the cheliped of the males and the abdomen width of the females, using the program REGRANS. The size-frequency distribution was unimodal in both sexes. The overall sex ratio (M:F) (1:0.6) was significantly different from 1:1. Analysis of the sex ratio by size class showed that the proportion of males increased significantly from size class 55-60 mm upward, and this pattern persisted in the larger size classes. In the smaller size classes the sex ratio did not differ from 1:1. The size at morphological sexual maturity was estimated at a carapace width (CW) of 52 mm and 45 mm for males and females, respectively. Analysis of the population parameters indicated that the population of U. cordatus in the Jaguaribe River mangrove is stable. However, constant monitoring of the population is required to detect any changes in the population attributes that may affect this stability.
Domínguez-Contreras, José F; Munguia-Vega, Adrian; Ceballos-Vázquez, Bertha P; Arellano-Martínez, Marcial; García-Rodríguez, Francisco J; Culver, Melanie; Reyes-Bonilla, Hector
2018-01-01
The fishery for octopus in Northwest Mexico has increased to over 2,000 tons annually, but to date the specific composition of the catch has been ignored. With at least three main species targeted by artisanal fisheries in the region with distinct life histories, the lack of basic biological information about the distribution, metapopulation size and structure of each species could impede effective fisheries management to avoid overexploitation. We tested if different life histories of three species of octopus could help predict observed patterns of genetic diversity, population dynamics, structure and connectivity and how this information could be relevant to the sustainable management of the fishery. We sequenced two mitochondrial genes and genotyped seven nuclear microsatellite loci to identify the distribution of each species in 20 locations from the Gulf of California and the west coast of the Baja California peninsula. We tested five hypotheses derived from population genetic theory based on differences in the fecundity and dispersal potential for each species. We discovered that Octopus bimaculoides with low fecundity and direct development (without a planktonic phase) had lower average effective population size and genetic diversity, but higher levels of kinship, population structure, and richness of private alleles, than the other two species. These features indicated limited dispersal and high local recruitment. In contrast, O. bimaculatus and O. hubbsorum with higher fecundity and planktonic phase as paralarvae had higher effective population size and genetic diversity, and overall lower kinship and population structure than O. bimaculoides . These observations supported higher levels of gene flow over a larger geographical scale. O. bimaculatus with the longest planktonic paralarval duration and therefore larger dispersal potential had differences in the calculated parameters possibly associated with increased connectivity. We propose O. bimaculoides is more susceptible to over exploitation of small, isolated populations and could have longer recovery times than the other two species. This species may benefit from distinct fishery management within each local population. O. bimaculatus and O. hubbsorum may benefit from fishery management that takes into account metapopulation structure over larger geographic scales and the directionality and magnitude of larval dispersal driven by ocean currents and population connectivity among individuals of each locality. The distribution of each species and variations in their reproductive phenology is also important to consider when establishing marine reserves or seasonal fishing closures.
Effects of landscape and patch-level attributes on regional population persistence
Habitat patch size and isolation are often described as the key habitat variables influencing population dynamics. Yet habitat quality may also play an important role in influencing the regional persistence of spatially structured populations as the value or density of resources ...
Tezanos-Pinto, Gabriela; Islas-Villanueva, Valentina; Correa-Cárdenas, Camilo A.
2017-01-01
The current conservation status of the bottlenose dolphin (Tursiops truncatus) under the IUCN is ‘least concern’. However, in the Caribbean, small and localized populations of the ‘inshore form’ may be at higher risk of extinction than the ‘worldwide distributed form’ due to a combination of factors including small population size, high site fidelity, genetic isolation, and range overlap with human activities. Here, we study the population genetic structure of bottlenose dolphins from the Archipelago of Bocas del Toro in Panama. This is a small population characterized by high site fidelity and is currently heavily-impacted by the local dolphin-watching industry. We collected skin tissue samples from 25 dolphins to study the genetic diversity and structure of this population. We amplified a portion of the mitochondrial Control Region (mtDNA-CR) and nine microsatellite loci. The mtDNA-CR analyses revealed that dolphins in Bocas del Toro belong to the ‘inshore form’, grouped with the Bahamas-Colombia-Cuba-Mexico population unit. They also possess a unique haplotype new for the Caribbean. The microsatellite data indicated that the Bocas del Toro dolphin population is highly structured, likely due to restricted movement patterns. Previous abundance estimates obtained with mark-recapture methods reported a small population of 80 dolphins (95% CI = 72–87), which is similar to the contemporary effective population size estimated in this study (Ne = 73 individuals; CI = 18.0 - ∞; 0.05). The combination of small population size, high degree of genetic isolation, and intense daily interactions with dolphin-watching boats puts the Bocas del Toro dolphin to at high risk of extinction. Despite national guidelines to regulate the dolphin-watching industry in Bocas del Toro and ongoing educational programs for tour operators, only in 2012 seven animals have died due to boat collisions. Our results suggest that the conservation status of bottlenose dolphins in Bocas del Toro should be elevated to ‘endangered’ at the national level, as a precautionary measure while population and viability estimates are conducted. PMID:29236757
[Dynamic of marriage structure in three cities of Ukraine from 1960 to 1992].
Timchenko, O I; Omel'chenko, E M; Nikula, E T
2000-04-01
Marriage structure was studied in the city of Kiev and in two cities of the Sumy oblast, Shostka and Trostyanets. Ethnic affiliations and birthplaces of persons contracting marriage were analyzed as the main characteristics of population genetic diversity. The ethnic composition of persons contracting marriage and the proportions of mono- and interethnic marriages remained almost unchanged during one generation. The majority of the persons contracting marriage were Ukrainians (66-91%); among other ethnic groups, only Russians considerably contributed to ethnic diversity (up to 26%). During the period studied, coefficients of marital migration substantially decreased in Kiev (from 0.66-0.82 to 0.34) and Shostka (from 0.72 to 0.52) and changed only insignificantly in Trostyanets. Outbreeding was estimated based on the migration parameters, exogamy level, and marital migration distances. The outbreeding level in the Shostka population (100,000 people) was comparable with that for the considerably larger Kiev population (two million people); however, it was significantly higher than that for the Trostyanets population, the size of which was close to the size of the Shostka population. It is supposed that "migration stress" may unfavorably affect the adaptive genetic structure of the Shostka population.
Population Structure of Montastraea cavernosa on Shallow versus Mesophotic Reefs in Bermuda
Goodbody-Gringley, Gretchen; Marchini, Chiara; Chequer, Alex D.; Goffredo, Stefano
2015-01-01
Mesophotic coral reef ecosystems remain largely unexplored with only limited information available on taxonomic composition, abundance and distribution. Yet, mesophotic reefs may serve as potential refugia for shallow-water species and thus understanding biodiversity, ecology and connectivity of deep reef communities is integral for resource management and conservation. The Caribbean coral, Montastraea cavernosa, is considered a depth generalist and is commonly found at mesophotic depths. We surveyed abundance and size-frequency of M. cavernosa populations at six shallow (10m) and six upper mesophotic (45m) sites in Bermuda and found population structure was depth dependent. The mean surface area of colonies at mesophotic sites was significantly smaller than at shallow sites, suggesting that growth rates and maximum colony surface area are limited on mesophotic reefs. Colony density was significantly higher at mesophotic sites, however, resulting in equal contributions to overall percent cover. Size-frequency distributions between shallow and mesophotic sites were also significantly different with populations at mesophotic reefs skewed towards smaller individuals. Overall, the results of this study provide valuable baseline data on population structure, which indicate that the mesophotic reefs of Bermuda support an established population of M. cavernosa. PMID:26544963
Population Structure of Montastraea cavernosa on Shallow versus Mesophotic Reefs in Bermuda.
Goodbody-Gringley, Gretchen; Marchini, Chiara; Chequer, Alex D; Goffredo, Stefano
2015-01-01
Mesophotic coral reef ecosystems remain largely unexplored with only limited information available on taxonomic composition, abundance and distribution. Yet, mesophotic reefs may serve as potential refugia for shallow-water species and thus understanding biodiversity, ecology and connectivity of deep reef communities is integral for resource management and conservation. The Caribbean coral, Montastraea cavernosa, is considered a depth generalist and is commonly found at mesophotic depths. We surveyed abundance and size-frequency of M. cavernosa populations at six shallow (10m) and six upper mesophotic (45m) sites in Bermuda and found population structure was depth dependent. The mean surface area of colonies at mesophotic sites was significantly smaller than at shallow sites, suggesting that growth rates and maximum colony surface area are limited on mesophotic reefs. Colony density was significantly higher at mesophotic sites, however, resulting in equal contributions to overall percent cover. Size-frequency distributions between shallow and mesophotic sites were also significantly different with populations at mesophotic reefs skewed towards smaller individuals. Overall, the results of this study provide valuable baseline data on population structure, which indicate that the mesophotic reefs of Bermuda support an established population of M. cavernosa.
Lutz, Wolfgang; KC, Samir
2010-01-01
The total size of the world population is likely to increase from its current 7 billion to 8–10 billion by 2050. This uncertainty is because of unknown future fertility and mortality trends in different parts of the world. But the young age structure of the population and the fact that in much of Africa and Western Asia, fertility is still very high makes an increase by at least one more billion almost certain. Virtually, all the increase will happen in the developing world. For the second half of the century, population stabilization and the onset of a decline are likely. In addition to the future size of the population, its distribution by age, sex, level of educational attainment and place of residence are of specific importance for studying future food security. The paper provides a detailed discussion of different relevant dimensions in population projections and an evaluation of the methods and assumptions used in current global population projections and in particular those produced by the United Nations and by IIASA. PMID:20713384
Harvesting, predation and competition effects on a red coral population
NASA Astrophysics Data System (ADS)
Abbiati, M.; Buffoni, G.; Caforio, G.; Di Cola, G.; Santangelo, G.
A Corallium rubrum population, dwelling in the Ligurian Sea, has been under observation since 1987. Biometric descriptors of colonies (base diameter, weight, number of polyps, number of growth rings) have been recorded and correlated. The population size structure was obtained by distributing the colonies into diameter classes, each size class representing the average annual increment of diameter growth. The population was divided into ten classes, including a recruitment class. This size structure showed a fairly regular trend in the first four classes. The irregularity of survival in the older classes agreed with field observations on harvesting and predation. Demographic parameters such as survival, growth plasticity and natality coefficients were estimated from the experimental data. On this basis a discrete nonlinear model was implemented. The model is based on a kind of density-dependent Leslie matrix, where the feedback term only occurs in survival of the first class; the recruitment function is assumed to be dependent on the total biomass and related to inhibiting effects due to competitive interactions. Stability analysis was applied to steady-state solutions. Numerical simulations of population evolution were carried out under different conditions. The dynamics of settlement and the effects of disturbances such as harvesting, predation and environmental variability were studied.
Arruda, Mauricio P; Costa, William P; Recco-Pimentel, Shirlei M
2017-01-01
The Morato's Digger Toad, Proceratophrys moratoi, is a critically endangered toad species with a marked population decline in southern Brazilian Cerrado. Despite this, new populations are being discovered, primarily in the northern part of the distribution range, which raises a number of questions with regard to the conservation status of the species. The present study analyzed the genetic diversity of the species based on microsatellite markers. Our findings permitted the identification of two distinct management units. We found profound genetic structuring between the southern populations, on the left margin of the Tietê River, and all other populations. A marked reduction was observed in the contemporary gene flow among the central populations that are most affected by anthropogenic impacts, such as extensive sugar cane plantations, which presumably decreases habitat connectivity. The results indicated reduced diversity in the southern populations which, combined with a smaller effective population size, may make these populations more susceptible to extinction. We recommend the reclassification of P. moratoi as vulnerable and the establishment of a special protection program for the southern populations. Our results provide important insights about the local extinction of southern populations of this toad.
Estimation of the size of the female sex worker population in Rwanda using three different methods
Kayitesi, Catherine; Gwiza, Aimé; Ruton, Hinda; Koleros, Andrew; Gupta, Neil; Balisanga, Helene; Riedel, David J; Nsanzimana, Sabin
2014-01-01
HIV prevalence is disproportionately high among female sex workers compared to the general population. Many African countries lack useful data on the size of female sex worker populations to inform national HIV programmes. A female sex worker size estimation exercise using three different venue-based methodologies was conducted among female sex workers in all provinces of Rwanda in August 2010. The female sex worker national population size was estimated using capture–recapture and enumeration methods, and the multiplier method was used to estimate the size of the female sex worker population in Kigali. A structured questionnaire was also used to supplement the data. The estimated number of female sex workers by the capture–recapture method was 3205 (95% confidence interval: 2998–3412). The female sex worker size was estimated at 3348 using the enumeration method. In Kigali, the female sex worker size was estimated at 2253 (95% confidence interval: 1916–2524) using the multiplier method. Nearly 80% of all female sex workers in Rwanda were found to be based in the capital, Kigali. This study provided a first-time estimate of the female sex worker population size in Rwanda using capture–recapture, enumeration, and multiplier methods. The capture–recapture and enumeration methods provided similar estimates of female sex worker in Rwanda. Combination of such size estimation methods is feasible and productive in low-resource settings and should be considered vital to inform national HIV programmes. PMID:25336306
Estimation of the size of the female sex worker population in Rwanda using three different methods.
Mutagoma, Mwumvaneza; Kayitesi, Catherine; Gwiza, Aimé; Ruton, Hinda; Koleros, Andrew; Gupta, Neil; Balisanga, Helene; Riedel, David J; Nsanzimana, Sabin
2015-10-01
HIV prevalence is disproportionately high among female sex workers compared to the general population. Many African countries lack useful data on the size of female sex worker populations to inform national HIV programmes. A female sex worker size estimation exercise using three different venue-based methodologies was conducted among female sex workers in all provinces of Rwanda in August 2010. The female sex worker national population size was estimated using capture-recapture and enumeration methods, and the multiplier method was used to estimate the size of the female sex worker population in Kigali. A structured questionnaire was also used to supplement the data. The estimated number of female sex workers by the capture-recapture method was 3205 (95% confidence interval: 2998-3412). The female sex worker size was estimated at 3348 using the enumeration method. In Kigali, the female sex worker size was estimated at 2253 (95% confidence interval: 1916-2524) using the multiplier method. Nearly 80% of all female sex workers in Rwanda were found to be based in the capital, Kigali. This study provided a first-time estimate of the female sex worker population size in Rwanda using capture-recapture, enumeration, and multiplier methods. The capture-recapture and enumeration methods provided similar estimates of female sex worker in Rwanda. Combination of such size estimation methods is feasible and productive in low-resource settings and should be considered vital to inform national HIV programmes. © The Author(s) 2015.
Jacquemyn, Hans; Lenaerts, Marijke; Brys, Rein; Willems, Kris; Honnay, Olivier; Lievens, Bart
2013-01-01
Background Microbial communities in floral nectar have been shown to be characterized by low levels of species diversity, yet little is known about among-plant population variation in microbial community composition. Methodology/Principal Findings We investigated the microbial community structure (yeasts and bacteria) in floral nectar of ten fragmented populations of the bee-pollinated forest herb Pulmonaria officinalis. We also explored possible relationships between plant population size and microbial diversity in nectar, and related microbial community composition to the distance separating plant populations. Culturable bacteria and yeasts occurring in the floral nectar of a total of 100 plant individuals were isolated and identified by partially sequencing the 16S rRNA gene and D1/D2 domains of the 26S rRNA gene, respectively. A total of 9 and 11 yeast and 28 and 39 bacterial OTUs was found, taking into account a 3% (OTU0.03) and 1% sequence dissimilarity cut-off (OTU0.01). OTU richness at the plant population level (i.e. the number of OTUs per population) was low for yeasts (mean: 1.7, range: 0–4 OTUs0.01/0.03 per population), whereas on average 6.9 (range: 2–13) OTUs0.03 and 7.9 (range 2–16) OTUs0.01 per population were found for bacteria. Both for yeasts and bacteria, OTU richness was not significantly related to plant population size. Similarity in community composition among populations was low (average Jaccard index: 0.14), and did not decline with increasing distance between populations. Conclusions/Significance We found low similarity in microbial community structure among populations, suggesting that the assembly of nectar microbiota is to a large extent context-dependent. Although the precise factors that affect variation in microbial community structure in floral nectar require further study, our results indicate that both local and regional processes may contribute to among-population variation in microbial community structure in nectar. PMID:23536759
Jacquemyn, Hans; Lenaerts, Marijke; Brys, Rein; Willems, Kris; Honnay, Olivier; Lievens, Bart
2013-01-01
Microbial communities in floral nectar have been shown to be characterized by low levels of species diversity, yet little is known about among-plant population variation in microbial community composition. We investigated the microbial community structure (yeasts and bacteria) in floral nectar of ten fragmented populations of the bee-pollinated forest herb Pulmonaria officinalis. We also explored possible relationships between plant population size and microbial diversity in nectar, and related microbial community composition to the distance separating plant populations. Culturable bacteria and yeasts occurring in the floral nectar of a total of 100 plant individuals were isolated and identified by partially sequencing the 16S rRNA gene and D1/D2 domains of the 26S rRNA gene, respectively. A total of 9 and 11 yeast and 28 and 39 bacterial OTUs was found, taking into account a 3% (OTU0.03) and 1% sequence dissimilarity cut-off (OTU0.01). OTU richness at the plant population level (i.e. the number of OTUs per population) was low for yeasts (mean: 1.7, range: 0-4 OTUs0.01/0.03 per population), whereas on average 6.9 (range: 2-13) OTUs0.03 and 7.9 (range 2-16) OTUs0.01 per population were found for bacteria. Both for yeasts and bacteria, OTU richness was not significantly related to plant population size. Similarity in community composition among populations was low (average Jaccard index: 0.14), and did not decline with increasing distance between populations. We found low similarity in microbial community structure among populations, suggesting that the assembly of nectar microbiota is to a large extent context-dependent. Although the precise factors that affect variation in microbial community structure in floral nectar require further study, our results indicate that both local and regional processes may contribute to among-population variation in microbial community structure in nectar.
Ranked set sampling: cost and optimal set size.
Nahhas, Ramzi W; Wolfe, Douglas A; Chen, Haiying
2002-12-01
McIntyre (1952, Australian Journal of Agricultural Research 3, 385-390) introduced ranked set sampling (RSS) as a method for improving estimation of a population mean in settings where sampling and ranking of units from the population are inexpensive when compared with actual measurement of the units. Two of the major factors in the usefulness of RSS are the set size and the relative costs of the various operations of sampling, ranking, and measurement. In this article, we consider ranking error models and cost models that enable us to assess the effect of different cost structures on the optimal set size for RSS. For reasonable cost structures, we find that the optimal RSS set sizes are generally larger than had been anticipated previously. These results will provide a useful tool for determining whether RSS is likely to lead to an improvement over simple random sampling in a given setting and, if so, what RSS set size is best to use in this case.
de Roos, André M; Persson, Lennart
2003-02-01
In this paper we investigate the consequences of size-dependent competition among the individuals of a consumer population by analyzing the dynamic properties of a physiologically structured population model. Only 2 size-classes of individuals are distinguished: juveniles and adults. Juveniles and adults both feed on one and the same resource and hence interact by means of exploitative competition. Juvenile individuals allocate all assimilated energy into development and mature on reaching a fixed developmental threshold. The combination of this fixed threshold and the resource-dependent developmental rate, implies that the juvenile delay between birth and the onset of reproduction may vary in time. Adult individuals allocate all assimilated energy to reproduction. Mortality of both juveniles and adults is assumed to be inversely proportional to the amount of energy assimilated. In this setting we study how the dynamics of the population are influenced by the relative foraging capabilities of juveniles and adults. In line with results that we previously obtained in size-structured consumer-resource models with pulsed reproduction, population cycles primarily occur when either juveniles or adults have a distinct competitive advantage. When adults have a larger per capita feeding rate and are hence competitively superior to juveniles, population oscillations occur that are primarily induced by the fact that the duration of the juvenile period changes with changing food conditions. These cycles do not occur when the juvenile delay is a fixed parameter. When juveniles are competitively superior, two different types of population fluctuations can occur: (1) rapid, low-amplitude fluctuations having a period of half the juvenile delay and (2) slow, large-amplitude fluctuations characterized by a period, which is roughly equal to the juvenile delay. The analysis of simplified versions of the structured model indicates that these two types of oscillations also occur if mortality and/or development is independent of food density, i.e. in a situation with a constant juvenile developmental delay and a constant, food-independent background mortality. Thus, the oscillations that occur when juveniles are more competitive are induced by the juvenile delay per se. When juveniles exert a larger foraging pressure on the shared resource, maturation implies an increase not only in adult density, but also in food density and consequently fecundity. Our analysis suggests that this correlation in time between adult density and fecundity is crucial for the occurrence of population cycles when juveniles are competitively superior.
Constancy and asynchrony of Osmoderma eremita populations in tree hollows.
Ranius, Thomas
2001-01-01
A species rich beetle fauna is associated with old, hollow trees. Many of these species are regarded as endangered, but there is little understanding of the population structure and extinction risks of these species. In this study I show that one of the most endangered beetles, Osmoderma eremita, has a population structure which conforms to that of a metapopulation, with each tree possibly sustaining a local population. This was revealed by performing a mark-release-recapture experiment in 26 trees over a 5-year period. The spatial variability between trees was much greater than temporal variability between years. The population size was on average 11 adults tree -1 year -1 , but differed widely between trees (0-85 adults tree -1 year -1 ). The population size in each tree varied moderately between years [mean coefficient of variation (C.V.)=0.51], but more widely than from sampling errors alone (P=0.008, Monte Carlo simulation). The population size variability in all trees combined, however, was not larger than expected from sampling errors alone in a constant population (C.V.=0.15, P=0.335, Monte Carlo simulation). Thus, the fluctuations of local populations cancel each other out when they are added together. This pattern can arise only when the fluctuations occur asynchronously between trees. The asynchrony of the fluctuations justifies the assumption usually made in metapopulation modelling, that local populations within a metapopulation fluctuate independently of one another. The asynchrony might greatly increase persistence time at the metapopulation level (per stand), compared to the local population level (per tree). The total population size of O. eremita in the study area was estimated to be 3,900 individuals. Other localities sustaining O. eremita are smaller in area, and most of these must be enlarged to allow long-term metapopulation persistence and to satisfy genetic considerations of the O. eremita populations.
Riosmena, Fernando; Winkler-Dworak, Maria; Prskawetz, Alexia; Feichtinger, Gustav
2013-01-01
In this paper, we assess the role of policies aimed at regulating the number and age structure of elections on the size and age structure of five European Academies of Sciences. We show the recent pace of ageing and the degree of variation in policies across them and discuss the implications of different policies on the size and age structure of academies. We also illustrate the potential effect of different election regimes (fixed vs. linked) and age structures of election (younger vs. older) by contrasting the steady-state dynamics of different projections of Full Members in each academy into 2070 and measuring the size and age-compositional effect of changing a given policy relative to a status quo policy scenario. Our findings suggest that academies with linked intake (i.e., where the size of the academy below a certain age is fixed and the number of elections is set to the number of members becoming that age) may be a more efficient approach to curb growth without suffering any ageing trade-offs relative to the faster growth of academies electing a fixed number of members per year. We further discuss the implications of our results in the context of stable populations open to migration. PMID:23843677
Pittman, Shannon E.; King, T.L.; Faurby, S.; Dorcas, M.E.
2011-01-01
In this study, we sought to determine the population stability and genetic diversity of one isolated population of the federally-threatened bog turtle (Glyptemys muhlenbergii) in North Carolina. Using capture-recapture data, we estimated adult survival and population growth rate from 1992 to 2007. We found that the population decreased from an estimated 36 adult turtles in 1994 to approximately 11 adult turtles in 2007. We found a constant adult survival of 0. 893 (SE = 0. 018, 95% confidence interval, 0. 853-0. 924) between 1992 and 2007. Using 18 microsatellite markers, we compared the genetic status of this population with five other bog turtle populations. The target population displayed allelic richness (4. 8 ?? 0. 5) and observed heterozygosity (0. 619 ?? 0. 064) within the range of the other bog turtle populations. Coalescent analysis of population growth rate, effective population size, and timing of population structuring event also indicated the genetics of the target population were comparable to the other populations studied. Estimates of effective population size were a proportion of the census size in all populations except the target population, in which the effective population size was larger than the census size (30 turtles vs. 11 turtles). We attribute the high genetic diversity in the target population to the presence of multiple generations of old turtles. This study illustrates that the demographic status of populations of long-lived species may not be reflected genetically if a decline occurred recently. Consequently, the genetic integrity of populations of long-lived animals experiencing rapid demographic bottlenecks may be preserved through conservation efforts effective in addressing demographic problems. ?? 2011 Springer Science+Business Media B.V.
Y. Zhang; X. Liao; B.J. Butler; J. Schelhas
2009-01-01
The state-level distribution of the size of family forest holdings in the contiguous United States was examined using data collected by the USDA Forest Service in 1993 and 2003. Regressions models were used to analyze the factors influencing the mean size and structural variation among states and between the two periods. Population density, percent of the population at...
Conklin, Jesse R.; Battley, Phil F.; Potter, Murray A.; Ruthrauff, Daniel R.
2011-01-01
Among scolopacid shorebirds, Bar-tailed Godwits (Limosa lapponica) have unusually high intra- and intersexual differences in size and breeding plumage. Despite historical evidence for population structure among Alaska-breeding Bar-tailed Godwits (L. l. baueri), no thorough analysis, or comparison with the population's nonbreeding distribution, has been undertaken. We used live captures, field photography, museum specimens, and individuals tracked from New Zealand to describe geographic variation in size and plumage within the Alaska breeding range. We found a north-south cline in body size in Alaska, in which the smallest individuals of each sex occurred at the highest latitudes. Extent of male breeding plumage (proportion of nonbreeding contour feathers replaced) also increased with latitude, but female breeding plumage was most extensive at mid-latitudes. This population structure was not maintained in the nonbreeding season: morphometrics of captured birds and timing of migratory departures indicated that individuals from a wide range of breeding latitudes occur in each region and site in New Zealand. Links among morphology, phenology, and breeding location suggest the possibility of distinct Alaska breeding populations that mix freely in the nonbreeding season, and also imply that the strongest selection for size occurs in the breeding season.
Nyakaana, S; Arctander, P
1999-07-01
A drastic decline has occurred in the size of the Uganda elephant population in the last 40 years, exacerbated by two main factors; an increase in the size of the human population and poaching for ivory. One of the attendant consequences of such a decline is a reduction in the amount of genetic diversity in the surviving populations due to increased effects of random genetic drift. Information about the amount of genetic variation within and between the remaining populations is vital for their future conservation and management. The genetic structure of the African elephant in Uganda was examined using nucleotide variation of mitochondrial control region sequences and four nuclear microsatellite loci in 72 individuals from three localities. Eleven mitochondrial DNA (mtDNA) haplotypes were observed, nine of which were geographically localized. We found significant genetic differentiation between the three populations at the mitochondrial locus while three out of the four microsatellite loci differentiated KV and QE, one locus differentiated KV and MF and no loci differentiated MF and QE. Expected heterozygosity at the four loci varied between 0.51 and 0.84 while nucleotide diversity at the mitochondrial locus was 1.4%. Incongruent patterns of genetic variation within and between populations were revealed by the two genetic systems, and we have explained these in terms of the differences in the effective population sizes of the two genomes and male-biased gene flow between populations.
NASA Astrophysics Data System (ADS)
Tang, Tingting
In this dissertation, we develop structured population models to examine how changes in the environmental affect population processes. In Chapter 2, we develop a general continuous time size structured model describing a susceptible-infected (SI) population coupled with the environment. This model applies to problems arising in ecology, epidemiology, and cell biology. The model consists of a system of quasilinear hyperbolic partial differential equations coupled with a system of nonlinear ordinary differential equations that represent the environment. We develop a second-order high resolution finite difference scheme to numerically solve the model. Convergence of this scheme to a weak solution with bounded total variation is proved. We numerically compare the second order high resolution scheme with a first order finite difference scheme. Higher order of convergence and high resolution property are observed in the second order finite difference scheme. In addition, we apply our model to a multi-host wildlife disease problem, questions regarding the impact of the initial population structure and transition rate within each host are numerically explored. In Chapter 3, we use a stage structured matrix model for wildlife population to study the recovery process of the population given an environmental disturbance. We focus on the time it takes for the population to recover to its pre-event level and develop general formulas to calculate the sensitivity or elasticity of the recovery time to changes in the initial population distribution, vital rates and event severity. Our results suggest that the recovery time is independent of the initial population size, but is sensitive to the initial population structure. Moreover, it is more sensitive to the reduction proportion to the vital rates of the population caused by the catastrophe event relative to the duration of impact of the event. We present the potential application of our model to the amphibian population dynamic and the recovery of a certain plant population. In addition, we explore, in details, the application of the model to the sperm whale population in Gulf of Mexico after the Deepwater Horizon oil spill. In Chapter 4, we summarize the results from Chapter 2 and Chapter 3 and explore some further avenues of our research.
Anthropogenic stressors can have negative fitness impacts on populations by reducing population size through direct mortality or reduced reproduction. Evolutionary consequences of pollutants are inevitable if genetic diversity and structure is changed as a result of these impact...
Anthropogenic stressors can have negative fitness impacts on populations by reducing population size through direct mortality or reduced reproduction. Evolutionary consequences of pollutants are inevitable if genetic diversity and structure are changed as a result of these impac...
NASA Astrophysics Data System (ADS)
Gitschlag, G.
2016-02-01
Population estimates were calculated for four fish species occurring at offshore oil and gas structures in water depths of 14-32 m off the Louisiana and upper Texas coasts in the US Gulf of Mexico. From 1993-1999 sampling was conducted at eight offshore platforms in conjunction with explosive salvage of the structures. To estimate fish population size prior to detonation of explosives, a fish mark-recapture study was conducted. Fish were captured on rod and reel using assorted hook sizes. Traps were occasionally used to supplement catches. Fish were tagged below the dorsal fin with plastic t-bar tags using tagging guns. Only fish that were alive and in good condition were released. Recapture sampling was conducted after explosives were detonated during salvage operations. Personnel operating from inflatable boats used dip nets to collect all dead fish that floated to the surface. Divers collected representative samples of dead fish that sank to the sea floor. Data provided estimates for red snapper (Lutjanus campechanus), Atlantic spadefish (Chaetodipterus faber), gray triggerfish (Balistes capriscus), and blue runner (Caranx crysos) at one or more of the eight platforms studied. At seven platforms, population size for red snapper was calculated at 503-1,943 with a 95% CI of 478. Abundance estimates for Atlantic spadefish at three platforms ranged from 1,432-1,782 with a 95% CI of 473. At three platforms, population size of gray triggerfish was 63-129 with a 95% CI of 82. Blue runner abundance at one platform was 558. Unlike the other three species which occur close to the platforms, blue runner range widely and recapture of this species was dependent on fish schools being in close proximity to the platform at the time explosives were detonated. Tag recapture was as high as 73% for red snapper at one structure studied.
Awad, Lara; Fady, Bruno; Khater, Carla; Roig, Anne; Cheddadi, Rachid
2014-01-01
The threatened conifer Abies cilicica currently persists in Lebanon in geographically isolated forest patches. The impact of demographic and evolutionary processes on population genetic diversity and structure were assessed using 10 nuclear microsatellite loci. All remnant 15 local populations revealed a low genetic variation but a high recent effective population size. FST-based measures of population genetic differentiation revealed a low spatial genetic structure, but Bayesian analysis of population structure identified a significant Northeast-Southwest population structure. Populations showed significant but weak isolation-by-distance, indicating non-equilibrium conditions between dispersal and genetic drift. Bayesian assignment tests detected an asymmetric Northeast-Southwest migration involving some long-distance dispersal events. We suggest that the persistence and Northeast-Southwest geographic structure of Abies cilicica in Lebanon is the result of at least two demographic processes during its recent evolutionary history: (1) recent migration to currently marginal populations and (2) local persistence through altitudinal shifts along a mountainous topography. These results might help us better understand the mechanisms involved in the species response to expected climate change. PMID:24587219
Franssen, Courtney M
2009-07-01
Anthropogenic degradation of aquatic environments worldwide results in disturbed habitats, altered communities, and stressed populations. Surface waters located in an abandoned lead-zinc mining district in northeastern Oklahoma are no exception. This study examines the reproductive and somatic responses of a pollution-tolerant fish, the western mosquitofish, Gambusia affinis (Teleostei: Poeciliidae), living in mine outflow waters contaminated by heavy metals. Populations were sampled from four streams, which were classified into three habitat types. Populations from Tar Creek and an Unnamed Tributary of Tar Creek receive direct input of mine drainage, while populations living in reference creeks are not known to have mining influence. The influence of mine drainage directly or indirectly (via altered competitor and predator regimes or changes in food availability) affects G. affinis at both the population and the individual level. Metal-contaminated sites had reduced proportions of males and reproductively active females and altered male population size structures. Individual-level effects were apparent, as all G. affinis from Tar Creek invested less in liver weights, and mature males and reproductively active females from Tar Creek invested less in gonad weights. Furthermore, males from impacted sites were significantly lighter than those from reference creeks. Gravid females from Tar Creek had smaller clutch sizes, but average embryo weight did not differ among streams.
USDA-ARS?s Scientific Manuscript database
A first step in exploring population structure in crop plants and other organisms is to define the number of subpopulations that exist for a given data set. The genetic marker data sets being generated have become increasingly large over time and commonly are the high-dimension, low sample size (HDL...
Legrand, Delphine; Vautrin, Dominique; Lachaise, Daniel; Cariou, Marie-Louise
2011-07-01
Drosophila sechellia is closely related to the cosmopolitan and widespread model species, D. simulans. This species, endemic to the Seychelles archipelago, is specialized on the fruits of Morinda citrifolia, and harbours the lowest overall genetic diversity compared to other species of Drosophila. This low diversity is associated with a small population size. In addition, no obvious population structure has been evidenced so far across islands of the Seychelles archipelago. Here, a microsatellite panel of 17 loci in ten populations from nine islands of the Seychelles was used to assess the effect of the D. sechellia's fragmented distribution on the fine-scale population genetic structure, the migration pattern, as well as on the demography of the species. Contrary to previous results, also based on microsatellites, no evidence for population contraction in D. sechellia was found. The results confirm previous studies based on gene sequence polymorphism that showed a long-term stable population size for this species. Interestingly, a pattern of Isolation By Distance which had not been described yet in D. sechellia was found, with evidence of first-generation migrants between some neighbouring islands. Bayesian structuring algorithm results were consistent with a split of D. sechellia into two main groups of populations: Silhouette/Mahé versus all the other islands. Thus, microsatellites suggest that variability in D. sechellia is most likely explained by local genetic exchanges between neighbouring islands that have recently resulted in slight differentiation of the two largest island populations from all the others.
Zhao, Meixia; Riegl, Bernhard; Yu, Kefu; Shi, Qi; Zhang, Qiaomin; Liu, Guohui; Yang, Hongqiang; Yan, Hongqiang
2016-09-13
Population models are important for resource management and can inform about potential trajectories useful for planning purposes, even with incomplete monitoring data. From size frequency data on Luhuitou fringing reef, Hainan, South China Sea, a matrix population model of massive corals (Porites lutea) was developed and trajectories over 100 years under no disturbance and random disturbances were projected. The model reflects a largely open population of Porites lutea, with low local recruitment and preponderance of imported recruitment. Under no further disturbance, the population of Porites lutea will grow and its size structure will change from predominance of small size classes to large size classes. Therewith, total Porites cover will increase. Even under random disturbances every 10 to 20 years, the Porites population could remain viable, albeit at lower space cover. The models suggest recovery at Luhuitou following the removal of chronic anthropogenic disturbance. Extending the area of coral reef reserves to protect the open coral community and the path of connectivity is advisable and imperative for the conservation of Hainan's coral reefs.
Zhao, Meixia; Riegl, Bernhard; Yu, Kefu; Shi, Qi; Zhang, Qiaomin; Liu, Guohui; Yang, Hongqiang; Yan, Hongqiang
2016-01-01
Population models are important for resource management and can inform about potential trajectories useful for planning purposes, even with incomplete monitoring data. From size frequency data on Luhuitou fringing reef, Hainan, South China Sea, a matrix population model of massive corals (Porites lutea) was developed and trajectories over 100 years under no disturbance and random disturbances were projected. The model reflects a largely open population of Porites lutea, with low local recruitment and preponderance of imported recruitment. Under no further disturbance, the population of Porites lutea will grow and its size structure will change from predominance of small size classes to large size classes. Therewith, total Porites cover will increase. Even under random disturbances every 10 to 20 years, the Porites population could remain viable, albeit at lower space cover. The models suggest recovery at Luhuitou following the removal of chronic anthropogenic disturbance. Extending the area of coral reef reserves to protect the open coral community and the path of connectivity is advisable and imperative for the conservation of Hainan’s coral reefs. PMID:27622504
The Statistics and Mathematics of High Dimension Low Sample Size Asymptotics.
Shen, Dan; Shen, Haipeng; Zhu, Hongtu; Marron, J S
2016-10-01
The aim of this paper is to establish several deep theoretical properties of principal component analysis for multiple-component spike covariance models. Our new results reveal an asymptotic conical structure in critical sample eigendirections under the spike models with distinguishable (or indistinguishable) eigenvalues, when the sample size and/or the number of variables (or dimension) tend to infinity. The consistency of the sample eigenvectors relative to their population counterparts is determined by the ratio between the dimension and the product of the sample size with the spike size. When this ratio converges to a nonzero constant, the sample eigenvector converges to a cone, with a certain angle to its corresponding population eigenvector. In the High Dimension, Low Sample Size case, the angle between the sample eigenvector and its population counterpart converges to a limiting distribution. Several generalizations of the multi-spike covariance models are also explored, and additional theoretical results are presented.
Lv, Qiming; Schneider, Manuel K; Pitchford, Jonathan W
2008-08-01
We study individual plant growth and size hierarchy formation in an experimental population of Arabidopsis thaliana, within an integrated analysis that explicitly accounts for size-dependent growth, size- and space-dependent competition, and environmental stochasticity. It is shown that a Gompertz-type stochastic differential equation (SDE) model, involving asymmetric competition kernels and a stochastic term which decreases with the logarithm of plant weight, efficiently describes individual plant growth, competition, and variability in the studied population. The model is evaluated within a Bayesian framework and compared to its deterministic counterpart, and to several simplified stochastic models, using distributional validation. We show that stochasticity is an important determinant of size hierarchy and that SDE models outperform the deterministic model if and only if structural components of competition (asymmetry; size- and space-dependence) are accounted for. Implications of these results are discussed in the context of plant ecology and in more general modelling situations.
Plank, S. M.; Lowe, C. G.; Feldheim, K. A.; Wilson, R. R.; Brusslan, J. A.
2017-01-01
The round stingray, Urobatis halleri, is a viviparous elasmobranch that inhabits inshore, benthic habitats ranging from the western U.S.A. to Panama. The population genetic structure of this species was inferred with seven polymorphic microsatellite loci in samples collected at three sites in coastal southern California, one near Santa Catalina Island, California and one in the eastern Gulf of California. Urobatis halleri is relatively common, but little is known of its movement patterns or population structure. Small FST values (−0·0017 to 0·0005) suggested little structure among coastal populations of southern and Baja California. The population sampled at Santa Catalina Island, which is separated by a deep-water channel from the coastal sites, however, was significantly divergent (large FST, 0·0251) from the other populations, suggesting low connectivity with coastal populations. The Santa Catalina Island population also had the lowest allele richness and lowest average heterozygosity, suggesting recent population bottlenecks in size. PMID:20646159
Size-density scaling in protists and the links between consumer-resource interaction parameters.
DeLong, John P; Vasseur, David A
2012-11-01
Recent work indicates that the interaction between body-size-dependent demographic processes can generate macroecological patterns such as the scaling of population density with body size. In this study, we evaluate this possibility for grazing protists and also test whether demographic parameters in these models are correlated after controlling for body size. We compiled data on the body-size dependence of consumer-resource interactions and population density for heterotrophic protists grazing algae in laboratory studies. We then used nested dynamic models to predict both the height and slope of the scaling relationship between population density and body size for these protists. We also controlled for consumer size and assessed links between model parameters. Finally, we used the models and the parameter estimates to assess the individual- and population-level dependence of resource use on body-size and prey-size selection. The predicted size-density scaling for all models matched closely to the observed scaling, and the simplest model was sufficient to predict the pattern. Variation around the mean size-density scaling relationship may be generated by variation in prey productivity and area of capture, but residuals are relatively insensitive to variation in prey size selection. After controlling for body size, many consumer-resource interaction parameters were correlated, and a positive correlation between residual prey size selection and conversion efficiency neutralizes the apparent fitness advantage of taking large prey. Our results indicate that widespread community-level patterns can be explained with simple population models that apply consistently across a range of sizes. They also indicate that the parameter space governing the dynamics and the steady states in these systems is structured such that some parts of the parameter space are unlikely to represent real systems. Finally, predator-prey size ratios represent a kind of conundrum, because they are widely observed but apparently have little influence on population size and fitness, at least at this level of organization. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
NASA Astrophysics Data System (ADS)
Hegazy, Ahmad K.; Kabiel, Hanan F.
2007-05-01
Anastatica hierochuntica L. (Brassicaceae) is a desert monocarpic annual species characterized by a topochory/ombrohydrochory type of seed dispersal. The hygrochastic nature of the dry skeletons (dead individuals) permits controlling seed dispersal by rain events. The amount of dispersed seeds is proportional to the intensity of rainfall. When light showers occur, seeds are released and remain in the site. Seeds dispersed in the vicinity of the mother or source plant (primary type of seed dispersal) resulted in clumped pattern and complicated interrelationships among size-classes of the population. Following heavy rainfall, most seeds are released and transported into small patches and shallow depressions which collect runoff water. The dead A. hierochuntica skeletons demonstrate site-dependent size-class structure, spatial pattern and spatial interrelationships in different microhabitats. Four microhabitat types have been sampled: runnels, patches and simple and compound depressions in two sites (gravel and sand). Ripley's K-function was used to analyze the spatial pattern in populations of A. hierochuntica skeletons in the study microhabitats. Clumped patterns were observed in nearly all of the study microhabitats. Populations of A. hierochuntica in the sand site were more productive than in the gravel site and usually had more individuals in the larger size-classes. In the compound-depression microhabitat, the degree of clumping decreased from the core zone to the intermediate zone then shifted into overdispersed pattern in the outer zone. At the within size-class level, the clumped pattern dominated in small size classes but shifted into random and overdispersed patterns in the larger size classes. Aggregation between small and large size-classes was not well-defined but large individuals were found closer to the smaller individuals than to those of their own class. In relation to the phytomass and the size-class structure, the outer zone of the simple depression and the outer and intermediate zones of the compound depression microhabitats were the most productive sites.
Pérez de Rosas, Alicia R; Segura, Elsa L; Fichera, Laura; García, Beatriz Alicia
2008-07-01
The genetic structure in populations of the Chagas' disease vector Triatoma infestans from six localities belonging to areas under the same insecticide treatment conditions of Catamarca province (Argentina) was examined at macrogeographical and microgeographical scales. A total of 238 insects were typed for 10 polymorphic microsatellite loci. The average observed and expected heterozygosities ranged from 0.319 to 0.549 and from 0.389 to 0.689, respectively. The present results confirm that populations of T. infestans are highly structured. Spatial genetic structure was detectable at macrogeographical and microgeographical levels. Comparisons of the levels of genetic variability between two temporal samples were carried out to assess the impact of the insecticide treatment. The genetic diversity of the population was not significantly affected after insecticide use since different genetic parameters (allele number, observed and expected heterozygosities) remained stable. However, loss of low frequency alleles and not previously found alleles were detected. The effective population size (N(e)) estimated was substantially lower in the second temporal sample than in the first; nevertheless, it is possible that the size of the remnant population after insecticide treatment was still large enough to retain the genetic diversity. Very few individuals did not belong to the local T. infestans populations as determined by assignment analyses, suggesting a low level of immigration in the population. The results of the assignment and first-generation migrant tests suggest male-biased dispersal at microgeographical level.
The mutation-drift balance in spatially structured populations.
Schneider, David M; Martins, Ayana B; de Aguiar, Marcus A M
2016-08-07
In finite populations the action of neutral mutations is balanced by genetic drift, leading to a stationary distribution of alleles that displays a transition between two different behaviors. For small mutation rates most individuals will carry the same allele at equilibrium, whereas for high mutation rates of the alleles will be randomly distributed with frequencies close to one half for a biallelic gene. For well-mixed haploid populations the mutation threshold is μc=1/2N, where N is the population size. In this paper we study how spatial structure affects this mutation threshold. Specifically, we study the stationary allele distribution for populations placed on regular networks where connected nodes represent potential mating partners. We show that the mutation threshold is sensitive to spatial structure only if the number of potential mates is very small. In this limit, the mutation threshold decreases substantially, increasing the diversity of the population at considerably low mutation rates. Defining kc as the degree of the network for which the mutation threshold drops to half of its value in well-mixed populations we show that kc grows slowly as a function of the population size, following a power law. Our calculations and simulations are based on the Moran model and on a mapping between the Moran model with mutations and the voter model with opinion makers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Germano, D.J.; Rathbun, G.B.
2008-01-01
We studied the population structure and growth of western pond turtles (Actinemys marmorata) at Vandenberg Air Force Base along the coast of central California in April 1995 and June 1996. We captured 179 individuals (115 males, 27 females) from 7 ponds during 26 days of trapping. Many turtles were adult-sized, but based on scute annuli, 74% were < 10 years of age, including many 2- to 3-year-olds. This population structure likely was due to a relatively fast growth rate, especially compared with closely related aquatic turtles in eastern North America. Mean clutch size was 5.2, but 66.7% of females were gravid, and 1 female produced 2 clutches. These reproductive data are similar to those reported for other populations in the southern portion of the species' range. Females reached reproductive maturity as early as 4 years of age. The relatively mild temperatures of California's Mediterranean climate, especially when compared to the seasonal extremes in more continental and northern regions of North America, may explain the different growth rates and population characteristics of freshwater turtles from these 2 regions of North America. ?? 2008 Chelonian Research Foundation.
Sex ratio rather than population size affects genetic diversity in Antennaria dioica.
Rosche, C; Schrieber, K; Lachmuth, S; Durka, W; Hirsch, H; Wagner, V; Schleuning, M; Hensen, I
2018-03-09
Habitat fragmentation and small population size can lead to genetic erosion in threatened plant populations. Classical theory implies that dioecy can counteract genetic erosion as it decreases the magnitude of inbreeding and genetic drift due to obligate outcrossing. However, in small populations, sex ratios may be strongly male- or female-biased, leading to substantial reductions in effective population size. This may theoretically result in a unimodal relationship between sex ratios and genetic diversity; yet, empirical studies on this relationship are scarce. Using AFLP markers, we studied genetic diversity, structure and differentiation in 14 highly fragmented Antennaria dioica populations from the Central European lowlands. Our analyses focused on the relationship between sex ratio, population size and genetic diversity. Although most populations were small (mean: 35.5 patches), genetic diversity was moderately high. We found evidence for isolation-by-distance, but overall differentiation of the populations was rather weak. Females dominated 11 populations, which overall resulted in a slightly female-biased sex ratio (61.5%). There was no significant relationship between population size and genetic diversity. The proportion of females was not unimodally but positively linearly related to genetic diversity. The high genetic diversity and low genetic differentiation suggest that A. dioica has been widely distributed in the Central European lowlands in the past, while fragmentation occurred only in the last decades. Sex ratio has more immediate consequences on genetic diversity than population size. An increasing proportion of females can increase genetic diversity in dioecious plants, probably due to a higher amount of sexual reproduction. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Mutation Bias Favors Protein Folding Stability in the Evolution of Small Populations
Porto, Markus; Bastolla, Ugo
2010-01-01
Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine (GC), for instance in actinobacteria. GC mutation bias deeply influences the folding stability of proteins, making proteins on the average less hydrophobic and therefore less stable with respect to unfolding but also less susceptible to misfolding and aggregation. We study a model where proteins evolve subject to selection for folding stability under given mutation bias, population size, and neutrality. We find a non-neutral regime where, for any given population size, there is an optimal mutation bias that maximizes fitness. Interestingly, this optimal GC usage is small for small populations, large for intermediate populations and around 50% for large populations. This result is robust with respect to the definition of the fitness function and to the protein structures studied. Our model suggests that small populations evolving with small GC usage eventually accumulate a significant selective advantage over populations evolving without this bias. This provides a possible explanation to the observation that most species adopting obligatory intracellular lifestyles with a consequent reduction of effective population size shifted their mutation spectrum towards AT. The model also predicts that large GC usage is optimal for intermediate population size. To test these predictions we estimated the effective population sizes of bacterial species using the optimal codon usage coefficients computed by dos Reis et al. and the synonymous to non-synonymous substitution ratio computed by Daubin and Moran. We found that the population sizes estimated in these ways are significantly smaller for species with small and large GC usage compared to species with no bias, which supports our prediction. PMID:20463869
Consumptive and nonconsumptive effects of cannibalism in fluctuating age-structured populations.
Wissinger, Scott A; Whiteman, Howard H; Denoël, Mathieu; Mumford, Miranda L; Aubee, Catherine B
2010-02-01
Theory and empirical studies suggest that cannibalism in age-structured populations can regulate recruitment depending on the intensity of intraspecific competition between cannibals and victims and the nature of the cannibalism window, i.e., which size classes interact as cannibals and victims. Here we report on a series of experiments that quantify that window for age-structured populations of salamander larvae and paedomorphic adults. We determined body size limits on cannibalism in microcosms and then the consumptive and nonconsumptive (injuries, foraging and activity, diet, growth) effects on victims in mesocosms with seminatural levels of habitat complexity and alternative prey. We found that cannibalism by the largest size classes (paedomorphs and > or = age 3+ yr larvae) occurs mainly on young-of-the-year (YOY) victims. Surviving YOY and other small larvae had increased injuries, reduced activity levels, and reduced growth rates in the presence of cannibals. Data on YOY survival in an experiment in which we manipulated the density of paedomorphs combined with historical data on the number of cannibals in natural populations indicate that dominant cohorts of paedomorphs can cause observed recruitment failures. Dietary data indicate that ontogenetic shifts in diet should preclude strong intraspecific competition between YOY and cannibals in this species. Thus our results are consistent with previous empirical and theoretical work that suggests that recruitment regulation by cannibalism is most likely when YOY are vulnerable to cannibalism but have low dietary overlap with cannibals. Understanding the role of cannibalism in regulating recruitment in salamander populations is timely, given the widespread occurrences of amphibian decline. Previous studies have focused on extrinsic (including anthropogenic) factors that affect amphibian population dynamics, whereas the data presented here combined with long-term field observations suggest the potential for intrinsically driven population cycles.
López-Uribe, Margarita M; Morreale, Stephen J; Santiago, Christine K; Danforth, Bryan N
2015-01-01
Bees are the primary pollinators of flowering plants in almost all ecosystems. Worldwide declines in bee populations have raised awareness about the importance of their ecological role in maintaining ecosystem functioning. The naturally strong philopatric behavior that some bee species show can be detrimental to population viability through increased probability of inbreeding. Furthermore, bee populations found in human-altered landscapes, such as urban areas, can experience lower levels of gene flow and effective population sizes, increasing potential for inbreeding depression in wild bee populations. In this study, we investigated the fine-scale population structure of the solitary bee Colletes inaequalis in an urbanized landscape. First, we developed a predictive spatial model to detect suitable nesting habitat for this ground nesting bee and to inform our field search for nests. We genotyped 18 microsatellites in 548 female individuals collected from nest aggregations throughout the study area. Genetic relatedness estimates revealed that genetic similarity among individuals was slightly greater within nest aggregations than among randomly chosen individuals. However, genetic structure among nest aggregations was low (Nei's GST = 0.011). Reconstruction of parental genotypes revealed greater genetic relatedness among females than among males within nest aggregations, suggesting male-mediated dispersal as a potentially important mechanism of population connectivity and inbreeding avoidance. Size of nesting patch was positively correlated with effective population size, but not with other estimators of genetic diversity. We detected a positive trend between geographic distance and genetic differentiation between nest aggregations. Our landscape genetic models suggest that increased urbanization is likely associated with higher levels of inbreeding. Overall, these findings emphasize the importance of density and distribution of suitable nesting patches for enhancing bee population abundance and connectivity in human dominated habitats and highlights the critical contribution of landscape genetic studies for enhanced conservation and management of native pollinators.
López-Uribe, Margarita M.; Morreale, Stephen J.; Santiago, Christine K.; Danforth, Bryan N.
2015-01-01
Bees are the primary pollinators of flowering plants in almost all ecosystems. Worldwide declines in bee populations have raised awareness about the importance of their ecological role in maintaining ecosystem functioning. The naturally strong philopatric behavior that some bee species show can be detrimental to population viability through increased probability of inbreeding. Furthermore, bee populations found in human-altered landscapes, such as urban areas, can experience lower levels of gene flow and effective population sizes, increasing potential for inbreeding depression in wild bee populations. In this study, we investigated the fine-scale population structure of the solitary bee Colletes inaequalis in an urbanized landscape. First, we developed a predictive spatial model to detect suitable nesting habitat for this ground nesting bee and to inform our field search for nests. We genotyped 18 microsatellites in 548 female individuals collected from nest aggregations throughout the study area. Genetic relatedness estimates revealed that genetic similarity among individuals was slightly greater within nest aggregations than among randomly chosen individuals. However, genetic structure among nest aggregations was low (Nei’s GST = 0.011). Reconstruction of parental genotypes revealed greater genetic relatedness among females than among males within nest aggregations, suggesting male-mediated dispersal as a potentially important mechanism of population connectivity and inbreeding avoidance. Size of nesting patch was positively correlated with effective population size, but not with other estimators of genetic diversity. We detected a positive trend between geographic distance and genetic differentiation between nest aggregations. Our landscape genetic models suggest that increased urbanization is likely associated with higher levels of inbreeding. Overall, these findings emphasize the importance of density and distribution of suitable nesting patches for enhancing bee population abundance and connectivity in human dominated habitats and highlights the critical contribution of landscape genetic studies for enhanced conservation and management of native pollinators. PMID:25950429
Heerman, Lisa; DeAngelis, Donald L.; Borcherding, Jost
2017-01-01
Usually, the origin of a within-cohort bimodal size distribution is assumed to be caused by initial size differences or by one discrete period of accelerated growth for one part of the population. The aim of this study was to determine if more continuous pathways exist allowing shifts from the small to the large fraction within a bimodal age-cohort. Therefore, a Eurasian perch population, which had already developed a bimodal size-distribution and had differential resource use of the two size-cohorts, was examined. Results revealed that formation of a bimodal size-distribution can be a continuous process. Perch from the small size-cohort were able to grow into the large size-cohort by feeding on macroinvertebrates not used by their conspecifics. The diet shifts were accompanied by morphological shape changes. Intra-specific competition seemed to trigger the development towards an increasing number of large individuals. A stage-structured matrix model confirmed these assumptions. The fact that bimodality can be a continuous process is important to consider for the understanding of ecological processes and links within ecosystems.
DeAngelis, Donald L.; Borcherding, Jost
2017-01-01
Usually, the origin of a within-cohort bimodal size distribution is assumed to be caused by initial size differences or by one discrete period of accelerated growth for one part of the population. The aim of this study was to determine if more continuous pathways exist allowing shifts from the small to the large fraction within a bimodal age-cohort. Therefore, a Eurasian perch population, which had already developed a bimodal size-distribution and had differential resource use of the two size-cohorts, was examined. Results revealed that formation of a bimodal size-distribution can be a continuous process. Perch from the small size-cohort were able to grow into the large size-cohort by feeding on macroinvertebrates not used by their conspecifics. The diet shifts were accompanied by morphological shape changes. Intra-specific competition seemed to trigger the development towards an increasing number of large individuals. A stage-structured matrix model confirmed these assumptions. The fact that bimodality can be a continuous process is important to consider for the understanding of ecological processes and links within ecosystems. PMID:28650963
Density effect on great tit (Parus major) clutch size intensifies in a polluted environment.
Eeva, Tapio; Lehikoinen, Esa
2013-12-01
Long-term data on a great tit (Parus major) population breeding in a metal-polluted zone around a copper-nickel smelter indicate that, against expectations, the clutch size of this species is decreasing even though metal emissions in the area have decreased considerably over the past two decades. Here, we document long-term population-level changes in the clutch size of P. major and explore if changes in population density, population numbers of competing species, timing of breeding, breeding habitat, or female age distribution can explain decreasing clutch sizes. Clutch size of P. major decreased by one egg in the polluted zone during the past 21 years, while there was no significant change in clutch size in the unpolluted reference zone over this time period. Density of P. major nests was similar in both environments but increased threefold during the study period in both areas (from 0.8 to 2.4 nest/ha). In the polluted zone, clutch size has decreased as a response to a considerable increase in population density, while a corresponding density change in the unpolluted zone did not have such an effect. The other factors studied did not explain the clutch size trend. Fledgling numbers in the polluted environment have been relatively low since the beginning of the study period, and they do not show a corresponding decrease to that noted for the clutch size over the same time period. Our study shows that responses of commonly measured life-history parameters to anthropogenic pollution depend on the structure of the breeding population. Interactions between pollution and intrinsic population characters should therefore be taken into account in environmental studies.
Borcherding, Jost; Beeck, Peter; DeAngelis, Donald L.; Scharf, Werner R.
2010-01-01
Summary 1. In gape-limited predators, body size asymmetries determine the outcome of predator-prey interactions. Due to ontogenetic changes in body size, the intensity of intra- and interspecific interactions may change rapidly between the match situation of a predator-prey system and the mismatch situation in which competition, including competition with the prey, dominates. 2. Based on a physiologically structured population model using the European perch (Perca fluviatilis), analysis was performed on how prey density (bream, Abramis brama), initial size differences in the young-of-the-year (YOY) age cohort of the predator, and phenology (time-gap in hatching of predator and prey) influence the size structure of the predator cohort. 3. In relation to the seasonality of reproduction, the match situation of the predator-prey system occurred when perch hatched earlier than bream and when no gape-size limitations existed, leading to decreased size divergence in the predator age cohort. Decreased size divergence was also found when bream hatched much earlier than perch, preventing perch predation on bream occurring, which, in turn, increased the competitive interaction of the perch with bream for the common prey, zooplankton; i.e. the mismatch situation in which also the mean size of the age cohort of the predator decreased. 4. In between the total match and the mismatch, however, only the largest individuals of the perch age cohort were able to prey on the bream, while smaller conspecifics got trapped in competition with each other and with bream for zooplankton, leading to enlarged differences in growth that increased size divergence. 5. The modelling results were combined with 7 years of field data in a lake, where large differences in the length-frequency distribution of YOY perch were observed after their first summer. These field data corroborate that phenology and prey density per predator are important mechanisms in determining size differences within the YOY age cohort of the predator. 6. The results demonstrate that the switch between competitive interactions and a predator-prey relationship depended on phenology. This resulted in pronounced size differences in the YOY age cohort, which had far-reaching consequences for the entire predator population.
Aboriginal population prospects.
Gray, A; Tesfaghiorghis, H
1993-11-01
The authors examine data from the 1986 and 1991 Australian censuses to assess discrepancies between the census data and past projections of the size and structure of the Aboriginal population. They also "comment on ways in which determinants of Aboriginal population change are diverging from the parameters used for previous projections. We pay particular attention to mortality prospects.... We note the evidence for under-enumeration of the Aboriginal population in particular age groups in the 1991 Census as in previous censuses, and estimate the size of adjustments necessary to correct for some, but not all, of these deficiencies. The analysis shows that Aboriginal fertility increased in the second half of the 1980s." excerpt
Population Genetic Structure of the Tropical Two-Wing Flyingfish (Exocoetus volitans)
Lewallen, Eric A.; Bohonak, Andrew J.; Bonin, Carolina A.; van Wijnen, Andre J.; Pitman, Robert L.; Lovejoy, Nathan R.
2016-01-01
Delineating populations of pantropical marine fish is a difficult process, due to widespread geographic ranges and complex life history traits in most species. Exocoetus volitans, a species of two-winged flyingfish, is a good model for understanding large-scale patterns of epipelagic fish population structure because it has a circumtropical geographic range and completes its entire life cycle in the epipelagic zone. Buoyant pelagic eggs should dictate high local dispersal capacity in this species, although a brief larval phase, small body size, and short lifespan may limit the dispersal of individuals over large spatial scales. Based on these biological features, we hypothesized that E. volitans would exhibit statistically and biologically significant population structure defined by recognized oceanographic barriers. We tested this hypothesis by analyzing cytochrome b mtDNA sequence data (1106 bps) from specimens collected in the Pacific, Atlantic and Indian oceans (n = 266). AMOVA, Bayesian, and coalescent analytical approaches were used to assess and interpret population-level genetic variability. A parsimony-based haplotype network did not reveal population subdivision among ocean basins, but AMOVA revealed limited, statistically significant population structure between the Pacific and Atlantic Oceans (ΦST = 0.035, p<0.001). A spatially-unbiased Bayesian approach identified two circumtropical population clusters north and south of the Equator (ΦST = 0.026, p<0.001), a previously unknown dispersal barrier for an epipelagic fish. Bayesian demographic modeling suggested the effective population size of this species increased by at least an order of magnitude ~150,000 years ago, to more than 1 billion individuals currently. Thus, high levels of genetic similarity observed in E. volitans can be explained by high rates of gene flow, a dramatic and recent population expansion, as well as extensive and consistent dispersal throughout the geographic range of the species. PMID:27736863
Population Genetic Structure of the Tropical Two-Wing Flyingfish (Exocoetus volitans).
Lewallen, Eric A; Bohonak, Andrew J; Bonin, Carolina A; van Wijnen, Andre J; Pitman, Robert L; Lovejoy, Nathan R
2016-01-01
Delineating populations of pantropical marine fish is a difficult process, due to widespread geographic ranges and complex life history traits in most species. Exocoetus volitans, a species of two-winged flyingfish, is a good model for understanding large-scale patterns of epipelagic fish population structure because it has a circumtropical geographic range and completes its entire life cycle in the epipelagic zone. Buoyant pelagic eggs should dictate high local dispersal capacity in this species, although a brief larval phase, small body size, and short lifespan may limit the dispersal of individuals over large spatial scales. Based on these biological features, we hypothesized that E. volitans would exhibit statistically and biologically significant population structure defined by recognized oceanographic barriers. We tested this hypothesis by analyzing cytochrome b mtDNA sequence data (1106 bps) from specimens collected in the Pacific, Atlantic and Indian oceans (n = 266). AMOVA, Bayesian, and coalescent analytical approaches were used to assess and interpret population-level genetic variability. A parsimony-based haplotype network did not reveal population subdivision among ocean basins, but AMOVA revealed limited, statistically significant population structure between the Pacific and Atlantic Oceans (ΦST = 0.035, p<0.001). A spatially-unbiased Bayesian approach identified two circumtropical population clusters north and south of the Equator (ΦST = 0.026, p<0.001), a previously unknown dispersal barrier for an epipelagic fish. Bayesian demographic modeling suggested the effective population size of this species increased by at least an order of magnitude ~150,000 years ago, to more than 1 billion individuals currently. Thus, high levels of genetic similarity observed in E. volitans can be explained by high rates of gene flow, a dramatic and recent population expansion, as well as extensive and consistent dispersal throughout the geographic range of the species.
von Cramon-Taubadel, Noreen; Schroeder, Lauren
2016-10-01
Estimation of the variance-covariance (V/CV) structure of fragmentary bioarchaeological populations requires the use of proxy extant V/CV parameters. However, it is currently unclear whether extant human populations exhibit equivalent V/CV structures. Random skewers (RS) and hierarchical analyses of common principal components (CPC) were applied to a modern human cranial dataset. Cranial V/CV similarity was assessed globally for samples of individual populations (jackknifed method) and for pairwise population sample contrasts. The results were examined in light of potential explanatory factors for covariance difference, such as geographic region, among-group distance, and sample size. RS analyses showed that population samples exhibited highly correlated multivariate responses to selection, and that differences in RS results were primarily a consequence of differences in sample size. The CPC method yielded mixed results, depending upon the statistical criterion used to evaluate the hierarchy. The hypothesis-testing (step-up) approach was deemed problematic due to sensitivity to low statistical power and elevated Type I errors. In contrast, the model-fitting (lowest AIC) approach suggested that V/CV matrices were proportional and/or shared a large number of CPCs. Pairwise population sample CPC results were correlated with cranial distance, suggesting that population history explains some of the variability in V/CV structure among groups. The results indicate that patterns of covariance in human craniometric samples are broadly similar but not identical. These findings have important implications for choosing extant covariance matrices to use as proxy V/CV parameters in evolutionary analyses of past populations. © 2016 Wiley Periodicals, Inc.
Arruda, Mauricio P.; Costa, William P.; Recco-Pimentel, Shirlei M.
2017-01-01
Abstract The Morato's Digger Toad, Proceratophrys moratoi, is a critically endangered toad species with a marked population decline in southern Brazilian Cerrado. Despite this, new populations are being discovered, primarily in the northern part of the distribution range, which raises a number of questions with regard to the conservation status of the species. The present study analyzed the genetic diversity of the species based on microsatellite markers. Our findings permitted the identification of two distinct management units. We found profound genetic structuring between the southern populations, on the left margin of the Tietê River, and all other populations. A marked reduction was observed in the contemporary gene flow among the central populations that are most affected by anthropogenic impacts, such as extensive sugar cane plantations, which presumably decreases habitat connectivity. The results indicated reduced diversity in the southern populations which, combined with a smaller effective population size, may make these populations more susceptible to extinction. We recommend the reclassification of P. moratoi as vulnerable and the establishment of a special protection program for the southern populations. Our results provide important insights about the local extinction of southern populations of this toad. PMID:28590500
Empty Niches after Extinctions Increase Population Sizes of Modern Corals.
Prada, Carlos; Hanna, Bishoy; Budd, Ann F; Woodley, Cheryl M; Schmutz, Jeremy; Grimwood, Jane; Iglesias-Prieto, Roberto; Pandolfi, John M; Levitan, Don; Johnson, Kenneth G; Knowlton, Nancy; Kitano, Hiroaki; DeGiorgio, Michael; Medina, Mónica
2016-12-05
Large environmental fluctuations often cause mass extinctions, extirpating species and transforming communities [1, 2]. While the effects on community structure are evident in the fossil record, demographic consequences for populations of individual species are harder to evaluate because fossils reveal relative, but not absolute, abundances. However, genomic analyses of living species that have survived a mass extinction event offer the potential for understanding the demographic effects of such environmental fluctuations on extant species. Here, we show how environmental variation since the Pliocene has shaped demographic changes in extant corals of the genus Orbicella, major extant reef builders in the Caribbean that today are endangered. We use genomic approaches to estimate previously unknown current and past population sizes over the last 3 million years. Populations of all three Orbicella declined around 2-1 million years ago, coincident with the extinction of at least 50% of Caribbean coral species. The estimated changes in population size are consistent across the three species despite their ecological differences. Subsequently, two shallow-water specialists expanded their population sizes at least 2-fold, over a time that overlaps with the disappearance of their sister competitor species O. nancyi (the organ-pipe Orbicella). Our study suggests that populations of Orbicella species are capable of rebounding from reductions in population size under suitable conditions and that the effective population size of modern corals provides rich standing genetic variation for corals to adapt to climate change. For conservation genetics, our study suggests the need to evaluate genetic variation under appropriate demographic models. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ceballos-Vázquez, Bertha P.; Arellano-Martínez, Marcial; García-Rodríguez, Francisco J.; Culver, Melanie; Reyes-Bonilla, Hector
2018-01-01
The fishery for octopus in Northwest Mexico has increased to over 2,000 tons annually, but to date the specific composition of the catch has been ignored. With at least three main species targeted by artisanal fisheries in the region with distinct life histories, the lack of basic biological information about the distribution, metapopulation size and structure of each species could impede effective fisheries management to avoid overexploitation. We tested if different life histories of three species of octopus could help predict observed patterns of genetic diversity, population dynamics, structure and connectivity and how this information could be relevant to the sustainable management of the fishery. We sequenced two mitochondrial genes and genotyped seven nuclear microsatellite loci to identify the distribution of each species in 20 locations from the Gulf of California and the west coast of the Baja California peninsula. We tested five hypotheses derived from population genetic theory based on differences in the fecundity and dispersal potential for each species. We discovered that Octopus bimaculoides with low fecundity and direct development (without a planktonic phase) had lower average effective population size and genetic diversity, but higher levels of kinship, population structure, and richness of private alleles, than the other two species. These features indicated limited dispersal and high local recruitment. In contrast, O. bimaculatus and O. hubbsorum with higher fecundity and planktonic phase as paralarvae had higher effective population size and genetic diversity, and overall lower kinship and population structure than O. bimaculoides. These observations supported higher levels of gene flow over a larger geographical scale. O. bimaculatus with the longest planktonic paralarval duration and therefore larger dispersal potential had differences in the calculated parameters possibly associated with increased connectivity. We propose O. bimaculoides is more susceptible to over exploitation of small, isolated populations and could have longer recovery times than the other two species. This species may benefit from distinct fishery management within each local population. O. bimaculatus and O. hubbsorum may benefit from fishery management that takes into account metapopulation structure over larger geographic scales and the directionality and magnitude of larval dispersal driven by ocean currents and population connectivity among individuals of each locality. The distribution of each species and variations in their reproductive phenology is also important to consider when establishing marine reserves or seasonal fishing closures. PMID:29472993
Genetics of Central Valley O. mykiss populations: drainage and watershed scale analyses
Nielsen, Jennifer L.; Pavey, Scott A.; Wiacek, Talia; Williams, Ian S.
2005-01-01
Genetic variation at 11 microsatellite loci described population genetic structure for Oncorhynchus mykiss in the Central Valley, California. Spatial and temporal variation was examined as well as relationships between hatchery and putative natural spawning anadromous stocks. Genetic diversity was analyzed at two distinct spatial scales: fine-scale within drainage for five populations on Clear Creek; between and among drainage diversity for 23 populations. Significant regional spatial structure was apparent, both within Clear Creek and among rainbow trout populations throughout the Central Valley. Significant differences in allelic frequencies were found among most river or drainage systems. Less than 1% of the molecular variance could be attributed to differences found between drainages. Hatchery populations were shown to carry similar genetic diversity to geographically proximate wild populations. Central Valley M = 0.626 (below the M < 0.68 threshold) supported recent population reductions within the Central Valley. However, average estimated effective population size was relatively high (Ne = 5066). Significant allelic differences were found in rainbow trout collected above and below impassable dams on the American, Yuba, Stanislaus and Tuolumne rivers. Rainbow trout sampled in Spring Creek were extremely bottlenecked with allelic variation at only two loci and an estimated effective population size of 62, suggesting some local freshwater O. mykiss stocks may be declining rapidly. These data support significant genetic population structure for steelhead and rainbow trout populations within the Central Valley across multiple scales. Careful consideration of this genetic diversity and its distribution across the landscape should be part of future conservation and restoration efforts.
Modeling of LEO Orbital Debris Populations in Centimeter and Millimeter Size Regimes
NASA Technical Reports Server (NTRS)
Xu, Y.-L.; Hill, . M.; Horstman, M.; Krisko, P. H.; Liou, J.-C.; Matney, M.; Stansbery, E. G.
2010-01-01
The building of the NASA Orbital Debris Engineering Model, whether ORDEM2000 or its recently updated version ORDEM2010, uses as its foundation a number of model debris populations, each truncated at a minimum object-size ranging from 10 micron to 1 m. This paper discusses the development of the ORDEM2010 model debris populations in LEO (low Earth orbit), focusing on centimeter (smaller than 10 cm) and millimeter size regimes. Primary data sets used in the statistical derivation of the cm- and mm-size model populations are from the Haystack radar operated in a staring mode. Unlike cataloged objects of sizes greater than approximately 10 cm, ground-based radars monitor smaller-size debris only in a statistical manner instead of tracking every piece. The mono-static Haystack radar can detect debris as small as approximately 5 mm at moderate LEO altitudes. Estimation of millimeter debris populations (for objects smaller than approximately 6 mm) rests largely on Goldstone radar measurements. The bi-static Goldstone radar can detect 2- to 3-mm objects. The modeling of the cm- and mm-debris populations follows the general approach to developing other ORDEM2010-required model populations for various components and types of debris. It relies on appropriate reference populations to provide necessary prior information on the orbital structures and other important characteristics of the debris objects. NASA's LEO-to-GEO Environment Debris (LEGEND) model is capable of furnishing such reference populations in the desired size range. A Bayesian statistical inference process, commonly adopted in ORDEM2010 model-population derivations, changes a priori distribution into a posteriori distribution and thus refines the reference populations in terms of data. This paper describes key elements and major steps in the statistical derivations of the cm- and mm-size debris populations and presents results. Due to lack of data for near 1-mm sizes, the model populations of 1- to 3.16-mm objects are an empirical extension from larger debris. The extension takes into account the results of micro-debris (from 10 micron to 1 mm) population modeling that is based on shuttle impact data, in the hope of making a smooth transition between micron and millimeter size regimes. This paper also includes a brief discussion on issues and potential future work concerning the analysis and interpretation of Goldstone radar data.
Donner, D.M.; Ribic, C.A.; Probst, J.R.
2009-01-01
Forest planners must evaluate how spatiotemporal changes in habitat amount and configuration across the landscape as a result of timber management will affect species' persistence. However, there are few long-term programs available for evaluation. We investigated the response of male Kirtland's Warbler (Dendroica kirtlandii) to 26 years of changing patch and landscape structure during a large, 26-year forestry-habitat restoration program within the warbler's primary breeding range. We found that the average density of male Kirtland's Warblers was related to a different combination of patch and landscape attributes depending on the species' regional population level and habitat amounts on the landscape (early succession jack pine (Pinus banksiana) forests; 15-42% habitat cover). Specifically, patch age and habitat regeneration type were important at low male population and total habitat amounts, while patch age and distance to an occupied patch were important at relatively high population and habitat amounts. Patch age and size were more important at increasing population levels and an intermediate amount of habitat. The importance of patch age to average male density during all periods reflects the temporal buildup and decline of male numbers as habitat suitability within the patch changed with succession. Habitat selection (i.e., preference for wildfire-regenerated habitat) and availability may explain the importance of habitat type and patch size during lower population and habitat levels. The relationship between male density and distance when there was the most habitat on the landscape and the male population was large and still increasing may be explained by the widening spatial dispersion of the increasing male population at the regional scale. Because creating or preserving habitat is not a random process, management efforts would benefit from more investigations of managed population responses to changes in spatial structure that occur through habitat gain rather than habitat loss to further our empirical understanding of general principles of the fragmentation process and habitat cover threshold effects within dynamic landscapes.
Is isolation by adaptation driving genetic divergence among proximate Dolly Varden char populations?
Bond, Morgan H; Crane, Penelope A; Larson, Wesley A; Quinn, Tom P
2014-01-01
Numerous studies of population genetics in salmonids and other anadromous fishes have revealed that population structure is generally organized into geographic hierarchies (isolation by distance), but significant structure can exist in proximate populations due to varying selective pressures (isolation by adaptation). In Chignik Lakes, Alaska, anadromous Dolly Varden char (Salvelinus malma) spawn in nearly all accessible streams throughout the watershed, including those draining directly to an estuary, Chignik Lagoon, into larger rivers, and into lakes. Collections of Dolly Varden fry from 13 streams throughout the system revealed low levels of population structure among streams emptying into freshwater. However, much stronger genetic differentiation was detected between streams emptying into freshwater and streams flowing directly into estuarine environments. This fine-scale reproductive isolation without any physical barriers to migration is likely driven by differences in selection pressures across freshwater and estuarine environments. Estuary tributaries had fewer larger, older juveniles, suggesting an alternative life history of smolting and migration to the marine environment at a much smaller size than occurs in the other populations. Therefore, genetic data were consistent with a scenario where isolation by adaptation occurs between populations of Dolly Varden in the study system, and ecological data suggest that this isolation may partially be a result of a novel Dolly Varden life history of seawater tolerance at a smaller size than previously recognized. PMID:25360283
Firefighter Hand Anthropometry and Structural Glove Sizing: A New Perspective.
Hsiao, Hongwei; Whitestone, Jennifer; Kau, Tsui-Ying; Hildreth, Brooke
2015-12-01
We evaluated the current use and fit of structural firefighting gloves and developed an improved sizing scheme that better accommodates the U.S. firefighter population. Among surveys, 24% to 30% of men and 31% to 62% of women reported experiencing problems with the fit or bulkiness of their structural firefighting gloves. An age-, race/ethnicity-, and gender-stratified sample of 863 male and 88 female firefighters across the United States participated in the study. Fourteen hand dimensions relevant to glove design were measured. A cluster analysis of the hand dimensions was performed to explore options for an improved sizing scheme. The current national standard structural firefighting glove-sizing scheme underrepresents firefighter hand size range and shape variation. In addition, mismatch between existing sizing specifications and hand characteristics, such as hand dimensions, user selection of glove size, and the existing glove sizing specifications, is significant. An improved glove-sizing plan based on clusters of overall hand size and hand/finger breadth-to-length contrast has been developed. This study presents the most up-to-date firefighter hand anthropometry and a new perspective on glove accommodation. The new seven-size system contains narrower variations (standard deviations) for almost all dimensions for each glove size than the current sizing practices. The proposed science-based sizing plan for structural firefighting gloves provides a step-forward perspective (i.e., including two women hand model-based sizes and two wide-palm sizes for men) for glove manufacturers to advance firefighter hand protection. © 2015, Human Factors and Ergonomics Society.
Evolution of population structure in a highly social top predator, the killer whale.
Hoelzel, A Rus; Hey, Jody; Dahlheim, Marilyn E; Nicholson, Colin; Burkanov, Vladimir; Black, Nancy
2007-06-01
Intraspecific resource partitioning and social affiliations both have the potential to structure populations, though it is rarely possible to directly assess the impact of these mechanisms on genetic diversity and population divergence. Here, we address this for killer whales (Orcinus orca), which specialize on prey species and hunting strategy and have long-term social affiliations involving both males and females. We used genetic markers to assess the structure and demographic history of regional populations and test the hypothesis that known foraging specializations and matrifocal sociality contributed significantly to the evolution of population structure. We find genetic structure in sympatry between populations of foraging specialists (ecotypes) and evidence for isolation by distance within an ecotype. Fitting of an isolation with migration model suggested ongoing, low-level migration between regional populations (within and between ecotypes) and small effective sizes for extant local populations. The founding of local populations by matrifocal social groups was indicated by the pattern of fixed mtDNA haplotypes in regional populations. Simulations indicate that this occurred within the last 20,000 years (after the last glacial maximum). Our data indicate a key role for social and foraging behavior in the evolution of genetic structure among conspecific populations of the killer whale.
Aristizábal, Arturo; Tuberquia, Dino J; Sanín, María José
2018-05-11
Genetic diversity is key in providing the variation needed to face stochastic change. Increased habitat loss alters population size and dynamics posing serious threats to the conservation of wild species. Colombia has undergone massive deforestation over the last century, but harbors extraordinary high species diversity of genus Zamia (Cycadales); however, most of the species are under threat. In this study, we targeted the largest accessible remaining populations of 2 closely related species growing as endemics in the Magdalena Valley region of Colombia. We successfully transferred the SSR loci used in previous Zamia studies to these species. In total, we amplified 13 microsatellite loci in 3 wild populations, aiming at: 1) assessing genetic diversity and 2) understanding if the structure found between the 3 populations reflected species and population boundaries due to ecological and historical genetic isolation. We found that the actual population size does not reflect population genetic diversity with a small population (Perales) harboring the highest genetic diversity. In addition, all populations are highly structured regardless of species containment, all showing signs of genetic isolation. Given the high degree of ecological threat, and the inherent biological traits of Cycads, we provide information regarding the prioritization of populations for ex situ management.
Effect of dispersal at range edges on the structure of species ranges
Bahn, V.; O'Connor, R.J.; Krohn, W.B.
2006-01-01
Range edges are of particular interest to ecology because they hold key insights into the limits of the realized niche and associated population dynamics. A recent feature of Oikos summarized the state of the art on range edge ecology. While the typical question is what causes range edges, another important question is how range edges influence the distribution of abundances across a species geographic range when dispersal is present. We used a single species population dynamics model on a coupled-lattice to determine the effects of dispersal on peripheral populations as compared to populations at the core of the range. In the absence of resource gradients, the reduced neighborhood and thus lower connectivity or higher isolation among populations at the range edge alone led to significantly lower population sizes in the periphery of the range than in the core. Lower population sizes mean higher extinction risks and lower adaptability at the range edge, which could inhibit or slow range expansions, and thus effectively stabilize range edges. The strength of this effect depended on the potential population growth rate and the maximum dispersal distance. Lower potential population growth rates led to a stronger effect of dispersal resulting in a higher difference in population sizes between the two areas. The differential effect of dispersal on population sizes at the core and periphery of the range in the absence of resource gradients implies that traditional, habitat-based distribution models could result in misleading conclusions about the habitat quality in the periphery. Lower population sizes at the periphery are also relevant to conservation, because habitat removal not only eliminates populations but also creates new edges. Populations bordering these new edges may experience declines, due to their increased isolation. ?? OIKOS.
Ennen, J.R.; Birkhead, R.D.; Kreiser, B.R.; Gaillard, D.L.; Qualls, C.P.; Lovich, J.E.
2011-01-01
In the southeastern United States, habitat loss has fragmented the landscape and isolated many populations of this region's flora and fauna, which has presumably resulted in smaller population sizes and reduced levels of genetic diversity. For example, forestry practices and anthropogenic disturbances are both cited as factors fragmenting the once extensive range of Gopherus polyphemus. One localized, but extreme, source of fragmentation was the impoundment of the Chattahoochee River in 1963 to form Walter F. George Reservoir along the border of Georgia and Alabama. The formation of this reservoir isolated populations of G. polyphemus on two newly created islands providing a natural laboratory to explore the demographics and genetic effects of fragmentation on a long-lived species. These populations were first surveyed in 1984 and, 21 years later, we revisited them to collect demographic data and tissue samples for genetic analysis. We genotyped all individuals for 10 microsatellite loci, and we tested these data for bottlenecks and compared them to levels of genetic diversity for populations from other portions of the range. We found 45 and two individuals on the larger and smaller islands, respectively. On the large island, however, the population size was identical to the 1984 survey. Only the population structure based on estimated age differed between the 1984 and 2004 surveys, while population size structure based on carapace length, sex ratio, and sex-specific growth rates did not differ. The population of the large island showed genetic evidence of a past bottleneck. The genetic diversity indices from the population of the large island, however, were comparable to or greater than those found at mainland sites, in particular from western populations.
Olsen, J B; Beacham, T D; Wetklo, M; Seeb, L W; Smith, C T; Flannery, B G; Wenburg, J K
2010-04-01
Adult Chinook salmon Oncorhynchus tshawytscha navigate in river systems using olfactory cues that may be influenced by hydrologic factors such as flow and the number, size and spatial distribution of tributaries. Thus, river hydrology may influence both homing success and the level of straying (gene flow), which in turn influences population structure. In this study, two methods of multivariate analysis were used to examine the extent to which four indicators of hydrology and waterway distance explained population structure of O. tshawytscha in the Yukon River. A partial Mantel test showed that the indicators of hydrology were positively associated with broad-scale (Yukon basin) population structure, when controlling for the influence of waterway distance. Multivariate multiple regression showed that waterway distance, supplemented with the number and flow of major drainage basins, explained more variation in broad-scale population structure than any single indicator. At an intermediate spatial scale, indicators of hydrology did not appear to influence population structure after accounting for waterway distance. These results suggest that habitat changes in the Yukon River, which alter hydrology, may influence the basin-wide pattern of population structure in O. tshawytscha. Further research is warranted on the role of hydrology in concert with waterway distance in influencing population structure in Pacific salmon.
Statistical characteristics of dynamics for population migration driven by the economic interests
NASA Astrophysics Data System (ADS)
Huo, Jie; Wang, Xu-Ming; Zhao, Ning; Hao, Rui
2016-06-01
Population migration typically occurs under some constraints, which can deeply affect the structure of a society and some other related aspects. Therefore, it is critical to investigate the characteristics of population migration. Data from the China Statistical Yearbook indicate that the regional gross domestic product per capita relates to the population size via a linear or power-law relation. In addition, the distribution of population migration sizes or relative migration strength introduced here is dominated by a shifted power-law relation. To reveal the mechanism that creates the aforementioned distributions, a dynamic model is proposed based on the population migration rule that migration is facilitated by higher financial gains and abated by fewer employment opportunities at the destination, considering the migration cost as a function of the migration distance. The calculated results indicate that the distribution of the relative migration strength is governed by a shifted power-law relation, and that the distribution of migration distances is dominated by a truncated power-law relation. These results suggest the use of a power-law to fit a distribution may be not always suitable. Additionally, from the modeling framework, one can infer that it is the randomness and determinacy that jointly create the scaling characteristics of the distributions. The calculation also demonstrates that the network formed by active nodes, representing the immigration and emigration regions, usually evolves from an ordered state with a non-uniform structure to a disordered state with a uniform structure, which is evidenced by the increasing structural entropy.
Vandewoestijne, Sofie; Schtickzelle, Nicolas; Baguette, Michel
2008-11-05
Theory predicts that lower dispersal, and associated gene flow, leads to decreased genetic diversity in small isolated populations, which generates adverse consequences for fitness, and subsequently for demography. Here we report for the first time this effect in a well-connected natural butterfly metapopulation with high population densities at the edge of its distribution range. We demonstrate that: (1) lower genetic diversity was coupled to a sharp decrease in adult lifetime expectancy, a key component of individual fitness; (2) genetic diversity was positively correlated to the number of dispersing individuals (indicative of landscape functional connectivity) and adult population size; (3) parameters inferred from capture-recapture procedures (population size and dispersal events between patches) correlated much better with genetic diversity than estimates usually used as surrogates for population size (patch area and descriptors of habitat quality) and dispersal (structural connectivity index). Our results suggest that dispersal is a very important factor maintaining genetic diversity. Even at a very local spatial scale in a metapopulation consisting of large high-density populations interconnected by considerable dispersal rates, genetic diversity can be decreased and directly affect the fitness of individuals. From a biodiversity conservation perspective, this study clearly shows the benefits of both in-depth demographic and genetic analyses. Accordingly, to ensure the long-term survival of populations, conservation actions should not be blindly based on patch area and structural isolation. This result may be especially pertinent for species at their range margins, particularly in this era of rapid environmental change.
Khan, Bilal; Lee, Hsuan-Wei; Fellows, Ian; Dombrowski, Kirk
2018-01-01
Size estimation is particularly important for populations whose members experience disproportionate health issues or pose elevated health risks to the ambient social structures in which they are embedded. Efforts to derive size estimates are often frustrated when the population is hidden or hard-to-reach in ways that preclude conventional survey strategies, as is the case when social stigma is associated with group membership or when group members are involved in illegal activities. This paper extends prior research on the problem of network population size estimation, building on established survey/sampling methodologies commonly used with hard-to-reach groups. Three novel one-step, network-based population size estimators are presented, for use in the context of uniform random sampling, respondent-driven sampling, and when networks exhibit significant clustering effects. We give provably sufficient conditions for the consistency of these estimators in large configuration networks. Simulation experiments across a wide range of synthetic network topologies validate the performance of the estimators, which also perform well on a real-world location-based social networking data set with significant clustering. Finally, the proposed schemes are extended to allow them to be used in settings where participant anonymity is required. Systematic experiments show favorable tradeoffs between anonymity guarantees and estimator performance. Taken together, we demonstrate that reasonable population size estimates are derived from anonymous respondent driven samples of 250-750 individuals, within ambient populations of 5,000-40,000. The method thus represents a novel and cost-effective means for health planners and those agencies concerned with health and disease surveillance to estimate the size of hidden populations. We discuss limitations and future work in the concluding section.
Zhao, Zhongqiu; Wang, Lianhua; Bai, Zhongke; Pan, Ziguan; Wang, Yun
2015-07-01
Afforestation of native tree species is often recommended for ecological restoration in mining areas, but the understanding of the ecological processes of restored vegetation is quite limited. In order to provide insight of the ecological processes of restored vegetation, in this study, we investigate the development of the population structure and spatial distribution patterns of restored Robinia pseudoacacia (ROPS) and Pinus tabuliformis (PITA) mixed forests during the 17 years of the mine spoil period of the Pingshuo opencast mine, Shanxi Province, China. After a 17-year succession, apart from the two planted species, Ulmus pumila (ULPU), as an invasive species, settled in the plot along with a large number of small diameter at breast height (DBH) size. In total, there are 10,062 living individual plants, much more than that at the plantation (5105), and ROPS had become the dominant species with a section area with a breast height of 9.40 m(2) hm(-2) and a mean DBH of 6.72 cm, much higher than both PITA and ULPU. The DBH size classes of all the total species showed inverted J-shaped distributions, which may have been a result of the large number of small regenerated ULPU trees. The DBH size classes of both ROPS and PITA showed peak-type structures with individuals mainly gathering in the moderate DBH size class, indicating a relatively healthy DBH size class structure. Meanwhile, invasive ULPU were distributed in a clear L shape, concentrating on the small DBH size class, indicating a relatively low survival rate for adult trees. Both ROPS and PITA species survival in the plantation showed uniform and aggregated distribution at small scales and random with scales increasing. ULPU showed a strong aggregation at small scales as well as random with scales increasing. Both the population structure and spatial distribution indicated that ROPS dominates and will continue to dominate the community in the future succession, which should be continuously monitored.
Andres Perez-Figueroa; Rick L. Wallen; Tiago Antao; Jason A. Coombs; Michael K. Schwartz; P. J. White; Gordon Luikart
2012-01-01
Loss of genetic variation through genetic drift can reduce population viability. However, relatively little is known about loss of variation caused by the combination of fluctuating population size and variance in reproductive success in age structured populations. We built an individual-based computer simulation model to examine how actual culling and hunting...
Jennings, Cecil A.; Zigler, Stephen J.
2000-01-01
Paddlefish (Polyodon spathula, Polyodontidae) are large, mostly-riverine fish that once were abundant in medium- to large-sized river systems throughout much of the central United States. Concern for paddlefish populations has grown from a regional fisheries issue to one of national importance for the United States. In 1989, the U.S. Fish and Wildlife Service (USFWS) was petitioned to list paddlefish as a federally threatened species under the Endangered Species Act. The petition was not granted, primarily because of a lack of empirical data on paddlefish population size, age structure, growth, or harvest rates across the present 22-state range. Nonetheless, concern for paddlefish populations prompted the USFWS to recommend that paddlefish be protected through the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). The addition of paddlefish to Appendix II of CITES, which was approved in March 1992, provides a mechanism to curtail illegal trade in paddlefish and their parts and supports a variety of conservation plans. Paddlefish populations have been negatively affected by overharvest, river modifications, and pollution, but the paddlefish still occupies much of its historic range and most extant populations seem to be stable. Although many facets of paddlefish biology and ecology are well understood, the lack of information on larval and juvenile ecology, mechanisms that determine recruitment, population size and vital rates, interjurisdictional movements, and the effects of anthropogenic activities present significant obstacles for managing paddlefish populations. Questions about the size and structure of local populations, and how such populations are affected by navigation traffic, dams, and pollution are regarded as medium priority areas for future research. The availability of suitable spawning habitat and overall reproductive success in impounded rivers are unknown and represent critical areas for future research. Research on reproductive and recruitment success in impounded rivers have significant implications for managing paddlefish, as rivers are modified further for human use.
Epidemic Process over the Commute Network in a Metropolitan Area
Yashima, Kenta; Sasaki, Akira
2014-01-01
An understanding of epidemiological dynamics is important for prevention and control of epidemic outbreaks. However, previous studies tend to focus only on specific areas, indicating that application to another area or intervention strategy requires a similar time-consuming simulation. Here, we study the epidemic dynamics of the disease-spread over a commute network, using the Tokyo metropolitan area as an example, in an attempt to elucidate the general properties of epidemic spread over a commute network that could be used for a prediction in any metropolitan area. The model is formulated on the basis of a metapopulation network in which local populations are interconnected by actual commuter flows in the Tokyo metropolitan area and the spread of infection is simulated by an individual-based model. We find that the probability of a global epidemic as well as the final epidemic sizes in both global and local populations, the timing of the epidemic peak, and the time at which the epidemic reaches a local population are mainly determined by the joint distribution of the local population sizes connected by the commuter flows, but are insensitive to geographical or topological structure of the network. Moreover, there is a strong relation between the population size and the time that the epidemic reaches this local population and we are able to determine the reason for this relation as well as its dependence on the commute network structure and epidemic parameters. This study shows that the model based on the connection between the population size classes is sufficient to predict both global and local epidemic dynamics in metropolitan area. Moreover, the clear relation of the time taken by the epidemic to reach each local population can be used as a novel measure for intervention; this enables efficient intervention strategies in each local population prior to the actual arrival. PMID:24905831
NASA Astrophysics Data System (ADS)
Fujita, Kazuhiko; Otomaru, Maki; Lopati, Paeniu; Hosono, Takashi; Kayanne, Hajime
2016-03-01
Carbonate production by large benthic foraminifers is sometimes comparable to that of corals and coralline algae, and contributes to sedimentation on reef islands and beaches in the tropical Pacific. Population dynamic data, such as population density and size structure (size-frequency distribution), are vital for an accurate estimation of shell production of foraminifers. However, previous production estimates in tropical environments were based on a limited sampling period with no consideration of seasonality. In addition, no comparisons were made of various estimation methods to determine more accurate estimates. Here we present the annual gross shell production rate of Baculogypsina sphaerulata, estimated based on population dynamics studied over a 2-yr period on an ocean reef flat of Funafuti Atoll (Tuvalu, tropical South Pacific). The population density of B. sphaerulata increased from January to March, when northwest winds predominated and the study site was on the leeward side of reef islands, compared to other seasons when southeast trade winds predominated and the study site was on the windward side. This result suggested that wind-driven flows controlled the population density at the study site. The B. sphaerulata population had a relatively stationary size-frequency distribution throughout the study period, indicating no definite intensive reproductive period in the tropical population. Four methods were applied to estimate the annual gross shell production rates of B. sphaerulata. The production rates estimated by three of the four methods (using monthly biomass, life tables and growth increment rates) were in the order of hundreds of g CaCO3 m-2 yr-1 or cm-3 m-2 yr-1, and the simple method using turnover rates overestimated the values. This study suggests that seasonal surveys should be undertaken of population density and size structure as these can produce more accurate estimates of shell productivity of large benthic foraminifers.
Miranda, Nelson A F; Perissinotto, Renzo; Appleton, Christopher C
2011-01-01
Estuaries and coastal lakes receive little attention despite being heavily invaded by non-indigenous invasive species (NIS). In these situations, studies of population dynamics in invaded habitats can provide valuable insights into how NIS interact with new environments. Tarebia granifera is a prosobranch gastropod from south-east Asia which has invaded other sub-tropical parts of the world. This study addresses whether a small number of key environmental factors influences gastropod communities, and specifically how the population density and size structure of T. granifera were influenced by environmental change in estuaries and coastal lakes in southern Africa. T. granifera's density, number of brooded juveniles and size structure were measured at the St. Lucia Estuary, Mgobozeleni Estuary, Lake Sibaya and Lake Nhlange. Size structure was classified according to shell height (SH). All dissected individuals were found to be female and free from trematode infection. Salinity, water depth, temperature, and pH were the main factors correlated with population density of gastropod communities. T. granifera often reached densities well over 1000 ind. m(-2), displacing indigenous gastropods and becoming a dominant component of the benthic community. T. granifera successfully invaded estuaries despite frequent exposure to high salinity and desiccation, which could together eliminate >97% of the population. The persistence of T. granifera was ensured due to its high fecundity and the environmental tolerance of large adults (20-30 mm SH) which carried an average of 158±12.8 SD brooded juveniles. Repeat introductions were not essential for the success of this parthenogenetic NIS. There is a need for a broader study on the reproductive biology of T. granifera (including the previously overlooked "brood pouch ecology"), which affects population dynamics and may be relevant to other parthenogenetic NIS, such as Melanoides tuberculata and Potamopyrgus antipodarum.
NASA Astrophysics Data System (ADS)
Fan, Tian-E.; Shao, Gui-Fang; Ji, Qing-Shuang; Zheng, Ji-Wen; Liu, Tun-dong; Wen, Yu-Hua
2016-11-01
Theoretically, the determination of the structure of a cluster is to search the global minimum on its potential energy surface. The global minimization problem is often nondeterministic-polynomial-time (NP) hard and the number of local minima grows exponentially with the cluster size. In this article, a multi-populations multi-strategies differential evolution algorithm has been proposed to search the globally stable structure of Fe and Cr nanoclusters. The algorithm combines a multi-populations differential evolution with an elite pool scheme to keep the diversity of the solutions and avoid prematurely trapping into local optima. Moreover, multi-strategies such as growing method in initialization and three differential strategies in mutation are introduced to improve the convergence speed and lower the computational cost. The accuracy and effectiveness of our algorithm have been verified by comparing the results of Fe clusters with Cambridge Cluster Database. Meanwhile, the performance of our algorithm has been analyzed by comparing the convergence rate and energy evaluations with the classical DE algorithm. The multi-populations, multi-strategies mutation and growing method in initialization in our algorithm have been considered respectively. Furthermore, the structural growth pattern of Cr clusters has been predicted by this algorithm. The results show that the lowest-energy structure of Cr clusters contains many icosahedra, and the number of the icosahedral rings rises with increasing size.
CFD-PBM coupled simulation of a nanobubble generator with honeycomb structure
NASA Astrophysics Data System (ADS)
Ren, F.; Noda, N. A.; Ueda, T.; Sano, Y.; Takase, Y.; Umekage, T.; Yonezawa, Y.; Tanaka, H.
2018-06-01
In recent years, nanobubble technologies have drawn great attention due to their wide applications in many fields of science and technology. The nitrogen nanobubble water circulation can be used to slow the progressions of oxidation and spoilage for the seafood long- term storage. From previous studies, a kind of honeycomb structure for high-efficiency nanobubble generation has been proposed. In this paper, the bubbly flow in the honeycomb structure was studied. The numerical simulations of honeycomb structure were performed by using a computational fluid dynamics–population balance model (CFD-PBM) coupled model. The numerical model was based on the Eulerian multiphase model and the population balance model (PBM) was used to calculate the gas bubble size distribution. The bubble coalescence and breakage were included. Considering the effect of bubble diameter on the fluid flow, the phase interactions were coupled with the PBM. The bubble size distributions in the honeycomb structure under different work conditions were predicted. The experimental results were compared with the simulation predictions.
Aegisdóttir, Hafdís Hanna; Kuss, Patrick; Stöcklin, Jürg
2009-12-01
Gene flow and genetic variability within and among alpine plant populations can be greatly influenced by the steep environmental gradients and heterogeneous topography of alpine landscapes. In this study, the effects are examined of natural isolation of alpine habitats on genetic diversity and geographic structure in populations of C. thyrsoides, a rare and isolated European Alpine monocarpic perennial with limited seed dispersal capacity. Molecular diversity was analysed for 736 individuals from 32 populations in the Swiss Alps and adjacent Jura mountains using five polymorphic microsatellite loci. Pollen flow was estimated using pollen grain-sized fluorescent powder. In addition, individual-based Bayesian approaches were applied to examine population structure. High within-population genetic diversity (H(E) = 0.76) and a relatively low inbreeding coefficient (F(IS) = 0.022) were found. Genetic differentiation among populations measured with a standardized measure was considerable (G'(ST) = 0.53). A significant isolation-by-distance relationship was found (r = 0.62, P < 0.001) and a significant geographic sub-structure, coinciding with proposed postglacial migration patterns. Altitudinal location and size of populations did not influence molecular variation. Direct measures of pollen flow revealed that insect-mediated pollen dispersal was restricted to short distances within a population. The natural isolation of suitable habitats for C. thyrsoides restricts gene flow among the populations as expected for a monocarpic species with very limited seed dispersal capacities. The observed high within-population genetic diversity in this rare monocarpic perennial is best explained by its outcrossing behaviour, long-lived individuals and overlapping generations. Despite the high within-population genetic diversity, the considerable genetic differentiation and the clear western-eastern differentiation in this species merits consideration in future conservation efforts.
Investigating the effect of chemical stress and resource ...
Modeling exposure and recovery of fish and wildlife populations after stressor mitigation serves as a basis for evaluating population status and remediation success. The Atlantic killifish (Fundulus heteroclitus) is an important and well-studied model organism for understanding the effects of pollutants and other stressors in estuarine and marine ecosystems. Herein, we develop a density dependent matrix population model for Atlantic killifish that analyzes both size-structure and age class-structure of the population so that we could readily incorporate output from a dynamic energy budget (DEB) model currently under development. This population modeling approach emphasizes application in conjunction with field monitoring efforts (e.g., through effects-based monitoring programs) and/or laboratory analysis to link effects due to chemical stress to adverse outcomes in whole organisms and populations. We applied the model using data for killifish exposed to dioxin-like compounds, taken from a previously published study. Specifically, the model was used to investigate population trajectories for Atlantic killifish with dietary exposures to 112, 296, and 875 pg/g of dioxin with effects on fertility and survival rates. All effects were expressed relative to control fish. Further, the population model was employed to examine age and size distributions of a population exposed to resource limitation in addition to chemical stress. For each dietary exposure concentration o
Husseneder, Claudia; Donaldson, Jennifer R.; Foil, Lane D.
2016-01-01
The greenhead horse fly, Tabanus nigrovittatus Macquart, is frequently found in coastal marshes of the Eastern United States. The greenhead horse fly larvae are top predators in the marsh and thus vulnerable to changes in the environment, and the adults potentially are attracted to polarized surfaces like oil. Therefore, horse fly populations could serve as bioindicators of marsh health and toxic effects of oil intrusion. In this study, we describe the impact of the April 2010 Deep Water Horizon oil spill in the Gulf of Mexico on tabanid population abundance and genetics as well as mating structure. Horse fly populations were sampled biweekly from oiled and unaffected locations immediately after the oil spill in June 2010 until October 2011. Horse fly abundance estimates showed severe crashes of tabanid populations in oiled areas. Microsatellite genotyping of six pristine and seven oiled populations at ten polymorphic loci detected genetic bottlenecks in six of the oiled populations in association with fewer breeding parents, reduced effective population size, lower number of family clusters and fewer migrants among populations. This is the first study assessing the impact of oil contamination at the level of a top arthropod predator of the invertebrate community in salt marshes. PMID:26755069
Genetic structure of cougar populations across the Wyoming basin: Metapopulation or megapopulation
Anderson, C.R.; Lindzey, F.G.; McDonald, D.B.
2004-01-01
We examined the genetic structure of 5 Wyoming cougar (Puma concolor) populations surrounding the Wyoming Basin, as well as a population from southwestern Colorado. When using 9 microsatellite DNA loci, observed heterozygosity was similar among populations (HO = 0.49-0.59) and intermediate to that of other large carnivores. Estimates of genetic structure (FST = 0.028, RST = 0.029) and number of migrants per generation (Nm) suggested high gene flow. Nm was lowest between distant populations and highest among adjacent populations. Examination of these data, plus Mantel test results of genetic versus geographic distance (P ??? 0.01), suggested both isolation by distance and an effect of habitat matrix. Bayesian assignment to population based on individual genotypes showed that cougars in this region were best described as a single panmictic population. Total effective population size for cougars in this region ranged from 1,797 to 4,532 depending on mutation model and analytical method used. Based on measures of gene flow, extinction risk in the near future appears low. We found no support for the existence of metapopulation structure among cougars in this region.
Recombination Processes and Nonlinear Markov Chains.
Pirogov, Sergey; Rybko, Alexander; Kalinina, Anastasia; Gelfand, Mikhail
2016-09-01
Bacteria are known to exchange genetic information by horizontal gene transfer. Since the frequency of homologous recombination depends on the similarity between the recombining segments, several studies examined whether this could lead to the emergence of subspecies. Most of them simulated fixed-size Wright-Fisher populations, in which the genetic drift should be taken into account. Here, we use nonlinear Markov processes to describe a bacterial population evolving under mutation and recombination. We consider a population structure as a probability measure on the space of genomes. This approach implies the infinite population size limit, and thus, the genetic drift is not assumed. We prove that under these conditions, the emergence of subspecies is impossible.
ERIC Educational Resources Information Center
Marzuki, Ariffin Bin; Peng, J. Y.
A profile of Malaysia is sketched in this paper. Emphasis is placed on the nature, scope, and accomplishments of population activities in the country. Topics and sub-topics include: location and description of the country; population (size, growth patterns, age structure, urban/rural distribution, ethnic and religious composition, migration,…
ERIC Educational Resources Information Center
Population Council, New York, NY.
A profile of Jamaica is sketched in this paper. Emphasis is placed on the nature, scope, and accomplishments of population activities in the country. Topics and sub-topics include: location and description of the island; population - size, growth patterns, age structure, rural/urban distribution, ethnic and religious composition, literacy, future…
ERIC Educational Resources Information Center
Population Council, New York, NY.
A profile of Indonesia is sketched in this paper. Emphasis is placed on the nature, scope, and accomplishments of population activities in the country. Topics and sub-topics include: location and description of the country; population - size, growth patterns, age structure, urban/rural distribution, ethnic and religious composition, migration,…
ERIC Educational Resources Information Center
Keeny, S. M.; And Others
A profile of Taiwan is sketched in this paper. Emphasis is placed on the nature, scope, and accomplishments of population activities in the country. Topics and sub-topics include: location and description of the country; population (size, growth patterns, age structure, urban/rural distribution, ethnic and religious composition, migration,…
Lourenço, André; Álvarez, David; Wang, Ian J; Velo-Antón, Guillermo
2017-03-01
Urbanization is a severe form of habitat fragmentation that can cause many species to be locally extirpated and many others to become trapped and isolated within an urban matrix. The role of drift in reducing genetic diversity and increasing genetic differentiation is well recognized in urban populations. However, explicit incorporation and analysis of the demographic and temporal factors promoting drift in urban environments are poorly studied. Here, we genotyped 15 microsatellites in 320 fire salamanders from the historical city of Oviedo (Est. 8th century) to assess the effects of time since isolation, demographic history (historical effective population size; N e ) and patch size on genetic diversity, population structure and contemporary N e . Our results indicate that urban populations of fire salamanders are highly differentiated, most likely due to the recent N e declines, as calculated in coalescence analyses, concomitant with the urban development of Oviedo. However, urbanization only caused a small loss of genetic diversity. Regression modelling showed that patch size was positively associated with contemporary N e , while we found only moderate support for the effects of demographic history when excluding populations with unresolved history. This highlights the interplay between different factors in determining current genetic diversity and structure. Overall, the results of our study on urban populations of fire salamanders provide some of the very first insights into the mechanisms affecting changes in genetic diversity and population differentiation via drift in urban environments, a crucial subject in a world where increasing urbanization is forecasted. © 2017 John Wiley & Sons Ltd.
Complex Population Dynamics and the Coalescent Under Neutrality
Volz, Erik M.
2012-01-01
Estimates of the coalescent effective population size Ne can be poorly correlated with the true population size. The relationship between Ne and the population size is sensitive to the way in which birth and death rates vary over time. The problem of inference is exacerbated when the mechanisms underlying population dynamics are complex and depend on many parameters. In instances where nonparametric estimators of Ne such as the skyline struggle to reproduce the correct demographic history, model-based estimators that can draw on prior information about population size and growth rates may be more efficient. A coalescent model is developed for a large class of populations such that the demographic history is described by a deterministic nonlinear dynamical system of arbitrary dimension. This class of demographic model differs from those typically used in population genetics. Birth and death rates are not fixed, and no assumptions are made regarding the fraction of the population sampled. Furthermore, the population may be structured in such a way that gene copies reproduce both within and across demes. For this large class of models, it is shown how to derive the rate of coalescence, as well as the likelihood of a gene genealogy with heterochronous sampling and labeled taxa, and how to simulate a coalescent tree conditional on a complex demographic history. This theoretical framework encapsulates many of the models used by ecologists and epidemiologists and should facilitate the integration of population genetics with the study of mathematical population dynamics. PMID:22042576
Household demographic determinants of Ebola epidemic risk.
Adams, Ben
2016-03-07
A salient characteristic of Ebola, and some other infectious diseases such as Tuberculosis, is intense transmission among small groups of cohabitants and relatively limited indiscriminate transmission in the wider population. Here we consider a mathematical model for an Ebola epidemic in a population structured into households of equal size. We show that household size, a fundamental demographic unit, is a critical factor that determines the vulnerability of a community to epidemics, and the effort required to control them. Our analysis is based on the household reproduction number, but we also consider the basic reproduction number, intrinsic growth rate and final epidemic size. We show that, when other epidemiological parameters are kept the same, all of these quantifications of epidemic growth and size are increased by larger households and more intense within-household transmission. We go on to model epidemic control by case detection and isolation followed by household quarantine. We show that, if household quarantine is ineffective, the critical probability with which cases must be detected to halt an epidemic increases significantly with each increment in household size and may be a very challenging target for communities composed of large households. Effective quarantine may, however, mitigate the detrimental impact of large household sizes. We conclude that communities composed of large households are fundamentally more vulnerable to epidemics of infectious diseases primarily transmitted by close contact, and any assessment of control strategies for these epidemics should take into account the demographic structure of the population. Copyright © 2015 Elsevier Ltd. All rights reserved.
How Life History Can Sway the Fixation Probability of Mutants
Li, Xiang-Yi; Kurokawa, Shun; Giaimo, Stefano; Traulsen, Arne
2016-01-01
In this work, we study the effects of demographic structure on evolutionary dynamics when selection acts on reproduction, survival, or both. In contrast to the previously discovered pattern that the fixation probability of a neutral mutant decreases while the population becomes younger, we show that a mutant with a constant selective advantage may have a maximum or a minimum of the fixation probability in populations with an intermediate fraction of young individuals. This highlights the importance of life history and demographic structure in studying evolutionary dynamics. We also illustrate the fundamental differences between selection on reproduction and selection on survival when age structure is present. In addition, we evaluate the relative importance of size and structure of the population in determining the fixation probability of the mutant. Our work lays the foundation for also studying density- and frequency-dependent effects in populations when demographic structures cannot be neglected. PMID:27129737
The structural and functional connectivity of the grassland plant Lychnis flos-cuculi
Aavik, T; Holderegger, R; Bolliger, J
2014-01-01
Understanding the relationship between structural and functional connectivity is essential for successful restoration and conservation management, particularly in intensely managed agricultural landscapes. We evaluated the relationship between structural and functional connectivity of the wetland plant Lychnis flos-cuculi in a fragmented agricultural landscape using landscape genetic and network approaches. First, we studied the effect of structural connectivity, such as geographic distance and various landscape elements (forest, agricultural land, settlements and ditch verges), on gene flow among populations as a measurement of functional connectivity. Second, we examined the effect of structural graph-theoretic connectivity measures on gene flow among populations and on genetic diversity within populations of L. flos-cuculi. Among landscape elements, forests hindered gene flow in L. flos-cuculi, whereas gene flow was independent of geographic distance. Among the structural graph-theoretic connectivity variables, only intrapopulation connectivity, which was based on population size, had a significant positive effect on gene flow, that is, more gene flow took place among larger populations. Unexpectedly, interpopulation connectivity of populations, which takes into account the spatial location and distance among populations, did not influence gene flow in L. flos-cuculi. However, higher observed heterozygosity and lower inbreeding was observed in populations characterised by higher structural interpopulation connectivity. This finding shows that a spatially coherent network of populations is significant for maintaining the genetic diversity of populations. Nevertheless, lack of significant relationships between gene flow and most of the structural connectivity measures suggests that structural connectivity does not necessarily correspond to functional connectivity. PMID:24253937
Budy, Phaedra; Luecke, Chris
2014-09-01
Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40-96%; SGR range 0.03-1.5%) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28-34%) under climate change scenarios led to much greater growth rates (23-34%). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (Ro) and decrease in generation time (Go). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a sub-set of small char to "break through," thus setting the cycle in population structure.
[New view on the population genetic structure of marine fish].
Salmenkova, E A
2011-11-01
The view on homogeneous population genetic structure in many marine fish with high mobility has changed significantly during the last ten years. Molecular genetic population studies over the whole ranges of such species as Atlantic herring and Atlantic cod showed a complex picture of spatial differentiation both on the macrogeographic and, in many areas, on the microgeographic scale, although the differentiation for neutral molecular markers was low. It was established that the migration activity of such fish is constrained in many areas of the species range by hydrological and physicochemical transition zones (environmental gradients), as well as gyres in the spawning regions. Natal homing was recorded in a number of marine fish species. Existing in marine fish constraints of gene migration and a very high variance of reproductive success determine a significantly smaller proportion of effective reproductive size of their populations in the total population size, which generates more complex abundance dynamics than assumed earlier. The various constraints on gene migration and natal homing in marine fish promote the formation of local adaptations at ecologically important phenotypic traits. Effects of selection underlying adaptations are actively investigated in marine fish on the genomic level, using approaches of population genomics. The knowledge of adaptive intraspecific structure enables understanding the ecological and evolutionary processes, that influence biodiversity and providing spatial frames for conservation of genetic resources under commercial exploitation. Contemporary views on the population genetic and adaptive structures or biocomplexity in marine fish support and develop the main principles of the conception of systemic organization of the species and its regional populations, which were advanced by Yu.P. Altukhov and Yu.G. Rychkov.
Budy, Phaedra; Luecke, Chris
2014-01-01
Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40–96 %; SGR range 0.03–1.5 %) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28–34 %) under climate change scenarios led to much greater growth rates (23–34 %). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (Ro) and decrease in generation time (Go). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a “resource pulse,” allowing a sub-set of small char to “break through,” thus setting the cycle in population structure.
Ohta, T.
1992-01-01
There are several unsolved problems concerning the model of nearly neutral mutations. One is the interaction of subdivided population structure and weak selection that spatially fluctuates. The model of nearly neutral mutations whose selection coefficient spatially fluctuates has been studied by adopting the island model with periodic extinction-recolonization. Both the number of colonies and the migration rate play significant roles in determining mutants' behavior, and selection is ineffective when the extinction-recolonization is frequent with low migration rate. In summary, the number of mutant substitutions decreases and the polymorphism increases by increasing the total population size, and/or decreasing the extinction-recolonization rate. However, by increasing the total size of the population, the mutant substitution rate does not become as low when compared with that in panmictic populations, because of the extinction-recolonization, especially when the migration rate is limited. It is also found that the model satisfactorily explains the contrasting patterns of molecular polymorphisms observed in sibling species of Drosophila, including heterozygosity, proportion of polymorphism and fixation index. PMID:1582566
Population properties affect inbreeding avoidance in moose
Herfindal, Ivar; Haanes, Hallvard; Røed, Knut H.; Solberg, Erling J.; Markussen, Stine S.; Heim, Morten; Sæther, Bernt-Erik
2014-01-01
Mechanisms reducing inbreeding are thought to have evolved owing to fitness costs of breeding with close relatives. In small and isolated populations, or populations with skewed age- or sex distributions, mate choice becomes limited, and inbreeding avoidance mechanisms ineffective. We used a unique individual-based dataset on moose from a small island in Norway to assess whether inbreeding avoidance was related to population structure and size, expecting inbreeding avoidance to be greater in years with larger populations and even adult sex ratios. The probability that a potential mating event was realized was negatively related to the inbreeding coefficient of the potential offspring, with a stronger relationship in years with a higher proportion or number of males in the population. Thus, adult sex ratio and population size affect the degree of inbreeding avoidance. Consequently, conservation managers should aim for sex ratios that facilitate inbreeding avoidance, especially in small and isolated populations. PMID:25540152
Selection on an extreme weapon in the frog-legged leaf beetle (Sagra femorata).
O'Brien, Devin M; Katsuki, Masako; Emlen, Douglas J
2017-11-01
Biologists have been fascinated with the extreme products of sexual selection for decades. However, relatively few studies have characterized patterns of selection acting on ornaments and weapons in the wild. Here, we measure selection on a wild population of weapon-bearing beetles (frog-legged leaf beetles: Sagra femorata) for two consecutive breeding seasons. We consider variation in both weapon size (hind leg length) and in relative weapon size (deviations from the population average scaling relationship between hind leg length and body size), and provide evidence for directional selection on weapon size per se and stabilizing selection on a particular scaling relationship in this population. We suggest that whenever growth in body size is sensitive to external circumstance such as nutrition, then considering deviations from population-level scaling relationships will better reflect patterns of selection relevant to evolution of the ornament or weapon than will variation in trait size per se. This is because trait-size versus body-size scaling relationships approximate underlying developmental reaction norms relating trait growth with body condition in these species. Heightened condition-sensitive expression is a hallmark of the exaggerated ornaments and weapons favored by sexual selection, yet this plasticity is rarely reflected in the way we think about-and measure-selection acting on these structures in the wild. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Firefighter Hand Anthropometry and Structural Glove Sizing: A New Perspective
Hsiao, Hongwei; Whitestone, Jennifer; Kau, Tsui-Ying; Hildreth, Brooke
2015-01-01
Objective We evaluated the current use and fit of structural firefighting gloves and developed an improved sizing scheme that better accommodates the U.S. firefighter population. Background Among surveys, 24% to 30% of men and 31% to 62% of women reported experiencing problems with the fit or bulkiness of their structural firefighting gloves. Method An age-, race/ethnicity-, and gender-stratified sample of 863 male and 88 female firefighters across the United States participated in the study. Fourteen hand dimensions relevant to glove design were measured. A cluster analysis of the hand dimensions was performed to explore options for an improved sizing scheme. Results The current national standard structural firefighting glove-sizing scheme underrepresents firefighter hand size range and shape variation. In addition, mismatch between existing sizing specifications and hand characteristics, such as hand dimensions, user selection of glove size, and the existing glove sizing specifications, is significant. An improved glove-sizing plan based on clusters of overall hand size and hand/finger breadth-to-length contrast has been developed. Conclusion This study presents the most up-to-date firefighter hand anthropometry and a new perspective on glove accommodation. The new seven-size system contains narrower variations (standard deviations) for almost all dimensions for each glove size than the current sizing practices. Application The proposed science-based sizing plan for structural firefighting gloves provides a step-forward perspective (i.e., including two women hand model–based sizes and two wide-palm sizes for men) for glove manufacturers to advance firefighter hand protection. PMID:26169309
Environmental factors that impact population sizes, migration rates, mutation rates or selective forces can leave lasting genetic imprints on patterns of intraspecific genetic variation. This suggests that measures of genetic diversity may be useful indicators of the condition o...
González, Edgar J; Martorell, Carlos
2013-07-01
Frequently, vital rates are driven by directional, long-term environmental changes. Many of these are of great importance, such as land degradation, climate change, and succession. Traditional demographic methods assume a constant or stationary environment, and thus are inappropriate to analyze populations subject to these changes. They also require repeat surveys of the individuals as change unfolds. Methods for reconstructing such lengthy processes are needed. We present a model that, based on a time series of population size structures and densities, reconstructs the impact of directional environmental changes on vital rates. The model uses integral projection models and maximum likelihood to identify the rates that best reconstructs the time series. The procedure was validated with artificial and real data. The former involved simulated species with widely different demographic behaviors. The latter used a chronosequence of populations of an endangered cactus subject to increasing anthropogenic disturbance. In our simulations, the vital rates and their change were always reconstructed accurately. Nevertheless, the model frequently produced alternative results. The use of coarse knowledge of the species' biology (whether vital rates increase or decrease with size or their plausible values) allowed the correct rates to be identified with a 90% success rate. With real data, the model correctly reconstructed the effects of disturbance on vital rates. These effects were previously known from two populations for which demographic data were available. Our procedure seems robust, as the data violated several of the model's assumptions. Thus, time series of size structures and densities contain the necessary information to reconstruct changing vital rates. However, additional biological knowledge may be required to provide reliable results. Because time series of size structures and densities are available for many species or can be rapidly generated, our model can contribute to understand populations that face highly pressing environmental problems.
González, Edgar J; Martorell, Carlos
2013-01-01
Frequently, vital rates are driven by directional, long-term environmental changes. Many of these are of great importance, such as land degradation, climate change, and succession. Traditional demographic methods assume a constant or stationary environment, and thus are inappropriate to analyze populations subject to these changes. They also require repeat surveys of the individuals as change unfolds. Methods for reconstructing such lengthy processes are needed. We present a model that, based on a time series of population size structures and densities, reconstructs the impact of directional environmental changes on vital rates. The model uses integral projection models and maximum likelihood to identify the rates that best reconstructs the time series. The procedure was validated with artificial and real data. The former involved simulated species with widely different demographic behaviors. The latter used a chronosequence of populations of an endangered cactus subject to increasing anthropogenic disturbance. In our simulations, the vital rates and their change were always reconstructed accurately. Nevertheless, the model frequently produced alternative results. The use of coarse knowledge of the species' biology (whether vital rates increase or decrease with size or their plausible values) allowed the correct rates to be identified with a 90% success rate. With real data, the model correctly reconstructed the effects of disturbance on vital rates. These effects were previously known from two populations for which demographic data were available. Our procedure seems robust, as the data violated several of the model's assumptions. Thus, time series of size structures and densities contain the necessary information to reconstruct changing vital rates. However, additional biological knowledge may be required to provide reliable results. Because time series of size structures and densities are available for many species or can be rapidly generated, our model can contribute to understand populations that face highly pressing environmental problems. PMID:23919169
Predator cannibalism can intensify negative impacts on heterospecific prey.
Takatsu, Kunio; Kishida, Osamu
2015-07-01
Although natural populations consist of individuals with different traits, and the degree of phenotypic variation varies among populations, the impact of phenotypic variation on ecological interactions has received little attention, because traditional approaches to community ecology assume homogeneity of individuals within a population. Stage structure, which is a common way of generating size and developmental variation within predator populations, can drive cannibalistic interactions, which can affect the strength of predatory effects on the predator's heterospecific prey. Studies have shown that predator cannibalism weakens predatory effects on heterospecific prey by reducing the size of the predator population and by inducing less feeding activity of noncannibal predators. We predict, however, that predator cannibalism, by promoting rapid growth of the cannibals, can also intensify predation pressure on heterospecific prey, because large predators have large resource requirements and may utilize a wider variety of prey species. To test this hypothesis, we conducted an experiment in which we created carnivorous salamander (Hynobius retardatus) populations with different stage structures by manipulating the salamander's hatch timing (i.e., populations with large or small variation in the timing of hatching), and explored the resultant impacts on the abundance, behavior, morphology, and life history of the salamander's large heterospecific prey, Rana pirica frog tadpoles. Cannibalism was rare in salamander populations having small hatch-timing variation, but was frequent in those having large hatch-timing variation. Thus, giant salamander cannibals occurred only in the latter. We clearly showed that salamander giants exerted strong predation pressure on frog tadpoles, which induced large behavioral and morphological defenses in the tadpoles and caused them to metamorphose late at large size. Hence, predator cannibalism arising from large variation in the timing of hatching can strengthen predatory effects on heterospecific prey and can have impacts on various, traits of both predator and prey. Because animals commonly broaden their diet as they grow, such negative impacts of predator cannibalism on the heterospecific prey may be common in interactions between predators and prey species of similar size.
Llorens, Tanya M; Ayre, David J; Whelan, Robert J
2018-04-01
Many plant species have pollination and seed dispersal systems and evolutionary histories that have produced strong genetic structuring. These genetic patterns may be consistent with expectations following recent anthropogenic fragmentation, making it difficult to detect fragmentation effects if no prefragmentation genetic data are available. We used microsatellite markers to investigate whether severe habitat fragmentation may have affected the structure and diversity of populations of the endangered Australian bird-pollinated shrub Grevillea caleyi R.Br., by comparing current patterns of genetic structure and diversity with those of the closely related G. longifolia R.Br. that has a similar life history but has not experienced anthropogenic fragmentation. Grevillea caleyi and G. longifolia showed similar and substantial population subdivision at all spatial levels (global F' ST = 0.615 and 0.454; S p = 0.039 and 0.066), marked isolation by distance and large heterozygous deficiencies. These characteristics suggest long-term effects of inbreeding in self-compatible species that have poor seed dispersal, limited connectivity via pollen flow and undergo population bottlenecks because of periodic fires. Highly structured allele size distributions, most notably in G. caleyi, imply historical processes of drift and mutation were important in isolated subpopulations. Genetic diversity did not vary with population size but was lower in more isolated populations for both species. Through this comparison, we reject the hypothesis that anthropogenic fragmentation has impacted substantially on the genetic composition or structure of G. caleyi populations. Our results suggest that highly self-compatible species with limited dispersal may be relatively resilient to the genetic changes predicted to follow habitat fragmentation. © 2018 John Wiley & Sons Ltd.
Kaliszewska, Zofia A; Seger, Jon; Rowntree, Victoria J; Barco, Susan G; Benegas, Rafael; Best, Peter B; Brown, Moira W; Brownell, Robert L; Carribero, Alejandro; Harcourt, Robert; Knowlton, Amy R; Marshall-Tilas, Kim; Patenaude, Nathalie J; Rivarola, Mariana; Schaeff, Catherine M; Sironi, Mariano; Smith, Wendy A; Yamada, Tadasu K
2005-10-01
Right whales carry large populations of three 'whale lice' (Cyamus ovalis, Cyamus gracilis, Cyamus erraticus) that have no other hosts. We used sequence variation in the mitochondrial COI gene to ask (i) whether cyamid population structures might reveal associations among right whale individuals and subpopulations, (ii) whether the divergences of the three nominally conspecific cyamid species on North Atlantic, North Pacific, and southern right whales (Eubalaena glacialis, Eubalaena japonica, Eubalaena australis) might indicate their times of separation, and (iii) whether the shapes of cyamid gene trees might contain information about changes in the population sizes of right whales. We found high levels of nucleotide diversity but almost no population structure within oceans, indicating large effective population sizes and high rates of transfer between whales and subpopulations. North Atlantic and Southern Ocean populations of all three species are reciprocally monophyletic, and North Pacific C. erraticus is well separated from North Atlantic and southern C. erraticus. Mitochondrial clock calibrations suggest that these divergences occurred around 6 million years ago (Ma), and that the Eubalaena mitochondrial clock is very slow. North Pacific C. ovalis forms a clade inside the southern C. ovalis gene tree, implying that at least one right whale has crossed the equator in the Pacific Ocean within the last 1-2 million years (Myr). Low-frequency polymorphisms are more common than expected under neutrality for populations of constant size, but there is no obvious signal of rapid, interspecifically congruent expansion of the kind that would be expected if North Atlantic or southern right whales had experienced a prolonged population bottleneck within the last 0.5 Myr.
Sun, Ye; Vargas-Mendoza, Carlos F
2017-01-01
Kleinia neriifolia Haw. is an endemic species on the Canarian archipelago, this species is widespread in the coastal thicket of all the Canarian islands. In the present study, genetic diversity and population structure of K. neriifolia were investigated using chloroplast gene sequences and nuclear SSR (simple sequence repeat). The differentiation among island populations, the historical demography, and the underlying evolutionary scenarios of this species are further tested based on the genetic data. Chloroplast diversity reveals a strong genetic divergence between eastern islands (Gran Canaria, Fuerteventura, and Lanzarote) and western islands (EI Hierro, La Palma, La Gomera, Tenerife), this west-east genetic divergence may reflect a very beginning of speciation. The evolutionary scenario with highest posterior probabilities suggests Gran Canaria as oldest population with a westward colonization path to Tenerife, La Gomera, La Palma, and EI Hierro, and eastward dispersal path to Lanzarote through Fuerteventura. In the western islands, there is a slight decrease in the effective population size toward areas of recent colonization. However, in the eastern islands, the effective population size increase in Lanzarote relative to Gran Canaria and Fuerteventura. These results further our understanding of the evolution of widespread endemic plants within Canarian archipelago.
Sun, Ye; Vargas-Mendoza, Carlos F.
2017-01-01
Kleinia neriifolia Haw. is an endemic species on the Canarian archipelago, this species is widespread in the coastal thicket of all the Canarian islands. In the present study, genetic diversity and population structure of K. neriifolia were investigated using chloroplast gene sequences and nuclear SSR (simple sequence repeat). The differentiation among island populations, the historical demography, and the underlying evolutionary scenarios of this species are further tested based on the genetic data. Chloroplast diversity reveals a strong genetic divergence between eastern islands (Gran Canaria, Fuerteventura, and Lanzarote) and western islands (EI Hierro, La Palma, La Gomera, Tenerife), this west–east genetic divergence may reflect a very beginning of speciation. The evolutionary scenario with highest posterior probabilities suggests Gran Canaria as oldest population with a westward colonization path to Tenerife, La Gomera, La Palma, and EI Hierro, and eastward dispersal path to Lanzarote through Fuerteventura. In the western islands, there is a slight decrease in the effective population size toward areas of recent colonization. However, in the eastern islands, the effective population size increase in Lanzarote relative to Gran Canaria and Fuerteventura. These results further our understanding of the evolution of widespread endemic plants within Canarian archipelago. PMID:28713419
Simpler grammar, larger vocabulary: How population size affects language
2018-01-01
Languages with many speakers tend to be structurally simple while small communities sometimes develop languages with great structural complexity. Paradoxically, the opposite pattern appears to be observed for non-structural properties of language such as vocabulary size. These apparently opposite patterns pose a challenge for theories of language change and evolution. We use computational simulations to show that this inverse pattern can depend on a single factor: ease of diffusion through the population. A population of interacting agents was arranged on a network, passing linguistic conventions to one another along network links. Agents can invent new conventions, or replicate conventions that they have previously generated themselves or learned from other agents. Linguistic conventions are either Easy or Hard to diffuse, depending on how many times an agent needs to encounter a convention to learn it. In large groups, only linguistic conventions that are easy to learn, such as words, tend to proliferate, whereas small groups where everyone talks to everyone else allow for more complex conventions, like grammatical regularities, to be maintained. Our simulations thus suggest that language, and possibly other aspects of culture, may become simpler at the structural level as our world becomes increasingly interconnected. PMID:29367397
[Stochastic model of infectious diseases transmission].
Ruiz-Ramírez, Juan; Hernández-Rodríguez, Gabriela Eréndira
2009-01-01
Propose a mathematic model that shows how population structure affects the size of infectious disease epidemics. This study was conducted during 2004 at the University of Colima. It used generalized small-world network topology to represent contacts that occurred within and between families. To that end, two programs in MATLAB were conducted to calculate the efficiency of the network. The development of a program in the C programming language was also required, that represents the stochastic susceptible-infectious-removed model, and simultaneous results were obtained for the number of infected people. An increased number of families connected by meeting sites impacted the size of the infectious diseases by roughly 400%. Population structure influences the rapid spread of infectious diseases, reaching epidemic effects.
ERIC Educational Resources Information Center
Glick, Paul C.; Siegel, Jacob S.
The document contains two reports on consequences of population trends for families and older adults in the United States. The reports were submitted as testimony before congressional committees on population and aging. The first report discusses projected changes in American family life in light of population growth, enrollment in schools and…
Strickland, Dan; Norris, D Ryan
2015-01-01
The island rule refers to the tendency of small vertebrates to become larger when isolated on islands and the frequent dwarfing of large forms. It implies genetic control, and a necessary linkage, of size and body-mass differences between insular and mainland populations. To examine the island rule, we compared body size and mass of gray jays (Perisoreus canadensis) on Anticosti Island, Québec, located in the Gulf of St. Lawrence, with three mainland populations (2 in Québec and 1 in Ontario). Although gray jays on Anticosti Island were ca 10% heavier, they were not structurally larger, than the three mainland populations. This suggests that Anticosti jays are not necessarily genetically distinct from mainland gray jays and that they may have achieved their greater body masses solely through packing more mass onto mainland-sized body frames. As such, they may be the first-known example of a proposed, purely phenotypic initial step in the adherence to the island rule by an insular population. Greater jay body mass is probably advantageous in Anticosti's high-density, intensely competitive social environment that may have resulted from the island's lack of mammalian nest predators. PMID:26380697
Storz, J F; Bhat, H R; Kunz, T H
2001-06-01
Variance in reproductive success is a primary determinant of genetically effective population size (Ne), and thus has important implications for the role of genetic drift in the evolutionary dynamics of animal taxa characterized by polygynous mating systems. Here we report the results of a study designed to test the hypothesis that polygynous mating results in significantly reduced Ne in an age-structured population. This hypothesis was tested in a natural population of a harem-forming fruit bat, Cynopterus sphinx (Chiroptera: Pteropodidae), in western India. The influence of the mating system on the ratio of variance Ne to adult census number (N) was assessed using a mathematical model designed for age-structured populations that incorporated demographic and genetic data. Male mating success was assessed by means of direct and indirect paternity analysis using 10-locus microsatellite genotypes of adults and progeny from two consecutive breeding periods (n = 431 individually marked bats). Combined results from both analyses were used to infer the effective number of male parents in each breeding period. The relative proportion of successfully reproducing males and the size distribution of paternal sibships comprising each offspring cohort revealed an extremely high within-season variance in male mating success (up to 9.2 times higher than Poisson expectation). The resultant estimate of Ne/N for the C. sphinx study population was 0.42. As a result of polygynous mating, the predicted rate of drift (1/2Ne per generation) was 17.6% higher than expected from a Poisson distribution of male mating success. However, the estimated Ne/N was well within the 0.25-0.75 range expected for age-structured populations under normal demographic conditions. The life-history schedule of C. sphinx is characterized by a disproportionately short sexual maturation period scaled to adult life span. Consequently, the influence of polygynous mating on Ne/N is mitigated by the extensive overlap of generations. In C. sphinx, turnover of breeding males between seasons ensures a broader sampling of the adult male gamete pool than expected from the variance in mating success within a single breeding period.
Antolin, Michael F.; Van Horne, Beatrice; Berger, Michael D.
2001-01-01
Piute ground squirrels (Spermophilus mollis) are distributed continuously in habitat dominated by native shrubs and perennial grasses in the Snake River Birds of Prey National Conservation Area in Idaho, U.S.A. This habitat is being fragmented and replaced by exotic annual plants, changing it to a wildfire-dominated system that provides poor habitat for ground squirrels. To assess potential effects of this fragmentation on ground squirrel populations, we combined an estimate of effective population size (Ne) based upon a demographic study with a population genetic analysis. The study area included three subpopulations separated from each other by 813 km. The ratio of effective population size to census number (Ne/N) was 0.57. Combining Ne/N with dispersal distances from a radio-tracking study, we calculated that neighborhood size was 62.2 ha, which included between 204 and 480 individuals. Our population genetic analysis (based on randomly amplified polymorphic DNA (RAPD) and microsatellite markers) showed relatively low levels of genetic differentiation (Qpopulations 0.070.10) between subpopulations and no inbreeding within subpopulations (f = 0.0003). These estimates of population subdivision translate into an effective migration rate (Nem) of 2.33.3 per year, which represents a high level of gene flow. Invasion by exotics will reduce the overall productivity of the habitat, and will lead to isolation among subpopulations if favorable habitat patches become isolated.
Structure of some East African Glossina fuscipes fuscipes populations
Krafsur, E. S.; Marquez, J. G.; Ouma, J. O.
2008-01-01
Glossina fuscipes fuscipes Newstead 1910 (Diptera: Glossinidae) is the primary vector of human sleeping sickness in Kenya and Uganda. This is the first report on its population structure. A total of 688 nucleotides of mitochondrial ribosomal 16S2 and cytochrome oxidase I genes were sequenced. Twenty-one variants were scored in 79 flies from three geographically diverse natural populations. Four haplotypes were shared among populations, eight were private and nine were singletons. The mean haplotype and nucleotide diversities were 0.84 and 0.009, respectively. All populations were genetically differentiated and were at demographic equilibrium. In addition, a longstanding laboratory culture originating from the Central African Republic (CAR-lab) in 1986 (or before) was examined. Haplotype and nucleotide diversities in this culture were 0.95 and 0.012, respectively. None of its 27 haplotypes were shared with the East African populations. A first approximation of relative effective population sizes was Uganda > CAR-lab > Kenya. It was concluded that the structure of G. f. fuscipes populations in East Africa is localized. PMID:18816270
Manier, Mollie K; Arnold, Stevan J
2006-12-07
Identifying ecological factors associated with population genetic differentiation is important for understanding microevolutionary processes and guiding the management of threatened populations. We identified ecological correlates of several population genetic parameters for three interacting species (two garter snakes and an anuran) that occupy a common landscape. Using multiple regression analysis, we found that species interactions were more important in explaining variation in population genetic parameters than habitat and nearest-neighbour characteristics. Effective population size was best explained by census size, while migration was associated with differences in species abundance. In contrast, genetic distance was poorly explained by the ecological correlates that we tested, but geographical distance was prominent in models for all species. We found substantially different population dynamics for the prey species relative to the two predators, characterized by larger effective sizes, lower gene flow and a state of migration-drift equilibrium. We also identified an escarpment formed by a series of block faults that serves as a barrier to dispersal for the predators. Our results suggest that successful landscape-level management should incorporate genetic and ecological data for all relevant species, because even closely associated species can exhibit very different population genetic dynamics on the same landscape.
Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation
Vandewoestijne, Sofie; Schtickzelle, Nicolas; Baguette, Michel
2008-01-01
Background Theory predicts that lower dispersal, and associated gene flow, leads to decreased genetic diversity in small isolated populations, which generates adverse consequences for fitness, and subsequently for demography. Here we report for the first time this effect in a well-connected natural butterfly metapopulation with high population densities at the edge of its distribution range. Results We demonstrate that: (1) lower genetic diversity was coupled to a sharp decrease in adult lifetime expectancy, a key component of individual fitness; (2) genetic diversity was positively correlated to the number of dispersing individuals (indicative of landscape functional connectivity) and adult population size; (3) parameters inferred from capture-recapture procedures (population size and dispersal events between patches) correlated much better with genetic diversity than estimates usually used as surrogates for population size (patch area and descriptors of habitat quality) and dispersal (structural connectivity index). Conclusion Our results suggest that dispersal is a very important factor maintaining genetic diversity. Even at a very local spatial scale in a metapopulation consisting of large high-density populations interconnected by considerable dispersal rates, genetic diversity can be decreased and directly affect the fitness of individuals. From a biodiversity conservation perspective, this study clearly shows the benefits of both in-depth demographic and genetic analyses. Accordingly, to ensure the long-term survival of populations, conservation actions should not be blindly based on patch area and structural isolation. This result may be especially pertinent for species at their range margins, particularly in this era of rapid environmental change. PMID:18986515
Anthropogenic stressors that reduce population size, alter migration corridors or modify mutational and selective forces on populations are expected to leave a lasting genetic footprint on the distribution of intraspecific genetic variation. Thus, the pattern of intraspecific gen...
Population trends in Malaysia: 1970-2010
NASA Astrophysics Data System (ADS)
Rashid, Saharani Abdul; Ghani, Puzziawati Ab; Daud, Noorizam
2014-12-01
The size of population in Malaysia had reached 28.3 million in 2010 and is expected to increase to 38.6 million in the next 30 years. This demographic milestone that is causing renewed attention to the challenges caused by population growth. This paper looks at the last 40 years of changes in Malaysia population structure due to the changes in demographic phenomenon using data obtained from the Department of Statistics Malaysia. The principal finding of this research indicates that population structure in Malaysia had changed dramatically from the year 1970 to 2010. At the same time, Malaysia has completed its demographic transition in less than four decades. The fall in fertility and mortality rates have led to an improvement in the life expectancy of the population which has resulted an ageing population in Malaysia.
Drummond, Alexei J; Nicholls, Geoff K; Rodrigo, Allen G; Solomon, Wiremu
2002-01-01
Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences. PMID:12136032
Drummond, Alexei J; Nicholls, Geoff K; Rodrigo, Allen G; Solomon, Wiremu
2002-07-01
Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences.
Spatial genetic structure in continuous and fragmented populations of Pinus pinaster Aiton.
De-Lucas, A I; González-Martínez, S C; Vendramin, G G; Hidalgo, E; Heuertz, M
2009-11-01
Habitat fragmentation, i.e., the reduction of populations into small isolated remnants, is expected to increase spatial genetic structure (SGS) in plant populations through nonrandom mating, lower population densities and potential aggregation of reproductive individuals. We investigated the effects of population size reduction and genetic isolation on SGS in maritime pine (Pinus pinaster Aiton) using a combined experimental and simulation approach. Maritime pine is a wind-pollinated conifer which has a scattered distribution in the Iberian Peninsula as a result of forest fires and habitat fragmentation. Five highly polymorphic nuclear microsatellites were genotyped in a total of 394 individuals from two population pairs from the Iberian Peninsula, formed by one continuous and one fragmented population each. In agreement with predictions, SGS was significant and stronger in fragments (Sp = 0.020 and Sp = 0.026) than in continuous populations, where significant SGS was detected for one population only (Sp = 0.010). Simulations suggested that under fat-tailed dispersal, small population size is a stronger determinant of SGS than genetic isolation, while under normal dispersal, genetic isolation has a stronger effect. SGS was always stronger in real populations than in simulations, except if unrealistically narrow dispersal and/or high variance of reproductive success were modelled (even when accounting for potential overestimation of SGS in real populations as a result of short-distance sampling). This suggests that factors such as nonrandom mating or selection not considered in the simulations were additionally operating on SGS in Iberian maritime pine populations.
Rai, Kedar N; Jain, Subodh K
1982-06-01
Pollen and seed dispersal patterns were analyzed in both natural and experimental populations of Avena barbata. Localized estimates of gene flow rates and plant densities gave estimates of neighborhood size in the range of 40 to 400 plants; the estimates of mean rate and distance of gene flow seemed to vary widely due to variable wind direction, rodent activity, microsite heterogeneity, etc. The relative sizes of neighborhoods in several populations were correlated with the patchy distribution of different genotypes (scored for lemma color and leaf sheath hairiness) within short distances, but patch sizes had a wide range among different sites. Highly localized gene flow patterns seemed to account for the observed pattern of highly patchy variation even when the dispersal curves for both pollen and seed were platykurtic in many cases. Measures of the stability of patches in terms of their size, dispersion in space and genetic structure in time are needed in order to sort out the relative roles of founder effects, random drift (due to small neighborhood size), and highly localized selection. However, our observations suggest that many variables and stochastic processes are involved in such studies so as to allow only weak inference about the underlying role of natural selection, drift and factors of population regulatien.
VanLandeghem, Matthew M.; Farooqi, Mukhtar; Farquhar, B.; Patino, Reynaldo
2013-01-01
Several reservoirs in the upper Colorado River and Brazos River basins in Texas have experienced toxic blooms of golden alga Prymnesium parvum and associated fish kills since 2001. There is a paucity of information, however, regarding the population-level effects of such kills in large reservoirs, species-specific resistance to or recovery from kills, or potential differences in the patterns of impacts among basins. We used multiple before-after, control-impact analysis to determine whether repeated golden alga blooms have led to declines in the relative abundance and size structure of fish populations. Sustained declines were noted for 9 of 12 fish species surveyed in the upper Colorado River, whereas only one of eight species was impacted by golden alga in the Brazos River. In the upper Colorado River, White Bass Morone chrysops, White Crappie Pomoxis annularis, Largemouth Bass Micropterus salmoides, Bluegill Lepomis macrochirus, River Carpsucker Carpiodes carpio, Freshwater Drum Aplodinotus grunniens, Channel Catfish Ictalurus punctatus, Flathead Catfish Pylodictis olivaris, and Blue Catfish I. furcatus exhibited sustained declines in relative abundance, size structure, or both; Gizzard Shad Dorosoma cepedianum, Longnose Gar Lepisosteus osseus, and Common Carp Cyprinus carpio did not exhibit those declines. In the Brazos River, only the relative abundance of Blue Catfish was impacted. Overall, toxic golden alga blooms can negatively impact fish populations over the long-term, but the patterns of impact can vary considerably among river basins and species. In the Brazos River, populations of most fish species appear to be healthy, suggesting a positive angling outlook for this basin. In the upper Colorado River, fish populations have been severely impacted, and angling opportunities have been reduced. Basin-specific management plans aimed at improving water quality and quantity will likely reduce bloom intensity and allow recovery of fish populations to the abundances and size structures present before golden alga. Received August 26, 2011; accepted November 25, 2012
Jonathan A. Cale; Jennifer G. Klutsch; Nadir Erbilgin; Jose F. Negron; John D. Castello
2016-01-01
Heavy disturbance-induced mortality can negatively impact forest biota, functions, and services by drastically altering the forest structures that create stable environmental conditions. Disturbance impacts on forest structure can be assessed using structural sustainability - the degree of balance between living and dead portions of a tree populationâs size-...
Genetic structure and conservation of Mountain Lions in the South-Brazilian Atlantic Rain Forest.
Castilho, Camila S; Marins-Sá, Luiz G; Benedet, Rodrigo C; Freitas, Thales R O
2012-01-01
The Brazilian Atlantic Rain Forest, one of the most endangered ecosystems worldwide, is also among the most important hotspots as regards biodiversity. Through intensive logging, the initial area has been reduced to around 12% of its original size. In this study we investigated the genetic variability and structure of the mountain lion, Puma concolor. Using 18 microsatellite loci we analyzed evidence of allele dropout, null alleles and stuttering, calculated the number of allele/locus, PIC, observed and expected heterozygosity, linkage disequilibrium, Hardy-Weinberg equilibrium, F(IS), effective population size and genetic structure (MICROCHECKER, CERVUS, GENEPOP, FSTAT, ARLEQUIN, ONESAMP, LDNe, PCAGEN, GENECLASS software), we also determine whether there was evidence of a bottleneck (HYBRIDLAB, BOTTLENECK software) that might influence the future viability of the population in south Brazil. 106 alleles were identified, with the number of alleles/locus ranging from 2 to 11. Mean observed heterozygosity, mean number of alleles and polymorphism information content were 0.609, 5.89, and 0.6255, respectively. This population presented evidence of a recent bottleneck and loss of genetic variation. Persistent regional poaching constitutes an increasing in the extinction risk.
Temporal variation in the mating structure of Sanday, Orkney Islands.
Brennan, E R; Relethford, J H
1983-01-01
Pedigree and vital statistics data from the population of Sanday, Orkney Islands, Scotland, were used to assess temporal changes in population structure. Secular trends in patterns of mate choice were analysed for three separate birth cohorts of spouses: 1855-1884, 1885-1924 and 1925-1964. The degree to which mating was random or assortative with respect to both genealogical and geographic distance was determined by comparing average characteristics of all potential mates of married males with those of actual wives. We integrated this procedure, originally developed by Dyke (1971), into a three-fold investigation of population structure: (1) comparison of random and non-random components of relatedness as measured from pedigree data; (2) an analysis of marital distance distributions for actual and potential mates of married males; and (3) the relationship between genealogical relatedness and geographic distance. As population size decreased from 1881 to the present, total kinship and spatial distances between spouses increased. Whereas the random component of relatedness increased over time, consanguinity avoidance was sufficient to decrease the total coefficient of kinship over time. Part of the increase in consanguinity avoidance was associated with isolate breakdown, as distances between island-born spouses, as well as the total amount of off-island migration, increased from the mid-nineteenth century to the present. Mate choice was influenced by geographic distance for all time periods, although this effect diminished over time. Since decreases in population size, concomitant with increases in consanguinity avoidance and community exogamy, have probably occurred quite frequently in small human populations, as well as in rural Western communities in the past century, observed secular trends illustrate the potential for change in population structure characteristic of isolate breakdown.
Trask, Amanda E; Bignal, Eric M; McCracken, Davy I; Piertney, Stuart B; Reid, Jane M
2017-09-01
A population's effective size (N e ) is a key parameter that shapes rates of inbreeding and loss of genetic diversity, thereby influencing evolutionary processes and population viability. However, estimating N e , and identifying key demographic mechanisms that underlie the N e to census population size (N) ratio, remains challenging, especially for small populations with overlapping generations and substantial environmental and demographic stochasticity and hence dynamic age-structure. A sophisticated demographic method of estimating N e /N, which uses Fisher's reproductive value to account for dynamic age-structure, has been formulated. However, this method requires detailed individual- and population-level data on sex- and age-specific reproduction and survival, and has rarely been implemented. Here, we use the reproductive value method and detailed demographic data to estimate N e /N for a small and apparently isolated red-billed chough (Pyrrhocorax pyrrhocorax) population of high conservation concern. We additionally calculated two single-sample molecular genetic estimates of N e to corroborate the demographic estimate and examine evidence for unobserved immigration and gene flow. The demographic estimate of N e /N was 0.21, reflecting a high total demographic variance (σ2dg) of 0.71. Females and males made similar overall contributions to σ2dg. However, contributions varied among sex-age classes, with greater contributions from 3 year-old females than males, but greater contributions from ≥5 year-old males than females. The demographic estimate of N e was ~30, suggesting that rates of increase of inbreeding and loss of genetic variation per generation will be relatively high. Molecular genetic estimates of N e computed from linkage disequilibrium and approximate Bayesian computation were approximately 50 and 30, respectively, providing no evidence of substantial unobserved immigration which could bias demographic estimates of N e . Our analyses identify key sex-age classes contributing to demographic variance and thus decreasing N e /N in a small age-structured population inhabiting a variable environment. They thereby demonstrate how assessments of N e can incorporate stochastic sex- and age-specific demography and elucidate key demographic processes affecting a population's evolutionary trajectory and viability. Furthermore, our analyses show that N e for the focal chough population is critically small, implying that management to re-establish genetic connectivity may be required to ensure population viability. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Porter, Nicholas J.; Bonvechio, Timothy F.; McCormick, Joshua L.; Quist, Michael
2014-01-01
The objectives of this study were to evaluate the population dynamics of bowfin (Amia calva) in Lake Lindsay Grace, Georgia, and to compare those dynamics to other bowfin populations. Relative abundance of bowfin sampled in 2010 in Lake Lindsay Grace was low and variable (mean±SD; 2.7±4.7 fish per hour of electrofishing). Total length (TL) of bowfin collected in Lake Lindsay Grace varied from 233–683 mm. Age of bowfin in Lake Lindsay Grace varied from 0–5 yr. Total annual mortality (A) was estimated at 68%. Both sexes appeared to be fully mature by age 2 with gonadosomatic index values above 8 for females and close to 1 for males. The majority of females were older, longer, and heavier than males. Bowfin in Lake Lindsay Grace had fast growth up to age 4 and higher total annual mortality than the other populations examined in this study. A chi-square test indicated that size structure of bowfin from Lake Lindsay Grace was different than those of a Louisiana population and two bowfin populations from the upper Mississippi River. To further assess bowfin size structure, we proposed standard length (i.e., TL) categories: stock (200 mm, 8 inches), quality (350 mm, 14 inches), preferred (460 mm, 18 inches), memorable (560 mm, 22, inches), and trophy (710 mm, 28 inches). Because our knowledge of bowfin ecology is limited, additional understanding of bowfin population dynamics provides important insight that can be used in management of bowfin across their distribution.
Arkin, Adam P.
2015-01-01
ABSTRACT Free-living bacteria are usually thought to have large effective population sizes, and so tiny selective differences can drive their evolution. However, because recombination is infrequent, “background selection” against slightly deleterious alleles should reduce the effective population size (Ne) by orders of magnitude. For example, for a well-mixed population with 1012 individuals and a typical level of homologous recombination (r/m = 3, i.e., nucleotide changes due to recombination [r] occur at 3 times the mutation rate [m]), we predict that Ne is <107. An argument for high Ne values for bacteria has been the high genetic diversity within many bacterial “species,” but this diversity may be due to population structure: diversity across subpopulations can be far higher than diversity within a subpopulation, which makes it difficult to estimate Ne correctly. Given an estimate of Ne, standard population genetics models imply that selection should be sufficient to drive evolution if Ne × s is >1, where s is the selection coefficient. We found that this remains approximately correct if background selection is occurring or when population structure is present. Overall, we predict that even for free-living bacteria with enormous populations, natural selection is only a significant force if s is above 10−7 or so. PMID:26670382
Cartaxo, Marina F S; Ayres, Constância F J; Weetman, David
2011-09-01
Recife is one of the largest cities in north-eastern Brazil and is endemic for lymphatic filariasis transmitted by Culex quinquefasciatus. Since 2003 a control program has targeted mosquito larvae by elimination of breeding sites and bimonthly application of Bacillus sphaericus. To assess the impact of this program on the local vector population we monitored the genetic diversity and differentiation of Cx. quinquefasciatus using microsatellites and a B. sphaericus-resistance associated mutation (cqm1(REC)) over a 3-year period. We detected a significant but gradual decline in allelic diversity, which, coupled with subtle temporal genetic structure, suggests a major impact of the control program on the vector population. Selection on cqm1(REC) does not appear to be involved with loss of neutral diversity from the population, with no temporal trend in resistant allele frequency and no correlation with microsatellite differentiation. The evidence for short-term genetic drift we detected suggests a low ratio of effective population size: census population size for Cx. quinquefasciatus, perhaps coupled with strong geographically-restricted population structure. Spatial definition of populations will be an important step for success of an expanded vector control program. Copyright © 2011 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Samuel A. Cushman; Bradley W. Compton; Kevin McGarigal
2010-01-01
Habitat loss and fragmentation are widely believed to be the most important drivers of extinction (Leakey and Lewin 1995). The habitats in which organisms live are spatially structured at a number of scales, and these patterns interact with organism perception and behavior to drive population dynamics and community structure (Johnson et al. 1992). Anthropogenic habitat...
Challenges to assessing connectivity between massive populations of the Australian plague locust
Chapuis, Marie-Pierre; Popple, Julie-Anne M.; Berthier, Karine; Simpson, Stephen J.; Deveson, Edward; Spurgin, Peter; Steinbauer, Martin J.; Sword, Gregory A.
2011-01-01
Linking demographic and genetic dispersal measures is of fundamental importance for movement ecology and evolution. However, such integration can be difficult, particularly for highly fecund species that are often the target of management decisions guided by an understanding of population movement. Here, we present an example of how the influence of large population sizes can preclude genetic approaches from assessing demographic population structuring, even at a continental scale. The Australian plague locust, Chortoicetes terminifera, is a significant pest, with populations on the eastern and western sides of Australia having been monitored and managed independently to date. We used microsatellites to assess genetic variation in 12 C. terminifera population samples separated by up to 3000 km. Traditional summary statistics indicated high levels of genetic diversity and a surprising lack of population structure across the entire range. An approximate Bayesian computation treatment indicated that levels of genetic diversity in C. terminifera corresponded to effective population sizes conservatively composed of tens of thousands to several million individuals. We used these estimates and computer simulations to estimate the minimum rate of dispersal, m, that could account for the observed range-wide genetic homogeneity. The rate of dispersal between both sides of the Australian continent could be several orders of magnitude lower than that typically considered as required for the demographic connectivity of populations. PMID:21389030
78 FR 38013 - Endangered Species; File No. 15661
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-25
... No. 15661 authorizes the permit holder to characterize population structure, size class composition, foraging ecology, and migration patterns for green (Chelonia mydas) and hawksbill (Eretmochelys imbricata...
NASA Astrophysics Data System (ADS)
Shu, Feng; Liu, Xingwen; Li, Min
2018-05-01
Memory is an important factor on the evolution of cooperation in spatial structure. For evolutionary biologists, the problem is often how cooperation acts can emerge in an evolving system. In the case of snowdrift game, it is found that memory can boost cooperation level for large cost-to-benefit ratio r, while inhibit cooperation for small r. Thus, how to enlarge the range of r for the purpose of enhancing cooperation becomes a hot issue recently. This paper addresses a new memory-based approach and its core lies in: Each agent applies the given rule to compare its own historical payoffs in a certain memory size, and take the obtained maximal one as virtual payoff. In order to get the optimal strategy, each agent randomly selects one of its neighbours to compare their virtual payoffs, which can lead to the optimal strategy. Both constant-size memory and size-varying memory are investigated by means of a scenario of asynchronous updating algorithm on regular lattices with different sizes. Simulation results show that this approach effectively enhances cooperation level in spatial structure and makes the high cooperation level simultaneously emerge for both small and large r. Moreover, it is discovered that population sizes have a significant influence on the effects of cooperation.
Szczecińska, Monika; Sramko, Gabor; Wołosz, Katarzyna; Sawicki, Jakub
2016-01-01
Pulsatilla patens s.s. is a one of the most endangered plant species in Europe. The present range of this species in Europe is highly fragmented and the size of the populations has been dramatically reduced in the past 50 years. The rapid disappearance of P. patens localities in Europe has prompted the European Commission to initiate active protection of this critically endangered species. The aim of this study was to estimate the degree and distribution of genetic diversity within European populations of this endangered species. We screened 29 populations of P. patens using a set of six microsatellite primers. The results of our study indicate that the analyzed populations are characterized by low levels of genetic diversity (Ho = 0.005) and very high levels of inbreeding (FIS = 0.90). These results suggest that genetic erosion could be partially responsible for the lower fitness in smaller populations of this species. Private allelic richness was very low, being as low as 0.00 for most populations. Average genetic diversity over loci and mean number of alleles in P. patens populations were significantly correlated with population size, suggesting severe genetic drift. The results of AMOVA point to higher levels of variation within populations than between populations.The results of Structure and PCoA analyses suggest that the genetic structure of the studied P. patens populations fall into three clusters corresponding to geographical regions. The most isolated populations (mostly from Romania) formed a separate group with a homogeneous gene pool located at the southern, steppic part of the distribution range. Baltic, mostly Polish, populations fall into two genetic groups which were not fully compatible with their geographic distribution.Our results indicate the serious genetic depauperation of P. patens in the western part of its range, even hinting at an ongoing extinction vortex. Therefore, special conservation attention is required to maintain the populations of this highly endangered species of European Community interest.
NASA Astrophysics Data System (ADS)
Penha-Lopes, Gil; Bouillon, Steven; Mangion, Perrine; Macia, Adriano; Paula, José
2009-09-01
Population structure and distribution of Terebralia palustris were compared with the environmental parameters within microhabitats in a monospecific stand of Avicennia marina in southern Mozambique. Stable carbon and nitrogen isotope analyses of T. palustris and potential food sources (leaves, pneumatophore epiphytes, and surface sediments) were examined to establish the feeding preferences of T. palustris. Stable isotope signatures of individuals of different size classes and from different microhabitats were compared with local food sources. Samples of surface sediments 2.5-10 m apart showed some variation (-21.2‰ to -23.0‰) in δ13C, probably due to different contributions from seagrasses, microalgae and mangrove leaves, while δ15N values varied between 8.7‰ and 15.8‰, indicating that there is a very high variability within a small-scale microcosm. Stable isotope signatures differed significantly between the T. palustris size classes and between individuals of the same size class, collected in different microhabitats. Results also suggested that smaller individuals feed on sediment, selecting mainly benthic microalgae, while larger individuals feed on sediment, epiphytes and mangrove leaves. Correlations were found between environmental parameters and gastropod population structure and distribution vs. the feeding preferences of individuals of different size classes and in different microhabitats. While organic content and the abundance of leaves were parameters that correlated best with the total density of gastropods (>85%), the abundance of pneumatophores and leaves, as well as grain size, correlated better with the gastropod size distribution (>65%). Young individuals (height < 3 cm) occur predominantly in microhabitats characterized by a low density of leaf litter and pneumatophores, reduced organic matter and larger grain size, these being characteristic of lower intertidal open areas that favour benthic microalgal growth. With increasing shell height, T. palustris individuals start occupying microhabitats nearer the mangrove trees characterized by large densities of pneumatophores and litter, as well as sediments of smaller grain size, leading to higher organic matter availability in the sediment.
NASA Astrophysics Data System (ADS)
Graettinger, A. H.
2018-05-01
A maar crater is the top of a much larger subsurface diatreme structure produced by phreatomagmatic explosions and the size and shape of the crater reflects the growth history of that structure during an eruption. Recent experimental and geophysical research has shown that crater complexity can reflect subsurface complexity. Morphometry provides a means of characterizing a global population of maar craters in order to establish the typical size and shape of features. A global database of Quaternary maar crater planform morphometry indicates that maar craters are typically not circular and frequently have compound shapes resembling overlapping circles. Maar craters occur in volcanic fields that contain both small volume and complex volcanoes. The global perspective provided by the database shows that maars are common in many volcanic and tectonic settings producing a similar diversity of size and shape within and between volcanic fields. A few exceptional populations of maars were revealed by the database, highlighting directions of future research to improve our understanding on the geometry and spacing of subsurface explosions that produce maars. These outlying populations, such as anomalously large craters (>3000 m), chains of maars, and volcanic fields composed of mostly maar craters each represent a small portion of the database, but provide opportunities to reinvestigate fundamental questions on maar formation. Maar crater morphometry can be integrated with structural, hydrological studies to investigate lateral migration of phreatomagmatic explosion location in the subsurface. A comprehensive database of intact maar morphometry is also beneficial for the hunt for maar-diatremes on other planets.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-17
...) Population size and structure, (2) range and movement patterns, (3) diving and night-time behavior, (4) social organization, (5) feeding ecology, and (6) disease monitoring of the targeted species. Harassment...
Changes in seasonal climate outpace compensatory density-dependence in eastern brook trout
Bassar, Ronald D.; Letcher, Benjamin H.; Nislow, Keith H.; Whiteley, Andrew R.
2016-01-01
Understanding how multiple extrinsic (density-independent) factors and intrinsic (density-dependent) mechanisms influence population dynamics has become increasingly urgent in the face of rapidly changing climates. It is particularly unclear how multiple extrinsic factors with contrasting effects among seasons are related to declines in population numbers and changes in mean body size and whether there is a strong role for density-dependence. The primary goal of this study was to identify the roles of seasonal variation in climate driven environmental direct effects (mean stream flow and temperature) versus density-dependence on population size and mean body size in eastern brook trout (Salvelinus fontinalis). We use data from a 10-year capture-mark-recapture study of eastern brook trout in four streams in Western Massachusetts, USA to parameterize a discrete-time population projection model. The model integrates matrix modeling techniques used to characterize discrete population structures (age, habitat type and season) with integral projection models (IPMs) that characterize demographic rates as continuous functions of organismal traits (in this case body size). Using both stochastic and deterministic analyses we show that decreases in population size are due to changes in stream flow and temperature and that these changes are larger than what can be compensated for through density-dependent responses. We also show that the declines are due mostly to increasing mean stream temperatures decreasing the survival of the youngest age class. In contrast, increases in mean body size over the same period are the result of indirect changes in density with a lesser direct role of climate-driven environmental change.
Effects of Sample Selection Bias on the Accuracy of Population Structure and Ancestry Inference
Shringarpure, Suyash; Xing, Eric P.
2014-01-01
Population stratification is an important task in genetic analyses. It provides information about the ancestry of individuals and can be an important confounder in genome-wide association studies. Public genotyping projects have made a large number of datasets available for study. However, practical constraints dictate that of a geographical/ethnic population, only a small number of individuals are genotyped. The resulting data are a sample from the entire population. If the distribution of sample sizes is not representative of the populations being sampled, the accuracy of population stratification analyses of the data could be affected. We attempt to understand the effect of biased sampling on the accuracy of population structure analysis and individual ancestry recovery. We examined two commonly used methods for analyses of such datasets, ADMIXTURE and EIGENSOFT, and found that the accuracy of recovery of population structure is affected to a large extent by the sample used for analysis and how representative it is of the underlying populations. Using simulated data and real genotype data from cattle, we show that sample selection bias can affect the results of population structure analyses. We develop a mathematical framework for sample selection bias in models for population structure and also proposed a correction for sample selection bias using auxiliary information about the sample. We demonstrate that such a correction is effective in practice using simulated and real data. PMID:24637351
Population genetic structure of a California endemic Branchiopod, Branchinecta sandiegonensis
Davies, Cathleen P.; Simovich, Marie A.; Hathaway, Stacie A.
1997-01-01
Branchinecta sandiegonensis (Crustacea: Anostraca) is a narrow range endemic fairy shrimp discontinuously distributed in ephemeral pools on coastal mesas in San Diego County, USA. Ten populations across the range of the species were subjected to allozyme analysis for eleven loci. The species exhibits low variability (P95 =9.1–45.5) and one third of the loci tested did not conform to Hardy-Weinberg equilibrium expectations. The species also exhibited a high degree of genetic differentiation between populations. F ST values (fixation index) for most pairs of populations were above 0.25 (0.036–0.889).Low genetic variability and high genetic structure may result from low gene flow and founder effects due to habitat fragmentation and the lack of potential vectors for cyst dispersal. The unpredictable rainfall of the region also creates potential for variable population sizes which could affect structure and variability.
Variation in a Host-Parasitoid Interaction across Independent Populations.
van Nouhuys, Saskya; Niemikapee, Suvi; Hanski, Ilkka
2012-12-05
Antagonistic relationships between parasitoids and their insect hosts involve multiple traits and are shaped by their ecological and evolutionary context. The parasitoid wasp Cotesia melitaearum and its host butterfly Melitaea cinxia occur in several locations around the Baltic sea, with differences in landscape structure, population sizes and the histories of the populations. We compared the virulence of the parasitoid and the susceptibility of the host from five populations in a reciprocal transplant-style experiment using the progeny of five independent host and parasitoid individuals from each population. The host populations showed significant differences in the rate of encapsulation and parasitoid development rate. The parasitoid populations differed in brood size, development rate, pupal size and adult longevity. Some trait differences depended on specific host-parasitoid combinations, but neither species performed systematically better or worse in experiments involving local versus non-local populations of the other species. Furthermore, individuals from host populations with the most recent common ancestry did not perform alike, and there was no negative effect due to a history of inbreeding in the parasitoid. The complex pattern of variation in the traits related to the vulnerability of the host and the ability of the parasitoid to exploit the host may reflect multiple functions of the traits that would hinder simple local adaptation.
Sabido-Itzá, Miguel Mateo; Medina-Quej, Alejandro; de Jesús-Navarrete, Alberto; Gómez-Poot, Jorge Manuel; García-Rivas, María del Carmen
2016-03-01
The lionfish (P. volitans) has now invaded all the Mexican Caribbean and Gulf of Mexico, with the potential to cause negative impacts on the reefs. In the South Mexican Caribbean was firstly reported in July 2009, and six years after this report, some control measures such as fish tournament and local marketing have been implemented. However, information on its biology and invasion is still-lacking, so this study analyzed the population structure of 2 164 organisms collected from 2009 to 2012. An increase was observed in sizes for each year averaging Total length (Tl): 118 ± 34.8, 133 ± 56.3, 187 ± 74.8 and 219 ± 72.4 mm, respectively. Lionfish establishment at the study site is shown for the presence of juveniles’ sizes 20 mm TL up to 375 mm TL. When the back-calculation was obtained, we estimated that the larger fish could have recruited in early 2006, three years before the first report was made. A continuous population monitoring and an ecological study, will allow us to clarify the real impact in the ecosystems of the region and so to propose the most effective control actions.
Ant tending influences soldier production in a social aphid.
Shingleton, A W; Foster, W A
2000-09-22
The aphid Pseudoregma sundanica (Van der Goot) (Homoptera: Aphididae) has two defence strategies. It is obligatorily tended by various species of ant and also produces sterile soldiers. We investigated how they allocate their investment in these two strategies. We measured the size, number of soldiers, number and species of tending ant, and number and species of predators in P. sundanica populations. We found that the level of ant tending correlated negatively with soldier investment in P. sundanica. The species of tending ant also influenced soldier investment. We excluded ants from aphid populations and recorded changes in population size and structure over four weeks. Ant exclusion led to population decline and extinction. At the same time, surviving populations showed a significant increase in soldier investment. The data demonstrate that social aphids can adjust their investment in soldiers in direct response to environmental change.
2011-01-01
Background Population extinction risk in a fragmented landscape is related to the differential ability of the species to spread its genes across the landscape. The impact of landscape fragmentation on plant population dynamics will therefore vary across different spatial scales. We quantified successful seed-mediated dispersal of the dioecious shrub Juniperus communis in a fragmented landscape across northwestern Europe by using amplified fragment length polymorphism (AFLP) markers. Furthermore we investigated the genetic diversity and structure on two spatial scales: across northwestern Europe and across Flanders (northern Belgium). We also studied whether seed viability and populations size were correlated with genetic diversity. Results Unexpectedly, estimated seed-mediated dispersal rates were quite high and ranged between 3% and 14%. No population differentiation and no spatial genetic structure were detected on the local, Flemish scale. A significant low to moderate genetic differentiation between populations was detected at the regional, northwest European scale (PhiPT = 0.10). In general, geographically nearby populations were also genetically related. High levels of within-population genetic diversity were detected but no correlation was found between any genetic diversity parameter and population size or seed viability. Conclusions In northwestern Europe, landscape fragmentation has lead to a weak isolation-by-distance pattern but not to genetic impoverishment of common juniper. Substantial rates of successful migration by seed-mediated gene flow indicate a high dispersal ability which could enable Juniperus communis to naturally colonize suitable habitats. However, it is not clear whether the observed levels of migration will suffice to counterbalance the effects of genetic drift in small populations on the long run. PMID:21859457
Vanden-Broeck, An; Gruwez, Robert; Cox, Karen; Adriaenssens, Sandy; Michalczyk, Inga M; Verheyen, Kris
2011-08-22
Population extinction risk in a fragmented landscape is related to the differential ability of the species to spread its genes across the landscape. The impact of landscape fragmentation on plant population dynamics will therefore vary across different spatial scales. We quantified successful seed-mediated dispersal of the dioecious shrub Juniperus communis in a fragmented landscape across northwestern Europe by using amplified fragment length polymorphism (AFLP) markers. Furthermore we investigated the genetic diversity and structure on two spatial scales: across northwestern Europe and across Flanders (northern Belgium). We also studied whether seed viability and populations size were correlated with genetic diversity. Unexpectedly, estimated seed-mediated dispersal rates were quite high and ranged between 3% and 14%. No population differentiation and no spatial genetic structure were detected on the local, Flemish scale. A significant low to moderate genetic differentiation between populations was detected at the regional, northwest European scale (PhiPT = 0.10). In general, geographically nearby populations were also genetically related. High levels of within-population genetic diversity were detected but no correlation was found between any genetic diversity parameter and population size or seed viability. In northwestern Europe, landscape fragmentation has lead to a weak isolation-by-distance pattern but not to genetic impoverishment of common juniper. Substantial rates of successful migration by seed-mediated gene flow indicate a high dispersal ability which could enable Juniperus communis to naturally colonize suitable habitats. However, it is not clear whether the observed levels of migration will suffice to counterbalance the effects of genetic drift in small populations on the long run.
Population Structure Shapes Copy Number Variation in Malaria Parasites.
Cheeseman, Ian H; Miller, Becky; Tan, John C; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J; Nosten, François; Ferdig, Michael T; Anderson, Tim J C
2016-03-01
If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Bracewell, Sally A; Robinson, Leonie A; Firth, Louise B; Knights, Antony M
2013-01-01
Artificial structures can create novel habitat in the marine environment that has been associated with the spread of invasive species. They are often located in areas of high disturbance and can vary significantly in the area of free space provided for settlement of marine organisms. Whilst correlation between the amount of free space available and recruitment success has been shown in populations of several marine benthic organisms, there has been relatively little focus on invasive species, a group with the potential to reproduce in vast numbers and colonise habitats rapidly. Invasion success following different scales of disturbance was examined in the invasive acorn barnacle, Austrominiusmodestus, on a unique art installation located in Liverpool Bay. Population growth and recruitment success were examined by comparing recruitment rates within disturbance clearings of 4 different sizes and by contrasting population development with early recruitment rates over a 10 week period. Disturbed areas were rapidly recolonised and monocultures of A. modestus formed within 6 weeks. The size of patch created during disturbance had no effect on the rate of recruitment, while a linear relationship between recruit density and patch size was observed. Density-dependent processes mediated initial high recruitment resulting in population stability after 8-10 weeks, but densities continued to greatly exceed those reported in natural habitats. Given that artificial structures are likely to continue to proliferate in light of climate change projections, free-space is likely to become more available more frequently in the future supporting the expansion of fast-colonising species.
Mercière, Alexandre; Vermeij, Mark J. A.; Planes, Serge
2017-01-01
While the fire coral Millepora platyphylla is an important component of Indo-Pacific reefs, where it thrives in a wide range of environments, the ecological and biological processes driving its distribution and population structure are not well understood. Here, we quantified this species’ population structure in five habitats with contrasting hydrodynamic regimes in Moorea, French Polynesia; two in the fore reef: mid and upper slopes, and three in the lagoon: back, fringing and patch reefs. A total of 3651 colonies of fire corals were mapped and measured over 45,000 m2 of surveyed reef. Due to the species’ sensitivity to fragmentation in response to strong water movement, hydrodynamic conditions (e.g. waves, pass and lagoonal circulation) corresponded to marked differences in colony size distributions, morphology and recruitment dynamics among habitats. The size structure varied among reef habitats with higher proportions of larger colonies in calm nearshore reefs (fringing and patch reefs), while populations were dominated by smaller colonies in the exposed fore reefs. The highest densities of fire corals were recorded in fore reef habitats (0.12–0.20 n.m-2) where the proportion of recruits and juveniles was higher at mid slope populations (49.3%) than on the upper slope near where waves break (29.0%). In the latter habitat, most colonies grew as vertical sheets on encrusting bases making them more vulnerable to colony fragmentation, whereas fire corals were encrusting or massive in all other habitats. The lowest densities of M. platyphylla occurred in lagoonal habitats (0.02–0.04 n.m-2) characterized by a combination of low water movement and other physical and biological stressors. This study reports the first evidence of population structure of fire corals in two common reef environments and illustrates the importance of water flow in driving population dynamic processes of these reef-building species. PMID:28273119
Dubé, Caroline E; Mercière, Alexandre; Vermeij, Mark J A; Planes, Serge
2017-01-01
While the fire coral Millepora platyphylla is an important component of Indo-Pacific reefs, where it thrives in a wide range of environments, the ecological and biological processes driving its distribution and population structure are not well understood. Here, we quantified this species' population structure in five habitats with contrasting hydrodynamic regimes in Moorea, French Polynesia; two in the fore reef: mid and upper slopes, and three in the lagoon: back, fringing and patch reefs. A total of 3651 colonies of fire corals were mapped and measured over 45,000 m2 of surveyed reef. Due to the species' sensitivity to fragmentation in response to strong water movement, hydrodynamic conditions (e.g. waves, pass and lagoonal circulation) corresponded to marked differences in colony size distributions, morphology and recruitment dynamics among habitats. The size structure varied among reef habitats with higher proportions of larger colonies in calm nearshore reefs (fringing and patch reefs), while populations were dominated by smaller colonies in the exposed fore reefs. The highest densities of fire corals were recorded in fore reef habitats (0.12-0.20 n.m-2) where the proportion of recruits and juveniles was higher at mid slope populations (49.3%) than on the upper slope near where waves break (29.0%). In the latter habitat, most colonies grew as vertical sheets on encrusting bases making them more vulnerable to colony fragmentation, whereas fire corals were encrusting or massive in all other habitats. The lowest densities of M. platyphylla occurred in lagoonal habitats (0.02-0.04 n.m-2) characterized by a combination of low water movement and other physical and biological stressors. This study reports the first evidence of population structure of fire corals in two common reef environments and illustrates the importance of water flow in driving population dynamic processes of these reef-building species.
Research on impacts of population-related factors on carbon emissions in Beijing from 1984 to 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yayun; Zhao, Tao; Wang, Yanan, E-mail: wyn3615@126.com
Carbon emissions related to population factors have aroused great attention around the world. A multitude of literature mainly focused on single demographic impacts on environmental issues at the national level, and comprehensive studies concerning population-related factors at a city level are rare. This paper employed STIRPAT (Stochastic Impacts by Regression on Population, Affluence and Technology) model incorporating PLS (Partial least squares) regression method to examine the influence of population-related factors on carbon emissions in Beijing from 1984 to 2012. Empirically results manifest that urbanization is the paramount driver. Changes in population age structure have significantly positive impacts on carbon emissions,more » and shrinking young population, continuous expansion of working age population and aging population will keep on increasing environmental pressures. Meanwhile, shrinking household size and expanding floating population boost the discharge of carbon emissions. Besides, per capita consumption is an important contributor of carbon emissions, while industry energy intensity is the main inhibitory factor. Based upon these findings and the specific circumstances of Beijing, policies such as promoting clean and renewable energy, improving population quality and advocating low carbon lifestyles should be enhanced to achieve targeted emissions reductions. - Highlights: • We employed the STIRPAT model to identify population-related factors of carbon emissions in Beijing. • Urbanization is the paramount driver of carbon emissions. • Changes in population age structure exert significantly positive impacts on carbon emissions. • Shrinking household size, expanding floating population and improving consumption level increase carbon emissions. • Industry energy intensity decreases carbon emissions.« less
Gascuel, Fanny; Choisy, Marc; Duplantier, Jean-Marc; Débarre, Florence; Brouat, Carine
2013-01-01
Although bubonic plague is an endemic zoonosis in many countries around the world, the factors responsible for the persistence of this highly virulent disease remain poorly known. Classically, the endemic persistence of plague is suspected to be due to the coexistence of plague resistant and plague susceptible rodents in natural foci, and/or to a metapopulation structure of reservoirs. Here, we test separately the effect of each of these factors on the long-term persistence of plague. We analyse the dynamics and equilibria of a model of plague propagation, consistent with plague ecology in Madagascar, a major focus where this disease is endemic since the 1920s in central highlands. By combining deterministic and stochastic analyses of this model, and including sensitivity analyses, we show that (i) endemicity is favoured by intermediate host population sizes, (ii) in large host populations, the presence of resistant rats is sufficient to explain long-term persistence of plague, and (iii) the metapopulation structure of susceptible host populations alone can also account for plague endemicity, thanks to both subdivision and the subsequent reduction in the size of subpopulations, and extinction-recolonization dynamics of the disease. In the light of these results, we suggest scenarios to explain the localized presence of plague in Madagascar. PMID:23675291
Gascuel, Fanny; Choisy, Marc; Duplantier, Jean-Marc; Débarre, Florence; Brouat, Carine
2013-01-01
Although bubonic plague is an endemic zoonosis in many countries around the world, the factors responsible for the persistence of this highly virulent disease remain poorly known. Classically, the endemic persistence of plague is suspected to be due to the coexistence of plague resistant and plague susceptible rodents in natural foci, and/or to a metapopulation structure of reservoirs. Here, we test separately the effect of each of these factors on the long-term persistence of plague. We analyse the dynamics and equilibria of a model of plague propagation, consistent with plague ecology in Madagascar, a major focus where this disease is endemic since the 1920s in central highlands. By combining deterministic and stochastic analyses of this model, and including sensitivity analyses, we show that (i) endemicity is favoured by intermediate host population sizes, (ii) in large host populations, the presence of resistant rats is sufficient to explain long-term persistence of plague, and (iii) the metapopulation structure of susceptible host populations alone can also account for plague endemicity, thanks to both subdivision and the subsequent reduction in the size of subpopulations, and extinction-recolonization dynamics of the disease. In the light of these results, we suggest scenarios to explain the localized presence of plague in Madagascar.
NASA Astrophysics Data System (ADS)
Liu, Bilin; Chen, Xinjun; Chen, Yong; Tian, Siquan; Li, Jianhua; Fang, Zhou; Yang, Mingxia
2013-01-01
Age, maturation and population structure of the Humboldt squid Dosidicus gigas were studied based on random sampling of the Chinese jigging fishery off the Peruvian Exclusive Economic Zones (EEZ) during 2008-2010. Estimated ages ranged from 144 to 633 days, confirming that the squid is a short-lived species with longevity no longer than 2 years. Occurrence of mature females and hatching in each month indicated that Humboldt squid spawned year-round. Back-calculated hatching dates for the samples were from January 22nd, 2008 to April 22nd, 2010 with a peak between January and March. Two size-based and two hatching date-based populations could be defined from mantle length (ML) at maturity and back-calculated hatching dates, respectively. Females matured at a larger size than males, and there was a significant difference in ML at maturity between the two hatching groups ( P <0.05). The waters adjacent to 11°S off the Peruvian EEZ may be a potential spawning ground. This study shows the complexity of the population structure and large variability in key life history parameters in the Humboldt squid off the Peruvian EEZ, which should be considered in the assessment and management of this important resource.
Nordhei, Camilla; Ramstad, Astrid Lund; Nicholson, David G
2008-02-21
Nanophase cobalt, nickel and zinc ferrites, in which the crystallites are in the size range 4-25 nm, were synthesised by coprecipitation and subsequent annealing. X-Ray absorption spectroscopy using synchrotron radiation (supported by X-ray powder diffraction) was used to study the effects of particle size on the distributions of the metal atoms over the tetrahedral and octahedral sites of the spinel structure. Deviations from the bulk structure were found which are attributed to the significant influence of the surface on very small particles. Like the bulk material, nickel ferrite is an inverse spinel in the nanoregime, although the population of metals on the octahedral sites increases with decreasing particle size. Cobalt ferrite and zinc ferrite take the inverse and normal forms of the spinel structure respectively, but within the nanoregime both systems show similar trends in being partially inverted. Further, in zinc ferrite, unlike the normal bulk structure, the nanophase system involves mixed coordinations of zinc(ii) and iron(iii) consistent with increasing partial inversion with size.
Dodd, Richard S; Hüberli, Daniel; Douhovnikoff, Vlad; Harnik, Tamar Y; Afzal-Rafii, Zara; Garbelotto, Matteo
2005-01-01
California coastal woodlands are suffering severe disease and mortality as a result of infection from Phytophthora ramorum. Quercus agrifolia is one of the major woodland species at risk. This study investigated within- and among-population variation in host susceptibility to inoculation with P. ramorum and compared this with population genetic structure using molecular markers. Susceptibility was assessed using a branch-cutting inoculation test. Trees were selected from seven natural populations in California. Amplified fragment length polymorphism molecular markers were analysed for all trees used in the trials. Lesion sizes varied quantitatively among individuals within populations, with up to an eightfold difference. There was little support for population differences in susceptibility. Molecular structure also showed a strong within-population, and weaker among-population, pattern of variation. Our data suggest that susceptibility of Q. agrifolia to P. ramorum is variable and is under the control of several gene loci. This variation exists within populations, so that less susceptible local genotypes may provide the gene pool for regeneration of woodlands where mortality is high.
Pecoraro, Carlo; Babbucci, Massimiliano; Villamor, Adriana; Franch, Rafaella; Papetti, Chiara; Leroy, Bruno; Ortega-Garcia, Sofia; Muir, Jeff; Rooker, Jay; Arocha, Freddy; Murua, Hilario; Zudaire, Iker; Chassot, Emmanuel; Bodin, Nathalie; Tinti, Fausto; Bargelloni, Luca; Cariani, Alessia
2016-02-01
Global population genetic structure of yellowfin tuna (Thunnus albacares) is still poorly understood despite its relevance for the tuna fishery industry. Low levels of genetic differentiation among oceans speak in favour of the existence of a single panmictic population worldwide of this highly migratory fish. However, recent studies indicated genetic structuring at a much smaller geographic scales than previously considered, pointing out that YFT population genetic structure has not been properly assessed so far. In this study, we demonstrated for the first time, the utility of 2b-RAD genotyping technique for investigating population genetic diversity and differentiation in high gene-flow species. Running de novo pipeline in Stacks, a total of 6772 high-quality genome-wide SNPs were identified across Atlantic, Indian and Pacific population samples representing all major distribution areas. Preliminary analyses showed shallow but significant population structure among oceans (FST=0.0273; P-value<0.01). Discriminant Analysis of Principal Components endorsed the presence of genetically discrete yellowfin tuna populations among three oceanic pools. Although such evidence needs to be corroborated by increasing sample size, these results showed the efficiency of this genotyping technique in assessing genetic divergence in a marine fish with high dispersal potential. Copyright © 2015 Elsevier B.V. All rights reserved.
Population properties affect inbreeding avoidance in moose.
Herfindal, Ivar; Haanes, Hallvard; Røed, Knut H; Solberg, Erling J; Markussen, Stine S; Heim, Morten; Sæther, Bernt-Erik
2014-12-01
Mechanisms reducing inbreeding are thought to have evolved owing to fitness costs of breeding with close relatives. In small and isolated populations, or populations with skewed age- or sex distributions, mate choice becomes limited, and inbreeding avoidance mechanisms ineffective. We used a unique individual-based dataset on moose from a small island in Norway to assess whether inbreeding avoidance was related to population structure and size, expecting inbreeding avoidance to be greater in years with larger populations and even adult sex ratios. The probability that a potential mating event was realized was negatively related to the inbreeding coefficient of the potential offspring, with a stronger relationship in years with a higher proportion or number of males in the population. Thus, adult sex ratio and population size affect the degree of inbreeding avoidance. Consequently, conservation managers should aim for sex ratios that facilitate inbreeding avoidance, especially in small and isolated populations. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Effective size of two feral domestic cat populations (Felis catus L): effect of the mating system.
Kaeuffer, R; Pontier, D; Devillard, S; Perrin, N
2004-02-01
A variety of behavioural traits have substantial effects on the gene dynamics and genetic structure of local populations. The mating system is a plastic trait that varies with environmental conditions in the domestic cat (Felis catus) allowing an intraspecific comparison of the impact of this feature on genetic characteristics of the population. To assess the potential effect of the heterogenity of males' contribution to the next generation on variance effective size, we applied the ecological approach of Nunney & Elam (1994) based upon a demographic and behavioural study, and the genetic 'temporal methods' of Waples (1989) and Berthier et al. (2002) using microsatellite markers. The two cat populations studied were nearly closed, similar in size and survival parameters, but differed in their mating system. Immigration appeared extremely restricted in both cases due to environmental and social constraints. As expected, the ratio of effective size to census number (Ne/N) was higher in the promiscuous cat population (harmonic mean = 42%) than in the polygynous one (33%), when Ne was calculated from the ecological method. Only the genetic results based on Waples' estimator were consistent with the ecological results, but failed to evidence an effect of the mating system. Results based on the estimation of Berthier et al. (2002) were extremely variable, with Ne sometimes exceeding census size. Such low reliability in the genetic results should retain attention for conservation purposes.
A Comparison of Normal and Elliptical Estimation Methods in Structural Equation Models.
ERIC Educational Resources Information Center
Schumacker, Randall E.; Cheevatanarak, Suchittra
Monte Carlo simulation compared chi-square statistics, parameter estimates, and root mean square error of approximation values using normal and elliptical estimation methods. Three research conditions were imposed on the simulated data: sample size, population contamination percent, and kurtosis. A Bentler-Weeks structural model established the…
Silvestre, Ellida de Aguiar; Schwarcz, Kaiser Dias; Grando, Carolina; de Campos, Jaqueline Bueno; Sujii, Patricia Sanae; Tambarussi, Evandro Vagner; Macrini, Camila Menezes Trindade; Pinheiro, José Baldin; Brancalion, Pedro Henrique Santin; Zucchi, Maria Imaculada
2018-03-16
The reproductive system of a tree species has substantial impact on genetic diversity and structure within and among natural populations. Such information, should be considered when planning tree planting for forest restoration. Here, we describe the mating system and genetic diversity of an overexploited Neotropical tree, Myroxylon peruiferum L.f. (Fabaceae) sampled from a forest remnant (10 seed trees and 200 seeds) and assess whether the effective population size of nursery-grown seedlings (148 seedlings) is sufficient to prevent inbreeding depression in reintroduced populations. Genetic analyses were performed based on 8 microsatellite loci. M. peruiferum presented a mixed mating system with evidence of biparental inbreeding (t^m-t^s = 0.118). We found low levels of genetic diversity for M. peruiferum species (allelic richness: 1.40 to 4.82; expected heterozygosity: 0.29 to 0.52). Based on Ne(v) within progeny, we suggest a sample size of 47 seed trees to achieve an effective population size of 100. The effective population sizes for the nursery-grown seedlings were much smaller Ne = 27.54-34.86) than that recommended for short term Ne ≥ 100) population conservation. Therefore, to obtain a reasonable genetic representation of native tree species and prevent problems associated with inbreeding depression, seedling production for restoration purposes may require a much larger sampling effort than is currently used, a problem that is further complicated by species with a mixed mating system. This study emphasizes the need to integrate species reproductive biology into seedling production programs and connect conservation genetics with ecological restoration.
da Silva Carvalho, C; Ribeiro, M C; Côrtes, M C; Galetti, M; Collevatti, R G
2015-01-01
Population genetics theory predicts loss in genetic variability because of drift and inbreeding in isolated plant populations; however, it has been argued that long-distance pollination and seed dispersal may be able to maintain gene flow, even in highly fragmented landscapes. We tested how historical effective population size, historical migration and contemporary landscape structure, such as forest cover, patch isolation and matrix resistance, affect genetic variability and differentiation of seedlings in a tropical palm (Euterpe edulis) in a human-modified rainforest. We sampled 16 sites within five landscapes in the Brazilian Atlantic forest and assessed genetic variability and differentiation using eight microsatellite loci. Using a model selection approach, none of the covariates explained the variation observed in inbreeding coefficients among populations. The variation in genetic diversity among sites was best explained by historical effective population size. Allelic richness was best explained by historical effective population size and matrix resistance, whereas genetic differentiation was explained by matrix resistance. Coalescence analysis revealed high historical migration between sites within landscapes and constant historical population sizes, showing that the genetic differentiation is most likely due to recent changes caused by habitat loss and fragmentation. Overall, recent landscape changes have a greater influence on among-population genetic variation than historical gene flow process. As immediate restoration actions in landscapes with low forest amount, the development of more permeable matrices to allow the movement of pollinators and seed dispersers may be an effective strategy to maintain microevolutionary processes. PMID:25873150
Ecological correlates of group-size variation in a resource-defense ungulate, the sedentary guanaco.
Marino, Andrea; Baldi, Ricardo
2014-01-01
For large herbivores, predation-risk, habitat structure and population density are often reported as major determinants of group size variation within and between species. However, whether the underlying causes of these relationships imply an ecological adaptation or are the result of a purely mechanistic process in which fusion and fragmentation events only depend on the rate of group meeting, is still under debate. The aim of this study was to model guanaco family and bachelor group sizes in contrasting ecological settings in order to test hypotheses regarding the adaptive significance of group-size variation. We surveyed guanaco group sizes within three wildlife reserves located in eastern Patagonia where guanacos occupy a mosaic of grasslands and shrublands. Two of these reserves have been free from predators for decades while in the third, pumas often prey on guanacos. All locations have experienced important changes in guanaco abundance throughout the study offering the opportunity to test for density effects. We found that bachelor group size increased with increasing density, as expected by the mechanistic approach, but was independent of habitat structure or predation risk. In contrast, the smaller and territorial family groups were larger in the predator-exposed than in the predator-free locations, and were larger in open grasslands than in shrublands. However, the influence of population density on these social units was very weak. Therefore, family group data supported the adaptive significance of group-size variation but did not support the mechanistic idea. Yet, the magnitude of the effects was small and between-population variation in family group size after controlling for habitat and predation was negligible, suggesting that plasticity of these social units is considerably low. Our results showed that different social units might respond differentially to local ecological conditions, supporting two contrasting hypotheses in a single species, and highlight the importance of taking into account the proximate interests and constraints to which group members may be exposed to when deriving predictions about group-size variation.
Xenikoudakis, G; Ersmark, E; Tison, J-L; Waits, L; Kindberg, J; Swenson, J E; Dalén, L
2015-07-01
The Scandinavian brown bear went through a major decline in population size approximately 100 years ago, due to intense hunting. After being protected, the population subsequently recovered and today numbers in the thousands. The genetic diversity in the contemporary population has been investigated in considerable detail, and it has been shown that the population consists of several subpopulations that display relatively high levels of genetic variation. However, previous studies have been unable to resolve the degree to which the demographic bottleneck impacted the contemporary genetic structure and diversity. In this study, we used mitochondrial and microsatellite DNA markers from pre- and postbottleneck Scandinavian brown bear samples to investigate the effect of the bottleneck. Simulation and multivariate analysis suggested the same genetic structure for the historical and modern samples, which are clustered into three subpopulations in southern, central and northern Scandinavia. However, the southern subpopulation appears to have gone through a marked change in allele frequencies. When comparing the mitochondrial DNA diversity in the whole population, we found a major decline in haplotype numbers across the bottleneck. However, the loss of autosomal genetic diversity was less pronounced, although a significant decline in allelic richness was observed in the southern subpopulation. Approximate Bayesian computations provided clear support for a decline in effective population size during the bottleneck, in both the southern and northern subpopulations. These results have implications for the future management of the Scandinavian brown bear because they indicate a recent loss in genetic diversity and also that the current genetic structure may have been caused by historical ecological processes rather than recent anthropogenic persecution. © 2015 John Wiley & Sons Ltd.
76 FR 27306 - Endangered Species; File No. 15661
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-11
... conduct research on sea turtles to characterize population structure, size class composition, foraging ecology, and migration patterns for green and hawksbill sea turtles in the Northern Mariana Islands with...
Genome-wide population structure and evolutionary history of the Frizarta dairy sheep.
Kominakis, A; Hager-Theodorides, A L; Saridaki, A; Antonakos, G; Tsiamis, G
2017-10-01
In the present study, we used genomic data, generated with a medium density single nucleotide polymorphisms (SNP) array, to acquire more information on the population structure and evolutionary history of the synthetic Frizarta dairy sheep. First, two typical measures of linkage disequilibrium (LD) were estimated at various physical distances that were then used to make inferences on the effective population size at key past time points. Population structure was also assessed by both multidimensional scaling analysis and k-means clustering on the distance matrix obtained from the animals' genomic relationships. The Wright's fixation F ST index was also employed to assess herds' genetic homogeneity and to indirectly estimate past migration rates. The Wright's fixation F IS index and genomic inbreeding coefficients based on the genomic relationship matrix as well as on runs of homozygosity were also estimated. The Frizarta breed displays relatively low LD levels with r 2 and |D'| equal to 0.18 and 0.50, respectively, at an average inter-marker distance of 31 kb. Linkage disequilibrium decayed rapidly by distance and persisted over just a few thousand base pairs. Rate of LD decay (β) varied widely among the 26 autosomes with larger values estimated for shorter chromosomes (e.g. β=0.057, for OAR6) and smaller values for longer ones (e.g. β=0.022, for OAR2). The inferred effective population size at the beginning of the breed's formation was as high as 549, was then reduced to 463 in 1981 (end of the breed's formation) and further declined to 187, one generation ago. Multidimensional scaling analysis and k-means clustering suggested a genetically homogenous population, F ST estimates indicated relatively low genetic differentiation between herds, whereas a heat map of the animals' genomic kinship relationships revealed a stratified population, at a herd level. Estimates of genomic inbreeding coefficients suggested that most recent parental relatedness may have been a major determinant of the current effective population size. A denser than the 50k SNP panel may be more beneficial when performing genome wide association studies in the breed.
NASA Astrophysics Data System (ADS)
Alves, Renata M. S.; Vanaverbeke, Jan; Bouma, Tjeerd J.; Guarini, Jean-Marc; Vincx, Magda; Van Colen, Carl
2017-03-01
Ecosystem engineers contribute to ecosystem functioning by regulating key environmental attributes, such as habitat availability and sediment biogeochemistry. While autogenic engineers can increase habitat complexity passively and provide physical protection to other species, allogenic engineers can regulate sediment oxygenation and biogeochemistry through bioturbation and/or bioirrigation. Their effects rely on the physical attributes of the engineer and/or its biogenic constructs, such as abundance and/or size. The present study focused on tube aggregations of a sessile, tube-building polychaete that engineers marine sediments, Lanice conchilega. Its tube aggregations modulate water flow by dissipating energy, influencing sedimentary processes and increasing particle retention. These effects can be influenced by temporal fluctuations in population demographic processes. Presently, we investigated the relationship between population processes and ecosystem engineering through an in-situ survey (1.5 years) of L. conchilega aggregations at the sandy beach of Boulogne-sur-Mer (France). We (1) evaluated temporal patterns in population structure, and (2) investigated how these are related to the ecosystem engineering of L. conchilega on marine sediments. During our survey, we assessed tube density, demographic structure, and sediment properties (surficial chl-a, EPS, TOM, median and mode grain size, sorting, and mud and water content) on a monthly basis for 12 intertidal aggregations. We found that the population was mainly composed by short-lived (6-10 months), small-medium individuals. Mass mortality severely reduced population density during winter. However the population persisted, likely due to recruits from other populations, which are associated to short- and long-term population dynamics. Two periods of recruitment were identified: spring/summer and autumn. Population density was highest during the spring recruitment and significantly affected several environmental properties (i.e. EPS, TOM, mode grain size, mud and water content), suggesting that demographic processes may be responsible for periods of pronounced ecosystem engineering with densities of approx. 30 000 ind·m-2.
Peacock, Mary M; Gustin, Mae S; Kirchoff, Veronica S; Robinson, Morgan L; Hekkala, Evon; Pizzarro-Barraza, Claudia; Loux, Tim
2016-09-01
In-stream structures are recognized as significant impediments to movement for freshwater fishes. Apex predators such as salmonids have been the focus of much research on the impacts of such barriers to population dynamics and population viability however much less research has focused on native fishes, where in-stream structures may have a greater impact on long term population viability of these smaller, less mobile species. Patterns of genetic structure on a riverscape can provide information on which structures represent real barriers to movement for fish species and under what specific flow conditions. Here we characterize the impact of 41 dam and diversion structures on movement dynamics under varying flow conditions for a suite of six native fishes found in the Truckee River of California and Nevada. Microsatellite loci were used to estimate total allelic diversity, effective population size and assess genetic population structure. Although there is spatial overlap among species within the river there are clear differences in species distributions within the watershed. Observed population genetic structure was associated with in-stream structures, but only under low flow conditions. High total discharge in 2006 allowed fish to move over potential barriers resulting in no observed population genetic structure for any species in 2007. The efficacy of in-stream structures to impede movement and isolate fish emerged only after multiple years of low flow conditions. Our results suggest that restricted movement of fish species, as a result of in-stream barriers, can be mitigated by flow management. However, as flow dynamics are likely to be altered under global climate change, fragmentation due to barriers could isolate stream fishes into small subpopulations susceptible to both demographic losses and losses of genetic variation. Copyright © 2016 Elsevier B.V. All rights reserved.
Population demographics for the federally endangered dwarf wedgemussel
Galbraith, Heather S.; Lellis, William A.; Cole, Jeffrey C.; Blakeslee, Carrie J.; St. John White, Barbara
2016-01-01
The dwarf wedgemussel, Alasmidonta heterodon, is a federally endangered freshwater mussel species inhabiting several Atlantic Slope rivers. Studies on population demographics of this species are necessary for status assessment and directing recovery efforts. We conducted qualitative and quantitative surveys for dwarf wedgemussel in the mainstem Delaware River and in four of its tributaries (Big Flat Brook, Little Flat Brook, Neversink River, and Paulinskill River). Population range, relative abundance, size, size structure, and sex ratio were quantified within each river. Total dwarf wedgemussel population size for the surveyed rivers in the Delaware Basin was estimated to be 14,432 individuals (90% confidence limits, 7,961-26,161). Our results suggest that the historically robust Neversink River population has declined, but that this population persists and substantial populations remain in other tributaries. Sex ratios were generally female-biased, and small individuals (<10 mm) found in all rivers indicate recent recruitment. Dwarf wedgemussel was most often found at the surface of the sediment (not buried below) in shallow quadrats (<2.00 m) comprised of small substrate (sand in tributaries; cobble in the mainstem) and minimal aquatic macrophytes. Long-term monitoring, continued surveys for new populations, and assessments of reproductive success are needed to further understand dwarf wedgemussel viability within the Delaware River Basin.
Temporal genetic structure of a drone congregation area of the giant Asian honeybee ( Apis dorsata)
NASA Astrophysics Data System (ADS)
Kraus, F. B.; Koeniger, N.; Tingek, S.; Moritz, R. F. A.
2005-12-01
The giant Asian honeybee ( Apis dorsata), like all other members of the genus Apis, has a complex mating system in which the queens and males (drones) mate at spatially defined drone congregation areas (DCAs). Here, we studied the temporal genetic structure of a DCA of A. dorsata over an 8-day time window by the genotyping of sampled drones with microsatellite markers. Analysis of the genotypic data revealed a significant genetic differentiation between 3 sampling days and indicated that the DCA was used by at least two subpopulations at all days in varying proportions. The estimation of the number of colonies which used the DCA ranged between 20 and 40 colonies per subpopulation, depending on the estimation procedure and population. The overall effective population size was estimated as high as N e=140. The DCA seems to counteract known tendencies of A. dorsata for inbreeding within colony aggregations by facilitating gene flow among subpopulations and increasing the effective population size.
Faugeras, Blaise; Maury, Olivier
2005-10-01
We develop an advection-diffusion size-structured fish population dynamics model and apply it to simulate the skipjack tuna population in the Indian Ocean. The model is fully spatialized, and movements are parameterized with oceanographical and biological data; thus it naturally reacts to environment changes. We first formulate an initial-boundary value problem and prove existence of a unique positive solution. We then discuss the numerical scheme chosen for the integration of the simulation model. In a second step we address the parameter estimation problem for such a model. With the help of automatic differentiation, we derive the adjoint code which is used to compute the exact gradient of a Bayesian cost function measuring the distance between the outputs of the model and catch and length frequency data. A sensitivity analysis shows that not all parameters can be estimated from the data. Finally twin experiments in which pertubated parameters are recovered from simulated data are successfully conducted.
McCabe, Collin M; Nunn, Charles L
2018-01-01
The transmission of infectious disease through a population is often modeled assuming that interactions occur randomly in groups, with all individuals potentially interacting with all other individuals at an equal rate. However, it is well known that pairs of individuals vary in their degree of contact. Here, we propose a measure to account for such heterogeneity: effective network size (ENS), which refers to the size of a maximally complete network (i.e., unstructured, where all individuals interact with all others equally) that corresponds to the outbreak characteristics of a given heterogeneous, structured network. We simulated susceptible-infected (SI) and susceptible-infected-recovered (SIR) models on maximally complete networks to produce idealized outbreak duration distributions for a disease on a network of a given size. We also simulated the transmission of these same diseases on random structured networks and then used the resulting outbreak duration distributions to predict the ENS for the group or population. We provide the methods to reproduce these analyses in a public R package, "enss." Outbreak durations of simulations on randomly structured networks were more variable than those on complete networks, but tended to have similar mean durations of disease spread. We then applied our novel metric to empirical primate networks taken from the literature and compared the information represented by our ENSs to that by other established social network metrics. In AICc model comparison frameworks, group size and mean distance proved to be the metrics most consistently associated with ENS for SI simulations, while group size, centralization, and modularity were most consistently associated with ENS for SIR simulations. In all cases, ENS was shown to be associated with at least two other independent metrics, supporting its use as a novel metric. Overall, our study provides a proof of concept for simulation-based approaches toward constructing metrics of ENS, while also revealing the conditions under which this approach is most promising.
Koper, Nicola
2017-01-01
Grassland songbird populations across North America have experienced dramatic population declines due to habitat loss and degradation. In Canada, energy development continues to fragment and disturb prairie habitat, but effects of oil and gas development on reproductive success of songbirds in North American mixed-grass prairies remains largely unknown. From 2010–2012, in southeastern Alberta, Canada, we monitored 257 nests of two ground-nesting grassland songbird species, Savannah sparrow (Passerculus sandwichensis) and chestnut-collared longspur (Calcarius ornatus). Nest locations varied with proximity to and density of conventional shallow gas well structures and associated roads in forty-two 258-ha mixed-grass prairie sites. We estimated the probabilities of nest success and clutch size relative to gas well structures and roads. There was little effect of distance to or density of gas well structure on nest success; however, Savannah sparrow experienced lower nest success near roads. Clutch sizes were lower near gas well structures and cattle water sources. Minimizing habitat disturbance surrounding gas well structures, and reducing abundance of roads and trails, would help minimize impacts on reproductive success for some grassland songbirds. PMID:28355241
Yoo, Jenny; Koper, Nicola
2017-01-01
Grassland songbird populations across North America have experienced dramatic population declines due to habitat loss and degradation. In Canada, energy development continues to fragment and disturb prairie habitat, but effects of oil and gas development on reproductive success of songbirds in North American mixed-grass prairies remains largely unknown. From 2010-2012, in southeastern Alberta, Canada, we monitored 257 nests of two ground-nesting grassland songbird species, Savannah sparrow (Passerculus sandwichensis) and chestnut-collared longspur (Calcarius ornatus). Nest locations varied with proximity to and density of conventional shallow gas well structures and associated roads in forty-two 258-ha mixed-grass prairie sites. We estimated the probabilities of nest success and clutch size relative to gas well structures and roads. There was little effect of distance to or density of gas well structure on nest success; however, Savannah sparrow experienced lower nest success near roads. Clutch sizes were lower near gas well structures and cattle water sources. Minimizing habitat disturbance surrounding gas well structures, and reducing abundance of roads and trails, would help minimize impacts on reproductive success for some grassland songbirds.
Regehr, Eric V.; Lunn, Nicholas J.; Amstrup, Steven C.; Stirling, Ian
2007-01-01
Regehr and others (2007, Survival and population size of polar bears in western Hudson Bay in relation to earlier sea ice breakup: Journal of Wildlife Management, v. 71, no. 8) evaluated survival in relation to climatic conditions and estimated population size for polar bears (Ursus maritimus) in western Hudson Bay, Canada. Here, we provide supplemental materials for the analyses in Regehr and others (2007). We demonstrate how tag-return data from harvested polar bears were used to adjust estimates of total survival for human-caused mortality. We describe the sex and age composition of the capture and harvest samples and provide results for goodness-of-fit tests applied to capture-recapture models. We also describe the capture-recapture model selection procedure and the structure of the most supported model, which was used to estimate survival and population size.
A score-statistic approach for determining threshold values in QTL mapping.
Kao, Chen-Hung; Ho, Hsiang-An
2012-06-01
Issues in determining the threshold values of QTL mapping are often investigated for the backcross and F2 populations with relatively simple genome structures so far. The investigations of these issues in the progeny populations after F2 (advanced populations) with relatively more complicated genomes are generally inadequate. As these advanced populations have been well implemented in QTL mapping, it is important to address these issues for them in more details. Due to an increasing number of meiosis cycle, the genomes of the advanced populations can be very different from the backcross and F2 genomes. Therefore, special devices that consider the specific genome structures present in the advanced populations are required to resolve these issues. By considering the differences in genome structure between populations, we formulate more general score test statistics and gaussian processes to evaluate their threshold values. In general, we found that, given a significance level and a genome size, threshold values for QTL detection are higher in the denser marker maps and in the more advanced populations. Simulations were performed to validate our approach.
Haglund, Justin M.; Isermann, Daniel A.; Sass, Greg G.
2016-01-01
Implementing harvest regulations to eliminate or substantially reduce (≥90%) the exploitation of Walleyes Sander vitreus in recreational fisheries may increase population size structure, but these measures also could reduce angler effort because many Walleye anglers are harvest oriented. We analyzed data collected during 1995–2015 to determine whether Walleye population and fishery metrics in Escanaba Lake, Wisconsin, changed after a minimum TL limit of 71 cm with a one-fish daily bag limit was implemented in 2003. This change eliminated the legal harvest of Walleyes after several decades during which annual exploitation averaged 34%. We detected a significant increase in the loge density of adult females after the regulation change, but the loge density of all adults and adult males did not differ between periods. Mean TL of adult males was significantly greater after the regulation change, but the mean TL of females and the proportional size distribution of preferred-length fish (≥51 cm TL) were similar between periods. Sex-specific mean TLs at age 5 did not differ between periods. Loge density of age-0 Walleyes did not change after 2003, but variation in age-0 density was lower. Total angler effort and the effort for anglers targeting Walleyes were significantly lower (35% and 60% declines, respectively) after the regulation change, whereas catch rates for both angler categories did not differ between periods. Our results suggest that implementing highly restrictive regulations that greatly reduce or eliminate legal harvest will not always increase angler catch rates and population size structure. Highly restrictive regulations may also deter anglers from using a fishery when many other fisheries are available. Our findings are useful for fishery managers who may work with anglers holding the belief that lower exploitation is a potential remedy for low Walleye size structure, even when density and growth suggest that there is limited potential for improvement.
Habitat selection by breeding waterbirds at ponds with size-structured fish populations
NASA Astrophysics Data System (ADS)
Kloskowski, Janusz; Nieoczym, Marek; Polak, Marcin; Pitucha, Piotr
2010-07-01
Fish may significantly affect habitat use by birds, either as their prey or as competitors. Fish communities are often distinctly size-structured, but the consequences for waterbird assemblages remain poorly understood. We examined the effects of size structure of common carp ( Cyprinus carpio) cohorts together with other biotic and abiotic pond characteristics on the distribution of breeding waterbirds in a seminatural system of monocultured ponds, where three fish age classes were separately stocked. Fish age corresponded to a distinct fish size gradient. Fish age and total biomass, macroinvertebrate and amphibian abundance, and emergent vegetation best explained the differences in bird density between ponds. Abundance of animal prey other than fish (aquatic macroinvertebrates and larval amphibians) decreased with increasing carp age in the ponds. Densities of ducks and smaller grebes were strongly negatively associated with fish age/size gradient. The largest of the grebes, the piscivorous great crested grebe ( Podiceps cristatus), was the only species that preferred ponds with medium-sized fish and was positively associated with total fish biomass. Habitat selection by bitterns and most rallids was instead strongly influenced by the relative amount of emergent vegetation cover in the ponds. Our results show that fish size structure may be an important cue for breeding habitat choice and a factor affording an opportunity for niche diversification in avian communities.
Spatiotemporal analysis of gene flow in Chesapeake Bay Diamondback Terrapins (Malaclemys terrapin)
Converse, Paul E.; Kuchta, Shawn R; Roosenburg, Willem R; Henry, Paula F.; Haramis, G. Michael; King, Timothy L.
2015-01-01
There is widespread concern regarding the impacts of anthropogenic activities on connectivity among populations of plants and animals, and understanding how contemporary and historical processes shape metapopulation dynamics is crucial for setting appropriate conservation targets. We used genetic data to identify population clusters and quantify gene flow over historical and contemporary time frames in the Diamondback Terrapin (Malaclemys terrapin). This species has a long and complicated history with humans, including commercial over-harvesting and subsequent translocation events during the early twentieth century. Today, terrapins face threats from habitat loss and mortality in fisheries bycatch. To evaluate population structure and gene flow among Diamondback Terrapin populations in the Chesapeake Bay region, we sampled 617 individuals from 15 localities, and screened individuals at 12 polymorphic microsatellite loci. Our goals were to demarcate metapopulation structure, quantify genetic diversity, estimate effective population sizes, and document temporal changes in gene flow. We found that terrapins in the Chesapeake Bay region harbor high levels of genetic diversity and form four populations. Effective population sizes were variable. Among most population comparisons, estimates of historical and contemporary terrapin gene flow were generally low (m ≈ 0.01). However, we detected a substantial increase in contemporary gene flow into Chesapeake Bay from populations outside the bay, as well as between two populations within Chesapeake Bay, possibly as a consequence of translocations during the early twentieth century. Our study shows that inferences across multiple time scales are needed to evaluate population connectivity, especially as recent changes may identify threats to population persistence.
Longevity of clonal plants: why it matters and how to measure it
de Witte, Lucienne C.; Stöcklin, Jürg
2010-01-01
Background Species' life-history and population dynamics are strongly shaped by the longevity of individuals, but life span is one of the least accessible demographic traits, particularly in clonal plants. Continuous vegetative reproduction of genets enables persistence despite low or no sexual reproduction, affecting genet turnover rates and population stability. Therefore, the longevity of clonal plants is of considerable biological interest, but remains relatively poorly known. Scope Here, we critically review the present knowledge on the longevity of clonal plants and discuss its importance for population persistence. Direct life-span measurements such as growth-ring analysis in woody plants are relatively easy to take, although, for many clonal plants, these methods are not adequate due to the variable growth pattern of ramets and difficult genet identification. Recently, indirect methods have been introduced in which genet size and annual shoot increments are used to estimate genet age. These methods, often based on molecular techniques, allow the investigation of genet size and age structure of whole populations, a crucial issue for understanding their viability and persistence. However, indirect estimates of clonal longevity are impeded because the process of ageing in clonal plants is still poorly understood and because their size and age are not always well correlated. Alternative estimators for genet life span such as somatic mutations have recently been suggested. Conclusions Empirical knowledge on the longevity of clonal species has increased considerably in the last few years. Maximum age estimates are an indicator of population persistence, but are not sufficient to evaluate turnover rates and the ability of long-lived clonal plants to enhance community stability and ecosystem resilience. In order to understand the dynamics of populations it will be necessary to measure genet size and age structure, not only life spans of single individuals, and to use such data for modelling of genet dynamics. PMID:20880935
Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog (Hyla arborea).
Andersen, Liselotte W.; Fog, Kåre; Damgaard, Christian
2004-01-01
A genetic study of the European tree frog, Hyla arborea, in Denmark was undertaken to examine the population structure on mainland Jutland and the island of Lolland after a period of reduction in suitable habitat and population sizes. The two regions have experienced the same rate of habitat loss but fragmentation has been more severe on Lolland. Genetic variation based on 12 polymorphic DNA microsatellites was analysed in 494 tree frogs sampled from two ponds in Jutland and 10 ponds on Lolland. A significant overall deviation from Hardy-Weinberg expectations could be attributed to three ponds, all on Lolland. This was most probably caused by an inbreeding effect reducing fitness, which was supported by the observed significant negative correlation between larva survival and mean F(IS) value and mean individual inbreeding coefficient. A significant reduction in genetic variation (bottleneck) was detected in most of the ponds on Lolland. Population-structure analysis suggested the existence of at least 11 genetically different populations, corresponding to most of the sampled population units. The results indicated that the populations were unique genetic units and could be used to illustrate the migration pattern between newly established ponds arisen either by natural colonization of tree frogs or by artificial introduction. A high degree of pond fidelity in the tree frogs was suggested. A severe fragmentation process reducing population size and fitness within some of the populations probably caused the significant reduction in genetic variation of tree frog populations on Lolland. PMID:15306354
Nuss, Andressa; Carlos, Caio J.; Moreno, Ignacio B.; Fagundes, Nelson J. R.
2016-01-01
The Magnificent Frigatebird Fregata magnificens has a pantropical distribution, nesting on islands along the Atlantic and Pacific coasts. In the Caribbean, there is little genetic structure among colonies; however, the genetic structure among the colonies off Brazil and its relationship with those in the Caribbean are unknown. In this study, we used mtDNA and microsatellite markers to infer population structure and evolutionary history in a sample of F. magnificens individuals collected in Brazil, Grand Connétable (French Guyana), and Barbuda. Virtually all Brazilian individuals had the same mtDNA haplotype. There was no haplotype sharing between Brazil and the Caribbean, though Grand Connétable shared haplotypes with both regions. A Bayesian clustering analysis using microsatellite data found two genetic clusters: one associated with Barbuda and the other with the Brazilian populations. Grand Connétable was more similar to Barbuda but had ancestry from both clusters, corroborating its “intermediate” position. The Caribbean and Grand Connétable populations showed higher genetic diversity and effective population size compared to the Brazilian population. Overall, our results are in good agreement with an effect of marine winds in isolating the Brazilian meta-population. PMID:26901878
S. A. Vasiliauskas; L. W. Aarssen
2000-01-01
Casual observations have suggested that intermediate size and age gaps may exist in the eastern hemlock (Tsuga canadensis (L.)Carr.) populations of Algonquin Provincial Park, Ontario. This was confirmed in vegetation surveys reported here. Several hypotheses, involving mortality risks at different points in the life cycle of hemlock, are proposed to...
Allozyme diversity in Macbridea alba (Lamiaceae), an endemic Florida mint
M.J.W. Godt; Joan L. Walker; J.L. Hamrick
2004-01-01
Macbridea alba is a herbaceous perennial mint endemic to the panhandle region of Florida. We used starch gel electrophoresis to describe allozyme diversity and genetic structure in this federally threatened plant. Ten populations were analyzed, with an average sample size of 47 plants (range 41-48 plants) per population. Of the 22 loci analyzed, 11 (...
Deanh M. Donner; John R. Probst; Christine A. Ribic
2008-01-01
Kirtland's warblers (Dendroica kirtlandii) persist in a naturally patchy environment of young, regenerating jack pine forests (i.e., 5-23 years old) created after wildfires and human logging activities. We examined how changing landscape structure from 26 years of forest management and wildfire disturbances influenced population size and spatial...
Chapter 6: Research needs for the conservation of the cactus ferruginous pygmy-owl in Arizona
Jean-Luc E. Cartron; W. Scott Richardson; Deborah M. Finch; David J. Krueper
2000-01-01
In this chapter, we describe research needs for the conservation of the cactus ferruginous pygmy-owl (Glaucidium brasilianum cactorum) in Arizona. Estimates of population size, structure, and dynamics, as well as demographic data, are needed for the recovery team to formulate sound population objectives. Habitat loss due to residential development...
High Connectivity among Blue Crab (Callinectes sapidus) Populations in the Western South Atlantic
Kersanach, Ralf; Cortinhas, Maria Cristina Silva; Prata, Pedro Fernandes Sanmartin; Dumont, Luiz Felipe Cestari; Proietti, Maíra Carneiro; Maggioni, Rodrigo; D’Incao, Fernando
2016-01-01
Population connectivity in the blue crab Callinectes sapidus was evaluated along 740 km of the Western South Atlantic coast. Blue crabs are the most exploited portunid in Brazil. Despite their economic importance, few studies report their ecology or population structure. Here we sampled four estuarine areas in southern Brazil during winter 2013 and summer 2014 in order to evaluate diversity, gene flow and structure of these populations. Nine microsatellite markers were evaluated for 213 adult crabs, with identification of seven polymorphic loci and 183 alleles. Pairwise FST values indicated low population structure ranging from -0.00023 to 0.01755. A Mantel test revealed that the geographic distance does not influence genetic (r = -0.48), and structure/migration rates confirmed this, showing that even the populations located at the opposite extremities of our covered region presented low FST and exchanged migrants. These findings show that there is a significant amount of gene flow between blue crab populations in South Brazil, likely influenced by local current dynamics that allow the transport of a high number of larvae between estuaries. Considering the elevated gene flow, the populations can be considered a single genetic stock. However, further information on population size and dynamics, as well as fishery demands and impacts at different regions, are necessary for harvest management purposes. PMID:27064977
Genetic structure and conservation of Mountain Lions in the South-Brazilian Atlantic Rain Forest
Castilho, Camila S.; Marins-Sá, Luiz G.; Benedet, Rodrigo C.; Freitas, Thales R.O.
2012-01-01
The Brazilian Atlantic Rain Forest, one of the most endangered ecosystems worldwide, is also among the most important hotspots as regards biodiversity. Through intensive logging, the initial area has been reduced to around 12% of its original size. In this study we investigated the genetic variability and structure of the mountain lion, Puma concolor. Using 18 microsatellite loci we analyzed evidence of allele dropout, null alleles and stuttering, calculated the number of allele/locus, PIC, observed and expected heterozygosity, linkage disequilibrium, Hardy-Weinberg equilibrium, FIS, effective population size and genetic structure (MICROCHECKER, CERVUS, GENEPOP, FSTAT, ARLEQUIN, ONESAMP, LDNe, PCAGEN, GENECLASS software), we also determine whether there was evidence of a bottleneck (HYBRIDLAB, BOTTLENECK software) that might influence the future viability of the population in south Brazil. 106 alleles were identified, with the number of alleles/locus ranging from 2 to 11. Mean observed heterozygosity, mean number of alleles and polymorphism information content were 0.609, 5.89, and 0.6255, respectively. This population presented evidence of a recent bottleneck and loss of genetic variation. Persistent regional poaching constitutes an increasing in the extinction risk. PMID:22481876
Sorel, Mark H.; Hansen, Adam G.; Connelly, Kristin A.; Wilson, Andrew C.; Lowery, Erin D.; Beauchamp, David A.
2016-01-01
The feasibility of reintroducing anadromous salmonids into reservoirs above high-head dams is affected by the suitability of the reservoir habitat for rearing and the interactions of the resident fish with introduced fish. We evaluated the predation risk to anadromous salmonids considered for reintroduction in Merwin Reservoir on the North Fork Lewis River in Washington State for two reservoir use-scenarios: year-round rearing and smolt migration. We characterized the role of the primary predators, Northern Pikeminnow Ptychocheilus oregonensis and tiger muskellunge (Northern Pike Esox lucius × Muskellunge E. masquinongy), by using stable isotopes and stomach content analysis, quantified seasonal, per capita predation using bioenergetics modeling, and evaluated the size and age structures of the populations. We then combined these inputs to estimate predation rates of size-structured population units. Northern Pikeminnow of FL ≥ 300 mm were highly cannibalistic and exhibited modest, seasonal, per capita predation on salmonids, but they were disproportionately much less abundant than smaller, less piscivorous, conspecifics. The annual predation on kokanee Oncorhynchus nerka (in biomass) by a size-structured unit of 1,000 Northern Pikeminnow having a FL ≥ 300 mm was analogous to 16,000–40,000 age-0 spring Chinook Salmon O. tshawytscha rearing year-round, or 400–1,000 age-1 smolts migrating April–June. The per capita consumption of salmonids by Northern Pikeminnow having a FL ≥ 200 mm was relatively low, due in large part to spatial segregation during the summer and the skewed size distribution of the predator population. Tiger muskellunge fed heavily on Northern Pikeminnow, other nonsalmonids, and minimally on salmonids. In addition to cannibalism within the Northern Pikeminnow population, predation by tiger muskellunge likely contributed to the low recruitment of larger (more piscivorous) Northern Pikeminnow, thereby decreasing the risk of predation to salmonids. This study highlights the importance of evaluating trophic interactions within reservoirs slated for reintroduction with anadromous salmonids, as they can be functional migration corridors and may offer profitable juvenile-rearing habitats despite hosting abundant predator populations.
Population ecology of variegate darter (Etheostoma variatum) in Virginia
Argentina, Jane E.; Angermeier, Paul; Hallerman, Eric M.
2013-01-01
Variegate darters (Etheostoma variatum) were listed as endangered in Virginia in 1992. Reasons for listing included habitat degradation and concerns about current and future impacts of coal mining throughout their Virginia range. Prior to this research, little was known about variegate darter distribution, habitat use, or populations in Virginia. Two primary goals of this research were to gain knowledge about the current population ecology and the relationship between landscape-level factors (e.g., land cover changes, watershed size, isolation from other populations) on current and past variegate darter population sizes.We investigated distribution, habitat suitability, population genetics, and population size and structure of variegate darters in the upper Big Sandy River drainage, Buchanan, Dickenson, and Wise Co., Virginia. Our results indicate variegate darters are primarily found in the Levisa Fork, with highest densities and abundances between its confluence with Dismal Creek and the Virginia-Kentucky border. Sporadic occurrences in smaller tributaries to the Levisa and Tug forks indicate they exist more widely in low densities, especially near the confluence with the Tug and Levisa mainstems. Detection of variegate darters in smaller tributaries was inconsistent, with reach-level occupancy estimates varying among years. We detected young-of-year variegate darters every year we sampled, but age 1+ darters were indistinguishable from older darters based on standard length.Variegate darter population size and stability in Virginia were estimated via multiple methods, including site occupancy surveys, mark-recapture studies, and population genetic analysis. Using mark-recapture methods at five sites, we estimated overall population size in 2011 to be approximately 12,800 individuals in the 35-km reach between the Levisa Fork - Dismal Creek confluence and the Virginia-Kentucky border. Age structure seemed stable, with breeding adults and young-of-year collected annually during 2008-2011. Population genetic analysis indicated variegate darters in the Levisa Fork and its tributaries are part of a single genetic population. Historical and current genetic stability were seen in our analysis of the variegate darter population, with no genetic differentiation among riffles across the upper Levisa Fork watershed, indicating dispersal among these sites is enough to overcome random genetic drift. This population is genetically isolated from downstream populations by the dam at Fishtrap Lake, Pike Co., Kentucky, and is beginning to show genetic isolation from other nearby populations. As expected, the Virginia population is most closely related to those in the Russell Fork and Levisa Fork downstream of the dam.Regular monitoring of variegate darters in the Levisa Fork mainstem from the Dismal Creek confluence to the Virginia-Kentucky border would facilitate better understanding of normal fluctuations of population size and distribution, as well as assessments of population status. This reach encompasses the core of the variegate darter population in Virginia, and its persistence will determine long-term viability of this species. Given that little is known about long-term population trends, we suggest that annual site-occupancy and population size estimates be made at ten randomly selected riffles for at least ten years to understand normal levels of variability. Thereafter, these population parameters could be monitored bi-annually as a way to detect shrinking distribution or abundance, especially after any fish kill or other pollution event in the Levisa Fork. We further suggest that the sites upstream and downstream of the saline diffusor pipe be monitored to detect changes in the extent of the impact zone.Overall, the variegate darter population in Virginia appears stable, although primarily confined to the lower 35 km of the Levisa Fork. Nevertheless, variegate darters in Virginia remain susceptible to extirpation due to catastrophic events, both physical (chemical spill) and biological (disease outbreak or invasive species introduction).
Campos, Valeria; Giannoni, Stella; Andino, Natalia
2017-01-01
The effects of poaching on wildlife have been widely studied in conservation biology and can be heterogeneous, particularly on ungulates. These effects can be estimated through different methodologies whose use depends on several conditions such as Flight-initiation distance (FID). Our objectives were: 1- to evaluate whether poaching affects the FID and group structure of a guanaco (Lama guanicoe) population in a high cold desert in San Juan (Argentina); 2- to assess whether habitat structure (slope and vegetation cover) influences FID and group structure in this population. The study area included a site with poaching (unprotected area), and a site without poaching (protected area). We recorded 100 groups of guanacos: 70 in the protected and 30 in the unprotected area. FID and group size were greater in the unprotected than in the protected area, whereas proportions of group categories (with offspring, without offspring and solitary) were similar between areas. Besides, in relation to habitat structure, FID increased when vegetation cover decreased. On the other hand, FID and group size were not affected by slope. Our study shows that guanacos respond to poaching pressure as do other ungulate species, and that other factors such as vegetation cover also affect this behavior. Managers should be aware when interpreting FID due to its relation to habitat structure; the guanaco appears to assume greater risk (lower FID) in areas with high vegetation cover. PMID:28859147
Cappa, Flavio; Campos, Valeria; Giannoni, Stella; Andino, Natalia
2017-01-01
The effects of poaching on wildlife have been widely studied in conservation biology and can be heterogeneous, particularly on ungulates. These effects can be estimated through different methodologies whose use depends on several conditions such as Flight-initiation distance (FID). Our objectives were: 1- to evaluate whether poaching affects the FID and group structure of a guanaco (Lama guanicoe) population in a high cold desert in San Juan (Argentina); 2- to assess whether habitat structure (slope and vegetation cover) influences FID and group structure in this population. The study area included a site with poaching (unprotected area), and a site without poaching (protected area). We recorded 100 groups of guanacos: 70 in the protected and 30 in the unprotected area. FID and group size were greater in the unprotected than in the protected area, whereas proportions of group categories (with offspring, without offspring and solitary) were similar between areas. Besides, in relation to habitat structure, FID increased when vegetation cover decreased. On the other hand, FID and group size were not affected by slope. Our study shows that guanacos respond to poaching pressure as do other ungulate species, and that other factors such as vegetation cover also affect this behavior. Managers should be aware when interpreting FID due to its relation to habitat structure; the guanaco appears to assume greater risk (lower FID) in areas with high vegetation cover.
Gulliford, Martin C; Jack, Ruth H; Adams, Geoffrey; Ukoumunne, Obioha C
2004-01-01
Background It has been proposed that greater availability of primary medical care practitioners (GPs) contributes to better population health. We evaluated whether measures of the supply and structure of primary medical services are associated with health and health care indicators after adjusting for confounding. Methods Data for the supply and structure of primary medical services and the characteristics of registered patients were analysed for 99 health authorities in England in 1999. Health and health care indicators as dependent variables included standardised mortality ratios (SMR), standardised hospital admission rates, and conceptions under the age of 18 years. Linear regression analyses were adjusted for Townsend score, proportion of ethnic minorities and proportion of social class IV/ V. Results Higher proportions of registered rural patients and patients ≥ 75 years were associated with lower Townsend deprivation scores, with larger partnership sizes and with better health outcomes. A unit increase in partnership size was associated with a 4.2 (95% confidence interval 1.7 to 6.7) unit decrease in SMR for all-cause mortality at 15–64 years (P = 0.001). A 10% increase in single-handed practices was associated with a 1.5 (0.2 to 2.9) unit increase in SMR (P = 0.027). After additional adjustment for percent of rural and elderly patients, partnership size and proportion of single-handed practices, GP supply was not associated with SMR (-2.8, -6.9 to 1.3, P = 0.183). Conclusions After adjusting for confounding with health needs of populations, mortality is weakly associated with the degree of organisation of practices as represented by the partnership size but not with the supply of GPs. PMID:15193157
Minimizing the dependency ratio in a population with below-replacement fertility through immigration
Simon, C.; Belyakov, A.O.; Feichtinger, G.
2012-01-01
Many industrialized countries face fertility rates below replacement level, combined with declining mortality especially in older ages. Consequently, the populations of these countries have started to age. One important indicator of age structures is the dependency ratio which is the ratio of the nonworking age population to the working age population. In this work we find the age-specific immigration profile that minimizes the dependency ratio in a stationary population with below-replacement fertility. It is assumed that the number of immigrants per age is limited. We consider two alternative policies. In the first one, we fix the total number of people who annually immigrate to a country. In the second one, we prescribe the size of the receiving country’s population. For both cases we provide numerical results for the optimal immigration profile, for the resulting age structure of the population, as well as for the dependency ratio. PMID:22781918
Wang, Ian J
2009-09-01
Environmental variables can strongly influence a variety of intra- and inter-population processes, including demography, population structure and gene flow. When environmental conditions are particularly harsh for a certain species, investigating these effects is important to understanding how populations persist under difficult conditions. Furthermore, species inhabiting challenging environments present excellent opportunities to examine the effects of complex landscapes on population processes because these effects will often be more pronounced. In this study, I use 16 microsatellite loci to examine population structure, gene flow and demographic history in the black toad, Bufo exsul, which has one of the most restricted natural ranges of any amphibian. Bufo exsul inhabits four springs in the Deep Springs Valley high desert basin and has never been observed more than several meters from any source of water. My results reveal limited gene flow and moderately high levels of population structure (F(ST) = 0.051-0.063) between all but the two closest springs. I found that the geographic distance across the arid scrub habitat between springs is significantly correlated with genetic structure when distance accounts for topography and barriers to dispersal. I also found very low effective population sizes (N(e) = 7-30) and substantial evidence for historical population bottlenecks in all four populations. Together, these results suggest that the desert landscape and B. exsul's high habitat specificity contribute significantly to population structure and demography in this species and emphasize the importance of considering behavioural and landscape data in conservation genetic studies of natural systems.
Zhang, Rui-Chang; Lin, Yue; Yue, Ming; Li, Qian; Zhang, Xiao-Fei; Liu, Xiao; Chi, Hong; Chai, Yong-Fu; Wang, Mao
2012-01-01
(1) The effects of facilitation on the structure and dynamics of plant populations have not been studied so widely as competition. The UV-B radiation, as a typical environmental factor causing stress, may result in direct stress and facilitation. (2) The effects of UV-B radiation on intraspecific competition and facilitation were investigated based on the following three predictions on self-thinning, size inequality, and phenotypic plasticity: i) Self-thinning is the reduction in density that results from the increase in the mean biomass of individuals in crowded populations, and is driven by competition. In this study, the mortality rate of the population is predicted to decrease from UV-B irradiance. ii) The size inequality of a population increases with competition intensity because larger individuals receive a disproportionate share of resources, thereby leaving limited resources for smaller individuals. The second hypothesis assumes that direct stress decreases the size inequality of the population. iii) Phenotypic plasticity is the ability to alter one's morphology in response to environmental changes. The third hypothesis assumes that certain morphological indices can change among the trade-offs between competition, facilitation, and stress. These predictions were tested by conducting a field pot experiment using mung beans, and were supported by the following results: (3) UV-B radiation increased the survival rate of the population at the end of self-thinning. However, this result was mainly due to direct stress rather than facilitation. (4) Just as competitor, facilitation was also asymmetric. It increased the size inequality of populations during self-thinning, whereas stress decreased the size inequality. (5) Direct stress and facilitation influence plants differently on various scales. Stress inhibited plant growth, whereas facilitation showed the opposite on an individual scale. Stress increased survival rate, whereas facilitation increased individual variability on the population scale. (6) Trade-offs between competitions, facilitation, and direct stress varied in different growing stages.
Zhang, Rui-Chang; Lin, Yue; Yue, Ming; Li, Qian; Zhang, Xiao-Fei; Liu, Xiao; Chi, Hong; Chai, Yong-Fu; Wang, Mao
2012-01-01
(1) The effects of facilitation on the structure and dynamics of plant populations have not been studied so widely as competition. The UV-B radiation, as a typical environmental factor causing stress, may result in direct stress and facilitation. (2) The effects of UV-B radiation on intraspecific competition and facilitation were investigated based on the following three predictions on self-thinning, size inequality, and phenotypic plasticity: i) Self-thinning is the reduction in density that results from the increase in the mean biomass of individuals in crowded populations, and is driven by competition. In this study, the mortality rate of the population is predicted to decrease from UV-B irradiance. ii) The size inequality of a population increases with competition intensity because larger individuals receive a disproportionate share of resources, thereby leaving limited resources for smaller individuals. The second hypothesis assumes that direct stress decreases the size inequality of the population. iii) Phenotypic plasticity is the ability to alter one’s morphology in response to environmental changes. The third hypothesis assumes that certain morphological indices can change among the trade-offs between competition, facilitation, and stress. These predictions were tested by conducting a field pot experiment using mung beans, and were supported by the following results: (3) UV-B radiation increased the survival rate of the population at the end of self-thinning. However, this result was mainly due to direct stress rather than facilitation. (4) Just as competitor, facilitation was also asymmetric. It increased the size inequality of populations during self-thinning, whereas stress decreased the size inequality. (5) Direct stress and facilitation influence plants differently on various scales. Stress inhibited plant growth, whereas facilitation showed the opposite on an individual scale. Stress increased survival rate, whereas facilitation increased individual variability on the population scale. (6) Trade-offs between competitions, facilitation, and direct stress varied in different growing stages. PMID:23226393
Santos-del-Blanco, L; Climent, J; González-Martínez, S C; Pannell, J R
2012-11-01
The study of local adaptation in plant reproductive traits has received substantial attention in short-lived species, but studies conducted on forest trees are scarce. This lack of research on long-lived species represents an important gap in our knowledge, because inferences about selection on the reproduction and life history of short-lived species cannot necessarily be extrapolated to trees. This study considers whether the size for first reproduction is locally adapted across a broad geographical range of the Mediterranean conifer species Pinus pinaster. In particular, the study investigates whether this monoecious species varies genetically among populations in terms of whether individuals start to reproduce through their male function, their female function or both sexual functions simultaneously. Whether differences among populations could be attributed to local adaptation across a climatic gradient is then considered. Male and female reproduction and growth were measured during early stages of sexual maturity of a P. pinaster common garden comprising 23 populations sampled across the species range. Generalized linear mixed models were used to assess genetic variability of early reproductive life-history traits. Environmental correlations with reproductive life-history traits were tested after controlling for neutral genetic structure provided by 12 nuclear simple sequence repeat markers. Trees tended to reproduce first through their male function, at a size (height) that varied little among source populations. The transition to female reproduction was slower, showed higher levels of variability and was negatively correlated with vegetative growth traits. Several female reproductive traits were correlated with a gradient of growth conditions, even after accounting for neutral genetic structure, with populations from more unfavourable sites tending to commence female reproduction at a lower individual size. The study represents the first report of genetic variability among populations for differences in the threshold size for first reproduction between male and female sexual functions in a tree species. The relatively uniform size at which individuals begin reproducing through their male function probably represents the fact that pollen dispersal is also relatively invariant among sites. However, the genetic variability in the timing of female reproduction probably reflects environment-dependent costs of cone production. The results also suggest that early sex allocation in this species might evolve under constraints that do not apply to other conifers.
Santos-del-Blanco, L.; Climent, J.; González-Martínez, S. C.; Pannell, J. R.
2012-01-01
Background and Aims The study of local adaptation in plant reproductive traits has received substantial attention in short-lived species, but studies conducted on forest trees are scarce. This lack of research on long-lived species represents an important gap in our knowledge, because inferences about selection on the reproduction and life history of short-lived species cannot necessarily be extrapolated to trees. This study considers whether the size for first reproduction is locally adapted across a broad geographical range of the Mediterranean conifer species Pinus pinaster. In particular, the study investigates whether this monoecious species varies genetically among populations in terms of whether individuals start to reproduce through their male function, their female function or both sexual functions simultaneously. Whether differences among populations could be attributed to local adaptation across a climatic gradient is then considered. Methods Male and female reproduction and growth were measured during early stages of sexual maturity of a P. pinaster common garden comprising 23 populations sampled across the species range. Generalized linear mixed models were used to assess genetic variability of early reproductive life-history traits. Environmental correlations with reproductive life-history traits were tested after controlling for neutral genetic structure provided by 12 nuclear simple sequence repeat markers. Key Results Trees tended to reproduce first through their male function, at a size (height) that varied little among source populations. The transition to female reproduction was slower, showed higher levels of variability and was negatively correlated with vegetative growth traits. Several female reproductive traits were correlated with a gradient of growth conditions, even after accounting for neutral genetic structure, with populations from more unfavourable sites tending to commence female reproduction at a lower individual size. Conclusions The study represents the first report of genetic variability among populations for differences in the threshold size for first reproduction between male and female sexual functions in a tree species. The relatively uniform size at which individuals begin reproducing through their male function probably represents the fact that pollen dispersal is also relatively invariant among sites. However, the genetic variability in the timing of female reproduction probably reflects environment-dependent costs of cone production. The results also suggest that early sex allocation in this species might evolve under constraints that do not apply to other conifers. PMID:23002272
Turnquist, Keith N.; Larson, Wesley; Farrell, John M.; Hanchin, P.A.; Kapuscinski, Kevin L.; Miller, Loren M.; Scribner, Kim T.; Wilson, Chris C.; Sloss, Brian L.
2017-01-01
Muskellunge (Esox masquinongy) are important apex predators that support numerous recreational fisheries throughout the Great Lakes region. Declines in muskellunge abundance from historical overharvest and environmental degradation have threatened the viability of many populations and prompted significant restoration efforts that often include stocking. The goal of our study was to investigate contemporary population structure and genetic diversity in 42 populations of muskellunge sampled across the Great Lakes region to inform future management and supplementation practices. We genotyped 1896 muskellunge (N = 10–123/population) at 13 microsatellite loci. The greatest genetic variation was between populations of Great Lakes origin and populations of Northern (inland) origin, with both groups also exhibiting significant substructure (overall FST = 0.23). Genetic structure was generally correlated with geography; however, we only found marginal evidence of isolation by distance, likely due to high genetic differentiation among proximate populations. Measures of genetic diversity were moderate across most populations, but some populations displayed low diversity consistent with small population sizes or historical bottlenecks. Many of the populations studied displayed evidence of historic introductions and supplemental stocking, including the presence of individuals with primarily non-native ancestry as well as interlineage hybrids. Our results suggest that the historic population structure of muskellunge is largely intact across the Great Lakes region, but also that stocking practices have altered this structure to some degree. We suggest that future supplementation practices use local sources where possible, and incorporate genetic tools including broodstock screening to ensure that non-native muskellunge are not used to supplement wild populations.
Kim, Jae Hwan; Kang, Ji Hyoun; Jang, Ji Eun; Choi, Sun Kyeong; Kim, Min Ji; Park, Sang Rul; Lee, Hyuk Je
2017-01-01
Seagrasses provide numerous ecosystem services for coastal and estuarine environments, such as nursery functions, erosion protection, pollution filtration, and carbon sequestration. Zostera marina (common name “eelgrass”) is one of the seagrass bed-forming species distributed widely in the northern hemisphere, including the Korean Peninsula. Recently, however, there has been a drastic decline in the population size of Z. marina worldwide, including Korea. We examined the current population genetic status of this species on the southern coast of Korea by estimating the levels of genetic diversity and genetic structure of 10 geographic populations using eight nuclear microsatellite markers. The level of genetic diversity was found to be significantly lower for populations on Jeju Island [mean allelic richness (AR) = 1.92, clonal diversity (R) = 0.51], which is located approximately 155 km off the southernmost region of the Korean Peninsula, than for those in the South Sea (mean AR = 2.69, R = 0.82), which is on the southern coast of the mainland. South Korean eelgrass populations were substantially genetically divergent from one another (FST = 0.061–0.573), suggesting that limited contemporary gene flow has been taking place among populations. We also found weak but detectable temporal variation in genetic structure within a site over 10 years. In additional depth comparisons, statistically significant genetic differentiation was observed between shallow (or middle) and deep zones in two of three sites tested. Depleted genetic diversity, small effective population sizes (Ne) and limited connectivity for populations on Jeju Island indicate that these populations may be vulnerable to local extinction under changing environmental conditions, especially given that Jeju Island is one of the fastest warming regions around the world. Overall, our work will inform conservation and restoration efforts, including transplantation for eelgrass populations at the southern tip of the Korean Peninsula, for this ecologically important species. PMID:28323864
Kim, Jae Hwan; Kang, Ji Hyoun; Jang, Ji Eun; Choi, Sun Kyeong; Kim, Min Ji; Park, Sang Rul; Lee, Hyuk Je
2017-01-01
Seagrasses provide numerous ecosystem services for coastal and estuarine environments, such as nursery functions, erosion protection, pollution filtration, and carbon sequestration. Zostera marina (common name "eelgrass") is one of the seagrass bed-forming species distributed widely in the northern hemisphere, including the Korean Peninsula. Recently, however, there has been a drastic decline in the population size of Z. marina worldwide, including Korea. We examined the current population genetic status of this species on the southern coast of Korea by estimating the levels of genetic diversity and genetic structure of 10 geographic populations using eight nuclear microsatellite markers. The level of genetic diversity was found to be significantly lower for populations on Jeju Island [mean allelic richness (AR) = 1.92, clonal diversity (R) = 0.51], which is located approximately 155 km off the southernmost region of the Korean Peninsula, than for those in the South Sea (mean AR = 2.69, R = 0.82), which is on the southern coast of the mainland. South Korean eelgrass populations were substantially genetically divergent from one another (FST = 0.061-0.573), suggesting that limited contemporary gene flow has been taking place among populations. We also found weak but detectable temporal variation in genetic structure within a site over 10 years. In additional depth comparisons, statistically significant genetic differentiation was observed between shallow (or middle) and deep zones in two of three sites tested. Depleted genetic diversity, small effective population sizes (Ne) and limited connectivity for populations on Jeju Island indicate that these populations may be vulnerable to local extinction under changing environmental conditions, especially given that Jeju Island is one of the fastest warming regions around the world. Overall, our work will inform conservation and restoration efforts, including transplantation for eelgrass populations at the southern tip of the Korean Peninsula, for this ecologically important species.
ENDERSBY, N. M.; HOFFMANN, A. A.; WHITE, V. L.; LOWENSTEIN, S.; RITCHIE, S.; JOHNSON, P. H.; RAPLEY, L. P.; RYAN, P. A.; NAM, V. S.; YEN, N. T.; KITTIYAPONG, P.; WEEKS, A. R.
2009-01-01
The distribution of Aedes aegypti (L.) in Australia is currently restricted to northern Queensland, but it has been more extensive in the past. In this study, we evaluate the genetic structure of Ae. aegypti populations in Australia and Vietnam and consider genetic differentiation between mosquitoes from these areas and those from a population in Thailand. Six microsatellites and two exon primed intron crossing markers were used to assess isolation by distance across all populations and also within the Australian sample. Investigations of founder effects, amount of molecular variation between and within regions and comparison of FST values among Australian and Vietnamese populations were made to assess the scale of movement of Ae. aegypti. Genetic control methods are under development for mosquito vector populations including the dengue vector Ae. aegypti. The success of these control methods will depend on the population structure of the target species including population size and rates of movement among populations. Releases of modified mosquitoes could target local populations that show a high degree of isolation from surrounding populations, potentially allowing new variants to become established in one region with eventual dispersal to other regions. PMID:19769038
The Effects of Environmental Characteristics on the Structure of Hospital Clusters.
ERIC Educational Resources Information Center
Fennell, Mary L.
1980-01-01
The population ecology view that variation in sets or clusters of organizations should be isomorphic with variation in cluster environment was used to explain structural variation among hospital clusters. Cluster differentiation seems to be casually affected by range of services, average hospital size, and the periodic closing of hospitals.…
Dullgren extraction of soil mites (Acarina): Effect of refrigeration time on extraction efficiency
Michelle B. Lakly; D.A. Crossley
2000-01-01
Soil microarthropods constitute one of the most species rich communities in . forest ecosystems (Crossley & Blair, 1991). The effects of soil fauna in these systems on decomposition rates, nutrient regeneration and soil structure have been well documented; however, dependable estimates of population size and community structure largely depend upon adequate sampling...
Inventory implications of using sampling variances in estimation of growth model coefficients
Albert R. Stage; William R. Wykoff
2000-01-01
Variables based on stand densities or stocking have sampling errors that depend on the relation of tree size to plot size and on the spatial structure of the population, ignoring the sampling errors of such variables, which include most measures of competition used in both distance-dependent and distance-independent growth models, can bias the predictions obtained from...
A general modeling framework for describing spatially structured population dynamics
Sample, Christine; Fryxell, John; Bieri, Joanna; Federico, Paula; Earl, Julia; Wiederholt, Ruscena; Mattsson, Brady; Flockhart, Tyler; Nicol, Sam; Diffendorfer, James E.; Thogmartin, Wayne E.; Erickson, Richard A.; Norris, D. Ryan
2017-01-01
Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance that comparative analyses are colored by model details rather than general principles
Lukoschek, V; Waycott, M; Keogh, J S
2008-07-01
Polymorphic microsatellites are widely considered more powerful for resolving population structure than mitochondrial DNA (mtDNA) markers, particularly for recently diverged lineages or geographically proximate populations. Weaker population subdivision for biparentally inherited nuclear markers than maternally inherited mtDNA may signal male-biased dispersal but can also be attributed to marker-specific evolutionary characteristics and sampling properties. We discriminated between these competing explanations with a population genetic study on olive sea snakes, Aipysurus laevis. A previous mtDNA study revealed strong regional population structure for A. laevis around northern Australia, where Pleistocene sea-level fluctuations have influenced the genetic signatures of shallow-water marine species. Divergences among phylogroups dated to the Late Pleistocene, suggesting recent range expansions by previously isolated matrilines. Fine-scale population structure within regions was, however, poorly resolved for mtDNA. In order to improve estimates of fine-scale genetic divergence and to compare population structure between nuclear and mtDNA, 354 olive sea snakes (previously sequenced for mtDNA) were genotyped for five microsatellite loci. F statistics and Bayesian multilocus genotype clustering analyses found similar regional population structure as mtDNA and, after standardizing microsatellite F statistics for high heterozygosities, regional divergence estimates were quantitatively congruent between marker classes. Over small spatial scales, however, microsatellites recovered almost no genetic structure and standardized F statistics were orders of magnitude smaller than for mtDNA. Three tests for male-biased dispersal were not significant, suggesting that recent demographic expansions to the typically large population sizes of A. laevis have prevented microsatellites from reaching mutation-drift equilibrium and local populations may still be diverging.
The non-linear relationship between body size and function in parrotfishes
NASA Astrophysics Data System (ADS)
Lokrantz, J.; Nyström, M.; Thyresson, M.; Johansson, C.
2008-12-01
Parrotfishes are a group of herbivores that play an important functional role in structuring benthic communities on coral reefs. Increasingly, these fish are being targeted by fishermen, and resultant declines in biomass and abundance may have severe consequences for the dynamics and regeneration of coral reefs. However, the impact of overfishing extends beyond declining fish stocks. It can also lead to demographic changes within species populations where mean body size is reduced. The effect of reduced mean body size on population dynamics is well described in literature but virtually no information exists on how this may influence important ecological functions. The study investigated how one important function, scraping (i.e., the capacity to remove algae and open up bare substratum for coral larval settlement), by three common species of parrotfishes ( Scarus niger, Chlorurus sordidus, and Chlorurus strongylocephalus) on coral reefs at Zanzibar (Tanzania) was influenced by the size of individual fishes. There was a non-linear relationship between body size and scraping function for all species examined, and impact through scraping was also found to increase markedly when fish reached a size of 15 20 cm. Thus, coral reefs which have a high abundance and biomass of parrotfish may nonetheless be functionally impaired if dominated by small-sized individuals. Reductions in mean body size within parrotfish populations could, therefore, have functional impacts on coral reefs that previously have been overlooked.
A simulation analysis to characterize the dynamics of vaccinating behaviour on contact networks.
Perisic, Ana; Bauch, Chris T
2009-05-28
Human behavior influences infectious disease transmission, and numerous "prevalence-behavior" models have analyzed this interplay. These previous analyses assumed homogeneously mixing populations without spatial or social structure. However, spatial and social heterogeneity are known to significantly impact transmission dynamics and are particularly relevant for certain diseases. Previous work has demonstrated that social contact structure can change the individual incentive to vaccinate, thus enabling eradication of a disease under a voluntary vaccination policy when the corresponding homogeneous mixing model predicts that eradication is impossible due to free rider effects. Here, we extend this work and characterize the range of possible behavior-prevalence dynamics on a network. We simulate transmission of a vaccine-preventable infection through a random, static contact network. Individuals choose whether or not to vaccinate on any given day according to perceived risks of vaccination and infection. We find three possible outcomes for behavior-prevalence dynamics on this type of network: small final number vaccinated and final epidemic size (due to rapid control through voluntary ring vaccination); large final number vaccinated and significant final epidemic size (due to imperfect voluntary ring vaccination), and little or no vaccination and large final epidemic size (corresponding to little or no voluntary ring vaccination). We also show that the social contact structure enables eradication under a broad range of assumptions, except when vaccine risk is sufficiently high, the disease risk is sufficiently low, or individuals vaccinate too late for the vaccine to be effective. For populations where infection can spread only through social contact network, relatively small differences in parameter values relating to perceived risk or vaccination behavior at the individual level can translate into large differences in population-level outcomes such as final size and final number vaccinated. The qualitative outcome of rational, self interested behaviour under a voluntary vaccination policy can vary substantially depending on interactions between social contact structure, perceived vaccine and disease risks, and the way that individual vaccination decision-making is modelled.
A simulation analysis to characterize the dynamics of vaccinating behaviour on contact networks
2009-01-01
Background Human behavior influences infectious disease transmission, and numerous "prevalence-behavior" models have analyzed this interplay. These previous analyses assumed homogeneously mixing populations without spatial or social structure. However, spatial and social heterogeneity are known to significantly impact transmission dynamics and are particularly relevant for certain diseases. Previous work has demonstrated that social contact structure can change the individual incentive to vaccinate, thus enabling eradication of a disease under a voluntary vaccination policy when the corresponding homogeneous mixing model predicts that eradication is impossible due to free rider effects. Here, we extend this work and characterize the range of possible behavior-prevalence dynamics on a network. Methods We simulate transmission of a vaccine-prevetable infection through a random, static contact network. Individuals choose whether or not to vaccinate on any given day according to perceived risks of vaccination and infection. Results We find three possible outcomes for behavior-prevalence dynamics on this type of network: small final number vaccinated and final epidemic size (due to rapid control through voluntary ring vaccination); large final number vaccinated and significant final epidemic size (due to imperfect voluntary ring vaccination), and little or no vaccination and large final epidemic size (corresponding to little or no voluntary ring vaccination). We also show that the social contact structure enables eradication under a broad range of assumptions, except when vaccine risk is sufficiently high, the disease risk is sufficiently low, or individuals vaccinate too late for the vaccine to be effective. Conclusion For populations where infection can spread only through social contact network, relatively small differences in parameter values relating to perceived risk or vaccination behavior at the individual level can translate into large differences in population-level outcomes such as final size and final number vaccinated. The qualitative outcome of rational, self interested behaviour under a voluntary vaccination policy can vary substantially depending on interactions between social contact structure, perceived vaccine and disease risks, and the way that individual vaccination decision-making is modelled. PMID:19476616
Conservation genetics of managed ungulate populations
Scribner, Kim T.
1993-01-01
Natural populations of many species are increasingly impacted by human activities. Perturbations are particularly pronunced for large ungulates due in part to sport and commercial harvest, to reductions and fragmentation of native habitat, and as the result of reintroductions. These perturbations affect population size, sex and age composition, and population breeding structure, and as a consequence affect the levels and partitioning of genetic variation. Three case histories highlighting long-term ecological genetic research on mule deer Odocoileus hemionus (Rafinesque, 1817), white-tailed deer O. virginianus (Zimmermann, 1780), and Alpine ibex Capra i. ibex Linnaeus, 1758 are presented. Joint examinations of population ecological and genetic data from several populations of each species reveal: (1) that populations are not in genetic equilibrium, but that allele frequencies and heterozygosity change dramatically over time and among cohorts produced in successive years, (2) populations are genetically structured over short and large geographic distances reflecting local breeding structure and patterns of gene flow, respectively; however, this structure is quite dynamic over time, due in part to population exploitation, and (3) restocking programs are often undertaken with small numbers of founding individuals resulting in dramatic declines in levels of genetic variability and increasing levels of genetic differentiation among populations due to genetic drift. Genetic characteristics have and will continue to provide valuable indirect sources of information relating enviromental and human perturbations to changes in population processes.
Xie, Guo-Wen; Wang, De-Lian; Yuan, Yong-Ming; Ge, Xue-Jun
2005-04-01
Monimopetalum chinense (Celastraceae) standing for the monotypic genus is endemic to eastern China. Its conservation status is vulnerable as most populations are small and isolated. Monimopetalum chinense is capable of reproducing both sexually and asexually. The aim of this study was to understand the genetic structure of M. chinense and to suggest conservation strategies. One hundred and ninety individuals from ten populations sampled from the entire distribution area of M. chinense were investigated by using inter-simple sequence repeats (ISSR). A total of 110 different ISSR bands were generated using ten primers. Low levels of genetic variation were revealed both at the species level (Isp=0.183) and at the population level (Ipop=0.083). High clonal diversity (D = 0.997) was found, and strong genetic differentiation among populations was detected (49.06 %). Small population size, possible inbreeding, limited gene flow due to short distances of seed dispersal, fragmentation of the once continuous range and subsequent genetic drift, may have contributed to shaping the population genetic structure of the species.
Bian, Chao-Rong; Gao, Yu-Meng; Lamberton, Poppy H L; Lu, Da-Bing
2015-06-01
Schistosomiasis japonicum is one of the most important human parasitic diseases, and a number of studies have recently elucidated the difference in biological characteristics of S. japonicum among different parasite isolates, for example, between the field and the laboratory isolates. Therefore, the understanding of underlying genetic mechanism is of both theoretical and practical importance. In this study, we used six microsatellite markers to assess genetic diversity, population structure, and the bottleneck effect (a sharp reduction in population size) of two parasite populations, one field and one laboratory. A total of 136 S. japonicum cercariae from the field and 86 from the laboratory, which were genetically unique within single snails, were analyzed. The results showed bigger numbers of alleles and higher allelic richness in the field parasite population than in the laboratory indicating lower genetic diversity in the laboratory parasites. A bottleneck effect was detected in the laboratory population. When the field and laboratory isolates were combined, there was a clear distinction between two parasite populations using the software Structure. These genetic differences may partially explain the previously observed contrasted biological traits.
Predatory senescence in ageing wolves.
MacNulty, Daniel R; Smith, Douglas W; Vucetich, John A; Mech, L David; Stahler, Daniel R; Packer, Craig
2009-12-01
It is well established that ageing handicaps the ability of prey to escape predators, yet surprisingly little is known about how ageing affects the ability of predators to catch prey. Research into long-lived predators has assumed that adults have uniform impacts on prey regardless of age. Here we use longitudinal data from repeated observations of individually-known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park to demonstrate that adult predatory performance declines with age and that an increasing ratio of senescent individuals in the wolf population depresses the rate of prey offtake. Because this ratio fluctuates independently of population size, predatory senescence may cause wolf populations of equal size but different age structure to have different impacts on prey populations. These findings suggest that predatory senescence is an important, though overlooked, factor affecting predator-prey dynamics.
Predatory senescence in ageing wolves
MacNulty, D.R.; Smith, D.W.; Vucetich, J.A.; Mech, L.D.; Stahler, D.R.; Packer, C.
2009-01-01
It is well established that ageing handicaps the ability of prey to escape predators, yet surprisingly little is known about how ageing affects the ability of predators to catch prey. Research into long-lived predators has assumed that adults have uniform impacts on prey regardless of age. Here we use longitudinal data from repeated observations of individually-known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park to demonstrate that adult predatory performance declines with age and that an increasing ratio of senescent individuals in the wolf population depresses the rate of prey offtake. Because this ratio fluctuates independently of population size, predatory senescence may cause wolf populations of equal size but different age structure to have different impacts on prey populations. These findings suggest that predatory senescence is an important, though overlooked, factor affecting predator-prey dynamics. ?? 2009 Blackwell Publishing Ltd/CNRS.
Predatory senescence in aging wolves
MacNulty, Daniel R.; Smith, Douglas W.; Vucetich, John A.; Mech, L. David; Stahler, Daniel R.; Packer, Craig
2009-01-01
It is well established that ageing handicaps the ability of prey to escape predators, yet surprisingly little is known about how ageing affects the ability of predators to catch prey. Research into long-lived predators has assumed that adults have uniform impacts on prey regardless of age. Here we use longitudinal data from repeated observations of individually-known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park to demonstrate that adult predatory performance declines with age and that an increasing ratio of senescent individuals in the wolf population depresses the rate of prey offtake. Because this ratio fluctuates independently of population size, predatory senescence may cause wolf populations of equal size but different age structure to have different impacts on prey populations. These findings suggest that predatory senescence is an important, though overlooked, factor affecting predator-prey dynamics.
Reid, S.M.; Wilson, C.C.; Mandrak, N.E.; Carl, L.M.
2008-01-01
Dams have the potential to affect population size and connectivity, reduce genetic diversity, and increase genetic differences among isolated riverine fish populations. Previous research has reported adverse effects on the distribution and demographics of black redhorse (Moxostoma duquesnei), a threatened fish species in Canada. However, effects on genetic diversity and population structure are unknown. We used microsatellite DNA markers to assess the number of genetic populations in the Grand River (Ontario) and to test whether dams have resulted in a loss of genetic diversity and increased genetic differentiation among populations. Three hundred and seventy-seven individuals from eight Grand River sites were genotyped at eight microsatellite loci. Measures of genetic diversity were moderately high and not significantly different among populations; strong evidence of recent population bottlenecks was not detected. Pairwise FST and exact tests identified weak (global FST = 0.011) but statistically significant population structure, although little population structuring was detected using either genetic distances or an individual-based clustering method. Neither geographic distance nor the number of intervening dams were correlated with pairwise differences among populations. Tests for regional equilibrium indicate that Grand River populations were either in equilibrium between gene flow and genetic drift or that gene flow is more influential than drift. While studies on other species have identified strong dam-related effects on genetic diversity and population structure, this study suggests that barrier permeability, river fragment length and the ecological characteristics of affected species can counterbalance dam-related effects. ?? 2007 Springer Science+Business Media B.V.
Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays
Berg, Jeremy J.; Birchler, James A.; Grote, Mark N.; Lorant, Anne; Quezada, Juvenal
2018-01-01
While the vast majority of genome size variation in plants is due to differences in repetitive sequence, we know little about how selection acts on repeat content in natural populations. Here we investigate parallel changes in intraspecific genome size and repeat content of domesticated maize (Zea mays) landraces and their wild relative teosinte across altitudinal gradients in Mesoamerica and South America. We combine genotyping, low coverage whole-genome sequence data, and flow cytometry to test for evidence of selection on genome size and individual repeat abundance. We find that population structure alone cannot explain the observed variation, implying that clinal patterns of genome size are maintained by natural selection. Our modeling additionally provides evidence of selection on individual heterochromatic knob repeats, likely due to their large individual contribution to genome size. To better understand the phenotypes driving selection on genome size, we conducted a growth chamber experiment using a population of highland teosinte exhibiting extensive variation in genome size. We find weak support for a positive correlation between genome size and cell size, but stronger support for a negative correlation between genome size and the rate of cell production. Reanalyzing published data of cell counts in maize shoot apical meristems, we then identify a negative correlation between cell production rate and flowering time. Together, our data suggest a model in which variation in genome size is driven by natural selection on flowering time across altitudinal clines, connecting intraspecific variation in repetitive sequence to important differences in adaptive phenotypes. PMID:29746459
NASA Astrophysics Data System (ADS)
Fidler, Robert Young, III
Overfishing and destructive fishing practices threaten the sustainability of fisheries worldwide. In addition to reducing population sizes, anthropogenic fishing effort is highly size-selective, preferentially removing the largest individuals from harvested stocks. Intensive, size-selective mortality induces widespread phenotypic shifts toward the predominance of smaller and earlier-maturing individuals. Fish that reach sexual maturity at smaller size and younger age produce fewer, smaller, and less viable larvae, severely reducing the reproductive capacity of exploited populations. These directional phenotypic alterations, collectively known as "fisheries-induced evolution" (FIE) are among the primary causes of the loss of harvestable fish biomass. Marine protected areas (MPAs) are one of the most widely utilized components of fisheries management programs around the world, and have been proposed as a potential mechanism by which the impacts of FIE may be mitigated. The ability of MPAs to buffer exploited populations against fishing pressure, however, remains debated due to inconsistent results across studies. Additionally, empirical evidence of phenotypic shifts in fishes within MPAs is lacking. This investigation addresses both of these issues by: (1) using a categorical meta-analysis of MPAs to standardize and quantify the magnitude of MPA impacts across studies; and (2) conducting a direct comparison of life-history phenotypes known to be influenced by FIE in six reef-fish species inside and outside of MPAs. The Philippines was used as a model system for analyses due to the country's significance in global marine biodiversity and reliance on MPAs as a fishery management tool. The quantitative impact of Philippine MPAs was assessed using a "reef-wide" meta-analysis. This analysis used pooled visual census data from 39 matched pairs of MPAs and fished reefs surveyed twice over a mean period of 3 years. In 17 of these MPAs, two additional surveys were conducted using size-specific fish counts, allowing for spatiotemporal comparisons of abundance and demographic structure of fish populations across protected and fished areas. Results of the meta-analysis revealed that: (1) although fish density was higher inside MPAs than in fished reefs at each sampling period, reef-wide density often increased or remained stable over time; and (2) increases in large-bodied fish were evident reef-wide between survey periods, indicating that positive demographic shifts occurred simultaneously in both MPAs and adjacent areas. Increases in large-bodied fish were observed across a range of taxa, but were most prominent in families directly targeted by fishermen. These results suggest that over relatively few years of protection, Philippine MPAs promoted beneficial shifts in population structure throughout entire reef systems, rather than simply maintaining stable populations within their borders. Relationships between MPA age and shifts in fish density or demographic structure were rare, but may have been precluded by the relatively short period between replicate surveys. Although increases in fish density inside MPAs were occasionally associated with MPA size, there were no significant relationships between the size of MPAs and reef-wide increases in fish density. The reef-wide framework of MPA assessment used in this study has the advantage of treating MPAs and fished reefs as an integrated system, thus revealing trends that would be indistinguishable in traditional spatial comparisons between MPAs and fished reefs. The impact of MPAs on fishing-induced life-history traits was assessed by comparing growth and maturation patterns exhibited by six reef-fish species inside and outside five MPAs and adjacent, fished reefs in Zambales, Luzon, Philippines. This analysis demonstrated considerable variation in terminal body-sizes (Linf) and growth rates (K) between conspecifics in MPAs and fished reefs. Three of the four experimental species directly targeted for food in the region (Acanthurus nigrofuscus, Ctenochaetus striatus, and Parupeneus multifasciatus) exhibited greater Linf, lower K, or both characteristics inside at least one MPA compared to populations in adjacent, fished reefs. Life-history shifts were concentrated in the oldest and largest MPAs, but occurred at least once in each of the five MPAs that were examined. A fourth species harvested for food (Ctenochaetus binotatus), as well as a species targeted for the aquarium trade (Zebrasoma scopas) and a non-target species (Plectroglyphidodon lacrymatus) did not exhibit differential phenotypes between MPAs and fished reefs. The relatively high frequency of alterations to life-history characteristics across MPAs in harvested species suggests that observed changes in the density and size-structure of harvested fish populations inside MPAs are likely driven by spatial disparities in fishing pressure, and are the result of phenotypic changes rather than increased longevity.
Moreno, Eulalia; Sane, Abibou; Benzal, Jesús; Ibáñez, Belén; Sanz-Zuasti, Joaquín; Espeso, Gerardo
2012-01-01
Simple Summary The reintroduction of plants and animals to the wild is an important technique to save endangered species from extinction. To perform post release monitoring is crucial to evaluate reintroduction outcomes. A Mohor gazelle reintroduction programme took place in Senegal in 1984. We attempt to explain why the size of the reintroduced gazelle population has diminished in recent years. We suggest that changes in habitat structure occurred over time and have very likely reduced the amount of suitable habitat for this species. Abstract Reintroduction is a widespread method for saving populations of endangered species from extinction. In spite of recent reviews, it is difficult to reach general conclusions about its value as a conservation tool, as authors are reluctant to publish unsuccessful results. The Mohor gazelle is a North African gazelle, extinct in the wild. Eight individuals were reintroduced in Senegal in 1984. The population grew progressively, albeit slowly, during the first 20 years after release, but then declined dramatically, until the population in 2009 was estimated at no more than 13–15 individuals. This study attempts to determine the likelihood of gazelle-habitat relationships to explain why the size of the gazelle population has diminished. Our results show that the Mohor gazelle in Guembeul is found in open habitats with less developed canopy where the grass is shorter, suggesting the possibility that changes in habitat structure have taken place during the time the gazelles have been in the Reserve, reducing the amount of suitable habitat. Reintroduction design usually concentrates on short-term factors that may affect survival of the released animals and their descendants (short-term achievement), while the key factors for assessing its success may be those that affect the long-term evolution of the population. PMID:26487026
Hoeltgebaum, Marcia Patricia; Dos Reis, Maurício Sedrez
2017-06-01
Varronia curassavica is an important medicinal species associated with the restinga, one of the most threatened coastal ecosystems of the Atlantic Forest. These circumstances call for studies aimed at estimating effective population size and gene flow to improve conservation efforts. Hence, the present study aimed to characterize the genetic diversity, ploidy level, and population structure of this species in different areas of restinga using microsatellites. Varronia curassavica was characterized as an autotetraploid, with high genetic variability, low divergence, and no significant fixation indices, indicating the absence of, or reduced, inbreeding and genetic drift in the study area. About 44% of the alleles occurred at low frequency in adults of all populations and 41% in the progenies evaluated. Gene flow was high, consistent with outcrossing species with high dispersal capacity (Nm = 4.87). The results showed no tendency toward isolation by distance. The estimated effective size indicates that the populations studied have the potential to ensure conservation of the species in the long term. The genetic variability and population structure of V. curassavica, as determined in this study, could form the foundation for activities directed toward the sustainable use of this resource and its conservation. Even though the restinga ecosystem has suffered dramatic reductions in area, this study provides evidence that this species is resilient to anthropogenic threats to its genetic integrity, since it is a polyploid with self-incompatibility mechanisms that contribute to maintaining high genetic diversity in an panmictic meta-population along the coast of Santa Catarina. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Brouwer, G. M.; Duijnstee, I. A. P.; Hazeleger, J. H.; Rossi, F.; Lourens, L. J.; Middelburg, J. J.; Wolthers, M.
2016-03-01
This study shows foraminiferal dynamics after experimentally induced hypoxia within the wider context of ecosystem recovery. 13C-labeled bicarbonate and glucose were added to the sediments to examine foraminiferal diet shifts during ecosystem recovery and test-size measurements were used to deduce population dynamics. Hypoxia-treated and undisturbed patches were compared to distinguish natural (seasonal) fluctuations from hypoxia-induced responses. The effect of timing of disturbance and duration of recovery were investigated. The foraminiferal diets and population dynamics showed higher fluctuations in the recovering patches compared to the controls. The foraminiferal diet and population structure of Haynesina germanica and Ammonia beccarii responded differentially and generally inversely to progressive stages of ecosystem recovery. Tracer inferred diet estimates in April and June and the two distinctly visible cohorts in the test-size distribution, discussed to reflect reproduction in June, strongly suggest that the ample availability of diatoms during the first month of ecosystem recovery after the winter hypoxia was likely profitable to A. beccarii. Enhanced reproduction itself was strongly linked to the subsequent dietary shift to bacteria. The distribution of the test dimensions of H. germanica indicated that this species had less fluctuation in population structure during ecosystem recovery but possibly reproduced in response to the induced winter hypoxia. Bacteria seemed to consistently contribute more to the diet of H. germanica than diatoms. For the diet and test-size distribution of both species, the timing of disturbance seemed to have a higher impact than the duration of the subsequent recovery period.
Spatial and seasonal dynamics of brook trout populations inhabiting a central Appalachian watershed
Petty, J.T.; Lamothe, P.J.; Mazik, P.M.
2005-01-01
We quantified the watershed-scale spatial population dynamics of brook trout Salvelinus fontinalis in the Second Fork, a third-order tributary of Shavers Fork in eastern West Virginia. We used visual surveys, electrofishing, and mark-recapture techniques to quantify brook trout spawning intensity, population density, size structure, and demographic rates (apparent survival and immigration) throughout the watershed. Our analyses produced the following results. Spawning by brook trout was concentrated in streams with small basin areas (i.e., segments draining less than 3 km2), relatively high alkalinity (>10 mg CaCO3/L), and high amounts of instream cover. The spatial distribution of juvenile and small-adult brook trout within the watershed was relatively stable and was significantly correlated with spawning intensity. However, no such relationship was observed for large adults, which exhibited highly variable distribution patterns related to seasonally important habitat features, including instream cover, stream depth and width, and riparian canopy cover. Brook trout survival and immigration rates varied seasonally, spatially, and among size-classes. Differential survival and immigration tended to concentrate juveniles and small adults in small, alkaline streams, whereas dispersal tended to redistribute large adults at the watershed scale. Our results suggest that spatial and temporal variations in spawning, survival, and movement interact to determine the distribution, abundance, and size structure of brook trout populations at a watershed scale. These results underscore the importance of small tributaries for the persistence of brook trout in this watershed and the need to consider watershed-scale processes when designing management plans for Appalachian brook trout populations. ?? Copyright by the American Fisheries Society 2005.
StrAuto: automation and parallelization of STRUCTURE analysis.
Chhatre, Vikram E; Emerson, Kevin J
2017-03-24
Population structure inference using the software STRUCTURE has become an integral part of population genetic studies covering a broad spectrum of taxa including humans. The ever-expanding size of genetic data sets poses computational challenges for this analysis. Although at least one tool currently implements parallel computing to reduce computational overload of this analysis, it does not fully automate the use of replicate STRUCTURE analysis runs required for downstream inference of optimal K. There is pressing need for a tool that can deploy population structure analysis on high performance computing clusters. We present an updated version of the popular Python program StrAuto, to streamline population structure analysis using parallel computing. StrAuto implements a pipeline that combines STRUCTURE analysis with the Evanno Δ K analysis and visualization of results using STRUCTURE HARVESTER. Using benchmarking tests, we demonstrate that StrAuto significantly reduces the computational time needed to perform iterative STRUCTURE analysis by distributing runs over two or more processors. StrAuto is the first tool to integrate STRUCTURE analysis with post-processing using a pipeline approach in addition to implementing parallel computation - a set up ideal for deployment on computing clusters. StrAuto is distributed under the GNU GPL (General Public License) and available to download from http://strauto.popgen.org .
Yellow-bellied marmots: insights from an emergent view of sociality.
Blumstein, Daniel T
2013-05-19
Ecological factors explain variation in sociality both within and between species of marmots-large alpine ground squirrels. Fifty years of study, by me and my colleagues, of the yellow-bellied marmots (Marmota flaviventris) at the Rocky Mountain Biological Laboratory, near Crested Butte, CO, USA, has created opportunities to see how sociality changes with population and group size. Over the past decades, we have witnessed a natural experiment whereby the population tripled in size. If we view sociality as an emergent process, then demography acts as a constraint on interactions between individuals, and the threefold increase in population size should have consequences for group structure. We have used social network statistics to study the causes and consequences of social interactions by capitalizing on this demographic variation. Such an emergent view is ideally studied in an integrative Tinbergian way that focuses on both mechanism and function. We have determined that some social attributes are heritable, that social cohesion is established through age and kin structure, that well-embedded females (but not males) are less likely to disperse, and that there are fitness consequences of social attributes. Together, this integrative relationship-centred view expands on the traditional ecological model of sociality and offers a framework that can be applied to other systems.
Eisenlord, Morgan E; Groner, Maya L; Yoshioka, Reyn M; Elliott, Joel; Maynard, Jeffrey; Fradkin, Steven; Turner, Margaret; Pyne, Katie; Rivlin, Natalie; van Hooidonk, Ruben; Harvell, C Drew
2016-03-05
Over 20 species of asteroids were devastated by a sea star wasting disease (SSWD) epizootic, linked to a densovirus, from Mexico to Alaska in 2013 and 2014. For Pisaster ochraceus from the San Juan Islands, South Puget Sound and Washington outer coast, time-series monitoring showed rapid disease spread, high mortality rates in 2014, and continuing levels of wasting in the survivors in 2015. Peak prevalence of disease at 16 sites ranged to 100%, with an overall mean of 61%. Analysis of longitudinal data showed disease risk was correlated with both size and temperature and resulted in shifts in population size structure; adult populations fell to one quarter of pre-outbreak abundances. In laboratory experiments, time between development of disease signs and death was influenced by temperature in adults but not juveniles and adult mortality was 18% higher in the 19 °C treatment compared to the lower temperature treatments. While larger ochre stars developed disease signs sooner than juveniles, diseased juveniles died more quickly than diseased adults. Unusual 2-3 °C warm temperature anomalies were coincident with the summer 2014 mortalities. We suggest these warm waters could have increased the disease progression and mortality rates of SSWD in Washington State. © 2016 The Authors.
Eisenlord, Morgan E.; Yoshioka, Reyn M.; Elliott, Joel; Maynard, Jeffrey; Fradkin, Steven; Turner, Margaret; Pyne, Katie; Rivlin, Natalie; van Hooidonk, Ruben; Harvell, C. Drew
2016-01-01
Over 20 species of asteroids were devastated by a sea star wasting disease (SSWD) epizootic, linked to a densovirus, from Mexico to Alaska in 2013 and 2014. For Pisaster ochraceus from the San Juan Islands, South Puget Sound and Washington outer coast, time-series monitoring showed rapid disease spread, high mortality rates in 2014, and continuing levels of wasting in the survivors in 2015. Peak prevalence of disease at 16 sites ranged to 100%, with an overall mean of 61%. Analysis of longitudinal data showed disease risk was correlated with both size and temperature and resulted in shifts in population size structure; adult populations fell to one quarter of pre-outbreak abundances. In laboratory experiments, time between development of disease signs and death was influenced by temperature in adults but not juveniles and adult mortality was 18% higher in the 19°C treatment compared to the lower temperature treatments. While larger ochre stars developed disease signs sooner than juveniles, diseased juveniles died more quickly than diseased adults. Unusual 2–3°C warm temperature anomalies were coincident with the summer 2014 mortalities. We suggest these warm waters could have increased the disease progression and mortality rates of SSWD in Washington State. PMID:26880844
Yellow-bellied marmots: insights from an emergent view of sociality
Blumstein, Daniel T.
2013-01-01
Ecological factors explain variation in sociality both within and between species of marmots—large alpine ground squirrels. Fifty years of study, by me and my colleagues, of the yellow-bellied marmots (Marmota flaviventris) at the Rocky Mountain Biological Laboratory, near Crested Butte, CO, USA, has created opportunities to see how sociality changes with population and group size. Over the past decades, we have witnessed a natural experiment whereby the population tripled in size. If we view sociality as an emergent process, then demography acts as a constraint on interactions between individuals, and the threefold increase in population size should have consequences for group structure. We have used social network statistics to study the causes and consequences of social interactions by capitalizing on this demographic variation. Such an emergent view is ideally studied in an integrative Tinbergian way that focuses on both mechanism and function. We have determined that some social attributes are heritable, that social cohesion is established through age and kin structure, that well-embedded females (but not males) are less likely to disperse, and that there are fitness consequences of social attributes. Together, this integrative relationship-centred view expands on the traditional ecological model of sociality and offers a framework that can be applied to other systems. PMID:23569297
Whiteman, E.A.; Jennings, C.A.; Nemeth, R.S.
2005-01-01
Ultrasonic imaging was used to determine the spawning population structure and develop a fecundity estimation model for a red hind Epinephelus guttatus spawning aggregation within the Red Hind Bank Marine Conservation District, St Thomas, U.S.V.I. The spawning population showed considerable within-month and between-month variation in population size- and sex-structure. In the spawning season studied, males appeared to arrive at the aggregation site first in December although females represented a large proportion of the catch early in the aggregation periods in January and February. Spawning occurred in January and February, and size frequency distributions suggested that an influx of small females occurred during the second spawning month. An overall sex ratio of 2.9:1 (female:male) was recorded for the whole reproductive season. The sex ratio, however, differed between months and days within months. More females per male were recorded in January than in February when the sex ratio was male biased. Fecundity estimates for this species predicted very high potential fecundities (2.4 ?? 105-2.4 ?? 106 oocytes). The ultrasound model also illustrated a rapid increase in potential female fecundity with total length. Ultrasonic imaging may prove a valuable tool in population assessment for many species and locations in which invasive fishing methods are clearly undesirable. ?? 2005 The Fisheries Society of the British Isles.
2011-01-01
Background Reconstructing the evolutionary history of a species is challenging. It often depends not only on the past biogeographic and climatic events but also the contemporary and ecological factors, such as current connectivity and habitat heterogeneity. In fact, these factors might interact with each other and shape the current species distribution. However, to what extent the current population genetic structure reflects the past and the contemporary factors is largely unknown. Here we investigated spatio-temporal genetic structures of Nile tilapia (Oreochromis niloticus) populations, across their natural distribution in Africa. While its large biogeographic distribution can cause genetic differentiation at the paleo-biogeographic scales, its restricted dispersal capacity might induce a strong genetic structure at micro-geographic scales. Results Using nine microsatellite loci and 350 samples from ten natural populations, we found the highest genetic differentiation among the three ichthyofaunal provinces and regions (Ethiopian, Nilotic and Sudano-Sahelian) (RST = 0.38 - 0.69). This result suggests the predominant effect of paleo-geographic events at macro-geographic scale. In addition, intermediate divergences were found between rivers and lakes within the regions, presumably reflecting relatively recent interruptions of gene flow between hydrographic basins (RST = 0.24 - 0.32). The lowest differentiations were observed among connected populations within a basin (RST = 0.015 in the Volta basin). Comparison of temporal sample series revealed subtle changes in the gene pools in a few generations (F = 0 - 0.053). The estimated effective population sizes were 23 - 143 and the estimated migration rate was moderate (m ~ 0.094 - 0.097) in the Volta populations. Conclusions This study revealed clear hierarchical patterns of the population genetic structuring of O. niloticus in Africa. The effects of paleo-geographic and climatic events were predominant at macro-geographic scale, and the significant effect of geographic connectivity was detected at micro-geographic scale. The estimated effective population size, the moderate level of dispersal and the rapid temporal change in genetic composition might reflect a potential effect of life history strategy on population dynamics. This hypothesis deserves further investigation. The dynamic pattern revealed at micro-geographic and temporal scales appears important from a genetic resource management as well as from a biodiversity conservation point of view. PMID:22151746
Population structure of giraffes is affected by management in the Great Rift Valley, Kenya
2018-01-01
Giraffe populations in East Africa have declined in the past thirty years yet there has been limited research on this species. This study had four objectives: i) to provide a baseline population assessment for the two largest populations of Rothschild’s giraffes in Kenya, ii) to assess whether there are differences in population structure between the two enclosed populations, iii) to assess the potential and possible implications of different management practices on enclosed giraffe populations to inform future decision-making, and iv) to add to the availability of information available about giraffes in the wild. I used individual identification to assess the size and structure of the two populations; in Soysambu Conservancy between May 2010 and January 2011, I identified 77 giraffes; in Lake Nakuru National Park between May 2011 and January 2012, I identified 89. Population structure differed significantly between the two sites; Soysambu Conservancy contained a high percentage of juveniles (34%) and subadults (29%) compared to Lake Nakuru NP, which contained fewer juveniles (5%) and subadults (15%). During the time of this study Soysambu Conservancy contained no lions while Lake Nakuru NP contained a high density of lions (30 lions per 100km2). Lions are the main predator of giraffes, and preferential predation on juvenile giraffes has previously been identified in Lake Nakuru NP. My results suggest that high lion density in Lake Nakuru NP may have influenced the structure of the giraffe population by removing juveniles and, consequently, may affect future population growth. I suggest that wildlife managers consider lion densities alongside breeding plans for Endangered species, since the presence of lions appears to influence the population structure of giraffes in enclosed habitats. PMID:29298338
Population structure of giraffes is affected by management in the Great Rift Valley, Kenya.
Muller, Zoe
2018-01-01
Giraffe populations in East Africa have declined in the past thirty years yet there has been limited research on this species. This study had four objectives: i) to provide a baseline population assessment for the two largest populations of Rothschild's giraffes in Kenya, ii) to assess whether there are differences in population structure between the two enclosed populations, iii) to assess the potential and possible implications of different management practices on enclosed giraffe populations to inform future decision-making, and iv) to add to the availability of information available about giraffes in the wild. I used individual identification to assess the size and structure of the two populations; in Soysambu Conservancy between May 2010 and January 2011, I identified 77 giraffes; in Lake Nakuru National Park between May 2011 and January 2012, I identified 89. Population structure differed significantly between the two sites; Soysambu Conservancy contained a high percentage of juveniles (34%) and subadults (29%) compared to Lake Nakuru NP, which contained fewer juveniles (5%) and subadults (15%). During the time of this study Soysambu Conservancy contained no lions while Lake Nakuru NP contained a high density of lions (30 lions per 100km2). Lions are the main predator of giraffes, and preferential predation on juvenile giraffes has previously been identified in Lake Nakuru NP. My results suggest that high lion density in Lake Nakuru NP may have influenced the structure of the giraffe population by removing juveniles and, consequently, may affect future population growth. I suggest that wildlife managers consider lion densities alongside breeding plans for Endangered species, since the presence of lions appears to influence the population structure of giraffes in enclosed habitats.
Peters, Jeffrey L.; Bolender, Kimberly A.; Pearce, John M.
2012-01-01
Genetic studies of waterfowl (Anatidae) have observed the full spectrum of mitochondrial (mt) DNA population divergence, from apparent panmixia to deep, reciprocally monophyletic lineages. Yet, these studies often found weak or no nuclear (nu) DNA structure, which was often attributed to male-biased gene flow, a common behaviour within this family. An alternative explanation for this ‘conflict’ is that the smaller effective population size and faster sorting rate of mtDNA relative to nuDNA lead to different signals of population structure. We tested these alternatives by sequencing 12 nuDNA introns for a Holarctic pair of waterfowl subspecies, the European goosander (Mergus merganser merganser) and the North American common merganser (M. m. americanus), which exhibit strong population structure in mtDNA. We inferred effective population sizes, gene flow and divergence times from published mtDNA sequences and simulated expected differentiation for nuDNA based on those histories. Between Europe and North America, nuDNA ФST was 3.4-fold lower than mtDNA ФST, a result consistent with differences in sorting rates. However, despite geographically structured and monophyletic mtDNA lineages within continents, nuDNA ФST values were generally zero and significantly lower than predicted. This between- and within-continent contrast held when comparing mtDNA and nuDNA among published studies of ducks. Thus, male-mediated gene flow is a better explanation than slower sorting rates for limited nuDNA differentiation within continents, which is also supported by nonmolecular data. This study illustrates the value of quantitatively testing discrepancies between mtDNA and nuDNA to reject the null hypothesis that conflict simply reflects different sorting rates.
Using population genetic tools to develop a control strategy for feral cats (Felis catus) in Hawai'i
Hansen, H.; Hess, S.C.; Cole, D.; Banko, P.C.
2007-01-01
Population genetics can provide information about the demographics and dynamics of invasive species that is beneficial for developing effective control strategies. We studied the population genetics of feral cats on Hawai'i Island by microsatellite analysis to evaluate genetic diversity and population structure, assess gene flow and connectivity among three populations, identify potential source populations, characterise population dynamics, and evaluate sex-biased dispersal. High genetic diversity, low structure, and high number of migrants per generation supported high gene flow that was not limited spatially. Migration rates revealed that most migration occurred out of West Mauna Kea. Effective population size estimates indicated increasing cat populations despite control efforts. Despite high gene flow, relatedness estimates declined significantly with increased geographic distance and Bayesian assignment tests revealed the presence of three population clusters. Genetic structure and relatedness estimates indicated male-biased dispersal, primarily from Mauna Kea, suggesting that this population should be targeted for control. However, recolonisation seems likely, given the great dispersal ability that may not be inhibited by barriers such as lava flows. Genetic monitoring will be necessary to assess the effectiveness of future control efforts. Management of other invasive species may benefit by employing these population genetic tools. ?? CSIRO 2007.
Park, Peter J; Bell, M A
2010-06-01
We tested the hypothesis that increased telencephalon size has evolved in threespine stickleback fish (Gasterosteus aculeatus) from structurally complex habitats using field-caught samples from one sea-run (ancestral) and 18 ecologically diverse freshwater (descendant) populations. Freshwater habitats ranged from shallow, structurally complex lakes with benthic-foraging stickleback (benthics), to deeper, structurally simple lakes in which stickleback depend more heavily on plankton for prey (generalists). Contrary to our expectations, benthics had smaller telencephala than generalists, but the shape of the telencephalon of the sea-run and benthic populations were more convex laterally. Convex telencephalon shape may indicate enlargement of the dorsolateral region, which is homologous with the tetrapod hippocampus. Telencephalon morphology is also sexually dimorphic, with larger, less convex telencephala in males. Freshwater stickleback from structurally complex habitats have retained the ancestral telencephalon morphology, but populations that feed more in open habitats on plankton have evolved larger, laterally concave telencephala.
Life-History Traits and Population Structure of Pederson Cleaner Shrimps Ancylomenes pedersoni.
Gilpin, Jessica A; Chadwick, Nanette E
2017-12-01
Cleaner organisms perform key functional roles in reducing rates of parasitism in marine communities. Pederson cleaner shrimps Ancylomenes pedersoni are major cleaners of reef fishes in the tropical western Atlantic and form obligate symbioses with host sea anemones. Information about their life-history traits would contribute to understanding how symbiosis impacts life-history evolution in crustaceans, but little is known about patterns of growth and reproduction in this anemone shrimp. We quantified growth, sexual reproduction, senescence, and mortality in individuals of A. pedersoni under laboratory conditions and their abundance and population size structure on coral reefs in St. Thomas, U.S. Virgin Islands. Von Bertalanffy growth curves were fitted to the data to determine age-size relationships, and the Beverton-Holt model was used to estimate mortality rates and size at maximum yield. Individuals grew rapidly when young, then slowed their growth after reaching sexual maturity at ~6 months. Individuals were gonochoric, with males attaining significantly smaller body sizes and shorter life spans than did females. Prior to death at <2 years, members of both genders exhibited senescence during which they ceased reproducing, shrank (females only), and decreased their activity levels over ~1-4 weeks. Field populations were abundant and composed mostly of juveniles during both years examined. Populations appeared to be stable but highly dynamic in terms of individuals, reaching maximum yield at 4 months of age. We conclude that obligate symbiosis with large sea anemones and cleaner mutualism with reef fishes both contribute to explaining aspects of the life history of Pederson shrimps, especially their apparent mating system of pure-search polygynandry. This life-history information also provides a scientific basis for sustainable fishery management and aquaculture of this key coral reef organism.
The mechanism of monomer transfer between two structurally distinct PrP oligomers
Armiento, Aurora; Martin, Davy; Lepejova, Nad’a
2017-01-01
In mammals, Prion pathology refers to a class of infectious neuropathologies whose mechanism is based on the self-perpetuation of structural information stored in the pathological conformer. The characterisation of the PrP folding landscape has revealed the existence of a plethora of pathways conducing to the formation of structurally different assemblies with different biological properties. However, the biochemical interconnection between these diverse assemblies remains unclear. The PrP oligomerisation process leads to the formation of neurotoxic and soluble assemblies called O1 oligomers with a high size heterodispersity. By combining the measurements in time of size distribution and average size with kinetic models and data assimilation, we revealed the existence of at least two structurally distinct sets of assemblies, termed Oa and Ob, forming O1 assemblies. We propose a kinetic model representing the main processes in prion aggregation pathway: polymerisation, depolymerisation, and disintegration. The two groups interact by exchanging monomers through a disintegration process that increases the size of Oa. Our observations suggest that PrP oligomers constitute a highly dynamic population. PMID:28746342
The mechanism of monomer transfer between two structurally distinct PrP oligomers.
Armiento, Aurora; Moireau, Philippe; Martin, Davy; Lepejova, Nad'a; Doumic, Marie; Rezaei, Human
2017-01-01
In mammals, Prion pathology refers to a class of infectious neuropathologies whose mechanism is based on the self-perpetuation of structural information stored in the pathological conformer. The characterisation of the PrP folding landscape has revealed the existence of a plethora of pathways conducing to the formation of structurally different assemblies with different biological properties. However, the biochemical interconnection between these diverse assemblies remains unclear. The PrP oligomerisation process leads to the formation of neurotoxic and soluble assemblies called O1 oligomers with a high size heterodispersity. By combining the measurements in time of size distribution and average size with kinetic models and data assimilation, we revealed the existence of at least two structurally distinct sets of assemblies, termed Oa and Ob, forming O1 assemblies. We propose a kinetic model representing the main processes in prion aggregation pathway: polymerisation, depolymerisation, and disintegration. The two groups interact by exchanging monomers through a disintegration process that increases the size of Oa. Our observations suggest that PrP oligomers constitute a highly dynamic population.
Population entropies estimates of proteins
NASA Astrophysics Data System (ADS)
Low, Wai Yee
2017-05-01
The Shannon entropy equation provides a way to estimate variability of amino acids sequences in a multiple sequence alignment of proteins. Knowledge of protein variability is useful in many areas such as vaccine design, identification of antibody binding sites, and exploration of protein 3D structural properties. In cases where the population entropies of a protein are of interest but only a small sample size can be obtained, a method based on linear regression and random subsampling can be used to estimate the population entropy. This method is useful for comparisons of entropies where the actual sequence counts differ and thus, correction for alignment size bias is needed. In the current work, an R based package named EntropyCorrect that enables estimation of population entropy is presented and an empirical study on how well this new algorithm performs on simulated dataset of various combinations of population and sample sizes is discussed. The package is available at https://github.com/lloydlow/EntropyCorrect. This article, which was originally published online on 12 May 2017, contained an error in Eq. (1), where the summation sign was missing. The corrected equation appears in the Corrigendum attached to the pdf.
Shrestha, Sourya; Bjørnstad, Ottar N.; King, Aaron A.
2014-01-01
Classical life-history theory predicts that acute, immunizing pathogens should maximize between-host transmission. When such pathogens induce violent epidemic outbreaks, however, a pathogen’s short-term advantage at invasion may come at the expense of its ability to persist in the population over the long term. Here, we seek to understand how the classical and invasion-persistence trade-offs interact to shape pathogen life-history evolution as a function of the size and structure of the host population. We develop an individual-based infection model at three distinct levels of organization: within an individual host, among hosts within a local population, and among local populations within a metapopulation. We find a continuum of evolutionarily stable pathogen strategies. At one end of the spectrum—in large well-mixed populations—pathogens evolve to greater acuteness to maximize between-host transmission: the classical trade-off theory applies in this regime. At the other end of the spectrum—when the host population is broken into many small patches—selection favors less acute pathogens, which persist longer within a patch and thereby achieve enhanced between-patch transmission: the invasion-persistence tradeoff dominates in this regime. Between these extremes, we explore the effects of the size and structure of the host population in determining pathogen strategy. In general, pathogen strategies respond to evolutionary pressures arising at both scales. PMID:25214895
NASA Astrophysics Data System (ADS)
Granado-Yela, Carlos; Balaguer, Luis; García-Verdugo, Carlos; Carrillo, Katty; Méndez, Marcos
2013-10-01
Peripheral populations are often lumped together on the assumption of thriving in marginal habitats where reproductive performance is compromised. We have tested this hypothesis in peripheral populations of wild olive tree (Olea europaea L.) presumably limited by different factors at the westernmost limit of the species range. Additionally, we hypothesized that differences in reproductive outcome among populations are better explained by site-specific environmental conditions (PAR, soil water, soil nutrients, air humidity and air temperature) than by differences in phenotypic traits (tree size and leaf traits). To test these hypotheses, we assessed the number of flowering trees, the flowering intensity, fruit set and seed viability in eight populations for three consecutive years. Our findings provided sufficient evidence to reject the first hypothesis. Peripheral populations that occur under oceanic conditions, resembling the Tertiary subtropical climate, consistently presented higher values for all components of reproductive performance than those at the thermal and rainfall tolerance limits. In support of our second hypothesis, the variation in reproductive performance among populations was primarily accounted for by local environmental conditions. Leaf traits, however, also explained reproductive variation but to a lesser extent. Finally, we found that small changes in tree size may cause large differences in reproductive performance. This close relationship between tree size and reproductive performance suggests that any impact on population size structure would likely jeopardize persistence and expansion at the range edge. Our results suggest that reproductive performance of wild olive trees was not shaped by the population geographic position within the species range, but by the interaction between local environment, as the main driver, and individual phenotypic traits.
Sexual dimorphism of head morphology in three-spined stickleback Gasterosteus aculeatus.
Aguirre, W E; Akinpelu, O
2010-09-01
This study examined sexual dimorphism of head morphology in the ecologically diverse three-spined stickleback Gasterosteus aculeatus. Male G. aculeatus had longer heads than female G. aculeatus in all 10 anadromous, stream and lake populations examined, and head length growth rates were significantly higher in males in half of the populations sampled, indicating that differences in head size increased with body size in many populations. Despite consistently larger heads in males, there was significant variation in size-adjusted head length among populations, suggesting that the relationship between head length and body length was flexible. Inter-population differences in head length were correlated between sexes, thus population-level factors influenced head length in both sexes despite the sexual dimorphism present. Head shape variation between lake and anadromous populations was greater than that between sexes. The common divergence in head shape between sexes across populations was about twice as important as the sexual dimorphism unique to each population. Finally, much of the sexual dimorphism in head length was due to divergence in the anterior region of the head, where the primary trophic structures were found. It is unclear whether the sexual dimorphism was due to natural selection for niche divergence between sexes or sexual selection. This study improves knowledge of the magnitude, growth rate divergence, inter-population variation and location of sexual dimorphism in G. aculeatus head morphology. © 2010 The Authors. Journal compilation © 2010 The Fisheries Society of the British Isles.
Ryland, John S
2015-07-17
Colonial zoanthids are a conspicuous feature of the subtropical rocky intertidal in KwaZulu-Natal but those of the genus Zoanthus have a confused taxonomy with 10, difficult to separate, nominal species described from the region. This paper presents an analysis of polyp size, measured as mean diameter determined photographically from the number of polyps occupying an area of 6 × 4 cm(2). The results, based on diameter frequency of 127 samples from five shores, indicate three populations (morphotypes) with means of 4.3 (SD ±0.53), 5.7 (SD ±0.70) and 8.4 (SD ±0.58) mm occurring in the approximate abundance ratios of 10:5:1, possibly corresponding to Zoanthus sansibaricus, Z. natalensis and Z. lawrencei. The underlying assumptions with regard to population structure (the number, size and degree of fragmentation of clones) and the normality of data are discussed, as are trans-oceanic larval dispersal, recruitment, and genetic connectivity. The essential, traditional species description in Zoanthus, using internal morphology, on its own may be an inadequate discriminator of species. The status of the few possibly valid species is discussed in relation to the present results and recent studies based on the application of molecular genetics. Thorough studies of the population structure (genets and ramets) and a taxonomic approach based on the combined use of morphology, genetic methods and statistically robust, quantitative morphometrics are proposed as a potential way forward.
Nesting habits influence population genetic structure of a bee living in anthropogenic disturbance.
Vickruck, J L; Richards, M H
2017-05-01
While most organisms are negatively affected by anthropogenic disturbance, a few species thrive in landscapes altered by humans. Typically, native bees are negatively impacted by anthropogenic environmental change, including habitat alteration and climate change. Here, we investigate the population structure of the eastern carpenter bee Xylocopa virginica, a generalist pollinator with a broad geographic range spanning eastern North America. Eastern carpenter bees now nest almost exclusively in artificial wooden structures, linking their geographic distribution and population structure to human activities and disturbance. To investigate the population structure of these bees, we sampled females from 16 different populations from across their range. Nine species-specific microsatellite loci showed that almost all populations are genetically distinct, but with high levels of genetic diversity and low levels of inbreeding overall. Broadly speaking, populations clustered into three distinct genetic groups: a northern group, a western group and a core group. The northern group had low effective population sizes, decreased genetic variability and the highest levels of inbreeding in the data set, suggesting that carpenter bees may be expanding their range northward. The western group was genetically distinct, but lacked signals of a recent range expansion. Climatic data showed that summer and winter temperatures explained a significant amount of the genetic differentiation seen among populations, while precipitation did not. Our results indicate that X. virginica may be one of the rare 'anthrophilic' species that thrive in the face of anthropogenic disturbance. © 2017 John Wiley & Sons Ltd.
Liu, Jian; Zhou, Wei; Gong, Xun
2015-01-01
Delimitating species boundaries could be of critical importance when evaluating the species' evolving process and providing guidelines for conservation genetics. Here, species delimitation was carried out on three endemic and endangered Cycas species with resembling morphology and overlapped distribution range along the Red River (Yuanjiang) in China: Cycas diananensis Z. T. Guan et G. D. Tao, Cycas parvula S. L. Yang and Cycas multiovula D. Y. Wang. A total of 137 individuals from 15 populations were genotyped by using three chloroplastic (psbA-trnH, atpI-atpH, and trnL-rps4) and two single copy nuclear (RPB1 and SmHP) DNA sequences. Basing on the carefully morphological comparison and cladistic haplotype aggregation (CHA) analysis, we propose all the populations as one species, with the rest two incorporated into C. diannanensis. Genetic diversity and structure analysis of the conflated C. diannanensis revealed this species possessed a relative lower genetic diversity than estimates of other Cycas species. The higher genetic diversity among populations and relative lower genetic diversity within populations, as well as obvious genetic differentiation among populations inferred from chloroplastic DNA (cpDNA) suggested a recent genetic loss within this protected species. Additionally, a clear genetic structure of C. diannanensis corresponding with geography was detected based on cpDNA, dividing its population ranges into “Yuanjiang-Nanhun” basin and “Ejia-Jiepai” basin groups. Demographical history analyses based on combined cpDNA and one nuclear DNA (nDNA) SmHP both showed the population size of C. diannanensis began to decrease in Quaternary glaciation with no subsequent expansion, while another nDNA RPB1 revealed a more recent sudden expansion after long-term population size contraction, suggesting its probable bottleneck events in history. Our findings offer grounded views for clarifying species boundaries of C. diannanensis when determining the conservation objectives. For operational guidelines, the downstream populations which occupy high and peculiar haplotypes should be given prior in-situ conservation. In addition, ex-situ conservation and reintroduction measures for decades of generations are supplemented for improving the population size and genetic diversity of the endemic and endangered species. PMID:26442013
Liu, Jian; Zhou, Wei; Gong, Xun
2015-01-01
Delimitating species boundaries could be of critical importance when evaluating the species' evolving process and providing guidelines for conservation genetics. Here, species delimitation was carried out on three endemic and endangered Cycas species with resembling morphology and overlapped distribution range along the Red River (Yuanjiang) in China: Cycas diananensis Z. T. Guan et G. D. Tao, Cycas parvula S. L. Yang and Cycas multiovula D. Y. Wang. A total of 137 individuals from 15 populations were genotyped by using three chloroplastic (psbA-trnH, atpI-atpH, and trnL-rps4) and two single copy nuclear (RPB1 and SmHP) DNA sequences. Basing on the carefully morphological comparison and cladistic haplotype aggregation (CHA) analysis, we propose all the populations as one species, with the rest two incorporated into C. diannanensis. Genetic diversity and structure analysis of the conflated C. diannanensis revealed this species possessed a relative lower genetic diversity than estimates of other Cycas species. The higher genetic diversity among populations and relative lower genetic diversity within populations, as well as obvious genetic differentiation among populations inferred from chloroplastic DNA (cpDNA) suggested a recent genetic loss within this protected species. Additionally, a clear genetic structure of C. diannanensis corresponding with geography was detected based on cpDNA, dividing its population ranges into "Yuanjiang-Nanhun" basin and "Ejia-Jiepai" basin groups. Demographical history analyses based on combined cpDNA and one nuclear DNA (nDNA) SmHP both showed the population size of C. diannanensis began to decrease in Quaternary glaciation with no subsequent expansion, while another nDNA RPB1 revealed a more recent sudden expansion after long-term population size contraction, suggesting its probable bottleneck events in history. Our findings offer grounded views for clarifying species boundaries of C. diannanensis when determining the conservation objectives. For operational guidelines, the downstream populations which occupy high and peculiar haplotypes should be given prior in-situ conservation. In addition, ex-situ conservation and reintroduction measures for decades of generations are supplemented for improving the population size and genetic diversity of the endemic and endangered species.
A Class of Population Covariance Matrices in the Bootstrap Approach to Covariance Structure Analysis
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Hayashi, Kentaro; Yanagihara, Hirokazu
2007-01-01
Model evaluation in covariance structure analysis is critical before the results can be trusted. Due to finite sample sizes and unknown distributions of real data, existing conclusions regarding a particular statistic may not be applicable in practice. The bootstrap procedure automatically takes care of the unknown distribution and, for a given…
Code of Federal Regulations, 2010 CFR
2010-04-01
..., design, features, amenities, performance or other factors. The standards for such structures must be able to support the reasonableness and necessity for these factors and to clearly identify the affordable... change; (vi) Cultural relevance of design; (vii) Size and scope supported by population and need; (viii...
Fine-scale genetic structure of bull trout at the southern limit of their distribution
A. Whiteley; P. Spruell; B. Rieman; F. Allendorf
2006-01-01
We used six polymorphic microsatellite loci to analyze the population genetic structure of bull trout Salvelinus confluentus in the Boise River, Idaho, and we compared our results with previous data from similarly sized river systems in western North America. Within the Boise River, we found low genetic variation within and significant...
Asymmetric competition causes multimodal size distributions in spatially structured populations
Velázquez, Jorge; Allen, Robert B.; Coomes, David A.; Eichhorn, Markus P.
2016-01-01
Plant sizes within populations often exhibit multimodal distributions, even when all individuals are the same age and have experienced identical conditions. To establish the causes of this, we created an individual-based model simulating the growth of trees in a spatially explicit framework, which was parametrized using data from a long-term study of forest stands in New Zealand. First, we demonstrate that asymmetric resource competition is a necessary condition for the formation of multimodal size distributions within cohorts. By contrast, the legacy of small-scale clustering during recruitment is transient and quickly overwhelmed by density-dependent mortality. Complex multi-layered size distributions are generated when established individuals are restricted in the spatial domain within which they can capture resources. The number of modes reveals the effective number of direct competitors, while the separation and spread of modes are influenced by distances among established individuals. Asymmetric competition within local neighbourhoods can therefore generate a range of complex size distributions within even-aged cohorts. PMID:26817778
Lesser, M R; Parchman, T L; Jackson, S T
2013-05-01
Population history plays an important role in shaping contemporary levels of genetic variation and geographic structure. This is especially true in small, isolated range-margin populations, where effects of inbreeding, genetic drift and gene flow may be more pronounced than in large continuous populations. Effects of landscape fragmentation and isolation distance may have implications for persistence of range-margin populations if they are demographic sinks. We studied four small, disjunct populations of ponderosa pine over a 500-year period. We coupled demographic data obtained through dendroecological methods with microsatellite data to discern how and when contemporary levels of allelic diversity, among and within-population levels of differentiation, and geographic structure, arose. Alleles accumulated rapidly following initial colonization, demonstrating proportionally high levels of gene flow into the populations. At population sizes of approximately 100 individuals, allele accumulation saturated. Levels of genetic differentiation among populations (F(ST) and Jost's D(est)) and diversity within populations (F(IS)) remained stable through time. There was no evidence of geographic genetic structure at any time in the populations' history. Proportionally, high gene flow in the early stages of population growth resulted in rapid accumulation of alleles and quickly created relatively homogenous genetic patterns among populations. Our study demonstrates that contemporary levels of genetic diversity were formed quickly and early in population development. How contemporary genetic diversity accumulates over time is a key facet of understanding population growth and development. This is especially relevant given the extent and speed at which species ranges are predicted to shift in the coming century. © 2013 Blackwell Publishing Ltd.
Park, Jin Seo; Jung, Yong Wook; Choi, Hyung-Do; Lee, Ae-Kyoung
2018-01-01
Abstract The anatomical structures in most phantoms are classified according to tissue properties rather than according to their detailed structures, because the tissue properties, not the detailed structures, are what is considered important. However, if a phantom does not have detailed structures, the phantom will be unreliable because different tissues can be regarded as the same. Thus, we produced the Visible Korean (VK) -phantoms with detailed structures (male, 583 structures; female, 459 structures) based on segmented images of the whole male body (interval, 1.0 mm; pixel size, 1.0 mm2) and the whole female body (interval, 1.0 mm; pixel size, 1.0 mm2), using house-developed software to analyze the text string and voxel information for each of the structures. The density of each structure in the VK-phantom was calculated based on Virtual Population and a publication of the International Commission on Radiological Protection. In the future, we will standardize the size of each structure in the VK-phantoms. If the VK-phantoms are standardized and the mass density of each structure is precisely known, researchers will be able to measure the exact absorption rate of electromagnetic radiation in specific organs and tissues of the whole body. PMID:29659988
Park, Jin Seo; Jung, Yong Wook; Choi, Hyung-Do; Lee, Ae-Kyoung
2018-05-01
The anatomical structures in most phantoms are classified according to tissue properties rather than according to their detailed structures, because the tissue properties, not the detailed structures, are what is considered important. However, if a phantom does not have detailed structures, the phantom will be unreliable because different tissues can be regarded as the same. Thus, we produced the Visible Korean (VK) -phantoms with detailed structures (male, 583 structures; female, 459 structures) based on segmented images of the whole male body (interval, 1.0 mm; pixel size, 1.0 mm2) and the whole female body (interval, 1.0 mm; pixel size, 1.0 mm2), using house-developed software to analyze the text string and voxel information for each of the structures. The density of each structure in the VK-phantom was calculated based on Virtual Population and a publication of the International Commission on Radiological Protection. In the future, we will standardize the size of each structure in the VK-phantoms. If the VK-phantoms are standardized and the mass density of each structure is precisely known, researchers will be able to measure the exact absorption rate of electromagnetic radiation in specific organs and tissues of the whole body.
Davison, Angus; Chiba, Satoshi
2006-09-01
The effect of Pleistocene climate change on the organisms of tropical and subtropical regions is rather poorly understood. We therefore studied the land snail genus Mandarina (Bradybaenidae) of oceanic Ogasawara (Bonin Islands, Japan), with the aim of using population genetic data to understand their recent history. Our analysis of a mitochondrial 16S ribosomal RNA region from more than 600 snails in five ground-living species suggests that populations on the small islands of Mukoujima, Anejima, Imotojima and Meijima, as well as on the low-lying southern and central parts of Hahajima, have probably undergone recent bottlenecks followed by subsequent expansions. Except between the main island of Hahajima and Mukouijima, there is almost no evidence for gene flow among islands even though the islands were connected repeatedly by land bridges through the Pleistocene. Within islands the population structure is severe, suggestive of a long-term, low level of gene flow (F(ST) is frequently greater than 0.5 among geographically close populations). Finally, there is a marked genetic patchiness, meaning that genetically close populations are sometimes separated by genetically distant populations. These patterns could be a consequence of expansion from bottlenecks, low active dispersal and founder effects caused by rare long-distance migrants. Unfortunately, the exact nature of the refugia and bottlenecks remains unknown because the palaeoclimate of this region is poorly understood. Dating the population size changes is also challenging because the molecular clock is uncertain. We suggest, however, that arid conditions or deforestation induced by decreased atmospheric CO(2) may have been the main factor in determining population size.
Nater, Alexander; Arora, Natasha; Greminger, Maja P; van Schaik, Carel P; Singleton, Ian; Wich, Serge A; Fredriksson, Gabriella; Perwitasari-Farajallah, Dyah; Pamungkas, Joko; Krützen, Michael
2013-01-01
A multitude of factors influence how natural populations are genetically structured, including dispersal barriers, inhomogeneous habitats, and social organization. Such population subdivision is of special concern in endangered species, as it may lead to reduced adaptive potential and inbreeding in local subpopulations, thus increasing the risk of future extinctions. With only 6600 animals left in the wild, Sumatran orangutans (Pongo abelii) are among the most endangered, but also most enigmatic, great ape species. In order to infer the fine-scale population structure and connectivity of Sumatran orangutans, we analyzed the most comprehensive set of samples to date, including mitochondrial hyper-variable region I haplotypes for 123 individuals and genotypes of 27 autosomal microsatellite markers for 109 individuals. For both mitochondrial and autosomal markers, we found a pronounced population structure, caused by major rivers, mountain ridges, and the Toba caldera. We found that genetic diversity and corresponding long-term effective population size estimates vary strongly among sampling regions for mitochondrial DNA, but show remarkable similarity for autosomal markers, hinting at male-driven long-distance gene flow. In support of this, we identified several individuals that were most likely sired by males originating from other genetic clusters. Our results highlight the effect of natural barriers in shaping the genetic structure of great ape populations, but also point toward important dispersal corridors on northern Sumatra that allow for genetic exchange.
Species-specific responses to landscape fragmentation: implications for management strategies
Blanchet, Simon; Rey, Olivier; Etienne, Roselyne; Lek, Sovan; Loot, Géraldine
2010-01-01
Habitat fragmentation affects the integrity of many species, but little is known about species-specific sensitivity to fragmentation. Here, we compared the genetic structure of four freshwater fish species differing in their body size (Leuciscus cephalus; Leuciscus leuciscus; Gobio gobio and Phoxinus phoxinus) between a fragmented and a continuous landscape. We tested if, overall, fragmentation affected the genetic structure of these fish species, and if these species differed in their sensitivity to fragmentation. Fragmentation negatively affected the genetic structure of these species. Indeed, irrespective of the species identity, allelic richness and heterozygosity were lower, and population divergence was higher in the fragmented than in the continuous landscape. This response to fragmentation was highly species-specific, with the smallest fish species (P. phoxinus) being slightly affected by fragmentation. On the contrary, fish species of intermediate body size (L. leuciscus and G. gobio) were highly affected, whereas the largest fish species (L. cephalus) was intermediately affected by fragmentation. We discuss the relative role of dispersal ability and effective population size on the responses to fragmentation we report here. The weirs studied here are of considerable historical importance. We therefore conclude that restoration programmes will need to consider both this societal context and the biological characteristics of the species sharing this ecosystem. PMID:25567925
Goncalves-Filho, Antonio Jg; Moda, Larissa B; Oliveira, Roberta P; Ribeiro, Andre Luis Ribeiro; Pinheiro, João Jv; Alver-Junior, S Rgio M
2014-01-01
Dental anomalies (DAs) are the result of disorders that are able to modify the shape, number, size, and structure of teeth. This study aimed to evaluate the prevalence of DAs using panoramic radiographs in a population of the City of Belém, northern Brazil. In this study, 487 panoramic radiographs were evaluated searching for DAs. Dental records were reviewed for diagnostic confirmation. DAs related to the shape, number, size, and structure of teeth were investigated. Our results showed a DA prevalence of 56.9%. The most prevalent DA was taurodontism, which was present in 27.19% of cases. Root dilaceration was the second most prevalent DA in adults, whereas hypodontia was the second most prevalent DA in children. A total of 13 DAs were found. Dental anomalies were present in over half of the sample, and most of them were related to the shape of the teeth. Although there was a high prevalence of shape-related DAs, these alterations are generally of lower severity, and most do not require specific treatment. However, in 19.25% of cases, DAs were found involving the number, size and structure of the teeth. These DAs should be diagnosed and treated early, avoiding thus more serious complications.
The progenitors of the first red sequence galaxies at z ~ 2
NASA Astrophysics Data System (ADS)
Barro, G.; Faber, S.; Perez-Gonzalez, P.; Koo, D.; Williams, C.; Kocevski, D.; Trump, J.; Mozena, M.
2013-07-01
Nearby galaxies come in two flavors: red quiescent galaxies (QGs) with old stellar populations, and blue young star-forming galaxies (SFGs). This color bimodality seems to be already in place at z = 2 - 3, presenting also strong correlations with size and morphology. Surprisingly, massive QGs at higher redshifts are ~5 times smaller than local, equal mass analogs. In contrast, most of the massive SFGs at these redshifts are still relatively large disks. The strong bimodality in both SFR and sizes indicates that some SFGs must experience strong structural transformations accompanied by a rapid truncation of the star-formation to match the observed properties of QGs. Using high-resolution HST/WFC3 F160W imaging from the CANDELS survey in GOODS-S and UDS, along with multi-wavelength ancillary data, we analyze stellar masses, SFRs and sizes of a sample of massive (M* > 1010 M ⊙) galaxies at z = 1.4 - 3.0 to identify a population of compact SFGs with similar structural properties as compact QGs at z~2. We also find that the number density of QGs increases rapidly since z = 3. Among these, the number of compact QGs builds up first, and only at z < 1.8 we do start finding a sizable number of extended QGs. This suggests that the bulk of these galaxies are assembled at late times by both continuous migration (quenching) of non-compact SFGs and size growth of cQGs. As a result of this growth, the population of cQGs disappears by z~1. Simultaneously, we identify a population of compact SFGs (cSFGs) whose number density decreases steadily with time since z = 3.0, being almost completely absent at z < 1.4. The number of cSFGs makes up less than 20% of all massive SFGs, but they present similar number densities as cQGs down to z~2, suggesting an evolutionary link between the two populations.
Limits to gene flow in a cosmopolitan marine planktonic diatom.
Casteleyn, Griet; Leliaert, Frederik; Backeljau, Thierry; Debeer, Ann-Eline; Kotaki, Yuichi; Rhodes, Lesley; Lundholm, Nina; Sabbe, Koen; Vyverman, Wim
2010-07-20
The role of geographic isolation in marine microbial speciation is hotly debated because of the high dispersal potential and large population sizes of planktonic microorganisms and the apparent lack of strong dispersal barriers in the open sea. Here, we show that gene flow between distant populations of the globally distributed, bloom-forming diatom species Pseudo-nitzschia pungens (clade I) is limited and follows a strong isolation by distance pattern. Furthermore, phylogenetic analysis implies that under appropriate geographic and environmental circumstances, like the pronounced climatic changes in the Pleistocene, population structuring may lead to speciation and hence may play an important role in diversification of marine planktonic microorganisms. A better understanding of the factors that control population structuring is thus essential to reveal the role of allopatric speciation in marine microorganisms.
Kyndt, Tina; Assogbadjo, Achille E; Hardy, Olivier J; Glele Kakaï, Romain; Sinsin, Brice; Van Damme, Patrick; Gheysen, Godelieve
2009-05-01
This study evaluates the spatial genetic structure of baobab (Adansonia digitata) populations from West African agroforestry systems at different geographical scales using AFLP fingerprints. Eleven populations from four countries (Benin, Ghana, Burkina Faso, and Senegal) had comparable levels of genetic diversity, although the two populations in the extreme west (Senegal) had less diversity. Pairwise F(ST) ranged from 0.02 to 0.28 and increased with geographic distance, even at a regional scale. Gene pools detected by Bayesian clustering seem to be a byproduct of the isolation-by-distance pattern rather than representing actual discrete entities. The organization of genetic diversity appears to result essentially from spatially restricted gene flow, with some influences of human seed exchange. Despite the potential for relatively long-distance pollen and seed dispersal by bats within populations, statistically significant spatial genetic structuring within populations (SGS) was detected and gave a mean indirect estimate of neighborhood size of ca. 45. This study demonstrated that relatively high levels of genetic structuring are present in baobab at both large and within-population level, which was unexpected in regard to its dispersal by bats and the influence of human exchange of seeds. Implications of these results for the conservation of baobab populations are discussed.
Impact of the HIV epidemic on population and household structure: the dynamics and evidence to date.
Heuveline, Patrick
2004-06-01
HIV is contracted most frequently at birth and during early adulthood. The epidemic may thus impact the demographic structure and the household structure of affected populations. This paper reviews earlier evidence of such an impact, uses demographic theory to anticipate its changes over time, and reviews the most recent evidence for indications of these changes. Modest increases in the male : female ratio are beginning to show within certain age groups only (approximately 15% among 25-34 year olds). Similarly sized increases in the proportion of 15-29 year olds relative to 30-54 year olds are observed in some age pyramids. These 'youth bulges' are expected to fade out, whereas an aging effect phases in with the fertility impact of the epidemic. In the longer run, the size of all age groups will be reduced, but relatively less so for middle-aged adults. Proportions of orphans and widows have increased in the most affected countries. Fewer remarriage probabilities for widows were observed. Resulting increases in the proportion of female-headed households should only be temporary, as female mortality is catching up with male mortality. The number of double orphans is beginning to increase, but overall, orphans continue to live predominantly with a family member, most often the grandparents if not with the surviving parent. To date, the epidemic's impact on the population and household structure has been limited by demographic (aging) and social (adaptive movements of kin across households) processes that contribute to diffuse the epidemic throughout the entire population and all households.
Predicting local adaptation in fragmented plant populations: implications for restoration genetics
Pickup, Melinda; Field, David L; Rowell, David M; Young, Andrew G
2012-01-01
Understanding patterns and correlates of local adaptation in heterogeneous landscapes can provide important information in the selection of appropriate seed sources for restoration. We assessed the extent of local adaptation of fitness components in 12 population pairs of the perennial herb Rutidosis leptorrhynchoides (Asteraceae) and examined whether spatial scale (0.7–600 km), environmental distance, quantitative (QST) and neutral (FST) genetic differentiation, and size of the local and foreign populations could predict patterns of adaptive differentiation. Local adaptation varied among populations and fitness components. Including all population pairs, local adaptation was observed for seedling survival, but not for biomass, while foreign genotype advantage was observed for reproduction (number of inflorescences). Among population pairs, local adaptation increased with QST and local population size for biomass. QST was associated with environmental distance, suggesting ecological selection for phenotypic divergence. However, low FST and variation in population structure in small populations demonstrates the interaction of gene flow and drift in constraining local adaptation in R. leptorrhynchoides. Our study indicates that for species in heterogeneous landscapes, collecting seed from large populations from similar environments to candidate sites is likely to provide the most appropriate seed sources for restoration. PMID:23346235
Bigger Brains or Bigger Nuclei? Regulating the Size of Auditory Structures in Birds
Kubke, M. Fabiana; Massoglia, Dino P.; Carr, Catherine E.
2012-01-01
Increases in the size of the neuronal structures that mediate specific behaviors are believed to be related to enhanced computational performance. It is not clear, however, what developmental and evolutionary mechanisms mediate these changes, nor whether an increase in the size of a given neuronal population is a general mechanism to achieve enhanced computational ability. We addressed the issue of size by analyzing the variation in the relative number of cells of auditory structures in auditory specialists and generalists. We show that bird species with different auditory specializations exhibit variation in the relative size of their hindbrain auditory nuclei. In the barn owl, an auditory specialist, the hind-brain auditory nuclei involved in the computation of sound location show hyperplasia. This hyperplasia was also found in songbirds, but not in non-auditory specialists. The hyperplasia of auditory nuclei was also not seen in birds with large body weight suggesting that the total number of cells is selected for in auditory specialists. In barn owls, differences observed in the relative size of the auditory nuclei might be attributed to modifications in neurogenesis and cell death. Thus, hyperplasia of circuits used for auditory computation accompanies auditory specialization in different orders of birds. PMID:14726625
Garzón, Maximiliano J; Schweigmann, Nicolás
2018-05-16
Gene flow restrictions between populations of Aedes albifasciatus, the vector of Western equine encephalitis and Dirophilaria immitis, have been described in the central region of Argentina. Genetic and eco-physiological variations usually result in local forms reflecting the climatic regions. Mosquito wings and their different parts have ecological functions in flight and communication. Therefore, wing shape could be considered an aspect of sexual dimorphism, and its eco-physiological responses can be expressed as morphological changes induced by the environment. To compare the geographical and sexual variations with respect to wing shape and size in two Ae. albifasciatus populations from contrasting climates of Argentina (temperate: Buenos Aires, and the arid steppe of Patagonia: Sarmiento), the wings of adults reared in thermal trays at different constant temperatures (10-29 °C) were analyzed. The wing size of Ae. albifasciatus showed inverse linear relationships with the rearing thermal condition and higher slope for Buenos Aires. In the cool range (10-17 °C), geographical size variations responded to the converse Bergmann's rule, where Buenos Aires individuals were larger than those from Sarmiento. Sexual shape dimorphism occurred in both populations while geographical variation in shape was observed in both sexes. Buenos Aires individuals showed greater response sensitivity with respect to the size-temperature relation than those from Sarmiento. The converse Bergmann's rule in size variation could be due to a higher development rate in Sarmiento to produce more cohorts in the limited favorable season. The shape could be more relevant with respect to the size in the study of population structures due to the size being more liable to vary due to changes in the environment. The geographical variations with respect to morphology could be favored by the isolation between populations and adaptations to the environmental conditions. Our results demonstrate that the shape and size of wing provide useful phenotypic information for studies related to sexual and environmental adaptations.
How congestion shapes cities: from mobility patterns to scaling
Louf, Rémi; Barthelemy, Marc
2014-01-01
The recent availability of data for cities has allowed scientists to exhibit scalings which present themselves in the form of a power-law dependence on population of various socio-economical and structural indicators. We propose here a stochastic theory of urban growth which accounts for some of the observed scalings and we confirm these predictions on US and OECD empirical data. In particular, we show that the dependence on population size of the total number of miles driven daily, the total length of the road network, the total traffic delay, the total consumption of gasoline, the quantity of CO2 emitted and the relation between area and population of cities, are all governed by a single parameter which characterizes the sensitivity to congestion. Our results suggest that diseconomies associated with congestion scale superlinearly with population size, implying that –despite polycentrism– cities whose transportation infrastructure rely heavily on traffic sensitive modes are unsustainable. PMID:24990624
Population and Individual Elephant Response to a Catastrophic Fire in Pilanesberg National Park
Woolley, Leigh-Ann; Millspaugh, Joshua J.; Woods, Rami J.; Janse van Rensburg, Samantha; Mackey, Robin L.; Page, Bruce; Slotow, Rob
2008-01-01
In predator-free large herbivore populations, where density-dependent feedbacks occur at the limit where forage resources can no longer support the population, environmental catastrophes may play a significant role in population regulation. The potential role of fire as a stochastic mass-mortality event limiting these populations is poorly understood, so too the behavioural and physiological responses of the affected animals to this type of large disturbance event. During September 2005, a wildfire resulted in mortality of 29 (18% population mortality) and injury to 18, African elephants in Pilanesberg National Park, South Africa. We examined movement and herd association patterns of six GPS-collared breeding herds, and evaluated population physiological response through faecal glucocorticoid metabolite (stress) levels. We investigated population size, structure and projected growth rates using a simulation model. After an initial flight response post-fire, severely injured breeding herds reduced daily displacement with increased daily variability, reduced home range size, spent more time in non-tourist areas and associated less with other herds. Uninjured, or less severely injured, breeding herds also shifted into non-tourist areas post-fire, but in contrast, increased displacement rate (both mean and variability), did not adjust home range size and formed larger herds post-fire. Adult cow stress hormone levels increased significantly post-fire, whereas juvenile and adult bull stress levels did not change significantly. Most mortality occurred to the juvenile age class causing a change in post-fire population age structure. Projected population growth rate remained unchanged at 6.5% p.a., and at current fecundity levels, the population would reach its previous level three to four years post-fire. The natural mortality patterns seen in elephant populations during stochastic events, such as droughts, follows that of the classic mortality pattern seen in predator-free large ungulate populations, i.e. mainly involving juveniles. Fire therefore functions in a similar manner to other environmental catastrophes and may be a natural mechanism contributing to population limitation. Welfare concerns of arson fires, burning during “hot-fire” conditions and the conservation implications of fire suppression (i.e. removal of a potential contributing factor to natural population regulation) should be integrated into fire management strategies for conservation areas. PMID:18797503
Urrestarazu, Jorge; Royo, José B.; Santesteban, Luis G.; Miranda, Carlos
2015-01-01
Fingerprinting information can be used to elucidate in a robust manner the genetic structure of germplasm collections, allowing a more rational and fine assessment of genetic resources. Bayesian model-based approaches are nowadays majorly preferred to infer genetic structure, but it is still largely unresolved how marker sets should be built in order to obtain a robust inference. The objective was to evaluate, in Pyrus germplasm collections, the influence of the SSR marker set size on the genetic structure inferred, also evaluating the influence of the criterion used to select those markers. Inferences were performed considering an increasing number of SSR markers that ranged from just two up to 25, incorporated one at a time into the analysis. The influence of the number of SSR markers used was evaluated comparing the number of populations and the strength of the signal detected, and also the similarity of the genotype assignments to populations between analyses. In order to test if those results were influenced by the criterion used to select the SSRs, several choosing scenarios based on the discrimination power or the fixation index values of the SSRs were tested. Our results indicate that population structure could be inferred accurately once a certain SSR number threshold was reached, which depended on the underlying structure within the genotypes, but the method used to select the markers included on each set appeared not to be very relevant. The minimum number of SSRs required to provide robust structure inferences and adequate measurements of the differentiation, even when low differentiation levels exist within populations, was proved similar to that of the complete list of recommended markers for fingerprinting. When a SSR set size similar to the minimum marker sets recommended for fingerprinting it is used, only major divisions or moderate (F ST>0.05) differentiation of the germplasm are detected. PMID:26382618
Colony-Level Differences in the Scaling Rules Governing Wood Ant Compound Eye Structure.
Perl, Craig D; Niven, Jeremy E
2016-04-12
Differential organ growth during development is essential for adults to maintain the correct proportions and achieve their characteristic shape. Organs scale with body size, a process known as allometry that has been studied extensively in a range of organisms. Such scaling rules, typically studied from a limited sample, are assumed to apply to all members of a population and/or species. Here we study scaling in the compound eyes of workers of the wood ant, Formica rufa, from different colonies within a single population. Workers' eye area increased with body size in all the colonies showing a negative allometry. However, both the slope and intercept of some allometric scaling relationships differed significantly among colonies. Moreover, though mean facet diameter and facet number increased with body size, some colonies primarily increased facet number whereas others increased facet diameter, showing that the cellular level processes underlying organ scaling differed among colonies. Thus, the rules that govern scaling at the organ and cellular levels can differ even within a single population.
Population Response to Habitat Fragmentation in a Stream-Dwelling Brook Trout Population
Letcher, Benjamin H.; Nislow, Keith H.; Coombs, Jason A.; O'Donnell, Matthew J.; Dubreuil, Todd L.
2007-01-01
Fragmentation can strongly influence population persistence and expression of life-history strategies in spatially-structured populations. In this study, we directly estimated size-specific dispersal, growth, and survival of stream-dwelling brook trout in a stream network with connected and naturally-isolated tributaries. We used multiple-generation, individual-based data to develop and parameterize a size-class and location-based population projection model, allowing us to test effects of fragmentation on population dynamics at local (i.e., subpopulation) and system-wide (i.e., metapopulation) scales, and to identify demographic rates which influence the persistence of isolated and fragmented populations. In the naturally-isolated tributary, persistence was associated with higher early juvenile survival (∼45% greater), shorter generation time (one-half) and strong selection against large body size compared to the open system, resulting in a stage-distribution skewed towards younger, smaller fish. Simulating barriers to upstream migration into two currently-connected tributary populations caused rapid (2–6 generations) local extinction. These local extinctions in turn increased the likelihood of system-wide extinction, as tributaries could no longer function as population sources. Extinction could be prevented in the open system if sufficient immigrants from downstream areas were available, but the influx of individuals necessary to counteract fragmentation effects was high (7–46% of the total population annually). In the absence of sufficient immigration, a demographic change (higher early survival characteristic of the isolated tributary) was also sufficient to rescue the population from fragmentation, suggesting that the observed differences in size distributions between the naturally-isolated and open system may reflect an evolutionary response to isolation. Combined with strong genetic divergence between the isolated tributary and open system, these results suggest that local adaptation can ‘rescue’ isolated populations, particularly in one-dimensional stream networks where both natural and anthropogenically-mediated isolation is common. However, whether rescue will occur before extinction depends critically on the race between adaptation and reduced survival in response to fragmentation. PMID:18188404
Population response to habitat fragmentation in a stream-dwelling brook trout population
Letcher, B.H.; Nislow, K.H.; Coombs, J.A.; O'Donnell, M. J.; Dubreuil, T.L.
2007-01-01
Fragmentation can strongly influence population persistence and expression of life-history strategies in spatially-structured populations. In this study, we directly estimated size-specific dispersal, growth, and survival of stream-dwelling brook trout in a stream network with connected and naturally-isolated tributaries. We used multiple-generation, individual-based data to develop and parameterize a size-class and location-based population projection model, allowing us to test effects of fragmentation on population dynamics at local (i.e., subpopulation) and system-wide (i.e., metapopulation) scales, and to identify demographic rates which influence the persistence of isolated and fragmented populations. In the naturally-isolated tributary, persistence was associated with higher early juvenile survival (-45% greater), shorter generation time (one-half) and strong selection against large body size compared to the open system, resulting in a stage-distribution skewed towards younger, smaller fish. Simulating barriers to upstream migration into two currently-connected tribuory populations caused rapid (2-6 generations) local extinction. These local extinctions in turn increased the likelihood of system-wide extinction, as tributaries could no longer function as population sources. Extinction could be prevented in the open system if sufficient immigrants from downstream areas were available, but the influx of individuals necessary to counteract fragmentation effects was high (7-46% of the total population annually). In the absence of sufficient immigration, a demographic change (higher early survival characteristic of the isolated tributary) was also sufficient to rescue the population from fragmentation, suggesting that the observed differences in size distributions between the naturally-isolated and open system may reflect an evolutionary response to isolation. Combined with strong genetic divergence between the isolated tributary and open system, these results suggest that local adaptation can 'rescue' isolated populations, particularly in one-dimensional stream networks where both natural and anthropegenically-mediated isolation is common. However, whether rescue will occur before extinction depends critically on the race between adaptation and reduced survival in response to fragmentation.
The biogeodynamics of microbial landscapes
NASA Astrophysics Data System (ADS)
Battin, T. J.; Hödl, I.; Bertuzzo, E.; Mari, L.; Suweis, S. S.; Rinaldo, A.
2011-12-01
Spatial configuration is fundamental in defining the structural and functional properties of biological systems. Biofilms, surface-attached and matrix-enclosed microorganisms, are a striking example of spatial organisation. Coupled biotic and abiotic processes shape the spatial organisation across scales of the landscapes formed by these benthic biofilms in streams and rivers. Experimenting with such biofilms in streams, we found that, depending on the streambed topography and the related hydrodynamic microenvironment, biofilm landscapes form increasingly diverging spatial patterns as they grow. Strikingly, however, cluster size distributions tend to converge even in contrasting hydrodynamic microenvironments. To reproduce the observed cluster size distributions we used a continuous, size-structured population model. The model accounts for the formation, growth, erosion and merging of biofilm clusters. Our results suggest not only that hydrodynamic forcing induce the diverging patterning of the microbial landscape, but also that microorganisms have developed strategies to equally exploit spatial resources independently of the physical structure of the microenvironment where they live.
Riedle, J.D.; Shipman, P.A.; Fox, S. F.; Hackler, J.C.; Lesie, D.M.
2008-01-01
A mark-recapture project on Macrochelys temminckii was conducted between 1997 and 2000 at Sequoyah National Wildlife Refuge, Muskogee and Sequoyah counties, in eastern Oklahoma. Turtles were captured in all streams and exhibited equal sex ratios, marked sexual-size dimorphism, and population densities between 28 and 34 animals per km stretch of stream. There was evidence of past population perturbations, with very few large adults captured, and a cohort of subadults highly underrepresented. ?? 2008 Chelonian Research Foundation.
Computer simulation of wolf-removal strategies for animal-damage control
Haight, R.G.; Travis, L.E.; Nimerfro, K.; Mech, L.D.
2002-01-01
Because of the sustained growth of the gray wolf (Canis lupus) population in the western Great Lakes region of the United States, management agencies are anticipating gray wolf removal from the federal endangered species list and are proposing strategies for wolf management. Strategies are needed that would balance public demand for wolf conservation with demand for protection against wolf depredation on livestock, poultry, and pets. We used a stochastic, spatially structured, individually based simulation model of a hypothetical wolf population, representing a small subset of the western Great Lakes wolves, to predict the relative performance of 3 wolf-removal strategies. Those strategies included reactive management (wolf removal occurred in summer after depredation), preventive management (wolves removed in winter from territories with occasional depredation), and population-size management (wolves removed annually in winter from all territories near farms). Performance measures included number of depredating packs and wolves removed, cost, and population size after 20 years. We evaluated various scenarios about immigration, trapping success, and likelihood of packs engaging in depredation. Four robust results emerged from the simulations: 1) each strategy reduced depredation by at least 40% compared with no action, 2) preventive and population-size management removed fewer wolves than reactive management because wolves were removed in winter before pups were born, 3)population-size management was least expensive because repeated annual removal kept most territories near farms free of wolves, and 4) none of the strategies threatened wolf populations unless they were isolated because wolf removal took place near farms and not in wild areas. For isolated populations, reactive management alone ensured conservation and reduced depredation. Such results can assist decision makers in managing gray wolves in the western Great Lakes states.
Beckensteiner, Jennifer; Kaplan, David M; Potts, Warren M; Santos, Carmen V; O'Farrell, Michael R
2016-01-01
Excessive truncation of a population's size structure is often identified as an important deleterious effect of exploitation, yet the effect on population persistence of size-structure truncation caused by exploitation is often not quantified due to data limitations. In this study, we estimate changes in eggs per recruit (EPR) using annual length-frequency samples over a 9 year period to assess persistence of the two most important recreational fishes in southern Angola: west coast dusky kob (Argyrosomus coronus) and leerfish (Lichia amia). Using a length- and age-structured model, we improve on an existing method to fit this type of model to length-frequency data and estimate EPR. The objectives of the methodological changes are to add flexibility and robustness to the approach for assessing population status in data-limited situations. Results indicate that dusky kob presents very low levels of EPR (5%-10% of the per recruit reproductive capacity in the absence of fishing) in 2013, whereas large inter-annual variability in leerfish estimates suggest caution must be applied when drawing conclusions about its exploitation status. Using simulated length frequency data with known parameter values, we demonstrate that recruitment decline due to overexploitation leads to overestimation of EPR values. Considering the low levels of EPR estimated for the study species, recruitment limitation is not impossible and true EPR values may be even lower than our estimates. It is, therefore, likely that management action, such as the creation of Marine Protected Areas, is needed to reconstitute the west coast dusky kob population.
Ecogeography, genetics, and the evolution of human body form.
Roseman, Charles C; Auerbach, Benjamin M
2015-01-01
Genetic resemblances among groups are non-randomly distributed in humans. This population structure may influence the correlations between traits and environmental drivers of natural selection thus complicating the interpretation of the fossil record when modern human variation is used as a referential model. In this paper, we examine the effects of population structure and natural selection on postcranial traits that reflect body size and shape with application to the more general issue of how climate - using latitude as a proxy - has influenced hominin morphological variation. We compare models that include terms reflecting population structure, ascertained from globally distributed microsatellite data, and latitude on postcranial phenotypes derived from skeletal dimensions taken from a large global sample of modern humans. We find that models with a population structure term fit better than a model of natural selection along a latitudinal cline in all cases. A model including both latitude and population structure terms is a good fit to distal limb element lengths and bi-iliac breadth, indicating that multiple evolutionary forces shaped these morphologies. In contrast, a model that included only a population structure term best explained femoral head diameter and the crural index. The results demonstrate that population structure is an important part of human postcranial variation, and that clinally distributed natural selection is not sufficient to explain among-group differentiation. The distribution of human body form is strongly influenced by the contingencies of modern human origins, which calls for new ways to approach problems in the evolution of human variation, past and present. Copyright © 2014 Elsevier Ltd. All rights reserved.
Geographic structure of adelie penguin populations: overlap in colony-specific foraging areas
Ainley, D.G.; Ribic, C.A.; Ballard, G.; Heath, S.; Gaffney, I.; Karl, B.J.; Barton, K.J.; Wilson, P.R.; Webb, S.
2004-01-01
In an investigation of the factors leading to geographic structuring among Ade??lie Penguin (Pygoscelis adeliae) populations, we studied the size and overlap of colony-specific foraging areas within an isolated cluster of colonies. The study area, in the southwestern Ross Sea, included one large and three smaller colonies, ranging in size from 3900 to 135000 nesting pairs, clustered on Ross and Beaufort Islands. We used triangulation of radio signals from transmitters attached to breeding penguins to determine foraging locations and to define colony-specific foraging areas during the chick-provisioning period of four breeding seasons, 1997-2000. Colony populations (nesting pairs) were determined using aerial photography just after egg-laying; reproductive success was estimated by comparing ground counts of chicks fledged to the number of breeding pairs apparent in aerial photos. Foraging-trip duration, meal size, and adult body mass were estimated using RFID (radio frequency identification) tags and an automated reader and weighbridge. Chick growth was assessed by weekly weighing. We related the following variables to colony size: foraging distance, area, and duration; reproductive success; chick meal size and growth rate; and seasonal variation in adult body mass. We found that penguins foraged closest to their respective colonies, particularly at the smaller colonies. However, as the season progressed, foraging distance, duration, and area increased noticeably, especially at the largest colony. The foraging areas of the smaller colonies overlapped broadly, but very little foraging area overlap existed between the large colony and the smaller colonies, even though the foraging area of the large colony was well within range of the smaller colonies. Instead, the foraging areas of the smaller colonies shifted as that of the large colony grew. Colony size was not related to chick meal size, chick growth, or parental body mass. This differed from the year previous to the study, when foraging trips of the large colony were very long, parents lost mass, and chick meals were smaller. In light of existing data on prey abundance in neritic waters in Antarctica suggesting that krill are relatively evenly distributed and in high abundance in the Southern Ross Sea, we conclude that penguins depleted or changed the availability of their prey, that the degree of alteration was a function of colony size, and that the large colony affected the location (and perhaps ultimately the size) of foraging areas for the smaller colonies. It appears, therefore, that foraging dynamics play a role in the geographic structuring of colonies in this species. ?? 2004 by the Ecological Society of America.
Bailey, Michael M.; Zydlewski, Joseph D.
2013-01-01
Hatchery supplementation has been widely used as a restoration technique for American Shad Alosa sapidissima on the East Coast of the USA, but results have been equivocal. In the Penobscot River, Maine, dam removals and other improvements to fish passage will likely reestablish access to the majority of this species’ historic spawning habitat. Additional efforts being considered include the stocking of larval American Shad. The decision about whether to stock a river system undergoing restoration should be made after evaluating the probability of natural recolonization and examining the costs and benefits of potentially accelerating recovery using a stocking program. However, appropriate evaluation can be confounded by a dearth of information about the starting population size and age structure of the remnant American Shad spawning run in the river. We used the Penobscot River as a case study to assess the theoretical sensitivity of recovery time to either scenario (stocking or not) by building a deterministic model of an American Shad population. This model is based on the best available estimates of size at age, fecundity, rate of iteroparity, and recruitment. Density dependence was imposed, such that the population reached a plateau at an arbitrary recovery goal of 633,000 spawning adults. Stocking had a strong accelerating effect on the time to modeled recovery (as measured by the time to reach 50% of the recovery goal) in the base model, but stocking had diminishing effects with larger population sizes. There is a diminishing return to stocking when the starting population is modestly increased. With a low starting population (a spawning run of 1,000), supplementation with 12 million larvae annually accelerated modeled recovery by 12 years. Only a 2-year acceleration was observed if the starting population was 15,000. Such a heuristic model may aid managers in assessing the costs and benefits of stocking by incorporating a structured decision framework.
Cibrián-Jaramillo, Angélica; Bacon, Christine D; Garwood, Nancy C; Bateman, Richard M; Thomas, Meredith M; Russell, Steve; Bailey, C Donovan; Hahn, William J; Bridgewater, Samuel GM; DeSalle, Rob
2009-01-01
Background Developing a greater understanding of population genetic structure in lowland tropical plant species is highly relevant to our knowledge of increasingly fragmented forests and to the conservation of threatened species. Specific studies are particularly needed for taxa whose population dynamics are further impacted by human harvesting practices. One such case is the fishtail or xaté palm (Chamaedorea ernesti-augusti) of Central America, whose wild-collected leaves are becoming progressively more important to the global ornamental industry. We use microsatellite markers to describe the population genetics of this species in Belize and test the effects of climate change and deforestation on its recent and historical effective population size. Results We found high levels of inbreeding coupled with moderate or high allelic diversity within populations. Overall high gene flow was observed, with a north and south gradient and ongoing differentiation at smaller spatial scales. Immigration rates among populations were more difficult to discern, with minimal evidence for isolation by distance. We infer a tenfold reduction in effective population size ca. 10,000 years ago, but fail to detect changes attributable to Mayan or contemporary deforestation. Conclusion Populations of C. ernesti-augusti are genetically heterogeneous demes at a local spatial scale, but are widely connected at a regional level in Belize. We suggest that the inferred patterns in population genetic structure are the result of the colonization of this species into Belize following expansion of humid forests in combination with demographic and mating patterns. Within populations, we hypothesize that low aggregated population density over large areas, short distance pollen dispersal via thrips, low adult survival, and low fruiting combined with early flowering may contribute towards local inbreeding via genetic drift. Relatively high levels of regional connectivity are likely the result of animal-mediated long-distance seed dispersal. The greatest present threat to the species is the potential onset of inbreeding depression as the result of increased human harvesting activities. Future genetic studies in understory palms should focus on both fine-scale and landscape-level genetic structure. PMID:19818141
Garcia-Retamero, Rocio; Müller, Stephanie M; López-Zafra, Esther
2011-01-01
Recent studies on the malleability of gender stereotypes show that they are flexible, dynamic structures that change with the passage of time. In a study, we examined perceptions about men and women of the past, present, and future in Spain and focused on the influence of an important demographic variable on these perceptions: the population size of people's location of residence. Results showed that people perceived an increase in similarity of men and women from the past to the present and from the present to the future. In less-populated locations, however, men and women were more gender stereotyped and, consequently, still perceived to be further from equality than those in more populated areas. We concluded that the study of dynamic gender stereotypes benefits from extensive research in populations that vary in their demographic characteristics and shows the importance of recent movements in rural areas supporting women's participation in the modernization process.
Demographic aspects of climate change mitigation and adaptation.
Lutz, Wolfgang; Striessnig, Erich
2015-01-01
This paper addresses the contribution of changes in population size and structures to greenhouse gas emissions and to the capacity to adapt to climate change. The paper goes beyond the conventional focus on the changing composition by age and sex. It does so by addressing explicitly the changing composition of the population by level of educational attainment, taking into account new evidence about the effect of educational attainment in reducing significantly the vulnerability of populations to climatic challenges. This evidence, which has inspired a new generation of socio-economic climate change scenarios, is summarized. While the earlier IPCC-SRES (Intergovernmental Panel on Climate Change-Special Report on Emissions Scenarios) scenarios only included alternative trajectories for total population size (treating population essentially as a scaling parameter), the Shared Socio-economic Pathways (SSPs) in the new scenarios were designed to capture the socio-economic challenges to climate change mitigation and adaptation, and include full age, sex, and education details for all countries.
How much gene flow is needed to avoid inbreeding depression in wild tiger populations?
Kenney, John; Allendorf, Fred W.; McDougal, Charles; Smith, James L. D.
2014-01-01
The number and size of tiger populations continue to decline owing to habitat loss, habitat fragmentation and poaching of tigers and their prey. As a result, tiger populations have become small and highly structured. Current populations have been isolated since the early 1970s or for approximately seven generations. The objective of this study is to explore how inbreeding may be affecting the persistence of remaining tiger populations and how dispersal, either natural or artificial, may reduce the potentially detrimental effect of inbreeding depression. We developed a tiger simulation model and used published levels of genetic load in mammals to simulate inbreeding depression. Following a 50 year period of population isolation, we introduced one to four dispersing male tigers per generation to explore how gene flow from nearby populations may reduce the negative impact of inbreeding depression. For the smallest populations, even four dispersing male tigers per generation did not increase population viability, and the likelihood of extinction is more than 90% within 30 years. Unless habitat connectivity is restored or animals are artificially introduced in the next 70 years, medium size wild populations are also likely to go extinct, with only four to five of the largest wild tiger populations likely to remain extant in this same period without intervention. To reduce the risk of local extinction, habitat connectivity must be pursued concurrently with efforts to increase population size (e.g. enhance habitat quality, increase habitat availability). It is critical that infrastructure development, dam construction and other similar projects are planned appropriately so that they do not erode the extent or quality of habitat for these populations so that they can truly serve as future source populations. PMID:24990671
How much gene flow is needed to avoid inbreeding depression in wild tiger populations?
Kenney, John; Allendorf, Fred W; McDougal, Charles; Smith, James L D
2014-08-22
The number and size of tiger populations continue to decline owing to habitat loss, habitat fragmentation and poaching of tigers and their prey. As a result, tiger populations have become small and highly structured. Current populations have been isolated since the early 1970s or for approximately seven generations. The objective of this study is to explore how inbreeding may be affecting the persistence of remaining tiger populations and how dispersal, either natural or artificial, may reduce the potentially detrimental effect of inbreeding depression. We developed a tiger simulation model and used published levels of genetic load in mammals to simulate inbreeding depression. Following a 50 year period of population isolation, we introduced one to four dispersing male tigers per generation to explore how gene flow from nearby populations may reduce the negative impact of inbreeding depression. For the smallest populations, even four dispersing male tigers per generation did not increase population viability, and the likelihood of extinction is more than 90% within 30 years. Unless habitat connectivity is restored or animals are artificially introduced in the next 70 years, medium size wild populations are also likely to go extinct, with only four to five of the largest wild tiger populations likely to remain extant in this same period without intervention. To reduce the risk of local extinction, habitat connectivity must be pursued concurrently with efforts to increase population size (e.g. enhance habitat quality, increase habitat availability). It is critical that infrastructure development, dam construction and other similar projects are planned appropriately so that they do not erode the extent or quality of habitat for these populations so that they can truly serve as future source populations. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Turek, Kelly C.; Pegg, Mark A.; Pope, Kevin L.; Schainost, Steve
2014-01-01
Non-native trout are currently stocked to support recreational fisheries in headwater streams throughout Nebraska. The influence of non-native trout introductions on native fish populations and their role in structuring fish assemblages in these systems is unknown. The objectives of this study were to determine (i) if the size structure or relative abundance of native fish differs in the presence and absence of non-native trout, (ii) if native fish-assemblage structure differs in the presence and absence of non-native trout and (iii) if native fish-assemblage structure differs across a gradient in abundances of non-native trout. Longnose dace Rhinichthys cataractae were larger in the presence of brown trout Salmo trutta and smaller in the presence of rainbow trout Oncorhynchus mykiss compared to sites without trout. There was also a greater proportion of larger white suckers Catostomus commersonii in the presence of brown trout. Creek chub Semotilus atromaculatus and fathead minnow Pimephales promelas size structures were similar in the presence and absence of trout. Relative abundances of longnose dace, white sucker, creek chub and fathead minnow were similar in the presence and absence of trout, but there was greater distinction in native fish-assemblage structure between sites with trout compared to sites without trout as trout abundances increased. These results suggest increased risk to native fish assemblages in sites with high abundances of trout. However, more research is needed to determine the role of non-native trout in structuring native fish assemblages in streams, and the mechanisms through which introduced trout may influence native fish populations.
Temporal dynamics of genetic variability in a mountain goat (Oreamnos americanus) population.
Ortego, Joaquín; Yannic, Glenn; Shafer, Aaron B A; Mainguy, Julien; Festa-Bianchet, Marco; Coltman, David W; Côté, Steeve D
2011-04-01
The association between population dynamics and genetic variability is of fundamental importance for both evolutionary and conservation biology. We combined long-term population monitoring and molecular genetic data from 123 offspring and their parents at 28 microsatellite loci to investigate changes in genetic diversity over 14 cohorts in a small and relatively isolated population of mountain goats (Oreamnos americanus) during a period of demographic increase. Offspring heterozygosity decreased while parental genetic similarity and inbreeding coefficients (F(IS) ) increased over the study period (1995-2008). Immigrants introduced three novel alleles into the population and matings between residents and immigrants produced more heterozygous offspring than local crosses, suggesting that immigration can increase population genetic variability. The population experienced genetic drift over the study period, reflected by a reduced allelic richness over time and an 'isolation-by-time' pattern of genetic structure. The temporal decline of individual genetic diversity despite increasing population size probably resulted from a combination of genetic drift due to small effective population size, inbreeding and insufficient counterbalancing by immigration. This study highlights the importance of long-term genetic monitoring to understand how demographic processes influence temporal changes of genetic diversity in long-lived organisms. © 2011 Blackwell Publishing Ltd.
Plasmodium vivax Diversity and Population Structure across Four Continents
Koepfli, Cristian; Rodrigues, Priscila T.; Antao, Tiago; Orjuela-Sánchez, Pamela; Van den Eede, Peter; Gamboa, Dionicia; van Hong, Nguyen; Bendezu, Jorge; Erhart, Annette; Barnadas, Céline; Ratsimbasoa, Arsène; Menard, Didier; Severini, Carlo; Menegon, Michela; Nour, Bakri Y. M.; Karunaweera, Nadira; Mueller, Ivo; Ferreira, Marcelo U.; Felger, Ingrid
2015-01-01
Plasmodium vivax is the geographically most widespread human malaria parasite. To analyze patterns of microsatellite diversity and population structure across countries of different transmission intensity, genotyping data from 11 microsatellite markers was either generated or compiled from 841 isolates from four continents collected in 1999–2008. Diversity was highest in South-East Asia (mean allelic richness 10.0–12.8), intermediate in the South Pacific (8.1–9.9) Madagascar and Sudan (7.9–8.4), and lowest in South America and Central Asia (5.5–7.2). A reduced panel of only 3 markers was sufficient to identify approx. 90% of all haplotypes in South Pacific, African and SE-Asian populations, but only 60–80% in Latin American populations, suggesting that typing of 2–6 markers, depending on the level of endemicity, is sufficient for epidemiological studies. Clustering analysis showed distinct clusters in Peru and Brazil, but little sub-structuring was observed within Africa, SE-Asia or the South Pacific. Isolates from Uzbekistan were exceptional, as a near-clonal parasite population was observed that was clearly separated from all other populations (F ST>0.2). Outside Central Asia F ST values were highest (0.11–0.16) between South American and all other populations, and lowest (0.04–0.07) between populations from South-East Asia and the South Pacific. These comparisons between P. vivax populations from four continents indicated that not only transmission intensity, but also geographical isolation affect diversity and population structure. However, the high effective population size results in slow changes of these parameters. This persistency must be taken into account when assessing the impact of control programs on the genetic structure of parasite populations. PMID:26125189
Plasmodium vivax Diversity and Population Structure across Four Continents.
Koepfli, Cristian; Rodrigues, Priscila T; Antao, Tiago; Orjuela-Sánchez, Pamela; Van den Eede, Peter; Gamboa, Dionicia; van Hong, Nguyen; Bendezu, Jorge; Erhart, Annette; Barnadas, Céline; Ratsimbasoa, Arsène; Menard, Didier; Severini, Carlo; Menegon, Michela; Nour, Bakri Y M; Karunaweera, Nadira; Mueller, Ivo; Ferreira, Marcelo U; Felger, Ingrid
2015-01-01
Plasmodium vivax is the geographically most widespread human malaria parasite. To analyze patterns of microsatellite diversity and population structure across countries of different transmission intensity, genotyping data from 11 microsatellite markers was either generated or compiled from 841 isolates from four continents collected in 1999-2008. Diversity was highest in South-East Asia (mean allelic richness 10.0-12.8), intermediate in the South Pacific (8.1-9.9) Madagascar and Sudan (7.9-8.4), and lowest in South America and Central Asia (5.5-7.2). A reduced panel of only 3 markers was sufficient to identify approx. 90% of all haplotypes in South Pacific, African and SE-Asian populations, but only 60-80% in Latin American populations, suggesting that typing of 2-6 markers, depending on the level of endemicity, is sufficient for epidemiological studies. Clustering analysis showed distinct clusters in Peru and Brazil, but little sub-structuring was observed within Africa, SE-Asia or the South Pacific. Isolates from Uzbekistan were exceptional, as a near-clonal parasite population was observed that was clearly separated from all other populations (FST>0.2). Outside Central Asia FST values were highest (0.11-0.16) between South American and all other populations, and lowest (0.04-0.07) between populations from South-East Asia and the South Pacific. These comparisons between P. vivax populations from four continents indicated that not only transmission intensity, but also geographical isolation affect diversity and population structure. However, the high effective population size results in slow changes of these parameters. This persistency must be taken into account when assessing the impact of control programs on the genetic structure of parasite populations.
Sulfolobus islandicus meta-populations in Yellowstone National Park hot springs
Campbell, Kate M.; Kouris, Angela; England, Whitney; Anderson, Rika E.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Whitaker, Rachel J.
2017-01-01
Abiotic and biotic forces shape the structure and evolution of microbial populations. We investigated forces that shape the spatial and temporal population structure of Sulfolobus islandicus by comparing geochemical and molecular analysis from seven hot springs in five regions sampled over 3 years in Yellowstone National Park. Through deep amplicon sequencing, we uncovered 148 unique alleles at two loci whose relative frequency provides clear evidence for independent populations in different hot springs. Although geography controls regional geochemical composition and population differentiation, temporal changes in population were not explained by corresponding variation in geochemistry. The data suggest that the influence of extinction, bottleneck events and/or selective sweeps within a spring and low migration between springs shape these populations. We suggest that hydrologic events such as storm events and surface snowmelt runoff destabilize smaller hot spring environments with smaller populations and result in high variation in the S. islandicus population over time. Therefore, physical abiotic features such as hot spring size and position in the landscape are important factors shaping the stability and diversity of the S. islandicus meta-population within Yellowstone National Park.
Gene flow rise with habitat fragmentation in the bog fritillary butterfly (Lepidoptera: Nymphalidae)
2008-01-01
Background The main components of the spatial genetic structure of the populations are neighbourhood size and isolation by distance. These may be inferred from the allele frequencies across a series of populations within a region. Here, the spatial population structure of Proclossiana eunomia was investigated in two mountainous areas of southern Europe (Asturias, Spain and Pyrenees, France) and in two areas of intermediate elevation (Morvan, France and Ardennes, Belgium). Results A total of eight polymorphic loci were scored by allozyme electrophoresis, revealing a higher polymorphism in the populations of southern Europe than in those of central Europe. Isolation by distance effect was much stronger in the two mountain ranges (Pyrenees and Asturias) than in the two areas of lower elevation (Ardennes and Morvan). By contrast, the neighbourhood size estimates were smaller in the Ardennes and in the Morvan than in the two high mountain areas, indicating more common movements between neighbouring patches in the mountains than in plains. Conclusion Short and long dispersal events are two phenomena with distinct consequences in the population genetics of natural populations. The differences in level of population differentiation within each the four regions may be explained by change in dispersal in lowland recently fragmented landscapes: on average, butterflies disperse to a shorter distance but the few ones which disperse long distance do so more efficiently. Habitat fragmentation has evolutionary consequences exceeding by far the selection of dispersal related traits: the balance between local specialisation and gene flow would be perturbed, which would modify the extent to which populations are adapted to heterogeneous environments. PMID:18366652
Fixation of slightly beneficial mutations: effects of life history.
Vindenes, Yngvild; Lee, Aline Magdalena; Engen, Steinar; Saether, Bernt-Erik
2010-04-01
Recent studies of rates of evolution have revealed large systematic differences among organisms with different life histories, both within and among taxa. Here, we consider how life history may affect the rate of evolution via its influence on the fixation probability of slightly beneficial mutations. Our approach is based on diffusion modeling for a finite, stage-structured population with stochastic population dynamics. The results, which are verified by computer simulations, demonstrate that even with complex population structure just two demographic parameters are sufficient to give an accurate approximation of the fixation probability of a slightly beneficial mutation. These are the reproductive value of the stage in which the mutation first occurs and the demographic variance of the population. The demographic variance also determines what influence population size has on the fixation probability. This model represents a substantial generalization of earlier models, covering a large range of life histories.
Genetic structure of the world's polar bear populations.
Paetkau, D; Amstrup, S C; Born, E W; Calvert, W; Derocher, A E; Garner, G W; Messier, F; Stirling, I; Taylor, M K; Wiig, O; Strobeck, C
1999-10-01
We studied genetic structure in polar bear (Ursus maritimus) populations by typing a sample of 473 individuals spanning the species distribution at 16 highly variable microsatellite loci. No genetic discontinuities were found that would be consistent with evolutionarily significant periods of isolation between groups. Direct comparison of movement data and genetic data from the Canadian Arctic revealed a highly significant correlation. Genetic data generally supported existing population (management unit) designations, although there were two cases where genetic data failed to differentiate between pairs of populations previously resolved by movement data. A sharp contrast was found between the minimal genetic structure observed among populations surrounding the polar basin and the presence of several marked genetic discontinuities in the Canadian Arctic. The discontinuities in the Canadian Arctic caused the appearance of four genetic clusters of polar bear populations. These clusters vary in total estimated population size from 100 to over 10 000, and the smallest may merit a relatively conservative management strategy in consideration of its apparent isolation. We suggest that the observed pattern of genetic discontinuities has developed in response to differences in the seasonal distribution and pattern of sea ice habitat and the effects of these differences on the distribution and abundance of seals.
Genetic structure of the world's polar bear populations
Paetkau, David; Amstrup, Steven C.; Born, E.W.; Calvert, W.; Derocher, A.E.; Garner, G.W.; Messier, F.; Stirling, I.; Taylor, M.K.; Wiig, O.; Strobeck, C.
1999-01-01
We studied genetic structure in polar bear (Ursus maritimus) populations by typing a sample of 473 individuals spanning the species distribution at 16 highly variable microsatellite loci. No genetic discontinuities were found that would be consistent with evolutionarily significant periods of isolation between groups. Direct comparison of movement data and genetic data from the Canadian Arctic revealed a highly significant correlation. Genetic data generally supported existing population (management unit) designations, although there were two cases where genetic data failed to differentiate between pairs of populations previously resolved by movement data. A sharp contrast was found between the minimal genetic structure observed among populations surrounding the polar basin and the presence of several marked genetic discontinuities in the Canadian Arctic. The discontinuities in the Canadian Arctic caused the appearance of four genetic clusters of polar bear populations. These clusters vary in total estimated population size from 100 to over 10 000, and the smallest may merit a relatively conservative management strategy in consideration of its apparent isolation. We suggest that the observed pattern of genetic discontinuities has developed in response to differences in the seasonal distribution and pattern of sea ice habitat and the effects of these differences on the distribution and abundance of seals.
Tournebize, Rémi; Manel, Stéphanie; Vigouroux, Yves; Munoz, François; de Kochko, Alexandre
2017-01-01
Past climate fluctuations shaped the population dynamics of organisms in space and time, and have impacted their present intra-specific genetic structure. Demo-genetic modelling allows inferring the way past demographic and migration dynamics have determined this structure. Amborella trichopoda is an emblematic relict plant endemic to New Caledonia, widely distributed in the understory of non-ultramafic rainforests. We assessed the influence of the last glacial climates on the demographic history and the paleo-distribution of 12 Amborella populations covering the whole current distribution. We performed coalescent genetic modelling of these dynamics, based on both whole-genome resequencing and microsatellite genotyping data. We found that the two main genetic groups of Amborella were shaped by the divergence of two ancestral populations during the last glacial maximum. From 12,800 years BP, the South ancestral population has expanded 6.3-fold while the size of the North population has remained stable. Recent asymmetric gene flow between the groups further contributed to the phylogeographical pattern. Spatially explicit coalescent modelling allowed us to estimate the location of ancestral populations with good accuracy (< 22 km) and provided indications regarding the mid-elevation pathways that facilitated post-glacial expansion. PMID:28820899
XIE, GUO-WEN; WANG, DE-LIAN; YUAN, YONG-MING; GE, XUE-JUN
2005-01-01
• Background and Aims Monimopetalum chinense (Celastraceae) standing for the monotypic genus is endemic to eastern China. Its conservation status is vulnerable as most populations are small and isolated. Monimopetalum chinense is capable of reproducing both sexually and asexually. The aim of this study was to understand the genetic structure of M. chinense and to suggest conservation strategies. • Methods One hundred and ninety individuals from ten populations sampled from the entire distribution area of M. chinense were investigated by using inter-simple sequence repeats (ISSR). • Key Results A total of 110 different ISSR bands were generated using ten primers. Low levels of genetic variation were revealed both at the species level (Isp = 0·183) and at the population level (Ipop = 0·083). High clonal diversity (D = 0·997) was found, and strong genetic differentiation among populations was detected (49·06 %). • Conclusions Small population size, possible inbreeding, limited gene flow due to short distances of seed dispersal, fragmentation of the once continuous range and subsequent genetic drift, may have contributed to shaping the population genetic structure of the species. PMID:15710646
Population structure and inbreeding from pedigree analysis of purebred dogs.
Calboli, Federico C F; Sampson, Jeff; Fretwell, Neale; Balding, David J
2008-05-01
Dogs are of increasing interest as models for human diseases, and many canine population-association studies are beginning to emerge. The choice of breeds for such studies should be informed by a knowledge of factors such as inbreeding, genetic diversity, and population structure, which are likely to depend on breed-specific selective breeding patterns. To address the lack of such studies we have exploited one of the world's most extensive resources for canine population-genetics studies: the United Kingdom (UK) Kennel Club registration database. We chose 10 representative breeds and analyzed their pedigrees since electronic records were established around 1970, corresponding to about eight generations before present. We find extremely inbred dogs in each breed except the greyhound and estimate an inbreeding effective population size between 40 and 80 for all but 2 breeds. For all but 3 breeds, >90% of unique genetic variants are lost over six generations, indicating a dramatic effect of breeding patterns on genetic diversity. We introduce a novel index Psi for measuring population structure directly from the pedigree and use it to identify subpopulations in several breeds. As well as informing the design of canine population genetics studies, our results have implications for breeding practices to enhance canine welfare.
No population genetic structure in a widespread aquatic songbird from the Neotropics
Cadena, Carlos Daniel; Gutierrez-Pinto, Natalia; Davila, Nicolas; Chesser, R. Terry
2011-01-01
Neotropical lowland organisms often show marked population genetic structure, suggesting restricted migration among populations. However, most phylogeographic studies have focused on species inhabiting humid forest interior. Little attention has been devoted to the study of species with ecologies conducive to dispersal, such as those of more open and variable environments associated with watercourses. Using mtDNA sequences, we examined patterns of genetic variation in a widely distributed Neotropical songbird of aquatic environments, the Yellow-hooded Blackbird (Icteridae, Chrysomus icterocephalus). In contrast to many forest species, Yellow-hooded Blackbirds showed no detectable genetic structure across their range, which includes lowland populations on both sides of the Andes, much of northeastern South America, Amazonia, as well as a phenotypically distinct highland population in Colombia. A coalescent-based analysis of the species indicated that its effective population size has increased considerably, suggesting a range expansion. Our results support the hypothesis that species occurring in open habitats and tracking temporally dynamic environments should show increased dispersal propensities (hence gene flow) relative to species from closed and more stable environments. The phenotypic and behavioral variation among populations of our study species appears to have arisen recently and perhaps in the face of gene flow.
The Relationship between Age Structure and Homicide Rates in the United States, 1970 to 1999
ERIC Educational Resources Information Center
Phillips, Julie A.
2006-01-01
The nature of the temporal association between age structure and homicide rates between 1970 and 1999 is examined using U.S. county data. Specifically, the following questions are asked: (a) does the strong temporal association between the relative size of the young population and homicide rates demonstrated at the U.S. national level hold at a…
Projecting the success of plant restoration with population viability analysis
Bell, T.J.; Bowles, M.L.; McEachern, A.K.; Brigham, C.A.; Schwartz, M.W.
2003-01-01
Conserving viable populations of plant species requires that they have high probabilities of long-term persistence within natural habitats, such as a chance of extinction in 100 years of less than 5% (Menges 1991, 1998; Brown 1994; Pavlik 1994; Chap. 1, this Vol.). For endangered and threatened species that have been severely reduces in range and whose habitats have been fragmented, important species conservation strategies may include augmenting existing populations or restoring new viable populations (Bowles and Whelan 1994; Chap. 2, this Vol.). Restoration objectives may include increasing population numbers to reduce extinction probability, deterministic manipulations to develop a staged cohort structure, or more complex restoration of a desired genetic structure to allow outcrossing or increase effective population size (DeMauro 1993, 1994; Bowles et al. 1993, 1998; Pavlik 1994; Knapp and Dyer 1998; Chap. 2, this Vol.). These efforts may require translocation of propagules from existing (in situ) populations, or from ex situ botanic gardens or seed storage facilities (Falk et al. 1996; Guerrant and Pavlik 1998; Chap. 2, this Vol.). Population viability analysis (PVA) can provide a critical foundation for plant restoration, as it models demographic projections used to evaluate the probability of population persistence and links plant life history with restoration strategies. It is unknown how well artificially created populations will meet demographic modeling requirements (e.g., due to artificial cohort transitions) and few, if any, PVAs have been applied to restorations. To guide application of PVA to restored populations and to illustrate potential difficulties, we examine effects of planting different life stages, model initial population sizes needed to achieve population viability, and compare demographic characteristics between natural and restored populations. We develop and compare plant population restoration viability analysis (PRVA) case studies of two plant species listed in the USA for which federal recovery planning calls for population restoration: Cirsium pitcheri, a short-lived semelparous herb, and Asclepias meadii, a long-lived iteroparous herb.
ten Brink, Hanna; Mazumdar, Abul Kalam Azad; Huddart, Joseph; Persson, Lennart; Cameron, Tom C
2015-03-01
Coexistence of predators that share the same prey is common. This is still the case in size-structured predator communities where predators consume prey species of different sizes (interspecific prey responses) or consume different size classes of the same species of prey (intraspecific prey responses). A mechanism has recently been proposed to explain coexistence between predators that differ in size but share the same prey species, emergent facilitation, which is dependent on strong intraspecific responses from one or more prey species. Under emergent facilitation, predators can depend on each other for invasion, persistence or success in a size-structured prey community. Experimental evidence for intraspecific size-structured responses in prey populations remains rare, and further questions remain about direct interactions between predators that could prevent or limit any positive effects between predators [e.g. intraguild predation (IGP)]. Here, we provide a community-wide experiment on emergent facilitation including natural predators. We investigate both the direct interactions between two predators that differ in body size (fish vs. invertebrate predator), and the indirect interaction between them via their shared prey community (zooplankton). Our evidence supports the most likely expectation of interactions between differently sized predators that IGP rates are high, and interspecific interactions in the shared prey community dominate the response to predation (i.e. predator-mediated competition). The question of whether emergent facilitation occurs frequently in nature requires more empirical and theoretical attention, specifically to address the likelihood that its pre-conditions may co-occur with high rates of IGP. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Pometti, Carolina; Bessega, Cecilia; Cialdella, Ana; Ewens, Mauricio; Saidman, Beatriz; Vilardi, Juan
2018-01-01
The identification of factors that structure intraspecific diversity is of particular interest for biological conservation and restoration ecology. All rangelands in Argentina are currently experiencing some form of deterioration or desertification. Acacia aroma is a multipurpose species widely distributed throughout this country. In this study, we used the AFLP technique to study genetic diversity, population genetic structure, and fine-scale spatial genetic structure in 170 individuals belonging to 6 natural Argentinean populations. With 401 loci, the mean heterozygosity (HE = 0.2) and the mean percentage of polymorphic loci (PPL = 62.1%) coefficients indicated that the genetic variation is relatively high in A. aroma. The analysis with STRUCTURE showed that the number of clusters (K) was 3. With Geneland analysis, the number of clusters was K = 4, sharing the same grouping as STRUCTURE but dividing one population into two groups. When studying SGS, significant structure was detected in 3 of 6 populations. The neighbourhood size in these populations ranged from 15.2 to 64.3 individuals. The estimated gene dispersal distance depended on the effective population density and disturbance level and ranged from 45 to 864 m. The combined results suggest that a sampling strategy, which aims to maintain a considerable part of the variability contained in natural populations sampled here, would include at least 3 units defined by the clusters analyses that exhibit particular genetic properties. Moreover, the current SGS analysis suggests that within the wider management units/provinces, seed collection from A. aroma should target trees separated by a minimum distance of 50 m but preferably 150 m to reduce genetic relatedness among seeds from different trees.
Bessega, Cecilia; Cialdella, Ana; Ewens, Mauricio; Saidman, Beatriz; Vilardi, Juan
2018-01-01
The identification of factors that structure intraspecific diversity is of particular interest for biological conservation and restoration ecology. All rangelands in Argentina are currently experiencing some form of deterioration or desertification. Acacia aroma is a multipurpose species widely distributed throughout this country. In this study, we used the AFLP technique to study genetic diversity, population genetic structure, and fine-scale spatial genetic structure in 170 individuals belonging to 6 natural Argentinean populations. With 401 loci, the mean heterozygosity (HE = 0.2) and the mean percentage of polymorphic loci (PPL = 62.1%) coefficients indicated that the genetic variation is relatively high in A. aroma. The analysis with STRUCTURE showed that the number of clusters (K) was 3. With Geneland analysis, the number of clusters was K = 4, sharing the same grouping as STRUCTURE but dividing one population into two groups. When studying SGS, significant structure was detected in 3 of 6 populations. The neighbourhood size in these populations ranged from 15.2 to 64.3 individuals. The estimated gene dispersal distance depended on the effective population density and disturbance level and ranged from 45 to 864 m. The combined results suggest that a sampling strategy, which aims to maintain a considerable part of the variability contained in natural populations sampled here, would include at least 3 units defined by the clusters analyses that exhibit particular genetic properties. Moreover, the current SGS analysis suggests that within the wider management units/provinces, seed collection from A. aroma should target trees separated by a minimum distance of 50 m but preferably 150 m to reduce genetic relatedness among seeds from different trees. PMID:29389969
Vandergast, Amy; Wood, Dustin A.; Thompson, Andrew R.; Fisher, Mark; Barrows, Cameron W.; Grant, Tyler J.
2016-01-01
Aim The frequency and severity of habitat alterations and disturbance are predicted to increase in upcoming decades, and understanding how disturbance affects population integrity is paramount for adaptive management. Although rarely is population genetic sampling conducted at multiple time points, pre- and post-disturbance comparisons may provide one of the clearest methods to measure these impacts. We examined how genetic properties of the federally threatened Coachella Valley fringe-toed lizard (Uma inornata) responded to severe drought and habitat fragmentation across its range. Location Coachella Valley, California, USA. Methods We used 11 microsatellites to examine population genetic structure and diversity in 1996 and 2008, before and after a historic drought. We used Bayesian assignment methods and F-statistics to estimate genetic structure. We compared allelic richness across years to measure loss of genetic diversity and employed approximate Bayesian computing methods and heterozygote excess tests to explore the recent demographic history of populations. Finally, we compared effective population size across years and to abundance estimates to determine whether diversity remained low despite post-drought recovery. Results Genetic structure increased between sampling periods, likely as a result of population declines during the historic drought of the late 1990s–early 2000s, and habitat loss and fragmentation that precluded post-drought genetic rescue. Simulations supported recent demographic declines in 3 of 4 main preserves, and in one preserve, we detected significant loss of allelic richness. Effective population sizes were generally low across the range, with estimates ≤100 in most sites. Main conclusions Fragmentation and drought appear to have acted synergistically to induce genetic change over a short time frame. Progressive deterioration of connectivity, low Ne and measurable loss of genetic diversity suggest that conservation efforts have not maintained the genetic integrity of this species. Genetic sampling over time can help evaluate population trends to guide management.
Geographic origins and population genetics of bats killed at wind-energy facilities.
Pylant, Cortney L; Nelson, David M; Fitzpatrick, Matthew C; Gates, J Edward; Keller, Stephen R
2016-07-01
An unanticipated impact of wind-energy development has been large-scale mortality of insectivorous bats. In eastern North America, where mortality rates are among the highest in the world, the hoary bat (Lasiurus cinereus) and the eastern red bat (L. borealis) comprise the majority of turbine-associated bat mortality. Both species are migratory tree bats with widespread distributions; however, little is known regarding the geographic origins of bats killed at wind-energy facilities or the diversity and population structure of affected species. We addressed these unknowns by measuring stable hydrogen isotope ratios (δ 2 H) and conducting population genetic analyses of bats killed at wind-energy facilities in the central Appalachian Mountains (USA) to determine the summering origins, effective size, structure, and temporal stability of populations. Our results indicate that ~1% of hoary bat mortalities and ~57% of red bat mortalities derive from non-local sources, with no relationship between the proportion of non-local bats and sex, location of mortality, or month of mortality. Additionally, our data indicate that hoary bats in our sample consist of an unstructured population with a small effective size (N e ) and either a stable or declining history. Red bats also showed no evidence of population genetic structure, but in contrast to hoary bats, the diversity contained in our red bat samples is consistent with a much larger N e that reflects a demographic expansion after a bottleneck. These results suggest that the impacts of mortality associated with intensive wind-energy development may affect bat species dissimilarly, with red bats potentially better able to absorb sustained mortality than hoary bats because of their larger N e . Our results provide important baseline data and also illustrate the utility of stable isotopes and population genetics for monitoring bat populations affected by wind-energy development. © 2016 by the Ecological Society of America.
Effective Population Size Dynamics and the Demographic Collapse of Bornean Orang-Utans
Goossens, Benoit; Nater, Alexander; Morf, Nadja; Salmona, Jordi; Bruford, Michael W.; Van Schaik, Carel P.; Krützen, Michael; Chikhi, Lounès
2012-01-01
Bornean orang-utans experienced a major demographic decline and local extirpations during the Pleistocene and Holocene due to climate change, the arrival of modern humans, of farmers and recent commercially-driven habitat loss and fragmentation. The recent loss of habitat and its dramatic fragmentation has affected the patterns of genetic variability and differentiation among the remaining populations and increased the extinction risk of the most isolated ones. However, the contribution of recent demographic events to such genetic patterns is still not fully clear. Indeed, it can be difficult to separate the effects of recent anthropogenic fragmentation from the genetic signature of prehistoric demographic events. Here, we investigated the genetic structure and population size dynamics of orang-utans from different sites. Altogether 126 individuals were analyzed and a full-likelihood Bayesian approach was applied. All sites exhibited clear signals of population decline. Population structure is known to generate spurious bottleneck signals and we found that it does indeed contribute to the signals observed. However, population structure alone does not easily explain the observed patterns. The dating of the population decline varied across sites but was always within the 200–2000 years period. This suggests that in some sites at least, orang-utan populations were affected by demographic events that started before the recent anthropogenic effects that occurred in Borneo. These results do not mean that the recent forest exploitation did not leave its genetic mark on orang-utans but suggests that the genetic pool of orang-utans is also impacted by more ancient events. While we cannot identify the main cause for this decline, our results suggests that the decline may be related to the arrival of the first farmers or climatic events, and that more theoretical work is needed to understand how multiple demographic events impact the genome of species and how we can assess their relative contributions. PMID:23166666
Experimental study designs to improve the evaluation of road mitigation measures for wildlife.
Rytwinski, Trina; van der Ree, Rodney; Cunnington, Glenn M; Fahrig, Lenore; Findlay, C Scott; Houlahan, Jeff; Jaeger, Jochen A G; Soanes, Kylie; van der Grift, Edgar A
2015-05-01
An experimental approach to road mitigation that maximizes inferential power is essential to ensure that mitigation is both ecologically-effective and cost-effective. Here, we set out the need for and standards of using an experimental approach to road mitigation, in order to improve knowledge of the influence of mitigation measures on wildlife populations. We point out two key areas that need to be considered when conducting mitigation experiments. First, researchers need to get involved at the earliest stage of the road or mitigation project to ensure the necessary planning and funds are available for conducting a high quality experiment. Second, experimentation will generate new knowledge about the parameters that influence mitigation effectiveness, which ultimately allows better prediction for future road mitigation projects. We identify seven key questions about mitigation structures (i.e., wildlife crossing structures and fencing) that remain largely or entirely unanswered at the population-level: (1) Does a given crossing structure work? What type and size of crossing structures should we use? (2) How many crossing structures should we build? (3) Is it more effective to install a small number of large-sized crossing structures or a large number of small-sized crossing structures? (4) How much barrier fencing is needed for a given length of road? (5) Do we need funnel fencing to lead animals to crossing structures, and how long does such fencing have to be? (6) How should we manage/manipulate the environment in the area around the crossing structures and fencing? (7) Where should we place crossing structures and barrier fencing? We provide experimental approaches to answering each of them using example Before-After-Control-Impact (BACI) study designs for two stages in the road/mitigation project where researchers may become involved: (1) at the beginning of a road/mitigation project, and (2) after the mitigation has been constructed; highlighting real case studies when available. Copyright © 2015 Elsevier Ltd. All rights reserved.
The leverage of demographic dynamics on carbon dioxide emissions: does age structure matter?
Zagheni, Emilio
2011-02-01
This article provides a methodological contribution to the study of the effect of changes in population age structure on carbon dioxide (CO(2)) emissions. First, I propose a generalization of the IPAT equation to a multisector economy with an age-structured population and discuss the insights that can be obtained in the context of stable population theory. Second, I suggest a statistical model of household consumption as a function of household size and age structure to quantitatively evaluate the extent of economies of scale in consumption of energy-intensive goods, and to estimate age-specific profiles of consumption of energy-intensive goods and of CO(2) emissions. Third, I offer an illustration of the methodologies using data for the United States. The analysis shows that per-capita CO(2) emissions increase with age until the individual is in his or her 60s, and then emissions tend to decrease. Holding everything else constant, the expected change in U.S. population age distribution during the next four decades is likely to have a small, but noticeable, positive impact on CO(2) emissions.
Size-dependent diffusion promotes the emergence of spatiotemporal patterns
NASA Astrophysics Data System (ADS)
Zhang, Lai; Thygesen, Uffe Høgsbro; Banerjee, Malay
2014-07-01
Spatiotemporal patterns, indicating the spatiotemporal variability of individual abundance, are a pronounced scenario in ecological interactions. Most of the existing models for spatiotemporal patterns treat species as homogeneous groups of individuals with average characteristics by ignoring intraspecific physiological variations at the individual level. Here we explore the impacts of size variation within species resulting from individual ontogeny, on the emergence of spatiotemporal patterns in a fully size-structured population model. We found that size dependency of animal's diffusivity greatly promotes the formation of spatiotemporal patterns, by creating regular spatiotemporal patterns out of temporal chaos. We also found that size-dependent diffusion can substitute large-amplitude base harmonics with spatiotemporal patterns with lower amplitude oscillations but with enriched harmonics. Finally, we found that the single-generation cycle is more likely to drive spatiotemporal patterns compared to predator-prey cycles, meaning that the mechanism of Hopf bifurcation might be more common than hitherto appreciated since the former cycle is more widespread than the latter in case of interacting populations. Due to the ubiquity of individual ontogeny in natural ecosystems we conclude that diffusion variability within populations is a significant driving force for the emergence of spatiotemporal patterns. Our results offer a perspective on self-organized phenomena, and pave a way to understand such phenomena in systems organized as complex ecological networks.
Zhang, Wenya; Guo, Rui; Ai, Shiwei; Yang, Ying; Ding, Jian; Zhang, Yingmei
2018-09-15
Environment contamination is known to affect the growth, reproduction, and even mortality of anuran species, and hence modulate their life history traits. Although knowledge of the ability of amphibians to cope with harsh environments has gained ongoing research, the reproductive strategy of free-living amphibians subjected to long-term heavy metal pollution is largely unknown. This study aimed to explore the variation in the life history traits, including age structure, maturation age, reproductive investment, and reproduction trade-off, in female Bufo raddei, a widespread anuran in Baiyin (BY) in northwest of China, subjected to sublethal heavy metal pollution. B. raddei collected from Liujiaxia (LJX), a relatively unpolluted area, were used as control. Skeletochronological analysis revealed variation in the average breeding age of females: more than 70% of females from BY began to breed 1 year before the toads collected from LJX. Females from BY tended to prioritize reproduction over survival and invested more in their first reproductive event. Further, females in BY with a high fluctuating asymmetry index showed a relatively lower reproductive investment. For trade-off in offspring number and size, BY population optimize larger clutch sizes with smaller egg size compared with population in LJX. Changes in female reproductive investment caused by heavy metal pollution might ultimately alter the structural stability of amphibian population. Copyright © 2018 Elsevier Inc. All rights reserved.
Koplenig, Alexander; Müller-Spitzer, Carolin
2016-01-01
In order to demonstrate why it is important to correctly account for the (serial dependent) structure of temporal data, we document an apparently spectacular relationship between population size and lexical diversity: for five out of seven investigated languages, there is a strong relationship between population size and lexical diversity of the primary language in this country. We show that this relationship is the result of a misspecified model that does not consider the temporal aspect of the data by presenting a similar but nonsensical relationship between the global annual mean sea level and lexical diversity. Given the fact that in the recent past, several studies were published that present surprising links between different economic, cultural, political and (socio-)demographical variables on the one hand and cultural or linguistic characteristics on the other hand, but seem to suffer from exactly this problem, we explain the cause of the misspecification and show that it has profound consequences. We demonstrate how simple transformation of the time series can often solve problems of this type and argue that the evaluation of the plausibility of a relationship is important in this context. We hope that our paper will help both researchers and reviewers to understand why it is important to use special models for the analysis of data with a natural temporal ordering.
Paula Menéndez, Lumila
2018-02-01
The aim of this study is to analyze the association between cranial variation and climate in order to discuss their role during the diversification of southern South American populations. Therefore, the specific objectives are: (1) to explore the spatial pattern of cranial variation with regard to the climatic diversity of the region, and (2) to evaluate the differential impact that the climatic factors may have had on the shape and size of the diverse cranial structures studied. The variation in shape and size of 361 crania was studied, registering 62 3D landmarks that capture shape and size variation in the face, cranial vault, and base. Mean, minimum, and maximum annual temperature, as well as mean annual precipitation, but also diet and altitude, were matched for each population sample. A PCA, as well as spatial statistical techniques, including kriging, regression, and multimodel inference were employed. The facial skeleton size presents a latitudinal pattern which is partially associated with temperature diversity. Both diet and altitude are the variables that mainly explain the skull shape variation, although mean annual temperature also plays a role. The association between climate factors and cranial variation is low to moderate, mean annual temperature explains almost 40% of the entire skull, facial skeleton and cranial vault shape variation, while annual precipitation and minimum annual temperature only contribute to the morphological variation when considered together with maximum annual temperature. The cranial base is the structure less associated with climate diversity. These results suggest that climate factors may have had a partial impact on the facial and vault shape, and therefore contributed moderately to the diversification of southern South American populations, while diet and altitude might have had a stronger impact. Therefore, cranial variation at the southern cone has been shaped both by random and nonrandom factors. Particularly, the influence of climate on skull shape has probably been the result of directional selection. This study supports that, although cranial vault is the cranial structure more associated to mean annual temperature, the impact of climate signature on morphology decreases when populations from extreme cold environments are excluded from the analysis. Additionally, it shows that the extent of the geographical scales analyzed, as well as differential sampling may lead to different results regarding the role of ecological factors and evolutionary processes on cranial morphology. © 2017 Wiley Periodicals, Inc.
Effects of long-term changes in the benthic community on yellow perch in Saginaw Bay, Lake Huron
Schaeffer, Jeffrey S.; Diana, James S.; Haas, Robert C.
2000-01-01
Abundance, mortality, age and growth, food habits, and energetics of a yellow perch Perca flavescens population were investigated in eutrophic Saginaw Bay, Lake Huron during May to October, 1986 to 1988, and compared population characteristics with historical data from times when eutrophic conditions were less severe. During 1986 to 1988, yellow perch were abundant, but grew slowly and experienced high natural mortality. A size threshold was present at 150 to 180 mm beyond which few individuals survived, and sex ratios became biased toward males. An energetic model suggested that yellow perch were food limited; as they increased in size they spent a greater proportion of the growing season near maintenance ration. Low feeding rates were a consequence of subsistence on small chironomid larvae. Piscivory provided little energetic relief. Historical data suggested that availability of large benthic prey such as nymphs of the burrowing mayfly Hexagenia was important to yellow perch. Yellow perch formerly consumed Hexagenia, but mayflies were extirpated from Saginaw Bay during 1953 to 1965, and never recovered. When Hexagenia was present, yellow perch growth was moderate to fast depending on population size, size thresholds were not present, and yellow perch reached large size and older age despite moderate to high fishing mortality. Decreases in yellow perch growth rates during 1952 to 1955 coincided with extirpation of Hexagenia. Fast growth of yellow perch did occur after Hexagenia became extirpated, but only when fishing mortality was high, population size was small, and some large benthic invertebrates remained. Eutrophication of Saginaw Bay appeared to affect yellow perch by changing species composition and reducing size structure of the benthic community.
Lieb, Wolfgang; Benndorf, Ralf A; Benjamin, Emelia J; Sullivan, Lisa M; Maas, Renke; Xanthakis, Vanessa; Schwedhelm, Edzard; Aragam, Jayashri; Schulze, Friedrich; Böger, Rainer H; Vasan, Ramachandran S
2009-05-01
Increasing evidence indicates that cardiac structure and function are modulated by the nitric oxide (NO) system. Elevated plasma concentrations of asymmetric dimethylarginine (ADMA; a competitive inhibitor of NO synthase) have been reported in patients with end-stage renal disease. It is unclear if circulating ADMA and L-arginine levels are related to cardiac structure and function in the general population. We related plasma ADMA and L-arginine (the amino acid precursor of NO) to echocardiographic left ventricular (LV) mass, left atrial (LA) size and fractional shortening (FS) using multivariable linear regression analyses in 1919 Framingham Offspring Study participants (mean age 57 years, 58% women). Overall, neither ADMA or L-arginine, nor their ratio was associated with LV mass, LA size and FS in multivariable models (p>0.10 for all). However, we observed effect modification by obesity of the relations of ADMA and LA size (p for interaction p=0.04): ADMA was positively related to LA size in obese individuals (adjusted-p=0.0004 for trend across ADMA quartiles) but not in non-obese people. In our large community-based sample, plasma ADMA and l-arginine concentrations were not related to cardiac structure or function. The observation of positive relations of LA size and ADMA in obese individuals warrants confirmation.
Density, distribution, and genetic structure of grizzly bears in the Cabinet-Yaak Ecosystem
Macleod, Amy C.; Boyd, Kristina L.; Boulanger, John; Royle, J. Andrew; Kasworm, Wayne F.; Paetkau, David; Proctor, Michael F.; Annis, Kim; Graves, Tabitha A.
2016-01-01
The conservation status of the 2 threatened grizzly bear (Ursus arctos) populations in the Cabinet-Yaak Ecosystem (CYE) of northern Montana and Idaho had remained unchanged since designation in 1975; however, the current demographic status of these populations was uncertain. No rigorous data on population density and distribution or analysis of recent population genetic structure were available to measure the effectiveness of conservation efforts. We used genetic detection data from hair corral, bear rub, and opportunistic sampling in traditional and spatial capture–recapture models to generate estimates of abundance and density of grizzly bears in the CYE. We calculated mean bear residency on our sampling grid from telemetry data using Huggins and Pledger models to estimate the average number of bears present and to correct our superpopulation estimates for lack of geographic closure. Estimated grizzly bear abundance (all sex and age classes) in the CYE in 2012 was 48–50 bears, approximately half the population recovery goal. Grizzly bear density in the CYE (4.3–4.5 grizzly bears/1,000 km2) was among the lowest of interior North American populations. The sizes of the Cabinet (n = 22–24) and Yaak (n = 18–22) populations were similar. Spatial models produced similar estimates of abundance and density with comparable precision without requiring radio-telemetry data to address assumptions of geographic closure. The 2 populations in the CYE were demographically and reproductively isolated from each other and the Cabinet population was highly inbred. With parentage analysis, we documented natural migrants to the Cabinet and Yaak populations by bears born to parents in the Selkirk and Northern Continental Divide populations. These events supported data from other sources suggesting that the expansion of neighboring populations may eventually help sustain the CYE populations. However, the small size, isolation, and inbreeding documented by this study demonstrate the need for comprehensive management designed to support CYE population growth and increased connectivity and gene flow with other populations.
Coon, Andrew; Carson, Robert; Debes, Paul V.
2016-01-01
The study of population differentiation in the context of ecological speciation is commonly assessed using populations with obvious discreteness. Fewer studies have examined diversifying populations with occasional adaptive variation and minor reproductive isolation, so factors impeding or facilitating the progress of early stage differentiation are less understood. We detected non-random genetic structuring in lake trout (Salvelinus namaycush) inhabiting a large, pristine, postglacial lake (Mistassini Lake, Canada), with up to five discernible genetic clusters having distinctions in body shape, size, colouration and head shape. However, genetic differentiation was low (FST = 0.017) and genetic clustering was largely incongruent between several population- and individual-based clustering approaches. Genotype- and phenotype-environment associations with spatial habitat, depth and fish community structure (competitors and prey) were either inconsistent or weak. Striking morphological variation was often more continuous within than among defined genetic clusters. Low genetic differentiation was a consequence of relatively high contemporary gene flow despite large effective population sizes, not migration-drift disequilibrium. Our results suggest a highly plastic propensity for occupying multiple habitat niches in lake trout and a low cost of morphological plasticity, which may constrain the speed and extent of adaptive divergence. We discuss how factors relating to niche conservatism in this species may also influence how plasticity affects adaptive divergence, even where ample ecological opportunity apparently exists. PMID:27680019
Martinez, Marie-José; Durand, Benoit; Calavas, Didier; Ducrot, Christian
2010-06-01
Demonstrating disease freedom is becoming important in different fields including animal disease control. Most methods consider sampling only from a homogeneous population in which each animal has the same probability of becoming infected. In this paper, we propose a new methodology to calculate the probability of detecting the disease if it is present in a heterogeneous population of small size with potentially different risk groups, differences in risk being defined using relative risks. To calculate this probability, for each possible arrangement of the infected animals in the different groups, the probability that all the animals tested are test-negative given this arrangement is multiplied by the probability that this arrangement occurs. The probability formula is developed using the assumption of a perfect test and hypergeometric sampling for finite small size populations. The methodology is applied to scrapie, a disease affecting small ruminants and characterized in sheep by a strong genetic susceptibility defining different risk groups. It illustrates that the genotypes of the tested animals influence heavily the confidence level of detecting scrapie. The results present the statistical power for substantiating disease freedom in a small heterogeneous population as a function of the design prevalence, the structure of the sample tested, the structure of the herd and the associated relative risks. (c) 2010 Elsevier B.V. All rights reserved.
Investigating the population structure and genetic differentiation of livestock guard dog breeds.
Bigi, D; Marelli, S P; Liotta, L; Frattini, S; Talenti, A; Pagnacco, G; Polli, M; Crepaldi, P
2018-01-14
Livestock guarding dogs are a valuable adjunct to the pastoral community. Having been traditionally selected for their working ability, they fulfil their function with minimal interaction or command from their human owners. In this study, the population structure and the genetic differentiation of three Italian livestock guardian breeds (Sila's Dog, Maremma and Abruzzese Sheepdog and Mannara's Dog) and three functionally and physically similar breeds (Cane Corso, Central Asian Shepherd Dog and Caucasian Shepherd Dog), totalling 179 dogs unrelated at the second generation, were investigated with 18 autosomal microsatellite markers. Values for the number of alleles per locus, observed and expected heterozygosity, Hardy-Weinberg Equilibrium, F stats, Nei's and Reynold's genetic distances, clustering and sub-population formation abilities and individual genetic structures were calculated. Our results show clear breed differentiation, whereby all the considered breeds show reasonable genetic variability despite small population sizes and variable selection schemes. These results provide meaningful data to stakeholders in specific breed and environmental conservation programmes.
Williams, Samuel M.; Otway, Nicholas M.; Nielsen, Einar E.; Maher, Safia L.; Bennett, Mike B.; Ovenden, Jennifer R.
2017-01-01
Population genetic structure using nine polymorphic nuclear microsatellite loci was assessed for the tiger shark (Galeocerdo cuvier) at seven locations across the Indo-Pacific, and one location in the southern Atlantic. Genetic analyses revealed considerable genetic structuring (FST > 0.14, p < 0.001) between all Indo-Pacific locations and Brazil. By contrast, no significant genetic differences were observed between locations from within the Pacific or Indian Oceans, identifying an apparent large, single Indo-Pacific population. A lack of differentiation between tiger sharks sampled in Hawaii and other Indo-Pacific locations identified herein is in contrast to an earlier global tiger shark nDNA study. The results of our power analysis provide evidence to suggest that the larger sample sizes used here negated any weak population subdivision observed previously. These results further highlight the need for cross-jurisdictional efforts to manage the sustainable exploitation of large migratory sharks like G. cuvier. PMID:28791159
Holmes, Bonnie J; Williams, Samuel M; Otway, Nicholas M; Nielsen, Einar E; Maher, Safia L; Bennett, Mike B; Ovenden, Jennifer R
2017-07-01
Population genetic structure using nine polymorphic nuclear microsatellite loci was assessed for the tiger shark ( Galeocerdo cuvier ) at seven locations across the Indo-Pacific, and one location in the southern Atlantic. Genetic analyses revealed considerable genetic structuring ( F ST > 0.14, p < 0.001) between all Indo-Pacific locations and Brazil. By contrast, no significant genetic differences were observed between locations from within the Pacific or Indian Oceans, identifying an apparent large, single Indo-Pacific population. A lack of differentiation between tiger sharks sampled in Hawaii and other Indo-Pacific locations identified herein is in contrast to an earlier global tiger shark nDNA study. The results of our power analysis provide evidence to suggest that the larger sample sizes used here negated any weak population subdivision observed previously. These results further highlight the need for cross-jurisdictional efforts to manage the sustainable exploitation of large migratory sharks like G. cuvier .
Revilla, Eloy; Wiegand, Thorsten
2008-12-09
The dynamics of spatially structured populations is characterized by within- and between-patch processes. The available theory describes the latter with simple distance-dependent functions that depend on landscape properties such as interpatch distance or patch size. Despite its potential role, we lack a good mechanistic understanding of how the movement of individuals between patches affects the dynamics of these populations. We used the theoretical framework provided by movement ecology to make a direct representation of the processes determining how individuals connect local populations in a spatially structured population of Iberian lynx. Interpatch processes depended on the heterogeneity of the matrix where patches are embedded and the parameters defining individual movement behavior. They were also very sensitive to the dynamic demographic variables limiting the time moving, the within-patch dynamics of available settlement sites (both spatiotemporally heterogeneous) and the response of individuals to the perceived risk while moving. These context-dependent dynamic factors are an inherent part of the movement process, producing connectivities and dispersal kernels whose variability is affected by other demographic processes. Mechanistic representations of interpatch movements, such as the one provided by the movement-ecology framework, permit the dynamic interaction of birth-death processes and individual movement behavior, thus improving our understanding of stochastic spatially structured populations.
Zhu, W-C; Sun, J-T; Dai, J; Huang, J-R; Chen, L; Hong, X-Y
2017-11-27
Athetis lepigone (Möschler) (Lepidoptera: Noctuidae) is a new outbreak pest in China. Consequently, it is unclear whether the emergence and spread of the outbreak of this pest are triggered by rapid in situ population size increases in each outbreak area, or by immigrants from a potential source area in China. In order to explore the outbreak process of this pest through a population genetics approach, we developed ten novel polymorphic expressed sequence tags (EST)-derived microsatellites. These new microsatellites had moderately high levels of polymorphism in the tested population. The number of alleles per locus ranged from 3 to 19, with an average of 8.6, and the expected heterozygosity ranged from 0.269 to 0.783. A preliminary population genetic analysis using these new microsatellites revealed a lack of population genetic structure in natural populations of A. lepigone. The estimates of recent migration rate revealed strong gene flow among populations. In conclusion, our study developed the first set of EST-microsatellite markers and shed a new light on the population genetic structure of this pest in China.
Phelps, Q.E.; Ward, M.J.; Paukert, C.P.; Chipps, S.R.; Willis, D.W.
2005-01-01
We explored relationships among black bullhead (Ameiurus melas) population characteristics and physicochemical attributes in shallow lakes and quantified relationships between population characteristics of black bullhead and sport fishes. Lake characteristics and fisheries survey data were collected from the Sandhills region of northcentral Nebraska from May through June, 1998 and 1999. Relative abundance of black bullheads was inversely related to proportional stock density (r=-0.672, df=15, P=0.004); however, neither relative weight nor growth was significantly (P ??? 0.20) related to black bullhead relative abundance. Population characteristics of common panfish species such as bluegill (Lepomis macrochirus), green sunfish (L. cyanellus), pumpkinseed (L. gibbosus), and yellow perch (Perca flavescens) were not correlated with black bullhead relative abundance or size structure. Rather, proportional stock density (r=0.655, df=10, P=0.029) and growth (r=0.59, df=11, P=0.04) of black bullhead were positively related to relative abundance of largemouth bass (Micropterus salmoides). Similarly, black bullhead relative abundance was inversely related to largemouth bass size structure (r=-0.51, df=14, P= 0.05). Black bullhead mean length at age 3 was positively related to total phosphorous concentration (r=0.65, df=16, P=0.004), and bullhead relative abundance was positively related to shoreline development index (r=0.46, df=22, P=0.03). Population characteristics of black bullhead appeared to have little influence on panfish communities. Rather, black bullhead abundance, predator density, and lake productivity exhibited stronger relationships with black bullhead population characteristics.
Modelling cell population growth with applications to cancer therapy in human tumour cell lines.
Basse, Britta; Baguley, Bruce C; Marshall, Elaine S; Wake, Graeme C; Wall, David J N
2004-01-01
In this paper we present an overview of the work undertaken to model a population of cells and the effects of cancer therapy. We began with a theoretical one compartment size structured cell population model and investigated its asymptotic steady size distributions (SSDs) (On a cell growth model for plankton, MMB JIMA 21 (2004) 49). However these size distributions are not similar to the DNA (size) distributions obtained experimentally via the flow cytometric analysis of human tumour cell lines (data obtained from the Auckland Cancer Society Research Centre, New Zealand). In our one compartment model, size was a generic term, but in order to obtain realistic steady size distributions we chose size to be DNA content and devised a multi-compartment mathematical model for the cell division cycle where each compartment corresponds to a distinct phase of the cell cycle (J. Math. Biol. 47 (2003) 295). We then incorporated another compartment describing the possible induction of apoptosis (cell death) from mitosis phase (Modelling cell death in human tumour cell lines exposed to anticancer drug paclitaxel, J. Math. Biol. 2004, in press). This enabled us to compare our model to flow cytometric data of a melanoma cell line where the anticancer drug, paclitaxel, had been added. The model gives a dynamic picture of the effects of paclitaxel on the cell cycle. We hope to use the model to describe the effects of other cancer therapies on a number of different cell lines. Copyright 2004 Elsevier Ltd.
Metapopulation models for historical inference.
Wakeley, John
2004-04-01
The genealogical process for a sample from a metapopulation, in which local populations are connected by migration and can undergo extinction and subsequent recolonization, is shown to have a relatively simple structure in the limit as the number of populations in the metapopulation approaches infinity. The result, which is an approximation to the ancestral behaviour of samples from a metapopulation with a large number of populations, is the same as that previously described for other metapopulation models, namely that the genealogical process is closely related to Kingman's unstructured coalescent. The present work considers a more general class of models that includes two kinds of extinction and recolonization, and the possibility that gamete production precedes extinction. In addition, following other recent work, this result for a metapopulation divided into many populations is shown to hold both for finite population sizes and in the usual diffusion limit, which assumes that population sizes are large. Examples illustrate when the usual diffusion limit is appropriate and when it is not. Some shortcomings and extensions of the model are considered, and the relevance of such models to understanding human history is discussed.
Viability of piping plover Charadrius melodus metapopulations
Plissner, Jonathan H.; Haig, Susan M.
2000-01-01
The metapopulation viability analysis package, VORTEX, was used to examine viability and recovery objectives for piping plovers Charadrius melodus, an endangered shorebird that breeds in three distinct regions of North America. Baseline models indicate that while Atlantic Coast populations, under current management practices, are at little risk of near-term extinction, Great Plains and Great Lakes populations require 36% higher mean fecundity for a significant probability of persisting for the next 100 years. Metapopulation structure (i.e. the delineation of populations within the metapopulation) and interpopulation dispersal rates had varying effects on model results; however, spatially-structured metapopulations exhibited lower viability than that reported for single-population models. The models were most sensitive to variation in survivorship; hence, additional mortality data will improve their accuracy. With this information, such models become useful tools in identifying successful management objectives; and sensitivity analyses, even in the absence of some data, may indicate which options are likely to be most effective. Metapopulation viability models are best suited for developing conservation strategies for achieving recovery objectives based on maintaining an externally derived, target population size and structure.
The effects of landscape modifications on the long-term persistence of animal populations.
Nabe-Nielsen, Jacob; Sibly, Richard M; Forchhammer, Mads C; Forbes, Valery E; Topping, Christopher J
2010-01-28
The effects of landscape modifications on the long-term persistence of wild animal populations is of crucial importance to wildlife managers and conservation biologists, but obtaining experimental evidence using real landscapes is usually impossible. To circumvent this problem we used individual-based models (IBMs) of interacting animals in experimental modifications of a real Danish landscape. The models incorporate as much as possible of the behaviour and ecology of four species with contrasting life-history characteristics: skylark (Alauda arvensis), vole (Microtus agrestis), a ground beetle (Bembidion lampros) and a linyphiid spider (Erigone atra). This allows us to quantify the population implications of experimental modifications of landscape configuration and composition. Starting with a real agricultural landscape, we progressively reduced landscape complexity by (i) homogenizing habitat patch shapes, (ii) randomizing the locations of the patches, and (iii) randomizing the size of the patches. The first two steps increased landscape fragmentation. We assessed the effects of these manipulations on the long-term persistence of animal populations by measuring equilibrium population sizes and time to recovery after disturbance. Patch rearrangement and the presence of corridors had a large effect on the population dynamics of species whose local success depends on the surrounding terrain. Landscape modifications that reduced population sizes increased recovery times in the short-dispersing species, making small populations vulnerable to increasing disturbance. The species that were most strongly affected by large disturbances fluctuated little in population sizes in years when no perturbations took place. Traditional approaches to the management and conservation of populations use either classical methods of population analysis, which fail to adequately account for the spatial configurations of landscapes, or landscape ecology, which accounts for landscape structure but has difficulty predicting the dynamics of populations living in them. Here we show how realistic and replicable individual-based models can bridge the gap between non-spatial population theory and non-dynamic landscape ecology. A major strength of the approach is its ability to identify population vulnerabilities not detected by standard population viability analyses.
Lochner, Jennifer; Trowbridge, Elizabeth; Kamnetz, Sandra; Pandhi, Nancy
2016-01-01
Background and Objectives Primary care physician compensation structures have remained largely volume-based, lagging behind changes in reimbursement that increasingly include population approaches such as capitation, bundled payments, and care management fees. We describe a population health-based physician compensation plan developed for two departmental family medicine faculty groups (residency teaching clinic faculty and community clinic faculty) along with outcomes before and after the plan’s implementation. Methods An observational study was conducted. A pre-post email survey assessed satisfaction with the plan, salary, and salary equity. Physician retention, panel size, and relative value unit (RVU) productivity metrics also were assessed before and after the plan’s implementation. Results Before implementation of the new plan, 18% of residency faculty and 33% of community faculty were satisfied or very satisfied with compensation structure. After implementation, those numbers rose to 47% for residency physicians and 74% for community physicians (p<0.01). Satisfaction with the amount of compensation also rose from 33% to 68% for residency faculty and from 26% to 87% for community faculty (p<0.01). For both groups, panel size per clinical full-time equivalent increased and RVUs moved closer to national benchmarks. RVUs decreased for residency faculty and increased for community faculty. Conclusions Aligning a compensation plan with population health delivery by moving rewards away from RVU productivity and towards panel management resulted in improved physician satisfaction and retention, as well as larger panel sizes. RVU changes were less predictable. Physician compensation is an important component of care model redesign that emphasizes population health. PMID:27272423
Energetic and ecological constraints on population density of reef fishes.
Barneche, D R; Kulbicki, M; Floeter, S R; Friedlander, A M; Allen, A P
2016-01-27
Population ecology has classically focused on pairwise species interactions, hindering the description of general patterns and processes of population abundance at large spatial scales. Here we use the metabolic theory of ecology as a framework to formulate and test a model that yields predictions linking population density to the physiological constraints of body size and temperature on individual metabolism, and the ecological constraints of trophic structure and species richness on energy partitioning among species. Our model was tested by applying Bayesian quantile regression to a comprehensive reef-fish community database, from which we extracted density data for 5609 populations spread across 49 sites around the world. Our results indicate that population density declines markedly with increases in community species richness and that, after accounting for richness, energetic constraints are manifested most strongly for the most abundant species, which generally are of small body size and occupy lower trophic groups. Overall, our findings suggest that, at the global scale, factors associated with community species richness are the major drivers of variation in population density. Given that populations of species-rich tropical systems exhibit markedly lower maximum densities, they may be particularly susceptible to stochastic extinction. © 2016 The Author(s).
Energetic and ecological constraints on population density of reef fishes
Barneche, D. R.; Kulbicki, M.; Floeter, S. R.; Friedlander, A. M.; Allen, A. P.
2016-01-01
Population ecology has classically focused on pairwise species interactions, hindering the description of general patterns and processes of population abundance at large spatial scales. Here we use the metabolic theory of ecology as a framework to formulate and test a model that yields predictions linking population density to the physiological constraints of body size and temperature on individual metabolism, and the ecological constraints of trophic structure and species richness on energy partitioning among species. Our model was tested by applying Bayesian quantile regression to a comprehensive reef-fish community database, from which we extracted density data for 5609 populations spread across 49 sites around the world. Our results indicate that population density declines markedly with increases in community species richness and that, after accounting for richness, energetic constraints are manifested most strongly for the most abundant species, which generally are of small body size and occupy lower trophic groups. Overall, our findings suggest that, at the global scale, factors associated with community species richness are the major drivers of variation in population density. Given that populations of species-rich tropical systems exhibit markedly lower maximum densities, they may be particularly susceptible to stochastic extinction. PMID:26791611
Allee’s dynamics and bifurcation structures in von Bertalanffy’s population size functions
NASA Astrophysics Data System (ADS)
Leonel Rocha, J.; Taha, Abdel-Kaddous; Fournier-Prunaret, D.
2018-03-01
The interest and the relevance of the study of the population dynamics and the extinction phenomenon are our main motivation to investigate the induction of Allee Effect in von Bertalanffy’s population size functions. The adjustment or correction factor of rational type introduced allows us to analyze simultaneously strong and weak Allee’s functions and functions with no Allee effect, whose classification is dependent on the stability of the fixed point x = 0. This classification is founded on the concepts of strong and weak Allee’s effects to the population growth rates associated. The transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, is verified with the evolution of the rarefaction critical density or Allee’s limit. The existence of cusp points on a fold bifurcation curve is related to this phenomenon of transition on Allee’s dynamics. Moreover, the “foliated” structure of the parameter plane considered is also explained, with respect to the evolution of the Allee limit. The bifurcation analysis is based on the configurations of fold and flip bifurcation curves. The chaotic semistability and the nonadmissibility bifurcation curves are proposed to this family of 1D maps, which allow us to define and characterize the corresponding Allee effect region.
Genome-wide analysis of the diversity and ancestry of Korean dogs.
Choi, Bong Hwan; Wijayananda, Hasini I; Lee, Soo Hyun; Lee, Doo Ho; Kim, Jong Seok; Oh, Seok Il; Park, Eung Woo; Lee, Cheul Koo; Lee, Seung Hwan
2017-01-01
There are various hypotheses on dog domestication based on archeological and genetic studies. Although many studies have been conducted on the origin of dogs, the existing literature about the ancestry, diversity, and population structure of Korean dogs is sparse. Therefore, this study is focused on the origin, diversity and population structure of Korean dogs. The study sample comprised four major categories, including non-dogs (coyotes and wolves), ancient, modern and Korean dogs. Selected samples were genotyped using an Illumina CanineHD array containing 173,662 single nucleotide polymorphisms. The genome-wide data were filtered using quality control parameters in PLINK 1.9. Only autosomal chromosomes were used for further analysis. The negative off-diagonal variance of the genetic relationship matrix analysis depicted, the variability of samples in each population. FIS (inbreeding rate within a population) values indicated, a low level of inbreeding within populations, and the patterns were in concordance with the results of Nei's genetic distance analysis. The lowest FST (inbreeding rate between populations) values among Korean and Chinese breeds, using a phylogenetic tree, multi-dimensional scaling, and a TreeMix likelihood tree showed Korean breeds are highly related to Chinese breeds. The Korean breeds possessed a unique and large diversity of admixtures compared with other breeds. The highest and lowest effective population sizes were observed in Korean Jindo Black (485) and Korean Donggyeong White (109), respectively. The historical effective population size of all Korean dogs showed declining trend from the past to present. It is important to take immediate action to protect the Korean dog population while conserving their diversity. Furthermore, this study suggests that Korean dogs have unique diversity and are one of the basal lineages of East Asian dogs, originating from China.
Genome-wide analysis of the diversity and ancestry of Korean dogs
Lee, Doo Ho; Kim, Jong Seok; Oh, Seok Il; Park, Eung Woo; Lee, Cheul Koo; Lee, Seung Hwan
2017-01-01
There are various hypotheses on dog domestication based on archeological and genetic studies. Although many studies have been conducted on the origin of dogs, the existing literature about the ancestry, diversity, and population structure of Korean dogs is sparse. Therefore, this study is focused on the origin, diversity and population structure of Korean dogs. The study sample comprised four major categories, including non-dogs (coyotes and wolves), ancient, modern and Korean dogs. Selected samples were genotyped using an Illumina CanineHD array containing 173,662 single nucleotide polymorphisms. The genome-wide data were filtered using quality control parameters in PLINK 1.9. Only autosomal chromosomes were used for further analysis. The negative off-diagonal variance of the genetic relationship matrix analysis depicted, the variability of samples in each population. FIS (inbreeding rate within a population) values indicated, a low level of inbreeding within populations, and the patterns were in concordance with the results of Nei’s genetic distance analysis. The lowest FST (inbreeding rate between populations) values among Korean and Chinese breeds, using a phylogenetic tree, multi-dimensional scaling, and a TreeMix likelihood tree showed Korean breeds are highly related to Chinese breeds. The Korean breeds possessed a unique and large diversity of admixtures compared with other breeds. The highest and lowest effective population sizes were observed in Korean Jindo Black (485) and Korean Donggyeong White (109), respectively. The historical effective population size of all Korean dogs showed declining trend from the past to present. It is important to take immediate action to protect the Korean dog population while conserving their diversity. Furthermore, this study suggests that Korean dogs have unique diversity and are one of the basal lineages of East Asian dogs, originating from China. PMID:29182674
Johnson, Tamara L; Symonds, Matthew R E; Elgar, Mark A
2017-11-15
Developmental plasticity provides individuals with a distinct advantage when the reproductive environment changes dramatically. Variation in population density, in particular, can have profound effects on male reproductive success. Females may be easier to locate in dense populations, but there may be a greater risk of sperm competition. Thus, males should invest in traits that enhance fertilization success over traits that enhance mate location. Conversely, males in less dense populations should invest more in structures that will facilitate mate location. In Lepidoptera, this may result in the development of larger antennae to increase the likelihood of detecting female sex pheromones, and larger wings to fly more efficiently. We explored the effects of larval density on adult morphology in the gum-leaf skeletonizer moth, Uraba lugens , by manipulating both the number of larvae and the size of the rearing container. This experimental arrangement allowed us to reveal the cues used by larvae to assess whether absolute number or density influences adult responses. Male investment in testes size depended on the number of individuals, while male investment in wings and antennae depended upon larval density. By contrast, the size of female antennae and wings were influenced by an interaction of larval number and container size. This study demonstrates that male larvae are sensitive to cues that may reveal adult population density, and adjust investment in traits associated with fertilization success and mate detection accordingly. © 2017 The Author(s).
Harris, Julianne E.; Hightower, Joseph E.
2012-01-01
American shad Alosa sapidissima are in decline in their native range, and modeling possible management scenarios could help guide their restoration. We developed a density-dependent, deterministic, stage-based matrix model to predict the population-level results of transporting American shad to suitable spawning habitat upstream of dams on the Roanoke River, North Carolina and Virginia. We used data on sonic-tagged adult American shad and oxytetracycline-marked American shad fry both above and below dams on the Roanoke River with information from other systems to estimate a starting population size and vital rates. We modeled the adult female population over 30 years under plausible scenarios of adult transport, effective fecundity (egg production), and survival of adults (i.e., to return to spawn the next year) and juveniles (from spawned egg to age 1). We also evaluated the potential effects of increased survival for adults and juveniles. The adult female population size in the Roanoke River was estimated to be 5,224. With no transport, the model predicted a slow population increase over the next 30 years. Predicted population increases were highest when survival was improved during the first year of life. Transport was predicted to benefit the population only if high rates of effective fecundity and juvenile survival could be achieved. Currently, transported adults and young are less likely to successfully out-migrate than individuals below the dams, and the estimated adult population size is much smaller than either of two assumed values of carrying capacity for the lower river; therefore, transport is not predicted to help restore the stock under present conditions. Research on survival rates, density-dependent processes, and the impacts of structures to increase out-migration success would improve evaluation of the potential benefits of access to additional spawning habitat for American shad.
Leme da Cunha, Nicolay; Fischer, Erich; Lorenz-Lemke, Aline P.; Barrett, Spencer C. H.
2014-01-01
Background and Aims The balance between stochastic forces and frequency-dependent mating largely governs style morph frequencies in heterostylous populations. In clonal species, deviations from equal morph ratios often result from founder events and unfavourable conditions for sexual reproduction. The aim of this study was to investigate whether different flooding regimes, because of their influence on sexual vs. clonal reproduction, are associated with regional variation in morph frequencies and floral trait differentiation in populations of the clonal, tristylous, aquatic Eichhornia azurea (Pontederiaceae) in the Pantanal wetlands of Brazil. Methods Style morph frequencies were sampled from 73 populations distributed across four flooding regimes differing in depth and duration. Measurements of flower size, sex-organ dimension, pollen size and pollen production were made in selected populations, and pollinator assemblages and their functional traits were recorded. Key Results Most populations of E. azurea were tristylous (78 %), but the majority exhibited uneven morph ratios. The frequency of the mid-styled morph was significantly lower than that of the long- and short-styled morphs. Morph evenness was positively associated with population size but not with flooding regime. There were significant phenotypic differences among flooding regimes for all floral traits, including populations with reduced flower size, sex-organ length and smaller pollen. Pollinator assemblages varied with flood duration. Conclusions The similar morph structure and evenness of populations, regardless of flooding regime, suggest that sexual reproduction and clonal dispersal are sufficiently common to prevent the signature of founder events from dominating in a region. However, the pervasive occurrence of biased morph ratios in most populations suggests that many are in a non-equilibrium state. The reduced frequency of the mid-styled morph in trimorphic and dimorphic populations may be associated with the weak self-incompatibility of this morph resulting in selfing and inbreeding depression. Clonality in E. azurea and the weak self-incompatibility of the mid-styled morph may make it more vulnerable to geitonogamous selfing. PMID:25180289
Brito, José C.; Martínez-Freiría, Fernando; Sierra, Pablo; Sillero, Neftalí; Tarroso, Pedro
2011-01-01
Background Relict populations of Crocodylus niloticus persist in Chad, Egypt and Mauritania. Although crocodiles were widespread throughout the Sahara until the early 20th century, increased aridity combined with human persecution led to local extinction. Knowledge on distribution, occupied habitats, population size and prey availability is scarce in most populations. This study evaluates the status of Saharan crocodiles and provides new data for Mauritania to assist conservation planning. Methodology/Principal Findings A series of surveys in Mauritania detected crocodile presence in 78 localities dispersed across 10 river basins and most tended to be isolated within river basins. Permanent gueltas and seasonal tâmoûrts were the most common occupied habitats. Crocodile encounters ranged from one to more than 20 individuals, but in most localities less than five crocodiles were observed. Larger numbers were observed after the rainy season and during night sampling. Crocodiles were found dead in between water points along dry river-beds suggesting the occurrence of dispersal. Conclusion/Significance Research priorities in Chad and Egypt should focus on quantifying population size and pressures exerted on habitats. The present study increased in by 35% the number of known crocodile localities in Mauritania. Gueltas are crucial for the persistence of mountain populations. Oscillations in water availability throughout the year and the small dimensions of gueltas affect biological traits, including activity and body size. Studies are needed to understand adaptation traits of desert populations. Molecular analyses are needed to quantify genetic variability, population sub-structuring and effective population size, and detect the occurrence of gene flow. Monitoring is needed to detect demographical and genetical trends in completely isolated populations. Crocodiles are apparently vulnerable during dispersal events. Awareness campaigns focusing on the vulnerability and relict value of crocodiles should be implemented. Classification of Mauritanian mountains as protected areas should be prioritised. PMID:21364897
NASA's New Orbital Debris Engineering Model, ORDEM2010
NASA Technical Reports Server (NTRS)
Krisko, Paula H.
2010-01-01
This paper describes the functionality and use of ORDEM2010, which replaces ORDEM2000, as the NASA Orbital Debris Program Office (ODPO) debris engineering model. Like its predecessor, ORDEM2010 serves the ODPO mission of providing spacecraft designers/operators and debris observers with a publicly available model to calculate orbital debris flux by current-state-of-knowledge methods. The key advance in ORDEM2010 is the input file structure of the yearly debris populations from 1995-2035 of sizes 10 micron - 1 m. These files include debris from low-Earth orbits (LEO) through geosynchronous orbits (GEO). Stable orbital elements (i.e., those that do not randomize on a sub-year timescale) are included in the files as are debris size, debris number, material density, random error and population error. Material density is implemented from ground-test data into the NASA breakup model and assigned to debris fragments accordingly. The random and population errors are due to machine error and uncertainties in debris sizes. These high-fidelity population files call for a much higher-level model analysis than what was possible with the populations of ORDEM2000. Population analysis in the ORDEM2010 model consists of mapping matrices that convert the debris population elements to debris fluxes. One output mode results in a spacecraft encompassing 3-D igloo of debris flux, compartmentalized by debris size, velocity, pitch, and yaw with respect to spacecraft ram direction. The second output mode provides debris flux through an Earth-based telescope/radar beam from LEO through GEO. This paper compares the new ORDEM2010 with ORDEM2000 in terms of processes and results with examples of specific orbits.
Effects of diffusion on total biomass in simple metacommunities.
Ruiz-Herrera, Alfonso; Torres, Pedro J
2018-06-14
This paper analyzes the effects of diffusion on the overall population size of the different species of a metacommunity. Depending on precise thresholds, we determine whether increasing the dispersal rate of a species has a positive or negative effect on population abundance. These thresholds depend on the interaction type of the species and the quality of the patches. The motivation for researching this issue is that spatial structure is a source of new biological insights with management interest. For instance, in a metacommunity of two competitors, the movement of a competitor could lead to a decrease of the overall population size of both species. On the other hand, we discuss when some classic results of metapopulation theory are preserved in metacommunities. Our results complement some recent experimental work by Zhang and collaborators. Copyright © 2018 Elsevier Ltd. All rights reserved.
Body size, performance and fitness in galapagos marine iguanas.
Wikelski, Martin; Romero, L Michael
2003-07-01
Complex organismal traits such as body size are influenced by innumerable selective pressures, making the prediction of evolutionary trajectories for those traits difficult. A potentially powerful way to predict fitness in natural systems is to study the composite response of individuals in terms of performance measures, such as foraging or reproductive performance. Once key performance measures are identified in this top-down approach, we can determine the underlying physiological mechanisms and gain predictive power over long-term evolutionary processes. Here we use marine iguanas as a model system where body size differs by more than one order of magnitude between island populations. We identified foraging efficiency as the main performance measure that constrains body size. Mechanistically, foraging performance is determined by food pasture height and the thermal environment, influencing intake and digestion. Stress hormones may be a flexible way of influencing an individual's response to low-food situations that may be caused by high population density, famines, or anthropogenic disturbances like oil spills. Reproductive performance, on the other hand, increases with body size and is mediated by higher survival of larger hatchlings from larger females and increased mating success of larger males. Reproductive performance of males may be adjusted via plastic hormonal feedback mechanisms that allow individuals to assess their social rank annually within the current population size structure. When integrated, these data suggest that reproductive performance favors increased body size (influenced by reproductive hormones), with an overall limit imposed by foraging performance (influenced by stress hormones). Based on our mechanistic understanding of individual performances we predicted an evolutionary increase in maximum body size caused by global warming trends. We support this prediction using specimens collected during 1905. We also show in a common-garden experiment that body size may have a genetic component in iguanids. This 'performance paradigm' allows predictions about adaptive evolution in natural populations.
Yang, J; Chen, C S; Chen, S H; Ding, P; Fan, Z Y; Lu, Y W; Yu, L P; Lin, H D
2016-06-10
Amji's salamander (Hynobius amjiensis) is a critically endangered species (IUCN Red List), which is endemic to mainland China. In the present study, five haplotypes were genotyped for the mtDNA cyt b gene in 45 specimens from three populations. Relatively low levels of haplotype diversity (h = 0.524) and nucleotide diversity (π = 0.00532) were detected. Analyses of the phylogenic structure of H. amjiensis showed no evidence of major geographic partitions or substantial barriers to historical gene flow throughout the species' range. Two major phylogenetic haplotype groups were revealed, and were estimated to have diverged about 1.262 million years ago. Mismatch distribution analysis, neutrality tests, and Bayesian skyline plots revealed no evidence of dramatic changes in the effective population size. According to the SAMOVA and STRUCTURE analyses, H. amjiensis should be regarded as two different management units.
Breeze, J; Lewis, E A; Fryer, R
2016-09-01
Military body armour is designed to prevent the penetration of ballistic projectiles into the most vulnerable structures within the thorax and abdomen. Currently the OSPREY and VIRTUS body armour systems issued to United Kingdom (UK) Armed Forces personnel are provided with a single size front and rear ceramic plate regardless of the individual's body dimensions. Currently limited information exists to determine whether these plates overprotect some members of the military population, and no method exists to accurately size plates to an individual. Computed Tomography (CT) scans of 120 male Caucasian UK Armed Forces personnel were analysed to measure the dimensions of internal thoraco-abdominal anatomical structures that had been defined as requiring essential medical coverage. The boundaries of these structures were related to three potential anthropometric landmarks on the skin surface and statistical analysis was undertaken to validate the results. The range of heights of each individual used in this study was comparable to previous anthropometric surveys, confirming that a representative sample had been used. The vertical dimension of essential medical coverage demonstrated good correlation to torso height (suprasternal notch to iliac crest) but not to stature (r(2)=0.53 versus 0.04). Horizontal coverage did not correlate to either measure of height. Surface landmarks utilised in this study were proven to be reliable surrogate markers for the boundaries of the underlying anatomical structures potentially requiring essential protection by a plate. Providing a range of plate sizes, particularly multiple heights, should optimise the medical coverage and thus effectiveness of body armour for UK Armed Forces personnel. The results of this work provide evidence that a single width of plate if chosen correctly will provide the essential medical coverage for the entire military population, whilst recognising that it still could overprotect the smallest individuals. With regards to anthropometric measurements; it is recommended, based on this work, that torso height is used instead of stature for sizing body armour. Coverage assessments should now be undertaken for side protection as well as for other non-Caucasian populations and females, with anthropometric surveys utilising the three landmarks recommended in this study. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Mammal population regulation, keystone processes and ecosystem dynamics.
Sinclair, A R E
2003-01-01
The theory of regulation in animal populations is fundamental to understanding the dynamics of populations, the causes of mortality and how natural selection shapes the life history of species. In mammals, the great range in body size allows us to see how allometric relationships affect the mode of regulation. Resource limitation is the fundamental cause of regulation. Top-down limitation through predators is determined by four factors: (i). body size; (ii). the diversity of predators and prey in the system; (iii). whether prey are resident or migratory; and (iv). the presence of alternative prey for predators. Body size in mammals has two important consequences. First, mammals, particularly large species, can act as keystones that determine the diversity of an ecosystem. I show how keystone processes can, in principle, be measured using the example of the wildebeest in the Serengeti ecosystem. Second, mammals act as ecological landscapers by altering vegetation succession. Mammals alter physical structure, ecological function and species diversity in most terrestrial biomes. In general, there is a close interaction between allometry, population regulation, life history and ecosystem dynamics. These relationships are relevant to applied aspects of conservation and pest management. PMID:14561329
Martín, S M; Díaz, A C
2012-02-01
The present work analyzes the population dynamics of Uncancylus concentricus in natural conditions in the northeastern coastal area of the Multiple Use Natural Reserve Isla Martín García (Beach of Basural), Buenos Aires, Argentina. Martín García Island is located in the Upper Río de La Plata, to the south of the mouth of the Uruguay River (34° 11' 25" S and 58° 15'38" W). Monthly collections were made from August 2005 to December 2006. The size frequency of the U. concentricus population throughout the sampling period ranges from 1.2 to 8.3 m. The changes in the size frequencies throughout the months surveyed indicate a variable distribution pattern because of the increase and decrease in water flow, but we observed a peak in the frequency of individuals within the size range 3.5 to 4.5 mm in the population. It can be concluded that this species lives for at least a year in the wild since the juveniles are highly abundant in spring and summer.
Tyler, Torbjörn
2002-12-01
Allozyme variation in the forest grass Milium effusum L. was studied in 21-23 populations within each of two equally sized densely sampled areas in northern and southern Sweden. In addition, 25 populations from other parts of Eurasia were studied for comparison. The structure of variation was analysed with both diversity statistics and measures based on allelic richness at a standardised sample size. The species was found to be highly variable, but no clear geographic patterns in the distribution of alleles or in overall genetic differentiation were found, either within the two regions or within the whole sample. Thus, no inferences about the direction of postglacial migration could be made. Obviously, migration and gene flow must have taken place in a manner capable of randomising the distribution of alleles. However, there were clear differences in levels and structuring of the variation between the two regions. Levels of variation, both in terms of genetic diversity and allelic richness, were lower in northern Sweden as compared with southern Sweden. In contrast, different measures of geographic structure all showed higher levels of population differentiation in the northern region. This is interpreted as due to different geomorphological conditions in the two regions, creating a relatively continuous habitat and gene flow in the southern region as compared with the northern region where the species, although common, is confined to narrow and mutually isolated corridors in the landscape.
A Demographic Deficit? Local Population Aging and Access to Services in Rural America, 1990–2010
Thiede, Brian; Brown, David L.; Sanders, Scott R.; Glasgow, Nina; Kulcsar, Laszlo J.
2017-01-01
Population aging is being experienced by many rural communities in the U.S., as evidenced by increases in the median age and the high incidence of natural population decrease. The implications of these changes in population structure for the daily lives of the residents in such communities have received little attention. We address this issue in the current study by examining the relationship between population aging and the availability of service-providing establishments in the rural U.S. between 1990 and 2010. Using data mainly from the U.S. Census Bureau and the Bureau of Labor Statistics, we estimate a series of fixed-effects regression models to identify the relationship between median age and establishment counts net of changes in overall population and other factors. We find a significant, but non-linear relationship between county median age and the total number of service-providing establishments, and counts of most specific types of services. We find a positive effect of total population size across all of our models. This total population effect is consistent with other research, but the independent effects of age structure that we observe represent a novel finding and suggest that age structure is a salient factor in local rural development and community wellbeing. PMID:28757660
Orman, Rena; Kollmar, Richard; Stewart, Mark
2017-04-15
The claustrum is a gray-matter structure that underlies neocortex and reciprocates connections with cortical and subcortical targets. In lower mammals, the claustrum is directly adjacent to neocortex, making the definition of claustral boundaries challenging. Latexin, an endogenous inhibitor of metallocarboxypeptidases, localizes to claustral cells, enabling a clear delineation of claustrum. Given its proportionately large claustrum, we hypothesized that the short-tailed fruit bat, Carollia perspicillata, can be a useful model for claustral structure-function relations. We used latexin immunohistochemistry to identify claustral boundaries and intrinsic structure and multielectrode recordings from brain slices to explore intrinsic excitatory connectivity of the claustrum. Carollia's claustrum contains cells whose intrinsic connectivity and alignment permit the generation of spontaneous, synchronous population events and mirror their pattern of spread in disinhibited brain slices over millimeters. Carollia shows cellular alignment and spontaneous population-activity spread along both horizontal and dorsoventral axes. Carollia claustrum possesses intrinsic excitatory connectivity sufficient to: 1) generate single, spontaneous, synchronized burst discharges, 2) support activity spread along axes where claustral cells are aligned, and 3), because of multiple axes for cell alignment, support activity spread along both rostrocaudal and dorsoventral axes. The smaller event sizes in bat claustrum compared with rat claustrum are consistent with events occurring in population subsets rather than the full claustral cell population. The overall size of claustrum, its pronounced vascularity, and its more complex intrinsic connectivity than rat suggest that the bat is an animal model for claustral structure and function that will permit unique access to claustrum's processing capabilities. J. Comp. Neurol. 525:1459-1474, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Münzbergová, Zuzana; Šurinová, Maria; Husáková, Iveta; Brabec, Jiří
2018-04-26
Assessing genetic diversity within populations of rare species and understanding its determinants are crucial for effective species protection. While a lot is known about the relationships between genetic diversity, fitness, and current population size, very few studies explored the effects of past population size. Knowledge of past population size may, however, improve our ability to predict future population fates. We studied Gentianella praecox subsp. bohemica, a biennial species with extensive seed bank. We tested the effect of current, past minimal and maximal population size, and harmonic mean of population sizes within the last 15 years on genetic diversity and fitness. Maximum population size over the last 15 years was the best predictor of expected heterozygosity of the populations and was significantly related to current population size and management. Plant fitness was significantly related to current as well as maximum population size and expected heterozygosity. The results suggested that information on past population size may improve our understanding of contemporary genetic diversity across populations. They demonstrated that despite the strong fluctuations in population size, large reductions in population size do not result in immediate loss of genetic diversity and reduction of fitness within the populations. This is likely due to the seed bank of the species serving as reservoir of the genetic diversity of the populations. From a conservation point of view, this suggests that the restoration of small populations of short-lived species with permanent seed bank is possible as these populations may still be genetically diverse.
Patch size and landscape effects on density and nesting success of grassland birds
Winter, Maiken; Johnson, Douglas H.; Shaffer, Jill A.; Donovan, Therese M.; Svedarsky, W. Daniel
2006-01-01
Current management recommendations for grassland birds in North America emphasize providing large patches of grassland habitat within landscapes that have few forest or shrubland areas. These Bird Conservation Areas are being proposed under the assumption that large patches of habitat in treeless landscapes will maintain viable populations of grassland birds. This assumption requires that patch size and landscape features affect density and nesting success of grassland birds, and that these effects are consistent among years and regions and across focal species. However, these assumptions have not yet been validated for grassland birds, and the relative importance of local vegetation structure, patch size, and landscape composition on grassland bird populations is not well known. In addition, factors influencing grassland bird nesting success have been investigated mostly in small-scale and short-duration studies. To develop management guidelines for grassland birds, we tested the spatial and temporal repeatability of the influence of patch size and landscape composition on density and nesting success of 3 grassland passerines, after controlling for local-scale vegetation structure, climate, and—when analyzing nest success—bird density. We conducted our study during 4 years (1998–2001) in 44 study plots that were set up in 3 regions of the northern tallgrass prairie in Minnesota and North Dakota, USA. In these study plots we measured density and nesting success of clay-colored sparrows (Spizella pallida), Savannah sparrows (Passerculus sandwichensis), and bobolinks (Dolichonyx oryzivorus). Statistical models indicated that density was influenced by patch size, landscape, region, and local vegetation structure more so than by local vegetation structure alone. Both magnitude and direction of the response of density to patch size varied among regions, years, and species. In contrast, the direction of landscape effects was consistent among regions, years, and between Savannah sparrows and bobolinks. In each species, this landscape effect was independent of patch size. Nesting success was not clearly influenced by patch size or landscape composition, and none of the factors that influenced avian density also influenced nesting success in any of the 3 species. General statements on “optimal habitat” for grassland birds should therefore be viewed cautiously. Instead, long-term studies in different regions as well as a deeper understanding of the local system are needed to determine which factors are most important for grassland birds in a particular area.
A structured population model with diffusion in structure space.
Pugliese, Andrea; Milner, Fabio
2018-05-09
A structured population model is described and analyzed, in which individual dynamics is stochastic. The model consists of a PDE of advection-diffusion type in the structure variable. The population may represent, for example, the density of infected individuals structured by pathogen density x, [Formula: see text]. The individuals with density [Formula: see text] are not infected, but rather susceptible or recovered. Their dynamics is described by an ODE with a source term that is the exact flux from the diffusion and advection as [Formula: see text]. Infection/reinfection is then modeled moving a fraction of these individuals into the infected class by distributing them in the structure variable through a probability density function. Existence of a global-in-time solution is proven, as well as a classical bifurcation result about equilibrium solutions: a net reproduction number [Formula: see text] is defined that separates the case of only the trivial equilibrium existing when [Formula: see text] from the existence of another-nontrivial-equilibrium when [Formula: see text]. Numerical simulation results are provided to show the stabilization towards the positive equilibrium when [Formula: see text] and towards the trivial one when [Formula: see text], result that is not proven analytically. Simulations are also provided to show the Allee effect that helps boost population sizes at low densities.
Disease-emergence dynamics and control in a socially-structured wildlife species
NASA Astrophysics Data System (ADS)
Pepin, Kim M.; Vercauteren, Kurt C.
2016-04-01
Once a pathogen is introduced in a population, key factors governing rate of spread include contact structure, supply of susceptible individuals and pathogen life-history. We examined the interplay of these factors on emergence dynamics and efficacy of disease prevention and response. We contrasted transmission dynamics of livestock viruses with different life-histories in hypothetical populations of feral swine with different contact structures (homogenous, metapopulation, spatial and network). Persistence probability was near 0 for the FMDV-like case under a wide range of parameter values and contact structures, while persistence was probable for the CSFV-like case. There were no sets of conditions where the FMDV-like pathogen persisted in every stochastic simulation. Even when population growth rates were up to 300% annually, the FMDV-like pathogen persisted in <25% of simulations regardless of transmission probabilities and contact structure. For networks and spatial contact structure, persistence probability of the FMDV-like pathogen was always <10%. Because of its low persistence probability, even very early response to the FMDV-like pathogen in feral swine was unwarranted while response to the CSFV-like pathogen was generally effective. When pre-emergence culling of feral swine caused population declines, it was effective at decreasing outbreak size of both diseases by ≥80%.
Reef Fishes at All Trophic Levels Respond Positively to Effective Marine Protected Areas
Soler, German A.; Edgar, Graham J.; Thomson, Russell J.; Kininmonth, Stuart; Campbell, Stuart J.; Dawson, Terence P.; Barrett, Neville S.; Bernard, Anthony T. F.; Galván, David E.; Willis, Trevor J.; Alexander, Timothy J.; Stuart-Smith, Rick D.
2015-01-01
Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing. PMID:26461104
Coleman, R A; Gauffre, B; Pavlova, A; Beheregaray, L B; Kearns, J; Lyon, J; Sasaki, M; Leblois, R; Sgro, C; Sunnucks, P
2018-06-01
Habitat loss and fragmentation often result in small, isolated populations vulnerable to environmental disturbance and loss of genetic diversity. Low genetic diversity can increase extinction risk of small populations by elevating inbreeding and inbreeding depression, and reducing adaptive potential. Due to their linear nature and extensive use by humans, freshwater ecosystems are especially vulnerable to habitat loss and fragmentation. Although the effects of fragmentation on genetic structure have been extensively studied in migratory fishes, they are less understood in low-mobility species. We estimated impacts of instream barriers on genetic structure and diversity of the low-mobility river blackfish (Gadopsis marmoratus) within five streams separated by weirs or dams constructed 45-120 years ago. We found evidence of small-scale (<13 km) genetic structure within reaches unimpeded by barriers, as expected for a fish with low mobility. Genetic diversity was lower above barriers in small streams only, regardless of barrier age. In particular, one isolated population showed evidence of a recent bottleneck and inbreeding. Differentiation above and below the barrier (F ST = 0.13) was greatest in this stream, but in other streams did not differ from background levels. Spatially explicit simulations suggest that short-term barrier effects would not be detected with our data set unless effective population sizes were very small (<100). Our study highlights that, in structured populations, the ability to detect short-term genetic effects from barriers is reduced and requires more genetic markers compared to panmictic populations. We also demonstrate the importance of accounting for natural population genetic structure in fragmentation studies.
The genetic structure of Nautilus pompilius populations surrounding Australia and the Philippines.
Williams, Rachel C; Jackson, Benjamin C; Duvaux, Ludovic; Dawson, Deborah A; Burke, Terry; Sinclair, William
2015-07-01
Understanding the distribution of genetic diversity in exploited species is fundamental to successful conservation. Genetic structure and the degree of gene flow among populations must be assessed to design appropriate strategies to prevent the loss of distinct populations. The cephalopod Nautilus pompilius is fished unsustainably in the Philippines for the ornamental shell trade and has limited legislative protection, despite the species' recent dramatic decline in the region. Here, we use 14 microsatellite markers to evaluate the population structure of N. pompilius around Australia and the Philippines. Despite their relative geographical proximity, Great Barrier Reef individuals are genetically isolated from Osprey Reef and Shark Reef in the Coral Sea (FST = 0.312, 0.229, respectively). Conversely, despite the larger geographical distances between the Philippines and west Australian reefs, samples display a small degree of genetic structure (FST = 0.015). Demographic scenarios modelled using approximate Bayesian computation analysis indicate that this limited divergence is not due to contemporary gene flow between the Philippines and west Australia. Instead, present-day genetic similarity can be explained by very limited genetic drift that has occurred due to large average effective population sizes that persisted at both locations following their separation. The lack of connectivity among populations suggests that immigrants from west Australia would not facilitate natural recolonization if Philippine populations were fished to extinction. These data help to rectify the paucity of information on the species' biology currently inhibiting their conservation classification. Understanding population structure can allow us to facilitate sustainable harvesting, thereby preserving the diversity of genetically distinct stocks. © 2015 John Wiley & Sons Ltd.
Mathiasen, Paula; Rovere, Adriana E; Premoli, Andrea C
2007-02-01
Deforestation of temperate forests has created landscapes of forest remnants in matrices of intense human use. We studied the genetic effects of fragmentation in southern Chile on Embothrium coccineum J.R. et G. Forster, an early colonizing, bird-pollinated tree. We tested the hypothesis that, because of its self-incompatibility and life-history strategy, E. coccineum is less strongly affected by fragmentation. We studied the effects of reduced population size and increased isolation on population genetic structure and early performance of progeny. Samples were collected from spatially isolated trees and six fragments of differing sizes (small, 1 ha; medium, 20 ha; large, >150 ha). Based on isozyme polymorphisms we estimated parameters of genetic diversity, divergence, and inbreeding for adults and greenhouse-grown progeny. We also measured germination, seedling growth, and outcrossing rates on progeny arrays. Genetic variation of adults did not correlate significantly with population size, as expected, given that fragmentation occurred relatively recently. Weak effects of fragmentation were measured on progeny. Only adults yielded significant inbreeding. Similar total genetic diversity was found in adults and progeny. Low but significant genetic differentiation existed among adult and progeny populations. Seedling growth correlated positively with the effective number of alleles, showing deleterious effects of inbreeding on progeny. Seeds from small fragments had the highest outcrossing rates and germination success, indicating that higher pollinator activity in such fragments reduced selfing, thereby buffering genetic erosion and maintaining adaptive variation. The effects of forest fragmentation were detectable in E. coccineum, but these effects will probably not be detrimental to the viability of remnant populations because small, fragmented populations demonstrated higher levels of gene flow and lower inbreeding than larger stands. Pioneer species that are insensitive to forest clearing may be crucial in recovery plans to facilitate the establishment of species intolerant to such disturbance.
Toxic compounds and health and reproductive effects in St. Lawrence Beluga Whales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beland, P.; Michaud, R.; DeGuise, S.
1993-01-01
An epidemiologic study was carried out over a period of 9 years on an isolated population of beluga whales (Delphinapterus leucas) residing in the St. Lawrence estuary (Quebec, Canada). More than 100 individual deaths were aged, and/or autopsied and analyzed for toxic compounds, and the population was surveyed for size and structure. Arctic belugas and other species of whales and seals from the St. Lawrence were used for comparison. Population dynamics: Population size appeared to be stable and modeling showed this stable pattern to result from low calf production and/or low survival to adulthood. Toxicology: St. Lawrence belugas had highermore » or much higher levels of mercury, lead, PCBs, DDT, Mirex, benzo[a]pyrene metabolites, equivalent levels of dioxins, furans, and PAH metabolites, and much lower levels of cadmium than Arctic belugas. In other St. Lawrence cetaceans, levels of PCBs and DDT were inversely related to body size, as resulting from differences in metabolic rate, diet, and trophic position, compounded by length of residence in the St. Lawrence basin. St. Lawrence belugas had much higher levels than predicted from body size alone; levels increased with age in both sexes, although unloading by females through the placenta and/or lactation was evidenced by overall lower levels in females and very high burdens in some calves. 45 refs., 4 figs., 5 tabs.« less
Lirman, Diego; Fong, Peggy
2007-06-01
Localized declines in coral condition are commonly linked to land-based sources of stressors that influence gradients of water quality, and the distance to sources of stressors is commonly used as a proxy for predicting the vulnerability and future status of reef resources. In this study, we evaluated explicitly whether proximity to shore and connections to coastal bays, two measures of potential land-based sources of disturbance, influence coral community and population structure, and the abundance, distribution, and condition of corals within patch reefs of the Florida Reef Tract. In the Florida Keys, long-term monitoring has documented significant differences in water quality along a cross-shelf gradient. Inshore habitats exhibit higher levels of nutrients (DIN and TP), TOC, turbidity, and light attenuation, and these levels decrease with increasing distance from shore and connections to tidal bays. In clear contrast to these patterns of water quality, corals on inshore patch reefs exhibited significantly higher coral cover, higher growth rates, and lower partial mortality rates than those documented in similar offshore habitats. Coral recruitment rates did not differ between inshore and offshore habitats. Corals on patch reefs closest to shore had well-spread population structures numerically dominated by intermediate to large colonies, while offshore populations showed narrower size-distributions that become increasingly positively skewed. Differences in size-structure of coral populations were attributed to faster growth and lower rates of partial mortality at inshore habitats. While the underlying causes for the favorable condition of inshore coral communities are not yet known, we hypothesize that the ability of corals to shift their trophic mode under adverse environmental conditions may be partly responsible for the observed patterns, as shown in other reef systems. This study, based on data collected from a uniform reef habitat type and coral species with diverse life-history and stress-response patterns from a heavily exploited reef system, showed that proximity to potential sources of stressors may not always prove an adequate proxy for assigning potential risks to reef health, and that hypothesized patterns of coral cover, population size-structure, growth, and mortality are not always directly related to water quality gradients.
Carrara, Francesco; Rinaldo, Andrea; Giometto, Andrea; Altermatt, Florian
2014-01-01
Habitat fragmentation and land use changes are causing major biodiversity losses. Connectivity of the landscape or environmental conditions alone can shape biodiversity patterns. In nature, however, local habitat characteristics are often intrinsically linked to a specific connectivity. Such a link is evident in riverine ecosystems, where hierarchical dendritic structures command related scaling on habitat capacity. We experimentally disentangled the effect of local habitat capacity (i.e., the patch size) and dendritic connectivity on biodiversity in aquatic microcosm metacommunities by suitably arranging patch sizes within river-like networks. Overall, more connected communities that occupy a central position in the network exhibited higher species richness, irrespective of patch size arrangement. High regional evenness in community composition was found only in landscapes preserving geomorphological scaling properties of patch sizes. In these landscapes, some of the rarer species sustained regionally more abundant populations better tracking their own niche requirements compared to landscapes with homogeneous patch size or landscapes with spatially uncorrelated patch size. Our analysis suggests that altering the natural link between dendritic connectivity and patch size strongly affects community composition and population persistence at multiple scales. The experimental results are demonstrating a principle that can be tested in theoretical metacommunity models and eventually be projected to real riverine ecosystems.
Taggart, S. James; Shirley, Thomas C.; O'Clair, Charles E.; Mondragon, Jennifer
2004-01-01
The size structure of the population of the Dungeness crab Cancer magister was studied at six sites in or near Glacier Bay, Alaska, before and after the closure of commercial fishing. Seven years of preclosure and 4 years of postclosure data are presented. After the closure of Glacier Bay to commercial fishing, the number and size of legal-sized male Dungeness crabs increased dramatically at the experimental sites. Female and sublegal-sized male crabs, the portions of the population not directly targeted by commercial fishing, did not increase in size or abundance following the closure. There was not a large shift in the size-abundance distribution of male crabs at the control site that is still open to commercial fishing. Marine protected areas are being widely promoted as effective tools for managing fisheries while simultaneously meeting marine conservation goals and maintaining marine biodiversity. Our data demonstrate that the size of male Dungeness crabs can markedly increase in a marine reserve, which supports the concept that marine reserves could help maintain genetic diversity in Dungeness crabs and other crab species subjected to size-limit fisheries and possibly increase the fertility of females. ?? 2004 by the American Fisheries Society.
Meyerson, Beth E; Sayegh, M Aaron
2016-01-01
To explore relationships between local health department policy behaviors, levels of government activity, policy focus areas, and selected health department characteristics. Cross-sectional analysis of secondary data from the 2013 National Association of County & City Health Officials (NACCHO) Profile Survey. Local health departments throughout the United States. A total of 2000 local health departments responding to the 2013 Profile Survey of Local Health Departments. Survey data were gathered by the NACCHO. Secondary analysis of reported policy behaviors for the 2013 NACCHO Profile Survey. A structural equation model tested effects on and between state population size, rurality, census region and policy focus, and the latent variables of policy behavior formed from a confirmatory factor analysis. Policy behaviors, levels of government activity (local, state, and federal), policy focus areas, and selected local health department characteristics. The majority (85.1%) of health departments reported at least one of the possible policy behaviors. State population size increased the probability of local policy behavior, and local behavior increased the probability of state policy behavior. State size increased the likelihood of federal policy behavior and the focus on tobacco, emergency preparedness, and obesity/chronic disease. However, the more rural a state was, the more likely policy behavior was at the state and federal levels and not at local levels. Specific policy behaviors mattered less than the level of government activity. Size of state and rurality of health departments influence the government level of policy behavior.
Settlement-Size Scaling among Prehistoric Hunter-Gatherer Settlement Systems in the New World
Haas, W. Randall; Klink, Cynthia J.; Maggard, Greg J.; Aldenderfer, Mark S.
2015-01-01
Settlement size predicts extreme variation in the rates and magnitudes of many social and ecological processes in human societies. Yet, the factors that drive human settlement-size variation remain poorly understood. Size variation among economically integrated settlements tends to be heavy tailed such that the smallest settlements are extremely common and the largest settlements extremely large and rare. The upper tail of this size distribution is often formalized mathematically as a power-law function. Explanations for this scaling structure in human settlement systems tend to emphasize complex socioeconomic processes including agriculture, manufacturing, and warfare—behaviors that tend to differentially nucleate and disperse populations hierarchically among settlements. But, the degree to which heavy-tailed settlement-size variation requires such complex behaviors remains unclear. By examining the settlement patterns of eight prehistoric New World hunter-gatherer settlement systems spanning three distinct environmental contexts, this analysis explores the degree to which heavy-tailed settlement-size scaling depends on the aforementioned socioeconomic complexities. Surprisingly, the analysis finds that power-law models offer plausible and parsimonious statistical descriptions of prehistoric hunter-gatherer settlement-size variation. This finding reveals that incipient forms of hierarchical settlement structure may have preceded socioeconomic complexity in human societies and points to a need for additional research to explicate how mobile foragers came to exhibit settlement patterns that are more commonly associated with hierarchical organization. We propose that hunter-gatherer mobility with preferential attachment to previously occupied locations may account for the observed structure in site-size variation. PMID:26536241
Sensitivity analysis of physiological factors in space habitat design
NASA Technical Reports Server (NTRS)
Billingham, J.
1982-01-01
The costs incurred by design conservatism in space habitat design are discussed from a structural standpoint, and areas of physiological research into less than earth-normal conditions that offer the greatest potential decrease in habitat construction and operating costs are studied. The established range of human tolerance limits is defined for those physiological conditions which directly affect habitat structural design. These entire ranges or portions thereof are set as habitat design constraints as a function of habitat population and degree of ecological closure. Calculations are performed to determine the structural weight and cost associated with each discrete population size and its selected environmental conditions, on the basis of habitable volume equivalence for four basic habitat configurations: sphere, cylinder with hemispherical ends, torus, and crystal palace.
Distribution of genotype network sizes in sequence-to-structure genotype-phenotype maps.
Manrubia, Susanna; Cuesta, José A
2017-04-01
An essential quantity to ensure evolvability of populations is the navigability of the genotype space. Navigability, understood as the ease with which alternative phenotypes are reached, relies on the existence of sufficiently large and mutually attainable genotype networks. The size of genotype networks (e.g. the number of RNA sequences folding into a particular secondary structure or the number of DNA sequences coding for the same protein structure) is astronomically large in all functional molecules investigated: an exhaustive experimental or computational study of all RNA folds or all protein structures becomes impossible even for moderately long sequences. Here, we analytically derive the distribution of genotype network sizes for a hierarchy of models which successively incorporate features of increasingly realistic sequence-to-structure genotype-phenotype maps. The main feature of these models relies on the characterization of each phenotype through a prototypical sequence whose sites admit a variable fraction of letters of the alphabet. Our models interpolate between two limit distributions: a power-law distribution, when the ordering of sites in the prototypical sequence is strongly constrained, and a lognormal distribution, as suggested for RNA, when different orderings of the same set of sites yield different phenotypes. Our main result is the qualitative and quantitative identification of those features of sequence-to-structure maps that lead to different distributions of genotype network sizes. © 2017 The Author(s).
Paixão, Rômulo V.; Ribolli, Josiane; Zaniboni-Filho, Evoy
2018-01-01
Steindachneridion scriptum is an important species as a resource for fisheries and aquaculture; it is currently threatened and has a reduced occurrence in South America. The damming of rivers, overfishing, and contamination of freshwater environments are the main impacts on the maintenance of this species. We accessed the genetic diversity and structure of S. scriptum using the DNA barcode and control region (D-loop) sequences of 43 individuals from the Upper Uruguay River Basin (UUR) and 10 sequences from the Upper Paraná River Basin (UPR), which were obtained from GenBank. S. scriptum from the UUR and the UPR were assigned in two distinct molecular operational taxonomic units (MOTUs) with higher inter-specific K2P distance than the optimum threshold (OT = 0.0079). The COI Intra-MOTU distances of S. scriptum specimens from the UUR ranged from 0.0000 to 0.0100. The control region indicated a high number of haplotypes and low nucleotide diversity, compatible with a new population in recent expansion process. Genetic structure was observed, with high differentiation between UUR and UPR basins, identified by BAPS, haplotype network, AMOVA (FST = 0.78, p < 0.05) and Mantel test. S. scriptum from the UUR showed a slight differentiation (FST = 0.068, p < 0.05), but not isolation-by-distance. Negative values of Tajima’s D and Fu’s Fs suggest recent demographic oscillations. The Bayesian skyline plot analysis indicated possible population expansion from beginning 2,500 years ago and a recent reduction in the population size. Low nucleotide diversity, spatial population structure, and the reduction of effective population size should be considered for the planning of strategies aimed at the conservation and rehabilitation of this important fisheries resource. PMID:29520295
Rey, Pedro J; Cancio, Inmaculada; Manzaneda, Antonio J; González-Robles, Ana; Valera, Francisco; Salido, Teresa; Alcántara, Julio M
2018-06-22
Global change drivers are currently affecting semiarid ecosystems. Because these ecosystems differ from others in biotic and abiotic filters, cues for plant regeneration and management derived from elsewhere may not be applicable to semiarid ecosystems. We sought to determine the extent to which regional variation in regeneration prospects of a long-lived semiarid keystone shrub depends on anthropogenic habitat degradation, plant-animal interactions and climate determinants. We investigated the regeneration ability (via population size structure, juvenile density and juvenile/adult ratio), fruit set and seed dispersal of Ziziphus lotus in 25 localities spanning the range of its threatened habitats in Spain. We dissected the relative contribution of different regeneration determinants using multiple regression and structural equation modelling. Population regeneration was extremely poor, and size structures were biased towards large classes and low juvenile densities and juvenile/adult ratios. Poor regeneration was often coincident with seed dispersal collapse. However, the positive effect of seed dispersal on population regeneration disappeared after considering its relationship with habitat degradation. Protected areas did have juveniles. Together, these data suggest that habitat degradation directly impacts juvenile establishment. Our results provide insights into habitat and species management at the regional level. Z. lotus populations are currently driven by persistence-based dynamics through the longevity of the species. Nonetheless, collapsed seed dispersal, poor regeneration and the removal of adults from their habitats forecast extinction of Z. lotus in many remnants. The extreme longevity of Z. lotus grants opportunities for the recovery of its populations and habitats through effective enforcement of regulations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Birth-date dependent population ethics: critical-level principles.
Blackorby, C; Bossert, W; Donaldson, D
1997-12-01
"This paper investigates birth-date dependent principles for social evaluation in an intertemporal framework in which population size may vary. We weaken the strong Pareto principle in order to allow individuals' birth dates to matter in establishing a social ordering. Using the axiom independence of the utilities of the dead, we characterize population principles with a recursive structure. If the individual substitution principle and an individual intertemporal equivalence axiom are added, birth-date dependent generalizations of the critical-level generalized utilitarian principles result. Stationarity leads to the special case of geometric discounting." excerpt
Karczmarski, Leszek; Huang, Shiang-Lin; Chan, Stephen C Y
2017-02-23
Defining demographic and ecological threshold of population persistence can assist in informing conservation management. We undertook such analyses for the Indo-Pacific humpback dolphin (Sousa chinensis) in the Pearl River Delta (PRD) region, southeast China. We use adult survival estimates for assessments of population status and annual rate of change. Our estimates indicate that, given a stationary population structure and minimal risk scenario, ~2000 individuals (minimum viable population in carrying capacity, MVP k ) can maintain the population persistence across 40 generations. However, under the current population trend (~2.5% decline/annum), the population is fast approaching its viability threshold and may soon face effects of demographic stochasticity. The population demographic trajectory and the minimum area of critical habitat (MACH) that could prevent stochastic extinction are both highly sensitive to fluctuations in adult survival. For a hypothetical stationary population, MACH should approximate 3000-km 2 . However, this estimate increases four-fold with a 5% increase of adult mortality and exceeds the size of PRD when calculated for the current population status. On the other hand, cumulatively all current MPAs within PRD fail to secure the minimum habitat requirement to accommodate sufficiently viable population size. Our findings indicate that the PRD population is deemed to become extinct unless effective conservation measures can rapidly reverse the current population trend.
Telikepalli, Srivalli; Shinogle, Heather E.; Thapa, Prem S.; Kim, Jae Hyun; Deshpande, Meghana; Jawa, Vibha; Middaugh, C. Russell; Narhi, Linda O.; Joubert, Marisa K.; Volkin, David B.
2015-01-01
An IgG2 monoclonal antibody (mAb) solution was subjected to stirring, generating high concentrations of nanometer and subvisible particles, which were then successfully size enriched into different size bins by low speed centrifugation or a combination of gravitational sedimentation and Fluorescence-Activated Cell Sorting (FACS). The size-fractionated mAb particles were assessed for their ability to elicit the release of cytokines from a population of donor-derived human peripheral blood mononuclear cells (PBMC) at two phases of the immune response. Fractions enriched in nanometer-sized particles showed a lower response than those enriched in micron-sized particles in this assay. Particles of 5–10 μm in size displayed elevated cytokine release profiles compared to other size ranges. Stir-stressed mAb particles had amorphous morphology, contained protein with partially altered secondary structure, elevated surface hydrophobicity (compared to controls), and trace levels of elemental fluorine. FACS size-enriched the mAb particle samples, yet did not notably alter the overall morphology or composition of particles as measured by Microflow imaging, Transmission Electron Microscopy, and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy. The utility and limitations of FACS for size separation of mAb particles and potential of in-vitro PBMC studies to rank order the immunogenic potential of various types of mAb particles is discussed. PMID:25753756
Hughes, Jane M.; Real, Kathryn M.; Marshall, Jonathan C.; Schmidt, Daniel J.
2012-01-01
Freshwater fish are a group that is especially susceptible to biodiversity loss as they often exist naturally in small, fragmented populations that are vulnerable to habitat degradation, pollution and introduction of exotic species. Relatively little is known about spatial dynamics of unperturbed populations of small-bodied freshwater fish species. This study examined population genetic structure of the purple spotted gudgeon (Mogurnda adspersa, Eleotridae), a small-bodied freshwater fish that is widely distributed in eastern Australia. The species is threatened in parts of its range but is common in coastal streams of central Queensland where this study took place. Microsatellite (msat) and mitochondrial DNA (mtDNA) variation was assessed for nine sites from four stream sections in two drainage basins. Very high levels of among population structure were observed (msat F ST = 0.18; mtDNA ΦST = 0.85) and evidence for contemporary migration among populations was rare and limited to sites within the same section of stream. Hierarchical structuring of variation was best explained by stream section rather than by drainage basin. Estimates of contemporary effective population size for each site was low (range 28 – 63, Sibship method), but compared favorably with similar estimates for other freshwater fish species, and there was no genetic evidence for inbreeding or recent population bottlenecks. In conclusion, within a stable part of its range, M adspersa exists as a series of small, demographically stable populations that are highly isolated from one another. Complimentary patterns in microsatellites and mtDNA indicate this structuring is the result of long-term processes that have developed over a remarkably small spatial scale. High population structure and limited dispersal mean that recolonisation of locally extinct populations is only likely to occur from closely situated populations within stream sections. Limited potential for recolonisation should be considered as an important factor in conservation and management of this species. PMID:22808190
Spatial and temporal determinants of genetic structure in Gentianella bohemica
Königer, Julia; Rebernig, Carolin A; Brabec, Jiří; Kiehl, Kathrin; Greimler, Josef
2012-01-01
The biennial plant Gentianella bohemica is a subendemic of the Bohemian Massif, where it occurs in seminatural grasslands. It has become rare in recent decades as a result of profound changes in land use. Using amplified fragment length polymorphisms (AFLP) fingerprint data, we investigated the genetic structure within and among populations of G. bohemica in Bavaria, the Czech Republic, and the Austrian border region. The aim of our study was (1) to analyze the genetic structure among populations and to discuss these findings in the context of present and historical patterns of connectivity and isolation of populations, (2) to analyze genetic structure among consecutive generations (cohorts of two consecutive years), and (3) to investigate relationships between intrapopulational diversity and effective population size (Ne) as well as plant traits. (1) The German populations were strongly isolated from each other (pairwise FST= 0.29–0.60) and from all other populations (FST= 0.24–0.49). We found a pattern of near panmixis among the latter (FST= 0.15–0.35) with geographical distance explaining only 8% of the genetic variance. These results were congruent with a principal coordinate analysis (PCoA) and analysis using STRUCTURE to identify genetically coherent groups. These findings are in line with the strong physical barrier and historical constraints, resulting in separation of the German populations from the others. (2) We found pronounced genetic differences between consecutive cohorts of the German populations (pairwise FST= 0.23 and 0.31), which can be explained by local population history (land use, disturbance). (3) Genetic diversity within populations (Shannon index, HSh) was significantly correlated with Ne (RS= 0.733) and reflected a loss of diversity due to several demographic bottlenecks. Overall, we found that the genetic structure in G. bohemica is strongly influenced by historical periods of high connectivity and isolation as well as by marked demographic fluctuations in declining populations. PMID:22822440
Managing the Cayo Santiago rhesus macaque population: The role of density.
Hernandez-Pacheco, Raisa; Delgado, Diana L; Rawlins, Richard G; Kessler, Matthew J; Ruiz-Lambides, Angelina V; Maldonado, Elizabeth; Sabat, Alberto M
2016-01-01
Cayo Santiago is the oldest continuously operating free-ranging rhesus monkey colony in the world. Population control of this colony has historically been carried out by periodic live capture and removal of animals. However, the effect of such a strategy on the size, growth rate, age structure, and sex ratio of the population has not been analyzed. This study reviews past removal data and uses a population projection model to simulate the effects of different removal schemes based on Cayo Santiago demographic data from 2000-2012. The model incorporates negative density-dependence in female fertility, as well as male and female survival rates, to determine the population-level effects of selective removal by age and sex. Modeling revealed that removal of sexually immature individuals has negligible effects on the population dynamics explaining why with an initial population of 1309 in 2000 and annual removals of immature monkeys a mean annual population growth rate of 12% and a final population size of ∼1,435 individuals by 2012 (∼0.009 animal/m(2) ) was observed. With no removals, the population is expected to exhibit dampened oscillations until reaching equilibrium at ∼1,690 individuals (∼0.0111 animal/m(2) ) in 2,100. In contrast, removal of adult females (≥4 yrs) would significantly reduce the population size, but would also promote an increase in population growth rate due to density feedback. A maximum annual production of 275 births is expected when 550 adult females are present in the population. Sensitivity analyses showed that removing females, in contrast to controlling their fertility through invasive treatments would contribute the most to changes in population growth rate. Given the density compensation on fertility, stabilizing the population would require removing ∼80% of the current population of adult females. This study highlights the importance of addressing the population-level density effects, as well as sensitivity analyses, to optimize management strategies. © 2016 Wiley Periodicals, Inc.
A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys
Jousimo, Jussi; Ovaskainen, Otso
2016-01-01
Random encounter models can be used to estimate population abundance from indirect data collected by non-invasive sampling methods, such as track counts or camera-trap data. The classical Formozov–Malyshev–Pereleshin (FMP) estimator converts track counts into an estimate of mean population density, assuming that data on the daily movement distances of the animals are available. We utilize generalized linear models with spatio-temporal error structures to extend the FMP estimator into a flexible Bayesian modelling approach that estimates not only total population size, but also spatio-temporal variation in population density. We also introduce a weighting scheme to estimate density on habitats that are not covered by survey transects, assuming that movement data on a subset of individuals is available. We test the performance of spatio-temporal and temporal approaches by a simulation study mimicking the Finnish winter track count survey. The results illustrate how the spatio-temporal modelling approach is able to borrow information from observations made on neighboring locations and times when estimating population density, and that spatio-temporal and temporal smoothing models can provide improved estimates of total population size compared to the FMP method. PMID:27611683
Population genetics at three spatial scales of a rare sponge living in fragmented habitats
2010-01-01
Background Rare species have seldom been studied in marine habitats, mainly because it is difficult to formally assess the status of rare species, especially in patchy benthic organisms, for which samplings are often assumed to be incomplete and, thus, inappropriate for establishing the real abundance of the species. However, many marine benthic invertebrates can be considered rare, due to the fragmentation and rarity of suitable habitats. Consequently, studies on the genetic connectivity of rare species in fragmented habitats are basic for assessing their risk of extinction, especially in the context of increased habitat fragmentation by human activities. Sponges are suitable models for studying the intra- and inter-population genetic variation of rare invertebrates, as they produce lecitotrophic larvae and are often found in fragmented habitats. Results We investigated the genetic structure of a Mediterranean sponge, Scopalina lophyropoda (Schmidt), using the allelic size variation of seven specific microsatellite loci. The species can be classified as "rare" because of its strict habitat requirements, the low number of individuals per population, and the relatively small size of its distribution range. It also presents a strong patchy distribution, philopatric larval dispersal, and both sexual and asexual reproduction. Classical genetic-variance-based methods (AMOVA) and differentiation statistics revealed that the genetic diversity of S. lophyropoda was structured at the three spatial scales studied: within populations, between populations of a geographic region, and between isolated geographic regions, although some stochastic gene flow might occur among populations within a region. The genetic structure followed an isolation-by-distance pattern according to the Mantel test. However, despite philopatric larval dispersal and fission events in the species, no single population showed inbreeding, and the contribution of clonality to the population makeup was minor (only ca. 4%). Conclusions The structure of the S. lophyropoda populations at all spatial scales examined confirms the philopatric larval dispersal that has been reported. Asexual reproduction does not seem to play a relevant role in the populations. The heterozygote excess and the lack of inbreeding could be interpreted as a hitherto unknown outcrossing strategy of the species. The envisaged causes for this strategy are sperm dispersal, a strong selection against the mating of genetically related individuals to avoid inbreeding depression or high longevity of genets combined with stochastic recruitment events by larvae from other populations. It should be investigated whether this strategy could also explain the genetic diversity of many other patchy marine invertebrates whose populations remain healthy over time, despite their apparent rarity. PMID:20074333
Sandlund, Odd Terje; Karlsson, Sten; Thorstad, Eva B; Berg, Ole Kristian; Kent, Matthew P; Norum, Ine C J; Hindar, Kjetil
2014-01-01
The river-resident Salmo salar (“småblank”) has been isolated from other Atlantic salmon populations for 9,500 years in upper River Namsen, Norway. This is the only European Atlantic salmon population accomplishing its entire life cycle in a river. Hydropower development during the last six decades has introduced movement barriers and changed more than 50% of the river habitat to lentic conditions. Based on microsatellites and SNPs, genetic variation within småblank was only about 50% of that in the anadromous Atlantic salmon within the same river. The genetic differentiation (FST) between småblank and the anadromous population was 0.24. This is similar to the differentiation between anadromous Atlantic salmon in Europe and North America. Microsatellite analyses identified three genetic subpopulations within småblank, each with an effective population size Ne of a few hundred individuals. There was no evidence of reduced heterozygosity and allelic richness in contemporary samples (2005–2008) compared with historical samples (1955–56 and 1978–79). However, there was a reduction in genetic differentiation between sampling localities over time. SNP data supported the differentiation of småblank into subpopulations and revealed downstream asymmetric gene flow between subpopulations. In spite of this, genetic variation was not higher in the lower than in the upper areas. The meta-population structure of småblank probably maintains genetic variation better than one panmictic population would do, as long as gene flow among subpopulations is maintained. Småblank is a unique endemic island population of Atlantic salmon. It is in a precarious situation due to a variety of anthropogenic impacts on its restricted habitat area. Thus, maintaining population size and avoiding further habitat fragmentation are important. PMID:24967074
Maury, Olivier; Poggiale, Jean-Christophe
2013-05-07
Individual metabolism, predator-prey relationships, and the role of biodiversity are major factors underlying the dynamics of food webs and their response to environmental variability. Despite their crucial, complementary and interacting influences, they are usually not considered simultaneously in current marine ecosystem models. In an attempt to fill this gap and determine if these factors and their interaction are sufficient to allow realistic community structure and dynamics to emerge, we formulate a mathematical model of the size-structured dynamics of marine communities which integrates mechanistically individual, population and community levels. The model represents the transfer of energy generated in both time and size by an infinite number of interacting fish species spanning from very small to very large species. It is based on standard individual level assumptions of the Dynamic Energy Budget theory (DEB) as well as important ecological processes such as opportunistic size-based predation and competition for food. Resting on the inter-specific body-size scaling relationships of the DEB theory, the diversity of life-history traits (i.e. biodiversity) is explicitly integrated. The stationary solutions of the model as well as the transient solutions arising when environmental signals (e.g. variability of primary production and temperature) propagate through the ecosystem are studied using numerical simulations. It is shown that in the absence of density-dependent feedback processes, the model exhibits unstable oscillations. Density-dependent schooling probability and schooling-dependent predatory and disease mortalities are proposed to be important stabilizing factors allowing stationary solutions to be reached. At the community level, the shape and slope of the obtained quasi-linear stationary spectrum matches well with empirical studies. When oscillations of primary production are simulated, the model predicts that the variability propagates along the spectrum in a given frequency-dependent size range before decreasing for larger sizes. At the species level, the simulations show that small and large species dominate the community successively (small species being more abundant at small sizes and large species being more abundant at large sizes) and that the total biomass of a species decreases with its maximal size which again corroborates empirical studies. Our results indicate that the simultaneous consideration of individual growth and reproduction, size-structured trophic interactions, the diversity of life-history traits and a density-dependent stabilizing process allow realistic community structure and dynamics to emerge without any arbitrary prescription. As a logical consequence of our model construction and a basis for future studies, we define the function Φ as the relative contribution of each species to the total biomass of the ecosystem, for any given size. We argue that this function is a measure of the functional role of biodiversity characterizing the impact of the structure of the community (its species composition) on its function (the relative proportions of losses, dissipation and biological work). Copyright © 2013 Elsevier Ltd. All rights reserved.
Feng, Xiuyan; Liu, Jian; Chiang, Yu-Chung; Gong, Xun
2017-01-01
Climate change, species dispersal ability and habitat fragmentation are major factors influencing species distribution and genetic diversity, especially for the range-restricted and threatened taxa. Here, using four sequences of chloroplast DNAs (cpDNAs), three nuclear genes (nDNAs) and 12 nuclear microsatellites (SSRs), we investigated the genetic diversity, genetic structure, divergence time and population dynamics of Cycas segmentifida D. Y. Wang and C. Y. Deng, a threatened cycad species endemic to Southwest China. High levels of genetic diversity and genetic differentiation were revealed in C. segmentifida. Haplotypes of networks showed two evolutionary units in C. segmentifida, with the exception of the nuclear gene GTP network. Meanwhile, the UPGMA tree, structure and PCoA analyses suggested that 14 populations of C. segmentifida were divided into two clades. There was significant effect of isolation by distance (IBD) in this species. However, this species did not display a significant phylogeographic structure. The divergence time estimation suggested that its haplotypes diverged during the Middle Pleistocene. Additionally, the population dynamics inferred from different DNA sequences analyses were discordant. Bottleneck analysis showed that populations of C. segmentifida did not experience any recent bottleneck effect, but rather pointed to a contraction of its effective population size over time. Furthermore, our results suggested that the population BM which held an intact population structure and occupied undisturbed habitat was at the Hardy–Weinberg equilibrium, implying that this population is a free-mating system. These genetic features provide important information for the sustainable management of C. segmentifida. PMID:28580005
Park, Han-Chan; Suk, Ho Young; Jeong, Eu-Jin; Park, Dae-Sik; Lee, Hang; Min, Mi-Sook
2014-11-01
The Mongolian racerunner (Eremias argus) is a small lacertid lizard species, and its distribution range encompasses the Korean Peninsula, Mongolia, China and Russia. Eremias argus is widespread, but populations on the Korean Peninsula are small and declining, provoking concerns that genetic diversity is being lost. This species is currently listed under the Protection of Wild Fauna and Flora Act in South Korea. In this study, nine novel microsatellites for E. argus were developed with a biotin-enrichment method and used to understand its population genetic structure and delineate conservation units on the Korean Peninsula. Overall, low intrapopulation genetic diversity was observed (mean number of alleles per locus = 2.463; mean H E = 0.398) from 10 populations investigated (n = 110). Two populations (among five with n≥ 10) showed an excess of heterozygosity expected under HWE relative to that expected at mutation-drift equilibrium, indicating severe reduction in population sizes. With only a few exceptions, the overall genetic differentiation among populations was substantial with the high levels of pairwise-F ST (0.006-0.746) and -R ST (0.034-0.940) values. The results of Bayesian STRUCTURE analysis showed that E. argus populations on the Korean Peninsula were most likely partitioned into three genetic clusters. Taken all together, such low levels of gene flow and strong genetic structuring have critical implications for the conservation of this endangered species and its management.
Population genetics of Glossina palpalis palpalis from central African sleeping sickness foci.
Melachio, Trésor Tito Tanekou T T; Simo, Gustave; Ravel, Sophie; De Meeûs, Thierry; Causse, Sandrine; Solano, Philippe; Lutumba, Pascal; Asonganyi, Tazoacha; Njiokou, Flobert
2011-07-18
Glossina palpalis palpalis (Diptera: Glossinidae) is widespread in west Africa, and is the main vector of sleeping sickness in Cameroon as well as in the Bas Congo Province of the Democratic Republic of Congo. However, little is known on the structure of its populations. We investigated G. p. palpalis population genetic structure in five sleeping sickness foci (four in Cameroon, one in Democratic Republic of Congo) using eight microsatellite DNA markers. A strong isolation by distance explains most of the population structure observed in our sampling sites of Cameroon and DRC. The populations here are composed of panmictic subpopulations occupying fairly wide zones with a very strong isolation by distance. Effective population sizes are probably between 20 and 300 individuals and if we assume densities between 120 and 2000 individuals per km2, dispersal distance between reproducing adults and their parents extends between 60 and 300 meters. This first investigation of population genetic structure of G. p. palpalis in Central Africa has evidenced random mating subpopulations over fairly large areas and is thus at variance with that found in West African populations of G. p. palpalis. This study brings new information on the isolation by distance at a macrogeographic scale which in turn brings useful information on how to organise regional tsetse control. Future investigations should be directed at temporal sampling to have more accurate measures of demographic parameters in order to help vector control decision.
Brouat, Carine; Rahelinirina, Soanandrasana; Loiseau, Anne; Rahalison, Lila; Rajerison, Minoariso; Laffly, Dominique; Handschumacher, Pascal; Duplantier, Jean-Marc
2013-01-01
Landscape may affect the distribution of infectious diseases by influencing the population density and dispersal of hosts and vectors. Plague (Yersinia pestis infection) is a highly virulent, re-emerging disease, the ecology of which has been scarcely studied in Africa. Human seroprevalence data for the major plague focus of Madagascar suggest that plague spreads heterogeneously across the landscape as a function of the relief. Plague is primarily a disease of rodents. We therefore investigated the relationship between disease distribution and the population genetic structure of the black rat, Rattus rattus, the main reservoir of plague in Madagascar. We conducted a comparative study of plague seroprevalence and genetic structure (15 microsatellite markers) in rat populations from four geographic areas differing in topology, each covering about 150-200 km(2) within the Madagascan plague focus. The seroprevalence levels in the rat populations mimicked those previously reported for humans. As expected, rat populations clearly displayed a more marked genetic structure with increasing relief. However, the relationship between seroprevalence data and genetic structure differs between areas, suggesting that plague distribution is not related everywhere to the effective dispersal of rats. Genetic diversity estimates suggested that plague epizootics had only a weak impact on rat population sizes. In the highlands of Madagascar, plague dissemination cannot be accounted for solely by the effective dispersal of the reservoir. Human social activities may also be involved in spreading the disease in rat and human populations.
3D-HST+CANDELS: The Evolution of the Galaxy Size-Mass Distribution since z = 3
NASA Astrophysics Data System (ADS)
van der Wel, A.; Franx, M.; van Dokkum, P. G.; Skelton, R. E.; Momcheva, I. G.; Whitaker, K. E.; Brammer, G. B.; Bell, E. F.; Rix, H.-W.; Wuyts, S.; Ferguson, H. C.; Holden, B. P.; Barro, G.; Koekemoer, A. M.; Chang, Yu-Yen; McGrath, E. J.; Häussler, B.; Dekel, A.; Behroozi, P.; Fumagalli, M.; Leja, J.; Lundgren, B. F.; Maseda, M. V.; Nelson, E. J.; Wake, D. A.; Patel, S. G.; Labbé, I.; Faber, S. M.; Grogin, N. A.; Kocevski, D. D.
2014-06-01
Spectroscopic+photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift range 0 < z < 3. Separating early- and late-type galaxies on the basis of star-formation activity, we confirm that early-type galaxies are on average smaller than late-type galaxies at all redshifts, and we find a significantly different rate of average size evolution at fixed galaxy mass, with fast evolution for the early-type population, R effvprop(1 + z)-1.48, and moderate evolution for the late-type population, R effvprop(1 + z)-0.75. The large sample size and dynamic range in both galaxy mass and redshift, in combination with the high fidelity of our measurements due to the extensive use of spectroscopic data, not only fortify previous results but also enable us to probe beyond simple average galaxy size measurements. At all redshifts the slope of the size-mass relation is shallow, R_{eff}\\propto M_*^{0.22}, for late-type galaxies with stellar mass >3 × 109 M ⊙, and steep, R_{eff}\\propto M_*^{0.75}, for early-type galaxies with stellar mass >2 × 1010 M ⊙. The intrinsic scatter is lsim0.2 dex for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric but is skewed toward small sizes: at all redshifts and masses, a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (~1011 M ⊙), compact (R eff < 2 kpc) early-type galaxies increases from z = 3 to z = 1.5-2 and then strongly decreases at later cosmic times.
Utility of R0 as a predictor of disease invasion in structured populations
Cross, P.C.; Johnson, P.L.F.; Lloyd-Smith, James O.; Getz, W.M.
2007-01-01
Early theoretical work on disease invasion typically assumed large and well-mixed host populations. Many human and wildlife systems, however, have small groups with limited movement among groups. In these situations, the basic reproductive number, R0, is likely to be a poor predictor of a disease pandemic because it typically does not account for group structure and movement of individuals among groups. We extend recent work by combining the movement of hosts, transmission within groups, recovery from infection and the recruitment of new susceptibles into a stochastic model of disease in a host metapopulation. We focus on how recruitment of susceptibles affects disease invasion and how population structure can affect the frequency of superspreading events (SSEs). We show that the frequency of SSEs may decrease with the reduced movement and the group sizes due to the limited number of susceptible individuals available. Classification tree analysis of the model results illustrates the hierarchical nature of disease invasion in host metapopulations. First, the pathogen must effectively transmit within a group (R0 > 1), and then the pathogen must persist within a group long enough to allow for movement among the groups. Therefore, the factors affecting disease persistence - such as infectious period, group size and recruitment of new susceptibles - are as important as the local transmission rates in predicting the spread of pathogens across a metapopulation. ?? 2006 The Royal Society.
The structured ancestral selection graph and the many-demes limit.
Slade, Paul F; Wakeley, John
2005-02-01
We show that the unstructured ancestral selection graph applies to part of the history of a sample from a population structured by restricted migration among subpopulations, or demes. The result holds in the limit as the number of demes tends to infinity with proportionately weak selection, and we have also made the assumptions of island-type migration and that demes are equivalent in size. After an instantaneous sample-size adjustment, this structured ancestral selection graph converges to an unstructured ancestral selection graph with a mutation parameter that depends inversely on the migration rate. In contrast, the selection parameter for the population is independent of the migration rate and is identical to the selection parameter in an unstructured population. We show analytically that estimators of the migration rate, based on pairwise sequence differences, derived under the assumption of neutrality should perform equally well in the presence of weak selection. We also modify an algorithm for simulating genealogies conditional on the frequencies of two selected alleles in a sample. This permits efficient simulation of stronger selection than was previously possible. Using this new algorithm, we simulate gene genealogies under the many-demes ancestral selection graph and identify some situations in which migration has a strong effect on the time to the most recent common ancestor of the sample. We find that a similar effect also increases the sensitivity of the genealogy to selection.
Utility of R0 as a predictor of disease invasion in structured populations.
Cross, Paul C; Johnson, Philip L F; Lloyd-Smith, James O; Getz, Wayne M
2007-04-22
Early theoretical work on disease invasion typically assumed large and well-mixed host populations. Many human and wildlife systems, however, have small groups with limited movement among groups. In these situations, the basic reproductive number, R0, is likely to be a poor predictor of a disease pandemic because it typically does not account for group structure and movement of individuals among groups. We extend recent work by combining the movement of hosts, transmission within groups, recovery from infection and the recruitment of new susceptibles into a stochastic model of disease in a host metapopulation. We focus on how recruitment of susceptibles affects disease invasion and how population structure can affect the frequency of superspreading events (SSEs). We show that the frequency of SSEs may decrease with the reduced movement and the group sizes due to the limited number of susceptible individuals available. Classification tree analysis of the model results illustrates the hierarchical nature of disease invasion in host metapopulations. First, the pathogen must effectively transmit within a group (R0>1), and then the pathogen must persist within a group long enough to allow for movement among the groups. Therefore, the factors affecting disease persistence--such as infectious period, group size and recruitment of new susceptibles--are as important as the local transmission rates in predicting the spread of pathogens across a metapopulation.
Petruzzellis, Francesco; Palandrani, Chiara; Savi, Tadeja; Alberti, Roberto; Nardini, Andrea; Bacaro, Giovanni
2017-12-01
The choice of the best sampling strategy to capture mean values of functional traits for a species/population, while maintaining information about traits' variability and minimizing the sampling size and effort, is an open issue in functional trait ecology. Intraspecific variability (ITV) of functional traits strongly influences sampling size and effort. However, while adequate information is available about intraspecific variability between individuals (ITV BI ) and among populations (ITV POP ), relatively few studies have analyzed intraspecific variability within individuals (ITV WI ). Here, we provide an analysis of ITV WI of two foliar traits, namely specific leaf area (SLA) and osmotic potential (π), in a population of Quercus ilex L. We assessed the baseline ITV WI level of variation between the two traits and provided the minimum and optimal sampling size in order to take into account ITV WI , comparing sampling optimization outputs with those previously proposed in the literature. Different factors accounted for different amount of variance of the two traits. SLA variance was mostly spread within individuals (43.4% of the total variance), while π variance was mainly spread between individuals (43.2%). Strategies that did not account for all the canopy strata produced mean values not representative of the sampled population. The minimum size to adequately capture the studied functional traits corresponded to 5 leaves taken randomly from 5 individuals, while the most accurate and feasible sampling size was 4 leaves taken randomly from 10 individuals. We demonstrate that the spatial structure of the canopy could significantly affect traits variability. Moreover, different strategies for different traits could be implemented during sampling surveys. We partially confirm sampling sizes previously proposed in the recent literature and encourage future analysis involving different traits.
[An adjustment to the age structure of the Italian population in the 1971 census].
Caselli, G; Golini, A; Capocaccia, R
1989-01-01
"Having verified, in the 1971 [Italian] census, the presence of certain anomalous data for cohorts born in 1900, 1911, 1920, 1924, 1930, 1936, 1940, 1948, 1950 and 1960, we assessed the size of the error and estimated the new population total which emerged both by age and year of birth. The method used [is similar] to more classical methods to correct biases in age structure in previous censuses and in those countries where the data available are somewhat lacking. The adjusted values, referring to Italy as a whole, are contained in the text...." (SUMMARY IN ENG AND FRE) excerpt
Biomass, size, and trophic status of top predators in the Pacific Ocean.
Sibert, John; Hampton, John; Kleiber, Pierre; Maunder, Mark
2006-12-15
Fisheries have removed at least 50 million tons of tuna and other top-level predators from the Pacific Ocean pelagic ecosystem since 1950, leading to concerns about a catastrophic reduction in population biomass and the collapse of oceanic food chains. We analyzed all available data from Pacific tuna fisheries for 1950-2004 to provide comprehensive estimates of fishery impacts on population biomass and size structure. Current biomass ranges among species from 36 to 91% of the biomass predicted in the absence of fishing, a level consistent with or higher than standard fisheries management targets. Fish larger than 175 centimeters fork length have decreased from 5% to approximately 1% of the total population. The trophic level of the catch has decreased slightly, but there is no detectable decrease in the trophic level of the population. These results indicate substantial, though not catastrophic, impacts of fisheries on these top-level predators and minor impacts on the ecosystem in the Pacific Ocean.
Feedbacks Between Soil Structure and Microbial Activities in Soil
NASA Astrophysics Data System (ADS)
Bailey, V. L.; Smith, A. P.; Fansler, S.; Varga, T.; Kemner, K. M.; McCue, L. A.
2017-12-01
Soil structure provides the physical framework for soil microbial habitats. The connectivity and size distribution of soil pores controls the microbial access to nutrient resources for growth and metabolism. Thus, a crucial component of soil research is how a soil's three-dimensional structure and organization influences its biological potential on a multitude of spatial and temporal scales. In an effort to understand microbial processes at scale more consistent with a microbial community, we have used soil aggregates as discrete units of soil microbial habitats. Our research has shown that mean pore diameter (x-ray computed tomography) of soil aggregates varies with the aggregate diameter itself. Analyzing both the bacterial composition (16S) and enzyme activities of individual aggregates showed significant differences in the relative abundances of key members the microbial communities associated with high enzyme activities compared to those with low activities, even though we observed no differences in the size of the biomass, nor in the overall richness or diversity of these communities. We hypothesize that resources and substrates have stimulated key populations in the aggregates identified as highly active, and as such, we conducted further research that explored how such key populations (i.e. fungal or bacterial dominated populations) alter pathways of C accumulation in aggregate size domains and microbial C utilization. Fungi support and stabilize soil structure through both physical and chemical effects of their hyphal networks. In contrast, bacterial-dominated communities are purported to facilitate micro- and fine aggregate stabilization. Here we quantify the direct effects fungal versus bacterial dominated communities on aggregate formation (both the rate of aggregation and the quality, quantity and distribution of SOC contained within aggregates). A quantitative understanding of the different mechanisms through which fungi or bacteria shape aggregate formation could alter how we currently treat our predictions of soil biogeochemistry. Current predictions are largely site- or biome-specific; quantitative mechanisms could underpin "rules" that operate at the pore-scale leading to more robust, mechanistic models.
Evidence increasingly suggests that some environmental pollutants are able to permanently affect development of the endocrine system in wildlife. Embryonic and neonatal exposure to these "endocrine-disrupting contaminants" can cause structural and functional abnormalities of the ...
Projecting the Demand for Dental Care in 2040.
Manski, Richard J; Meyerhoefer, Chad D
2017-08-01
The purpose of this study was to provide a forward-thinking assessment of the underlying factors likely to impact trends in dental care demand and the need for dental providers in 2020, 2025, and beyond. Dental workforce trends and their likely impact on the need for dentists are a function of predicted dental care demand, which will in turn be determined by the size and characteristics of our population size, economic outlook, the state of public and private dental care insurance, trends in dental care delivery, professionally determined dental care need, and population health beliefs. Projecting rates of dental care utilization far into the future is difficult because projections must be made using historical data, and established trends may not persist if there is structural change in the future. Nonetheless, when structural change occurs, it does not typically affect all aspects of the economy, so there is value in describing the likely future impact of current trends. This article was written as part of the project "Advancing Dental Education in the 21 st Century."
Cabana, Graciela S; Lewis, Cecil M; Tito, Raúl Y; Covey, R Alan; Cáceres, Angela M; Cruz, Augusto F De La; Durand, Diana; Housman, Genevieve; Hulsey, Brannon I; Iannacone, Gian Carlo; López, Paul W; Martínez, Rolando; Medina, Ángel; Dávila, Olimpio Ortega; Pinto, Karla Paloma Osorio; Santillán, Susan I Polo; Domínguez, Percy Rojas; Rubel, Meagan; Smith, Heather F; Smith, Silvia E; Massa, Verónica Rubín de Celis; Lizárraga, Beatriz; Stone, Anne C
2014-01-01
Molecular-based characterizations of Andean peoples are traditionally conducted in the service of elucidating continent-level evolutionary processes in South America. Consequently, genetic variation among "western" Andean populations is often represented in relation to variation among "eastern" Amazon and Orinoco River Basin populations. This west-east contrast in patterns of population genetic variation is typically attributed to large-scale phenomena, such as dual founder colonization events or differing long-term microevolutionary histories. However, alternative explanations that consider the nature and causes of population genetic diversity within the Andean region remain underexplored. Here we examine population genetic diversity in the Peruvian Central Andes using data from the mtDNA first hypervariable region and Y-chromosome short tandem repeats among 17 newly sampled populations and 15 published samples. Using this geographically comprehensive data set, we first reassessed the currently accepted pattern of western versus eastern population genetic structure, which our results ultimately reject: mtDNA population diversities were lower, rather than higher, within Andean versus eastern populations, and only highland Y-chromosomes exhibited significantly higher within-population diversities compared with eastern groups. Multiple populations, including several highland samples, exhibited low genetic diversities for both genetic systems. Second, we explored whether the implementation of Inca state and Spanish colonial policies starting at about ad 1400 could have substantially restructured population genetic variation and consequently constitute a primary explanation for the extant pattern of population diversity in the Peruvian Central Andes. Our results suggest that Peruvian Central Andean population structure cannot be parsimoniously explained as the sole outcome of combined Inca and Spanish policies on the region's population demography: highland populations differed from coastal and lowland populations in mtDNA genetic structure only; highland groups also showed strong evidence of female-biased gene flow and/or effective sizes relative to other Peruvian ecozones. Taken together, these findings indicate that population genetic structure in the Peruvian Central Andes is considerably more complex than previously reported and that characterizations of and explanations for genetic variation may be best pursued within more localized regions and defined time periods.
Mushet, David M.; Euliss, Ned H.; Chen, Yongjiu; Stockwell, Craig A.
2013-01-01
In contrast to most local amphibian populations, northeastern populations of the Northern Leopard Frog (Lithobates pipiens) have displayed uncharacteristically high levels of genetic diversity that have been attributed to large, stable populations. However, this widely distributed species also occurs in areas known for great climatic fluctuations that should be reflected in corresponding fluctuations in population sizes and reduced genetic diversity. To test our hypothesis that Northern Leopard Frog genetic diversity would be reduced in areas subjected to significant climate variability, we examined the genetic diversity of L. pipiens collected from 12 sites within the Prairie Pothole Region of North Dakota. Despite the region's fluctuating climate that includes periods of recurring drought and deluge, we found unexpectedly high levels of genetic diversity approaching that of northeastern populations. Further, genetic structure at a landscape scale was strikingly homogeneous; genetic differentiation estimates (Dest) averaged 0.10 (SD = 0.036) across the six microsatellite loci we studied, and two Bayesian assignment tests (STRUCTURE and BAPS) failed to reveal the development of significant population structure across the 68 km breadth of our study area. These results suggest that L. pipiens in the Prairie Pothole Region consists of a large, panmictic population capable of maintaining high genetic diversity in the face of marked climate variability.
Genetic analysis of Mexican Criollo cattle populations.
Ulloa-Arvizu, R; Gayosso-Vázquez, A; Ramos-Kuri, M; Estrada, F J; Montaño, M; Alonso, R A
2008-10-01
The objective of this study was to evaluate the genetic structure of Mexican Criollo cattle populations using microsatellite genetic markers. DNA samples were collected from 168 animals from four Mexican Criollo cattle populations, geographically isolated in remote areas of Sierra Madre Occidental (West Highlands). Also were included samples from two breeds with Iberian origin: the fighting bull (n = 24) and the milking central American Criollo (n = 24) and one Asiatic breed: Guzerat (n = 32). Genetic analysis consisted of the estimation of the genetic diversity in each population by the allele number and the average expected heterozygosity found in nine microsatellite loci. Furthermore, genetic relationships among the populations were defined by their genetic distances. Our data shows that Mexican cattle populations have a relatively high level of genetic diversity based either on the mean number of alleles (10.2-13.6) and on the expected heterozygosity (0.71-0.85). The degree of observed homozygosity within the Criollo populations was remarkable and probably caused by inbreeding (reduced effective population size) possibly due to reproductive structure within populations. Our data shows that considerable genetic differentiation has been occurred among the Criollo cattle populations in different regions of Mexico.
Genetic diversity and structure in the Endangered Allen Cays Rock Iguana, Cyclura cychlura inornata
Aplasca, Andrea C.; Iverson, John B.; Welch, Mark E.; Colosimo, Giuliano
2016-01-01
The Endangered Allen Cays Rock Iguana (Cyclura cychlura inornata) is endemic to the Allen Cays, a tiny cluster of islands in the Bahamas. Naturally occurring populations exist on only two cays (<4 ha each). However, populations of unknown origin were recently discovered on four additional cays. To investigate patterns of genetic variation among these populations, we analyzed nuclear and mitochondrial markers for 268 individuals. Analysis of three mitochondrial gene regions (2,328 bp) and data for eight nuclear microsatellite loci indicated low genetic diversity overall. Estimates of effective population sizes based on multilocus genotypes were also extremely low. Despite low diversity, significant population structuring and variation in genetic diversity measures were detected among cays. Genetic data confirm the source population for an experimentally translocated population while raising concerns regarding other, unauthorized, translocations. Reduced heterozygosity is consistent with a documented historical population decline due to overharvest. This study provides the first range-wide genetic analysis of this subspecies. We suggest strategies to maximize genetic diversity during ongoing recovery including additional translocations to establish assurance populations and additional protective measures for the two remaining natural populations. PMID:26989628
Does beekeeping reduce genetic variability in Melipona scutellaris (Apidae, Meliponini)?
Carvalho-Zilse, G A; Costa-Pinto, M F F; Nunes-Silva, C G; Kerr, W E
2009-06-30
Many factors have contributed to reductions in wild populations of stingless bees, such as: deforestation, displacement and destruction of nests by honey gatherers, as well as use of insecticides and other agrochemicals. All of these can potentially affect the populational structure of native species. We analyzed genetic variability and populational structure of Melipona scutellaris, based on five microsatellite loci, using heterologous primers of M. bicolor. Samples were taken from 43 meliponaries distributed among 30 sites of four northeastern states of Brazil (Pernambuco, Alagoas, Sergipe, and Bahia). Thirty-one alleles were found to be well distributed among the populations, with sizes ranging from 85 to 146 bp. In general, there was a variable distribution and frequency of alleles among populations, with either exclusive and/or fixed alleles at some sites. The population of Pernambuco was the most polymorphic, followed by Bahia, Alagoas and Sergipe. The heterozygosity was Ho = 0.36 on average, much lower than what has been reported for M. bicolor (Ho = 0.65). Most populations were not under Hardy-Weinberg equilibrium. We found a higher variation within rather than among populations, indicating no genetic structuring in those bees maintained in meliponaries. This apparent homogenization may be due to intense beekeeping activity, including exchange of genetic material among beekeepers. Based on our findings, we recommend more studies of meliponaries and of wild populations in order to help orient management and conservation of these native pollinators.
Cala, Yuself R; Navarrete, Alberto de Jesús; Ocaña, Frank A; Rivera, José Oliva
2013-12-01
The pink conch Eustrombus gigas is an important fisheries resource. At the regional level in the Caribbean, over-exploitation and habitat destruction have caused a decrease in the abundance of this resource. In order to provide necessary information for the species management in Mexico, this work aimed to analyze the total density, adult density, size structure and reproductive behavior of pink conch population at Banco Chinchorro during 2009-2010. Data from three seasons were obtained (rainy, dry and cold fronts periods) in three areas: Norte (North), Centro (Center) and Sur (South). The organisms were separated into two groups: (a) the criteria based upon legal harvest in Mexico: legal size conchs (siphonal length > 200 mm) and illegal size conchs (siphonal length < 200 mm), and (b) the criteria based upon sexual maturity using the 15 mm lip thickness standard: lip < 15 mm as juvenile conch and lip > or = 15 mm as adult conch. Copulation, spawning, egg masses and aggregations were evaluated as reproductive evidences. The highest total density was observed during the dry season with 384ind./ha, and the lowest during the rainy season with 127ind./ha. The highest density was reported at Sur (385ind./ha) and the lowest at Norte (198ind./ ha). The highest adult density was observed during the rainy season (8.33ind./ha), and the lowest occurred in the dry season (6.1 ind./ha). Adult density values were 5.55, 7.05 and 8.33ind./ha for Centro, Sur and Norte areas, respectively. Adult densities were lower than the threshold needed for reproduction, and 42% of the population may be vulnerable to fishing, as they had the minimum size for catch (Lsi 200 mm). Furthermore, only 2.2% of the population reached a Gl > 15 mm as sexual maturity indicator. During the study period, only six evidences of reproductive activity were observed. The smaller densities reported at Banco Chinchorro may cause reproduction events to be almost absent which in turn is sufficient evidence to show that the Allee Effect is acting on the queen conch population and there is an urgent need of fishery closure. Three important points were proposed for management of queen conch at Banco Chinchorro: total closure of fishing, systematic assessment of the conch population and the implementation of conch fishing refuge.
Left atrial structure and function in atrial fibrillation: ENGAGE AF-TIMI 48
Gupta, Deepak K.; Shah, Amil M.; Giugliano, Robert P.; Ruff, Christian T.; Antman, Elliott M.; Grip, Laura T.; Deenadayalu, Naveen; Hoffman, Elaine; Patel, Indravadan; Shi, Minggao; Mercuri, Michele; Mitrovic, Veselin; Braunwald, Eugene; Solomon, Scott D.
2014-01-01
Aims The complex relationship between left atrial (LA) structure and function, electrical burden of atrial fibrillation (AF) and stroke risk is not well understood. We aimed to describe LA structure and function in AF. Methods and results Left atrial structure and function was assessed in 971 subjects enrolled in the echocardiographic substudy of ENGAGE AF-TIMI 48. Left atrial size, emptying fraction (LAEF), and contractile function were compared across AF types (paroxysmal, persistent, or permanent) and CHADS2 scores as an estimate of stroke risk. The majority of AF patients (55%) had both LA enlargement and reduced LAEF, with an inverse relationship between LA size and LAEF (R = −0.57, P < 0.001). With an increasing electrical burden of AF and higher CHADS2 scores, LA size increased and LAEF declined. Moreover, 19% of AF subjects had impaired LAEF despite normal LA size, and LA contractile dysfunction was present even among the subset of AF subjects in sinus rhythm at the time of echocardiography. Conclusions In a contemporary AF population, LA structure and function were increasingly abnormal with a greater electrical burden of AF and higher stroke risk estimated by the CHADS2 score. Moreover, LA dysfunction was present despite normal LA size and sinus rhythm, suggesting that the assessment of LA function may add important incremental information in the evaluation of AF patients. Clinical Trial Registration: http://www.clinicaltrials.gov; ID = NCT00781391. PMID:24302269