Sample records for population viability analyses

  1. Population-specific life histories contribute to metapopulation viability

    USGS Publications Warehouse

    Halsey, Samniqueka J.; Bell, Timothy J.; McEachern, A. Kathryn; Pavlovic, Noel B.

    2016-01-01

    Restoration efforts can be improved by understanding how variations in life-history traits occur within populations of the same species living in different environments. This can be done by first understanding the demographic responses of natural occurring populations. Population viability analysis continues to be useful to species management and conservation with sensitivity analysis aiding in the understanding of population dynamics. In this study, using life-table response experiments and elasticity analyses, we investigated how population-specific life-history demographic responses contributed to the metapopulation viability of the Federally threatened Pitcher's thistle (Cirsium pitcheri). Specifically, we tested the following hypotheses: (1) Subpopulations occupying different environments within a metapopulation have independent demographic responses and (2) advancing succession results in a shift from a demographic response focused on growth and fecundity to one dominated by stasis. Our results showed that reintroductions had a positive contribution to the metapopulation growth rate as compared to native populations which had a negative contribution. We found no difference in succession on the contribution to metapopulation viability. In addition, we identified distinct population-specific contributions to metapopulation viability and were able to associate specific life-history demographic responses. For example, the positive impact of Miller High Dunes population on the metapopulation growth rate resulted from high growth contributions, whereas increased time of plant in stasis for the State Park Big Blowout population resulted in negative contributions. A greater understanding of how separate populations respond in their corresponding environment may ultimately lead to more effective management strategies aimed at reducing extinction risk. We propose the continued use of sensitivity analyses to evaluate population-specific demographic influences on metapopulation viability. In understanding the underlying causes of the projected extinction probabilities of each population and identifying broad-scale contributions of different populations to the metapopulation, the process of pinpointing target populations is simplified. More detailed analyses can then be applied to the target populations to increase population viability and consequently metapopulation viability. Based on our research, we suggest that the best approach to improve the overall metapopulation viability is to manage the contributions to population growth for each population separately.

  2. USE OF POPULATION VIABILITY ANALYSIS AND RESERVE SELECTION ALGORITHMS IN REGIONAL CONSERVATION PLANS

    EPA Science Inventory

    Current reserve selection algorithms have difficulty evaluating connectivity and other factors
    necessary to conserve wide-ranging species in developing landscapes. Conversely, population viability analyses may incorporate detailed demographic data but often lack sufficient spa...

  3. DEMOGRAPHY AND VIABILITY ANALYSES OF A DIAMONDBACK TERRAPIN POPULATION

    EPA Science Inventory

    The diamondback terrapin Malaclemys terrapin is a long-lived species with special management requirements, but quantitative analyses to support management are lacking. I analyzed mark-recapture data and constructed an age-classified matrix population model to determine the status...

  4. Viability of piping plover Charadrius melodus metapopulations

    USGS Publications Warehouse

    Plissner, Jonathan H.; Haig, Susan M.

    2000-01-01

    The metapopulation viability analysis package, VORTEX, was used to examine viability and recovery objectives for piping plovers Charadrius melodus, an endangered shorebird that breeds in three distinct regions of North America. Baseline models indicate that while Atlantic Coast populations, under current management practices, are at little risk of near-term extinction, Great Plains and Great Lakes populations require 36% higher mean fecundity for a significant probability of persisting for the next 100 years. Metapopulation structure (i.e. the delineation of populations within the metapopulation) and interpopulation dispersal rates had varying effects on model results; however, spatially-structured metapopulations exhibited lower viability than that reported for single-population models. The models were most sensitive to variation in survivorship; hence, additional mortality data will improve their accuracy. With this information, such models become useful tools in identifying successful management objectives; and sensitivity analyses, even in the absence of some data, may indicate which options are likely to be most effective. Metapopulation viability models are best suited for developing conservation strategies for achieving recovery objectives based on maintaining an externally derived, target population size and structure.

  5. Puerto Rican parrots and potential limitations of the metapopulation approach to species conservation

    USGS Publications Warehouse

    Wilson, Marcia H.; Kepler, Cameron B.; Snyder, Noel F.R.; Derrickson, Scott R.; Dein, F. Josh; Wiley, James W.; Wunderle, Joseph M.; Lugo, Ariel E.; Graham, David L.; Toone, William D.

    1994-01-01

    Population viability analyses for a number of endangered species have incorporated a metapopulation approach. The risk assessments of these viability analyses have indicated that some extant populations should be subdivided into numerous subgroups with exchange of individuals among them in order to reduce the chance of catastrophic loss of the species. However, routine application of a policy of extensive subdivision may have detrimental consequences for certain endangered species. We examine the Puerto Rican Parrot as a case history in which this policy is ill-advised. In 1989, a population viability analysis was conducted for the parrot. The document recommended subdivision of the existing small captive flock into three groups. One of these captive flocks would consist of individuals transferred to a multi-species facility in the continental United States. Subsequently, individuals from this facility would be exchanged with the insular captive population(s) and the relict wild flock. For two reasons, implementation of this recommendation might have led to serious repercussions. First, this parrot, like many endangered species, has gone through a genetic bottleneck and may have a heightened susceptibility to disease. Multi-species facilities are a high-risk environment favoring the transmission of pathogens, especially when the facilities are located outside the natural ranges of a particular species. Second, the parrot is a K-selected species for which mate selection is idiosyncratic. This type of species often proves difficult to breed in captivity in small groups. Part of the problem in mate selection may be reduced by a policy allowing frequent transfers of individuals among facilities, but such movements increase the chances of spreading disease in the metapopulation. Thus, population viability analyses need to acknowledge that proliferation of captive subgroups accompanied by exchanges of individuals can in themselves carry substantial risks that must be weighed against the presumed benefits of subdivision.

  6. The concept and use of elasticity in population viability models [Exercise 13

    Treesearch

    Carolyn Hull Sieg; Rudy M. King; Fred Van Dyke

    2003-01-01

    As you have seen in exercise 12, plants, such as the western prairie fringed orchid, typically have distinct life stages and complex life cycles that require the matrix analyses associated with a stage-based population model. Some statistics that can be generated from such matrix analyses can be very informative in determining which variables in the model have the...

  7. Conservation of the Yellowstone grizzly bear

    USGS Publications Warehouse

    Mattson, David J.; Reid, Matthew M.

    1991-01-01

    We review literature relevant to the conservation of Yellowstone's grizzly bear population and appraise the bear's long-term viability. We conclude that the population is isolated and vulnerable to epidemic perturbation and that the carrying capacity of the habitat is likely to shift downward under conditions of climate change. Viability analyses based on the assumption that future habitats will closely resemble those existing at present have limited applicability; more information is needed on the autecology of important bear foods and on the implications of landscape-scale changes for bear population dynamics. Optimism over prospects of long-term persistence for Yellowstone's grizzly bears does not seem to be warranted and management of this population should be conservative and not unduly swayed on short-term positive trends.

  8. Simulation modeling of population viability for the leopard darter (Percidae: Percina pantherina)

    USGS Publications Warehouse

    Williams, L.R.; Echelle, A.A.; Toepfer, C.S.; Williams, M.G.; Fisher, W.L.

    1999-01-01

    We used the computer program RAMAS to perform a population viability analysis for the leopard darter, Percina pantherina. This percid fish is a threatened species confined to five isolated rivers in the Ouachita Mountains of Oklahoma and Arkansas. A base model created from life history data indicated a 6% probability that the leopard darter would go extinct in 50 years. We performed sensitivity analyses to determine the effects of initial population size, variation in age structure, variation in severity and probability of catastrophe, and migration rate. Catastrophe (modeled as the probability and severity of drought) and migration had the greatest effects on persistence. Results of these simulations have implications for management of this species.

  9. Low genetic diversity and strong population structure shaped by anthropogenic habitat fragmentation in a critically endangered primate, Trachypithecus leucocephalus.

    PubMed

    Wang, W; Qiao, Y; Li, S; Pan, W; Yao, M

    2017-06-01

    Habitat fragmentation may strongly impact population genetic structure and reduce the genetic diversity and viability of small and isolated populations. The white-headed langur (Trachypithecus leucocephalus) is a critically endangered primate species living in a highly fragmented and human-modified habitat in southern China. We examined the population genetic structure and genetic diversity of the species and investigated the environmental and anthropogenic factors that may have shaped its population structure. We used 214 unique multi-locus genotypes from 41 social groups across the main distribution area of T. leucocephalus, and found strong genetic structure and significant genetic differentiation among local populations. Our landscape genetic analyses using a causal modelling framework suggest that a large habitat gap and geographical distance represent the primary landscape elements shaping genetic structure, yet high levels of genetic differentiation also exist between patches separated by a small habitat gap or road. This is the first comprehensive study that has evaluated the population genetic structure and diversity of T. leucocephalus using nuclear markers. Our results indicate strong negative impacts of anthropogenic land modifications and habitat fragmentation on primate genetic connectivity between forest patches. Our analyses suggest that two management units of the species could be defined, and indicate that habitat continuity should be enforced and restored to reduce genetic isolation and enhance population viability.

  10. Modeling to Support the Development of Habitat Targets for Piping Plovers on the Missouri River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buenau, Kate E.

    2015-05-05

    Report on modeling and analyses done in support of developing quantative sandbar habitat targets for piping plovers, including assessment of reference, historical, dams present but not operated, and habitat construction calibrated to meet population viability targets.

  11. Fitness components and ecological risk of transgenic release: a model using Japanese medaka (Oryzias latipes).

    PubMed

    Muir, W M; Howard, R D

    2001-07-01

    Any release of transgenic organisms into nature is a concern because ecological relationships between genetically engineered organisms and other organisms (including their wild-type conspecifics) are unknown. To address this concern, we developed a method to evaluate risk in which we input estimates of fitness parameters from a founder population into a recurrence model to predict changes in transgene frequency after a simulated transgenic release. With this method, we grouped various aspects of an organism's life cycle into six net fitness components: juvenile viability, adult viability, age at sexual maturity, female fecundity, male fertility, and mating advantage. We estimated these components for wild-type and transgenic individuals using the fish, Japanese medaka (Oryzias latipes). We generalized our model's predictions using various combinations of fitness component values in addition to our experimentally derived estimates. Our model predicted that, for a wide range of parameter values, transgenes could spread in populations despite high juvenile viability costs if transgenes also have sufficiently high positive effects on other fitness components. Sensitivity analyses indicated that transgene effects on age at sexual maturity should have the greatest impact on transgene frequency, followed by juvenile viability, mating advantage, female fecundity, and male fertility, with changes in adult viability, resulting in the least impact.

  12. Viability analysis in biological evaluations: Concepts of population viability analysis, biological population, and ecological scale

    Treesearch

    Gregory D. Hayward; John R. Squires

    1994-01-01

    Environmental protection strategies often rely on environmental impact assessments. As part of the assessment process biologists are routinely asked to evaluate the effects of management actions on plants and animals. This evaluation often requires that biologists make judgments about the viability of affected populations. However, population viability...

  13. A case study of bats and white-nose syndrome demonstrating how to model population viability with evolutionary effects.

    PubMed

    Maslo, Brooke; Fefferman, Nina H

    2015-08-01

    Ecological factors generally affect population viability on rapid time scales. Traditional population viability analyses (PVA) therefore focus on alleviating ecological pressures, discounting potential evolutionary impacts on individual phenotypes. Recent studies of evolutionary rescue (ER) focus on cases in which severe, environmentally induced population bottlenecks trigger a rapid evolutionary response that can potentially reverse demographic threats. ER models have focused on shifting genetics and resulting population recovery, but no one has explored how to incorporate those findings into PVA. We integrated ER into PVA to identify the critical decision interval for evolutionary rescue (DIER) under which targeted conservation action should be applied to buffer populations undergoing ER against extinction from stochastic events and to determine the most appropriate vital rate to target to promote population recovery. We applied this model to little brown bats (Myotis lucifugus) affected by white-nose syndrome (WNS), a fungal disease causing massive declines in several North American bat populations. Under the ER scenario, the model predicted that the DIER period for little brown bats was within 11 years of initial WNS emergence, after which they stabilized at a positive growth rate (λ = 1.05). By comparing our model results with population trajectories of multiple infected hibernacula across the WNS range, we concluded that ER is a potential explanation of observed little brown bat population trajectories across multiple hibernacula within the affected range. Our approach provides a tool that can be used by all managers to provide testable hypotheses regarding the occurrence of ER in declining populations, suggest empirical studies to better parameterize the population genetics and conservation-relevant vital rates, and identify the DIER period during which management strategies will be most effective for species conservation. © 2015 Society for Conservation Biology.

  14. Life history and dynamics of a platypus (Ornithorhynchus anatinus) population: four decades of mark-recapture surveys

    PubMed Central

    Bino, Gilad; Grant, Tom R.; Kingsford, Richard T.

    2015-01-01

    Knowledge of the life-history and population dynamics of Australia’s iconic and evolutionarily distinct platypus (Ornithorhynchus anatinus) remains poor. We marked-recaptured 812 unique platypuses (total 1,622 captures), over four decades (1973–2014) in the Shoalhaven River, Australia. Strong sex-age differences were observed in life-history, including morphology and longevity. Apparent survival of adult females (Φ = 0.76) were higher than adult males (Φ = 0.57), as in juveniles: females Φ = 0.27, males Φ = 0.13. Females were highly likely to remain in the same pool (adult: P = 0.85, juvenile: P = 0.88), while residency rates were lower for males (adult: P = 0.74, juvenile: P = 0.46). We combined survival, movement and life-histories to develop population viability models and test the impact of a range of life-history parameters. While using estimated apparent survival produced unviable populations (mean population growth rate r = −0.23, extinction within 20 years), considering residency rates to adjust survival estimates, indicated more stable populations (r = 0.004, p = 0.04 of 100-year extinction). Further sensitivity analyses highlighted adult female survival and overall success of dispersal as most affecting viability. Findings provide robust life-history and viability estimates for a difficult study species. These could support developing large-scale population dynamics models required to underpin a much needed national risk assessment for the platypus, already declining in parts of its current distribution. PMID:26536832

  15. Life history and dynamics of a platypus (Ornithorhynchus anatinus) population: four decades of mark-recapture surveys.

    PubMed

    Bino, Gilad; Grant, Tom R; Kingsford, Richard T

    2015-11-05

    Knowledge of the life-history and population dynamics of Australia's iconic and evolutionarily distinct platypus (Ornithorhynchus anatinus) remains poor. We marked-recaptured 812 unique platypuses (total 1,622 captures), over four decades (1973-2014) in the Shoalhaven River, Australia. Strong sex-age differences were observed in life-history, including morphology and longevity. Apparent survival of adult females (Φ = 0.76) were higher than adult males (Φ = 0.57), as in juveniles: females Φ = 0.27, males Φ = 0.13. Females were highly likely to remain in the same pool (adult: P = 0.85, juvenile: P = 0.88), while residency rates were lower for males (adult: P = 0.74, juvenile: P = 0.46). We combined survival, movement and life-histories to develop population viability models and test the impact of a range of life-history parameters. While using estimated apparent survival produced unviable populations (mean population growth rate r = -0.23, extinction within 20 years), considering residency rates to adjust survival estimates, indicated more stable populations (r = 0.004, p = 0.04 of 100-year extinction). Further sensitivity analyses highlighted adult female survival and overall success of dispersal as most affecting viability. Findings provide robust life-history and viability estimates for a difficult study species. These could support developing large-scale population dynamics models required to underpin a much needed national risk assessment for the platypus, already declining in parts of its current distribution.

  16. Dynamics of aerial and terrestrial populations of Phytophthora ramorum in a California watershed under different climatic conditions

    Treesearch

    Catherine A. Eyre; Melina Kozanitas; Matteo Garbelotto

    2013-01-01

    We present a study of the epidemiology of sudden oak death (SOD) in California within a watershed based on temporally and spatially replicated surveys of symptoms, viability of the pathogen from symptomatic leaves, and genetic analyses using polymorphic SSR markers.Phytophthora ramorum is sensitive to climate; its...

  17. International Space Station environmental microbiome - microbial inventories of ISS filter debris.

    PubMed

    Venkateswaran, Kasthuri; Vaishampayan, Parag; Cisneros, Jessica; Pierson, Duane L; Rogers, Scott O; Perry, Jay

    2014-01-01

    Despite an expanding array of molecular approaches for detecting microorganisms in a given sample, rapid and robust means of assessing the differential viability of the microbial cells, as a function of phylogenetic lineage, remain elusive. A propidium monoazide (PMA) treatment coupled with downstream quantitative polymerase chain reaction (qPCR) and pyrosequencing analyses was carried out to better understand the frequency, diversity, and distribution of viable microorganisms associated with debris collected from the crew quarters of the International Space Station (ISS). The cultured bacterial counts were more in the ISS samples than cultured fungal population. The rapid molecular analyses targeted to estimate viable population exhibited 5-fold increase in bacterial (qPCR-PMA assay) and 25-fold increase in microbial (adenosine triphosphate assay) burden than the cultured bacterial population. The ribosomal nucleic acid-based identification of cultivated strains revealed the presence of only four to eight bacterial species in the ISS samples, however, the viable bacterial diversity detected by the PMA-pyrosequencing method was far more diverse (12 to 23 bacterial taxa) with the majority consisting of members of actinobacterial genera (Propionibacterium, Corynebacterium) and Staphylococcus. Sample fractions not treated with PMA (inclusive of both live and dead cells) yielded a great abundance of highly diverse bacterial (94 to 118 taxa) and fungal lineages (41 taxa). Even though deep sequencing capability of the molecular analysis widened the understanding about the microbial diversity, the cultivation assay also proved to be essential since some of the spore-forming microorganisms were detected only by the culture-based method. Presented here are the findings of the first comprehensive effort to assess the viability of microbial cells associated with ISS surfaces, and correlate differential viability with phylogenetic affiliation.

  18. Population viability analysis to identify management priorities for reintroduced elk in the Cumberland Mountains, Tennessee

    USGS Publications Warehouse

    Kindall, J.L.; Muller, L.I.; Clark, J.D.; Lupardus, J.L.; Murrow, J.L.

    2011-01-01

    We used an individual-based population model to perform a viability analysis to simulate population growth (λ) of 167 elk (Cervus elaphus manitobensis; 71 male and 96 female) released in the Cumberland Mountains, Tennessee, to estimate sustainability (i.e., λ > 1.0) and identify the most appropriate options for managing elk restoration. We transported elk from Elk Island National Park, Alberta, Canada, and from Land Between the Lakes, Kentucky, and reintroduced them beginning in December 2000 and ending in February 2003. We estimated annual survival rates for 156 radio-collared elk from December 2000 until November 2004. We used data from a nearby elk herd in Great Smoky Mountains National Park to simulate pessimistic and optimistic recruitment and performed population viability analyses to evaluate sustainability over a 25-year period. Annual survival averaged 0.799 (Total SE = 0.023). The primary identifiable sources of mortality were poaching, disease from meningeal worm (Parelaphostrongylus tenuis), and accidents (environmental causes and unintentional harvest). Population growth given pessimistic recruitment rates averaged 0.895 over 25 years (0.955 in year 1 to 0.880 in year 25); population growth was not sustainable in 100% of the runs. With the most optimistic estimates of recruitment, mean λ increased to 0.967 (1.038 in year 1 to 0.956 in year 25) with 99.6% of the runs failing to be sustainable. We suggest that further translocation efforts to increase herd size will be ineffective unless survival rates are increased in the Cumberland Mountains.

  19. Incorporating parametric uncertainty into population viability analysis models

    USGS Publications Warehouse

    McGowan, Conor P.; Runge, Michael C.; Larson, Michael A.

    2011-01-01

    Uncertainty in parameter estimates from sampling variation or expert judgment can introduce substantial uncertainty into ecological predictions based on those estimates. However, in standard population viability analyses, one of the most widely used tools for managing plant, fish and wildlife populations, parametric uncertainty is often ignored in or discarded from model projections. We present a method for explicitly incorporating this source of uncertainty into population models to fully account for risk in management and decision contexts. Our method involves a two-step simulation process where parametric uncertainty is incorporated into the replication loop of the model and temporal variance is incorporated into the loop for time steps in the model. Using the piping plover, a federally threatened shorebird in the USA and Canada, as an example, we compare abundance projections and extinction probabilities from simulations that exclude and include parametric uncertainty. Although final abundance was very low for all sets of simulations, estimated extinction risk was much greater for the simulation that incorporated parametric uncertainty in the replication loop. Decisions about species conservation (e.g., listing, delisting, and jeopardy) might differ greatly depending on the treatment of parametric uncertainty in population models.

  20. Estimating demographic contributions to effective population size in an age-structured wild population experiencing environmental and demographic stochasticity.

    PubMed

    Trask, Amanda E; Bignal, Eric M; McCracken, Davy I; Piertney, Stuart B; Reid, Jane M

    2017-09-01

    A population's effective size (N e ) is a key parameter that shapes rates of inbreeding and loss of genetic diversity, thereby influencing evolutionary processes and population viability. However, estimating N e , and identifying key demographic mechanisms that underlie the N e to census population size (N) ratio, remains challenging, especially for small populations with overlapping generations and substantial environmental and demographic stochasticity and hence dynamic age-structure. A sophisticated demographic method of estimating N e /N, which uses Fisher's reproductive value to account for dynamic age-structure, has been formulated. However, this method requires detailed individual- and population-level data on sex- and age-specific reproduction and survival, and has rarely been implemented. Here, we use the reproductive value method and detailed demographic data to estimate N e /N for a small and apparently isolated red-billed chough (Pyrrhocorax pyrrhocorax) population of high conservation concern. We additionally calculated two single-sample molecular genetic estimates of N e to corroborate the demographic estimate and examine evidence for unobserved immigration and gene flow. The demographic estimate of N e /N was 0.21, reflecting a high total demographic variance (σ2dg) of 0.71. Females and males made similar overall contributions to σ2dg. However, contributions varied among sex-age classes, with greater contributions from 3 year-old females than males, but greater contributions from ≥5 year-old males than females. The demographic estimate of N e was ~30, suggesting that rates of increase of inbreeding and loss of genetic variation per generation will be relatively high. Molecular genetic estimates of N e computed from linkage disequilibrium and approximate Bayesian computation were approximately 50 and 30, respectively, providing no evidence of substantial unobserved immigration which could bias demographic estimates of N e . Our analyses identify key sex-age classes contributing to demographic variance and thus decreasing N e /N in a small age-structured population inhabiting a variable environment. They thereby demonstrate how assessments of N e can incorporate stochastic sex- and age-specific demography and elucidate key demographic processes affecting a population's evolutionary trajectory and viability. Furthermore, our analyses show that N e for the focal chough population is critically small, implying that management to re-establish genetic connectivity may be required to ensure population viability. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  1. Linking population viability, habitat suitability, and landscape simulation models for conservation planning

    Treesearch

    Michael A. Larson; Frank R., III Thompson; Joshua J. Millspaugh; William D. Dijak; Stephen R. Shifley

    2004-01-01

    Methods for habitat modeling based on landscape simulations and population viability modeling based on habitat quality are well developed, but no published study of which we are aware has effectively joined them in a single, comprehensive analysis. We demonstrate the application of a population viability model for ovenbirds (Seiurus aurocapillus)...

  2. Comparison of reintroduction and enhancement effects on metapopulation viability

    USGS Publications Warehouse

    Halsey, Samniqueka J; Bell, Timothy J.; McEachern, A. Kathryn; Pavlovic, Noel B.

    2015-01-01

    Metapopulation viability depends upon a balance of extinction and colonization of local habitats by a species. Mechanisms that can affect this balance include physical characteristics related to natural processes (e.g. succession) as well as anthropogenic actions. Plant restorations can help to produce favorable metapopulation dynamics and consequently increase viability; however, to date no studies confirm this is true. Population viability analysis (PVA) allows for the use of empirical data to generate theoretical future projections in the form of median time to extinction and probability of extinction. In turn, PVAs can inform and aid the development of conservation, recovery, and management plans. Pitcher's thistle (Cirsium pitcheri) is a dune endemic that exhibited metapopulation dynamics. We projected viability of three natural and two restored populations with demographic data spanning 15–23 years to determine the degree the addition of reintroduced population affects metapopulation viability. The models were validated by comparing observed and projected abundances and adjusting parameters associated with demographic and environmental stochasticity to improve model performance. Our chosen model correctly predicted yearly population abundance for 60% of the population-years. Using that model, 50-year projections showed that the addition of reintroductions increases metapopulation viability. The reintroduction that simulated population performance in early-successional habitats had the maximum benefit. In situ enhancements of existing populations proved to be equally effective. This study shows that restorations can facilitate and improve metapopulation viability of species dependent on metapopulation dynamics for survival with long-term persistence of C. pitcheri in Indiana likely to depend on continued active management.

  3. Demographic monitoring and population viability analysis of two rare beardtongues from the Uinta Basin

    USGS Publications Warehouse

    McCaffery, Rebecca M.; Reisor, Rita; Irvine, Kathryn M.; Brunson, Jessi

    2014-01-01

    Energy development, in combination with other environmental stressors, poses a persistent threat to rare species endemic to the energy-producing regions of the Western United States. Demographic analyses of monitored populations can provide key information on the natural dynamics of threatened plant and animal populations, and how they might be affected by ongoing and future development. In the Uinta Basin in Utah and Colorado, Graham’s beardtongue (Penstemon grahamii) and White River beardtongue (Penstemon scariosus var. albifluvis) are two rare endemic wildflowers that persist on oil shale habitats heavily impacted by current energy exploration and development, and slated for expanded traditional drilling and oil shale development. We described demographic characteristics and population viability for two populations of each species that have been monitored since 2004. First, we measured population size, survival rates, transitions between life stages, and recruitment using individually marked plants at the four study areas. Then, we used matrix population models to determine stochastic population growth rates (λ) and the probability that each population would persist 50 years into the future, given current conditions. The two P. grahamii study plots had small populations averaging 70 adult plants, and relatively constant and high survival in both vegetative and flowering plants. The two P. scariosus var. albifluvis study plots had populations that averaged 120 adult plants, with high and stable survival in flowering plants and variable survival in vegetative plants. Recruitment of new seedlings into all populations was low and variable, with most recruitment occurring in one or two years. Both P. grahamii populations had λ near 1.0 (stable). One P. scariosus var. albifluvis population appeared to be declining (λ=0.97), while the other was increasing (λ=1.16). Our analyses reveal populations that appear relatively stable, but that are susceptible to declines now and into the future. Increases in environmental variability, deterministic changes in habitat conditions or stressors, or a single catastrophic event could all have immediately deleterious impacts on the long-term growth trajectory of these populations.

  4. Circumpolar contaminant concentrations in polar bears (Ursus maritimus) and potential population-level effects.

    PubMed

    Nuijten, R J M; Hendriks, A J; Jenssen, B M; Schipper, A M

    2016-11-01

    Polar bears (Ursus maritimus) currently receive much attention in the context of global climate change. However, there are other stressors that might threaten the viability of polar bear populations as well, such as exposure to anthropogenic pollutants. Lipophilic organic compounds bio-accumulate and bio-magnify in the food chain, leading to high concentrations at the level of top-predators. In Arctic wildlife, including the polar bear, various adverse health effects have been related to internal concentrations of commercially used anthropogenic chemicals like PCB and DDT. The extent to which these individual health effects are associated to population-level effects is, however, unknown. In this study we assembled data on adipose tissue concentrations of ∑PCB, ∑DDT, dieldrin and ∑PBDE in individual polar bears from peer-reviewed scientific literature. Data were available for 14 out of the 19 subpopulations. We found that internal concentrations of these contaminants exceed threshold values for adverse individual health effects in several subpopulations. In an exploratory regression analysis we identified a clear negative correlation between polar bear population density and sub-population specific contaminant concentrations in adipose tissue. The results suggest that adverse health effects of contaminants in individual polar bears may scale up to population-level consequences. Our study highlights the need to consider contaminant exposure along with other threats in polar bear population viability analyses. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. NexGen PVAs: Incorporating Eco-Evolutionary Processes into Population Viability Models

    EPA Science Inventory

    We examine how the integration of evolutionary and ecological processes in population dynamics – an emerging framework in ecology – could be incorporated into population viability analysis (PVA). Driven by parallel, complementary advances in population genomics and computational ...

  6. Achieving true sustainability of zoo populations.

    PubMed

    Lacy, Robert C

    2013-01-01

    For the last 30 years, cooperative management of irreplaceable animal populations in zoos and aquariums has focused primarily on the goal of minimizing genetic decay within defined time frames, and large advances have been made in technologies to optimize genetic management of closed populations. However, recent analyses have shown that most zoo programs are not projected to meet their stated goals. This has been described as a lack of achieving "sustainability" of the populations, yet by definition a goal of managed decay is not a plan for sustainability. True sustainability requires management of the resource in manner that does not deplete its value for the future. Achieving such sustainability for many managed populations may require changing from managing isolated populations to managing populations that are part of a broader metapopulation, with carefully considered exchange between populations across a spectrum of ex situ to in situ. Managing zoo populations as components of comprehensive conservation strategies for the species will require research on determinants of various kinds of genetic, physiological, behavioral, and morphological variation and their roles in population viability, development of an array of management techniques and tools, training of population managers in metapopulation management and integrated conservation planning, and projections of impacts of management strategies on the viability of the captive populations and all populations that are interactively managed or affected. Such a shift in goals and methods would result in zoo population management being an ongoing part of species conservation rather than short-term or isolated from species conservation. Zoo Biol. 32:19-26, 2013. © 2012 Wiley Periodicals, Inc. © 2012 Wiley Periodicals, Inc.

  7. Causes and Correlates of Calf Mortality in Captive Asian Elephants (Elephas maximus)

    PubMed Central

    Mar, Khyne U.; Lahdenperä, Mirkka; Lummaa, Virpi

    2012-01-01

    Juvenile mortality is a key factor influencing population growth rate in density-independent, predation-free, well-managed captive populations. Currently at least a quarter of all Asian elephants live in captivity, but both the wild and captive populations are unsustainable with the present fertility and calf mortality rates. Despite the need for detailed data on calf mortality to manage effectively populations and to minimize the need for capture from the wild, very little is known of the causes and correlates of calf mortality in Asian elephants. Here we use the world's largest multigenerational demographic dataset on a semi-captive population of Asian elephants compiled from timber camps in Myanmar to investigate the survival of calves (n = 1020) to age five born to captive-born mothers (n = 391) between 1960 and 1999. Mortality risk varied significantly across different ages and was higher for males at any age. Maternal reproductive history was associated with large differences in both stillbirth and liveborn mortality risk: first-time mothers had a higher risk of calf loss as did mothers producing another calf soon (<3.7 years) after a previous birth, and when giving birth at older age. Stillbirth (4%) and pre-weaning mortality (25.6%) were considerably lower than those reported for zoo elephants and used in published population viability analyses. A large proportion of deaths were caused by accidents and lack of maternal milk/calf weakness which both might be partly preventable by supplementary feeding of mothers and calves and work reduction of high-risk mothers. Our results on Myanmar timber elephants with an extensive keeping system provide an important comparison to compromised survivorship reported in zoo elephants. They have implications for improving captive working elephant management systems in range countries and for refining population viability analyses with realistic parameter values in order to predict future population size of the Asian elephant. PMID:22396757

  8. Causes and correlates of calf mortality in captive Asian elephants (Elephas maximus).

    PubMed

    Mar, Khyne U; Lahdenperä, Mirkka; Lummaa, Virpi

    2012-01-01

    Juvenile mortality is a key factor influencing population growth rate in density-independent, predation-free, well-managed captive populations. Currently at least a quarter of all Asian elephants live in captivity, but both the wild and captive populations are unsustainable with the present fertility and calf mortality rates. Despite the need for detailed data on calf mortality to manage effectively populations and to minimize the need for capture from the wild, very little is known of the causes and correlates of calf mortality in Asian elephants. Here we use the world's largest multigenerational demographic dataset on a semi-captive population of Asian elephants compiled from timber camps in Myanmar to investigate the survival of calves (n = 1020) to age five born to captive-born mothers (n = 391) between 1960 and 1999. Mortality risk varied significantly across different ages and was higher for males at any age. Maternal reproductive history was associated with large differences in both stillbirth and liveborn mortality risk: first-time mothers had a higher risk of calf loss as did mothers producing another calf soon (<3.7 years) after a previous birth, and when giving birth at older age. Stillbirth (4%) and pre-weaning mortality (25.6%) were considerably lower than those reported for zoo elephants and used in published population viability analyses. A large proportion of deaths were caused by accidents and lack of maternal milk/calf weakness which both might be partly preventable by supplementary feeding of mothers and calves and work reduction of high-risk mothers. Our results on Myanmar timber elephants with an extensive keeping system provide an important comparison to compromised survivorship reported in zoo elephants. They have implications for improving captive working elephant management systems in range countries and for refining population viability analyses with realistic parameter values in order to predict future population size of the Asian elephant.

  9. Factors leading to different viability predictions for a grizzly bear data set

    USGS Publications Warehouse

    Mills, L.S.; Hayes, S.G.; Wisdom, M.J.; Citta, J.; Mattson, D.J.; Murphy, K.

    1996-01-01

    Population viability analysis programs are being used increasingly in research and management applications, but there has not been a systematic study of the congruence of different program predictions based on a single data set. We performed such an analysis using four population viability analysis computer programs: GAPPS, INMAT, RAMAS/AGE, and VORTEX. The standardized demographic rates used in all programs were generalized from hypothetical increasing and decreasing grizzly bear (Ursus arctos horribilis) populations. Idiosyncracies of input format for each program led to minor differences in intrinsic growth rates that translated into striking differences in estimates of extinction rates and expected population size. In contrast, the addition of demographic stochasticity, environmental stochasticity, and inbreeding costs caused only a small divergence in viability predictions. But, the addition of density dependence caused large deviations between the programs despite our best attempts to use the same density-dependent functions. Population viability programs differ in how density dependence is incorporated, and the necessary functions are difficult to parameterize accurately. Thus, we recommend that unless data clearly suggest a particular density-dependent model, predictions based on population viability analysis should include at least one scenario without density dependence. Further, we describe output metrics that may differ between programs; development of future software could benefit from standardized input and output formats across different programs.

  10. Population viability assessment of salmonids by using probabilistic networks

    Treesearch

    Danny C. Lee; Bruce E. Rieman

    1997-01-01

    Public agencies are being asked to quantitatively assess the impact of land management activities on sensitive populations of salmonids. To aid in these assessments, we developed a Bayesian viability assessment procedure (BayVAM) to help characterize land use risks to salmonids in the Pacific Northwest. This procedure incorporates a hybrid approach to viability...

  11. EVALUATING HABITAT AS A SURROGATE FOR POPULATION VIABILITY USING A SPATIALLY EXPLICIT POPULATION MODEL

    EPA Science Inventory

    Because data for conservation planning are always limited, surrogates are often substituted for intractable measurements such as species richness or population viability. We examined the ability of habitat quality to act as a surrogate for population performance for both Red-sho...

  12. Potential for adaptive evolution at species range margins: contrasting interactions between red coral populations and their environment in a changing ocean.

    PubMed

    Ledoux, Jean-Baptiste; Aurelle, Didier; Bensoussan, Nathaniel; Marschal, Christian; Féral, Jean-Pierre; Garrabou, Joaquim

    2015-03-01

    Studying population-by-environment interactions (PEIs) at species range margins offers the opportunity to characterize the responses of populations facing an extreme regime of selection, as expected due to global change. Nevertheless, the importance of these marginal populations as putative reservoirs of adaptive genetic variation has scarcely been considered in conservation biology. This is particularly true in marine ecosystems for which the deep refugia hypothesis proposes that disturbed shallow and marginal populations of a given species can be replenished by mesophotic ones. This hypothesis therefore assumes that identical PEIs exist between populations, neglecting the potential for adaptation at species range margins. Here, we combine reciprocal transplant and common garden experiments with population genetics analyses to decipher the PEIs in the red coral, Corallium rubrum. Our analyses reveal partially contrasting PEIs between shallow and mesophotic populations separated by approximately one hundred meters, suggesting that red coral populations may potentially be locally adapted to their environment. Based on the effective population size and connectivity analyses, we posit that genetic drift may be more important than gene flow in the adaptation of the red coral. We further investigate how adaptive divergence could impact population viability in the context of warming and demonstrate differential phenotypic buffering capacities against thermal stress. Our study questions the relevance of the deep refugia hypothesis and highlights the conservation value of marginal populations as a putative reservoir of adaptive genetic polymorphism.

  13. Life history, population viability, and the potential for local adaptation in isolated trout populations

    Treesearch

    K. J. Carim; Y. Vindenes; L. A. Eby; C. Barfoot; L. A. Vollestad

    2017-01-01

    Habitat loss and fragmentation have caused population decline across taxa through impacts on life history diversity, dispersal patterns, and gene flow. Yet, intentional isolation of native fish populations is a frequently used management strategy to protect against negative interactions with invasive fish species. We evaluated the population viability and genetic...

  14. Landscape-based population viability models demonstrate importance of strategic conservation planning for birds

    Treesearch

    Thomas W. Bonnot; Frank R. Thompson; Joshua J. Millspaugh; D. Todd Jones-Farland

    2013-01-01

    Efforts to conserve regional biodiversity in the face of global climate change, habitat loss and fragmentation will depend on approaches that consider population processes at multiple scales. By combining habitat and demographic modeling, landscape-based population viability models effectively relate small-scale habitat and landscape patterns to regional population...

  15. Viability and Isolation of Marine Bacteria by Dilution Culture: Theory, Procedures, and Initial Results

    PubMed Central

    Button, D. K.; Schut, Frits; Quang, Pham; Martin, Ravonna; Robertson, Betsy R.

    1993-01-01

    Dilution culture, a method for growing the typical small bacteria from natural aquatic assemblages, has been developed. Each of 11 experimental trials of the technique was successful. Populations are measured, diluted to a small and known number of cells, inoculated into unamended sterilized seawater, and examined three times for the presence of 104 or more cells per ml over a 9-week interval. Mean viability for assemblage members is obtained from the frequency of growth, and many of the cultures produced are pure. Statistical formulations for determining viability and the frequency of pure culture production are derived. Formulations for associated errors are derived as well. Computer simulations of experiments agreed with computed values within the expected error, which verified the formulations. These led to strategies for optimizing viability determinations and pure culture production. Viabilities were usually between 2 and 60% and decreased with >5 mg of amino acids per liter as carbon. In view of difficulties in growing marine oligobacteria, these high values are noteworthy. Significant differences in population characteristics during growth, observed by high-resolution flow cytometry, suggested substantial population diversity. Growth of total populations as well as of cytometry-resolved subpopulations sometimes were truncated at levels of near 104 cells per ml, showing that viable cells could escape detection. Viability is therefore defined as the ability to grow to that population; true viabilities could be even higher. Doubling times, based on whole populations as well as individual subpopulations, were in the 1-day to 1-week range. Data were examined for changes in viability with dilution suggesting cell-cell interactions, but none could be confirmed. The frequency of pure culture production can be adjusted by inoculum size if the viability is known. These apparently pure cultures produced retained the size and apparent DNA-content characteristic of the bulk of the organisms in the parent seawater. Three cultures are now available, two of which have been carried for 3 years. The method is thus seen as a useful step for improving our understanding of typical aquatic organisms. PMID:16348896

  16. Environmental factors influence both abundance and genetic diversity in a widespread bird species

    PubMed Central

    Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael

    2013-01-01

    Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations. PMID:24363897

  17. The history of effective population size and genetic diversity in the Yellowstone grizzly (Ursus arctos): implications for conservation.

    PubMed

    Miller, Craig R; Waits, Lisette P

    2003-04-01

    Protein, mtDNA, and nuclear microsatellite DNA analyses have demonstrated that the Yellowstone grizzly bear has low levels of genetic variability compared with other Ursus arctos populations. Researchers have attributed this difference to inbreeding during a century of anthropogenic isolation and population size reduction. We test this hypothesis and assess the seriousness of genetic threats by generating microsatellite data for 110 museum specimens collected between 1912 and 1981. A loss of variability is detected, but it is much less severe than hypothesized. Variance in allele frequencies over time is used to estimate an effective population size of approximately 80 across the 20th century and >100 currently. The viability of the population is unlikely to be substantially reduced by genetic factors in the next several generations. However, gene flow from outside populations will be beneficial in avoiding inbreeding and the erosion of genetic diversity in the future.

  18. Fatalities at wind turbines may threaten population viability of a migratory bat

    Treesearch

    W.F. Frick; E.F. Baerwald; J.F. Pollock; R.M.R. Barclay; J.A. Szymanski; Ted Weller; A.L. Russell; Susan Loeb; R.A. Medellin; L.P. McGuire

    2017-01-01

    Large numbers of migratory bats are killed every year at wind energy facilities. However, population-level impacts are unknown as we lack basic demographic information about these species. We investigated whether fatalities at wind turbines could impact population viability of migratory bats, focusing on the hoary bat (Lasiurus cinereus),...

  19. Developing population models with data from marked individuals

    USGS Publications Warehouse

    Hae Yeong Ryu,; Kevin T. Shoemaker,; Eva Kneip,; Anna Pidgeon,; Patricia Heglund,; Brooke Bateman,; Thogmartin, Wayne E.; Reşit Akçakaya,

    2016-01-01

    Population viability analysis (PVA) is a powerful tool for biodiversity assessments, but its use has been limited because of the requirements for fully specified population models such as demographic structure, density-dependence, environmental stochasticity, and specification of uncertainties. Developing a fully specified population model from commonly available data sources – notably, mark–recapture studies – remains complicated due to lack of practical methods for estimating fecundity, true survival (as opposed to apparent survival), natural temporal variability in both survival and fecundity, density-dependence in the demographic parameters, and uncertainty in model parameters. We present a general method that estimates all the key parameters required to specify a stochastic, matrix-based population model, constructed using a long-term mark–recapture dataset. Unlike standard mark–recapture analyses, our approach provides estimates of true survival rates and fecundities, their respective natural temporal variabilities, and density-dependence functions, making it possible to construct a population model for long-term projection of population dynamics. Furthermore, our method includes a formal quantification of parameter uncertainty for global (multivariate) sensitivity analysis. We apply this approach to 9 bird species and demonstrate the feasibility of using data from the Monitoring Avian Productivity and Survivorship (MAPS) program. Bias-correction factors for raw estimates of survival and fecundity derived from mark–recapture data (apparent survival and juvenile:adult ratio, respectively) were non-negligible, and corrected parameters were generally more biologically reasonable than their uncorrected counterparts. Our method allows the development of fully specified stochastic population models using a single, widely available data source, substantially reducing the barriers that have until now limited the widespread application of PVA. This method is expected to greatly enhance our understanding of the processes underlying population dynamics and our ability to analyze viability and project trends for species of conservation concern.

  20. Climate warming alters effects of management on population viability of threatened species: results from a 30-year experimental study on a rare orchid.

    PubMed

    Sletvold, Nina; Dahlgren, Johan P; Oien, Dag-Inge; Moen, Asbjørn; Ehrlén, Johan

    2013-09-01

    Climate change is expected to influence the viability of populations both directly and indirectly, via species interactions. The effects of large-scale climate change are also likely to interact with local habitat conditions. Management actions designed to preserve threatened species therefore need to adapt both to the prevailing climate and local conditions. Yet, few studies have separated the direct and indirect effects of climatic variables on the viability of local populations and discussed the implications for optimal management. We used 30 years of demographic data to estimate the simultaneous effects of management practice and among-year variation in four climatic variables on individual survival, growth and fecundity in one coastal and one inland population of the perennial orchid Dactylorhiza lapponica in Norway. Current management, mowing, is expected to reduce competitive interactions. Statistical models of how climate and management practice influenced vital rates were incorporated into matrix population models to quantify effects on population growth rate. Effects of climate differed between mown and control plots in both populations. In particular, population growth rate increased more strongly with summer temperature in mown plots than in control plots. Population growth rate declined with spring temperature in the inland population, and with precipitation in the coastal population, and the decline was stronger in control plots in both populations. These results illustrate that both direct and indirect effects of climate change are important for population viability and that net effects depend both on local abiotic conditions and on biotic conditions in terms of management practice and intensity of competition. The results also show that effects of management practices influencing competitive interactions can strongly depend on climatic factors. We conclude that interactions between climate and management should be considered to reliably predict future population viability and optimize conservation actions. © 2013 John Wiley & Sons Ltd.

  1. Sperm competition games: sperm selection by females.

    PubMed

    Ball, M A; Parker, G A

    2003-09-07

    We analyse a co-evolutionary sexual conflict game, in which males compete for fertilizations (sperm competition) and females operate sperm selection against unfavourable ejaculates (cryptic female choice). For simplicity, each female mates with two males per reproductive event, and the competing ejaculates are of two types, favourable (having high viability or success) or unfavourable (where progeny are less successful). Over evolutionary time, females can increase their level of sperm selection (measured as the proportion of unfavourable sperm eliminated) by paying a fecundity cost. Males can regulate sperm allocations depending on whether they will be favoured or disfavoured, but increasing sperm allocation reduces their mating rate. The resolution of this game depends on whether males are equal, or unequal. Males could be equal: each is favoured with probability, p, reflecting the proportion of females in the population that favour his ejaculate (the 'random-roles' model); different males are favoured by different sets of females. Alternatively, males could be unequal: given males are perceived consistently by all females as two distinct types, favoured and disfavoured, where p is now the frequency of the favoured male type in the population (the 'constant-types' model). In both cases, the evolutionarily stable strategy (ESS) is for females initially to increase sperm selection from zero as the viability of offspring from unfavourable ejaculates falls below that of favourable ejaculates. But in the random-roles model, sperm selection decreases again towards zero as the unfavourable ejaculates become disastrous (i.e. as their progeny viability decreases towards zero). This occurs because males avoid expenditure in unfavourable matings, to conserve sperm for matings in the favoured role where their offspring have high viability, thus allowing females to relax sperm selection. If sperm selection is costly to females, ESS sperm selection is high across a region of intermediate viabilities. If it is uncostly, there is no ESS in this region unless sperm limitation (i.e. some eggs fail to be fertilized because sperm numbers are too low) is included into the model. In the constant-types model, no relaxation of sperm selection occurs at very low viabilities of disfavoured male progeny. If sperm selection is sufficiently costly, ESS sperm selection increases as progeny viability decreases down towards zero; but if it is uncostly, there is no ESS at the lowest viabilities, and unlike the random-roles model, this cannot be stabilized by including sperm limitation. Sperm allocations in the ESS regions differ between the two models. With random roles, males always allocate more sperm in the favoured role. With constant types, the male type that is favoured allocates less sperm than the disfavoured type. These results suggests that empiricists studying cryptic female choice and sperm allocation patterns need to determine whether sperm selection is applied differently, or consistently, on given males by different females in the same population.

  2. Simulated effects of recruitment variability, exploitation, and reduced habitat area on the muskellunge population in Shoepack Lake, Voyageurs National Park, Minnesota

    USGS Publications Warehouse

    Frohnauer, N.K.; Pierce, C.L.; Kallemeyn, L.W.

    2007-01-01

    The genetically unique population of muskellunge Esox masquinongy inhabiting Shoepack Lake in Voyageurs National Park, Minnesota, is potentially at risk for loss of genetic variability and long-term viability. Shoepack Lake has been subject to dramatic surface area changes from the construction of an outlet dam by beavers Castor canadensis and its subsequent failure. We simulated the long-term dynamics of this population in response to recruitment variation, increased exploitation, and reduced habitat area. We then estimated the effective population size of the simulated population and evaluated potential threats to long-term viability, based on which we recommend management actions to help preserve the long-term viability of the population. Simulations based on the population size and habitat area at the beginning of a companion study resulted in an effective population size that was generally above the threshold level for risk of loss of genetic variability, except when fishing mortality was increased. Simulations based on the reduced habitat area after the beaver dam failure and our assumption of a proportional reduction in population size resulted in an effective population size that was generally below the threshold level for risk of loss of genetic variability. Our results identified two potential threats to the long-term viability of the Shoepack Lake muskellunge population, reduction in habitat area and exploitation. Increased exploitation can be prevented through traditional fishery management approaches such as the adoption of no-kill, barbless hook, and limited entry regulations. Maintenance of the greatest possible habitat area and prevention of future habitat area reductions will require maintenance of the outlet dam built by beavers. Our study should enhance the long-term viability of the Shoepack Lake muskellunge population and illustrates a useful approach for other unique populations. ?? Copyright by the American Fisheries Society 2007.

  3. Widespread GLI expression but limited canonical hedgehog signaling restricted to the ductular reaction in human chronic liver disease

    PubMed Central

    Tirnitz-Parker, Janina Elke Eleonore; Hamson, Elizabeth Jane; Warren, Alessandra; Maneck, Bharvi; Chen, Jinbiao; Patkunanathan, Bramilla; Boland, Jade; Cheng, Robert; Shackel, Nicholas Adam; Seth, Devanshi; Bowen, David Geoffrey; Martelotto, Luciano Gastón; Watkins, D. Neil; McCaughan, Geoffrey William

    2017-01-01

    Canonical Hedgehog (Hh) signaling in vertebrate cells occurs following Smoothened activation/translocation into the primary cilia (Pc), followed by a GLI transcriptional response. Nonetheless, GLI activation can occur independently of the canonical Hh pathway. Using a murine model of liver injury, we previously identified the importance of canonical Hh signaling within the Pc+ liver progenitor cell (LPC) population and noted that SMO-independent, GLI-mediated signals were important in multiple Pc-ve GLI2+ intrahepatic populations. This study extends these observations to human liver tissue, and analyses the effect of GLI inhibition on LPC viability/gene expression. Human donor and cirrhotic liver tissue specimens were evaluated for SHH, GLI2 and Pc expression using immunofluorescence and qRT-PCR. Changes to viability and gene expression in LPCs in vitro were assessed following GLI inhibition. Identification of Pc (as a marker of canonical Hh signaling) in human cirrhosis was predominantly confined to the ductular reaction and LPCs. In contrast, GLI2 was expressed in multiple cell populations including Pc-ve endothelium, hepatocytes, and leukocytes. HSCs/myofibroblasts (>99%) expressed GLI2, with only 1.92% displaying Pc. In vitro GLI signals maintained proliferation/viability within LPCs and GLI inhibition affected the expression of genes related to stemness, hepatocyte/biliary differentiation and Hh/Wnt signaling. At least two mechanisms of GLI signaling (Pc/SMO-dependent and Pc/SMO-independent) mediate chronic liver disease pathogenesis. This may have significant ramifications for the choice of Hh inhibitor (anti-SMO or anti-GLI) suitable for clinical trials. We also postulate GLI delivers a pro-survival signal to LPCs whilst maintaining stemness. PMID:28187190

  4. Widespread GLI expression but limited canonical hedgehog signaling restricted to the ductular reaction in human chronic liver disease.

    PubMed

    Grzelak, Candice Alexandra; Sigglekow, Nicholas David; Tirnitz-Parker, Janina Elke Eleonore; Hamson, Elizabeth Jane; Warren, Alessandra; Maneck, Bharvi; Chen, Jinbiao; Patkunanathan, Bramilla; Boland, Jade; Cheng, Robert; Shackel, Nicholas Adam; Seth, Devanshi; Bowen, David Geoffrey; Martelotto, Luciano Gastón; Watkins, D Neil; McCaughan, Geoffrey William

    2017-01-01

    Canonical Hedgehog (Hh) signaling in vertebrate cells occurs following Smoothened activation/translocation into the primary cilia (Pc), followed by a GLI transcriptional response. Nonetheless, GLI activation can occur independently of the canonical Hh pathway. Using a murine model of liver injury, we previously identified the importance of canonical Hh signaling within the Pc+ liver progenitor cell (LPC) population and noted that SMO-independent, GLI-mediated signals were important in multiple Pc-ve GLI2+ intrahepatic populations. This study extends these observations to human liver tissue, and analyses the effect of GLI inhibition on LPC viability/gene expression. Human donor and cirrhotic liver tissue specimens were evaluated for SHH, GLI2 and Pc expression using immunofluorescence and qRT-PCR. Changes to viability and gene expression in LPCs in vitro were assessed following GLI inhibition. Identification of Pc (as a marker of canonical Hh signaling) in human cirrhosis was predominantly confined to the ductular reaction and LPCs. In contrast, GLI2 was expressed in multiple cell populations including Pc-ve endothelium, hepatocytes, and leukocytes. HSCs/myofibroblasts (>99%) expressed GLI2, with only 1.92% displaying Pc. In vitro GLI signals maintained proliferation/viability within LPCs and GLI inhibition affected the expression of genes related to stemness, hepatocyte/biliary differentiation and Hh/Wnt signaling. At least two mechanisms of GLI signaling (Pc/SMO-dependent and Pc/SMO-independent) mediate chronic liver disease pathogenesis. This may have significant ramifications for the choice of Hh inhibitor (anti-SMO or anti-GLI) suitable for clinical trials. We also postulate GLI delivers a pro-survival signal to LPCs whilst maintaining stemness.

  5. Developing metapopulation connectivity criteria from genetic and habitat data to recover the endangered Mexican wolf.

    PubMed

    Carroll, Carlos; Fredrickson, Richard J; Lacy, Robert C

    2014-02-01

    Restoring connectivity between fragmented populations is an important tool for alleviating genetic threats to endangered species. Yet recovery plans typically lack quantitative criteria for ensuring such population connectivity. We demonstrate how models that integrate habitat, genetic, and demographic data can be used to develop connectivity criteria for the endangered Mexican wolf (Canis lupus baileyi), which is currently being restored to the wild from a captive population descended from 7 founders. We used population viability analysis that incorporated pedigree data to evaluate the relation between connectivity and persistence for a restored Mexican wolf metapopulation of 3 populations of equal size. Decreasing dispersal rates greatly increased extinction risk for small populations (<150-200), especially as dispersal rates dropped below 0.5 genetically effective migrants per generation. We compared observed migration rates in the Northern Rocky Mountains (NRM) wolf metapopulation to 2 habitat-based effective distance metrics, least-cost and resistance distance. We then used effective distance between potential primary core populations in a restored Mexican wolf metapopulation to evaluate potential dispersal rates. Although potential connectivity was lower in the Mexican wolf versus the NRM wolf metapopulation, a connectivity rate of >0.5 genetically effective migrants per generation may be achievable via natural dispersal under current landscape conditions. When sufficient data are available, these methods allow planners to move beyond general aspirational connectivity goals or rules of thumb to develop objective and measurable connectivity criteria that more effectively support species recovery. The shift from simple connectivity rules of thumb to species-specific analyses parallels the previous shift from general minimum-viable-population thresholds to detailed viability modeling in endangered species recovery planning. © 2013 Society for Conservation Biology.

  6. Estimating functional connectivity of wildlife habitat and its relevance to ecological risk assessment

    USGS Publications Warehouse

    Johnson, A.R.; Allen, Craig R.; Simpson, K.A.N.; Kapustka, Lawrence; Biddinger, Gregory R.; Luxon, Matthew; Galbraith, Hector

    2004-01-01

    Habitat fragmentation is a major threat to the viability of wildlife populations and the maintenance of biodiversity. Fragmentation relates to the sub-division of habitat into disjunct patches. Usually coincident with fragmentation per se is loss of habitat, a reduction in the size of the remnant patches, and increasing distance between patches. Natural and anthropogenic processes leading to habitat fragmentation occur at many spatial scales, and their impacts on wildlife depend on the scales at which species interact with the landscape. The concept of functional connectivity captures this organism-based view of the relative ease of movement or degree of exchange between physically disjunct habitat patches. Functional connectivity of a given habitat arrangement for a given wildlife species depends on details of the organism's life history and behavioral ecology, but, for broad categories of species, quantities such as home range size and dispersal distance scale allometrically with body mass. These relationships can be incorporated into spatial analyses of functional connectivity, which can be quantified by indices or displayed graphically in maps. We review indices and GIS-based approaches to estimating functional connectivity, presenting examples from the literature and our own work on mammalian distributions. Such analyses can be readily incorporated within an ecological risk framework. Estimates of functional connectivity may be useful in a screening-level assessment of the impact of habitat fragmentation relative to other stressors, and may be crucial in detailed population modeling and viability analysis.

  7. Population Change, Community Viability, and Migration Intentions in Selected Utah Communities. Research Report 51.

    ERIC Educational Resources Information Center

    Kim, Yun; And Others

    The first phase of a longitudinal research project, "Assessing Rural Communities' Viability and Associated Factors Under Conditions of Population Change," was conducted in 1975 in eight Utah communities (Panguitch, Richfield, Salina, Delta, Moab, Duchesne, Roosevelt, and Vernal) to provide useful information for planners, researchers,…

  8. Density and population viability of coastal marten: a rare and geographically isolated small carnivore

    PubMed Central

    Green, David S.; Levi, Taal

    2018-01-01

    Pacific martens (Martes caurina humboldtensis) in coastal forests of Oregon and northern California in the United States are rare and geographically isolated, prompting a petition for listing under the Endangered Species Act. If listed, regulations have the potential to influence land-use decisions on public and private lands, but no estimates of population size, density, or viability of remnant marten populations are available for evaluating their conservation status. We used GPS and VHF telemetry and spatial mark-resight to estimate home ranges, density, and population size of Pacific martens in the Oregon Dunes National Recreation Area, central coast Oregon, USA. We then estimated population viability at differing levels of human-caused mortality (e.g., vehicle mortality). Marten home ranges were small on average (females = 0.8 km2, males 1.5 km2) and density (1.13 martens/1 km2) was the highest reported for North American populations (M. caurina, M. americana). We estimated 71 adult martens (95% CRI [41–87]) across two subpopulations separated by a large barrier (Umpqua River). Using population viability analysis, extinction risk for a subpopulation of 30 martens, approximately the size of the subpopulation south of the Umpqua River, ranged from 32% to 99% with two or three annual human-caused mortalities within 30 years. Absent population expansion, limiting human-caused mortalities will likely have the greatest conservation impact. PMID:29637018

  9. Large-scale absence of sharks on reefs in the greater-Caribbean: a footprint of human pressures.

    PubMed

    Ward-Paige, Christine A; Mora, Camilo; Lotze, Heike K; Pattengill-Semmens, Christy; McClenachan, Loren; Arias-Castro, Ery; Myers, Ransom A

    2010-08-05

    In recent decades, large pelagic and coastal shark populations have declined dramatically with increased fishing; however, the status of sharks in other systems such as coral reefs remains largely unassessed despite a long history of exploitation. Here we explore the contemporary distribution and sighting frequency of sharks on reefs in the greater-Caribbean and assess the possible role of human pressures on observed patterns. We analyzed 76,340 underwater surveys carried out by trained volunteer divers between 1993 and 2008. Surveys were grouped within one km2 cells, which allowed us to determine the contemporary geographical distribution and sighting frequency of sharks. Sighting frequency was calculated as the ratio of surveys with sharks to the total number of surveys in each cell. We compared sighting frequency to the number of people in the cell vicinity and used population viability analyses to assess the effects of exploitation on population trends. Sharks, with the exception of nurse sharks occurred mainly in areas with very low human population or strong fishing regulations and marine conservation. Population viability analysis suggests that exploitation alone could explain the large-scale absence; however, this pattern is likely to be exacerbated by additional anthropogenic stressors, such as pollution and habitat degradation, that also correlate with human population. Human pressures in coastal zones have lead to the broad-scale absence of sharks on reefs in the greater-Caribbean. Preventing further loss of sharks requires urgent management measures to curb fishing mortality and to mitigate other anthropogenic stressors to protect sites where sharks still exist. The fact that sharks still occur in some densely populated areas where strong fishing regulations are in place indicates the possibility of success and encourages the implementation of conservation measures.

  10. Actual and potential use of population viability analyses in recovery of plant species listed under the US endangered species act.

    PubMed

    Zeigler, Sara L; Che-Castaldo, Judy P; Neel, Maile C

    2013-12-01

    Use of population viability analyses (PVAs) in endangered species recovery planning has been met with both support and criticism. Previous reviews promote use of PVA for setting scientifically based, measurable, and objective recovery criteria and recommend improvements to increase the framework's utility. However, others have questioned the value of PVA models for setting recovery criteria and assert that PVAs are more appropriate for understanding relative trade-offs between alternative management actions. We reviewed 258 final recovery plans for 642 plants listed under the U.S. Endangered Species Act to determine the number of plans that used or recommended PVA in recovery planning. We also reviewed 223 publications that describe plant PVAs to assess how these models were designed and whether those designs reflected previous recommendations for improvement of PVAs. Twenty-four percent of listed species had recovery plans that used or recommended PVA. In publications, the typical model was a matrix population model parameterized with ≤5 years of demographic data that did not consider stochasticity, genetics, density dependence, seed banks, vegetative reproduction, dormancy, threats, or management strategies. Population growth rates for different populations of the same species or for the same population at different points in time were often statistically different or varied by >10%. Therefore, PVAs parameterized with underlying vital rates that vary to this degree may not accurately predict recovery objectives across a species' entire distribution or over longer time scales. We assert that PVA, although an important tool as part of an adaptive-management program, can help to determine quantitative recovery criteria only if more long-term data sets that capture spatiotemporal variability in vital rates become available. Lacking this, there is a strong need for viable and comprehensive methods for determining quantitative, science-based recovery criteria for endangered species with minimal data availability. Uso Actual y Potencial del Análisis de Viabilidad Poblacional para la Recuperación de Especies de Plantas Enlistadas en el Acta de Especies En Peligro de E.U.A. © 2013 Society for Conservation Biology.

  11. Effect of chitosan and SO2 on viability of Acetobacter strains in wine.

    PubMed

    Valera, Maria José; Sainz, Florencia; Mas, Albert; Torija, María Jesús

    2017-04-04

    Wine spoilage is an important concern for winemakers to preserve the quality of their final product and avoid contamination throughout the production process. The use of sulphur dioxide (SO 2 ) is highly recommended to prevent wine spoilage due to its antimicrobial activity. However, SO 2 has a limited effect on the viability of acetic acid bacteria (AAB). Currently, the use of SO 2 alternatives is favoured in order to reduce the use of chemicals and improve stabilization in winemaking. Chitosan is a biopolymer that is approved by the European authorities and the International Organization of Vine and Wine to be used as a fining agent and antimicrobial in wines. However, its effectiveness in AAB prevention has not been studied. Two strains of Acetobacter, adapted to high ethanol environments, were analysed in this study. Both chitosan and SO 2 effects were compared in artificially contaminated wines. Both molecules reduced the metabolic activity of both AAB strains. Although AAB populations were detected by culture independent techniques, their numbers were reduced with time, and their viability decreased following the application of both products, especially with chitosan. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Determination of Ancylostoma caninum ova viability using metabolic profiling.

    PubMed

    Gyawali, P; Beale, D J; Ahmed, W; Karpe, A V; Magalhaes, R J Soares; Morrison, P D; Palombo, E A

    2016-09-01

    Differentiation between viable and non-viable hookworm ova in environmental samples is necessary in order to implement strategies to mitigate re-infections in endemic regions. In this study, an untargeted metabolic profiling method was developed that utilised gas chromatography-mass spectrometry (GC-MS) in order to investigate hookworm ova viability. Ancylostoma caninum was used to investigate the metabolites within viable and non-viable ova. Univariate and multivariate statistical analyses of the data resulted in the identification of 53 significant metabolites across all hookworm ova samples. The major compounds observed in viable and non-viable hookworm ova were tetradecanoic acid, commonly known as myristic acid [fold change (FC) = 0.4], and dodecanoic acid, commonly known as lauric acid (FC = 0.388). Additionally, the viable ova had self-protecting metabolites such as prostaglandins, a typical feature absent in non-viable ova. The results of this study demonstrate that metabolic profiling using GC-MS methods can be used to determine the viability of canine hookworm ova. Further studies are needed to assess the applicability of metabolic profiling using GC-MS to detect viable hookworm ova in the mixed (viable and non-viable) populations from environmental samples and identify the metabolites specific to human hookworm species.

  13. Effect of storage time on the viability of cryopreserved bovine spermatozoa

    USDA-ARS?s Scientific Manuscript database

    Long term cryopreserved semen viability can impact the National Animal Germplasm Program’s (NAGP) sampling strategy and ability to reconstitute livestock populations. Therefore, the purpose of this project was to determine if prolonged storage of cryopreserved sperm impacts cell viability. Cryoprese...

  14. Algae viability over time in a ballast water sample

    NASA Astrophysics Data System (ADS)

    Gollasch, Stephan; David, Matej

    2018-03-01

    The biology of vessels' ballast water needs to be analysed for several reasons, one of these being performance tests of ballast water management systems. This analysis includes a viability assessment of phytoplankton. To overcome logistical problems to get algae sample processing gear on board of a vessel to document algae viability, samples may be transported to land-based laboratories. Concerns were raised how the storage conditions of the sample may impact algae viability over time and what the most appropriate storage conditions were. Here we answer these questions with a long-term algae viability study with daily sample analysis using Pulse-Amplitude Modulated (PAM) fluorometry. The sample was analysed over 79 days. We tested different storage conditions: fridge and room temperature with and without light. It seems that during the first two weeks of the experiment the viability remains almost unchanged with a slight downwards trend. In the continuing period, before the sample was split, a slightly stronger downwards viability trend was observed, which occurred at a similar rate towards the end of the experiment. After the sample was split, the strongest viability reduction was measured for the sample stored without light at room temperature. We concluded that the storage conditions, especially regarding temperature and light exposure, have a stronger impact on algae viability compared to the storage duration and that inappropriate storage conditions reduce algal viability. A sample storage time of up to two weeks in a dark and cool environment has little influence on the organism viability. This indicates that a two week time duration between sample taking on board a vessel and the viability measurement in a land-based laboratory may not be very critical.

  15. Population viability impacts of habitat additions and subtractions: A simulation experiment with endangered kangaroo rats

    EPA Science Inventory

    Species viability is influenced by the quality, quantity and configuration of habitat. For species at risk, a principal challenge is to identify landscape configurations that, if realized, would improve a population’s viability or restoration potential. Critical habitat patche...

  16. Population viability as a measure of forest sustainability

    Treesearch

    Eric T. Linder; Nathan A. Klaus; David A. Buehler

    2004-01-01

    Many forest managers work to balance timber production with protection of ecological processes and other nontimber values. The preservation of biodiversity is an important nontimber value. When a suite of management options is being developed, it is difficult to estimate quantitatively the impact of the various scenarios on biodiversity. We suggest population viability...

  17. Wildlife habitat fragmentation.

    Treesearch

    John. Lehmkuhl

    2005-01-01

    A primary issue in forest wildlife management is habitat fragmentation and its effects on viability, which is the "bottom line" for plant and animal species of conservation concern. Population viability is the likelihood that a population will be able to maintain itself (remain viable) over a long period of time-usually 100 years or more. Though it is true...

  18. Disturbance frequency and vertical distribution of seeds affect long-term population dynamics: a mechanistic seed bank model.

    PubMed

    Eager, Eric Alan; Haridas, Chirakkal V; Pilson, Diana; Rebarber, Richard; Tenhumberg, Brigitte

    2013-08-01

    Seed banks are critically important for disturbance specialist plants because seeds of these species germinate only in disturbed soil. Disturbance and seed depth affect the survival and germination probability of seeds in the seed bank, which in turn affect population dynamics. We develop a density-dependent stochastic integral projection model to evaluate the effect of stochastic soil disturbances on plant population dynamics with an emphasis on mimicking how disturbances vertically redistribute seeds within the seed bank. We perform a simulation analysis of the effect of the frequency and mean depth of disturbances on the population's quasi-extinction probability, as well as the long-term mean and variance of the total density of seeds in the seed bank. We show that increasing the frequency of disturbances increases the long-term viability of the population, but the relationship between the mean depth of disturbance and the long-term viability of the population are not necessarily monotonic for all parameter combinations. Specifically, an increase in the probability of disturbance increases the long-term viability of the total seed bank population. However, if the probability of disturbance is too low, a shallower mean depth of disturbance can increase long-term viability, a relationship that switches as the probability of disturbance increases. However, a shallow disturbance depth is beneficial only in scenarios with low survival in the seed bank.

  19. Evolutionary effects of alternative artificial propagation programs: implications for viability of endangered anadromous salmonids

    PubMed Central

    McClure, Michelle M; Utter, Fred M; Baldwin, Casey; Carmichael, Richard W; Hassemer, Peter F; Howell, Philip J; Spruell, Paul; Cooney, Thomas D; Schaller, Howard A; Petrosky, Charles E

    2008-01-01

    Most hatchery programs for anadromous salmonids have been initiated to increase the numbers of fish for harvest, to mitigate for habitat losses, or to increase abundance in populations at low abundance. However, the manner in which these programs are implemented can have significant impacts on the evolutionary trajectory and long-term viability of populations. In this paper, we review the potential benefits and risks of hatchery programs relative to the conservation of species listed under the US Endangered Species Act. To illustrate, we present the range of potential effects within a population as well as among populations of Chinook salmon (Oncorhynchus tshawytscha) where changes to major hatchery programs are being considered. We apply evolutionary considerations emerging from these examples to suggest broader principles for hatchery uses that are consistent with conservation goals. We conclude that because of the evolutionary risks posed by artificial propagation programs, they should not be viewed as a substitute for addressing other limiting factors that prevent achieving viability. At the population level, artificial propagation programs that are implemented as a short-term approach to avoid imminent extinction are more likely to achieve long-term population viability than approaches that rely on long-term supplementation. In addition, artificial propagation programs can have out-of-population impacts that should be considered in conservation planning. PMID:25567637

  20. Does gall midge larvae cause pre-dispersal seed mortality and limit cornflower population growth?

    NASA Astrophysics Data System (ADS)

    Koprdova, Stanislava; Bellanger, Solène; Skuhrovec, Jiří; Darmency, Henri

    2015-11-01

    Many kinds of pests can reduce seed production. Some directly attack seeds before they are released, and some are hosted by the fruit and impact seed ripening and viability indirectly. Pre-dispersal seed mortality may have strong effects on plant population dynamics and evolution. Our goals were to determine to what extent insect-mediated pre-dispersal seed mortality contributes to population-level declines of cornflower, Centaurea cyanus L. We recorded occurrence and abundance of seed-feeding insects on flower heads in twelve cornflower populations. We measured flower head size, number of disc florets, seed production, and seed viability and germination. Larger flower heads had proportionally fewer healthy seeds. Although we observed no visible damage to the C. cyanus seed, the presence of gall midge (Cecidomyiidae) larvae inside the flower head correlated with four times fewer viable seeds. It seems that gall midges could have a significant impact on ovule fertilization, seed abortion and viability of fully developed cornflower seeds. The higher rate of aborted seeds in the presence of gall midge larvae could have been because the larvae extracted resources from the seeds, or because the larvae repelled pollinators. The viability of apparently healthy seeds was 40% lower in flower heads that contained larvae and/or aborted seed. Insect-mediated pre-dispersal mortality could select against evolution toward larger flower head, and have detrimental consequences on seed number, viability and germination, all of which could limit the spread of C. cyanus populations.

  1. Marshes as "Mountain Tops": Genetic Analyses of the Critically Endangered São Paulo Marsh Antwren (Aves: Thamnophilidae).

    PubMed

    de Camargo, Crisley; Gibbs, H Lisle; Costa, Mariellen C; Del-Rio, Glaucia; Silveira, Luís F; Wasko, Adriane P; Francisco, Mercival R

    2015-01-01

    Small populations of endangered species can be impacted by genetic processes such as drift and inbreeding that reduce population viability. As such, conservation genetic analyses that assess population levels of genetic variation and levels of gene flow can provide important information for managing threatened species. The São Paulo Marsh Antwren (Formicivora paludicola) is a recently-described and critically endangered bird from São Paulo State (Brazil) whose total estimated population is around 250-300 individuals, distributed in only 15 isolated marshes around São Paulo metropolitan region. We used microsatellite DNA markers to estimate the population genetic characteristics of the three largest remaining populations of this species all within 60 km of each other. We detected a high and significant genetic structure between all populations (overall FST = 0.103) which is comparable to the highest levels of differentiation ever documented for birds, (e.g., endangered birds found in isolated populations on the tops of African mountains), but also evidence for first-generation immigrants, likely from small local unsampled populations. Effective population sizes were small (between 28.8-99.9 individuals) yet there are high levels of genetic variability within populations and no evidence for inbreeding. Conservation implications of this work are that the high levels of genetic structure suggests that translocations between populations need to be carefully considered in light of possible local adaptation and that remaining populations of these birds should be managed as conservation units that contain both main populations studied here but also small outlying populations which may be a source of immigrants.

  2. The in vitro viability and growth of fibroblasts cultured in the presence of different bone grafting materials (NanoBone and Straumann Bone Ceramic).

    PubMed

    Kauschke, E; Rumpel, E; Fanghänel, J; Bayerlein, T; Gedrange, T; Proff, P

    2006-02-01

    Different clinical applications, including dentistry, are making increasing demands on bone grafting material. In the present study we have analysed the viability, proliferation and growth characteristics of fibroblasts cultured in vitro together with two different bone grafting materials, NanoBone and Straumann Bone Ceramic, over a period of 24 and 28 days respectively. Viability was measured at least every 72 hours by using the alamarBlue assay, a test that measures quantitatively cell proliferation and viability but does not require cell fixation or extraction. After one week of culture fibroblast viability was as high as in controls for both grafting materials and remained high (> 90%) for the duration of the experiment. Cell growth was evaluated microscopically. Scanning electron microscopy revealed a dense fibroblast growth at the surface of both bone grafting materials after three weeks of in vitro culture. Generally, our in vitro analyses contribute to further insights into cell - scaffold interactions.

  3. Egg Viability, Mating Frequency and Male Mating Ability Evolve in Populations of Drosophila melanogaster Selected for Resistance to Cold Shock

    PubMed Central

    Singh, Karan; Kochar, Ekta; Prasad, N. G.

    2015-01-01

    Background Ability to resist temperature shock is an important component of fitness of insects and other ectotherms. Increased resistance to temperature shock is known to affect life-history traits. Temperature shock is also known to affect reproductive traits such as mating ability and viability of gametes. Therefore selection for increased temperature shock resistance can affect the evolution of reproductive traits. Methods We selected replicate populations of Drosophila melanogaster for resistance to cold shock. We then investigated the evolution of reproductive behavior along with other components of fitness- larval survivorship, adult mortality, fecundity, egg viability in these populations. Results We found that larval survivorship, adult mortality and fecundity post cold shock were not significantly different between selected and control populations. However, compared to the control populations, the selected populations laid significantly higher percentage of fertile eggs (egg viability) 24 hours post cold shock. The selected populations had higher mating frequency both with and without cold shock. After being subjected to cold shock, males from the selected populations successfully mated with significantly more non-virgin females and sired significantly more progeny compared to control males. Conclusions A number of studies have reported the evolution of survivorship in response to selection for temperature shock resistance. Our results clearly indicate that adaptation to cold shock can involve changes in components of reproductive fitness. Our results have important implications for our understanding of how reproductive behavior can evolve in response to thermal stress. PMID:26065704

  4. Predictive capacity of sperm quality parameters and sperm subpopulations on field fertility after artificial insemination in sheep.

    PubMed

    Santolaria, P; Vicente-Fiel, S; Palacín, I; Fantova, E; Blasco, M E; Silvestre, M A; Yániz, J L

    2015-12-01

    This study was designed to evaluate the relevance of several sperm quality parameters and sperm population structure on the reproductive performance after cervical artificial insemination (AI) in sheep. One hundred and thirty-nine ejaculates from 56 adult rams were collected using an artificial vagina, processed for sperm quality assessment and used to perform 1319 AI. Analyses of sperm motility by computer-assisted sperm analysis (CASA), sperm nuclear morphometry by computer-assisted sperm morphometry analysis (CASMA), membrane integrity by acridine orange-propidium iodide combination and sperm DNA fragmentation using the sperm chromatin dispersion test (SCD) were performed. Clustering procedures using the sperm kinematic and morphometric data resulted in the classification of spermatozoa into three kinematic and three morphometric sperm subpopulations. Logistic regression procedures were used, including fertility at AI as the dependent variable (measured by lambing, 0 or 1) and farm, year, month of AI, female parity, female lambing-treatment interval, ram, AI technician and sperm quality parameters (including sperm subpopulations) as independent factors. Sperm quality variables remaining in the logistic regression model were viability and VCL. Fertility increased for each one-unit increase in viability (by a factor of 1.01) and in VCL (by a factor of 1.02). Multiple linear regression analyses were also performed to analyze the factors possibly influencing ejaculate fertility (N=139). The analysis yielded a significant (P<0.05) relationship between sperm viability and ejaculate fertility. The discriminant ability of the different semen variables to predict field fertility was analyzed using receiver operating characteristic (ROC) curve analysis. Sperm viability and VCL showed significant, albeit limited, predictive capacity on field fertility (0.57 and 0.54 Area Under Curve, respectively). The distribution of spermatozoa in the different subpopulations was not related to fertility. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Population viability analysis of Lower Missouri River shovelnose sturgeon with initial application to the pallid sturgeon

    USGS Publications Warehouse

    Bajer, P.G.; Wildhaber, M.L.

    2007-01-01

    Demographic models for the shovelnose (Scaphirhynchus platorynchus) and pallid (S. albus) sturgeons in the Lower Missouri River were developed to conduct sensitivity analyses for both populations. Potential effects of increased fishing mortality on the shovelnose sturgeon were also evaluated. Populations of shovelnose and pallid sturgeon were most sensitive to age-0 mortality rates as well as mortality rates of juveniles and young adults. Overall, fecundity was a less sensitive parameter. However, increased fecundity effectively balanced higher mortality among sensitive age classes in both populations. Management that increases population-level fecundity and improves survival of age-0, juveniles, and young adults should most effectively benefit both populations. Evaluation of reproductive values indicated that populations of pallid sturgeon dominated by ages ≥35 could rapidly lose their potential for growth, particularly if recruitment remains low. Under the initial parameter values portraying current conditions the population of shovelnose sturgeon was predicted to decline by 1.65% annually, causing the commercial yield to also decline. Modeling indicated that the commercial yield could increase substantially if exploitation of females in ages ≤12 was highly restricted.

  6. Sex-biased survival predicts adult sex ratio variation in wild birds

    PubMed Central

    Székely, Tamás; Liker, András; Freckleton, Robert P.; Fichtel, Claudia; Kappeler, Peter M.

    2014-01-01

    Adult sex ratio (ASR) is a central concept in population demography and breeding system evolution, and has implications for population viability and biodiversity conservation. ASR exhibits immense interspecific variation in wild populations, although the causes of this variation have remained elusive. Using phylogenetic analyses of 187 avian species from 59 families, we show that neither hatching sex ratios nor fledging sex ratios correlate with ASR. However, sex-biased adult mortality is a significant predictor of ASR, and this relationship is robust to 100 alternative phylogenetic hypotheses, and potential ecological and life-history confounds. A significant component of adult mortality bias is sexual selection acting on males, whereas increased reproductive output predicts higher mortality in females. These results provide the most comprehensive insights into ASR variation to date, and suggest that ASR is an outcome of selective processes operating differentially on adult males and females. Therefore, revealing the causes of ASR variation in wild populations is essential for understanding breeding systems and population dynamics. PMID:24966308

  7. The effect of stochiastic technique on estimates of population viability from transition matrix models

    USGS Publications Warehouse

    Kaye, T.N.; Pyke, David A.

    2003-01-01

    Population viability analysis is an important tool for conservation biologists, and matrix models that incorporate stochasticity are commonly used for this purpose. However, stochastic simulations may require assumptions about the distribution of matrix parameters, and modelers often select a statistical distribution that seems reasonable without sufficient data to test its fit. We used data from long-term (5a??10 year) studies with 27 populations of five perennial plant species to compare seven methods of incorporating environmental stochasticity. We estimated stochastic population growth rate (a measure of viability) using a matrix-selection method, in which whole observed matrices were selected at random at each time step of the model. In addition, we drew matrix elements (transition probabilities) at random using various statistical distributions: beta, truncated-gamma, truncated-normal, triangular, uniform, or discontinuous/observed. Recruitment rates were held constant at their observed mean values. Two methods of constraining stage-specific survival to a??100% were also compared. Different methods of incorporating stochasticity and constraining matrix column sums interacted in their effects and resulted in different estimates of stochastic growth rate (differing by up to 16%). Modelers should be aware that when constraining stage-specific survival to 100%, different methods may introduce different levels of bias in transition element means, and when this happens, different distributions for generating random transition elements may result in different viability estimates. There was no species effect on the results and the growth rates derived from all methods were highly correlated with one another. We conclude that the absolute value of population viability estimates is sensitive to model assumptions, but the relative ranking of populations (and management treatments) is robust. Furthermore, these results are applicable to a range of perennial plants and possibly other life histories.

  8. Viability of the Alaskan breeding population of Steller’s eiders

    USGS Publications Warehouse

    Dunham, Kylee; Grand, James B.

    2016-10-11

    The U.S. Fish and Wildlife Service is tasked with setting objective and measurable criteria for delisting species or populations listed under the Endangered Species Act. Determining the acceptable threshold for extinction risk for any species or population is a challenging task, particularly when facing marked uncertainty. The Alaskan breeding population of Steller’s eiders (Polysticta stelleri) was listed as threatened under the Endangered Species Act in 1997 because of a perceived decline in abundance throughout their nesting range and geographic isolation from the Russian breeding population. Previous genetic studies and modeling efforts, however, suggest that there may be dispersal from the Russian breeding population. Additionally, evidence exists of population level nonbreeding events. Research was conducted to estimate population viability of the Alaskan breeding population of Steller’s eiders, using both an open and closed model of population process for this threatened population. Projections under a closed population model suggest this population has a 100 percent probability of extinction within 42 years. Projections under an open population model suggest that with immigration there is no probability of permanent extinction. Because of random immigration process and nonbreeding behavior, however, it is likely that this population will continue to be present in low and highly variable numbers on the breeding grounds in Alaska. Monitoring the winter population, which includes both Russian and Alaskan breeding birds, may offer a more comprehensive indication of population viability.

  9. Projecting the success of plant restoration with population viability analysis

    USGS Publications Warehouse

    Bell, T.J.; Bowles, M.L.; McEachern, A.K.; Brigham, C.A.; Schwartz, M.W.

    2003-01-01

    Conserving viable populations of plant species requires that they have high probabilities of long-term persistence within natural habitats, such as a chance of extinction in 100 years of less than 5% (Menges 1991, 1998; Brown 1994; Pavlik 1994; Chap. 1, this Vol.). For endangered and threatened species that have been severely reduces in range and whose habitats have been fragmented, important species conservation strategies may include augmenting existing populations or restoring new viable populations (Bowles and Whelan 1994; Chap. 2, this Vol.). Restoration objectives may include increasing population numbers to reduce extinction probability, deterministic manipulations to develop a staged cohort structure, or more complex restoration of a desired genetic structure to allow outcrossing or increase effective population size (DeMauro 1993, 1994; Bowles et al. 1993, 1998; Pavlik 1994; Knapp and Dyer 1998; Chap. 2, this Vol.). These efforts may require translocation of propagules from existing (in situ) populations, or from ex situ botanic gardens or seed storage facilities (Falk et al. 1996; Guerrant and Pavlik 1998; Chap. 2, this Vol.). Population viability analysis (PVA) can provide a critical foundation for plant restoration, as it models demographic projections used to evaluate the probability of population persistence and links plant life history with restoration strategies. It is unknown how well artificially created populations will meet demographic modeling requirements (e.g., due to artificial cohort transitions) and few, if any, PVAs have been applied to restorations. To guide application of PVA to restored populations and to illustrate potential difficulties, we examine effects of planting different life stages, model initial population sizes needed to achieve population viability, and compare demographic characteristics between natural and restored populations. We develop and compare plant population restoration viability analysis (PRVA) case studies of two plant species listed in the USA for which federal recovery planning calls for population restoration: Cirsium pitcheri, a short-lived semelparous herb, and Asclepias meadii, a long-lived iteroparous herb.

  10. Extinction-effective population index: incorporating life-history variations in population viability analysis.

    PubMed

    Fujiwara, Masami

    2007-09-01

    Viability status of populations is a commonly used measure for decision-making in the management of populations. One of the challenges faced by managers is the need to consistently allocate management effort among populations. This allocation should in part be based on comparison of extinction risks among populations. Unfortunately, common criteria that use minimum viable population size or count-based population viability analysis (PVA) often do not provide results that are comparable among populations, primarily because they lack consistency in determining population size measures and threshold levels of population size (e.g., minimum viable population size and quasi-extinction threshold). Here I introduce a new index called the "extinction-effective population index," which accounts for differential effects of demographic stochasticity among organisms with different life-history strategies and among individuals in different life stages. This index is expected to become a new way of determining minimum viable population size criteria and also complement the count-based PVA. The index accounts for the difference in life-history strategies of organisms, which are modeled using matrix population models. The extinction-effective population index, sensitivity, and elasticity are demonstrated in three species of Pacific salmonids. The interpretation of the index is also provided by comparing them with existing demographic indices. Finally, a measure of life-history-specific effect of demographic stochasticity is derived.

  11. Project environmental microbiology as related to planetary quarantine

    NASA Technical Reports Server (NTRS)

    Pflug, I. J.

    1973-01-01

    The viability and dry heat resistance of indigenous microflora associated with small soil particles were investigated. An aluminum boat TDT CUP-TSA solid media system was developed for the analyses; a complete description of the technique is included. Data cited here were obtained using analyses of individual soil particles. Detailed particle viability profiles for dry heat effects were determined for Kennedy Space Center soil. At 110 C at least some particles retained viability through a heating period of between 8 and 16 hours. Single particles heated at 125 C for 80 minutes or longer did not show evidence of viability under test conditions. Preliminary aerobic, mesophilic plate counts of the 74-88 micron m soil fraction yielded mean values of 16.2 organisms per dark particle and 2.6 organisms per light particle. Heat treatment of particles in a dry atmosphere did not appear to increase the rate of inactivation for in situ soil particle microflora.

  12. Viability and Virulence of Experimentally Stressed Nonculturable Salmonella typhimurium

    PubMed Central

    Caro, Audrey; Got, Patrice; Lesne, Jean; Binard, Sylvie; Baleux, Bernard

    1999-01-01

    Maintenance of pathogenicity of viable but nonculturable Salmonella typhimurium cells experimentally stressed with UV-C and seawater, was investigated relative to the viability level of the cellular population. Pathogenicity, tested in a mouse model, was lost concomitantly with culturability, whereas cell viability remained undamaged, as determined by respiratory activity and cytoplasmic membrane and genomic integrities. PMID:10388726

  13. Effect of gamma irradiation on hyperthermal composting microorganisms for feasible application in space

    NASA Astrophysics Data System (ADS)

    Yoon, Minchul; Choi, Jong-il; Yamashita, Masamichi

    2013-05-01

    The composting system is the most efficient method for processing organic waste in space; however, the composting activity of microorganisms can be altered by cosmic rays. In this study, the effect of ionizing irradiation on composting bacteria was investigated. Sequence analyses of amplified 16S rRNA, 18S rRNA, and amoA genes were used to identify hyperthermal composting microorganisms. The viability of microorganisms in compost soil after gamma irradiation was directly determined using LIVE/DEAD BacLight viability kit. The dominant bacterial genera were Weissella cibaria and Leuconostoc sp., and the fungal genera were Metschnikowia bicuspidata and Pichia guilliermondii. Gamma irradiation up to a dose of 10 kGy did not significantly alter the microbial population. Furthermore, amylase and cellulase activities were maintained after high-dose gamma irradiation. Our results show that hyperthermal microorganisms can be used to recycle agricultural and fermented material in space stations and other human-inhabiting facilities on the Moon, Mars, and other planets.

  14. Feasibility study of the sterilization of pigskin used as wound dressings by neutral electrolyzed water.

    PubMed

    Ge, Liangpeng; Zhang, Xiaochun; Cao, Chuan; Gu, Zhaobin; Liu, Zuohua; Liu, Lubin; Lin, Baozhong

    2012-06-01

    Neutral electrolyzed water (NEW) is considered to be a high-level biodegradable disinfectant with sporicidal, bactericidal, and virucidal activity. It has also been reported to accelerate wound healing; thus, it is particularly attractive for the elimination or minimization of the microbial population of skin grafts to be used as wound dressings. Pigskins were sterilized with different concentrations of NEW and with different methods. The feasibility of pigskin sterilization by NEW was evaluated through microbiological analyses, viability assays, histologic assessments, contact cytotoxicity assays, and extract cytotoxicity assays. NEW has strong bactericidal effects on pigskin microorganisms, does not change skin graft histologic properties, and has no cytotoxicity; however, skin viability was significantly reduced after NEW treatment. Although NEW treatment is a very safe and effective method for nonviable pigskin dressing sterilization, to obtain a complete sterilization of pigskin grafts, available chlorine concentration of NEW as well as sterilization time and methods should be optimized. Copyright © 2012 by Lippincott Williams & Wilkins.

  15. Fluoro-luminometric real-time measurement of bacterial viability and killing.

    PubMed

    Lehtinen, Janne; Virta, Marko; Lilius, Esa Matti

    2003-10-01

    The viability and killing of Escherichia coli was measured on a real-time basis using a fluoro-luminometric device, which allows successive measurements of fluorescence and bioluminescence without user intervention. Bacteria were made fluorescent and bioluminescent by expression of gfp and insect luciferase (lucFF) genes. The green fluorescent protein (GFP) is a highly fluorescent, extremely stable protein, which accumulates in cells during growth, and therefore the measured fluorescence signal was proportional to the total number of cells. The luciferase reaction is dependent of ATP produced by living cells, so that the bioluminescence level was a direct measure of the viable cells. In contrast to the bacterial luciferase, the insect luciferase uses a water-soluble and nonvolatile substrate, which makes automated multi-well microplate assay possible. For the validation of the assay, the proportion of living and dead cell populations was experimentally modified by incubating E. coli cells in the presence of various ethanol concentrations. Bacterial viability and killing measured by a fluoro-luminometric assay correlated fairly well with the reference methods: conventional plate counting, optical density measurement and various flow cytometric analyses. The real-time assay described here allows following the changes in bacterial cultures and assessing the bactericidal and other effects of various chemical, immunological and physical agents simultaneously in large numbers of samples.

  16. Marshes as “Mountain Tops”: Genetic Analyses of the Critically Endangered São Paulo Marsh Antwren (Aves: Thamnophilidae)

    PubMed Central

    de Camargo, Crisley; Gibbs, H. Lisle; Costa, Mariellen C.; Del-Rio, Glaucia; Silveira, Luís F.

    2015-01-01

    Small populations of endangered species can be impacted by genetic processes such as drift and inbreeding that reduce population viability. As such, conservation genetic analyses that assess population levels of genetic variation and levels of gene flow can provide important information for managing threatened species. The São Paulo Marsh Antwren (Formicivora paludicola) is a recently-described and critically endangered bird from São Paulo State (Brazil) whose total estimated population is around 250–300 individuals, distributed in only 15 isolated marshes around São Paulo metropolitan region. We used microsatellite DNA markers to estimate the population genetic characteristics of the three largest remaining populations of this species all within 60 km of each other. We detected a high and significant genetic structure between all populations (overall F ST = 0.103) which is comparable to the highest levels of differentiation ever documented for birds, (e.g., endangered birds found in isolated populations on the tops of African mountains), but also evidence for first-generation immigrants, likely from small local unsampled populations. Effective population sizes were small (between 28.8–99.9 individuals) yet there are high levels of genetic variability within populations and no evidence for inbreeding. Conservation implications of this work are that the high levels of genetic structure suggests that translocations between populations need to be carefully considered in light of possible local adaptation and that remaining populations of these birds should be managed as conservation units that contain both main populations studied here but also small outlying populations which may be a source of immigrants. PMID:26447791

  17. Critical phases in the seed development of common juniper (Juniperus communis).

    PubMed

    Gruwez, R; Leroux, O; De Frenne, P; Tack, W; Viane, R; Verheyen, K

    2013-01-01

    Common juniper (Juniperus communis L.) populations in northwest European lowlands are currently declining in size and number. An important cause of this decline is a lack of natural regeneration. Low seed viability seems to be one of the main bottlenecks in this process. Previous research revealed a negative relation between seed viability and both temperature and nitrogen deposition. Additionally, the seeds of common juniper have a variable ripening time, which possibly influences seed viability. However, the underlying mechanisms remain unresolved. In order to elucidate this puzzle, it is important to understand in which phases of seed production the main defects are situated, together with the influence of ripening time. In this study, we compared seed viability of populations with and without successful recruitment. We examined three seed phases: (i) gamete development; (ii) fertilisation and early-embryo development; and (iii) late-embryo development. After the first two phases, we found no difference in the percentage viable seeds between populations with or without recruitment. After late-embryo development, populations without recruitment showed a significantly lower percentage of viable seeds. These results suggest that late-embryo development is a bottleneck in seed development. However, the complex interaction between seed viability and ripening time suggest that the causes should be in the second seed phase, as the accelerated development of male and female gametophytes may disturb the male-female synchrony for successful mating. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Impact of Moderate Heat, Carvacrol, and Thymol Treatments on the Viability, Injury, and Stress Response of Listeria monocytogenes

    PubMed Central

    Guevara, L.; Antolinos, V.; Palop, A.; Periago, P. M.

    2015-01-01

    The microbial safety and stability of minimally processed foods are based on the application of combined preservative factors. Since microorganisms are able to develop adaptive networks to survive under conditions of stress, food safety may be affected, and therefore understanding of stress adaptive mechanisms plays a key role in designing safe food processing conditions. In the present study, the viability and the sublethal injury of Listeria monocytogenes exposed to moderate heat (55°C) and/or essential oil compounds (carvacrol and thymol, 0.3 mM) treatments were studied. Synergistic effects were obtained when combining mild heat (55°C) with one or both essential oil compounds, leading to inactivation kinetics values three to four times lower than when using heat alone. All the treatments applied caused some injury in the population. The injury levels ranged from around 20% of the surviving population under the mildest conditions to more than 99.99% under the most stringent conditions. Protein extracts of cells exposed to these treatments were analysed by two-dimensional gel electrophoresis. The results obtained revealed that stressed cells exhibited differential protein expression to control cells. The proteins upregulated under these stressing conditions were implicated, among other functions, in stress response, metabolism, and protein refolding. PMID:26539510

  19. Sexual selection and conflict as engines of ecological diversification.

    PubMed

    Bonduriansky, Russell

    2011-12-01

    Ecological diversification presents an enduring puzzle: how do novel ecological strategies evolve in organisms that are already adapted to their ecological niche? Most attempts to answer this question posit a primary role for genetic drift, which could carry populations through or around fitness "valleys" representing maladaptive intermediate phenotypes between alternative niches. Sexual selection and conflict are thought to play an ancillary role by initiating reproductive isolation and thereby facilitating divergence in ecological traits through genetic drift or local adaptation. Here, I synthesize theory and evidence suggesting that sexual selection and conflict could play a more central role in the evolution and diversification of ecological strategies through the co-optation of sexual traits for viability-related functions. This hypothesis rests on three main premises, all of which are supported by theory and consistent with the available evidence. First, sexual selection and conflict often act at cross-purposes to viability selection, thereby displacing populations from the local viability optimum. Second, sexual traits can serve as preadaptations for novel viability-related functions. Third, ancestrally sex-limited sexual traits can be transferred between sexes. Consequently, by allowing populations to explore a broad phenotypic space around the current viability optimum, sexual selection and conflict could act as powerful drivers of ecological adaptation and diversification.

  20. Isolation and genetic diversity of endangered grey nurse shark (Carcharias taurus) populations.

    PubMed

    Stow, Adam; Zenger, Kyall; Briscoe, David; Gillings, Michael; Peddemors, Victor; Otway, Nicholas; Harcourt, Robert

    2006-06-22

    Anthropogenic impacts are believed to be the primary threats to the eastern Australian population of grey nurse sharks (Carcharias taurus), which is listed as critically endangered, and the most threatened population globally. Analyses of 235 polymorphic amplified fragment length polymorphisms (AFLP) loci and 700 base pairs of mitochondrial DNA control region provide the first account of genetic variation and geographical partitioning (east and west coasts of Australia, South Africa) in C. taurus. Assignment tests, analysis of relatedness and Fst values all indicate that the Australian populations are isolated from South Africa, with negligible migration between the east and west Australian coasts. There are significant differences in levels of genetic variation among regions. Australian C. taurus, particularly the eastern population, has significantly less AFLP variation than the other sampling localities. Further, the eastern Australian sharks possess only a single mitochondrial haplotype, also suggesting a small number of founding individuals. Therefore, historical, rather than anthropogenic processes most likely account for their depauperate genetic variation. These findings have implications for the viability of the eastern Australian population of grey nurse sharks.

  1. Optimizing conservation strategies for Mexican freetailed bats: a population viability and ecosystem services approach

    USGS Publications Warehouse

    Wiederholt, Ruscena; Lopez-Hoffman, Laura; Svancara, Colleen; McCracken, Gary; Thogmartin, Wayne E.; Diffendorfer, James E.; Mattson, Brady; Bagstad, Kenneth J.; Cryan, Paul; Russell, Amy; Semmens, Darius J.; Rodrigo A. Medellín,

    2015-01-01

    Conservation planning can be challenging due to the need to balance biological concerns about population viability with social concerns about the benefits biodiversity provide to society, often while operating under a limited budget. Methods and tools that help prioritize conservation actions are critical for the management of at-risk species. Here, we use a multi-attribute utility function to assess the optimal maternity roosts to conserve for maintaining the population viability and the ecosystem services of a single species, the Mexican free-tailed bat (Tadarida brasiliensis mexicana). Mexican free-tailed bats provide ecosystem services such as insect pest-suppression in agricultural areas and recreational viewing opportunities, and may be threatened by climate change and development of wind energy. We evaluated each roost based on five attributes: the maternity roost’s contribution to population viability, the pest suppression ecosystem services to the surrounding area provided by the bats residing in the roost, the ecotourism value of the roost, the risks posed to each roost structure, and the risks posed to the population of bats residing in each roost. We compared several scenarios that prioritized these attributes differently, hypothesizing that the set of roosts with the highest rankings would vary according to the conservation scenario. Our results indicate that placing higher values on different roost attributes (e.g. population importance over ecosystem service value) altered the roost rankings. We determined that the values placed on various conservation objectives are an important determinant of habitat planning.

  2. Regional Variation in mtDNA of the Lesser Prairie-Chicken

    USGS Publications Warehouse

    Hagen, Christian A.; Pitman, James C.; Sandercock, Brett K.; Wolfe, Don H.; Robel, Robel J.; Applegate, Roger D.; Oyler-McCance, Sara J.

    2010-01-01

    Cumulative loss of habitat and long-term decline in the populations of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) have led to concerns for the species' viability throughout its range in the southern Great Plains. For more efficient conservation past and present distributions of genetic variation need to be understood. We examined the distribution of mitochondrial DNA (mtDNA) variation in the Lesser Prairie-Chicken across Kansas, Colorado, Oklahoma, and New Mexico. Throughout the range we found little genetic differentiation except for the population in New Mexico, which was significantly different from most other publications. We did, however, find significant isolation by distance at the rangewide scale (r=0.698). We found no relationship between haplotype phylogeny and geography, and our analyses provide evidence for a post-glacial population expansion within the species that is consistent with the idea that speciation within Tympanuchus is recent. Conservation actions that increase the likelihood of genetically viable populations in the future should be evaluated for implementation.

  3. A protocol for better design, application, and communication of population viability analyses.

    PubMed

    Pe'er, Guy; Matsinos, Yiannis G; Johst, Karin; Franz, Kamila W; Turlure, Camille; Radchuk, Viktoriia; Malinowska, Agnieszka H; Curtis, Janelle M R; Naujokaitis-Lewis, Ilona; Wintle, Brendan A; Henle, Klaus

    2013-08-01

    Population viability analyses (PVAs) contribute to conservation theory, policy, and management. Most PVAs focus on single species within a given landscape and address a specific problem. This specificity often is reflected in the organization of published PVA descriptions. Many lack structure, making them difficult to understand, assess, repeat, or use for drawing generalizations across PVA studies. In an assessment comparing published PVAs and existing guidelines, we found that model selection was rarely justified; important parameters remained neglected or their implementation was described vaguely; limited details were given on parameter ranges, sensitivity analysis, and scenarios; and results were often reported too inconsistently to enable repeatability and comparability. Although many guidelines exist on how to design and implement reliable PVAs and standards exist for documenting and communicating ecological models in general, there is a lack of organized guidelines for designing, applying, and communicating PVAs that account for their diversity of structures and contents. To fill this gap, we integrated published guidelines and recommendations for PVA design and application, protocols for documenting ecological models in general and individual-based models in particular, and our collective experience in developing, applying, and reviewing PVAs. We devised a comprehensive protocol for the design, application, and communication of PVAs (DAC-PVA), which has 3 primary elements. The first defines what a useful PVA is; the second element provides a workflow for the design and application of a useful PVA and highlights important aspects that need to be considered during these processes; and the third element focuses on communication of PVAs to ensure clarity, comprehensiveness, repeatability, and comparability. Thereby, DAC-PVA should strengthen the credibility and relevance of PVAs for policy and management, and improve the capacity to generalize PVA findings across studies. © 2013 Society for Conservation Biology.

  4. Population Viability Analysis of Riverine Fishes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, P.; Chandler, J.; Jager, H.I.

    Many utilities face conflkts between two goals: cost-efficient hydropower generation and protecting riverine fishes. Research to develop ecological simulation tools that can evaluate alternative mitigation strategies in terms of their benefits to fish populations is vital to informed decision-making. In this paper, we describe our approach to population viability analysis of riverine fishes in general and Snake River white sturgeon in particular. We are finding that the individual-based modeling approach used in previous in-stream flow applications is well suited to addressing questions about the viability of species of concern for several reasons. Chief among these are: (1) the abiIity tomore » represent the effects of individual variation in life history characteristics on predicted population viabili~, (2) the flexibili~ needed to quanti~ the ecological benefits of alternative flow management options by representing spatial and temporal variation in flow and temperaturty and (3) the flexibility needed to quantifi the ecological benefits of non-flow related manipulations (i.e., passage, screening and hatchery supplementation).« less

  5. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses.

    PubMed Central

    Davey, H M; Kell, D B

    1996-01-01

    The most fundamental questions such as whether a cell is alive, in the sense of being able to divide or to form a colony, may sometimes be very hard to answer, since even axenic microbial cultures are extremely heterogeneous. Analyses that seek to correlate such things as viability, which is a property of an individual cell, with macroscopic measurements of culture variables such as ATP content, respiratory activity, and so on, must inevitably fail. It is therefore necessary to make physiological measurements on individual cells. Flow cytometry is such a technique, which allows one to analyze cells rapidly and individually and permits the quantitative analysis of microbial heterogeneity. It therefore offers many advantages over conventional measurements for both routine and more exploratory analyses of microbial properties. While the technique has been widely applied to the study of mammalian cells, is use in microbiology has until recently been much more limited, largely because of the smaller size of microbes and the consequently smaller optical signals obtainable from them. Since these technical barriers no longer hold, flow cytometry with appropriate stains has been used for the rapid discrimination and identification of microbial cells, for the rapid assessment of viability and of the heterogeneous distributions of a wealth of other more detailed physiological properties, for the analysis of antimicrobial drug-cell interactions, and for the isolation of high-yielding strains of biotechnological interest. Flow cytometric analyses provide an abundance of multivariate data, and special methods have been devised to exploit these. Ongoing advances mean that modern flow cytometers may now be used by nonspecialists to effect a renaissance in our understanding of microbial heterogeneity. PMID:8987359

  6. A novel assessment of population structure and gene flow in grey wolf populations of the Northern Rocky Mountains of the United States.

    PubMed

    vonHoldt, Bridgett M; Stahler, Daniel R; Bangs, Edward E; Smith, Douglas W; Jimenez, Mike D; Mack, Curt M; Niemeyer, Carter C; Pollinger, John P; Wayne, Robert K

    2010-10-01

    The successful re-introduction of grey wolves to the western United States is an impressive accomplishment for conservation science. However, the degree to which subpopulations are genetically structured and connected, along with the preservation of genetic variation, is an important concern for the continued viability of the metapopulation. We analysed DNA samples from 555 Northern Rocky Mountain wolves from the three recovery areas (Greater Yellowstone Area, Montana, and Idaho), including all 66 re-introduced founders, for variation in 26 microsatellite loci over the initial 10-year recovery period (1995-2004). The population maintained high levels of variation (H(O) = 0.64-0.72; allelic diversity k=7.0-10.3) with low levels of inbreeding (F(IS) < 0.03) and throughout this period, the population expanded rapidly (n(1995) =101; n(2004) =846). Individual-based Bayesian analyses revealed significant population genetic structure and identified three subpopulations coinciding with designated recovery areas. Population assignment and migrant detection were difficult because of the presence of related founders among different recovery areas and required a novel approach to determine genetically effective migration and admixture. However, by combining assignment tests, private alleles, sibship reconstruction, and field observations, we detected genetically effective dispersal among the three recovery areas. Successful conservation of Northern Rocky Mountain wolves will rely on management decisions that promote natural dispersal dynamics and minimize anthropogenic factors that reduce genetic connectivity. © 2010 Blackwell Publishing Ltd.

  7. Sex-biased survival predicts adult sex ratio variation in wild birds.

    PubMed

    Székely, Tamás; Liker, András; Freckleton, Robert P; Fichtel, Claudia; Kappeler, Peter M

    2014-08-07

    Adult sex ratio (ASR) is a central concept in population demography and breeding system evolution, and has implications for population viability and biodiversity conservation. ASR exhibits immense interspecific variation in wild populations, although the causes of this variation have remained elusive. Using phylogenetic analyses of 187 avian species from 59 families, we show that neither hatching sex ratios nor fledging sex ratios correlate with ASR. However, sex-biased adult mortality is a significant predictor of ASR, and this relationship is robust to 100 alternative phylogenetic hypotheses, and potential ecological and life-history confounds. A significant component of adult mortality bias is sexual selection acting on males, whereas increased reproductive output predicts higher mortality in females. These results provide the most comprehensive insights into ASR variation to date, and suggest that ASR is an outcome of selective processes operating differentially on adult males and females. Therefore, revealing the causes of ASR variation in wild populations is essential for understanding breeding systems and population dynamics. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Anthropogenic Impacts on Mortality and Population Viability of the Monarch Butterfly.

    PubMed

    Malcolm, Stephen B

    2018-01-07

    Monarch butterflies (Danaus plexippus) are familiar herbivores of milkweeds of the genus Asclepias, and most monarchs migrate each year to locate these host plants across North American ecosystems now dominated by agriculture. Eastern migrants overwinter in high-elevation forests in Mexico, and western monarchs overwinter in trees on the coast of California. Both populations face three primary threats to their viability: (a) loss of milkweed resources for larvae due to genetically modified crops, pesticides, and fertilizers; (b) loss of nectar resources from flowering plants; and (c) degraded overwintering forest habitats due to commercially motivated deforestation and other economic activities. Secondary threats to population viability include (d) climate change effects on milkweed host plants and the dynamics of breeding, overwintering, and migration; (e) the influence of invasive plants and natural enemies; (f) habitat fragmentation and coalescence that promote homogeneous, species-depleted landscapes; and (g) deliberate culture and release of monarchs and invasive milkweeds.

  9. Meiotic sex ratio variation in natural populations of Ceratodon purpureus (Ditrichaceae).

    PubMed

    Norrell, Tatum E; Jones, Kelly S; Payton, Adam C; McDaniel, Stuart F

    2014-09-01

    • Sex ratio variation is a common but often unexplained phenomenon in species across the tree of life. Here we evaluate the hypothesis that meiotic sex ratio variation can contribute to the biased sex ratios found in natural populations of the moss Ceratodon purpureus.• We obtained sporophytes from several populations of C. purpureus from eastern North America. From each sporophyte, we estimated the mean spore viability by germinating replicate samples on agar plates. We estimated the meiotic sex ratio of each sporophyte by inferring the sex of a random sample of germinated spores (mean = 77) using a PCR-RFLP test. We tested for among-sporophyte variation in viability using an ANOVA and for deviations from 1:1 sex ratio using a χ(2)-test and evaluated the relationship between these quantities using a linear regression.• We found among-sporophyte variation in spore viability and meiotic sex ratio, suggesting that genetic variants that contribute to variation in both of these traits segregate within populations of this species. However, we found no relationship between these quantities, suggesting that factors other than sex ratio distorters contribute to variation in spore viability within populations.• These results demonstrate that sex ratio distortion may partially explain the population sex ratio variation seen in C. purpureus, but more generally that genetic conflict over meiotic segregation may contribute to fitness variation in this species. Overall, this study lays the groundwork for future studies on the genetic basis of meiotic sex ratio variation. © 2014 Botanical Society of America, Inc.

  10. Development of a new fertility prediction model for stallion semen, including flow cytometry.

    PubMed

    Barrier Battut, I; Kempfer, A; Becker, J; Lebailly, L; Camugli, S; Chevrier, L

    2016-09-01

    Several laboratories routinely use flow cytometry to evaluate stallion semen quality. However, objective and practical tools for the on-field interpretation of data concerning fertilizing potential are scarce. A panel of nine tests, evaluating a large number of compartments or functions of the spermatozoa: motility, morphology, viability, mitochondrial activity, oxidation level, acrosome integrity, DNA integrity, "organization" of the plasma membrane, and hypoosmotic resistance, was applied to a population of 43 stallions, 33 of which showing widely differing fertilities (19%-84% pregnancy rate per cycle [PRC]). Analyses were performed either within 2 hours after semen collection or after 24-hour storage at 4 °C in INRA96 extender, on three to six ejaculates for each stallion. The aim was to provide data on the distribution of values among said population, showing within-stallion and between-stallion variability, and to determine whether appropriate combinations of tests could evaluate the fertilizing potential of each stallion. Within-stallion repeatability, defined as intrastallion correlation (r = between-stallion variance/total variance) ranged between 0.29 and 0.84 for "conventional" variables (viability, morphology, and motility), and between 0.15 and 0.81 for "cytometric" variables. Those data suggested that analyzing six ejaculates would be adequate to characterize a stallion. For most variables, except those related to DNA integrity and some motility variables, results differed significantly between immediately performed analyses and analyses performed after 24 hours at 4 °C. Two "best-fit" combinations of variables were determined. Factorial discriminant analysis using a first combination of seven variables, including the polarization of mitochondria, acrosome integrity, DNA integrity, and hypoosmotic resistance, permitted exact determination of the fertility group for each stallion: fertile, that is, PRC higher than 55%; intermediate, that is, 45% < PRC less than 55%; or subfertile, that is, PRC less than 45%. Linear regression using another combination of 20 variables, including motility, viability, oxidation level, acrosome integrity, DNA integrity, and hypoosmotic resistance, accounted for 94.2% of the variability regarding fertility and was used to calculate a prediction of the PRC with a mean standard deviation of 3.1. The difference between the observed fertility and the calculated value ranged from -4.2 to 5.0. In conclusion, this study enabled to determine a new protocol for the evaluation of stallion semen, combining microscopical observation, computer-assisted motility analysis and flow cytometry, and providing a high level of fertility prediction. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Linking Conservation Actions with Population Viability Models: Reducing Uncertainty to Better Predict Management Effects on Viability

    DTIC Science & Technology

    2011-05-01

    selected results .......................................................................... 101  Appendix B. Scientific Publications ...159  Scientific Publications ...are being achieved. Thus, public review (and political tradeoffs) can be incorporated in choosing short-term management strategies, but ultimate

  12. Population structure and fruit production of Pyrus bourgaeana D. are affected by land-use

    NASA Astrophysics Data System (ADS)

    Arenas-Castro, Salvador; Fernández-Haeger, Juan; Jordano-Barbudo, Diego

    2016-11-01

    The Iberian wild pear (Pyrus bourgaeana D.) is a rare, fleshy-fruited tree restricted to dehesas and evergreen sclerophyllous Mediterranean forests in the southwestern Iberian Peninsula. It produces palatable fruits and leaves attractive to different species groups, playing an important trophic role in the ecological networks of Mediterranean ecosystems. However, the intensification in the traditional land-use linked to these areas could threaten the stability of the wild pear populations in the short/medium-term. In order to determine the population dynamics of this relevant species in relation to the land-use history, we selected two populations (southern Spain) subjected to different land-use management, dehesa (D) and abandoned olive grove (AOG). An analysis of 122 adult trees reported an overall density of 0.6 trees ha-1. The tree age was estimated by tree-rings analysis in all adult trees. Dendrometric parameters, reproductive features, and germination rates were also measured. Regeneration was clearly biased, as evidenced by the truncated age structure. A low correlation (R2 = 34%) between age and DBH (diameter at breast height) (244 cores analysed) showed that diameter seems not to be a reliable predictor of tree age. Trees from AOG populations had significantly-higher values of DBH, height and crown diameter, but were less productive in terms of fruits and seeds. Nested analysis of variance showed significant variation in fruit production, fruit size, dry mass, water content and seed viability. There were also significant differences in masting. No evidence was found to demonstrate that fruit production, seed viability, or germination rate influence the low natural recruitment of this species. These findings indicate that the traditional agrosilvopastoral practices carried out in the study area for decades, and its subsequent intensification, have strongly influenced the ecological structure of the Iberian wild pear populations at the local scale, which could compromise its stability in the near future.

  13. Simulating range-wide population and breeding habitat dynamics for an endangered woodland warbler in the face of uncertainty

    USGS Publications Warehouse

    Adam Duarte,; Hatfield, Jeffrey; Todd M. Swannack,; Michael R. J. Forstner,; M. Clay Green,; Floyd W. Weckerly,

    2015-01-01

    Population viability analyses provide a quantitative approach that seeks to predict the possible future status of a species of interest under different scenarios and, therefore, can be important components of large-scale species’ conservation programs. We created a model and simulated range-wide population and breeding habitat dynamics for an endangered woodland warbler, the golden-cheeked warbler (Setophaga chrysoparia). Habitat-transition probabilities were estimated across the warbler's breeding range by combining National Land Cover Database imagery with multistate modeling. Using these estimates, along with recently published demographic estimates, we examined if the species can remain viable into the future given the current conditions. Lastly, we evaluated if protecting a greater amount of habitat would increase the number of warblers that can be supported in the future by systematically increasing the amount of protected habitat and comparing the estimated terminal carrying capacity at the end of 50 years of simulated habitat change. The estimated habitat-transition probabilities supported the hypothesis that habitat transitions are unidirectional, whereby habitat is more likely to diminish than regenerate. The model results indicated population viability could be achieved under current conditions, depending on dispersal. However, there is considerable uncertainty associated with the population projections due to parametric uncertainty. Model results suggested that increasing the amount of protected lands would have a substantial impact on terminal carrying capacities at the end of a 50-year simulation. Notably, this study identifies the need for collecting the data required to estimate demographic parameters in relation to changes in habitat metrics and population density in multiple regions, and highlights the importance of establishing a common definition of what constitutes protected habitat, what management goals are suitable within those protected areas, and a standard operating procedure to identify areas of priority for habitat conservation efforts. Therefore, we suggest future efforts focus on these aspects of golden-cheeked warbler conservation and ecology.

  14. Use of population viability analysis to evaluate CITES trade-management options for threatened marine fishes.

    PubMed

    Curtis, Janelle M R; Vincent, Amanda C J

    2008-10-01

    Achieving multiple conservation objectives can be challenging, particularly under high uncertainty. Having agreed to limit seahorse (Hippocampus) exports to sustainable levels, signatories to the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) were offered the option of a single 10-cm minimum size limit (MSL) as an interim management measure for all Hippocampus species (> or =34). Although diverse stakeholders supported the recommended MSL, its biological and socioeconomic implications were not assessed quantitatively. We combined population viability analysis, model sensitivity analysis, and economic information to evaluate the trade-off between conservation threat to and long-term cumulative income from these exploited marine fishes of high conservation concern. We used the European long-snouted seahorse (Hippocampus guttulatus) as a representative species to compare the performance of MSLs set at alternative biological reference points. Our sensitivity analyses showed that in most of our scenarios, setting the MSL just above size at maturity (9.7 cm in H. guttulatus) would not prevent exploited populations from becoming listed as vulnerable. By contrast, the relative risk of decline and extinction were almost halved--at a cost of only a 5.6% reduction in long-term catches--by increasing the MSL to the size reached after at least one full reproductive season. On the basis of our analysis, a precautionary increase in the MSL could be compatible with sustaining fishers' livelihoods and international trade. Such management tactics that aid species conservation and have minimal effects on long term catch trends may help bolster the case for CITES trade management of other valuable marine fishes.

  15. Consequences of extensive habitat fragmentation in landscape-level patterns of genetic diversity and structure in the Mediterranean esparto grasshopper

    PubMed Central

    Ortego, Joaquín; Aguirre, María P; Noguerales, Víctor; Cordero, Pedro J

    2015-01-01

    Anthropogenic habitat fragmentation has altered the distribution and population sizes in many organisms worldwide. For this reason, understanding the demographic and genetic consequences of this process is necessary to predict the fate of populations and establish management practices aimed to ensure their viability. In this study, we analyse whether the spatial configuration of remnant semi-natural habitat patches within a chronically fragmented landscape has shaped the patterns of genetic diversity and structure in the habitat-specialist esparto grasshopper (Ramburiella hispanica). In particular, we predict that agricultural lands constitute barriers to gene flow and hypothesize that fragmentation has restricted interpopulation dispersal and reduced local levels of genetic diversity. Our results confirmed the expectation that isolation and habitat fragmentation have reduced the genetic diversity of local populations. Landscape genetic analyses based on circuit theory showed that agricultural land offers ∽1000 times more resistance to gene flow than semi-natural habitats, indicating that patterns of dispersal are constrained by the spatial configuration of remnant patches of suitable habitat. Overall, this study shows that semi-natural habitat patches act as corridors for interpopulation gene flow and should be preserved due to the disproportionately large ecological function that they provide considering their insignificant area within these human-modified landscapes. PMID:26136826

  16. Andean Condor (Vultur gryphus) in Ecuador: Geographic Distribution, Population Size and Extinction Risk.

    PubMed

    Naveda-Rodríguez, Adrián; Vargas, Félix Hernán; Kohn, Sebastián; Zapata-Ríos, Galo

    2016-01-01

    The Andean Condor (Vultur gryphus) in Ecuador is classified as Critically Endangered. Before 2015, standardized and systematic estimates of geographic distribution, population size and structure were not available for this species, hampering the assessment of its current status and hindering the design and implementation of effective conservation actions. In this study, we performed the first quantitative assessment of geographic distribution, population size and population viability of Andean Condor in Ecuador. We used a methodological approach that included an ecological niche model to study geographic distribution, a simultaneous survey of 70 roosting sites to estimate population size and a population viability analysis (PVA) for the next 100 years. Geographic distribution in the form of extent of occurrence was 49 725 km2. During a two-day census, 93 Andean Condors were recorded and a population of 94 to 102 individuals was estimated. In this population, adult-to-immature ratio was 1:0.5. In the modeled PVA scenarios, the probability of extinction, mean time to extinction and minimum population size varied from zero to 100%, 63 years and 193 individuals, respectively. Habitat loss is the greatest threat to the conservation of Andean Condor populations in Ecuador. Population size reduction in scenarios that included habitat loss began within the first 15 years of this threat. Population reinforcement had no effects on the recovery of Andean Condor populations given the current status of the species in Ecuador. The population size estimate presented in this study is the lower than those reported previously in other countries where the species occur. The inferences derived from the population viability analysis have implications for Condor management in Ecuador. This study highlights the need to redirect efforts from captive breeding and population reinforcement to habitat conservation.

  17. Andean Condor (Vultur gryphus) in Ecuador: Geographic Distribution, Population Size and Extinction Risk

    PubMed Central

    Naveda-Rodríguez, Adrián; Vargas, Félix Hernán; Kohn, Sebastián; Zapata-Ríos, Galo

    2016-01-01

    The Andean Condor (Vultur gryphus) in Ecuador is classified as Critically Endangered. Before 2015, standardized and systematic estimates of geographic distribution, population size and structure were not available for this species, hampering the assessment of its current status and hindering the design and implementation of effective conservation actions. In this study, we performed the first quantitative assessment of geographic distribution, population size and population viability of Andean Condor in Ecuador. We used a methodological approach that included an ecological niche model to study geographic distribution, a simultaneous survey of 70 roosting sites to estimate population size and a population viability analysis (PVA) for the next 100 years. Geographic distribution in the form of extent of occurrence was 49 725 km2. During a two-day census, 93 Andean Condors were recorded and a population of 94 to 102 individuals was estimated. In this population, adult-to-immature ratio was 1:0.5. In the modeled PVA scenarios, the probability of extinction, mean time to extinction and minimum population size varied from zero to 100%, 63 years and 193 individuals, respectively. Habitat loss is the greatest threat to the conservation of Andean Condor populations in Ecuador. Population size reduction in scenarios that included habitat loss began within the first 15 years of this threat. Population reinforcement had no effects on the recovery of Andean Condor populations given the current status of the species in Ecuador. The population size estimate presented in this study is the lower than those reported previously in other countries where the species occur. The inferences derived from the population viability analysis have implications for Condor management in Ecuador. This study highlights the need to redirect efforts from captive breeding and population reinforcement to habitat conservation. PMID:26986004

  18. Economic viability of deficit irrigation in the western US

    USDA-ARS?s Scientific Manuscript database

    In many arid regions of the world, population growth, groundwater depletion, and uncertain supplies have caused agricultural water to become increasingly scarce. Deficit irrigation (DI) provides a potential response to water scarcity, but no consensus exists on its economic viability. In this pape...

  19. Estimating freshwater turtle mortality rates and population declines following hook ingestion.

    PubMed

    Steen, David A; Robinson, Orin J

    2017-12-01

    Freshwater turtle populations are susceptible to declines following small increases in the mortality of adults, making it essential to identify and understand potential threats. Freshwater turtles ingest fish hooks associated with recreational angling, and this is likely a problem because hook ingestion is a source of additive mortality for sea turtles. We used a Bayesian-modeling framework, observed rates of hook ingestion by freshwater turtles, and mortality of sea turtles from hook ingestion to examine the probability that a freshwater turtle in a given population ingests a hook and subsequently dies from it. We used the results of these analyses and previously published life-history data to simulate the effects of hook ingestion on population growth for 3 species of freshwater turtle. In our simulation, the probability that an individual turtle ingests a hook and dies as a result was 1.2-11%. Our simulation results suggest that this rate of mortality from hook ingestion is sufficient to cause population declines. We believe we have identified fish-hook ingestion as a serious yet generally overlooked threat to the viability of freshwater turtle populations. © 2017 Society for Conservation Biology.

  20. Correlations between U.S. county annual cancer incidence and population density.

    PubMed

    Vares, David Ae; St-Pierre, Linda S; Persinger, Michael A

    2015-01-01

    Population density implicitly involves specific distances between living individuals who exhibit biophysical forces and energies. Objective was to investigate major data bases of cancer incidence and population data to help understand the emergent properties of diseases that become apparent only when large populations and areas are considered. Correlation analyses of the annual incidence (years 2007 to 2011) of cancer in counties (2,885) of the U.S. and population densities were convergent with these quantitative predictions and suggested an inflection threshold around 50 people per square mile. The potential role of subtle or even "non-local" factors coupled to averaged population density in the viability and mortality of the human species may serve as alternative explanations to the attribution of malignancy to "chance" factors. Calculations indicated average distances between the electric force dipole of the brains or bodies of human beings generate forces known to affect DNA extension and when distributed over the Compton wavelength of the electron could produce energies sufficient to affect the binding of base nucleotides. An inclusive science of human ecology might benefit from considering subtle forces and energies associated with the individual members within the habitat that could determine the probability of cellular anomalies.

  1. Net Effects of Ecotourism on Threatened Species Survival

    PubMed Central

    Buckley, Ralf C.; Morrison, Clare; Castley, J. Guy

    2016-01-01

    Many threatened species rely on ecotourism for conservation funding, but simultaneously suffer direct ecological impacts from ecotourism. For a range of IUCN-Redlisted terrestrial and marine bird and mammal species worldwide, we use population viability analyses to calculate the net effects of ecotourism on expected time to extinction, in the presence of other anthropogenic threats such as poaching, primary industries and habitat loss. Species for which these calculations are currently possible, for one or more subpopulations, include: orangutan, hoolock gibbon, golden lion tamarin, cheetah, African wild dog, New Zealand sealion, great green macaw, Egyptian vulture, and African penguin. For some but not all of these species, tourism can extend expected survival time, i.e., benefits outweigh impacts. Precise outcomes depend strongly on population parameters and starting sizes, predation, and ecotourism scale and mechanisms. Tourism does not currently overcome other major conservation threats associated with natural resource extractive industries. Similar calculations for other threatened species are currently limited by lack of basic population data. PMID:26886876

  2. Net Effects of Ecotourism on Threatened Species Survival.

    PubMed

    Buckley, Ralf C; Morrison, Clare; Castley, J Guy

    2016-01-01

    Many threatened species rely on ecotourism for conservation funding, but simultaneously suffer direct ecological impacts from ecotourism. For a range of IUCN-Redlisted terrestrial and marine bird and mammal species worldwide, we use population viability analyses to calculate the net effects of ecotourism on expected time to extinction, in the presence of other anthropogenic threats such as poaching, primary industries and habitat loss. Species for which these calculations are currently possible, for one or more subpopulations, include: orangutan, hoolock gibbon, golden lion tamarin, cheetah, African wild dog, New Zealand sealion, great green macaw, Egyptian vulture, and African penguin. For some but not all of these species, tourism can extend expected survival time, i.e., benefits outweigh impacts. Precise outcomes depend strongly on population parameters and starting sizes, predation, and ecotourism scale and mechanisms. Tourism does not currently overcome other major conservation threats associated with natural resource extractive industries. Similar calculations for other threatened species are currently limited by lack of basic population data.

  3. An individual-based model for population viability analysis of humpback chub in Grand Canyon

    USGS Publications Warehouse

    Pine, William Pine; Healy, Brian; Smith, Emily Omana; Trammell, Melissa; Speas, Dave; Valdez, Rich; Yard, Mike; Walters, Carl; Ahrens, Rob; Vanhaverbeke, Randy; Stone, Dennis; Wilson, Wade

    2013-01-01

    We developed an individual-based population viability analysis model (females only) for evaluating risk to populations from catastrophic events or conservation and research actions. This model tracks attributes (size, weight, viability, etc.) for individual fish through time and then compiles this information to assess the extinction risk of the population across large numbers of simulation trials. Using a case history for the Little Colorado River population of Humpback Chub Gila cypha in Grand Canyon, Arizona, we assessed extinction risk and resiliency to a catastrophic event for this population and then assessed a series of conservation actions related to removing specific numbers of Humpback Chub at different sizes for conservation purposes, such as translocating individuals to establish other spawning populations or hatchery refuge development. Our results suggested that the Little Colorado River population is generally resilient to a single catastrophic event and also to removals of larvae and juveniles for conservation purposes, including translocations to establish new populations. Our results also suggested that translocation success is dependent on similar survival rates in receiving and donor streams and low emigration rates from recipient streams. In addition, translocating either large numbers of larvae or small numbers of large juveniles has generally an equal likelihood of successful population establishment at similar extinction risk levels to the Little Colorado River donor population. Our model created a transparent platform to consider extinction risk to populations from catastrophe or conservation actions and should prove useful to managers assessing these risks for endangered species such as Humpback Chub.

  4. Functional Cardiac Magnetic Resonance Imaging (MRI) in the Assessment of Myocardial Viability and Perfusion

    PubMed Central

    2003-01-01

    Executive Summary Objective The objective of this health technology policy assessment was to determine the effectiveness safety and cost-effectiveness of using functional cardiac magnetic resonance imaging (MRI) for the assessment of myocardial viability and perfusion in patients with coronary artery disease and left ventricular dysfunction. Results Functional MRI has become increasingly investigated as a noninvasive method for assessing myocardial viability and perfusion. Most patients in the published literature have mild to moderate impaired LV function. It is possible that the severity of LV dysfunction may be an important factor that can alter the diagnostic accuracy of imaging techniques. There is some evidence of comparable or better performance of functional cardiac MRI for the assessment of myocardial viability and perfusion compared with other imaging techniques. However limitations to most of the studies included: Functional cardiac MRI studies that assess myocardial viability and perfusion have had small sample sizes. Some studies assessed myocardial viability/perfusion in patients who had already undergone revascularization, or excluded patients with a prior MI (Schwitter et al., 2001). Lack of explicit detail of patient recruitment. Patients with LVEF >35%. Interstudy variability in post MI imaging time(including acute or chronic MI), when patients with a prior MI were included. Poor interobserver agreement (kappa statistic) in the interpretation of the results. Traditionally, 0.80 is considered “good”. Cardiac MRI measurement of myocardial perfusion to as an adjunct tool to help diagnose CAD (prior to a definitive coronary angiography) has also been examined in some studies, with methodological limitations, yielding comparable results. Many studies examining myocardial viability and perfusion report on the accuracy of imaging methods with limited data on long-term patient outcome and management. Kim et al. (2000) revealed that the transmural extent of hyperenhancement was significantly related to the likelihood of improvement in contractility after revascularization. However, the LVEF in the patient population was 43% prior to revascularization. It is important to know whether the technique has the same degree of accuracy in patients who have more severe LV dysfunction and who would most benefit from an assessment of myocardial viability. “Substantial” viability used as a measure of a patient’s ability to recover after revascularization has not been definitively reported (how much viability is enough?). Patients with severe LV dysfunction are more likely to have mixtures of surviving myocardium, including normal, infarcted, stunned and hibernating myocardium (Cowley et al., 1999). This may lead to a lack of homogeneity of response to testing and to revascularization and contribute to inter- and intra-study differences. There is a need for a large prospective study with adequate follow-up time for patients with CAD and LV dysfunction (LVEF<35%) comparing MRI and an alternate imaging technique. There is some evidence that MRI has comparable sensitivity, specificity and accuracy to PET for determining myocardial viability. However, there is a lack of evidence comparing the accuracy of these two techniques to predict LV function recovery. In addition, some studies refer to PET as the gold standard for the assessment of myocardial viability. Therefore, PET may be an ideal noninvasive imaging comparator to MRI for a prospective study with follow-up. To date, there is a lack of cost-effectiveness analyses (or any economic analyses) of functional cardiac MRI versus an alternate noninvasive imaging method for the assessment of myocardial viability/perfusion. Conclusion There is some evidence that the accuracy of functional cardiac MRI compares favourably with alternate imaging techniques for the assessment of myocardial viability and perfusion. There is insufficient evidence whether functional cardiac MRI can better select which patients [who have CAD and severe LV dysfunction (LVEF <35%)] may benefit from revascularization compared with an alternate noninvasive imaging technology. There is insufficient evidence whether functional cardiac MRI can better select which patients should proceed to invasive coronary angiography for the definitive diagnosis of CAD, compared with an alternate noninvasive imaging technology. There is a need for a large prospective (potentially multicentre) study with adequate follow-up time for patients with CAD and LV dysfunction (LVEF<35%) comparing MRI and PET. Since longer follow-up time may be associated with restenosis or graft occlusion, it has been suggested to have serial measurements after revascularization (Cowley et al., 1999). PMID:23074446

  5. [Population viability of Alouatta palliata (Primates: Atelidae) and Cebus capucinus (Primates: Cebidae) at Refugio de Vida Silvestre Privado Nogal, Sarapiquí, Heredia, Costa Rica].

    PubMed

    Rodríguez-Matamoros, Jorge; Villalobos-Brenes, Federico; Gutiérrez-Espeleta, Gustavo A

    2012-06-01

    Habitat destruction may cause wildlife population fragmentation and is considered an important factor in small population species extinction. As wildlife populations become smaller, threats to their stability and persistence arise as a result of demographic, environmental and genetic stochastic factors. The aim of this work was to study the effects of population fragmentation on the long term viability of Alouatta palliata and Cebus capucinus populations, at Refugio de Vida Silvestre Privado Nogal, Sarapiquí (RVSPN), Heredia. For this we used the computer software VORTEX to run a population viability analysis (PVA) for both species. The input data of the PVA were taken from the demography structure of the RVSPN, literature sources from the species and from PVA related papers. We evaluated two sets of scenarios: small fragmented populations to reflect the population current state, and one larger and continuous population, to reflect the effect of reforestation actions followed by RVSPN to connect forest fragments. Results suggest that both A. palliata and C. capucinus can survive in isolated forest fragments. However, if different factors as inbreeding depression, catastrophes or habitat loss were incorporated to the scenarios, the small fragmented populations become unstable and the risk of extinction increased for both species. Continuous and larger populations were more robust against the threats incorporated in the scenarios when compared to the current situation of smaller and fragmented populations. The best management option for both species would be to continue reforestation efforts in the area to connect forest fragments, with the result of larger and continuous populations of both species. It is important to continue the observation of both species populations, and to promote a habitat management to reduce the negative effects of stochastic environmental events.

  6. Doctors' perspectives on the viability of rural practice.

    PubMed

    Jones, J A; Humphreys, J S; Adena, M A

    2004-01-01

    Private practitioners play a vital role in meeting the health needs of rural communities. However, the prospect of operating a private practice business in rural Australia seems to be increasingly unattractive, because many communities are forced to recruit salaried or overseas-trained doctors. This study focuses on rural practices as businesses whose viability influences their attractiveness for the recruitment and retention of practitioners. The specific objectives are to ascertain which factors contribute to or threaten practice viability in rural areas, and whether they vary according to the degree of rurality or geographical remoteness. This study is based on data collected from a national study into the viability of rural general practice undertaken jointly by the Rural Doctors Association of Australia and Monash University School of Rural Health Bendigo. The Rural Remote and Metropolitan Area (RRMA) classification was used as the indicator of rurality. The study surveyed all general practitioners practising in rural or remote regions of Australia (RRMAs 3 to 7). Only practitioners with some financial interest in the practice were selected for this analysis. Free-text responses to the two questions 'What are the key factors contributing to the viability of your practice?' and 'What factors would put the viability of your practice at risk?' were analysed using qualitative content analysis. Factors were derived iteratively through higher-level aggregation of responses. Chi-square tests were used to make comparisons across the RRMA categories. The national survey achieved a response rate of 35% of the entire population of GPs practising in RRMA 3 to 7 regions. Of these, 1050 respondents were relevant to this analysis. Seven major factors were identified by practitioners as the main contributors to practice viability. 'Practice characteristics' was nominated by 59% of respondents, followed by 'Income' (31%), 'Personal circumstances', 'Workforce' and 'Community characteristics' (all approximately 23%), 'GP activities and workload' (16%) and 'Professional support' (12%). Eight main factors were identified by practitioners as threats to viability. 'Workforce' was nominated by 57% of respondents, followed by 'Financial' (44%), 'Medico-legal' (33%), 'Administration-political' (16%), 'Community characteristics' (15%), 'GP-practice characteristics' and 'Personal circumstances' (10%) and 'Family circumstances' (3%). Across RRMA 3 to 5 the order of the percentage of respondents identifying each factor was generally consistent, with significant differences in the magnitude of the percentages for three contributing factors and four risk factors. While respondent numbers in RRMA 6 and 7 communities were low, significance testing did reveal differences between them and the rural communities on two contributing and one risk factor. Practice viability is a major factor affecting the attractiveness of rural and remote practice for intending and existing GPs. Initiatives designed to contribute to viability will not be successful unless measures are also adopted to address perceived threats. This study highlights the systemic nature of the factors which contribute to and threaten practice viability. Although a primary component of practice viability is economic, with income from consultations being critical, the importance of the interrelationships between the main viability factors should not be underestimated. Clearly a multifaceted systemic response is required to overcome problems associated with rural workforce recruitment of future and burnout of current rural GPs.

  7. Threshold of long-term survival of a coastal delphinid in anthropogenically degraded environment: Indo-Pacific humpback dolphins in Pearl River Delta.

    PubMed

    Karczmarski, Leszek; Huang, Shiang-Lin; Chan, Stephen C Y

    2017-02-23

    Defining demographic and ecological threshold of population persistence can assist in informing conservation management. We undertook such analyses for the Indo-Pacific humpback dolphin (Sousa chinensis) in the Pearl River Delta (PRD) region, southeast China. We use adult survival estimates for assessments of population status and annual rate of change. Our estimates indicate that, given a stationary population structure and minimal risk scenario, ~2000 individuals (minimum viable population in carrying capacity, MVP k ) can maintain the population persistence across 40 generations. However, under the current population trend (~2.5% decline/annum), the population is fast approaching its viability threshold and may soon face effects of demographic stochasticity. The population demographic trajectory and the minimum area of critical habitat (MACH) that could prevent stochastic extinction are both highly sensitive to fluctuations in adult survival. For a hypothetical stationary population, MACH should approximate 3000-km 2 . However, this estimate increases four-fold with a 5% increase of adult mortality and exceeds the size of PRD when calculated for the current population status. On the other hand, cumulatively all current MPAs within PRD fail to secure the minimum habitat requirement to accommodate sufficiently viable population size. Our findings indicate that the PRD population is deemed to become extinct unless effective conservation measures can rapidly reverse the current population trend.

  8. Population specific fitness response of Drosophila subobscura to lead pollution.

    PubMed

    Kenig, Bojan; Stamenković-Radak, Marina; Andelković, Marko

    2013-04-01

    Differences in heavy metal tolerance among separate populations of the same species have often been interpreted as local adaptation. Persistence of differences after removing the stressor indicates that mechanisms responsible for the increased tolerance were genetically determined. Drosophila subobscura Collin (Diptera: Drosophilidae) populations were sampled from two localities with different history of heavy metal pollution, and reared for eight generations in the laboratory on a standard medium and on media with different concentrations of lead (Pb). To determine whether flies from different natural populations exposed to the Pb-contaminated media in the laboratory show population specific variability in fitness components over generations, experimental groups with different concentrations of lead were assayed in three generations (F2 , F5 , and F8 ) for fecundity, developmental time, and egg-to-adult viability. On the contaminated medium, fecundity was reduced in later generations and viability was increased, irrespective of the environmental origin of populations. For both populations, developmental time showed a tendency of slowing down on media with lead. Faster development was observed in later generations. Preadaptation to contamination, meaning higher fecundity, higher viability, and faster egg to adult development in all studied generations, was found in D. subobscura originating from the locality with a higher level of heavy metal pollution. © 2012 The Authors Insect Science © 2012 Institute of Zoology, Chinese Academy of Sciences.

  9. Using population viability analysis, genomics, and habitat suitability to forecast future population patterns of Little Owl Athene noctua across Europe.

    PubMed

    Andersen, Line Holm; Sunde, Peter; Pellegrino, Irene; Loeschcke, Volker; Pertoldi, Cino

    2017-12-01

    The agricultural scene has changed over the past decades, resulting in a declining population trend in many species. It is therefore important to determine the factors that the individual species depend on in order to understand their decline. The landscape changes have also resulted in habitat fragmentation, turning once continuous populations into metapopulations. It is thus increasingly important to estimate both the number of individuals it takes to create a genetically viable population and the population trend. Here, population viability analysis and habitat suitability modeling were used to estimate population viability and future prospects across Europe of the Little Owl Athene noctua , a widespread species associated with agricultural landscapes. The results show a high risk of population declines over the coming 100 years, especially toward the north of Europe, whereas populations toward the southeastern part of Europe have a greater probability of persistence. In order to be considered genetically viable, individual populations must count 1,000-30,000 individuals. As Little Owl populations of several countries count <30,000, and many isolated populations in northern Europe count <1,000 individuals, management actions resulting in exchange of individuals between populations or even countries are probably necessary to prevent losing <1% genetic diversity over a 100-year period. At a continental scale, a habitat suitability analysis suggested Little Owl to be affected positively by increasing temperatures and urban areas, whereas an increased tree cover, an increasing annual rainfall, grassland, and sparsely vegetated areas affect the presence of the owl negatively. However, the low predictive power of the habitat suitability model suggests that habitat suitability might be better explained at a smaller scale.

  10. Population genetic diversity and fitness in multiple environments

    EPA Science Inventory

    When a large number of alleles are lost from a population, increases in homozygosity may reduce individual fitness through inbreeding depression. Modest losses of allelic diversity may also negatively impact long-term population viability by reducing the capacity of populations t...

  11. Observational data on the effects of infection by the copepod Salmincola californiensis on the short- and long-term viability of juvenile Chinook salmon (Oncorhynchus tshawytscha) implanted with telemetry tags

    USGS Publications Warehouse

    Beeman, John W.; Hansen, Amy C.; Sprando, Jamie M.

    2015-01-01

    Infection with Salmincola californiensis is common in juvenile Chinook salmon in western USA reservoirs and may affect the viability of fish used in studies of telemetered animals. Our limited assessment suggests infection by Salmincola californiensis affects the short-term morality of tagged fish and may affect long-term viability of tagged fish after release; however, the intensity of infection in the sample population did not represent the source population due to the observational nature of the data. We suggest these results warrant further study into the effects of infection bySalmincola californiensis on the results obtained through active telemetry and perhaps other methods requiring handling of infected fish.

  12. Simulating free-roaming cat population management options in open demographic environments.

    PubMed

    Miller, Philip S; Boone, John D; Briggs, Joyce R; Lawler, Dennis F; Levy, Julie K; Nutter, Felicia B; Slater, Margaret; Zawistowski, Stephen

    2014-01-01

    Large populations of free-roaming cats (FRCs) generate ongoing concerns for welfare of both individual animals and populations, for human public health, for viability of native wildlife populations, and for local ecological damage. Managing FRC populations is a complex task, without universal agreement on best practices. Previous analyses that use simulation modeling tools to evaluate alternative management methods have focused on relative efficacy of removal (or trap-return, TR), typically involving euthanasia, and sterilization (or trap-neuter-return, TNR) in demographically isolated populations. We used a stochastic demographic simulation approach to evaluate removal, permanent sterilization, and two postulated methods of temporary contraception for FRC population management. Our models include demographic connectivity to neighboring untreated cat populations through natural dispersal in a metapopulation context across urban and rural landscapes, and also feature abandonment of owned animals. Within population type, a given implementation rate of the TR strategy results in the most rapid rate of population decline and (when populations are isolated) the highest probability of population elimination, followed in order of decreasing efficacy by equivalent rates of implementation of TNR and temporary contraception. Even low levels of demographic connectivity significantly reduce the effectiveness of any management intervention, and continued abandonment is similarly problematic. This is the first demographic simulation analysis to consider the use of temporary contraception and account for the realities of FRC dispersal and owned cat abandonment.

  13. Bumble bee colony dynamics: quantifying the importance of land use and floral resources for colony growth and queen production.

    PubMed

    Crone, Elizabeth E; Williams, Neal M

    2016-04-01

    Bumble bee (Bombus) species are ecologically and economically important pollinators, and many species are in decline. In this article, we develop a mechanistic model to analyse growth trajectories of Bombus vosnesenskii colonies in relation to floral resources and land use. Queen production increased with floral resources and was higher in semi-natural areas than on conventional farms. However, the most important parameter for queen production was the colony growth rate per flower, as opposed to the average number of available flowers. This result indicates the importance of understanding mechanisms of colony growth, in order to predict queen production and enhance bumble bee population viability. Our work highlights the importance of interpreting bumble bee conservation efforts in the context of overall population dynamics and provides a framework for doing so. © 2016 John Wiley & Sons Ltd/CNRS.

  14. Hybrid zone studies: An interdisciplinary approach for the analysis of evolutionary processes

    USGS Publications Warehouse

    Scribner, Kim T.

    1994-01-01

    There has been considerable debate in the ecological and evolutionary literature over the relative importance and rate by which microevolutionary processes operating at the population level result in separation and differentiation of lineages and populations, and ultimately in speciation. Our understanding of evolutionary processes have need greatly enhances through the study of hybridization and hybrid zones. Indeed, hybrid zones have been described as “natural laboratories” (Barton, N. H., and G .M. Hewitt, 189. Adaptation, speciation, and hybrid zones. Nature 341:497-503) or as “windows on the evolutionary processes” (Harrison, R. G. 1990. Hybrid zones: windows on the evolutionary process. Oxford Surveys in Evolutionary Biology 7:69-128). Hybrid zones greatly facilitate analyses of evolutionary dynamics because differences in factors such as mating preference, fertility, and viability are likely to be magnified, making the consequences easier to document over short periods of time.

  15. Rural Community Viability and Leadership Patterns.

    ERIC Educational Resources Information Center

    Pinkerton, James R.; Brown, Ralph B.

    This study uses a comparative analysis of 17 northwest Missouri communities to determine the relationship between viability of rural communities and: (1) leadership patterns; (2) specific aspects of community development organizations; and (3) community organizing strategies. Populations of the communities range from 1,000 to 2,500. Based on such…

  16. Inbreeding avoidance influences the viability of reintroduced populations of African wild dogs (Lycaon pictus).

    PubMed

    Becker, Penny A; Miller, Philip S; Gunther, Micaela Szykman; Somers, Michael J; Wildt, David E; Maldonado, Jesús E

    2012-01-01

    The conservation of many fragmented and small populations of endangered African wild dogs (Lycaon pictus) relies on understanding the natural processes affecting genetic diversity, demographics, and future viability. We used extensive behavioural, life-history, and genetic data from reintroduced African wild dogs in South Africa to (1) test for inbreeding avoidance via mate selection and (2) model the potential consequences of avoidance on population persistence. Results suggested that wild dogs avoided mating with kin. Inbreeding was rare in natal packs, after reproductive vacancies, and between sibling cohorts (observed on 0.8%, 12.5%, and 3.8% of occasions, respectively). Only one of the six (16.7%) breeding pairs confirmed as third-order (or closer) kin consisted of animals that were familiar with each other, while no other paired individuals had any prior association. Computer-simulated populations allowed to experience inbreeding had only a 1.6% probability of extinction within 100 years, whereas all populations avoiding incestuous matings became extinct due to the absence of unrelated mates. Populations that avoided mating with first-order relatives became extinct after 63 years compared with persistence of 37 and 19 years for those also prevented from second-order and third-order matings, respectively. Although stronger inbreeding avoidance maintains significantly more genetic variation, our results demonstrate the potentially severe demographic impacts of reduced numbers of suitable mates on the future viability of small, isolated wild dog populations. The rapid rate of population decline suggests that extinction may occur before inbreeding depression is observed.

  17. Modeling wildlife populations with HexSim

    EPA Science Inventory

    HexSim is a framework for constructing spatially-explicit, individual-based computer models designed for simulating terrestrial wildlife population dynamics and interactions. HexSim is useful for a broad set of modeling applications including population viability analysis for on...

  18. Incorporating evolutionary processes into population viability models.

    PubMed

    Pierson, Jennifer C; Beissinger, Steven R; Bragg, Jason G; Coates, David J; Oostermeijer, J Gerard B; Sunnucks, Paul; Schumaker, Nathan H; Trotter, Meredith V; Young, Andrew G

    2015-06-01

    We examined how ecological and evolutionary (eco-evo) processes in population dynamics could be better integrated into population viability analysis (PVA). Complementary advances in computation and population genomics can be combined into an eco-evo PVA to offer powerful new approaches to understand the influence of evolutionary processes on population persistence. We developed the mechanistic basis of an eco-evo PVA using individual-based models with individual-level genotype tracking and dynamic genotype-phenotype mapping to model emergent population-level effects, such as local adaptation and genetic rescue. We then outline how genomics can allow or improve parameter estimation for PVA models by providing genotypic information at large numbers of loci for neutral and functional genome regions. As climate change and other threatening processes increase in rate and scale, eco-evo PVAs will become essential research tools to evaluate the effects of adaptive potential, evolutionary rescue, and locally adapted traits on persistence. © 2014 Society for Conservation Biology.

  19. Environmental Noise, Genetic Diversity and the Evolution of Evolvability and Robustness in Model Gene Networks

    PubMed Central

    Steiner, Christopher F.

    2012-01-01

    The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or “evolvability”) can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise) compared to populations in stable or randomly varying (white noise) environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions. PMID:23284934

  20. Origin of Atlantic Sturgeon collected off the Delaware coast during spring months

    USGS Publications Warehouse

    Wirgin, Isaac; Breece, Matthew W.; Fox, Dewayne A.; Maceda, Lorraine; Wark, Kevin W.; King, Timothy L.

    2015-01-01

    Atlantic Sturgeon Acipenser oxyrinchus oxyrinchus was federally listed under the U.S. Endangered Species Act as five distinct population segments (DPS). Currently, at least 18 estuaries coastwide host spawning populations and the viability of these vary, requiring differing levels of protection. Subadults emigrate from their natal estuaries to marine waters where they are vulnerable to bycatch; one of the major threats to the rebuilding of populations. As a result, identifying the population origin of Atlantic Sturgeon in coastal waters is critical to development of management plans intended to minimize interactions of the most imperiled populations with damaging fisheries. We used mitochondrial DNA control region sequencing and microsatellite DNA analyses to determine the origin of 261 Atlantic Sturgeon collected off the Delaware coast during the spring months. Using individual-based assignment (IBA) testing and mixed stock analysis, we found that specimens originated from all nine of our reference populations and the five DPSs used in the listing determination. Using IBA, we found that the Hudson River population was the largest contributor (38.3%) to our coastal collection. The James (19.9%) and Delaware (13.8%) river populations, at one time thought to be extirpated or nearly so, were the next largest contributors. The three populations combined in the South Atlantic DPS contributed 21% of specimens; the Altamaha River, the largest population in the South Atlantic DPS, only contributed a single specimen to the collection. While the origin of specimens collected on the Delaware coast was most likely within rivers of the New York Bight DPS (52.1%), specimens that originated elsewhere were also well represented. Genetic analyses provide a robust tool to identify the population origin of individual sturgeon outside of their natal estuaries and to determine the quantitative contributions of individual populations to coastal aggregations that are vulnerable to bycatch and other anthropogenic threats.

  1. Fitness variation in response to artificial selection for reduced cell area, cell number and wing area in natural populations of Drosophila melanogaster.

    PubMed

    Trotta, Vincenzo; Calboli, Federico C F; Ziosi, Marcello; Cavicchi, Sandro

    2007-08-16

    Genetically based body size differences are naturally occurring in populations of Drosophila melanogaster, with bigger flies in the cold. Despite the cosmopolitan nature of body size clines in more than one Drosophila species, the actual selective mechanisms controlling the genetic basis of body size variation are not fully understood. In particular, it is not clear what the selective value of cell size and cell area variation exactly is. In the present work we determined variation in viability, developmental time and larval competitive ability in response to crowding at two temperatures after artificial selection for reduced cell area, cell number and wing area in four different natural populations of D. melanogaster. No correlated effect of selection on viability or developmental time was observed among all selected populations. An increase in competitive ability in one thermal environment (18 degrees C) under high larval crowding was observed as a correlated response to artificial selection for cell size. Viability and developmental time are not affected by selection for the cellular component of body size, suggesting that these traits only depend on the contingent genetic makeup of a population. The higher larval competitive ability shown by populations selected for reduced cell area seems to confirm the hypothesis that cell area mediated changes have a relationship with fitness, and might be the preferential way to change body size under specific circumstances.

  2. Population and habitat viability assessments for Golden-cheeked Warblers and Black-capped Vireos: Usefulness to Partners in Flight Conservation Planning

    USGS Publications Warehouse

    Beardmore, C.J.; Hatfield, J.S.; Bonney, Rick; Pashley, David N.; Cooper, Robert; Niles, Larry

    2000-01-01

    Golden-cheeked Warblers and Black-capped Vireos are Neotropical migratory birds that are federally listed as endangered. Recovery plans for both species advise the use of viability modeling as a tool for setting specific recovery and management targets. Population and Habitat Viability Assessment workshops were conducted to develop population targets and conservation recommendations for these species. Results of the workshops were based on modeling demographic and environmental factors, as well as discussions of management issues, management options, and public outreach strategies. The approach is intended to be iterative, and to be tracked by research and monitoring efforts. This paper discusses the consensus-building workshop process and how the approach could be useful to Partners in Flight. Population and Habitat Viability Assessments (PHVA) were used to develop population targets and conservation recommendations for Golden-cheeked Warblers (Dendroica chrysoparia) and Black-capped Vireos (Vireo atricapillus). This paper explains what PHVAs are, discusses how they are conducted, describes the general results that are produced, and suggests how Partners in Flight (PIF) might use a similar process for bird conservation planning. Detailed results of the assessments are not discussed here; however they can be found elsewhere (U. S. Fish and Wildlife Service 1996a, U. S. Fish and Wildlife Service 1996b). PHVAs were considered for Golden-cheeked Warblers and Black-capped Vireos because they are controversial, endangered species, and the species? recovery plans list PHVAs as tools to develop recovery recommendations. The U. S. Fish and Wildlife Service (USFWS) realized that the data needed to perform PHVAs for these species is limited, but that various conservation efforts, such as the Balcones Canyonlands Conservation Plan and other endeavors, were proceeding without benefit of the biological summarization and guidance that a PHVA could provide.

  3. Characterization of sympatric Platanthera bifolia and Platanthera chlorantha (Orchidaceae) populations with intermediate plants.

    PubMed

    Esposito, Fabiana; Vereecken, Nicolas J; Gammella, Maddalena; Rinaldi, Rosita; Laurent, Pascal; Tyteca, Daniel

    2018-01-01

    Platanthera bifolia and P. chlorantha are terrestrial and rewarding orchids with a wide Eurasian distribution. Although genetically closely related, they exhibit significant morphological, phenological and ecological differences that maintain reproductive isolation between the species. However, where both species co-occur, individuals with intermediate phenotypic traits, often considered as hybrids, are frequently observed. Here, we combined neutral genetic markers (AFLPs), morphometrics and floral scent analysis (GC-MS) to investigate two mixed Platanthera populations where morphologically intermediate plants were found. Self-pollination experiments revealed a low level of autogamy and artificial crossings combined with assessments of fruit set and seed viability, showed compatibility between the two species. The results of the genetic analyses showed that morphologically intermediate plants had similar genetic patterns as the P. bifolia group. These results are corroborated also by floral scent analyses, which confirmed a strong similarity in floral scent composition between intermediate morphotypes and P. bifolia . Therefore, this study provided a much more detailed picture of the genetic structure of a sympatric zone between two closely allied species and supports the hypothesis that intermediate morphotypes in sympatry could reflect an adaptive evolution in response to local pollinator-mediated selection.

  4. Cytotoxic analysis and chemical characterization of fractions of the hydroalcoholic extract of the Euterpe oleracea Mart. seed in the MCF-7 cell line.

    PubMed

    Freitas, Dayanne da S; Morgado-Díaz, José A; Gehren, Adriana S; Vidal, Flávia C B; Fernandes, Raquel Maria T; Romão, Wanderson; Tose, Lilian V; Frazão, Fabiola N S; Costa, Maria Célia P; Silva, Dulcelena F; Nascimento, Maria do Desterro S B

    2017-06-01

    To analyse the antineoplastic activity of fractions derived from the hydroalcoholic extract of Euterpe oleracea Mart. seed in the MCF-7 cell line and to identify the compounds responsible for the antineoplastic action. Cells were treated with 10, 20, 40 and 60 μg/ml with the hexane, chloroform and ethyl acetate fraction (EAF) of the hydroalcoholic extract of açaí seed, for 24 and 48 h. After treatment, cell viability was measured using MTT assay and cell death was assessed using the Annexin-Pi assay. The most cytotoxic fraction under study was analysed by mass spectrometry using an electrospray ionization source and a cyclotron analyser coupled to a Fourier transform. Data were analysed statistically by analysis of variance (ANOVA) or by Student's t-test, where appropriate. All fractions caused significant reduction in the cell viability, but the EAF was the most cytotoxic (P < 0.001). It was observed the absence of significant annexin staining but increase Pi staining (P < 0.001). The EAF is composed of epicatechin, proanthocyanidin A 2 and trimeric and tetrameric procyanidins. In this study, we demonstrated that EAF was the most effective fraction in reducing cell viability and causing necroptosis in the MCF-7 cell. © 2017 Royal Pharmaceutical Society.

  5. Schrödinger's microbes: Tools for distinguishing the living from the dead in microbial ecosystems.

    PubMed

    Emerson, Joanne B; Adams, Rachel I; Román, Clarisse M Betancourt; Brooks, Brandon; Coil, David A; Dahlhausen, Katherine; Ganz, Holly H; Hartmann, Erica M; Hsu, Tiffany; Justice, Nicholas B; Paulino-Lima, Ivan G; Luongo, Julia C; Lymperopoulou, Despoina S; Gomez-Silvan, Cinta; Rothschild-Mancinelli, Brooke; Balk, Melike; Huttenhower, Curtis; Nocker, Andreas; Vaishampayan, Parag; Rothschild, Lynn J

    2017-08-16

    While often obvious for macroscopic organisms, determining whether a microbe is dead or alive is fraught with complications. Fields such as microbial ecology, environmental health, and medical microbiology each determine how best to assess which members of the microbial community are alive, according to their respective scientific and/or regulatory needs. Many of these fields have gone from studying communities on a bulk level to the fine-scale resolution of microbial populations within consortia. For example, advances in nucleic acid sequencing technologies and downstream bioinformatic analyses have allowed for high-resolution insight into microbial community composition and metabolic potential, yet we know very little about whether such community DNA sequences represent viable microorganisms. In this review, we describe a number of techniques, from microscopy- to molecular-based, that have been used to test for viability (live/dead determination) and/or activity in various contexts, including newer techniques that are compatible with or complementary to downstream nucleic acid sequencing. We describe the compatibility of these viability assessments with high-throughput quantification techniques, including flow cytometry and quantitative PCR (qPCR). Although bacterial viability-linked community characterizations are now feasible in many environments and thus are the focus of this critical review, further methods development is needed for complex environmental samples and to more fully capture the diversity of microbes (e.g., eukaryotic microbes and viruses) and metabolic states (e.g., spores) of microbes in natural environments.

  6. Divergence in sink contributions to population persistence

    EPA Science Inventory

    Population sinks present unique conservation challenges. The loss of animals in sinks can compromise persistence. Conversely, sinks can bolster population sizes, improving viability. To assess the contribution of sinks to regional persistence, we simulated the removal of sink hab...

  7. Environmental regulation of dormancy loss in seeds of Lomatium dissectum (Apiaceae)

    PubMed Central

    Scholten, Melissa; Donahue, Jacklyn; Shaw, Nancy L.; Serpe, Marcelo D.

    2009-01-01

    Background and Aims Lomatium dissectum (Apiaceae) is a perennial, herbaceous plant of wide distribution in Western North America. At the time of dispersal, L. dissectum seeds are dormant and have under-developed embryos. The aims of this work were to determine the requirements for dormancy break and germination, to characterize the type of seed dormancy, and to determine the effect of dehydration after embryo growth on seed viability and secondary dormancy. Methods The temperature requirements for embryo growth and germination were investigated under growth chamber and field conditions. The effect of GA3 on embryo growth was also analysed to determine the specific type of seed dormancy. The effect of dehydration on seed viability and induction of secondary dormancy were tested in seeds where embryos had elongated about 4-fold their initial length. Most experiments examining the nature of seed dormancy were conducted with seeds collected at one site in two different years. To characterize the degree of variation in dormancy-breaking requirements among seed populations, the stratification requirements of seeds collected at eight different sites were compared. Key Results Embryo growth prior to and during germination occurred at temperatures between 3 and 6 °C and was negligible at stratification temperatures of 0·5 and 9·1 °C. Seeds buried in the field and exposed to natural winter conditions showed similar trends. Interruption of the cold stratification period by 8 weeks of dehydration decreased seed viability by about 30 % and induced secondary dormancy in the remaining viable seeds. Comparison of the cold stratification requirements of different seed populations indicates that seeds collected from moist habitats have longer cold stratification requirements that those from semiarid environments. Conclusions Seeds of L. dissectum have deep complex morphophysiological dormancy. The requirements for dormancy break and germination reflect an adaptation to trigger germination in late winter. PMID:19233890

  8. Interaction between the plant ApDef1 defensin and Saccharomyces cerevisiae results in yeast death through a cell cycle- and caspase-dependent process occurring via uncontrolled oxidative stress.

    PubMed

    Soares, Júlia Ribeiro; José Tenório de Melo, Edésio; da Cunha, Maura; Fernandes, Kátia Valevski Sales; Taveira, Gabriel Bonan; da Silva Pereira, Lidia; Pimenta, Samy; Trindade, Fernanda Gomes; Regente, Mariana; Pinedo, Marcela; de la Canal, Laura; Gomes, Valdirene Moreira; de Oliveira Carvalho, André

    2017-01-01

    Plant defensins were discovered at beginning of the 90s'; however, their precise mechanism of action is still unknown. Herein, we studied ApDef 1 -Saccharomyces cerevisiae interaction. ApDef 1 -S. cerevisiae interaction was studied by determining the MIC, viability and death kinetic assays. Viability assay was repeated with hydroxyurea synchronized-yeast and pretreated with CCCP. Plasma membrane permeabilization, ROS induction, chromatin condensation, and caspase activation analyses were assessed through Sytox green, DAB, DAPI and FITC-VAD-FMK, respectively. Viability assay was done in presence of ascorbic acid and Z-VAD-FMK. Ultrastructural analysis was done by electron microscopy. ApDef 1 caused S. cerevisiae cell death and MIC was 7.8μM. Whole cell population died after 18h of ApDef 1 interaction. After 3h, 98.76% of synchronized cell population died. Pretreatment with CCCP protected yeast from ApDef 1 induced death. ApDef 1 -S. cerevisiae interaction resulted in membrane permeabilization, H 2 O 2 increased production, chromatin condensation and caspase activation. Ascorbic acid prevented yeast cell death and membrane permeabilization. Z-VAD-FMK prevented yeast cell death. ApDef 1 -S. cerevisiae interaction caused cell death through cell cycle dependentprocess which requires preserved membrane potential. After interaction, yeast went through uncontrolled ROS production and accumulation, which led to plasma membrane permeabilization, chromatin condensation and, ultimately, cell death by activation of caspase-dependent apoptosis via. We show novel requirements for the interaction between plant defensin and fungi cells, i.e. cell cycle phase and membrane potential, and we indicate that membrane permeabilization is probably caused by ROS and therefore, it would be an indirect event of the ApDef 1 -S. cerevisiae interaction. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Higher Temperature at Lower Elevation Sites Fails to Promote Acclimation or Adaptation to Heat Stress During Pollen Germination.

    PubMed

    Flores-Rentería, Lluvia; Whipple, Amy V; Benally, Gilbert J; Patterson, Adair; Canyon, Brandon; Gehring, Catherine A

    2018-01-01

    High temperatures associated with climate change are expected to be detrimental for aspects of plant reproduction, such as pollen viability. We hypothesized that (1) higher peak temperatures predicted with climate change would have a minimal effect on pollen viability, while high temperatures during pollen germination would negatively affect pollen viability, (2) high temperatures during pollen dispersal would facilitate acclimation to high temperatures during pollen germination, and (3) pollen from populations at sites with warmer average temperatures would be better adapted to high temperature peaks. We tested these hypotheses in Pinus edulis , a species with demonstrated sensitivity to climate change, using populations along an elevational gradient. We tested for acclimation to high temperatures by measuring pollen viability during dispersal and germination stages in pollen subjected to 30, 35, and 40°C in a factorial design. We also characterized pollen phenology and measured pollen heat tolerance using trees from nine sites along a 200 m elevational gradient that varied 4°C in temperature. We demonstrated that this gradient is biologically meaningful by evaluating variation in vegetation composition and P. edulis performance. Male reproduction was negatively affected by high temperatures, with stronger effects during pollen germination than pollen dispersal. Populations along the elevational gradient varied in pollen phenology, vegetation composition, plant water stress, nutrient availability, and plant growth. In contrast to our hypothesis, pollen viability was highest in pinyons from mid-elevation sites rather than from lower elevation sites. We found no evidence of acclimation or adaptation of pollen to high temperatures. Maximal plant performance as measured by growth did not occur at the same elevation as maximal pollen viability. These results indicate that periods of high temperature negatively affected sexual reproduction, such that even high pollen production may not result in successful fertilization due to low germination. Acquired thermotolerance might not limit these impacts, but pinyon could avoid heat stress by phenological adjustment of pollen development. Higher pollen viability at the core of the distribution could be explained by an optimal combination of biotic and abiotic environmental factors. The disconnect between measures of growth and pollen production suggests that vigor metrics may not accurately estimate reproduction.

  10. Effects of accelerated ageing on viability, leachate exudation, and fatty acid content of Dalbergia sissoo Roxb

    Treesearch

    R.C. Thapliyal; K.F. Connor

    1997-01-01

    Accelerated ageing of seeds of Dalbergia sissoo Roxb., a multi-purpose tropical legume tree, was effective as a vigour test only at temperatures in excess of 43 deg C for 72 h. Increased leakage of solutes accompanied the decrease in viability, but there was no relationship between seed size and conductivity. Analyses of D. sissoo...

  11. Verification and characterization of chromosome duplication in haploid maize.

    PubMed

    de Oliveira Couto, E G; Resende Von Pinho, E V; Von Pinho, R G; Veiga, A D; de Carvalho, M R; de Oliveira Bustamante, F; Nascimento, M S

    2015-06-26

    Doubled haploid technology has been used by various private companies. However, information regarding chromosome duplication methodologies, particularly those concerning techniques used to identify duplication in cells, is limited. Thus, we analyzed and characterized artificially doubled haploids using microsatellites molecular markers, pollen viability, and flow cytometry techniques. Evaluated material was obtained using two different chromosome duplication protocols in maize seeds considered haploids, resulting from the cross between the haploid inducer line KEMS and 4 hybrids (GNS 3225, GNS 3032, GNS 3264, and DKB 393). Fourteen days after duplication, plant samples were collected and assessed by flow cytometry. Further, the plants were transplanted to a field, and samples were collected for DNA analyses using microsatellite markers. The tassels were collected during anthesis for pollen viability analyses. Haploid, diploid, and mixoploid individuals were detected using flow cytometry, demonstrating that this technique was efficient for identifying doubled haploids. The microsatellites markers were also efficient for confirming the ploidies preselected by flow cytometry and for identifying homozygous individuals. Pollen viability showed a significant difference between the evaluated ploidies when the Alexander and propionic-carmin stains were used. The viability rates between the plodies analyzed show potential for fertilization.

  12. Inbreeding Avoidance Influences the Viability of Reintroduced Populations of African Wild Dogs (Lycaon pictus)

    PubMed Central

    Becker, Penny A.; Miller, Philip S.; Gunther, Micaela Szykman; Somers, Michael J.; Wildt, David E.; Maldonado, Jesús E.

    2012-01-01

    The conservation of many fragmented and small populations of endangered African wild dogs (Lycaon pictus) relies on understanding the natural processes affecting genetic diversity, demographics, and future viability. We used extensive behavioural, life-history, and genetic data from reintroduced African wild dogs in South Africa to (1) test for inbreeding avoidance via mate selection and (2) model the potential consequences of avoidance on population persistence. Results suggested that wild dogs avoided mating with kin. Inbreeding was rare in natal packs, after reproductive vacancies, and between sibling cohorts (observed on 0.8%, 12.5%, and 3.8% of occasions, respectively). Only one of the six (16.7%) breeding pairs confirmed as third-order (or closer) kin consisted of animals that were familiar with each other, while no other paired individuals had any prior association. Computer-simulated populations allowed to experience inbreeding had only a 1.6% probability of extinction within 100 years, whereas all populations avoiding incestuous matings became extinct due to the absence of unrelated mates. Populations that avoided mating with first-order relatives became extinct after 63 years compared with persistence of 37 and 19 years for those also prevented from second-order and third-order matings, respectively. Although stronger inbreeding avoidance maintains significantly more genetic variation, our results demonstrate the potentially severe demographic impacts of reduced numbers of suitable mates on the future viability of small, isolated wild dog populations. The rapid rate of population decline suggests that extinction may occur before inbreeding depression is observed. PMID:22615933

  13. The use of resighting data to estimate the rate of population growth of the snail kite in Florida

    USGS Publications Warehouse

    Dreitz, V.J.; Nichols, J.D.; Hines, J.E.; Bennetts, R.E.; Kitchens, W.M.; DeAngelis, D.L.

    2002-01-01

    The rate of population growth (lambda) is an important demographic parameter used to assess the viability of a population and to develop management and conservation agendas. We examined the use of resighting data to estimate lambda for the snail kite population in Florida from 1997-2000. The analyses consisted of (1) a robust design approach that derives an estimate of lambda from estimates of population size and (2) the Pradel (1996) temporal symmetry (TSM) approach that directly estimates lambda using an open-population capture-recapture model. Besides resighting data, both approaches required information on the number of unmarked individuals that were sighted during the sampling periods. The point estimates of lambda differed between the robust design and TSM approaches, but the 95% confidence intervals overlapped substantially. We believe the differences may be the result of sparse data and do not indicate the inappropriateness of either modelling technique. We focused on the results of the robust design because this approach provided estimates for all study years. Variation among these estimates was smaller than levels of variation among ad hoc estimates based on previously reported index statistics. We recommend that lambda of snail kites be estimated using capture-resighting methods rather than ad hoc counts.

  14. Living on the edge: reconstructing the genetic history of the Finnish wolf population

    PubMed Central

    2014-01-01

    Background Many western European carnivore populations became almost or completely eradicated during the last ~200 years, but are now recovering. Extirpation of wolves started in Finland in the 19th century, and for more than 150 years the population size of wolves has remained small. To investigate historical patterns of genetic variation, we extracted DNA from 114 wolf samples collected in zoological museums over the last ~150 years. Fifteen microsatellite loci were used to look at genotypic variation in this historical sample. Additionally, we amplified a 430 bp sequence of mtDNA control region from the same samples. Contemporary wolf samples (N = 298) obtained after the population recovery in the mid-1990s, were used as a reference. Results Our analyses of mtDNA revealed reduced variation in the mtDNA control region through the loss of historical haplotypes observed prior to wolf declines. Heterozygosity at autosomal microsatellite loci did not decrease significantly. However, almost 20% of microsatellite alleles were unique to wolves collected before the 1960s. The genetic composition of the population changed gradually with the largest changes occurring prior to 1920. Half of the oldest historical samples formed a distinguishable genetic cluster not detected in the modern-day Finnish or Russian samples, and might therefore represent northern genetic variation lost from today’s gene pool. Point estimates of Ne were small (13.2 and 20.5) suggesting population fragmentation. Evidence of a genetic population bottleneck was also detected. Conclusions Our genetic analyses confirm changes in the genetic composition of the Finnish wolf population through time, despite the geographic interconnectivity to a much larger population in Russia. Our results emphasize the need for restoration of the historical connectivity between the present wolf populations to secure long-term viability. This might be challenging, however, because the management policies between Western and Eastern Europe often differ greatly. Additionally, wolf conservation is still a rather controversial issue, and anthropogenic pressure towards wolves remains strong. PMID:24678616

  15. Negative effects of temperature and atmospheric depositions on the seed viability of common juniper (Juniperus communis).

    PubMed

    Gruwez, R; De Frenne, P; De Schrijver, A; Leroux, O; Vangansbeke, P; Verheyen, K

    2014-02-01

    Environmental change is increasingly impacting ecosystems worldwide. However, our knowledge about the interacting effects of various drivers of global change on sexual reproduction of plants, one of their key mechanisms to cope with change, is limited. This study examines populations of poorly regenerating and threatened common juniper (Juniperus communis) to determine the influence of four drivers of global change (rising temperatures, nitrogen deposition, potentially acidifying deposition and altering precipitation patterns) on two key developmental phases during sexual reproduction, gametogenesis and fertilization (seed phase two, SP2) and embryo development (seed phase three, SP3), and on the ripening time of seeds. In 42 populations throughout the distribution range of common juniper in Europe, 11,943 seeds of two developmental phases were sampled. Seed viability was determined using seed dissection and related to accumulated temperature (expressed as growing degree-days), nitrogen and potentially acidifying deposition (nitrogen plus sulfur), and precipitation data. Precipitation had no influence on the viability of the seeds or on the ripening time. Increasing temperatures had a negative impact on the viability of SP2 and SP3 seeds and decreased the ripening time. Potentially acidifying depositions negatively influenced SP3 seed viability, while enhanced nitrogen deposition led to lower ripening times. Higher temperatures and atmospheric deposition affected SP3 seeds more than SP2 seeds. However, this is possibly a delayed effect as juniper seeds develop practically independently, due to the absence of vascular communication with the parent plant from shortly after fertilization. It is proposed that the failure of natural regeneration in many European juniper populations might be attributed to climate warming as well as enhanced atmospheric deposition of nitrogen and sulfur.

  16. Negative effects of temperature and atmospheric depositions on the seed viability of common juniper (Juniperus communis)

    PubMed Central

    Gruwez, R.; De Frenne, P.; De Schrijver, A.; Leroux, O.; Vangansbeke, P.; Verheyen, K.

    2014-01-01

    Background and Aims Environmental change is increasingly impacting ecosystems worldwide. However, our knowledge about the interacting effects of various drivers of global change on sexual reproduction of plants, one of their key mechanisms to cope with change, is limited. This study examines populations of poorly regenerating and threatened common juniper (Juniperus communis) to determine the influence of four drivers of global change (rising temperatures, nitrogen deposition, potentially acidifying deposition and altering precipitation patterns) on two key developmental phases during sexual reproduction, gametogenesis and fertilization (seed phase two, SP2) and embryo development (seed phase three, SP3), and on the ripening time of seeds. Methods In 42 populations throughout the distribution range of common juniper in Europe, 11 943 seeds of two developmental phases were sampled. Seed viability was determined using seed dissection and related to accumulated temperature (expressed as growing degree-days), nitrogen and potentially acidifying deposition (nitrogen plus sulfur), and precipitation data. Key Results Precipitation had no influence on the viability of the seeds or on the ripening time. Increasing temperatures had a negative impact on the viability of SP2 and SP3 seeds and decreased the ripening time. Potentially acidifying depositions negatively influenced SP3 seed viability, while enhanced nitrogen deposition led to lower ripening times. Conclusions Higher temperatures and atmospheric deposition affected SP3 seeds more than SP2 seeds. However, this is possibly a delayed effect as juniper seeds develop practically independently, due to the absence of vascular communication with the parent plant from shortly after fertilization. It is proposed that the failure of natural regeneration in many European juniper populations might be attributed to climate warming as well as enhanced atmospheric deposition of nitrogen and sulfur. PMID:24284814

  17. Population Genetic Diversity and Fitness in Multiple Environments(BMCEB)

    EPA Science Inventory

    When a large number of alleles are lost from a population, increases in individual homozygosity may reduce individual fitness through inbreeding depression. Modest losses of allelic diversity may also negatively impact long-term population viability by reducing the capacity of p...

  18. Population viability analysis: using a modeling tool to assess the viability of tapir populations in fragmented landscapes.

    PubMed

    Medici, Emília Patrícia; Desbiez, Arnaud Leonard Jean

    2012-12-01

    A population viability analysis (PVA) was conducted of the lowland tapir populations in the Atlantic Forest of the Pontal do Paranapanema region, Brazil, including Morro do Diabo State Park (MDSP) and surrounding forest fragments. Results from the model projected that the population of 126 tapirs in MDSP is likely to persist over the next 100 years; however, 200 tapirs would be required to maintain a viable population. Sensitivity analysis showed that sub-adult mortality and adult mortality have the strongest influence on the dynamics of lowland tapir populations. High road-kill has a major impact on the MDSP tapir population and can lead to population extinction. Metapopulation modeling showed that dispersal of tapirs from MDSP to the surrounding fragments can be detrimental to the overall metapopulation, as fragments act as sinks. Nevertheless, the model showed that under certain conditions the maintenance of the metapopulation dynamics might be determinant for the persistence of tapirs in the region, particularly in the smaller fragments. The establishment of corridors connecting MDSP to the forest fragments models resulted in an increase in the stochastic growth rate, making tapirs more resilient to threats and catastrophes, but only if rates of mortality were not increased when using corridors. The PVA showed that the conservation of tapirs in the Pontal region depends on: the effective protection of MDSP; maintenance and, whenever possible, enhancement of the functional connectivity of the landscape, reducing mortality during dispersal and threats in the unprotected forest fragments; and neutralization of all threats affecting tapirs in the smaller forest fragments. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  19. Geomorphic Framework to assess changes to aquatic habitat due to flow regulation and channel and floodplain alteration, Cedar River, Washington

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Magirl, Christopher S.; Czuba, Christiana R.; Konrad, Christopher P.; Little, Rand

    2010-01-01

    Flow regulation, bank armoring, and floodplain alteration since the early 20th century have contributed to significant changes in the hydrologic regime and geomorphic processes of the Cedar River in Washington State. The Cedar River originates in the Cascade Range, provides drinking water to the Seattle metropolitan area, and supports several populations of anadromous salmonids. Flow regulation currently has limited influence on the magnitude, duration, and timing of high-flow events, which affect the incubation of salmonids as well as the production and maintenance of their habitat. Unlike structural changes to the channel and floodplain, flow regulation may be modified in the short-term to improve the viability of salmon populations. An understanding of the effects of flow regulation on those populations must be discerned over a range of scales from individual floods that affect the size of individual year classes to decadal high flow regime that influences the amount and quality of channel and off-channel habitat available for spawning and rearing. We present estimates of reach-scale sediment budgets and changes to channel morphology derived from historical orthoimagery, specific gage analyses at four long-term streamflow-gaging stations to quantify trends in aggradation, and hydrologic statistics of the magnitude and duration of peak streamflows. These data suggest a gradient of channel types from unconfined, sediment-rich segments to confined, sediment-poor segments that are likely to have distinct responses to high flows. Particle-size distribution data and longitudinal water surface and streambed profiles for the 56 km downstream of Chester Morse Lake measured in 2010 show the spatial extent of preferred salmonid habitat along the Cedar River. These historical and current data constitute a geomorphic framework to help assess different river management scenarios for salmonid habitat and population viability. PDF version of a presentation on changes to aquatic habitat at the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  20. On the Viability of PTSD Checklist (PCL) Short Form Use: Analyses from Mississippi Gulf Coast Hurricane Katrina Survivors

    ERIC Educational Resources Information Center

    Hirschel, Michael J.; Schulenberg, Stefan E.

    2010-01-01

    One measure commonly used to assess posttraumatic stress disorder is the PTSD Checklist (PCL). Lang and Stein (2005) extracted 4 subsets of PCL items, validating 2 of them for possible use in screening in primary care settings. The viability of the 4 item subsets was evaluated psychometrically in the present study with a sample of Hurricane…

  1. Creating a stage-based deterministic PVA model - the western prairie fringed orchid [Exercise 12

    Treesearch

    Carolyn Hull Sieg; Rudy M. King; Fred Van Dyke

    2003-01-01

    Contemporary efforts to conserve populations and species often employ population viability analysis (PVA), a specific application of population modeling that estimates the effects of environmental and demographic processes on population growth rates. These models can also be used to estimate probabilities that a population will fall below a certain level. This...

  2. A comparison of TO-PRO-1 iodide and 5-CFDA-AM staining methods for assessing viability of planktonic algae with epifluorescence microscopy.

    PubMed

    Gorokhova, Elena; Mattsson, Lisa; Sundström, Annica M

    2012-06-01

    Two fluorescent dyes, TO-PRO-1 iodide and 5-CFDA-AM, were evaluated for LIVE/DEAD assessment of unicellular marine algae Brachiomonas submarina and Tetraselmis suecica. Epifluorescence microscopy was used to estimate cell viability in predetermined mixtures of viable and non-viable algal cells and validated using microplate growth assay as reference measurements. On average, 5-CFDA-AM underestimated live cell abundance by ~25% compared with viability estimated by the growth assay, whereas TO-PRO-1 iodide provided accurate viability estimates. Furthermore, viability estimates based on staining with TO-PRO-1 iodide were not affected by a storage period of up to one month in -80°C, making the assay a good candidate for routine assessment of phytoplankton populations in field and laboratory studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. 75 FR 41886 - Recovery Plan for the Ivory-billed Woodpecker (Campephilus principalis)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    .... Analyze viability of any existing populations (numbers, breeding success, population genetics, and ecology... learning more about the species' status and ecology, including documenting known locations and characterizing these habitats. Population goals are not identified, but are acknowledged as key to recovery...

  4. Eco-Evo PVAs: Incorporating Eco-Evolutionary Processes into Population Viability Models

    EPA Science Inventory

    We synthesize how advances in computational methods and population genomics can be combined within an Ecological-Evolutionary (Eco-Evo) PVA model. Eco-Evo PVA models are powerful new tools for understanding the influence of evolutionary processes on plant and animal population pe...

  5. Adverse Outcome Pathways and Ecological Risk Assessment: Bridging to Population Level Effects

    EPA Science Inventory

    The viability of populations of plants and animals is a key focus for environmental regulation. Population-level responses integrate the cumulative effects of chemical stressors on individuals as those individuals interact with and are affected by their con-specifics, competitor...

  6. Population Viability Analysis of the Endangered Roan Antelope in Ruma National Park, Kenya, and Implications for Management

    PubMed Central

    2018-01-01

    Population viability analysis (PVA) was used to (1) establish causes of roan population decline for the past 30 years in Ruma National Park (RNP), the only park where wild roans remain in Kenya, and (2) predict the probability of roan persistence under existing and alternative management options. PVA was done using long-term data based on population dynamics, life history, climatic conditions, and expert knowledge. Poaching was identified as the main cause of roan decline in RNP. Several antipoaching and prioritized habitat management interventions to promote population recovery and sustainable conservation of roans are described. PVA predictions indicated that, without these interventions, the roan population cannot persist more than 3 decades. Furthermore, ensuring sustainable conservation of roans in RNP will boost tourism in Western Kenyan and thus alleviate poverty in this part of the country. Improved income from tourism will reduce the possible pressures from hunting and give greater incentives for local people to be actively engaged in roan conservation. PMID:29643756

  7. Population Viability Analysis of the Endangered Roan Antelope in Ruma National Park, Kenya, and Implications for Management.

    PubMed

    Kimanzi, Johnstone K

    2018-01-01

    Population viability analysis (PVA) was used to (1) establish causes of roan population decline for the past 30 years in Ruma National Park (RNP), the only park where wild roans remain in Kenya, and (2) predict the probability of roan persistence under existing and alternative management options. PVA was done using long-term data based on population dynamics, life history, climatic conditions, and expert knowledge. Poaching was identified as the main cause of roan decline in RNP. Several antipoaching and prioritized habitat management interventions to promote population recovery and sustainable conservation of roans are described. PVA predictions indicated that, without these interventions, the roan population cannot persist more than 3 decades. Furthermore, ensuring sustainable conservation of roans in RNP will boost tourism in Western Kenyan and thus alleviate poverty in this part of the country. Improved income from tourism will reduce the possible pressures from hunting and give greater incentives for local people to be actively engaged in roan conservation.

  8. Population viability of the Snake River chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Emlen, John M.

    1995-01-01

    In the presence of historical data, population viability models of intermediate complexity can be parameterized and utilized to project the consequences of various management actions for endangered species. A general stochastic population dynamics model with density feedback, age structure, and autocorrelated environmental fluctuations was constructed and parameterized for best fit over 36 years of spring chinook salmon (Oncorhynchus tshawytscha) redd count data in five Idaho index streams. Simulations indicate that persistence of the Snake River spring chinook salmon population depends primarily on density-independent mortality. Improvement of rearing habitat, predator control, reduced fishing pressure, and improved dam passage all would alleviate density-independent mortality. The current value of the Ricker α should provide for a continuation of the status quo. A recovery of the population to 1957–1961 levels within 100 years would require an approximately 75% increase in survival and (or) fecundity. Manipulations of the Ricker β are likely to have little or no effect on persistence versus extinction, but considerable influence on population size.

  9. Estimating Allee dynamics before they can be observed: polar bears as a case study.

    PubMed

    Molnár, Péter K; Lewis, Mark A; Derocher, Andrew E

    2014-01-01

    Allee effects are an important component in the population dynamics of numerous species. Accounting for these Allee effects in population viability analyses generally requires estimates of low-density population growth rates, but such data are unavailable for most species and particularly difficult to obtain for large mammals. Here, we present a mechanistic modeling framework that allows estimating the expected low-density growth rates under a mate-finding Allee effect before the Allee effect occurs or can be observed. The approach relies on representing the mechanisms causing the Allee effect in a process-based model, which can be parameterized and validated from data on the mechanisms rather than data on population growth. We illustrate the approach using polar bears (Ursus maritimus), and estimate their expected low-density growth by linking a mating dynamics model to a matrix projection model. The Allee threshold, defined as the population density below which growth becomes negative, is shown to depend on age-structure, sex ratio, and the life history parameters determining reproduction and survival. The Allee threshold is thus both density- and frequency-dependent. Sensitivity analyses of the Allee threshold show that different combinations of the parameters determining reproduction and survival can lead to differing Allee thresholds, even if these differing combinations imply the same stable-stage population growth rate. The approach further shows how mate-limitation can induce long transient dynamics, even in populations that eventually grow to carrying capacity. Applying the models to the overharvested low-density polar bear population of Viscount Melville Sound, Canada, shows that a mate-finding Allee effect is a plausible mechanism for slow recovery of this population. Our approach is generalizable to any mating system and life cycle, and could aid proactive management and conservation strategies, for example, by providing a priori estimates of minimum conservation targets for rare species or minimum eradication targets for pests and invasive species.

  10. Estimating Allee Dynamics before They Can Be Observed: Polar Bears as a Case Study

    PubMed Central

    Molnár, Péter K.; Lewis, Mark A.; Derocher, Andrew E.

    2014-01-01

    Allee effects are an important component in the population dynamics of numerous species. Accounting for these Allee effects in population viability analyses generally requires estimates of low-density population growth rates, but such data are unavailable for most species and particularly difficult to obtain for large mammals. Here, we present a mechanistic modeling framework that allows estimating the expected low-density growth rates under a mate-finding Allee effect before the Allee effect occurs or can be observed. The approach relies on representing the mechanisms causing the Allee effect in a process-based model, which can be parameterized and validated from data on the mechanisms rather than data on population growth. We illustrate the approach using polar bears (Ursus maritimus), and estimate their expected low-density growth by linking a mating dynamics model to a matrix projection model. The Allee threshold, defined as the population density below which growth becomes negative, is shown to depend on age-structure, sex ratio, and the life history parameters determining reproduction and survival. The Allee threshold is thus both density- and frequency-dependent. Sensitivity analyses of the Allee threshold show that different combinations of the parameters determining reproduction and survival can lead to differing Allee thresholds, even if these differing combinations imply the same stable-stage population growth rate. The approach further shows how mate-limitation can induce long transient dynamics, even in populations that eventually grow to carrying capacity. Applying the models to the overharvested low-density polar bear population of Viscount Melville Sound, Canada, shows that a mate-finding Allee effect is a plausible mechanism for slow recovery of this population. Our approach is generalizable to any mating system and life cycle, and could aid proactive management and conservation strategies, for example, by providing a priori estimates of minimum conservation targets for rare species or minimum eradication targets for pests and invasive species. PMID:24427306

  11. Survival estimates for reintroduced populations of the Chiricahua Leopard Frog (Lithobates chiricahuensis)

    USGS Publications Warehouse

    Howell, Paige E; Hossack, Blake R.; Muths, Erin L.; Sigafus, Brent H.; Chandler, Richard B.

    2016-01-01

    Global amphibian declines have been attributed to a number of factors including disease, invasive species, habitat degradation, and climate change. Reintroduction is one management action that is commonly used with the goal of recovering imperiled species. The success of reintroductions varies widely, and evaluating their efficacy requires estimates of population viability metrics, such as underlying vital rates and trends in abundance. Although rarely quantified, assessing vital rates for recovering populations provides a more mechanistic understanding of population growth than numerical trends in population occupancy or abundance. We used three years of capture-mark-recapture data from three breeding ponds and a Cormack-Jolly-Seber model to estimate annual apparent survival for reintroduced populations of the federally threatened Chiricahua Leopard Frog (Lithobates chiricahuensis) at the Buenos Aires National Wildlife Refuge (BANWR), in the Altar Valley, Arizona, USA. To place our results in context, we also compiled published survival estimates for other ranids. Average apparent survival of Chiricahua Leopard Frogs at BANWR was 0.27 (95% CI [0.07, 0.74]) and average individual capture probability was 0.02 (95% CI [0, 0.05]). Our apparent survival estimate for Chiricahua Leopard Frogs is lower than for most other ranids and is not consistent with recent research that showed metapopulation viability in the Altar Valley is high. We suggest that low apparent survival may be indicative of high emigration rates. We recommend that future research should estimate emigration rates so that actual, rather than apparent, survival can be quantified to improve population viability assessments of threatened species following reintroduction efforts.

  12. A Statistical Analysis of the Economic Drivers of Battery Energy Storage in Commercial Buildings: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Matthew; Simpkins, Travis; Cutler, Dylan

    There is significant interest in using battery energy storage systems (BESS) to reduce peak demand charges, and therefore the life cycle cost of electricity, in commercial buildings. This paper explores the drivers of economic viability of BESS in commercial buildings through statistical analysis. A sample population of buildings was generated, a techno-economic optimization model was used to size and dispatch the BESS, and the resulting optimal BESS sizes were analyzed for relevant predictor variables. Explanatory regression analyses were used to demonstrate that peak demand charges are the most significant predictor of an economically viable battery, and that the shape ofmore » the load profile is the most significant predictor of the size of the battery.« less

  13. A Statistical Analysis of the Economic Drivers of Battery Energy Storage in Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Matthew; Simpkins, Travis; Cutler, Dylan

    There is significant interest in using battery energy storage systems (BESS) to reduce peak demand charges, and therefore the life cycle cost of electricity, in commercial buildings. This paper explores the drivers of economic viability of BESS in commercial buildings through statistical analysis. A sample population of buildings was generated, a techno-economic optimization model was used to size and dispatch the BESS, and the resulting optimal BESS sizes were analyzed for relevant predictor variables. Explanatory regression analyses were used to demonstrate that peak demand charges are the most significant predictor of an economically viable battery, and that the shape ofmore » the load profile is the most significant predictor of the size of the battery.« less

  14. Population viability analysis with species occurrence data from museum collections.

    PubMed

    Skarpaas, Olav; Stabbetorp, Odd E

    2011-06-01

    The most comprehensive data on many species come from scientific collections. Thus, we developed a method of population viability analysis (PVA) in which this type of occurrence data can be used. In contrast to classical PVA, our approach accounts for the inherent observation error in occurrence data and allows the estimation of the population parameters needed for viability analysis. We tested the sensitivity of the approach to spatial resolution of the data, length of the time series, sampling effort, and detection probability with simulated data and conducted PVAs for common, rare, and threatened species. We compared the results of these PVAs with results of standard method PVAs in which observation error is ignored. Our method provided realistic estimates of population growth terms and quasi-extinction risk in cases in which the standard method without observation error could not. For low values of any of the sampling variables we tested, precision decreased, and in some cases biased estimates resulted. The results of our PVAs with the example species were consistent with information in the literature on these species. Our approach may facilitate PVA for a wide range of species of conservation concern for which demographic data are lacking but occurrence data are readily available. ©2011 Society for Conservation Biology.

  15. Theoretical insights into the population viability of lynx [Chapter 2

    Treesearch

    Kevin S. McKelvey; Steven W. Buskirk; Charles J. Krebs

    2000-01-01

    We discuss ecological theory and population models pertinent to the population biology of southern lynx. Fragmented forest cover types, high vagility of lynx, and linkages in population dynamics suggest that lynx in the contiguous United States are arranged as metapopulations. Metapopulation stability depends on not only habitat quality but also dispersal...

  16. Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches

    Treesearch

    Gordon Luikart; Nils Ryman; David A. Tallmon; Michael K. Schwartz; Fred W. Allendorf

    2010-01-01

    Population census size (NC) and effective population sizes (Ne) are two crucial parameters that influence population viability, wildlife management decisions, and conservation planning. Genetic estimators of both NC and Ne are increasingly widely used because molecular markers are increasingly available, statistical methods are improving rapidly, and genetic estimators...

  17. Is Toxoplasma gondii a threat to the conservation of free-ranging Australian marsupial populations?

    PubMed Central

    Hillman, Alison E.; Lymbery, Alan J.; Thompson, R.C. Andrew

    2015-01-01

    It has often been asserted that Australian marsupial species are particularly susceptible to Toxoplasma gondii infection and to clinical toxoplasmosis following infection. This implicates T. gondii as a potential threat to marsupial population viability, and contrasts to what is known of T. gondii in populations of several other host species. We reviewed the literature, and found a lack of scientifically robust evidence addressing the occurrence of T. gondii infection in free-ranging populations of Australian marsupial species, and the impacts of the infection on population health. Key limitations included a lack of studies in free-ranging marsupial populations, study findings susceptible to substantial chance influences, and selection, misclassification and confounding biases. The lack of scientifically robust data available on this topic indicates that assertions that free-ranging populations of Australian marsupials are particularly susceptible to T. gondii infection and to toxoplasmosis are premature. The threat of T. gondii to the viability of free-ranging marsupial populations should therefore be regarded, at this stage, as a hypothesis. PMID:27141439

  18. Viability and growth promotion of starter and probiotic bacteria in yogurt supplemented with whey protein hydrolysate during refrigerated storage.

    PubMed

    Dąbrowska, Anna; Babij, Konrad; Szołtysik, Marek; Chrzanowska, Józefa

    2017-11-22

    The effect of whey protein hydrolysate (WPH) addition on growth of standard yoghurt cultures and Bifidobacterium adolescentis during co-fermentation and its viability during storage at 4ºC in yoghurts has been evaluated. WPH was obtained with the use of serine protease from Y. lipolytica yeast. Stirred probiotic yoghurts were prepared by using whole milk standardized to 16% of dry matter with the addition of either whey protein concentrate, skim milk powder (SMP), WPH-SMP (ratio 1:1), WPH. The hydrolysate increased the yoghurt culture counts at the initial stage of fermentation and significantly inhibited the decrease in population viability throughout the storage at 4ºC in comparison to the control. The post-fermentation acidification was also retarded by the addition of WPH. The hydrolysate did not increase the Bifidobacterium adolescentis counts at the initial stage. However, the WPH significantly improved its viability. After 21 days of storage, in the yogurts supplemented with WPH, the population of these bacteria oscillated around 3.04 log10 CFU/g, while in samples where SMP or whey protein concentrate was used, the bacteria were no longer detected.

  19. Reproductive stage-dependent effects of additional cryoprotectant agents for the cryopreservation of stallion germ cells.

    PubMed

    Jung, Heejun; Kim, Namyoung; Yoon, Minjung

    2016-10-01

    The main objective of this study was to evaluate the efficacy of an additional cryoprotectant in 10% dimethyl sulfoxide (DMSO) on cryopreserving germ cells from stallions at different reproductive stages. Testicular samples were obtained from pre-pubertal (1-1.5 yr, n=6) and post-pubertal (3-7 yr, n=5) stallions. Germ cells were isolated using a two-enzyme digestion procedure and cryopreserved in minimal essential medium alpha containing 10% fetal bovine serum and 10% DMSO with or without addition of trehalose (50, 100, or 200mM) or polyethylene glycol (PEG, 2.5, 5, or 10%). Viability, cell population, and viable population were assessed after 1 and 3 months of cryopreservation. The viable UTF1-positive population of pre-pubertal stallion germ cells was also measured using immunocytochemistry after 1 and 3 months of cryopreservation. As expected, the viability, cell population, and viable cell population were significantly reduced after 1 and 3 months of cryopreservation. At the pre-pubertal stage, the addition of trehalose or PEG to 10% DMSO did not show any effect on the viability, cell population, viable cell population, or viable UTF1-positive germ cells at either 1 or 3 months after cryopreservation. However, at the post-pubertal stage, the viable population was significantly higher in germ cells that were cryopreserved with 5% or 10% PEG, than in the cells cryopreserved with 10% DMSO only. In conclusion, PEG at 5% or 10% added to 10% DMSO serves as an optimal cryoprotectant agent for the cryopreservation of germ cells from post-pubertal stallions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Adverse Outcome Pathways and Ecological Risk Assessment: Bridging to Population Level Effects, Journal Article

    EPA Science Inventory

    The viability of populations of plants and animals is a key focus for environmental regulation. Population-level responses integrate the cumulative effects of chemical stressors on individuals as those individuals interact with and are affected by their con-specifics, competitor...

  1. How do reproductive skew and founder group size affect genetic diversity in reintroduced populations?

    PubMed

    Miller, K A; Nelson, N J; Smith, H G; Moore, J A

    2009-09-01

    Reduced genetic diversity can result in short-term decreases in fitness and reduced adaptive potential, which may lead to an increased extinction risk. Therefore, maintaining genetic variation is important for the short- and long-term success of reintroduced populations. Here, we evaluate how founder group size and variance in male reproductive success influence the long-term maintenance of genetic diversity after reintroduction. We used microsatellite data to quantify the loss of heterozygosity and allelic diversity in the founder groups from three reintroductions of tuatara (Sphenodon), the sole living representatives of the reptilian order Rhynchocephalia. We then estimated the maintenance of genetic diversity over 400 years (approximately 10 generations) using population viability analyses. Reproduction of tuatara is highly skewed, with as few as 30% of males mating across years. Predicted losses of heterozygosity over 10 generations were low (1-14%), and populations founded with more animals retained a greater proportion of the heterozygosity and allelic diversity of their source populations and founder groups. Greater male reproductive skew led to greater predicted losses of genetic diversity over 10 generations, but only accelerated the loss of genetic diversity at small population size (<250 animals). A reduction in reproductive skew at low density may facilitate the maintenance of genetic diversity in small reintroduced populations. If reproductive skew is high and density-independent, larger founder groups could be released to achieve genetic goals for management.

  2. Disease dynamics during wildlife translocations: disruptions to the host population and potential consequences for transmission in desert tortoise contact networks

    USGS Publications Warehouse

    Aiello, Christina M.; Nussear, Kenneth E.; Walde, Andrew D.; Esque, Todd C.; Emblidge, Patrick G.; Sah, Pratha; Bansal, S.; Hudson, Peter J.

    2014-01-01

    Wildlife managers consider animal translocation a means of increasing the viability of a local population. However, augmentation may disrupt existing resident disease dynamics and initiate an outbreak that would effectively offset any advantages the translocation may have achieved. This paper examines fundamental concepts of disease ecology and identifies the conditions that will increase the likelihood of a disease outbreak following translocation. We highlight the importance of susceptibility to infection, population size and population connectivity – a characteristic likely affected by translocation but not often considered in risk assessments – in estimating outbreak risk due to translocation. We then explore these features in a species of conservation concern often translocated in the presence of infectious disease, the Mojave Desert tortoise, and use data from experimental tortoise translocations to detect changes in population connectivity that may influence pathogen transmission. Preliminary analyses comparing contact networks inferred from spatial data at control and translocation plots and infection simulation results through these networks suggest increased outbreak risk following translocation due to dispersal-driven changes in contact frequency and network structure. We outline future research goals to test these concepts and aid managers in designing effective risk assessment and intervention strategies that will improve translocation success.

  3. EFFECTS OF HABITAT LOSS ON POPULATIONS OF WHITE-FOOTED MICE: MATRIX MODEL PREDICTIONS WITH LANDSCAPE-SCALE PERTURBATION EXPERIMENTS

    EPA Science Inventory

    Habitat loss is the leading cause of decline in wildlife diversity and abundance throughout the world, and understanding its impacts on animal populations is a critical challenge facing conservation biologists. Population viability analysis (PVA) is a commonly used tool for pred...

  4. Economics of residue harvest: Regional partnership evaluation

    USDA-ARS?s Scientific Manuscript database

    Economic analyses on the viability of corn (Zea mays, L.) stover harvest for bioenergy production have largely been based on simulation modeling. While some studies have utilized field research data, most field-based analyses have included a limited number of sites and a narrow geographic distributi...

  5. Avenanthramide-C reduces the viability of MDA-MB-231 breast cancer cells through an apoptotic mechanism.

    PubMed

    Hastings, Jordan; Kenealey, Jason

    2017-01-01

    Avenanthramides (AVN) are a relatively unstudied family of phytochemicals that could be novel chemotherapeutics. These compounds, found in oats, are non-toxic to healthy cells and have been shown to reduce viability of human colon and liver cancers in vitro. However, these studies do not elucidate a molecular mechanism for individual AVN. In this study we aim to see the effects of AVN on MDA-MB-231 breast cancer cells. An MTT assay was used to determine cell viability. Staining and analysis with a flow cytometer was used to identify cell cycle progression and apoptosis. FloJo software was used to analyze the cytometric data. In all experiments, statistical significance was determined by a two-tailed t test. This study demonstrates that AVN-A, B, and C individually reduce viability in the MDA-MB-231 breast cancer cell line. AVN-C has the most potent decrease in tumor cell viability, decreasing viable cells to below 25% at 400 µM when compared to control after 96 h. We demonstrate that treatment with AVN-C causes DNA fragmentation and accumulation of over 90% of cells into a sub G 1 cell cycle population. Further, we conclude that AVN-C treated cells activate apoptosis because 97% of treated cells stain positive for annexin V while 91% have caspase-3/7 activity, a late marker of apoptosis. Breast cancer cells treated with AVN-C have a decrease in cell viability, an increase in the sub G 1 population, and stain positive for both annexin V and caspase activity, indicating that AVN-C induces apoptosis in breast cancer cells. These compounds may be able to act as chemotherapeutics as demonstrated through future in vivo studies.

  6. Communal nesting under climate change: fitness consequences of higher incubation temperatures for a nocturnal lizard.

    PubMed

    Dayananda, Buddhi; Gray, Sarah; Pike, David; Webb, Jonathan K

    2016-07-01

    Communal nesting lizards may be vulnerable to climate warming, particularly if air temperatures regulate nest temperatures. In southeastern Australia, velvet geckos Oedura lesueurii lay eggs communally inside rock crevices. We investigated whether increases in air temperatures could elevate nest temperatures, and if so, how this could influence hatching phenotypes, survival, and population dynamics. In natural nests, maximum daily air temperature influenced mean and maximum daily nest temperatures, implying that nest temperatures will increase under climate warming. To determine whether hotter nests influence hatchling phenotypes, we incubated eggs under two fluctuating temperature regimes to mimic current 'cold' nests (mean = 23.2 °C, range 10-33 °C) and future 'hot' nests (27.0 °C, 14-37 °C). 'Hot' incubation temperatures produced smaller hatchlings than did cold temperature incubation. We released individually marked hatchlings into the wild in 2014 and 2015, and monitored their survival over 10 months. In 2014 and 2015, hot-incubated hatchlings had higher annual mortality (99%, 97%) than cold-incubated (11%, 58%) or wild-born hatchlings (78%, 22%). To determine future trajectories of velvet gecko populations under climate warming, we ran population viability analyses in Vortex and varied annual rates of hatchling mortality within the range 78- 96%. Hatchling mortality strongly influenced the probability of extinction and the mean time to extinction. When hatchling mortality was >86%, populations had a higher probability of extinction (PE: range 0.52- 1.0) with mean times to extinction of 18-44 years. Whether future changes in hatchling survival translate into reduced population viability will depend on the ability of females to modify their nest-site choices. Over the period 1992-2015, females used the same communal nests annually, suggesting that there may be little plasticity in maternal nest-site selection. The impacts of climate change may therefore be especially severe on communal nesting species, particularly if such species occupy thermally challenging environments. © 2016 John Wiley & Sons Ltd.

  7. From population viability analysis to coviability of farmland biodiversity and agriculture.

    PubMed

    Mouysset, L; Doyen, L; Jiguet, F

    2014-02-01

    Substantial declines in farmland biodiversity have been reported in Europe for several decades. Agricultural changes have been identified as a main driver of these declines. Although different agrienvironmental schemes have been implemented, their positive effect on biodiversity is relatively unknown. This raises the question as to how to reconcile farming production and biodiversity conservation to operationalize a sustainable and multifunctional agriculture. We devised a bioeconomic model and conducted an analysis based on coviability of farmland biodiversity and agriculture. The coviability approach extended population viability analyses by including bioeconomic risk. Our model coupled stochastic dynamics of both biodiversity and farming land-uses selected at the microlevel with public policies at the macrolevel on the basis of financial incentives (taxes or subsidies) for land uses. The coviability approach made it possible for us to evaluate bioeconomic risks of these public incentives through the probability of satisfying a mix of biodiversity and economic constraints over time. We calibrated the model and applied it to a community of 34 common birds in metropolitan France at the small agricultural regions scale. We identified different public policies and scenarios with tolerable (0-0%) agroecological risk and modeled their outcomes up to 2050. Budgetary, economic, and ecological (based on Farmland Bird Index) constraints were essential to understanding the set of viable public policies. Our results suggest that some combinations of taxes on cereals and subsidies on grasslands could be relevant to develop a multifunctional agriculture. Moreover, the flexibility and multicriteria viewpoint underlying the coviability approach may help in the implementation of adaptive management. © 2013 Society for Conservation Biology.

  8. Divergence in sink contributions to population persistence (journal article)

    EPA Science Inventory

    Population sinks present unique conservation challenges. The loss of individuals in sinks can compromise persistence; but conversely, sinks can improve viability by improving connectivity and facilitating the recolonization of vacant sources. To assess the contribution of sinks t...

  9. Juniperus communis: victim of the combined action of climate warming and nitrogen deposition?

    PubMed

    Verheyen, K; Adriaenssens, S; Gruwez, R; Michalczyk, I M; Ward, L K; Rosseel, Y; Van den Broeck, A; García, D

    2009-11-01

    Research on the combined effects of climate change and nitrogen deposition on reproductive traits, and especially on the production of viable seeds, is still scarce despite their importance for population persistence and expansion. Hence, in this study we set out to investigate the direct and indirect effects of the above-mentioned global change drivers on seed viability in the coniferous shrub Juniperus communis L. In many parts of its European range, juniper is increasingly threatened, partly because of a lack of sexual reproduction. We hypothesised that this regeneration failure is partly due to poor seed viability. Using data from 39 populations throughout Europe, we were able to demonstrate that a strong, triangular-shaped relationship exists between the percentage of viable seeds produced and the percentage of juniper seedlings occurring in a population, which indicates that the species is indeed partly seed limited. Furthermore, based on an extended dataset of 42 populations, we found that seed viability was negatively affected by temperature, measured as mean annual growing degree-days, and nitrogen deposition (but not by drought). Suggestions are made about the processes behind the observed patterns, but more research is required. Nevertheless, our results do raise serious concerns for the conservation of juniper in light of the predicted rise in temperature and global nitrogen emissions. Furthermore, it is likely that similar patterns can also be observed for other species.

  10. Landscape-level analysis of mountain goat population connectivity in Washington and southern British Columbia

    Treesearch

    Leslie C. Parks; David O. Wallin; Samuel A. Cushman; Brad H. McRae

    2015-01-01

    Habitat fragmentation and habitat loss diminish population connectivity, reducing genetic diversity and increasing extinction risk over time. Improving connectivity is widely recommended to preserve the long-term viability of populations, but this requires accurate knowledge of how landscapes influence connectivity. Detectability of landscape effects on gene...

  11. Carnivore translocations and conservation: insights from population models and field data for fishers (Martes pennanti)

    Treesearch

    Jeffrey C. Lewis; Roger A. Powell; William J. Zielinski

    2012-01-01

    Translocations are frequently used to restore extirpated carnivore populations. Understanding the factors that influence translocation success is important because carnivore translocations can be time consuming, expensive, and controversial. Using population viability software, we modeled reintroductions of the fisher, a candidate for endangered or threatened status in...

  12. Red-cockaded woodpecker status and management: West Gulf Coastal Plain and Interior Highlands

    Treesearch

    D. Craig Rudolph; Richard N. Conner; Richard R. Schaefer; Daniel Saenz; Dawn K. Carrie; N. Ross Carrie; Ricky W. Maxey; Warren G. Montague; Joe Neal; Kenneth Moore; John Skeen; Jeffrey A. Reid

    2004-01-01

    Red-cockaded woodpecker populations declined precipitously following European settlement and expansion and cutting of the original pine forests across the southeastern United States. By 1990 most residual populations lacked demographic viability, existed in degraded habitat, and were isolated from other populations. The primary causes of this situation were harvest of...

  13. Exposing extinction risk analysis to pathogens: Is disease just another form of density dependence?

    USGS Publications Warehouse

    Gerber, L.R.; McCallum, H.; Lafferty, K.D.; Sabo, J.L.; Dobson, A.

    2005-01-01

    In the United States and several other countries, the development of population viability analyses (PVA) is a legal requirement of any species survival plan developed for threatened and endangered species. Despite the importance of pathogens in natural populations, little attention has been given to host-pathogen dynamics in PVA. To study the effect of infectious pathogens on extinction risk estimates generated from PVA, we review and synthesize the relevance of host-pathogen dynamics in analyses of extinction risk. We then develop a stochastic, density-dependent host-parasite model to investigate the effects of disease on the persistence of endangered populations. We show that this model converges on a Ricker model of density dependence under a suite of limiting assumptions, including a high probability that epidemics will arrive and occur. Using this modeling framework, we then quantify: (1) dynamic differences between time series generated by disease and Ricker processes with the same parameters; (2) observed probabilities of quasi-extinction for populations exposed to disease or self-limitation; and (3) bias in probabilities of quasi-extinction estimated by density-independent PVAs when populations experience either form of density dependence. Our results suggest two generalities about the relationships among disease, PVA, and the management of endangered species. First, disease more strongly increases variability in host abundance and, thus, the probability of quasi-extinction, than does self-limitation. This result stems from the fact that the effects and the probability of occurrence of disease are both density dependent. Second, estimates of quasi-extinction are more often overly optimistic for populations experiencing disease than for those subject to self-limitation. Thus, although the results of density-independent PVAs may be relatively robust to some particular assumptions about density dependence, they are less robust when endangered populations are known to be susceptible to disease. If potential management actions involve manipulating pathogens, then it may be useful to model disease explicitly. ?? 2005 by the Ecological Society of America.

  14. Cytotoxic Effect Associated with Overexpression of QNR Proteins in Escherichia coli.

    PubMed

    Machuca, Jesús; Diaz de Alba, Paula; Recacha, Esther; Pascual, Álvaro; Rodriguez-Martinez, José Manuel

    2017-10-01

    The objective was to evaluate the cytotoxic effect associated with overexpression of multiple Qnr-like plasmid-mediated quinolone resistance (PMQR) mechanisms in Escherichia coli. Coding regions of different PMQR genes (qnrA1, qnrB1, qnrC, qnrD1, qnrS1, and qepA2) and efsqnr were cloned into pET29a(+) vector and overexpressed in E. coli BL21. E. coli BL21 with and without an empty pET29a(+) vector were used as controls. The cytotoxic effect associated with PMQR mechanism overexpression was determined by transmission electron microscopy and viability assays. Overexpressed qnr genes produced loss of bacterial viability in the range of 77-97% compared with the controls, comparable with loss of viability associated with EfsQnr overexpression (97%). No loss of viability was observed in E. coli overexpressing QepA2. In transmission electron microscopy assays, signs of cytotoxicity were observed in E. coli cells overexpressing EfsQnr and Qnr proteins (30-45% of the bacterial population showed morphological changes). Morphological changes were observed in less than 5% of bacterial populations from the control strains and E. coli overexpressing QepA2. Overexpression of qnr genes produces a cytotoxic cellular and structural effect in E. coli, the magnitude of which varies depending on the family of Qnr proteins.

  15. Artificial insemination in captive Whooping Cranes: Results from genetic analyses

    USGS Publications Warehouse

    Jones, K.L.; Nicolich, Jane M.

    2001-01-01

    Artificial insemination has been used frequently in the captive whooping crane (Grus americana) population. In the 1980s, it was necessary at times to inseminate females with semen from several males during the breeding season or with semen from multiple males simultaneously due to unknown sperm viability of the breeding males. The goals of this study were to apply microsatellite DNA profiles to resolve uncertain paternities and to use these results to evaluate the current paternity assignment assumptions used by captive managers. Microsatellite DNA profiles were successful in resolving 20 of 23 paternity questions. When resolved paternities were coupled with data on insemination timing, substantial information was revealed on fertilization timing in captive whooping cranes. Delayed fertilization from inseminations 6+ days pre-oviposition suggests capability of sperm storage.

  16. Droplet microfluidic technology for single-cell high-throughput screening.

    PubMed

    Brouzes, Eric; Medkova, Martina; Savenelli, Neal; Marran, Dave; Twardowski, Mariusz; Hutchison, J Brian; Rothberg, Jonathan M; Link, Darren R; Perrimon, Norbert; Samuels, Michael L

    2009-08-25

    We present a droplet-based microfluidic technology that enables high-throughput screening of single mammalian cells. This integrated platform allows for the encapsulation of single cells and reagents in independent aqueous microdroplets (1 pL to 10 nL volumes) dispersed in an immiscible carrier oil and enables the digital manipulation of these reactors at a very high-throughput. Here, we validate a full droplet screening workflow by conducting a droplet-based cytotoxicity screen. To perform this screen, we first developed a droplet viability assay that permits the quantitative scoring of cell viability and growth within intact droplets. Next, we demonstrated the high viability of encapsulated human monocytic U937 cells over a period of 4 days. Finally, we developed an optically-coded droplet library enabling the identification of the droplets composition during the assay read-out. Using the integrated droplet technology, we screened a drug library for its cytotoxic effect against U937 cells. Taken together our droplet microfluidic platform is modular, robust, uses no moving parts, and has a wide range of potential applications including high-throughput single-cell analyses, combinatorial screening, and facilitating small sample analyses.

  17. Asymmetric viability of reciprocal-cross hybrids between crested and marbled newts (Triturus cristatus and T. Marmoratus).

    PubMed

    Arntzen, Jan W; Jehle, Robert; Bardakci, Fevzi; Burke, Terry; Wallis, Graham P

    2009-05-01

    Hybridization between divergent lineages often results in reduced hybrid viability. Here we report findings from a series of independent molecular analyses over several seasons on four life stages of F1 hybrids between the newts Triturus cristatus and T. marmoratus. These two species form a bimodal hybrid zone of broad overlap in France, with F1 hybrids making up about 4% of the adult population. We demonstrate strong asymmetry in the direction of the cross, with one class (cristatus-mothered) making up about 90% of F1 hybrids. By analyzing embryos and hatchlings, we show that this asymmetry is not due to prezygotic effects, as both classes of hybrid embryos are present at similar frequencies, implicating differential selection on the two hybrid classes after hatching. Adult F1 hybrids show a weak Haldane effect overall, with a 72% excess of females. The rarer marmoratus-mothered class, however, consists entirely of males. The absence of females from this class of adult F1 hybrids is best explained by an incompatibility between the cristatus X chromosome and marmoratus cytoplasm. It is thus important to distinguish the two classes of reciprocal-cross hybrids before making general statements about whether Haldane's rule is observed.

  18. Excretory products of the cestode, Schistocephalus solidus, modulate in vitro responses of leukocytes from its specific host, the three-spined stickleback (Gasterosteus aculeatus).

    PubMed

    Scharsack, Jörn Peter; Gossens, Anabel; Franke, Frederik; Kurtz, Joachim

    2013-12-01

    Helminth parasites have evolved remarkable strategies to manipulate the immune system of their hosts. During infections of three-spined stickleback (Gasterosteus aculeatus) with the cestode Schistocephalus solidus prominent immunological changes occur, presumably due to manipulative activity of the parasite. We hypothesise that excretory/secretory products of the parasite are involved in the manipulation of the stickleback's immune system and that this may depend on the individual parasite and its origin. We therefore produced S. solidus conditioned cell culture media (SSCM) with parasites from different origins (Norway, Spain and Germany) and exposed head kidney leukocytes (HKL) from un-infected sticklebacks in cell cultures to SSCM. After in vitro culture, HKL were subjected to differential cell counts (granulocytes/lymphocytes) by means of flow cytometry. Leukocyte sub-populations were analysed for cell viability and changes in cell morphology. The respiratory burst activity was measured with a luminescence assay. Exposure of HKL to SSCM induced an up-regulation of respiratory burst activity after already 1 h, which was still elevated at 24 h, but which was in some cases significantly down-regulated after 96 h. Respiratory burst was positively correlated with the number of live granulocytes in the culture, suggesting that the respiratory burst activity was changed by SSCM effects on granulocyte viability. After 1 h and 24 h of HKL culture, no lymphocyte responses to SSCM were detectable, but after 96 h lymphocyte viability was significantly decreased with SSCM from Spanish S. solidus. In these cultures, residual lymphocytes increased in size, suggesting that cell death and activation might have occurred in parallel. The highest respiratory burst activity was induced by SSCM from Spanish parasites, in particular when they were grown in sympatric sticklebacks. The in vitro HKL responses to SSCM depended on the individual parasite and its population of origin, suggesting that in vivo, S. solidus excretory products are regulated individually, possibly to balance the interplay of each individual host-parasite pair. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Viability of human fibroblasts in coconut water as a storage medium.

    PubMed

    Moreira-Neto, J J S; Gondim, J O; Raddi, M S G; Pansani, C A

    2009-09-01

    To evaluate the effectiveness of a new storage medium for avulsed teeth, coconut water, in maintaining the viability of human fibroblasts. Cell viability after different time periods was evaluated in the following storage media: coconut water, coconut water with sodium bicarbonate, milk, saline and still mineral water. Human fibroblasts were seeded in Eagle's minimal essential medium (EMEM) supplemented with 7.5% foetal calf serum. After trypsinisation, 100 microL of culture medium containing approximately 10(4) cells mL(-1) were collected and pipetted into the wells of 96-well plates, which were incubated overnight in 5% CO(2) and 95% air mixture at 37 degrees C. EMEM was then replaced by the storage media and the plates were incubated at 37 degrees C for 1, 2 and 4 h. Cell viability was determined using the neutral red assay. The proportions of viable cells after exposure to the storage media were analysed statistically by anova and the least significant difference (LSD) test (alpha = 5%). Milk had the greatest capacity to maintain cell viability (P < 0.05), followed by coconut water with sodium bicarbonate and saline. Coconut water was significantly worse at maintaining cell viability compared to milk, coconut water with sodium bicarbonate and saline. The smallest number of viable cells was observed for mineral water (P < 0.05). Coconut water was worse than milk in maintaining human fibroblast cell viability.

  20. Increasing frequency of low summer precipitation synchronizes dynamics and compromises metapopulation stability in the Glanville fritillary butterfly

    PubMed Central

    Tack, Ayco J. M.; Mononen, Tommi; Hanski, Ilkka

    2015-01-01

    Climate change is known to shift species' geographical ranges, phenologies and abundances, but less is known about other population dynamic consequences. Here, we analyse spatio-temporal dynamics of the Glanville fritillary butterfly (Melitaea cinxia) in a network of 4000 dry meadows during 21 years. The results demonstrate two strong, related patterns: the amplitude of year-to-year fluctuations in the size of the metapopulation as a whole has increased, though there is no long-term trend in average abundance; and there is a highly significant increase in the level of spatial synchrony in population dynamics. The increased synchrony cannot be explained by increasing within-year spatial correlation in precipitation, the key environmental driver of population change, or in per capita growth rate. On the other hand, the frequency of drought during a critical life-history stage (early larval instars) has increased over the years, which is sufficient to explain the increasing amplitude and the expanding spatial synchrony in metapopulation dynamics. Increased spatial synchrony has the general effect of reducing long-term metapopulation viability even if there is no change in average metapopulation size. This study demonstrates how temporal changes in weather conditions can lead to striking changes in spatio-temporal population dynamics. PMID:25854888

  1. Conserving genomic variability in large mammals: Effect of population fluctuations and variance in male reproductive success on variability in Yellowstone bison

    Treesearch

    Andres Perez-Figueroa; Rick L. Wallen; Tiago Antao; Jason A. Coombs; Michael K. Schwartz; P. J. White; Gordon Luikart

    2012-01-01

    Loss of genetic variation through genetic drift can reduce population viability. However, relatively little is known about loss of variation caused by the combination of fluctuating population size and variance in reproductive success in age structured populations. We built an individual-based computer simulation model to examine how actual culling and hunting...

  2. Sampling the light-organ microenvironment of Euprymna scolopes: description of a population of host cells in association with the bacterial symbiont Vibrio fischeri.

    PubMed

    Nyholm, S V; McFall-Ngai, M J

    1998-10-01

    The symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri has a pronounced diel rhythm, one component of which is the venting of the contents of the light organ into the surrounding seawater each day at dawn. In this study, we explored the use of this behavior to sample the microenvironment of the light-organ crypts. Intact crypt contents, which emerge from the lateral pores of the organ as a thick paste-like exudate, were collected from anesthetized host animals that had been exposed to a light cue. Microscopy revealed that the expelled material is composed of a conspicuous population of host cells in association with the bacterial symbionts, all of which are embedded in a dense acellular matrix that strongly resembles the bacteria-based biofilms described in other systems. Assays of the viability of expelled crypt cells revealed no dead bacterial symbionts and a mixture of live and dead host cells. Analyses of the ultrastructure, biochemistry, and phagocytic activity of a subset of the host cell population suggested that some of these cells are macrophage-like molluscan hemocytes.

  3. Fluorescence Microscopy Methods for Determining the Viability of Bacteria in Association with Mammalian Cells

    PubMed Central

    Johnson, M. Brittany; Criss, Alison K.

    2013-01-01

    Central to the field of bacterial pathogenesis is the ability to define if and how microbes survive after exposure to eukaryotic cells. Current protocols to address these questions include colony count assays, gentamicin protection assays, and electron microscopy. Colony count and gentamicin protection assays only assess the viability of the entire bacterial population and are unable to determine individual bacterial viability. Electron microscopy can be used to determine the viability of individual bacteria and provide information regarding their localization in host cells. However, bacteria often display a range of electron densities, making assessment of viability difficult. This article outlines protocols for the use of fluorescent dyes that reveal the viability of individual bacteria inside and associated with host cells. These assays were developed originally to assess survival of Neisseria gonorrhoeae in primary human neutrophils, but should be applicable to any bacterium-host cell interaction. These protocols combine membrane-permeable fluorescent dyes (SYTO9 and 4',6-diamidino-2-phenylindole [DAPI]), which stain all bacteria, with membrane-impermeable fluorescent dyes (propidium iodide and SYTOX Green), which are only accessible to nonviable bacteria. Prior to eukaryotic cell permeabilization, an antibody or fluorescent reagent is added to identify extracellular bacteria. Thus these assays discriminate the viability of bacteria adherent to and inside eukaryotic cells. A protocol is also provided for using the viability dyes in combination with fluorescent antibodies to eukaryotic cell markers, in order to determine the subcellular localization of individual bacteria. The bacterial viability dyes discussed in this article are a sensitive complement and/or alternative to traditional microbiology techniques to evaluate the viability of individual bacteria and provide information regarding where bacteria survive in host cells. PMID:24056524

  4. Predicting cutthroat trout (Oncorhynchus clarkii) abundance in high-elevation streams: revisiting a model of translocation success

    Treesearch

    Michael K. Young; Paula M. Guenther-Gloss; Ashley D. Ficke

    2005-01-01

    Assessing viability of stream populations of cutthroat trout (Oncorhynchus clarkii) and identifying streams suitable for establishing populations are priorities in the western United States, and a model was recently developed to predict translocation success (as defined by an index of population size) of two subspecies based on mean July water...

  5. Effect of storage temperature on survival and recovery of thermal and extrusion injured Escherichia coli populations in whey protein concentrate and corn meal

    USDA-ARS?s Scientific Manuscript database

    In a previous study, we reported viability loss of Escherichia coli populations in corn (CP) and whey protein products (WPP) extruded at different temperatures. However, information on the effect of storage temperatures on injured bacterial populations was not addressed. The objective of this study ...

  6. Extension of landscape-based population viability models to ecoregional scales for conservation planning

    Treesearch

    Thomas W. Bonnot; Frank R. III Thompson; Joshua Millspaugh

    2011-01-01

    Landscape-based population models are potentially valuable tools in facilitating conservation planning and actions at large scales. However, such models have rarely been applied at ecoregional scales. We extended landscape-based population models to ecoregional scales for three species of concern in the Central Hardwoods Bird Conservation Region and compared model...

  7. Predicting global population connectivity and targeting conservation action for snow leopard across its range

    Treesearch

    Philip Riordan; Samuel A. Cushman; David Mallon; Kun Shi; Joelene Hughes

    2016-01-01

    Movements of individuals within and among populations help to maintain genetic variability and population viability. Therefore, understanding landscape connectivity is vital for effective species conservation. The snow leopard is endemic to mountainous areas of central Asia and occurs within 12 countries. We assess potential connectivity across the species’...

  8. Metamodels for Transdisciplinary Analysis of Wildlife Population Dynamics

    PubMed Central

    Lacy, Robert C.; Miller, Philip S.; Nyhus, Philip J.; Pollak, J. P.; Raboy, Becky E.; Zeigler, Sara L.

    2013-01-01

    Wildlife population models have been criticized for their narrow disciplinary perspective when analyzing complexity in coupled biological – physical – human systems. We describe a “metamodel” approach to species risk assessment when diverse threats act at different spatiotemporal scales, interact in non-linear ways, and are addressed by distinct disciplines. A metamodel links discrete, individual models that depict components of a complex system, governing the flow of information among models and the sequence of simulated events. Each model simulates processes specific to its disciplinary realm while being informed of changes in other metamodel components by accessing common descriptors of the system, populations, and individuals. Interactions among models are revealed as emergent properties of the system. We introduce a new metamodel platform, both to further explain key elements of the metamodel approach and as an example that we hope will facilitate the development of other platforms for implementing metamodels in population biology, species risk assessments, and conservation planning. We present two examples – one exploring the interactions of dispersal in metapopulations and the spread of infectious disease, the other examining predator-prey dynamics – to illustrate how metamodels can reveal complex processes and unexpected patterns when population dynamics are linked to additional extrinsic factors. Metamodels provide a flexible, extensible method for expanding population viability analyses beyond models of isolated population demographics into more complete representations of the external and intrinsic threats that must be understood and managed for species conservation. PMID:24349567

  9. Effects of Fluid Shear Stress on Cancer Stem Cell Viability

    NASA Astrophysics Data System (ADS)

    Sunday, Brittney; Triantafillu, Ursula; Domier, Ria; Kim, Yonghyun

    2014-11-01

    Cancer stem cells (CSCs), which are believed to be the source of tumor formation, are exposed to fluid shear stress as a result of blood flow within the blood vessels. It was theorized that CSCs would be less susceptible to cell death than non-CSCs after both types of cell were exposed to a fluid shear stress, and that higher levels of fluid shear stress would result in lower levels of cell viability for both cell types. To test this hypothesis, U87 glioblastoma cells were cultured adherently (containing smaller populations of CSCs) and spherically (containing larger populations of CSCs). They were exposed to fluid shear stress in a simulated blood flow through a 125-micrometer diameter polyetheretherketone (PEEK) tubing using a syringe pump. After exposure, cell viability data was collected using a BioRad TC20 Automated Cell Counter. Each cell type was tested at three physiological shear stress values: 5, 20, and 60 dynes per centimeter squared. In general, it was found that the CSC-enriched U87 sphere cells had higher cell viability than the CSC-depleted U87 adherent cancer cells. Interestingly, it was also observed that the cell viability was not negatively affected by the higher fluid shear stress values in the tested range. In future follow-up studies, higher shear stresses will be tested. Furthermore, CSCs from different tumor origins (e.g. breast tumor, prostate tumor) will be tested to determine cell-specific shear sensitivity. National Science Foundation Grant #1358991 supported the first author as an REU student.

  10. Planning for population viability on Northern Great Plains national grasslands

    USGS Publications Warehouse

    Samson, F.B.; Knopf, F.L.; McCarthy, C.W.; Noon, B.R.; Ostlie, W.R.; Rinehart, S.M.; Larson, S.; Plumb, G.E.; Schenbeck, G.L.; Svingen, D.N.; Byer, T.W.

    2003-01-01

    Broad-scale information in concert with conservation of individual species must be used to develop conservation priorities and a more integrated ecosystem protection strategy. In 1999 the United States Forest Service initiated an approach for the 1.2× 106 ha of national grasslands in the Northern Great Plains to fulfill the requirement to maintain viable populations of all native and desirable introduced vertebrate and plant species. The challenge was threefold: 1) develop basic building blocks in the conservation planning approach, 2) apply the approach to national grasslands, and 3) overcome differences that may exist in agency-specific legal and policy requirements. Key assessment components in the approach included a bioregional assessment, coarse-filter analysis, and fine-filter analysis aimed at species considered at-risk. A science team of agency, conservation organization, and university personnel was established to develop the guidelines and standards and other formal procedures for implementation of conservation strategies. Conservation strategies included coarse-filter recommendations to restore the tallgrass, mixed, and shortgrass prairies to conditions that approximate historical ecological processes and landscape patterns, and fine-filter recommendations to address viability needs of individual and multiple species of native animals and plants. Results include a cost-effective approach to conservation planning and recommendations for addressing population viability and biodiversity concerns on national grasslands in the Northern Great Plains.

  11. The evolution of colour polymorphism in British winter-active Lepidoptera in response to search image use by avian predators.

    PubMed

    Weir, Jamie C

    2018-05-10

    Phenotypic polymorphism in cryptic species is widespread. This may evolve in response to search image use by predators exerting negative frequency-dependent selection on intraspecific colour morphs, 'apostatic selection'. Evidence exists to indicate search image formation by predators and apostatic selection operating on wild prey populations, though not to demonstrate search image use directly resulting in apostatic selection. The present study attempted to address this deficiency, using British Lepidoptera active in winter as a model system. It has been proposed that the typically polymorphic wing colouration of these species represents an anti-search image adaptation against birds. To test (a) for search image-driven apostatic selection, dimorphic populations of artificial moth-like models were established in woodland at varying relative morph frequencies and exposed to predation by natural populations of birds. In addition, to test (b) whether abundance and degree of polymorphism are correlated across British winter-active moths, as predicted where search image use drives apostatic selection, a series of phylogenetic comparative analyses were conducted. There was a positive relationship between artificial morph frequency and probability of predation, consistent with birds utilizing search images and exerting apostatic selection. Abundance and degree of polymorphism were found to be positively correlated across British Lepidoptera active in winter, though not across all taxonomic groups analysed. This evidence is consistent with polymorphism in this group having evolved in response to search image-driven apostatic selection and supports the viability of this mechanism as a means by which phenotypic and genetic variation may be maintained in natural populations. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  12. Evolution of sociality in spiders leads to depleted genomic diversity at both population and species levels.

    PubMed

    Settepani, V; Schou, M F; Greve, M; Grinsted, L; Bechsgaard, J; Bilde, T

    2017-08-01

    Across several animal taxa, the evolution of sociality involves a suite of characteristics, a "social syndrome," that includes cooperative breeding, reproductive skew, primary female-biased sex ratio, and the transition from outcrossing to inbreeding mating system, factors that are expected to reduce effective population size (Ne). This social syndrome may be favoured by short-term benefits but come with long-term costs, because the reduction in Ne amplifies loss of genetic diversity by genetic drift, ultimately restricting the potential of populations to respond to environmental change. To investigate the consequences of this social life form on genetic diversity, we used a comparative RAD-sequencing approach to estimate genomewide diversity in spider species that differ in level of sociality, reproductive skew and mating system. We analysed multiple populations of three independent sister-species pairs of social inbreeding and subsocial outcrossing Stegodyphus spiders, and a subsocial outgroup. Heterozygosity and within-population diversity were sixfold to 10-fold lower in social compared to subsocial species, and demographic modelling revealed a tenfold reduction in Ne of social populations. Species-wide genetic diversity depends on population divergence and the viability of genetic lineages. Population genomic patterns were consistent with high lineage turnover, which homogenizes the genetic structure that builds up between inbreeding populations, ultimately depleting genetic diversity at the species level. Indeed, species-wide genetic diversity of social species was 5-8 times lower than that of subsocial species. The repeated evolution of species with this social syndrome is associated with severe loss of genomewide diversity, likely to limit their evolutionary potential. © 2017 John Wiley & Sons Ltd.

  13. Mammalian energetics. Flexible energetics of cheetah hunting strategies provide resistance against kleptoparasitism.

    PubMed

    Scantlebury, David M; Mills, Michael G L; Wilson, Rory P; Wilson, John W; Mills, Margaret E J; Durant, Sarah M; Bennett, Nigel C; Bradford, Peter; Marks, Nikki J; Speakman, John R

    2014-10-03

    Population viability is driven by individual survival, which in turn depends on individuals balancing energy budgets. As carnivores may function close to maximum sustained power outputs, decreased food availability or increased activity may render some populations energetically vulnerable. Prey theft may compromise energetic budgets of mesopredators, such as cheetahs and wild dogs, which are susceptible to competition from larger carnivores. We show that daily energy expenditure (DEE) of cheetahs was similar to size-based predictions and positively related to distance traveled. Theft at 25% only requires cheetahs to hunt for an extra 1.1 hour per day, increasing DEE by just 12%. Therefore, not all mesopredators are energetically constrained by direct competition. Other factors that increase DEE, such as those that increase travel, may be more important for population viability. Copyright © 2014, American Association for the Advancement of Science.

  14. The maintenance of single-locus polymorphism. IV. Models with mutation from existing alleles.

    PubMed

    Spencer, H G; Marks, R W

    1992-01-01

    The ability of viability selection to maintain allelic polymorphism is investigated using a constructionist approach. In extensions to the models we have previously proposed, a population is bombarded with a series of mutations whose fitnesses in conjunction with other alleles are functions of the corresponding fitnesses with a particular allele, the parent allele, already in the population. Allele frequencies are iterated simultaneously, thus allowing alleles to be driven to extinction by selection. Such models allow very high levels of polymorphism to evolve: up to 38 alleles in one case. Alleles that are lethal as homozygotes can evolve to surprisingly high frequencies. The joint evolution of allele frequencies and viabilities highlights the necessity to consider more than the current morphology of a population. Comparisons are made with the neutral theory of evolution and it is suggested that failure to reject neutrality using the Ewens-Watterson test cannot be regarded as evidence for the neutral theory.

  15. Network modularity reveals critical scales for connectivity in ecology and evolution

    USGS Publications Warehouse

    Fletcher, Robert J.; Revell, Andre; Reichert, Brian E.; Kitchens, Wiley M.; Dixon, J.; Austin, James D.

    2013-01-01

    For nearly a century, biologists have emphasized the profound importance of spatial scale for ecology, evolution and conservation. Nonetheless, objectively identifying critical scales has proven incredibly challenging. Here we extend new techniques from physics and social sciences that estimate modularity on networks to identify critical scales for movement and gene flow in animals. Using four species that vary widely in dispersal ability and include both mark-recapture and population genetic data, we identify significant modularity in three species, two of which cannot be explained by geographic distance alone. Importantly, the inclusion of modularity in connectivity and population viability assessments alters conclusions regarding patch importance to connectivity and suggests higher metapopulation viability than when ignoring this hidden spatial scale. We argue that network modularity reveals critical meso-scales that are probably common in populations, providing a powerful means of identifying fundamental scales for biology and for conservation strategies aimed at recovering imperilled species.

  16. Modeling the population dynamics and community impacts of Ambystoma tigrinum: A case study of phenotype plasticity.

    PubMed

    McCarthy, Maeve L; Wallace, Dorothy; Whiteman, Howard H; Rheingold, Evan T; Dunham, Ann M; Prosper, Olivia; Chen, Michelle; Hu-Wang, Eileen

    2017-06-01

    Phenotypic plasticity is the ability of an organism to change its phenotype in response to changes in the environment. General mathematical descriptions of the phenomenon rely on an abstract measure of "viability" that, in this study, is instantiated in the case of the Tiger Salamander, Ambystoma tigrinum. This organism has a point in its development when, upon maturing, it may take two very different forms. One is a terrestrial salamander (metamorph)that visits ponds to reproduce and eat, while the other is an aquatic form (paedomorph) that remains in the pond to breed and which consumes a variety of prey including its own offspring. A seven dimensional nonlinear system of ordinary differential equations is developed, incorporating small (Z) and large (B) invertebrates, Ambystoma young of the year (Y), juveniles (J), terrestrial metamorphs (A) and aquatic paedomorphs (P). One parameter in the model controls the proportion of juveniles maturing into A versus P. Solutions are shown to remain non-negative. Every effort was made to justify parameters biologically through studies reported in the literature. A sensitivity analysis and equilibrium analysis of model parameters demonstrate that morphological choice is critical to the overall composition of the Ambystoma population. Various population viability measures were used to select optimal percentages of juveniles maturing into metamorphs, with optimal choices differing considerably depending on the viability measure. The model suggests that the criteria for viability for this organism vary, both from location to location and also in time. Thus, optimal responses change with spatiotemporal variation, which is consistent with other phenotypically plastic systems. Two competing hypotheses for the conditions under which metamorphosis occurs are examined in light of the model and data from an Ambystoma tigrinum population at Mexican Cut, Colorado. The model clearly supports one of these over the other for this data set. There appears to be a mathematical basis to the general tenet of spatiotemporal variation being important for the maintenance of polyphenisms, and our results suggest that such variation may have cascading effects on population, community, and perhaps ecosystem dynamics because it drives the production of a keystone, cannibalistic predator. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. COMPARING ECOLOGICALLY SCALED LANDSCAPE INDICES WITH A SPATIALLY EXPLICIT POPULATION MODEL

    EPA Science Inventory

    Vos et al. (2001) proposed a class of landscape indices they called ecologically scaled. By this they meant that the indices incorporate species-specific characteristics that are assumed to be important for population viability. I used their two ideas of species carrying capaci...

  18. Economic Viability of Pumped-Storage Power Plants Equipped with Ternary Units and Considering Hydraulic Short-Circuit Operation

    NASA Astrophysics Data System (ADS)

    Chazarra, Manuel; Pérez-Díaz, Juan I.; García-González, Javier

    2017-04-01

    This paper analyses the economic viability of pumped-storage hydropower plants equipped with ternary units and considering hydraulic short-circuit operation. The analysed plant is assumed to participate in the day-ahead energy market and in the secondary regulation service of the Spanish power system. A deterministic day-ahead energy and reserve scheduling model is used to estimate the maximum theoretical income of the plant assuming perfect information of the next day prices and the residual demand curves of the secondary regulation reserve market. Results show that the pay-back periods with and without the hydraulic short-circuit operation are significantly lower than their expected lifetime and that the pay-back periods can be reduced with the inclusion of the hydraulic short-circuit operation.

  19. Evaluating anthropogenic threats to endangered killer whales to inform effective recovery plans.

    PubMed

    Lacy, Robert C; Williams, Rob; Ashe, Erin; Balcomb Iii, Kenneth C; Brent, Lauren J N; Clark, Christopher W; Croft, Darren P; Giles, Deborah A; MacDuffee, Misty; Paquet, Paul C

    2017-10-26

    Understanding cumulative effects of multiple threats is key to guiding effective management to conserve endangered species. The critically endangered, Southern Resident killer whale population of the northeastern Pacific Ocean provides a data-rich case to explore anthropogenic threats on population viability. Primary threats include: limitation of preferred prey, Chinook salmon; anthropogenic noise and disturbance, which reduce foraging efficiency; and high levels of stored contaminants, including PCBs. We constructed a population viability analysis to explore possible demographic trajectories and the relative importance of anthropogenic stressors. The population is fragile, with no growth projected under current conditions, and decline expected if new or increased threats are imposed. Improvements in fecundity and calf survival are needed to reach a conservation objective of 2.3% annual population growth. Prey limitation is the most important factor affecting population growth. However, to meet recovery targets through prey management alone, Chinook abundance would have to be sustained near the highest levels since the 1970s. The most optimistic mitigation of noise and contaminants would make the difference between a declining and increasing population, but would be insufficient to reach recovery targets. Reducing acoustic disturbance by 50% combined with increasing Chinook by 15% would allow the population to reach 2.3% growth.

  20. Demographic Effects of Habitat Restoration for the Grey-Crowned Babbler Pomatostomus temporalis, in Victoria, Australia.

    PubMed

    Vesk, Peter A; Robinson, Doug; van der Ree, Rodney; Wilson, Caroline M; Saywell, Shirley; McCarthy, Michael A

    2015-01-01

    Considerable resources are spent on habitat restoration across the globe to counter the impacts of habitat loss and degradation on wildlife populations. But, because of time and resourcing constraints on many conservation programs, the effectiveness of these habitat restoration programs in achieving their long-term goals of improving the population viability of particular wildlife species is rarely assessed and many restoration programs cannot demonstrate their effectiveness. Without such demonstration, and in particular demonstrating the causal relationships between habitat restoration actions and demographic responses of the target species, investments in restoration to achieve population outcomes are of uncertain value. Here, we describe an approach that builds on population data collected for a threatened Australian bird - the Grey-crowned Babbler Pomatostomus temporalis - to evaluate how effectively targeted habitat restoration work improves its viability. We built upon an extensive historical survey by conducting surveys 13 years later at 117 sites stratified by presence/absence of restoration works and by detection or not of birds in the first survey. Our performance metric was the number of individuals in a social group, which is both a measure of local abundance and directly related to breeding success. We employed an occupancy model to estimate the response of Grey-crowned Babbler social group size to the effects of time, restoration works, local habitat as measured by the density of large trees, and distance to the nearest other known group of babblers. Babbler group size decreased over the survey period at sites without restoration works, but restoration works were effective in stemming declines where they were done. Restoration was responsible for a difference of about one bird per group of 3-5 individuals; this is an important effect on the reproductive success of the social group. Effectiveness of restoration works targeted at the Grey-crowned Babbler was only demonstrable by sampling through time and including control sites without restoration works. This work demonstrates that while calls for better monitoring of restoration are valid, scope exists to recover a signal of effectiveness from opportunistic retrospective analyses.

  1. Demographic Effects of Habitat Restoration for the Grey-Crowned Babbler Pomatostomus temporalis, in Victoria, Australia

    PubMed Central

    Vesk, Peter A.; Robinson, Doug; van der Ree, Rodney; Wilson, Caroline M.; Saywell, Shirley; McCarthy, Michael A.

    2015-01-01

    Background Considerable resources are spent on habitat restoration across the globe to counter the impacts of habitat loss and degradation on wildlife populations. But, because of time and resourcing constraints on many conservation programs, the effectiveness of these habitat restoration programs in achieving their long-term goals of improving the population viability of particular wildlife species is rarely assessed and many restoration programs cannot demonstrate their effectiveness. Without such demonstration, and in particular demonstrating the causal relationships between habitat restoration actions and demographic responses of the target species, investments in restoration to achieve population outcomes are of uncertain value. Approach Here, we describe an approach that builds on population data collected for a threatened Australian bird – the Grey-crowned Babbler Pomatostomus temporalis - to evaluate how effectively targeted habitat restoration work improves its viability. We built upon an extensive historical survey by conducting surveys 13 years later at 117 sites stratified by presence/absence of restoration works and by detection or not of birds in the first survey. Our performance metric was the number of individuals in a social group, which is both a measure of local abundance and directly related to breeding success. We employed an occupancy model to estimate the response of Grey-crowned Babbler social group size to the effects of time, restoration works, local habitat as measured by the density of large trees, and distance to the nearest other known group of babblers. Results and implications Babbler group size decreased over the survey period at sites without restoration works, but restoration works were effective in stemming declines where they were done. Restoration was responsible for a difference of about one bird per group of 3-5 individuals; this is an important effect on the reproductive success of the social group. Effectiveness of restoration works targeted at the Grey-crowned Babbler was only demonstrable by sampling through time and including control sites without restoration works. This work demonstrates that while calls for better monitoring of restoration are valid, scope exists to recover a signal of effectiveness from opportunistic retrospective analyses. PMID:26177497

  2. TTK/hMPS1 Is an Attractive Therapeutic Target for Triple-Negative Breast Cancer

    PubMed Central

    Maire, Virginie; Baldeyron, Céline; Richardson, Marion; Tesson, Bruno; Vincent-Salomon, Anne; Gravier, Eléonore; Marty-Prouvost, Bérengère; De Koning, Leanne; Rigaill, Guillem; Dumont, Aurélie; Gentien, David; Barillot, Emmanuel; Roman-Roman, Sergio; Depil, Stéphane; Cruzalegui, Francisco; Pierré, Alain; Tucker, Gordon C.; Dubois, Thierry

    2013-01-01

    Triple-negative breast cancer (TNBC) represents a subgroup of breast cancers (BC) associated with the most aggressive clinical behavior. No targeted therapy is currently available for the treatment of patients with TNBC. In order to discover potential therapeutic targets, we searched for protein kinases that are overexpressed in human TNBC biopsies and whose silencing in TNBC cell lines causes cell death. A cohort including human BC biopsies obtained at Institut Curie as well as normal tissues has been analyzed at a gene-expression level. The data revealed that the human protein kinase monopolar spindle 1 (hMPS1), also known as TTK and involved in mitotic checkpoint, is specifically overexpressed in TNBC, compared to the other BC subgroups and healthy tissues. We confirmed by immunohistochemistry and reverse phase protein array that TNBC expressed higher levels of TTK protein compared to the other BC subgroups. We then determined the biological effects of TTK depletion by RNA interference, through analyses of tumorigenic capacity and cell viability in different human TNBC cell lines. We found that RNAi-mediated depletion of TTK in various TNBC cell lines severely compromised their viability and their ability to form colonies in an anchorage-independent manner. Moreover, we observed that TTK silencing led to an increase in H2AX phosphorylation, activation of caspases 3/7, sub-G1 cell population accumulation and high annexin V staining, as well as to a decrease in G1 phase cell population and an increased aneuploidy. Altogether, these data indicate that TTK depletion in TNBC cells induces apoptosis. These results point out TTK as a protein kinase overexpressed in TNBC that may represent an attractive therapeutic target specifically for this poor prognosis associated subgroup of breast cancer. PMID:23700430

  3. Spread of butternut canker in North America, host range, evidence of resistance within butternut populations and conservation genetics

    Treesearch

    M. E. Ostry; K. Woeste

    2004-01-01

    Butternut canker is killing trees throughout the range of butternut in North America and is threatening the viability of many populations in several areas. Although butternut is the primary host, other Juglans species and some hardwood species also are potential hosts. Evidence is building that genetic resistance within butternut populations may be...

  4. Contrasting patterns of nest survival and postfledging survival in ovenbirds and Acadian flycatchers in Missouri forest fragments

    Treesearch

    Julianna M. A. Jenkins; Frank R. Thompson; John Faaborg

    2016-01-01

    We can improve our ability to assess population viability and forecast population growth under different scenarios by understanding factors that limit population parameters in each stage of the annual cycle. Postfledging mortality rates may be as variable as nest survival across regions and fragmentation gradients, although factors that negatively impact nest survival...

  5. The postmitotic Saccharomyces cerevisiae after spaceflight showed higher viability

    NASA Astrophysics Data System (ADS)

    Yi, Zong-Chun; Li, Xiao-Fei; Wang, Yan; Wang, Jie; Sun, Yan; Zhuang, Feng-Yuan

    2011-06-01

    The budding yeast Saccharomyces cerevisiae has been proposed as an ideal model organism for clarifying the biological effects caused by spaceflight conditions. The postmitotic S. cerevisiae cells onboard Practice eight recoverable satellite were subjected to spaceflight for 15 days. After recovery, the viability, the glycogen content, the activities of carbohydrate metabolism enzymes, the DNA content and the lipid peroxidation level in yeast cells were analyzed. The viability of the postmitotic yeast cells after spaceflight showed a three-fold increase as compared with that of the ground control cells. Compared to the ground control cells, the lipid peroxidation level in the spaceflight yeast cells markedly decreased. The spaceflight yeast cells also showed an increase in G2/M cell population and a decrease in Sub-G1 cell population. The glycogen content and the activities of hexokinase and succinate dehydrogenase significantly decreased in the yeast cells after spaceflight. In contrast, the activity of malate dehydrogenase showed an obvious increase after spaceflight. These results suggested that microgravity or spaceflight could promote the survival of postmitotic S. cerevisiae cells through regulating carbohydrate metabolism, ROS level and cell cycle progression.

  6. The effect of gestational diabetes on proliferation capacity and viability of human umbilical cord-derived stromal cells.

    PubMed

    Wajid, Nadia; Naseem, Rashida; Anwar, Sanam Saiqa; Awan, Sana Javaid; Ali, Muhammad; Javed, Sara; Ali, Fatima

    2015-09-01

    Stomal cells derived from Wharton's jelly of human umbilical cord (WJMSCs) are considered as the potential therapeutic agents for regeneration and are getting famous for stem cell banking. Our study aims to evaluate the effects of gestational diabetes on proliferation capacity and viability of WJMSCs. Mesenchymal stromal cells were isolated from Wharton's jelly of human umbilical cords from normal and gestational diabetic (DWJMSCs) mothers. Growth patterns of both types of cells were analyzed through MTT assay and population doubling time. Cell survival, cell death and glucose utilization were estimated through trypan blue exclusion assay, LDH assay and glucose detection assay respectively. Angiogenic ability was evaluated by immunocytochemistry and ELISA for VEGF A. Anti-cancerous potential was analyzed on HeLa cells. DWJMSCs exhibited low proliferative rate, increased population doubling time, reduced cell viability and increased cell death. Interestingly, DWJMSCs were found to have a reduced glucose utilization and anti-cancerous ability while enhanced angiogenic ability. Gestational diabetes induces adverse effects on growth, angiogenic and anti-cancerous potential of WJMSCs.

  7. Selection with Gene-Cytoplasm Interactions. I. Maintenance of Cytoplasm Polymorphisms

    PubMed Central

    Gregorius, H. R.; Ross, M. D.

    1984-01-01

    General conditions for the protectedness of gene-cytoplasm polymorphisms are considered for a biallelic model with two cytoplasm types and under the assumption that nuclear polymorphisms cannot be maintained in the presence of only one cytoplasm type. Analytical results involving male fertilities, female fertilities, viabilities and selfing rates are obtained, and numerical results show spiral and cyclic behavior of population trajectories. It is shown that a maternally inherited cytoplasmic polymorphism cannot be maintained in the absence of a nuclear polymorphism, and that a gene-cytoplasm polymorphism can only be maintained if the population shows sexual asymmetry, i.e. , if the ratio of male to female fertility varies among genotypes. Thus, the classical viability selection model does not allow gene-cytoplasm polymorphisms. PMID:17246213

  8. sGD: software for estimating spatially explicit indices of genetic diversity.

    PubMed

    Shirk, A J; Cushman, S A

    2011-09-01

    Anthropogenic landscape changes have greatly reduced the population size, range and migration rates of many terrestrial species. The small local effective population size of remnant populations favours loss of genetic diversity leading to reduced fitness and adaptive potential, and thus ultimately greater extinction risk. Accurately quantifying genetic diversity is therefore crucial to assessing the viability of small populations. Diversity indices are typically calculated from the multilocus genotypes of all individuals sampled within discretely defined habitat patches or larger regional extents. Importantly, discrete population approaches do not capture the clinal nature of populations genetically isolated by distance or landscape resistance. Here, we introduce spatial Genetic Diversity (sGD), a new spatially explicit tool to estimate genetic diversity based on grouping individuals into potentially overlapping genetic neighbourhoods that match the population structure, whether discrete or clinal. We compared the estimates and patterns of genetic diversity using patch or regional sampling and sGD on both simulated and empirical populations. When the population did not meet the assumptions of an island model, we found that patch and regional sampling generally overestimated local heterozygosity, inbreeding and allelic diversity. Moreover, sGD revealed fine-scale spatial heterogeneity in genetic diversity that was not evident with patch or regional sampling. These advantages should provide a more robust means to evaluate the potential for genetic factors to influence the viability of clinal populations and guide appropriate conservation plans. © 2011 Blackwell Publishing Ltd.

  9. Assessment of cryopreserved donor skin viability: the experience of the regional tissue bank of Siena.

    PubMed

    Pianigiani, E; Tognetti, L; Ierardi, F; Mariotti, G; Rubegni, P; Cevenini, G; Perotti, R; Fimiani, M

    2016-06-01

    Skin allografts from cadaver donors are an important resource for treating extensive burns, slow-healing wounds and chronic ulcers. A high level of cell viability of cryopreserved allografts is often required, especially in burn surgery, in Italy. Thus, we aimed to determine which conditions enable procurement of highly viable skin in our Regional Skin Bank of Siena. For this purpose, we assessed cell viability of cryopreserved skin allografts procured between 2011 and 2013 from 127 consecutive skin donors, before and after freezing (at day 15, 180, and 365). For each skin donor, we collected data concerning clinical history (age, sex, smoking, phototype, dyslipidemia, diabetes, cause of death), donation process (multi-tissue or multi-organ) and timing of skin procurement (assessment of intervals such as death-harvesting, harvesting-banking, death-banking). All these variables were analysed in the whole case study (127 donors) and in different groups (e.g. multi-organ donors, non refrigerated multi-tissue donors, refrigerated multi-tissue donors) for correlations with cell viability. Our results indicated that cryopreserved skin allografts with higher cell viability were obtained from female, non smoker, heartbeating donors died of cerebral haemorrhage, and were harvested within 2 h of aortic clamping and banked within 12 h of harvesting (13-14 h from clamping). Age, cause of death and dyslipidaemia or diabetes did not appear to influence cell viability. To maintain acceptable cell viability, our skin bank needs to reduce the time interval between harvesting and banking, especially for refrigerated donors.

  10. Connectivity of Tiger (Panthera tigris) Populations in the Human-Influenced Forest Mosaic of Central India

    PubMed Central

    Joshi, Aditya; Vaidyanathan, Srinivas; Mondol, Samrat; Edgaonkar, Advait; Ramakrishnan, Uma

    2013-01-01

    Today, most wild tigers live in small, isolated Protected Areas within human dominated landscapes in the Indian subcontinent. Future survival of tigers depends on increasing local population size, as well as maintaining connectivity between populations. While significant conservation effort has been invested in increasing tiger population size, few initiatives have focused on landscape-level connectivity and on understanding the effect different landscape elements have on maintaining connectivity. We combined individual-based genetic and landscape ecology approaches to address this issue in six protected areas with varying tiger densities and separation in the Central Indian tiger landscape. We non-invasively sampled 55 tigers from different protected areas within this landscape. Maximum-likelihood and Bayesian genetic assignment tests indicate long-range tiger dispersal (on the order of 650 km) between protected areas. Further geo-spatial analyses revealed that tiger connectivity was affected by landscape elements such as human settlements, road density and host-population tiger density, but not by distance between populations. Our results elucidate the importance of landscape and habitat viability outside and between protected areas and provide a quantitative approach to test functionality of tiger corridors. We suggest future management strategies aim to minimize urban expansion between protected areas to maximize tiger connectivity. Achieving this goal in the context of ongoing urbanization and need to sustain current economic growth exerts enormous pressure on the remaining tiger habitats and emerges as a big challenge to conserve wild tigers in the Indian subcontinent. PMID:24223132

  11. Connectivity of tiger (Panthera tigris) populations in the human-influenced forest mosaic of Central India.

    PubMed

    Joshi, Aditya; Vaidyanathan, Srinivas; Mondol, Samrat; Edgaonkar, Advait; Ramakrishnan, Uma

    2013-01-01

    Today, most wild tigers live in small, isolated Protected Areas within human dominated landscapes in the Indian subcontinent. Future survival of tigers depends on increasing local population size, as well as maintaining connectivity between populations. While significant conservation effort has been invested in increasing tiger population size, few initiatives have focused on landscape-level connectivity and on understanding the effect different landscape elements have on maintaining connectivity. We combined individual-based genetic and landscape ecology approaches to address this issue in six protected areas with varying tiger densities and separation in the Central Indian tiger landscape. We non-invasively sampled 55 tigers from different protected areas within this landscape. Maximum-likelihood and Bayesian genetic assignment tests indicate long-range tiger dispersal (on the order of 650 km) between protected areas. Further geo-spatial analyses revealed that tiger connectivity was affected by landscape elements such as human settlements, road density and host-population tiger density, but not by distance between populations. Our results elucidate the importance of landscape and habitat viability outside and between protected areas and provide a quantitative approach to test functionality of tiger corridors. We suggest future management strategies aim to minimize urban expansion between protected areas to maximize tiger connectivity. Achieving this goal in the context of ongoing urbanization and need to sustain current economic growth exerts enormous pressure on the remaining tiger habitats and emerges as a big challenge to conserve wild tigers in the Indian subcontinent.

  12. Non-additive effects of pollen limitation and self-incompatibility reduce plant reproductive success and population viability

    PubMed Central

    Young, Andrew G.; Broadhurst, Linda M.; Thrall, Peter H.

    2012-01-01

    Background and Aims Mating system is a primary determinant of the ecological and evolutionary dynamics of wild plant populations. Pollen limitation and loss of self-incompatibility genotypes can both act independently to reduce seed set and these effects are commonly observed in fragmented landscapes. This study used a simulation modelling approach to assess the interacting effects of these two processes on plant reproductive performance and population viability for a range of pollination likelihood, self-incompatibility systems and S-allele richness conditions. Methods A spatially explicit, individual-based, genetic and demographic simulation model parameterized to represent a generic self-incompatible, short-lived perennial herb was used to conduct simulation experiments in which pollination probability, self-incompatibility type (gametophytic and sporophytic) and S-allele richness were systematically varied in combination to assess their independent and interacting effects on the demographic response variables of mate availability, seed set, population size and population persistence. Key Results Joint effects of reduced pollination probability and low S-allele richness were greater than independent effects for all demographic response variables except population persistence under high pollinator service (>50 %). At intermediate values of 15–25 % pollination probability, non-linear interactions with S-allele richness generated significant reductions in population performance beyond those expected by the simple additive effect of each independently. This was due to the impacts of reduced effective population size on the ability of populations to retain S alleles and maintain mate availability. Across a limited set of pollination and S-allele conditions (P = 0·15 and S = 20) populations with gametophytic SI showed reduced S-allele erosion relative to those with sporophytic SI, but this had limited effects on individual fecundity and translated into only modest increases in population persistence. Conclusions Interactions between pollen limitation and loss of S alleles have the potential to significantly reduce the viability of populations of a few hundred plants. Population decline may occur more rapidly than expected when pollination probabilities drop below 25 % and S alleles are fewer than 20 due to non-additive interactions. These are likely to be common conditions experienced by plants in small populations in fragmented landscapes and are also those under which differences in response between gameptophytic and sporophtyic systems are observed. PMID:22184620

  13. Non-additive effects of pollen limitation and self-incompatibility reduce plant reproductive success and population viability.

    PubMed

    Young, Andrew G; Broadhurst, Linda M; Thrall, Peter H

    2012-02-01

    Mating system is a primary determinant of the ecological and evolutionary dynamics of wild plant populations. Pollen limitation and loss of self-incompatibility genotypes can both act independently to reduce seed set and these effects are commonly observed in fragmented landscapes. This study used a simulation modelling approach to assess the interacting effects of these two processes on plant reproductive performance and population viability for a range of pollination likelihood, self-incompatibility systems and S-allele richness conditions. A spatially explicit, individual-based, genetic and demographic simulation model parameterized to represent a generic self-incompatible, short-lived perennial herb was used to conduct simulation experiments in which pollination probability, self-incompatibility type (gametophytic and sporophytic) and S-allele richness were systematically varied in combination to assess their independent and interacting effects on the demographic response variables of mate availability, seed set, population size and population persistence. Joint effects of reduced pollination probability and low S-allele richness were greater than independent effects for all demographic response variables except population persistence under high pollinator service (>50 %). At intermediate values of 15-25 % pollination probability, non-linear interactions with S-allele richness generated significant reductions in population performance beyond those expected by the simple additive effect of each independently. This was due to the impacts of reduced effective population size on the ability of populations to retain S alleles and maintain mate availability. Across a limited set of pollination and S-allele conditions (P = 0·15 and S = 20) populations with gametophytic SI showed reduced S-allele erosion relative to those with sporophytic SI, but this had limited effects on individual fecundity and translated into only modest increases in population persistence. Interactions between pollen limitation and loss of S alleles have the potential to significantly reduce the viability of populations of a few hundred plants. Population decline may occur more rapidly than expected when pollination probabilities drop below 25 % and S alleles are fewer than 20 due to non-additive interactions. These are likely to be common conditions experienced by plants in small populations in fragmented landscapes and are also those under which differences in response between gameptophytic and sporophtyic systems are observed.

  14. Sound solutions for habitat monitoring

    Treesearch

    Mary M. Rowland; Lowell H. Suring; Christina D. Vojta

    2015-01-01

    For agencies and organizations to effectively manage wildlife, knowledge about the status and trend of wildlife habitat is critical. Traditional wildlife monitoring, however, has focused on populations rather than habitat, because ultimately population status drives long-term species viability. Still, habitat loss has contributed to the decline of nearly all at-risk...

  15. 77 FR 59137 - Chartering and Field of Membership Manual for Federal Credit Unions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... enhance an FCU's economic potential. Unfortunately, when included in the rural district for chartering... population density. Accordingly, a higher potential population is often necessary to ensure the economic viability of many rural district charters. Since first defining the term rural district in 2010, NCUA has...

  16. Landscape resistance to dispersal: Predicting long-term effects for a small and isolated wolf population in southwestern Manitoba, Canada

    EPA Science Inventory

    Landscape fragmentation affects wildlife population viability, in part through the effects it has on individual dispersal. Considerable fragmentation of native habitats and loss of forest cover has occurred in association with agricultural development over the past 50 years in o...

  17. Seed sojourn and fast viability loss constrain seedling production of a prominent riparian protection plant Salix variegata Franch

    PubMed Central

    Ayi, Qiaoli; Zeng, Bo; Liu, Jianhui; Shi, Shaohua; Niu, Hangang; Lin, Feng; Zhang, Yeyi

    2016-01-01

    Salix variegata Franch, a prominent plant applied in riparian shelter vegetation in Three Gorges reservoir region of China, produces many seeds every year but generates only a few or no seedlings. Whether the low seedling production of S. variegata is caused by seed sterility or by rapid loss of seed viability remains unknown. We investigated the sojourn time of mature seeds in capsules produced in early, mid, and late reproductive season and the germinability of mature seeds fresh or stored after different period of time. The sojourn time of seeds in capsules was 2.89, 3.95, and 4.72 days in early, mid, and late reproductive season, respectively. The maximal germination percentage of non-stored fresh seeds produced in early, mid, and late reproductive season was 93.33%, 78.67%, and 40%, respectively, which indicates mature seeds were not sterile. The longest viability-retaining time of seeds produced in early, mid, and late reproductive season was only 8, 16, 16 days, respectively, indicating that mature seeds of S. variegata lost viability very rapidly. Mature seeds possessed good viability, but their rapid viability loss caused the low seedling production and hampered the population growth of S. variegata in the riparian area of Three Gorges reservoir region. PMID:27881868

  18. Seed sojourn and fast viability loss constrain seedling production of a prominent riparian protection plant Salix variegata Franch.

    PubMed

    Ayi, Qiaoli; Zeng, Bo; Liu, Jianhui; Shi, Shaohua; Niu, Hangang; Lin, Feng; Zhang, Yeyi

    2016-11-24

    Salix variegata Franch, a prominent plant applied in riparian shelter vegetation in Three Gorges reservoir region of China, produces many seeds every year but generates only a few or no seedlings. Whether the low seedling production of S. variegata is caused by seed sterility or by rapid loss of seed viability remains unknown. We investigated the sojourn time of mature seeds in capsules produced in early, mid, and late reproductive season and the germinability of mature seeds fresh or stored after different period of time. The sojourn time of seeds in capsules was 2.89, 3.95, and 4.72 days in early, mid, and late reproductive season, respectively. The maximal germination percentage of non-stored fresh seeds produced in early, mid, and late reproductive season was 93.33%, 78.67%, and 40%, respectively, which indicates mature seeds were not sterile. The longest viability-retaining time of seeds produced in early, mid, and late reproductive season was only 8, 16, 16 days, respectively, indicating that mature seeds of S. variegata lost viability very rapidly. Mature seeds possessed good viability, but their rapid viability loss caused the low seedling production and hampered the population growth of S. variegata in the riparian area of Three Gorges reservoir region.

  19. Extreme weather and experience influence reproduction in an endangered bird

    USGS Publications Warehouse

    Reichert, Brian E.; Cattau, Christopher E.; Fletcher, Robert J.; Kendall, William L.; Kitchens, Wiley M.

    2012-01-01

    Using a 14-year time series spanning large variation in climatic conditions and the entirety of a population's breeding range, we estimated the effects of extreme weather conditions (drought) on the state-specific probabilities of breeding and survival of an endangered bird, the Florida Snail Kite (Rostrhamus sociabilis plumbeus). Our analysis accounted for uncertainty in breeding status assignment, a common source of uncertainty that is often ignored when states are based on field observations. Breeding probabilities in adult kites (>1 year of age) decreased during droughts, whereas the probability of breeding in young kites (1 year of age) tended to increase. Individuals attempting to breed showed no evidence of reduced future survival. Although population viability analyses of this species and other species often implicitly assume that all adults will attempt to breed, we find that breeding probabilities were significantly <1 for all 13 estimable years considered. Our results suggest that experience is an important factor determining whether or not individuals attempt to breed during harsh environmental conditions and that reproductive effort may be constrained by an individual's quality and/or despotic behavior among individuals attempting to breed.

  20. Viability of human periodontal ligament fibroblasts in milk, Hank's balanced salt solution and coconut water as storage media.

    PubMed

    Souza, B D M; Lückemeyer, D D; Reyes-Carmona, J F; Felippe, W T; Simões, C M O; Felippe, M C S

    2011-02-01

    To evaluate the effectiveness of various storage media at 5 °C for maintaining the viability of human periodontal ligament fibroblasts (PDLF). Plates with PDLF were soaked in recently prepared Hank's balanced salt solution (HBSS), skimmed milk, whole milk, Save-A-Tooth(®) system's HBSS (Save), natural coconut water, industrialized coconut water or tap water (negative control) at 5 °C for 3, 6, 24, 48, 72, 96 and 120 h. Minimum essential medium (MEM) at 37 °C served as the positive control. PDL cell viability was determined by MTT assay. Data were statistically analysed by Kruskal-Wallis test complemented by the Scheffé test (α=5%). The greatest number of viable cells was observed for MEM. Skimmed and whole milk, followed by natural coconut water and HBSS, were the most effective media in maintaining cell viability (P<0.05). From 24 to 120 h, Save, industrialized coconut water and tap water were the worst storage media. Skimmed and whole milk had the greatest capacity to maintain PDLF viability when compared with natural coconut water, HBSS, Save, industrialized coconut water and tap water. © 2010 International Endodontic Journal.

  1. Comparison of the effect of three autogenous bone harvesting methods on cell viability in rabbits

    PubMed Central

    Moradi Haghgoo, Janet; Arabi, Seyed Reza; Hosseinipanah, Seyyed Mohammad; Solgi, Ghasem; Rastegarfard, Neda; Farhadian, Maryam

    2017-01-01

    Background. This study was designed to compare the viability of autogenous bone grafts, harvested using different methods, in order to determine the best harvesting technique with respect to more viable cells. Methods. In this animal experimental study, three harvesting methods, including manual instrument (chisel), rotary device and piezosurgery, were used for harvesting bone grafts from the lateral body of the mandible on the left and right sides of 10 rabbits. In each group, 20 bone samples were collected and their viability was assessed using MTS kit. Statistical analyses, including ANOVA and post hoc Tukey tests, were used for evaluating significant differences between the groups. Results. One-way ANOVA showed significant differences between all the groups (P=0.000). Data analysis using post hoc Tukey tests indicated that manual instrument and piezosurgery had no significant differences with regard to cell viability (P=0.749) and the cell viability in both groups was higher than that with the use of a rotary instrument (P=0.000). Conclusion. Autogenous bone grafts harvested with a manual instrument and piezosurgery had more viable cells in comparison to the bone chips harvested with a rotary device. PMID:28748046

  2. Cultural and environmental factors affecting the longevity of Escherichia coli in Histosols.

    PubMed

    Tate, R L

    1978-05-01

    The survival of Escherichia coli in organic soils (Histosols) was examined. The death rate of this organism in Pahokee muck was less than that observed in Pompano fine sand. The number of viable E. coli cells found in the muck was approximately threefold greater than that found in the sand following 8 days of incubation. The initial population of the coliform affected the death rate. The rate of loss of viability varied 100-fold when the population size decreased from 2.5 x 10(7) to 3.4 x 10(4). Other factors affecting the viability of E. coli in muck were aerobic versus anaerobic growth of the organism and moist versus flooded conditions in the soil. The greatest survival of the coliform was noted with anaerobically grown cells amended to flooded soil. That the observed decrease in E. coli viability in soil was the result of biotic factors was demonstrated with amendment of sterile soil with E. coli. When 1.1 x 10(5) bacteria per g of soil were added to sterile muck, a population of 3.0 x 10(7) organisms per g of soil developed over a 10-day period. The role of the protozoa in eradication of the coliform from the muck was indicated by a sixfold increase in the protozoan population in natural soil amended with E. coli. Higher organic matter content in a Histosol compared with a mineral soil resulted in an increased survival of the fecal coliforms. Biotic factors are instrumental in the decline in coliform populations, but the potential for growth of the coliform in the organic soil could extend the survival of the organism.

  3. Cultural and Environmental Factors Affecting the Longevity of Escherichia coli in Histosols †

    PubMed Central

    Tate, Robert L.

    1978-01-01

    The survival of Escherichia coli in organic soils (Histosols) was examined. The death rate of this organism in Pahokee muck was less than that observed in Pompano fine sand. The number of viable E. coli cells found in the muck was approximately threefold greater than that found in the sand following 8 days of incubation. The initial population of the coliform affected the death rate. The rate of loss of viability varied 100-fold when the population size decreased from 2.5 × 107 to 3.4 × 104. Other factors affecting the viability of E. coli in muck were aerobic versus anaerobic growth of the organism and moist versus flooded conditions in the soil. The greatest survival of the coliform was noted with anaerobically grown cells amended to flooded soil. That the observed decrease in E. coli viability in soil was the result of biotic factors was demonstrated with amendment of sterile soil with E. coli. When 1.1 × 105 bacteria per g of soil were added to sterile muck, a population of 3.0 × 107 organisms per g of soil developed over a 10-day period. The role of the protozoa in eradication of the coliform from the muck was indicated by a sixfold increase in the protozoan population in natural soil amended with E. coli. Higher organic matter content in a Histosol compared with a mineral soil resulted in an increased survival of the fecal coliforms. Biotic factors are instrumental in the decline in coliform populations, but the potential for growth of the coliform in the organic soil could extend the survival of the organism. PMID:350158

  4. Exploring the effect of drought extent and interval on the Florida snail kite: Interplay between spatial and temporal scales

    USGS Publications Warehouse

    Mooij, Wolf M.; Bennetts, Robert E.; Kitchens, Wiley M.; DeAngelis, Donald L.

    2002-01-01

    The paper aims at exploring the viability of the Florida snail kite population under various drought regimes in its wetland habitat. The population dynamics of snail kites are strongly linked with the hydrology of the system due to the dependence of this bird species on one exclusive prey species, the apple snail, which is negatively affected by a drying out of habitat. Based on empirical evidence, it has been hypothesised that the viability of the snail kite population critically depends not only on the time interval between droughts, but also on the spatial extent of these droughts. A system wide drought is likely to result in reduced reproduction and increased mortality, whereas the birds can respond to local droughts by moving to sites where conditions are still favourable. This paper explores the implications of this hypothesis by means of a spatially-explicit individual-based model. The specific aim of the model is to study in a factorial design the dynamics of the kite population in relation to two scale parameters, the temporal interval between droughts and the spatial correlation between droughts. In the model high drought frequencies led to reduced numbers of kites. Also, habitat degradation due to prolonged periods of inundation led to lower predicted numbers of kites. Another main result was that when the spatial correlation between droughts was low, the model showed little variability in the predicted numbers of kites. But when droughts occurred mostly on a system wide level, environmental stochasticity strongly increased the stochasticity in kite numbers and in the worst case the viability of the kite population was seriously threatened.

  5. Population viability analysis of the Florida manatee (Trichechus manatus latirostris), 1976-1991

    USGS Publications Warehouse

    Marmontel, M.; Humphrey, S.R.; O'Shea, T.J.

    1997-01-01

    Recent development of age-determination techniques for Florida manatees (Trichechus manatus latirostris) has permitted derivation of age-specific data on reproduction and survival of a sample of 1212 carcasses obtained throughout Florida from 1976–1991. Population viability analysis using these data projects a slightly negative growth rate (−0.003) and an unacceptably low probability of persistence (0.44) over 1000 years. The main factors affecting population projections were adult survival and fecundity. A 10% increase in adult mortality would drive the population to extinction over a 1000-year time scale, whereas a 10% decrease in adult mortality would allow slow population growth. A 10% decrease in reproduction would also result in extinction. We conclude that management must focus on retaining and improving the conditions under which manatee demography operates. The major identified agent of mortality is boat-manatee collisions, and rapidly increasing numbers of humans and registered boats portend an increase in manatee mortality. Zoning of manatee-occupied waters for reductions in boating activity and speed is essential to safeguard the manatee population. If boating regulations being implemented by the state of Florida in each of 13 key coastal counties are completed, enforced, and effective, manatees and human recreation could coexist indefinitely. If regulation is unsuccessful, the Florida manatee population is likely to decline slowly toward extinction.

  6. A fully-stochasticized, age-structured population model for population viability analysis of fish: Lower Missouri River endangered pallid sturgeon example

    USGS Publications Warehouse

    Wildhaber, Mark L.; Albers, Janice; Green, Nicholas; Moran, Edward H.

    2017-01-01

    We develop a fully-stochasticized, age-structured population model suitable for population viability analysis (PVA) of fish and demonstrate its use with the endangered pallid sturgeon (Scaphirhynchus albus) of the Lower Missouri River as an example. The model incorporates three levels of variance: parameter variance (uncertainty about the value of a parameter itself) applied at the iteration level, temporal variance (uncertainty caused by random environmental fluctuations over time) applied at the time-step level, and implicit individual variance (uncertainty caused by differences between individuals) applied within the time-step level. We found that population dynamics were most sensitive to survival rates, particularly age-2+ survival, and to fecundity-at-length. The inclusion of variance (unpartitioned or partitioned), stocking, or both generally decreased the influence of individual parameters on population growth rate. The partitioning of variance into parameter and temporal components had a strong influence on the importance of individual parameters, uncertainty of model predictions, and quasiextinction risk (i.e., pallid sturgeon population size falling below 50 age-1+ individuals). Our findings show that appropriately applying variance in PVA is important when evaluating the relative importance of parameters, and reinforce the need for better and more precise estimates of crucial life-history parameters for pallid sturgeon.

  7. Decreased winter severity increases viability of a montane frog population

    PubMed Central

    McCaffery, Rebecca M.; Maxell, Bryce A.

    2010-01-01

    Many proximate causes of global amphibian declines have been well documented, but the role that climate change has played and will play in this crisis remains ambiguous for many species. Breeding phenology and disease outbreaks have been associated with warming temperatures, but, to date, few studies have evaluated effects of climate change on individual vital rates and subsequent population dynamics of amphibians. We evaluated relationships among local climate variables, annual survival and fecundity, and population growth rates from a 9-year demographic study of Columbia spotted frogs (Rana luteiventris) in the Bitterroot Mountains of Montana. We documented an increase in survival and breeding probability as severity of winter decreased. Therefore, a warming climate with less severe winters is likely to promote population viability in this montane frog population. More generally, amphibians and other ectotherms inhabiting alpine or boreal habitats at or near their thermal ecological limits may benefit from the milder winters provided by a warming climate as long as suitable habitats remain intact. A more thorough understanding of how climate change is expected to benefit or harm amphibian populations at different latitudes and elevations is essential for determining the best strategies to conserve viable populations and allow for gene flow and shifts in geographic range. PMID:20421473

  8. Cost viability of 3D printed house in UK

    NASA Astrophysics Data System (ADS)

    Tobi, A. L. Mohd; Omar, S. A.; Yehia, Z.; Al-Ojaili, S.; Hashim, A.; Orhan, O.

    2018-03-01

    UK has been facing housing crisis due to the rising price of the property on sale. This paper will look into the viability of 3D printing technology as an alternative way for house construction on UK. The analysis will be carried out based on the data until the year of 2014 due to limited resources availability. Details cost breakdown on average size house construction cost in UK were analysed and relate to the cost viability of 3D printing technology in reducing the house price in UK. It is found that the 3D printing generates saving of up to around 35% out of total house price in UK. This cost saving comes from the 3D printed construction of walls and foundations for material and labour cost.

  9. Effects of Disturbance on Populations of Marine Mammals

    DTIC Science & Technology

    2015-09-30

    will respond to alternative scenarios of human activities, from those that produce sound to climate change to changes in human density and...develop transferable models of the population-level effects of anthropogenic and natural disturbances on marine mammals. Disturbances can affect the...physiology or behavior of animals, which in turn may lead to changes in demographic rates and viability. Population-level effects of disturbance

  10. A stochastic population model for Lepidium papilliferum (Brassicaceae), a rare desert ephemeral with a persistent seed bank

    Treesearch

    Susan E. Meyer; Dana Quinney; Jay Weaver

    2006-01-01

    Population viability analysis (PVA) is a valuable tool for rare plant conservation, but PVA for plants with persistent seed banks is difficult without reliable information on seed bank processes. We modeled the population dynamics of the Snake River Plains ephemeral Lepidium papilliferum using data from an 11-yr artificial seed bank experiment to estimate age-specific...

  11. Using a full annual cycle model to evaluate long-term population viability of the conservation-reliant Kirtland's warbler after successful recovery

    USGS Publications Warehouse

    Brown, Donald J.; Ribic, Christine; Donner, Deahn M.; Nelson, Mark D.; Bocetti, Carol I.; Deloria-Sheffield, Christie M.

    2017-01-01

    Long-term management planning for conservation-reliant migratory songbirds is particularly challenging because habitat quality in different stages and geographic locations of the annual cycle can have direct and carry-over effects that influence the population dynamics. The Neotropical migratory songbird Kirtland's warbler Setophaga kirtlandii (Baird 1852) is listed as endangered under the U.S. Endangered Species Act and Near Threatened under the IUCN Red List. This conservation-reliant species is being considered for U.S. federal delisting because the species has surpassed the designated 1000 breeding pairs recovery threshold since 2001.To help inform the delisting decision and long-term management efforts, we developed a population simulation model for the Kirtland's warbler that incorporated both breeding and wintering grounds habitat dynamics, and projected population viability based on current environmental conditions and potential future management scenarios. Future management scenarios included the continuation of current management conditions, reduced productivity and carrying capacity due to the changes in habitat suitability from the creation of experimental jack pine Pinus banksiana (Lamb.) plantations, and reduced productivity from alteration of the brown-headed cowbird Molothrus ater (Boddaert 1783) removal programme.Linking wintering grounds precipitation to productivity improved the accuracy of the model for replicating past observed population dynamics. Our future simulations indicate that the Kirtland's warbler population is stable under two potential future management scenarios: (i) continuation of current management practices and (ii) spatially restricting cowbird removal to the core breeding area, assuming that cowbirds reduce productivity in the remaining patches by ≤41%. The additional future management scenarios we assessed resulted in population declines.Synthesis and applications. Our study indicates that the Kirtland's warbler population is stable under current management conditions and that the jack pine plantation and cowbird removal programmes continue to be necessary for the long-term persistence of the species. This study represents one of the first attempts to incorporate full annual cycle dynamics into a population viability analysis for a migratory bird, and our results indicate that incorporating wintering grounds dynamics improved the model performance.

  12. The effect of pressure and shear on tissue viability of human skin in relation to the development of pressure ulcers: a systematic review.

    PubMed

    Hoogendoorn, Iris; Reenalda, Jasper; Koopman, Bart F J M; Rietman, Johan S

    2017-08-01

    Pressure ulcers are a significant problem in health care, due to high costs and large impact on patients' life. In general, pressure ulcers develop as tissue viability decreases due to prolonged mechanical loading. The relation between load and tissue viability is highly influenced by individual characteristics. It is proposed that measurements of skin blood flow regulation could provide good assessment of the risk for pressure ulcer development, as skin blood flow is essential for tissue viability. . Therefore, the aim of this systematic review is to gain insight in the relation between mechanical load and the response of the skin and underlying tissue to this loading measured in-vivo with non-invasive techniques. A systematic literature search was performed to identify articles analysing the relation between mechanical load (pressure and/or shear) and tissue viability measured in-vivo. Two independent reviewers scored the methodological quality of the 22 included studies. Methodological information as well as tissue viability parameters during load application and after load removal were extracted from the included articles and used in a meta-analysis. Pressure results in a decrease in skin blood flow parameters, compared to baseline; showing a larger decrease with higher magnitudes of load. The steepness of the decrease is mostly dependent on the anatomical location. After load removal the magnitude of the post-reactive hyperaemic peak is related to the magnitude of pressure. Lastly, shear in addition to pressure, shows an additional negative effect, but the effect is less apparent than pressure on skin viability. Copyright © 2017 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  13. A Novel Double Subculture Method and Its Theory for the Enumeration of Injured Cells in Stressed Microbial Population.

    PubMed

    Tsuchido, Tetsuaki

    2017-01-01

     A novel double subculture method, termed DiVSaL (Differential Viabilities between Solid and Liquid media) method, for the enumeration of injured cell population of a microorganism, which occurs after some sublethal to lethal treatment, was proposed. In this method injured cells were enumerated as the differential value between viabilities determined with two different techniques, the conventional plate counting using a solid agar medium and the growth delay analysis using a liquid medium. In the former technique, the viable cell number is obtained as colony forming unit (CFU) formed on an agar medium where sublethally injured cells are as much rescued as possible. In the latter technique, on the other hand," the integrated viability" defined by Takano and Tsuchido (1982) is introduced and is calculated from the growth delay of a stressed population, referred to unstressed one. For the growth delay analysis, in this paper, not only the original theoretical model, where the specific growth rate (and therefore the defined G 10 value) does not change after the exposure to a stress treatment, but also a novel modified theory, where the parameter changes, is proposed. On the theoretical background, this DiVSaL method as a double subculture method can be used to enumerate the injured cells without selection by addition of some inhibitor or by nutritional shortage.

  14. Non-destructive technique for determining the viability of soybean (Glycine max) seeds using FT-NIR spectroscopy.

    PubMed

    Kusumaningrum, Dewi; Lee, Hoonsoo; Lohumi, Santosh; Mo, Changyeun; Kim, Moon S; Cho, Byoung-Kwan

    2018-03-01

    The viability of seeds is important for determining their quality. A high-quality seed is one that has a high capability of germination that is necessary to ensure high productivity. Hence, developing technology for the detection of seed viability is a high priority in agriculture. Fourier transform near-infrared (FT-NIR) spectroscopy is one of the most popular devices among other vibrational spectroscopies. This study aims to use FT-NIR spectroscopy to determine the viability of soybean seeds. Viable and artificial ageing seeds as non-viable soybeans were used in this research. The FT-NIR spectra of soybean seeds were collected and analysed using a partial least-squares discriminant analysis (PLS-DA) to classify viable and non-viable soybean seeds. Moreover, the variable importance in projection (VIP) method for variable selection combined with the PLS-DA was employed. The most effective wavelengths were selected by the VIP method, which selected 146 optimal variables from the full set of 1557 variables. The results demonstrated that the FT-NIR spectral analysis with the PLS-DA method that uses all variables or the selected variables showed good performance based on the high value of prediction accuracy for soybean viability with an accuracy close to 100%. Hence, FT-NIR techniques with a chemometric analysis have the potential for rapidly measuring soybean seed viability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Climate change impacts on the conservation outlook of populations on the poleward periphery of species ranges: A case study of Canadian black-tailed prairie dogs (Cynomys ludovicianus).

    PubMed

    Stephens, Tara; Wilson, Sian C; Cassidy, Ffion; Bender, Darren; Gummer, David; Smith, Des H V; Lloyd, Natasha; McPherson, Jana M; Moehrenschlager, Axel

    2018-02-01

    Given climate change, species' climatically suitable habitats are increasingly expected to shift poleward. Some imperilled populations towards the poleward edge of their species' range might therefore conceivably benefit from climate change. Interactions between climate and population dynamics may be complex, however, with climate exerting effects both indirectly via influence over food availability and more directly, via effects on physiology and its implications for survival and reproduction. A thorough understanding of these interactions is critical for effective conservation management. We therefore examine the relationship between climate, survival and reproduction in Canadian black-tailed prairie dogs, a threatened keystone species in an imperilled ecosystem at the northern edge of the species' range. Our analyses considered 8 years of annual mark-recapture data (2007-2014) in relation to growing degree days, precipitation, drought status and winter severity, as well as year, sex, age and body mass. Survival was strongly influenced by the interaction of drought and body mass class, and winter temperature severity. Female reproductive status was associated with the interaction of growing degree days and growing season precipitation, with spring precipitation and with winter temperature severity. Results related to body mass suggested that climatic variables exerted their effects via regulation of food availability with potential linked effects of food quality, immunological and behavioural implications, and predation risk. Predictions of future increases in drought conditions in North America's grassland ecosystems have raised concerns for the outlook of Canadian black-tailed prairie dogs. Insights gained from the analyses, however, point to mitigating species management options targeted at decoupling the mechanisms by which climate exerts its negative influence. Our approach highlights the importance of understanding the interaction between climate and population dynamics in peripheral populations whose viability might ultimately determine their species' ability to track climatically suitable space. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  16. Settling behavior of unpurified Cryptosporidium oocysts in laboratory settling columns.

    PubMed

    Young, Pamela L; Komisar, Simeon J

    2005-04-15

    The settling behavior of fresh and aged unpurified oocysts was examined in settling column suspensions with varied ionic strengths and concentrations of calcium and magnesium. Independent measurements of the size and density of unpurified oocysts were performed to determine a theoretical settling velocity for the test populations. Viability of the oocysts was assessed using a dye permeability assay. Latex microspheres were included to provide a standard by which to assess the settling conditions in the columns. Mean settling velocities for viable oocysts measured in this work were faster than predicted and faster than measured for purified oocysts in other work: 1.31 (+/-0.21) microm/s for viable oocysts from populations having a low percentage of viable oocysts and 1.05 (+/-0.20) microm/s for viable oocysts from populations with a high percentage of viable oocysts. Results were attributed to the higher than previously reported densities measured for oocysts in this study and the presence of fecal material, which allowed opportunity for particle agglomeration. Settling velocity of oocysts was significantly related to the viability of the population, particle concentration, ionic strength, and presence of calcium and magnesium in the suspending medium. Behavior of the latex microspheres was not entirely predictive of the behavior of the oocysts under the test conditions. Viable oocysts may have a greater probability of settling than previously assumed; however, nonviable, and especially nonintact, oocysts have the potential to be significantly transported in water. This work underscores the importance of assessing the viability of oocysts to predict their response to environmental and experimental conditions.

  17. Conservation implications of physiological carry-over effects in bats recovering from white-nose syndrome.

    PubMed

    Davy, Christina M; Mastromonaco, Gabriela F; Riley, Julia L; Baxter-Gilbert, James H; Mayberry, Heather; Willis, Craig K R

    2017-06-01

    Although it is well documented that infectious diseases can pose threats to biodiversity, the potential long-term consequences of pathogen exposure on individual fitness and its effects on population viability have rarely been studied. We tested the hypothesis that pathogen exposure causes physiological carry-over effects with a pathogen that is uniquely suited to this question because the infection period is specific and time limited. The fungus Pseudogymnoascus destructans causes white-nose syndrome (WNS) in hibernating bats, which either die due to the infection while hibernating or recover following emergence from hibernation. The fungus infects all exposed individuals in an overwintering site simultaneously, and bats that survive infection during hibernation clear the pathogen within a few weeks following emergence. We quantified chronic stress during the active season, when bats are not infected, by measuring cortisol in bat claws. Free-ranging Myotis lucifugus who survived previous exposure to P. destructans had significantly higher levels of claw cortisol than naïve individuals. Thus, cryptic physiological carry-over effects of pathogen exposure may persist in asymptomatic, recovered individuals. If these effects result in reduced survival or reproductive success, they could also affect population viability and even act as a third stream in the extinction vortex. For example, significant increases in chronic stress, such as those indicated here, are correlated with reduced reproductive success in a number of species. Future research should directly explore the link between pathogen exposure and the viability of apparently recovered populations to improve understanding of the true impacts of infectious diseases on threatened populations. © 2016 Society for Conservation Biology.

  18. Seed germination biology of Intermountain populations of fourwing saltbush (Atriplex canescens: Chenopodiaceae)

    Treesearch

    Susan E. Meyer; Stephanie L. Carlson

    2007-01-01

    Fourwing saltbush (Atriplex canescens) is a widely distributed shrub of semiarid western North America. We studied viability and germinability of fourwing saltbush seeds over 10 years for collections from 23 Intermountain populations. Fruit fill averaged 53 percent, and 96 percent of filled fruits contained viable seeds even after 6 years of...

  19. Optimizing habitat protection using demographic models of population viability.

    Treesearch

    Robert G. Haight; Brian Cypher; Patrick A. Kelly; Scott Phillips; Hugh P. Possingham; Katherine Ralls; Anthony M. Starfield; P.J. White; Daniel Williams

    2002-01-01

    Expanding habitat protection is a common tactic for species conservation. When unprotected habitat is privately owned, decisions must be made about which areas to protect by land purchase or conservation easement. To address this problem, we developed an optimization framework for choosing the habitat protection strategy that minimizes the risk of population extinction...

  20. Landscape resistnace to dispersal: Predicting long-term effects of human disturbance on a small and isolated wolf population in southwestern Manitoba, Canada

    EPA Science Inventory

    Landscape fragmentation affects wildlife population viability, in part through the effects it has on individual dispersal. Agricultural development over the past 60 years has resulted in considerable habitat fragmentation in the Riding Mountain National Park (RMNP) region in sou...

  1. Effects of the Ordering of Natural Selection and Population Regulation Mechanisms on Wright-Fisher Models

    PubMed Central

    He, Zhangyi; Beaumont, Mark; Yu, Feng

    2017-01-01

    We explore the effect of different mechanisms of natural selection on the evolution of populations for one- and two-locus systems. We compare the effect of viability and fecundity selection in the context of the Wright-Fisher model with selection under the assumption of multiplicative fitness. We show that these two modes of natural selection correspond to different orderings of the processes of population regulation and natural selection in the Wright-Fisher model. We find that under the Wright-Fisher model these two different orderings can affect the distribution of trajectories of haplotype frequencies evolving with genetic recombination. However, the difference in the distribution of trajectories is only appreciable when the population is in significant linkage disequilibrium. We find that as linkage disequilibrium decays the trajectories for the two different models rapidly become indistinguishable. We discuss the significance of these findings in terms of biological examples of viability and fecundity selection, and speculate that the effect may be significant when factors such as gene migration maintain a degree of linkage disequilibrium. PMID:28500051

  2. Label-Free, Flow-Imaging Methods for Determination of Cell Concentration and Viability.

    PubMed

    Sediq, A S; Klem, R; Nejadnik, M R; Meij, P; Jiskoot, Wim

    2018-05-30

    To investigate the potential of two flow imaging microscopy (FIM) techniques (Micro-Flow Imaging (MFI) and FlowCAM) to determine total cell concentration and cell viability. B-lineage acute lymphoblastic leukemia (B-ALL) cells of 2 different donors were exposed to ambient conditions. Samples were taken at different days and measured with MFI, FlowCAM, hemocytometry and automated cell counting. Dead and live cells from a fresh B-ALL cell suspension were fractionated by flow cytometry in order to derive software filters based on morphological parameters of separate cell populations with MFI and FlowCAM. The filter sets were used to assess cell viability in the measured samples. All techniques gave fairly similar cell concentration values over the whole incubation period. MFI showed to be superior with respect to precision, whereas FlowCAM provided particle images with a higher resolution. Moreover, both FIM methods were able to provide similar results for cell viability as the conventional methods (hemocytometry and automated cell counting). FIM-based methods may be advantageous over conventional cell methods for determining total cell concentration and cell viability, as FIM measures much larger sample volumes, does not require labeling, is less laborious and provides images of individual cells.

  3. Opposing selection and environmental variation modify optimal timing of breeding.

    PubMed

    Tarwater, Corey E; Beissinger, Steven R

    2013-09-17

    Studies of evolution in wild populations often find that the heritable phenotypic traits of individuals producing the most offspring do not increase proportionally in the population. This paradox may arise when phenotypic traits influence both fecundity and viability and when there is a tradeoff between these fitness components, leading to opposing selection. Such tradeoffs are the foundation of life history theory, but they are rarely investigated in selection studies. Timing of breeding is a classic example of a heritable trait under directional selection that does not result in an evolutionary response. Using a 22-y study of a tropical parrot, we show that opposing viability and fecundity selection on the timing of breeding is common and affects optimal breeding date, defined by maximization of fitness. After accounting for sampling error, the directions of viability (positive) and fecundity (negative) selection were consistent, but the magnitude of selection fluctuated among years. Environmental conditions (rainfall and breeding density) primarily and breeding experience secondarily modified selection, shifting optimal timing among individuals and years. In contrast to other studies, viability selection was as strong as fecundity selection, late-born juveniles had greater survival than early-born juveniles, and breeding later in the year increased fitness under opposing selection. Our findings provide support for life history tradeoffs influencing selection on phenotypic traits, highlight the need to unify selection and life history theory, and illustrate the importance of monitoring survival as well as reproduction for understanding phenological responses to climate change.

  4. Male Facial Appearance and Offspring Mortality in Two Traditional Societies

    PubMed Central

    Boothroyd, Lynda G.; Gray, Alan W.; Headland, Thomas N.; Uehara, Ray T.; Waynforth, David; Burt, D. Michael; Pound, Nicholas

    2017-01-01

    It has been hypothesised that facial traits such as masculinity and a healthy appearance may indicate heritable qualities in males (e.g. immunocompetence) and that, consequently, female preferences for such traits may function to increase offspring viability and health. However, the putative link between paternal facial features and offspring health has not previously been tested empirically in humans. Here we present data from two traditional societies with little or no access to modern medicine and family planning technologies. Data on offspring number and offspring survival were analysed for the Agta of the Philippines and the Maya of Belize, and archive facial photographs were assessed by observers for attractiveness and masculinity. While there was no association between attractiveness and offspring survival in either population, a quadratic relationship was observed between masculinity and offspring survival in both populations, such that intermediate levels of masculinity were associated with the lowest offspring mortality, with both high and low levels of masculinity being associated with increased mortality. Neither attractiveness nor masculinity were related to fertility (offspring number) in either population. We consider how these data may or may not reconcile with current theories of female preferences for masculinity in male faces and argue that further research and replication in other traditional societies should be a key priority for the field. PMID:28081562

  5. The Maintenance of Single-Locus Polymorphism. IV. Models with Mutation from Existing Alleles

    PubMed Central

    Spencer, H. G.; Marks, R. W.

    1992-01-01

    The ability of viability selection to maintain allelic polymorphism is investigated using a constructionist approach. In extensions to the models we have previously proposed, a population is bombarded with a series of mutations whose fitnesses in conjunction with other alleles are functions of the corresponding fitnesses with a particular allele, the parent allele, already in the population. Allele frequencies are iterated simultaneously, thus allowing alleles to be driven to extinction by selection. Such models allow very high levels of polymorphism to evolve: up to 38 alleles in one case. Alleles that are lethal as homozygotes can evolve to surprisingly high frequencies. The joint evolution of allele frequencies and viabilities highlights the necessity to consider more than the current morphology of a population. Comparisons are made with the neutral theory of evolution and it is suggested that failure to reject neutrality using the Ewens-Watterson test cannot be regarded as evidence for the neutral theory. PMID:1732162

  6. [Viability and germination of Hechtia perotensis (Bromeliaceae) seed].

    PubMed

    Elizalde, Violeta; García, José Rodolfo; Peña-Valdivia, Cecilia Beatriz; Ybarra, Ma Carmen; Leyva, Otto Raúl; Trejo, Carlos

    2017-03-01

    Endemic populations of Hechtia perotensis have been described in Puebla and Veracruz, Mexico. Good quality seed collections can be used in conservation, research and ecological restoration. To evaluate seed quality of wild and endemic species, some compounds are used as effective promoters of germination, such as potassium nitrate (KNO3) and gibberellic acid (AG3), because they increase seed germination capacity and reduce latency. The triphenyl tetrazolium chloride (tetrazolium) test correlates seed viability because it is based on the activity of dehydrogenases in live tissues that catalyze mitochondrial respiration. The objective of this study was to obtain information on size and weight of capsules and seeds and seed germination and viability of H. perotensis, collected in Veracruz in the year 2012 and 2015. The hypotheses were 1) that seed germination and viability are independent of the year of collection, 2) that there is a tetrazolium concentration that can identify seed viability better than others, and 3) that pretreatment with KNO3 or AG3 improves seed germination. Seed germination was assessed using a completely randomized design with three treatments (control and the germination promoters 0.2 % KNO3 and 500 mg/L AG3), four treatments for the viability test (control, 0.2, 0.5 and 1.0 % of tetrazolium) and six replicates for each treatment. A total of one hundred seeds for germination experiments, and 25 seeds for the viability test were used. The results between and within years were analyzed with ANOVA and multiple comparison with the Tukey test. The proportion of non-germinated seeds was quantified along with the number of normal and abnormal seedlings, seeds with viable embryo, seeds without embryo, and seeds with low or no viability. On average, for the 2012 collected sample, 36 % had viable embryos, 7 % had low viability, 24 % were not viable and 33 % had no embryo. This result was significantly different from the 2015 sample, for which 87 % of seed showed viable embryos, 10 % had low viability, 0 % was not viable and 3 % had no embryo. Seed germination was also significantly different between years (22 and 92 %) Pregerminative treatments did not improve germination. Seed germination and viability of H. perotensis significantly varied between years of seed collection.

  7. Impacts of early viability selection on management of inbreeding and genetic diversity in conservation.

    PubMed

    Grueber, Catherine E; Hogg, Carolyn J; Ivy, Jamie A; Belov, Katherine

    2015-04-01

    Maintaining genetic diversity is a crucial goal of intensive management of threatened species, particularly for those populations that act as sources for translocation or re-introduction programmes. Most captive genetic management is based on pedigrees and a neutral theory of inheritance, an assumption that may be violated by selective forces operating in captivity. Here, we explore the conservation consequences of early viability selection: differential offspring survival that occurs prior to management or research observations, such as embryo deaths in utero. If early viability selection produces genotypic deviations from Mendelian predictions, it may undermine management strategies intended to minimize inbreeding and maintain genetic diversity. We use empirical examples to demonstrate that straightforward approaches, such as comparing litter sizes of inbred vs. noninbred breeding pairs, can be used to test whether early viability selection likely impacts estimates of inbreeding depression. We also show that comparing multilocus genotype data to pedigree predictions can reveal whether early viability selection drives systematic biases in genetic diversity, patterns that would not be detected using pedigree-based statistics alone. More sophisticated analysis combining genomewide molecular data with pedigree information will enable conservation scientists to test whether early viability selection drives deviations from neutrality across wide stretches of the genome, revealing whether this form of selection biases the pedigree-based statistics and inference upon which intensive management is based. © 2015 John Wiley & Sons Ltd.

  8. High-throughput measurement of recombination rates and genetic interference in Saccharomyces cerevisiae.

    PubMed

    Raffoux, Xavier; Bourge, Mickael; Dumas, Fabrice; Martin, Olivier C; Falque, Matthieu

    2018-06-01

    Allelic recombination owing to meiotic crossovers is a major driver of genome evolution, as well as a key player for the selection of high-performing genotypes in economically important species. Therefore, we developed a high-throughput and low-cost method to measure recombination rates and crossover patterning (including interference) in large populations of the budding yeast Saccharomyces cerevisiae. Recombination and interference were analysed by flow cytometry, which allows time-consuming steps such as tetrad microdissection or spore growth to be avoided. Moreover, our method can also be used to compare recombination in wild-type vs. mutant individuals or in different environmental conditions, even if the changes in recombination rates are small. Furthermore, meiotic mutants often present recombination and/or pairing defects affecting spore viability but our method does not involve growth steps and thus avoids filtering out non-viable spores. Copyright © 2018 John Wiley & Sons, Ltd.

  9. Immunomodulatory/inflammatory effects of geopropolis produced by Melipona fasciculata Smith in combination with doxorubicin on THP-1 cells.

    PubMed

    Oliveira, Lucas Pires Garcia; Conte, Fernanda Lopes; Cardoso, Eliza de Oliveira; Conti, Bruno José; Santiago, Karina Basso; Golim, Marjorie de Assis; Cruz, Maria Teresa; Sforcin, José Maurício

    2016-12-01

    Geopropolis (GEO) in combination with doxorubicin (DOX) reduced HEp-2 cells viability compared to GEO and DOX alone. A possible effect of this combination on the innate immunity could take place, and its effects were analysed on THP-1 cell - a human leukaemia monocytic cell line used as a model to study monocyte activity and macrophage activity, assessing cell viability, expression of cell markers and cytokine production. THP-1 cells were incubated with GEO, DOX and their combination. Cell viability was assessed by MTT assay, cell markers expression by flow cytometry and cytokine production by ELISA. GEO + DOX did not affect cell viability. GEO alone or in combination increased TLR-4 and CD80 but not HLA-DR and TLR-2 expression. GEO stimulated TNF-α production while DOX alone or in combination did not affect it. GEO alone or in combination inhibited IL-6 production. GEO exerted a pro-inflammatory profile by increasing TLR-4 and CD80 expression and TNF-α production, favouring the activation of the immune/inflammatory response. GEO + DOX did not affect cell viability and presented an immunomodulatory action. Lower concentrations of DOX combined to GEO could be used in cancer patients, avoiding side effects and benefiting from the biological properties of GEO. © 2016 Royal Pharmaceutical Society.

  10. Atomic force microscopic study of the influence of physical stresses on Saccharomyces cerevisiae and Schizosaccharomyces pombe.

    PubMed

    Adya, Ashok K; Canetta, Elisabetta; Walker, Graeme M

    2006-01-01

    Morphological changes in the cell surfaces of the budding yeast Saccharomyces cerevisiae (strain NCYC 1681), and the fission yeast Schizosaccharomyces pombe (strain DVPB 1354), in response to thermal and osmotic stresses, were investigated using an atomic force microscope. With this microscope imaging, together with measurements of culture viability and cell size, it was possible to relate topological changes of the cell surface at nanoscale with cellular stress physiology. As expected, when the yeasts were exposed to thermostress or osmostress, their viability together with the mean cell volume decreased in conjunction with the increase in thermal or osmotic shock. Nevertheless, the viability of cells stressed for up to 1 h remained relatively high. For example, viabilities were >50% and >90% for the thermostressed, and >60% and >70% for the osmostressed S. cerevisiae and Schiz. pombe, respectively. Mean cell volume measurements, and bearing and roughness analyses of atomic force microscope images of stressed yeasts indicate that Schiz. pombe may be more resistant to physical stresses than S. cerevisiae. Overall, this study has highlighted the usefulness of atomic force microscope in studies of yeast stress physiology.

  11. Climate change and pollution speed declines in zebrafish populations.

    PubMed

    Brown, A Ross; Owen, Stewart F; Peters, James; Zhang, Yong; Soffker, Marta; Paull, Gregory C; Hosken, David J; Wahab, M Abdul; Tyler, Charles R

    2015-03-17

    Endocrine disrupting chemicals (EDCs) are potent environmental contaminants, and their effects on wildlife populations could be exacerbated by climate change, especially in species with environmental sex determination. Endangered species may be particularly at risk because inbreeding depression and stochastic fluctuations in male and female numbers are often observed in the small populations that typify these taxa. Here, we assessed the interactive effects of water temperature and EDC exposure on sexual development and population viability of inbred and outbred zebrafish (Danio rerio). Water temperatures adopted were 28 °C (current ambient mean spawning temperature) and 33 °C (projected for the year 2100). The EDC selected was clotrimazole (at 2 μg/L and 10 μg/L), a widely used antifungal chemical that inhibits a key steroidogenic enzyme [cytochrome P450(CYP19) aromatase] required for estrogen synthesis in vertebrates. Elevated water temperature and clotrimazole exposure independently induced male-skewed sex ratios, and the effects of clotrimazole were greater at the higher temperature. Male sex ratio skews also occurred for the lower clotrimazole exposure concentration at the higher water temperature in inbred fish but not in outbred fish. Population viability analysis showed that population growth rates declined sharply in response to male skews and declines for inbred populations occurred at lower male skews than for outbred populations. These results indicate that elevated temperature associated with climate change can amplify the effects of EDCs and these effects are likely to be most acute in small, inbred populations exhibiting environmental sex determination and/or differentiation.

  12. 78 FR 4835 - Endangered and Threatened Species; Recovery Plan for the North Pacific Right Whale

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-23

    ... threatened status (has no more than a 1 percent chance of extinction in 100 years) and the global population... substantially contribute to a real risk of extinction that cannot be incorporated into a Population Viability... factors or circumstances that are thought to substantially contribute to a real risk of extinction that...

  13. Use of empirically derived source-destination models to map regional conservation corridors

    Treesearch

    Samuel A. Cushman; Kevin S. McKelvey; Michael K. Schwartz

    2008-01-01

    The ability of populations to be connected across large landscapes via dispersal is critical to longterm viability for many species. One means to mitigate population isolation is the protection of movement corridors among habitat patches. Nevertheless, the utility of small, narrow, linear features as habitat corridors has been hotly debated. Here, we argue that...

  14. Using stochastic models to incorporate spatial and temporal variability [Exercise 14

    Treesearch

    Carolyn Hull Sieg; Rudy M. King; Fred Van Dyke

    2003-01-01

    To this point, our analysis of population processes and viability in the western prairie fringed orchid has used only deterministic models. In this exercise, we conduct a similar analysis, using a stochastic model instead. This distinction is of great importance to population biology in general and to conservation biology in particular. In deterministic models,...

  15. Using a full annual cycle model to evaluate long-term population viability of the conservation-reliant Kirtland's warbler after successful recovery

    Treesearch

    Donald J. Brown; Christine A. Ribic; Deahn M. Donner; Mark D. Nelson; Carol I. Bocetti; Christie M. Deloria-Sheffield; Des Thompson

    2017-01-01

    Long-term management planning for conservation-reliant migratory songbirds is particularly challenging because habitat quality in different stages and geographic locations of the annual cycle can have direct and carry-over effects that influence the population dynamics. The Neotropical migratory songbird Kirtland's warbler Setophaga kirtlandii...

  16. The application of genetic indicators in wild populations: Potential and pitfalls for genetic monitoring [Chapter 15

    Treesearch

    Jennifer Pierson; Gordon Luikart; Michael Schwartz

    2015-01-01

    The genetic aspects of biodiversity and conservation have been long recognised as important to the viability of populations and evolutionary potential of species (Lande 1988). Yet incorporating genetic considerations into conservation, management, and decision making has lagged behind this recognition (Mace et al. 2003; Laikre et al. 2010). Gene-level (genetic...

  17. Modeling the effects of trophy selection and environmental disturbance on a simulated population of African lions.

    PubMed

    Whitman, Karyl L; Starfield, Anthony M; Quadling, Henley; Packer, Craig

    2007-06-01

    Tanzania is a premier destination for trophy hunting of African lions (Panthera leo) and is home to the most extensive long-term study of unhunted lions. Thus, it provides a unique opportunity to apply data from a long-term field study to a conservation dilemma: How can a trophy-hunted species whose reproductive success is closely tied to social stability be harvested sustainably? We used an individually based, spatially explicit, stochastic model, parameterized with nearly 40 years of behavioral and demographic data on lions in the Serengeti, to examine the separate effects of trophy selection and environmental disturbance on the viability of a simulated lion population in response to annual harvesting. Female population size was sensitive to the harvesting of young males (> or = 3 years), whereas hunting represented a relatively trivial threat to population viability when the harvest was restricted to mature males (> or = 6 years). Overall model performance was robust to environmental disturbance and to errors in age assessment based on nose coloration as an index used to age potential trophies. Introducing an environmental disturbance did not eliminate the capacity to maintain a viable breeding population when harvesting only older males, and initially depleted populations recovered within 15-25 years after the disturbance to levels comparable to hunted populations that did not experience a catastrophic event. These results are consistent with empirical observations of lion resilience to environmental stochasticity.

  18. Variables affecting the financial viability of your practice.

    PubMed

    Binderman, J

    2001-01-01

    Financial viability of physician practices depends upon multiple variables: capacity of the practice, the mix of managed care contracts, cost of care, make-up of patient population, patient visit rates, and utilization of alternate methods of patient interaction. This article presents an introduction to these ideas; the second in this series will expand on the groundwork with a case scenario for a typical family practice. The articles present basic financial information in a practical manner, utilizing a series of worksheets to determine how these various items affect the bottom line.

  19. Demography of Northern Spotted Owls in southwestern Oregon

    USGS Publications Warehouse

    Zabel, Cynthia J.; Salmons, Susan E.; Forsman, Eric D.; DeStefano, Stephen; Raphael, Martin G.; Gutierrez, R.J.

    1996-01-01

    Northern Spotted Owls (Strix occidentalis caurina) are associated with lower elevation, commercially valuable, late-successional coniferous forests in the Pacific Northwest. Meta-analyses of demographic parameters indicate that Northern Spotted Owl populations are declining throughout their range (Anderson and Burnham 1992, Burnham et al. this volume). Recent research has attempted to determine whether management activities have affected the viability of Spotted Owl populations, and results have led to development of conservation plans for the species (Dawson et al. 1987, Thomas et al. 1990, Murphy and Noon 1992, USDI 1992, Thomas et al. 1993b).In the Recovery Plan for the Northern Spotted Owl (USDI 1992b) threats to the species were identified as small population sizes, declining populations, limited amounts of habitat, continued loss and fragmentation of habitat, geographically isolated populations, and predation and competition from other avian species. Weather and fire are natural processes that also may affect reproductive success of Spotted Owls. Weather may be a factor in the high annual variability in fecundity of Spotted Owls, as has been suggested for other predatory bird species (Newton, 1979, 1986). However, these factors have not been addressed in previous studies of Spotted Owls.Our objectives were to estimate survival, fecundity, and annual rates of population change (l) for resident, territorial female Spotted Owls at two study areas in the coastal mountains of southwestern Oregon. We tested if the amount of rainfall was correlated with reproduction of Spotted Owls. While surveying for Spotted Owls, we documented the increased presence of Barred Owls (Strix varia), a potential competitor of Spotted Owls.

  20. Effects of selected polybrominated diphenyl ether flame retardants on lake trout (Salvelinus namaycush) thymocyte viability, apoptosis, and necrosis

    USGS Publications Warehouse

    Birchmeier, Kelly L.; Smith, Kimberly A.; Passino-Reader, Dora R.; Sweet, Leonard I.; Chernyak, Sergei M.; Adams, Jean V.; Omann, Geneva M.

    2005-01-01

    Polybrominated diphenyl ether (PBDE) flame-retardants have been identified as an emergent contaminants issue in many parts of the world. In vitro analyses were conducted to test the hypothesis that selected PBDEs congeners affect viability, apoptosis, and necrosis of thymocytes from laboratory-reared lake trout (Salvelinus namaycush). At current environmental levels (<1 mg/L), effects of the tested PBDEs on thymocytes were negligible. However, at 100 mg/L, major effects were seen for congener brominated diphenyl ether 47 (BDE-47) and minor effects were seen for congener BDE-99.

  1. A framework for developing objective and measurable recovery criteria for threatened and endangered species.

    PubMed

    Himes Boor, Gina K

    2014-02-01

    For species listed under the U.S. Endangered Species Act (ESA), the U.S. Fish and Wildlife Service and National Marine Fisheries Service are tasked with writing recovery plans that include "objective, measurable criteria" that define when a species is no longer at risk of extinction, but neither the act itself nor agency guidelines provide an explicit definition of objective, measurable criteria. Past reviews of recovery plans, including one published in 2012, show that many criteria lack quantitative metrics with clear biological rationale and are not meeting the measureable and objective mandate. I reviewed how objective, measureable criteria have been defined implicitly and explicitly in peer-reviewed literature, the ESA, other U.S. statutes, and legal decisions. Based on a synthesis of these sources, I propose the following 6 standards be used as minimum requirements for objective, measurable criteria: contain a quantitative threshold with calculable units, stipulate a timeframe over which they must be met, explicitly define the spatial extent or population to which they apply, specify a sampling procedure that includes sample size, specify a statistical significance level, and include justification by providing scientific evidence that the criteria define a species whose extinction risk has been reduced to the desired level. To meet these 6 standards, I suggest that recovery plans be explicitly guided by and organized around a population viability modeling framework even if data or agency resources are too limited to complete a viability model. When data and resources are available, recovery criteria can be developed from the population viability model results, but when data and resources are insufficient for model implementation, extinction risk thresholds can be used as criteria. A recovery-planning approach centered on viability modeling will also yield appropriately focused data-acquisition and monitoring plans and will facilitate a seamless transition from recovery planning to delisting. © 2013 Society for Conservation Biology.

  2. Parietaria judaica flowering phenology, pollen production, viability and atmospheric circulation, and expansive ability in the urban environment: impacts of environmental factors

    NASA Astrophysics Data System (ADS)

    Fotiou, Christina; Damialis, Athanasios; Krigas, Nikolaos; Halley, John M.; Vokou, Despoina

    2011-01-01

    Parietaria judaica (Urticaceae) grows abundantly in urban areas of the Mediterranean region. Its pollen is a major allergy source. We studied the species' distribution and abundance in and around Thessaloniki (Greece), pollen production and pollen season. We also examined how urban pollution affects pollen viability. Our ultimate goal was to obtain an estimate of the species' performance and ability to expand under different environmental conditions related to climate change. We mapped P. judaica and the other Urticaceae species. In a north- and a south-facing population, we recorded the progress of P. judaica flowering and estimated the pollen content per flower, shoot and surface unit. We concurrently assessed atmospheric circulation of Urticaceae pollen. We estimated P. judaica pollen viability and Cu, Pb and Zn concentrations in plants collected from sites differing in traffic intensity. P. judaica is the most abundant Urticaceae species in the area; its occurrence has increased dramatically over the last 100 years. Production of flowers is intense in spring and autumn. Flowering started 12 days earlier in the south-facing population in spring, and 3 days later in autumn. Pollen production was higher in spring and in the south-facing population. Flower and pollen production were positively correlated with the size of the plant and the flower, respectively. Copper and lead concentrations in plants were positively correlated with pollen viability, which was higher for plants collected from high-traffic sites. P. judaica has a high phenotypic plasticity; this is a feature that promotes success of expansive and invasive species. It is also well adapted to warm and polluted urban environments. The climatic change forecast for the Mediterranean region could provoke earlier, longer, and more pronounced flowering and, consequently, more P. judaica pollen in the air. In return, this would result in increased severity of Parietaria pollinosis.

  3. Non-invasive metabolomic profiling of embryo culture media and morphology grading to predict implantation outcome in frozen-thawed embryo transfer cycles.

    PubMed

    Li, Xiong; Xu, Yan; Fu, Jing; Zhang, Wen-Bi; Liu, Su-Ying; Sun, Xiao-Xi

    2015-11-01

    Assessment of embryo viability is a crucial component of in vitro fertilization and currently relies largely on embryo morphology and cleavage rate. Because morphological assessment remains highly subjective, it can be unreliable in predicting embryo viability. This study investigated the metabolomic profiling of embryo culture media using near-infrared (NIR) spectroscopy for predicting the implantation potential of human embryos in frozen-thawed embryo transfer (FET) cycles. Spent embryo culture media was collected on day 4 after thawed embryo transfer (n = 621) and analysed using NIR spectroscopy. Viability scores were calculated using a predictive multivariate algorithm of fresh embryos with known pregnancy outcomes. The mean viability indices of embryos resulting in clinical pregnancy following FET were significantly higher than those of non-implanted embryos and differed between the 0, 50, and 100 % implantation groups. Notably, the 0 % group index was significantly lower than the 100 % implantation group index (-0.787 ± 0.382 vs. 1.064 ± 0.331, P < 0.01). To predict implantation outcomes, we examined the area under the ROC curve (AUCROC), which was significantly higher for the viability than for the morphology score (0.94 vs. 0.55; P < 0.01); however, the AUCROCs for the composite and viability scores did not differ significantly (0.92 vs. 0.94; P > 0.05). NIR metabolomic profiling of thawed embryo culture media is independent of morphology and correlates with embryo implantation potential in FET cycles. The viability score alone or in conjunction with morphologic grading is a more objective marker for implantation outcome in FET cycles than morphology alone.

  4. Biomass viability: An experimental study and the development of an empirical mathematical model for submerged membrane bioreactor.

    PubMed

    Zuthi, M F R; Ngo, H H; Guo, W S; Nghiem, L D; Hai, F I; Xia, S Q; Zhang, Z Q; Li, J X

    2015-08-01

    This study investigates the influence of key biomass parameters on specific oxygen uptake rate (SOUR) in a sponge submerged membrane bioreactor (SSMBR) to develop mathematical models of biomass viability. Extra-cellular polymeric substances (EPS) were considered as a lumped parameter of bound EPS (bEPS) and soluble microbial products (SMP). Statistical analyses of experimental results indicate that the bEPS, SMP, mixed liquor suspended solids and volatile suspended solids (MLSS and MLVSS) have functional relationships with SOUR and their relative influence on SOUR was in the order of EPS>bEPS>SMP>MLVSS/MLSS. Based on correlations among biomass parameters and SOUR, two independent empirical models of biomass viability were developed. The models were validated using results of the SSMBR. However, further validation of the models for different operating conditions is suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The cybernetics of viability: an overview

    NASA Astrophysics Data System (ADS)

    Nechansky, Helmut

    2011-10-01

    A three-level approach to viability is developed, considering (1) living systems, (2) a niche, understood as the area within the reach of their actions, and (3) an environment. A systematic analysis of the interrelations between these levels shows that living systems emerge with matter/energy processing systems. These can add controller structures when producing excess energy. A three-sensor controller structure enables a living system to deal with unfavourable and scarce environments. Further evolution of these controller structures offers improved ways to act on niches. Maintaining niches in scarce environments can require technology or economy. So social systems emerge, which are understood as aggregates of living systems. Basic patterns of interactions within social systems are analysed. So the introduction of the notion of the niche into the discussion of viability allows us to explain phenomena ranging from properties of single living systems to societal organization.

  6. Integrated analysis for population estimation, management impact evaluation, and decision-making for a declining species

    USGS Publications Warehouse

    Crawford, Brian A.; Moore, Clinton; Norton, Terry M.; Maerz, John C.

    2018-01-01

    A challenge for making conservation decisions is predicting how wildlife populations respond to multiple, concurrent threats and potential management strategies, usually under substantial uncertainty. Integrated modeling approaches can improve estimation of demographic rates necessary for making predictions, even for rare or cryptic species with sparse data, but their use in management applications is limited. We developed integrated models for a population of diamondback terrapins (Malaclemys terrapin) impacted by road-associated threats to (i) jointly estimate demographic rates from two mark-recapture datasets, while directly estimating road mortality and the impact of management actions deployed during the study; and (ii) project the population using population viability analysis under simulated management strategies to inform decision-making. Without management, population extirpation was nearly certain due to demographic impacts of road mortality, predators, and vegetation. Installation of novel flashing signage increased survival of terrapins that crossed roads by 30%. Signage, along with small roadside barriers installed during the study, increased population persistence probability, but the population was still predicted to decline. Management strategies that included actions targeting multiple threats and demographic rates resulted in the highest persistence probability, and roadside barriers, which increased adult survival, were predicted to increase persistence more than other actions. Our results support earlier findings showing mitigation of multiple threats is likely required to increase the viability of declining populations. Our approach illustrates how integrated models may be adapted to use limited data efficiently, represent system complexity, evaluate impacts of threats and management actions, and provide decision-relevant information for conservation of at-risk populations.

  7. Population viability analysis for endangered Roanoke logperch

    USGS Publications Warehouse

    Roberts, James H.; Angermeier, Paul; Anderson, Gregory B.

    2016-01-01

    A common strategy for recovering endangered species is ensuring that populations exceed the minimum viable population size (MVP), a demographic benchmark that theoretically ensures low long-term extinction risk. One method of establishing MVP is population viability analysis, a modeling technique that simulates population trajectories and forecasts extinction risk based on a series of biological, environmental, and management assumptions. Such models also help identify key uncertainties that have a large influence on extinction risk. We used stochastic count-based simulation models to explore extinction risk, MVP, and the possible benefits of alternative management strategies in populations of Roanoke logperch Percina rex, an endangered stream fish. Estimates of extinction risk were sensitive to the assumed population growth rate and model type, carrying capacity, and catastrophe regime (frequency and severity of anthropogenic fish kills), whereas demographic augmentation did little to reduce extinction risk. Under density-dependent growth, the estimated MVP for Roanoke logperch ranged from 200 to 4200 individuals, depending on the assumed severity of catastrophes. Thus, depending on the MVP threshold, anywhere from two to all five of the logperch populations we assessed were projected to be viable. Despite this uncertainty, these results help identify populations with the greatest relative extinction risk, as well as management strategies that might reduce this risk the most, such as increasing carrying capacity and reducing fish kills. Better estimates of population growth parameters and catastrophe regimes would facilitate the refinement of MVP and extinction-risk estimates, and they should be a high priority for future research on Roanoke logperch and other imperiled stream-fish species.

  8. Allium White Rot Suppression with Composts and Trichoderma viride in Relation to Sclerotia Viability.

    PubMed

    Coventry, E; Noble, R; Mead, A; Marin, F R; Perez, J A; Whipps, J M

    2006-09-01

    ABSTRACT Allium white rot (AWR) is a serious disease of Allium spp. caused by the sclerotium-forming fungus Sclerotium cepivorum. This work has examined the effects of onion waste compost (OWC) and spent mushroom compost (SMC), with and without Trichoderma viride S17A, on sclerotia viability and AWR in glasshouse and field experiments. Incorporation of OWC into soil reduced the viability of sclerotia and the incidence of AWR on onion plants in glasshouse pot bioassays, whereas SMC or T. viride S17A only reduced incidence of AWR. In two field trials, OWC reduced sclerotia viability and was as effective in reducing AWR as a fungicide (Folicur, a.i. tebuconazole). Field application of SMC had no effect on sclerotia viability and did not control AWR. However, the addition of T. viride S17A to SMC facilitated proliferation of T. viride S17A in the soil and increased the healthy onion bulb yield. The results indicate two mechanisms for the suppression of AWR: (i) reduction in the soil population of viable sclerotia, which may be due to volatile sulfur compounds detected in OWC but absent in SMC, and (ii) prevention of infection of onion plants from sclerotia following amendment of soil with OWC, SMC, or T. viride S17A.

  9. Life history mediates mate limitation and population viability in self-incompatible plant species.

    PubMed

    Thrall, Peter H; Encinas-Viso, Francisco; Hoebee, Susan E; Young, Andrew G

    2014-03-01

    Genetically controlled self-incompatibility systems represent links between genetic diversity and plant demography with the potential to directly impact on population dynamics. We use an individual-based spatial simulation to investigate the demographic and genetic consequences of different self-incompatibility systems for plants that vary in reproductive capacity and lifespan. The results support the idea that, in the absence of inbreeding effects, populations of self-incompatible species will often be smaller and less viable than self-compatible species, particularly for shorter-lived organisms or where potential fecundity is low. At high ovule production and low mortality, self-incompatible and self-compatible species are demographically similar, thus self-incompatibility does not automatically lead to reduced mate availability or population viability. Overall, sporophytic codominant self-incompatibility was more limiting than gametophytic or sporophytic dominant systems, which generally behaved in a similar fashion. Under a narrow range of conditions, the sporophytic dominant system maintained marginally greater mate availability owing to the production of S locus homozygotes. While self-incompatibility reduces population size and persistence for a broad range of conditions, the actual number of S alleles, beyond that required for reproduction, is important for only a subset of life histories. For these situations, results suggest that addition of new S alleles may result in significant demographic rescue.

  10. Life history mediates mate limitation and population viability in self-incompatible plant species

    PubMed Central

    Thrall, Peter H; Encinas-Viso, Francisco; Hoebee, Susan E; Young, Andrew G

    2014-01-01

    Genetically controlled self-incompatibility systems represent links between genetic diversity and plant demography with the potential to directly impact on population dynamics. We use an individual-based spatial simulation to investigate the demographic and genetic consequences of different self-incompatibility systems for plants that vary in reproductive capacity and lifespan. The results support the idea that, in the absence of inbreeding effects, populations of self-incompatible species will often be smaller and less viable than self-compatible species, particularly for shorter-lived organisms or where potential fecundity is low. At high ovule production and low mortality, self-incompatible and self-compatible species are demographically similar, thus self-incompatibility does not automatically lead to reduced mate availability or population viability. Overall, sporophytic codominant self-incompatibility was more limiting than gametophytic or sporophytic dominant systems, which generally behaved in a similar fashion. Under a narrow range of conditions, the sporophytic dominant system maintained marginally greater mate availability owing to the production of S locus homozygotes. While self-incompatibility reduces population size and persistence for a broad range of conditions, the actual number of S alleles, beyond that required for reproduction, is important for only a subset of life histories. For these situations, results suggest that addition of new S alleles may result in significant demographic rescue. PMID:24683451

  11. DISSECTING HABITAT CONNECTIVITY

    EPA Science Inventory

    abstract

    Connectivity is increasingly recognized as an important element of a successful reserve design. Connectivity matters in reserve design to the extent that it promotes or hinders the viability of target populations. While conceptually straightforward, connectivity i...

  12. Wildlife adaptations and management in eastside interior forests with mixed severity fire regimes.

    Treesearch

    John F. Lehmkuhl

    2004-01-01

    Little is known about the effects of mixed severity fire on wildlife, but a population viability analysis framework that considers habitat quantity and quality, species life history, and species population structure can be used to analyze management options. Landscape-scale habitat patterns under a mixed severity fire regime are a mosaic of compositional and structural...

  13. Connecting endangered brown bear subpopulations in the Cantabrian Range (north-western Spain)

    Treesearch

    M. C. Mateo-Sanchez; Samuel Cushman; S. Saura

    2014-01-01

    The viability of many species depends on functional connectivity of their populations through dispersal across broad landscapes. This is particularly the case for the endangered brown bear in north-western Spain, with a total population of about 200 individuals in two subpopulations that are separated by a wide gap with low permeability. Our goal in this paper...

  14. Assessing temporal genetic variation in a cougar population: Influence of harvest and neighboring populations

    Treesearch

    Rebeca L. Juarez; Michael K. Schwartz; Kristine L. Pilgrim; Daniel J. Thompson; Stephanie A. Tucker; Joshua B. Smith; Jonathan A. Jenks

    2016-01-01

    The geography of the Black Hills region of South Dakota and Wyoming may limit connectivity for many species. For species with large energetic demands and large home ranges or species at low densities this can create viability concerns. Carnivores in this region, such as cougars (Puma concolor), have the additive effect of natural and human-induced mortality;...

  15. Grandparentage assignments identify unexpected adfluvial life history tactic contributing offspring to a reintroduced population.

    PubMed

    Sard, Nicholas M; Jacobson, Dave P; Banks, Michael A

    2016-10-01

    Diversity in life history tactics contributes to the persistence of a population because it helps to protect against stochastic environments by varying individuals in space and time. However, some life history tactics may not be accounted for when assessing the demographic viability of a population. One important factor in demographic viability assessments is cohort replacement rate (CRR), which is defined as the number of future adults produced by an adult. We assessed if precocial resident males (

  16. DNA profiling, telomere analysis and antioxidant properties as tools for monitoring ex situ seed longevity

    PubMed Central

    Donà, M.; Balestrazzi, A.; Mondoni, A.; Rossi, G.; Ventura, L.; Buttafava, A.; Macovei, A.; Sabatini, M. E.; Valassi, A.; Carbonera, D.

    2013-01-01

    Background and Aims The germination test currently represents the most used method to assess seed viability in germplasm banks, despite the difficulties caused by the occurrence of seed dormancy. Furthermore, seed longevity can vary considerably across species and populations from different environments, and studies related to the eco-physiological processes underlying such variations are still limited in their depth. The aim of the present work was the identification of reliable molecular markers that might help in monitoring seed deterioration. Methods Dry seeds were subjected to artificial ageing and collected at different time points for molecular/biochemical analyses. DNA damage was measured using the RAPD (random amplified polymorphic DNA) approach while the seed antioxidant profile was obtained using both the DPPH (1,1-diphenyl, 2-picrylhydrazyl) assay and the Folin–Ciocalteu reagent method. Electron paramagnetic resonance (EPR) provided profiles of free radicals. Quantitative real-time polymerase chain reaction (QRT-PCR) was used to assess the expression profiles of the antioxidant genes MT2 (type 2 metallothionein) and SOD (superoxide dismutase). A modified QRT-PCR protocol was used to determine telomere length. Key Results The RAPD profiles highlighted different capacities of the two Silene species to overcome DNA damage induced by artificial ageing. The antioxidant profiles of dry and rehydrated seeds revealed that the high-altitude taxon Silene acaulis was characterized by a lower antioxidant specific activity. Significant upregulation of the MT2 and SOD genes was observed only in the rehydrated seeds of the low-altitude species. Rehydration resulted in telomere lengthening in both Silene species. Conclusions Different seed viability markers have been selected for plant species showing inherent variation of seed longevity. RAPD analysis, quantification of redox activity of non-enzymatic antioxidant compounds and gene expression profiling provide deeper insights to study seed viability during storage. Telomere lengthening is a promising tool to discriminate between short- and long-lived species. PMID:23532044

  17. Innovative Microcapsules for Pancreatic β-Cells Harvested from Mature Double-Transgenic Mice: Cell Imaging, Viability, Induced Glucose-Stimulated Insulin Measurements and Proinflammatory Cytokines Analysis.

    PubMed

    Mooranian, Armin; Tackechi, Ryu; Jamieson, Emma; Morahan, Grant; Al-Salami, Hani

    2017-06-01

    Recently we demonstrated that microencapsulation of a murine pancreatic β-cell line using an alginate-ursodeoxycholic acid (UDCA) matrix produced microcapsules with good stability and cell viability. In this study, we investigated if translation of this formulation to microencapsulation of primary β-cells harvested from mature double-transgenic healthy mice would also generate stable microcapsules with good cell viability. Islets of Langerhans were isolated from Ngn3-GFP/RIP-DsRED mice by intraductal collagenase P digestion and density gradient centrifugation, dissociated into single cells and the β-cell population purified by Fluorescence Activated Cell Sorting. β-cells were microencapsulated using either alginate-poly-l-ornithine (F1; control) or alginate-poly-l-ornithine-UDCA (F2; test) formulations. Microcapsules were microscopically examined and microencapsulated cells were analyzed for viability, insulin and cytokine release, 2 days post-microencapsulation. Microcapsules showed good uniformity and morphological characteristics and even cell distribution within microcapsules with or without UDCA. Two days post microencapsulation cell viability, mitochondrial ATP and insulin production were shown to be optimized in the presence of UDCA whilst production of the proinflammatory cytokine IL-1β was reduced. Contradictory to our previous studies, UDCA did not reduce production of any other pro-inflammatory biomarkers. These results suggest that UDCA incorporation improves microcapsules' physical and morphological characteristics and improves the viability and function of encapsulated mature primary pancreatic β-cells.

  18. Genetic structure of winter populations of the endangered Indiana bat (Myotis sodalis) prior to the white nose syndrome epidemic: implications for the risk of disease spread

    Treesearch

    Maarten J. Vonhof; Sybill K. Amelon; Robert R. Currie; Gary F. McCracken

    2016-01-01

    The spread of white nose syndrome raises serious concerns about the long-term viability of affected bat species. Here we examine the geographic distribution of genetic variation, levels of population connectivity that may influence the spatial spread of WNS, and the likelihood that recent population declines in regions affected by WNS have led to the loss of unique...

  19. Using population viability criteria to assess strategies to minimize disease threats for an endangered carnivore.

    PubMed

    Doak, Daniel F; Bakker, Victoria J; Vickers, Winston

    2013-04-01

    Outbreaks of infectious disease represent serious threats to the viability of many vertebrate populations, but few studies have included quantitative evaluations of alternative approaches to the management of disease. The most prevalent management approach is monitoring for and rapid response to an epizootic. An alternative is vaccination of a subset of the free-living population (i.e., a "vaccinated core") such that some individuals are partially or fully immune in the event of an epizootic. We developed a simulation model describing epizootic dynamics, which we then embedded in a demographic simulation to assess these alternative approaches to managing rabies epizootics in the island fox (Urocyon littoralis), a species composed of only 6 small populations on the California Channel Islands. Although the monitor and respond approach was superior to the vaccinated-core approach for some transmission models and parameter values, this type of reactive management did not protect the population from rabies under many disease-transmission assumptions. In contrast, a logistically feasible program of prophylactic vaccination for part of the wild population yielded low extinction probabilities across all likely disease-transmission scenarios, even with recurrent disease introductions. Our use of a single metric of successful management-probability of extreme endangerment (i.e., quasi extinction)-to compare very different management approaches allowed an objective assessment of alternative strategies for controlling the threats posed by infectious disease outbreaks. © 2013 Society for Conservation Biology.

  20. Effect of insecticide resistance on development, longevity and reproduction of field or laboratory selected Aedes aegypti populations.

    PubMed

    Martins, Ademir Jesus; Ribeiro, Camila Dutra e Mello; Bellinato, Diogo Fernandes; Peixoto, Alexandre Afranio; Valle, Denise; Lima, José Bento Pereira

    2012-01-01

    Aedes aegypti dispersion is the major reason for the increase in dengue transmission in South America. In Brazil, control of this mosquito strongly relies on the use of pyrethroids and organophosphates against adults and larvae, respectively. In consequence, many Ae. aegypti field populations are resistant to these compounds. Resistance has a significant adaptive value in the presence of insecticide treatment. However some selected mechanisms can influence important biological processes, leading to a high fitness cost in the absence of insecticide pressure. We investigated the dynamics of insecticide resistance and its potential fitness cost in five field populations and in a lineage selected for deltamethrin resistance in the laboratory, for nine generations. For all populations the life-trait parameters investigated were larval development, sex ratio, adult longevity, relative amount of ingested blood, rate of ovipositing females, size of egglaying and eggs viability. In the five natural populations, the effects on the life-trait parameters were discrete but directly proportional to resistance level. In addition, several viability parameters were strongly affected in the laboratory selected population compared to its unselected control. Our results suggest that mechanisms selected for organophosphate and pyrethroid resistance caused the accumulation of alleles with negative effects on different life-traits and corroborate the hypothesis that insecticide resistance is associated with a high fitness cost.

  1. Effect of Insecticide Resistance on Development, Longevity and Reproduction of Field or Laboratory Selected Aedes aegypti Populations

    PubMed Central

    Bellinato, Diogo Fernandes; Peixoto, Alexandre Afranio; Valle, Denise; Lima, José Bento Pereira

    2012-01-01

    Aedes aegypti dispersion is the major reason for the increase in dengue transmission in South America. In Brazil, control of this mosquito strongly relies on the use of pyrethroids and organophosphates against adults and larvae, respectively. In consequence, many Ae. aegypti field populations are resistant to these compounds. Resistance has a significant adaptive value in the presence of insecticide treatment. However some selected mechanisms can influence important biological processes, leading to a high fitness cost in the absence of insecticide pressure. We investigated the dynamics of insecticide resistance and its potential fitness cost in five field populations and in a lineage selected for deltamethrin resistance in the laboratory, for nine generations. For all populations the life-trait parameters investigated were larval development, sex ratio, adult longevity, relative amount of ingested blood, rate of ovipositing females, size of egglaying and eggs viability. In the five natural populations, the effects on the life-trait parameters were discrete but directly proportional to resistance level. In addition, several viability parameters were strongly affected in the laboratory selected population compared to its unselected control. Our results suggest that mechanisms selected for organophosphate and pyrethroid resistance caused the accumulation of alleles with negative effects on different life-traits and corroborate the hypothesis that insecticide resistance is associated with a high fitness cost. PMID:22431967

  2. Population dynamics and angler exploitation of the unique muskellunge population in Shoepack Lake, Voyageurs National Park, Minnesota

    USGS Publications Warehouse

    Frohnauer, N.K.; Pierce, C.L.; Kallemeyn, L.W.

    2007-01-01

    A unique population of muskellunge Esox masquinongy inhabits Shoepack Lake in Voyageurs National Park, Minnesota. Little is known about its status, dynamics, and angler exploitation, and there is concern for the long-term viability of this population. We used intensive sampling and mark-recapture methods to quantify abundance, survival, growth, condition, age at maturity and fecundity and angler surveys to quantify angler pressure, catch rates, and exploitation. During our study, heavy rain washed out a dam constructed by beavers Castor canadensis which regulates the water level at the lake outlet, resulting in a nearly 50% reduction in surface area. We estimated a population size of 1,120 adult fish at the beginning of the study. No immediate reduction in population size was detected in response to the loss of lake area, although there was a gradual, but significant, decline in population size over the 2-year study. Adults grew less than 50 mm per year, and relative weight (W r) averaged roughly 80. Anglers were successful in catching, on average, two fish during a full day of angling, but harvest was negligible. Shoepack Lake muskellunge exhibit much slower growth rates and lower condition, but much higher densities and angler catch per unit effort (CPUE), than other muskellunge populations. The unique nature, limited distribution, and location of this population in a national park require special consideration for management. The results of this study provide the basis for assessing the long-term viability of the Shoepack Lake muskellunge population through simulations of long-term population dynamics and genetically effective population size. ?? Copyright by the American Fisheries Society 2007.

  3. Improving viability of cryopreserved honey bee (Apis mellifera L.) sperm with selected diluents, cryoprotectants, and semen dilution ratios.

    PubMed

    Taylor, M A; Guzmán-Novoa, E; Morfin, N; Buhr, M M

    2009-07-15

    This is the first study where the systematic application of theories and techniques used in mammalian sperm cryopreservation have been applied to honey bee (Apis mellifera L.) semen as a means to improve postthaw viability of cryopreserved sperm. Six newly designed diluents, three cryoprotectants (dimethyl sulfoxide, DMA, glycerol), and five diluent:semen ratios (1:1, 3:1, 6:1, 9:1, and 12:1) were tested. In addition, the sperm freezing tolerance of three honey bee strains was evaluated. Specific protocols were designed to control semen freezing and thawing rates. Sperm motility was assessed visually, whereas sperm viability was assessed using SYBR-14 and propidium iodide fluorescent stains. Diluent treatments did not affect fresh (nonfrozen) sperm viability yet affected fresh sperm motility (P<0.05). Based on these assessments, two diluents were chosen and used in all successive cryopreservation experiments. Using the selected diluents, semen was collected at various diluent:semen ratios, along with one of the three cryoprotectants. Semen collected at high dilution ratios, using a hypotonic antioxidant diluent containing catalase, in combination with dimethyl sulfoxide, provided higher postthaw sperm viability than that of all other combinations tested (68.3+/-5.4%; P<0.05). Using this combination of dilution ratio, diluent, and cryoprotectant, there were no differences among honey bee strains for postthaw sperm viability (P=0.805). Nevertheless, these new semen dilution and freezing methods improved postthaw viability of sperm to levels that could theoretically sustain worker populations in colonies, thus providing potential for further optimization of cryopreservation techniques for the genetic preservation and improvement of honey bee genotypes.

  4. Hierarchical spatial genetic structure in a distinct population segment of greater sage-grouse

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Casazza, Michael L.; Fike, Jennifer A.; Coates, Peter S.

    2014-01-01

    Greater sage-grouse (Centrocercus urophasianus) within the Bi-State Management Zone (area along the border between Nevada and California) are geographically isolated on the southwestern edge of the species’ range. Previous research demonstrated that this population is genetically unique, with a high proportion of unique mitochondrial DNA (mtDNA) haplotypes and with significant differences in microsatellite allele frequencies compared to populations across the species’ range. As a result, this population was considered a distinct population segment (DPS) and was recently proposed for listing as threatened under the U.S. Endangered Species Act. A more comprehensive understanding of the boundaries of this genetically unique population (where the Bi-State population begins) and an examination of genetic structure within the Bi-State is needed to help guide effective management decisions. We collected DNA from eight sampling locales within the Bi-State (N = 181) and compared those samples to previously collected DNA from the two most proximal populations outside of the Bi-State DPS, generating mtDNA sequence data and amplifying 15 nuclear microsatellites. Both mtDNA and microsatellite analyses support the idea that the Bi-State DPS represents a genetically unique population, which has likely been separated for thousands of years. Seven mtDNA haplotypes were found exclusively in the Bi-State population and represented 73 % of individuals, while three haplotypes were shared with neighboring populations. In the microsatellite analyses both STRUCTURE and FCA separate the Bi-State from the neighboring populations. We also found genetic structure within the Bi-State as both types of data revealed differences between the northern and southern part of the Bi-State and there was evidence of isolation-by-distance. STRUCTURE revealed three subpopulations within the Bi-State consisting of the northern Pine Nut Mountains (PNa), mid Bi-State, and White Mountains (WM) following a north–south gradient. This genetic subdivision within the Bi-State is likely the result of habitat loss and fragmentation that has been exacerbated by recent human activities and the encroachment of singleleaf pinyon (Pinus monophylla) and juniper (Juniperus spp.) trees. While genetic concerns may be only one of many priorities for the conservation and management of the Bi-State greater sage-grouse, we believe that they warrant attention along with other issues (e.g., quality of sagebrush habitat, preventing future loss of habitat). Management actions that promote genetic connectivity, especially with respect to WM and PNa, may be critical to the long-term viability of the Bi-State DPS.

  5. CDMetaPOP: An individual-based, eco-evolutionary model for spatially explicit simulation of landscape demogenetics

    USGS Publications Warehouse

    Landguth, Erin L; Bearlin, Andrew; Day, Casey; Dunham, Jason B.

    2016-01-01

    1. Combining landscape demographic and genetics models offers powerful methods for addressing questions for eco-evolutionary applications.2. Using two illustrative examples, we present Cost–Distance Meta-POPulation, a program to simulate changes in neutral and/or selection-driven genotypes through time as a function of individual-based movement, complex spatial population dynamics, and multiple and changing landscape drivers.3. Cost–Distance Meta-POPulation provides a novel tool for questions in landscape genetics by incorporating population viability analysis, while linking directly to conservation applications.

  6. Neurotoxicity of amphetamine derivatives is mediated by caspase pathway activation in rat cerebellar granule cells.

    PubMed

    Jiménez, Andrés; Jordà, Elvira G; Verdaguer, Ester; Pubill, David; Sureda, Francesc X; Canudas, Anna M; Escubedo, Elena; Camarasa, Jordi; Camins, Antoni; Pallàs, Mercè

    2004-04-15

    The neurotoxic action of the abuse drugs methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA) on cerebellar granule neurones (CGNs) culture was examined. Treatment for 48 h with METH or MDMA (1-5 mM) induced a higher decrease in viability than 24 h treatment. z.VAD.fmk (100 microM) but not MK-801 nor NBQX recovered control viability values. In both cases, cell death was characterised as apoptotic rather than necrotic by morphology cell observation. Apoptosis measured by flow cytometry indicated an increase in the hypodiploid population after 48 h treatment with METH and MDMA. Apoptosis was reverted by the presence of z.VAD.fmk (100 microM) but not by 10 microM MK-801 or NBQX. Similar results were obtained by analysing nuclear chromatine condensation. These results ruled out excitotoxic participation in amphetamine derivative-induced neurotoxicity in CGNs. Participation of radical oxygen species (ROS) was evaluated using alpha-tocopherol (1-15 microM) and cytometric studies. The co-treatment with 4 mM METH or MDMA for 48 h partially reverted neurotoxic action and apoptotic features, indicating ROS implication in CGNs death by amphetamine derivatives. Alteration of mitochondrial function induced cytochrome C (Cyt C) release after 48-h treatment with METH and MDMA (4 mM). There was also indication of caspase-3-like activation, measured by immunoanalysis and biochemically. Finally, neurodegenerative action caused by amphetamine derivatives may be prevented by using caspase inhibitors.

  7. Treatment of ovarian cancer by targeting the tumor stem cell-associated carbohydrate antigen, Sialyl-Thomsen-nouveau.

    PubMed

    Starbuck, Kristen; Al-Alem, Linah; Eavarone, David A; Hernandez, Silvia Fatima; Bellio, Chiara; Prendergast, Jillian M; Stein, Jenna; Dransfield, Daniel T; Zarrella, Bianca; Growdon, Whitfield B; Behrens, Jeff; Foster, Rosemary; Rueda, Bo R

    2018-05-01

    Recurrent ovarian cancer (OvCa) is thought to result in part from the inability to eliminate rare quiescent cancer stem cells (CSCs) that survive cytotoxic chemotherapy and drive tumor resurgence. The Sialyl-Thomsen-nouveau antigen (STn) is a carbohydrate moiety present on protein markers of CSCs in pancreatic, colon, and gastric malignancies. We have demonstrated that human OvCa cell lines contain varying levels of cells that independently express either STn or the ovarian CSC marker CD133. Here we determine co-expression of STn and CD133 in a subset of human OvCa cell lines. Analyses of colony and sphere forming capacity and of response to standard-of-care cytotoxic therapy suggest a subset of OvCa STn + cells display some CSC features. The effect of the anti-STn antibody-drug conjugates (ADCs) S3F-CL-MMAE and 2G12-2B2-CL-MMAE on OvCa cell viability in vitro and in vivo was also assessed. Treatment with S3F-CL-MMAE reduced the viability of two of three OvCa cell lines in vitro and exposure to either S3F-CL-MMAE or 2G12-2B2-CL-MMAE reduced OVCAR3-derived xenograft volume in vivo , depleting STn + tumor cells. In summary, STn + cells demonstrate some stem-like properties and specific therapeutic targeting of STn in ovarian tumors may be an effective clinical strategy to eliminate both STn + CSC and STn + non-CSC populations.

  8. Reproductive isolation and local adaptation quantified for a chromosome inversion in a malaria mosquito.

    PubMed

    Ayala, Diego; Guerrero, Rafael F; Kirkpatrick, Mark

    2013-04-01

    Chromosome inversions have long been thought to be involved in speciation and local adaptation. We have little quantitative information, however, about the effects that inversion polymorphisms have on reproductive isolation and viability. Here we provide the first estimates from any organism for the total amount of reproductive isolation associated with an inversion segregating in natural populations. We sampled chromosomes from 751 mosquitoes of the malaria vector Anopheles funestus along a 1421 km transect in Cameroon that traverses savannah, highland, and rainforest ecological zones. We then developed a series of population genetic models that account for selection, migration, and assortative mating, and fit the models to the data using likelihood. Results from the best-fit models suggest there is strong local adaptation, with relative viabilities of homozygotes ranging from 25% to 130% compared to heterozygotes. Viabilities vary qualitatively between regions: the inversion is underdominant in the savannah, whereas in the highlands it is overdominant. The inversion is also implicated in strong assortative mating. In the savannah, the two homozygote forms show 92% reproductive isolation, suggesting that this one inversion can generate most of the genetic barriers needed for speciation. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  9. DERIVATION OF WILDLIFE VALUES FOR MERCURY

    EPA Science Inventory

    A procedure has been developed to estimate surface water concentrations of toxicants that will protect the viability of wildlife populations associated with aquatic resources. This procedure was designed primarily to protect piscivorous birds and mammals from compounds that bioac...

  10. Adaptive population divergence and directional gene flow across steep elevational gradients in a climate‐sensitive mammal

    USGS Publications Warehouse

    Waterhouse, Matthew D.; Erb, Liesl P.; Beever, Erik; Russello, Michael A.

    2018-01-01

    The American pika is a thermally sensitive, alpine lagomorph species. Recent climate-associated population extirpations and genetic signatures of reduced population sizes range-wide indicate the viability of this species is sensitive to climate change. To test for potential adaptive responses to climate stress, we sampled pikas along two elevational gradients (each ~470 to 1640 m) and employed three outlier detection methods, BAYESCAN, LFMM, and BAYPASS, to scan for genotype-environment associations in samples genotyped at 30,763 SNP loci. We resolved 173 loci with robust evidence of natural selection detected by either two independent analyses or replicated in both transects. A BLASTN search of these outlier loci revealed several genes associated with metabolic function and oxygen transport, indicating natural selection from thermal stress and hypoxia. We also found evidence of directional gene flow primarily downslope from large high-elevation populations and reduced gene flow at outlier loci, a pattern suggesting potential impediments to the upward elevational movement of adaptive alleles in response to contemporary climate change. Finally, we documented evidence of reduced genetic diversity associated the south-facing transect and an increase in corticosterone stress levels associated with inbreeding. This study suggests the American pika is already undergoing climate-associated natural selection at multiple genomic regions. Further analysis is needed to determine if the rate of climate adaptation in the American pika and other thermally sensitive species will be able to keep pace with rapidly changing climate conditions.

  11. Effects of myxoma virus and rabbit hemorrhagic disease virus on the physiological condition of wild European rabbits: Is blood biochemistry a useful monitoring tool?

    PubMed

    Pacios-Palma, Isabel; Santoro, Simone; Bertó-Moran, Alejandro; Moreno, Sacramento; Rouco, Carlos

    2016-12-01

    Myxomatosis and rabbit hemorrhagic disease (RHD) are the major viral diseases that affect the wild European rabbit (Oryctolagus cuniculus). These diseases arrived in Europe within the last decades and have caused wild rabbit populations to decline dramatically. Both viruses are currently considered to be endemic in the Iberian Peninsula; periodic outbreaks that strongly impact wild populations regularly occur. Myxoma virus (MV) and rabbit hemorrhagic disease virus (RHDV) alter the physiology of infected rabbits, resulting in physical deterioration. Consequently, the persistence and viability of natural populations are affected. The main goal of our study was to determine if blood biochemistry is correlated with serostatus in wild European rabbits. We carried out seven live-trapping sessions in three wild rabbit populations over a two-year period. Blood samples were collected to measure anti-MV and anti-RHDV antibody concentrations and to measure biochemical parameters related to organ function, protein metabolism, and nutritional status. Overall, we found no significant relationships between rabbit serostatus and biochemistry. Our main result was that rabbits that were seropositive for both MV and RHDV had low gamma glutamyltransferase concentrations. Given the robustness of our analyses, the lack of significant relationships may indicate that the biochemical parameters measured are poor proxies for serostatus. Another explanation is that wild rabbits might be producing attenuated physiological responses to these viruses because the latter are now enzootic in the study area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Management and recovery options for Ural river beluga sturgeon.

    PubMed

    Doukakis, Phaedra; Babcock, Elizabeth A; Pikitch, Ellen K; Sharov, Alexei R; Baimukhanov, Mirgaly; Erbulekov, Sagiden; Bokova, Yelena; Nimatov, Akhat

    2010-06-01

    Management of declining fisheries of anadromous species sometimes relies heavily on supplementation of populations with captive breeding, despite evidence that captive breeding can have negative consequences and may not address the root cause of decline. The beluga sturgeon (Huso huso), a species threatened by the market for black caviar and reductions in habitat quality, is managed through harvest control and hatchery supplementation, with an emphasis on the latter. We used yield per recruit and elasticity analyses to evaluate the population status and current levels of fishing and to identify the life-history stages that are the best targets for conservation of beluga of the Ural River. Harvest rates in recent years were four to five times higher than rates that would sustain population abundance. Sustainable rates of fishing mortality are similar to those for other long-lived marine species such as sharks and mammals. Yield per recruit, which is maximized if fish are first harvested at age 31 years, would be greatly enhanced by raising minimum size limits or reducing illegal take of subadults. Improving the survival of subadult and adult females would increase population productivity by 10 times that achieved by improving fecundity and survival from egg to age 1 year (i.e., hatchery supplementation). These results suggest that reducing mortality of subadults and adult wild fish is a more effective conservation strategy than hatchery supplementation. Because genetics is not factored into hatchery management practices, supplementation may even reduce the viability of the beluga sturgeon.

  13. The Use of Surrogate Data in Demographic Population Viability Analysis: A Case Study of California Sea Lions

    PubMed Central

    2015-01-01

    Reliable data necessary to parameterize population models are seldom available for imperiled species. As an alternative, data from populations of the same species or from ecologically similar species have been used to construct models. In this study, we evaluated the use of demographic data collected at one California sea lion colony (Los Islotes) to predict the population dynamics of the same species from two other colonies (San Jorge and Granito) in the Gulf of California, Mexico, for which demographic data are lacking. To do so, we developed a stochastic demographic age-structured matrix model and conducted a population viability analysis for each colony. For the Los Islotes colony we used site-specific pup, juvenile, and adult survival probabilities, as well as birth rates for older females. For the other colonies, we used site-specific pup and juvenile survival probabilities, but used surrogate data from Los Islotes for adult survival probabilities and birth rates. We assessed these models by comparing simulated retrospective population trajectories to observed population trends based on count data. The projected population trajectories approximated the observed trends when surrogate data were used for one colony but failed to match for a second colony. Our results indicate that species-specific and even region-specific surrogate data may lead to erroneous conservation decisions. These results highlight the importance of using population-specific demographic data in assessing extinction risk. When vital rates are not available and immediate management actions must be taken, in particular for imperiled species, we recommend the use of surrogate data only when the populations appear to have similar population trends. PMID:26413746

  14. Broadening our approaches to studying dispersal in raptors

    USGS Publications Warehouse

    Morrison, J.L.; Wood, P.B.

    2009-01-01

    Dispersal is a behavioral process having consequences for individual fitness and population dynamics. Recent advances in technology have spawned new theoretical examinations and empirical studies of the dispersal process in birds, providing opportunities for examining how this information may be applied to studies of the dispersal process in raptors. Many raptors are the focus of conservation efforts; thus, reliable data on all aspects of a species' population dynamics, including dispersal distances, movement rates, and mortality rates of dispersers, are required for population viability analyses that are increasingly used to inform management. Here, we address emerging issues and novel approaches used in the study of avian dispersal, and provide suggestions to consider when developing and implementing studies of dispersal in raptors. Clarifying study objectives is essential for selection of an appropriate methodology and sample size needed to obtain accurate estimates of movement distances and rates. Identifying an appropriate study-area size will allow investigators to avoid underestimating population connectivity and important population parameters. Because nomadic individuals of some species use temporary settling areas or home ranges before breeding, identification of these areas is critical for conservation efforts focusing on habitats other than breeding sites. Study designs for investigating raptor dispersal also should include analysis of environmental and social factors influencing dispersal, to improve our understanding of condition-dependent dispersal strategies. Finally, we propose a terminology for use in describing the variety of movements associated with dispersal behavior in raptors, and we suggest this terminology could be used consistently to facilitate comparisons among studies. ?? 2009 The Raptor Research Foundation, Inc.

  15. Human Spaceflight Architecture Model (HSFAM) Data Dictionary

    NASA Technical Reports Server (NTRS)

    Shishko, Robert

    2016-01-01

    HSFAM is a data model based on the DoDAF 2.02 data model with some for purpose extensions. These extensions are designed to permit quantitative analyses regarding stakeholder concerns about technical feasibility, configuration and interface issues, and budgetary and/or economic viability.

  16. Population viability of Pediocactus brady (Cactaceae) in a changing climate

    USGS Publications Warehouse

    Shryock, Daniel F.; Esque, Todd C.; Huges, Lee

    2014-01-01

    • Conclusions: Pediocactus bradyi may be vulnerable to increases in the frequency and intensity of extreme climatic events, particularly drought. Biotic interactions resulting in low survival during drought years outweighed increased seedling establishment following heavy precipitation. Climatic extremes beyond historical ranges of variability may threaten rare desert species with low population growth rates and therefore high susceptibility to stochastic events.

  17. LABORATORY EVOLUTION OF LIFE-HISTORY TRAITS IN THE BEAN WEEVIL (ACANTHOSCELIDES OBTECTUS): THE EFFECTS OF DENSITY-DEPENDENT AND AGE-SPECIFIC SELECTION.

    PubMed

    Tucić, Nikola; Stojković, Oliver; Gliksman, Ivana; Milanović, Agana; Šešlija, Darka

    1997-12-01

    Four types of laboratory populations of the bean weevil (Acanthoscelides obtectus) have been developed to study the effects of density-dependent and age-specific selection. These populations have been selected at high (K) and low larval densities (r) as well as for reproduction early (Y) and late (O) in life. The results presented here suggest that the r- and K-populations (density-dependent selection regimes) have differentiated from each other with respect to the following life-history traits: egg-to-adult viability at high larval density (K > r), preadult developmental time (r > K), body weight (r > K), late fecundity (K > r), total realized fecundity (r > K), and longevity of males (r > K). It was also found that the following traits responded in statistically significant manner in populations subjected to different age-specific selection regimes: egg-to-adult viability (O > Y), body weight (O > Y), early fecundity (Y > O), late fecundity (O > Y), and longevity of females and males (O > Y). Although several life-history traits (viability, body weight, late fecundity) responded in similar manner to both density-dependent and age-specific selection regimes, it appears that underlying genetic and physiological mechanisms responsible for differentiation of the r/K and Y/O populations are different. We have also tested quantitative genetic basis of the bean weevil life-history traits in the populations experiencing density-dependent and age-specific selection. Among the traits traded-off within age-specific selection regimes, only early fecundity showed directional dominance, whereas late fecundity and longevity data indicated additive inheritance. In contrast to age-specific selecton regimes, three life-history traits (developmental time, body size, total fecundity) in the density-sependent regimes exhibited significant dominance effects. Lastly, we have tested the congruence between short-term and long-term effects of larval densities. The comparisons of the outcomes of the r/K selection regimes and those obtained from the low- and high-larval densities revealed that there is no congruence between the selection results and phenotypic plasticity for the analyzed life-history traits in the bean weevil. © 1997 The Society for the Study of Evolution.

  18. Evolution of the rate of biological aging using a phenotype based computational model.

    PubMed

    Kittas, Aristotelis

    2010-10-07

    In this work I introduce a simple model to study how natural selection acts upon aging, which focuses on the viability of each individual. It is able to reproduce the Gompertz law of mortality and can make predictions about the relation between the level of mutation rates (beneficial/deleterious/neutral), age at reproductive maturity and the degree of biological aging. With no mutations, a population with low age at reproductive maturity R stabilizes at higher density values, while with mutations it reaches its maximum density, because even for large pre-reproductive periods each individual evolves to survive to maturity. Species with very short pre-reproductive periods can only tolerate a small number of detrimental mutations. The probabilities of detrimental (P(d)) or beneficial (P(b)) mutations are demonstrated to greatly affect the process. High absolute values produce peaks in the viability of the population over time. Mutations combined with low selection pressure move the system towards weaker phenotypes. For low values in the ratio P(d)/P(b), the speed at which aging occurs is almost independent of R, while higher values favor significantly species with high R. The value of R is critical to whether the population survives or dies out. The aging rate is controlled by P(d) and P(b) and the amount of the viability of each individual is modified, with neutral mutations allowing the system more "room" to evolve. The process of aging in this simple model is revealed to be fairly complex, yielding a rich variety of results. 2010 Elsevier Ltd. All rights reserved.

  19. Prevalence and viability of group A rotavirus in dairy farm water sources.

    PubMed

    Castells, M; Schild, C; Caffarena, D; Bok, M; Giannitti, F; Armendano, J; Riet-Correa, F; Victoria, M; Parreño, V; Colina, R

    2018-03-01

    To analyse group A rotavirus (RVA) environmental contamination in waters used for calves' consumption and to assess viral viability in dairy farm water sources. We analysed 202 samples of water used for calves' consumption and RVA was detected by RT-qPCR in 35·1% (95% CI: 28·9-42·0%). A marked pattern of seasonality was observed with higher frequency of detection in colder than warmer months (P = 0·002). There was no association between viral load and season or between the number of milking cows in the herd and the detection of RVA in the farm. The viability of the RVA particles detected was confirmed by isolation of RVA in cell culture from 5 of 10 water samples. Furthermore, an RVA waterborne outbreak of neonatal calf diarrhoea was described. We demonstrate that RVA is frequent in dairy farm waters, and that the virus is infectious and capable of generating a diarrhoea outbreak. Neonatal diarrhoea syndrome leads to economic losses to the livestock industry worldwide. To determine transmission routes is essential to take action in this regard and reduce the impact that this syndrome has for the livestock production. The results obtained in this work alert the dairy industry and highlight that mitigation strategies are crucial to improve the microbiological quality of this water. © 2018 The Society for Applied Microbiology.

  20. The osmotic tolerance of boar spermatozoa and its usefulness as sperm quality parameter.

    PubMed

    Yeste, Marc; Briz, Mailo; Pinart, Elisabeth; Sancho, Sílvia; Bussalleu, Eva; Bonet, Sergi

    2010-06-01

    Predicting the fertility outcome of ejaculates is very important in the field of porcine reproduction. The aims of this study were to determine the effects of different osmotic treatments on boar spermatozoa and to correlate them with fertility and prolificacy, assessed as non-return rates within 60 days (NRR(60d)) of the first inseminations, and litter size (LS), respectively. Sperm samples (n=100) from one hundred healthy Piétrain boars were used to assess 48 treatments combining different osmolalities (ranged between 100 and 4000 mOsm kg(-1)), different compounds used to prepare anisotonic solutions, and two different modalities: return and non-return to isotonic conditions. Sperm quality was evaluated before and after applying the treatments on the basis of analyses of sperm viability, motility, morphology and percentages of acrosome-intact spermatozoa. Statistical analyses were performed using a one-way ANOVA and post hoc Tukey's test, linear regression analyses (Pearson correlation and multiple regression) and Jackknife cross-validation. Although three conventional parameters: sperm viability, sperm morphology and the percentages of acrosome-intact spermatozoa were significantly correlated with NRR(60d) and with LS, their respective osmotic tolerance parameters (defined for each parameter and treatment regarding with negative control) presented a higher Pearson coefficient with both fertility and prolificacy in three treatments (150 mOsm kg(-1) with non-return to isotonic conditions, 200 mOsm kg(-1) with return and 500 mOsm kg(-1) using sodium citrate and non-return to isotonic conditions). We conclude that osmotic resistance in sperm viability, sperm morphology and acrosome-intactness in the treatments mentioned above could be assessed along with classical parameters to better predict the fertilising ability of a given ejaculate. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  1. A toolkit of measures for reducing animal-vehicle collisions.

    DOT National Transportation Integrated Search

    2006-01-01

    Animal-vehicle collisions are a growing concern in terms of human safety; costs related to injury, property damage, and disposal; and the viability of wildlife populations. These collisions are rapidly increasing throughout the United States, and Vir...

  2. High genetic load in an old isolated butterfly population.

    PubMed

    Mattila, Anniina L K; Duplouy, Anne; Kirjokangas, Malla; Lehtonen, Rainer; Rastas, Pasi; Hanski, Ilkka

    2012-09-11

    We investigated inbreeding depression and genetic load in a small (N(e) ∼ 100) population of the Glanville fritillary butterfly (Melitaea cinxia), which has been completely isolated on a small island [Pikku Tytärsaari (PT)] in the Baltic Sea for at least 75 y. As a reference, we studied conspecific populations from the well-studied metapopulation in the Åland Islands (ÅL), 400 km away. A large population in Saaremaa, Estonia, was used as a reference for estimating genetic diversity and N(e). We investigated 58 traits related to behavior, development, morphology, reproductive performance, and metabolism. The PT population exhibited high genetic load (L = 1 - W(PT)/W(ÅL)) in a range of fitness-related traits including adult weight (L = 0.12), flight metabolic rate (L = 0.53), egg viability (L = 0.37), and lifetime production of eggs in an outdoor population cage (L = 0.70). These results imply extensive fixation of deleterious recessive mutations, supported by greatly reduced diversity in microsatellite markers and immediate recovery (heterosis) of egg viability and flight metabolic rate in crosses with other populations. There was no significant inbreeding depression in most traits due to one generation of full-sib mating. Resting metabolic rate was significantly elevated in PT males, which may be related to their short lifespan (L = 0.25). The demographic history and the effective size of the PT population place it in the part of the parameter space in which models predict mutation accumulation. This population exemplifies the increasingly common situation in fragmented landscapes, in which small and completely isolated populations are vulnerable to extinction due to high genetic load.

  3. The anatomy of a (potential) disaster: Volcanoes, behavior, and population viability of the short-tailed albatross (Phoebastria albatrus)

    USGS Publications Warehouse

    Finkelstein, M.E.; Wolf, S.; Goldman, M.; Doak, D.F.; Sievert, P.R.; Balogh, G.; Hasegawa, H.

    2010-01-01

    Catastrophic events, either from natural (e.g., hurricane) or human-induced (e.g., forest clear-cut) processes, are a well-known threat to wild populations. However, our lack of knowledge about population-level effects of catastrophic events has inhibited the careful examination of how catastrophes affect population growth and persistence. For the critically endangered short-tailed albatross (Phoebastria albatrus), episodic volcanic eruptions are considered a serious catastrophic threat since approximately 80% of the global population of ???2500 birds (in 2006) currently breeds on an active volcano, Torishima Island. We evaluated how short-tailed albatross population persistence is affected by the catastrophic threat of a volcanic eruption relative to chronic threats. We also provide an example for overcoming the seemingly overwhelming problems created by modelling the population dynamics of a species with limited demographic data by incorporating uncertainty in our analysis. As such, we constructed a stochastic age-based matrix model that incorporated both catastrophic mortality due to volcanic eruptions and chronic mortality from several potential sources (e.g., contaminant exposure, fisheries bycatch) to determine the relative effects of these two types of threats on short-tailed albatross population growth and persistence. Modest increases (1%) in chronic (annual) mortality had a 2.5-fold greater effect on predicted short-tailed albatross stochastic population growth rate (lambda) than did the occurrence of periodic volcanic eruptions that follow historic eruption frequencies (annual probability of eruption 2.2%). Our work demonstrates that periodic catastrophic volcanic eruptions, despite their dramatic nature, are less likely to affect the population viability and recovery of short-tailed albatross than low-level chronic mortality. ?? 2009 Elsevier Ltd.

  4. The intrinsic growth rate as a predictor of population viability under climate warming.

    PubMed

    Amarasekare, Priyanga; Coutinho, Renato M

    2013-11-01

    1. Lately, there has been interest in using the intrinsic growth rate (rm) to predict the effects of climate warming on ectotherm population viability. However, because rm is calculated using the Euler-Lotka equation, its reliability in predicting population persistence depends on whether ectotherm populations can achieve a stable age/stage distribution in thermally variable environments. Here, we investigate this issue using a mathematical framework that incorporates mechanistic descriptions of temperature effects on vital rates into a stage-structured population model that realistically captures the temperature-induced variability in developmental delays that characterize ectotherm life cycles. 2. We find that populations experiencing seasonal temperature variation converge to a stage distribution whose intra-annual pattern remains invariant across years. As a result, the mean annual per capita growth rate also remains constant between years. The key insight is the mechanism that allows populations converge to a stationary stage distribution. Temperature effects on the biochemical processes (e.g. enzyme kinetics, hormonal regulation) that underlie life-history traits (reproduction, development and mortality) exhibit well-defined thermodynamical properties (e.g. changes in entropy and enthalpy) that lead to predictable outcomes (e.g. reduction in reaction rates or hormonal action at temperature extremes). As a result, life-history traits exhibit a systematic and predictable response to seasonal temperature variation. This in turn leads to temporally predictable temperature responses of the stage distribution and the per capita growth rate. 3. When climate warming causes an increase in the mean annual temperature and/or the amplitude of seasonal fluctuations, the population model predicts the mean annual per capita growth rate to decline to zero within 100 years when warming is slow relative to the developmental period of the organism (0.03-0.05°C per year) and to become negative, causing population extinction, well before 100 years when warming is fast (e.g. 0.1°C per year). The Euler-Lotka equation predicts a slower decrease in rm when warming is slow and a longer persistence time when warming is fast, with the deviation between the two metrics increasing with increasing developmental period. These results suggest that predictions of ectotherm population viability based on rm may be valid only for species with short developmental delays, and even then, only over short time-scales and under slow warming regimes. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  5. Evaluation of Melatonin Effect on Human Breast Cancer Stem Cells Using a Threedimensional Growth Method of Mammospheres.

    PubMed

    Lopes, Juliana Ramos; da Silva Kavagutti, Mayume; de Medeiros, Felipe Arthur Faustino; de Campos Zuccari, Debora Aparecida Pires

    2017-01-01

    The high rates of women&#039;s death from breast cancer occur due to acquired resistance by patients to certain treatments, enabling the recurrence and/or tumor growth, invasion and metastasis. It has been demonstrated that the presence of cancer stem cells in human tumors, as responsible for recurrence and resistance to therapy. Studies have identified OCT4 as responsible for self-renewal and maintenance of pluripotency of stem cells. Thus, it is interesting to study potential drugs that target this specific population in breast cancer. Melatonin, appears to have oncostatic effects on cancer cells, however, little is known about its therapeutic effect on cancer stem cells. Evaluate the viability and the expression of OCT4 in breast cancer stem cells, MCF-7 and MDA-MB- 231, after melatonin treatment. The cells were grown in a 3-dimensional model of mammospheres, representing the breast cancer stem cell population and treated or not with melatonin. The cell viability of mammospheres were evaluated by MTT assay and the OCT4 expression, a cancer stem cells marker, was verified by immunocitochemistry. Our results demonstrated that the melatonin treatment decreased the cell viability of MCF-7 and MDAMB- 231 mammospheres. Furthermore, it was observed that in both cell lines, the expression of OCT4 was decreased in melatonin-treated cells compared to the control group. This fact suggests that melatonin is effective against breast cancer stem cells inhibiting the cell viability via OCT 4. Based on that, we believe that melatonin has a high potential to be used as an alternative treatment for breast cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Activin receptor-like kinase 5 inhibition reverses impairment of endothelial cell viability by endogenous islet mesenchymal stromal cells.

    PubMed

    Clarkin, Claire E; King, Aileen J; Dhadda, Paramjeet; Chagastelles, Pedro; Nardi, Nance; Wheeler-Jones, Caroline P; Jones, Peter M

    2013-03-01

    Following islet transplantation, islet graft revascularization is compromised due to loss of endothelial cells (ECs) during islet culture. TGF-β signaling pathways are essential for vascular homeostasis but their importance for islet EC function is unclear. We have identified a population of multipotent mesenchymal stromal cells (MSCs) within islets and investigated how modulation of TGF-β signaling by these cells influences islet EC viability. Cultured islets exhibited reduced expression of EC markers (VEGFR2, VE-cadherin and CD31), which was associated with diminished but sustained expression of endoglin a marker of both ECs and MSCs. Double fluorescent labeling of islets in situ with the EC marker CD31 disclosed a population of CD31-negative cells which were positive for endoglin. In vitro coculture of microvascular ECs with endoglin-positive, CD31-negative islet MSCs reduced VEGFR2 protein expression, disrupted EC angiogenic behavior, and increased EC detachment. Medium conditioned by islet MSCs significantly decreased EC viability and increased EC caspase 3/7 activity. EC:MSC cocultures showed enhanced Smad2 phosphorylation consistent with altered ALK5 signaling. Pharmacological inhibition of ALK5 activity with SB431542 (SB) improved EC survival upon contact with MSCs, and SB-treated cultured islets retained EC marker expression and sensitivity to exogenous VEGF164 . Thus, endoglin-expressing islet MSCs influence EC ALK5 signaling in vitro, which decreases EC viability, and changes in ALK5 activity in whole cultured islets contribute to islet EC loss. Modifying TGF-β signaling may enable maintenance of islet ECs during islet isolation and thus improve islet graft revascularization post-transplantation. Copyright © 2013 AlphaMed Press.

  7. CdO-NPs; synthesis from 1D new nano Cd coordination polymer, characterization and application as anti-cancer drug for reducing the viability of cancer cells

    NASA Astrophysics Data System (ADS)

    Afzalian Mend, Behnaz; Delavar, Mahmoud; Darroudi, Majid

    2017-04-01

    The hexagonal CdO nano-particles (CdO-NPs) was prepared using new nano Cd coordination polymer, [Cd(NO3)(bipy)(pzca)]n (1) as a precursor, through direct calcination process at 500 °C. The precursor (1) was synthesized by sonochemical method. The new nano compound (1) was characterized by IR spectroscopy, elemental analyses, X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and thermal gravimetric analyses. The structure of nano coordination polymer was determined by comparing the XRD pattern of nano and single-crystal of compound (1). The nano CdO was characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). In addition, the activity and efficiency of nano CdO as an anti-cancer drug was studied on cancer cells with different concentration. The results shows that the viability of cancer cells reduced above 2 μg/mL of CdO-NPs concentration.

  8. Genetic conflict between sexual signalling and juvenile survival in the three-spined stickleback.

    PubMed

    Kim, Sin-Yeon; Velando, Alberto

    2016-02-29

    Secondary sexual traits and mating preferences may evolve in part because the offspring of attractive males inherit attractiveness and other genetically correlated traits such as fecundity and viability. A problem regarding these indirect genetic mechanisms is how sufficient genetic variation in the traits subject to sexual selection is maintained within a population. Here we explored the additive genetic correlations between carotenoid-based male ornament colouration, female fecundity and juvenile survival rate in the three-spined stickleback (Gasterosteus aculeatus) to test the possibility that attractiveness genes reduce important fitness components in the bearers not expressing the sexual trait. Male sexual attractiveness (i.e., red nuptial colouration) as well as female fecundity and juvenile viability showed heritable variations in the three-spined stickleback. Thus, females can gain indirect benefits by mating with an attractive male. There was a strong positive genetic correlation between female fecundity and juvenile viability. However, red sexual signal of male sticklebacks was negatively genetically correlated with juvenile survival, suggesting genetic conflict between attractiveness and viability. There was no significant correlation between attractiveness of brothers and fecundity of sisters, suggesting no intra-locus sexual conflict. The negative effects of mating with a colourful male on offspring viability may contribute to maintaining the heritable variation under strong directional sexual selection. The strength of indirect sexual selection may be weaker than previously thought due to the hidden genetic conflicts.

  9. A combined approach for the assessment of cell viability and cell functionality of human fibrochondrocytes for use in tissue engineering.

    PubMed

    Garzón, Ingrid; Carriel, Victor; Marín-Fernández, Ana Belén; Oliveira, Ana Celeste; Garrido-Gómez, Juan; Campos, Antonio; Sánchez-Quevedo, María Del Carmen; Alaminos, Miguel

    2012-01-01

    Temporo-mandibular joint disc disorders are highly prevalent in adult populations. Autologous chondrocyte implantation is a well-established method for the treatment of several chondral defects. However, very few studies have been carried out using human fibrous chondrocytes from the temporo-mandibular joint (TMJ). One of the main drawbacks associated to chondrocyte cell culture is the possibility that chondrocyte cells kept in culture tend to de-differentiate and to lose cell viability under in in-vitro conditions. In this work, we have isolated human temporo-mandibular joint fibrochondrocytes (TMJF) from human disc and we have used a highly-sensitive technique to determine cell viability, cell proliferation and gene expression of nine consecutive cell passages to determine the most appropriate cell passage for use in tissue engineering and future clinical use. Our results revealed that the most potentially viable and functional cell passages were P5-P6, in which an adequate equilibrium between cell viability and the capability to synthesize all major extracellular matrix components exists. The combined action of pro-apoptotic (TRAF5, PHLDA1) and anti-apoptotic genes (SON, HTT, FAIM2) may explain the differential cell viability levels that we found in this study. These results suggest that TMJF should be used at P5-P6 for cell therapy protocols.

  10. An animal location-based habitat suitability model for bighorn sheep and wild horses in Bighorn Canyon National Recreation Area and the Pryor Mountain Wild Horse Range, Montana, and Wyoming

    USGS Publications Warehouse

    Wockner, Gary; Singer, Francis J.; Schoenecker, Kathryn A.

    2004-01-01

    The purpose of this habitat suitability model is to provide a tool that will help managers and researchers better manage bighorn sheep and wild horses in the Bighorn Canyon National Recreation Area (BICA) and Pryor Mountain Wild Horse Range (PMWHR). A concern in the management of the Pryor Mountain wild horse population is whether or not the wild horses compete with bighorn sheep for available forage or available space. Two studies have been conducted that have shown no obvious, convincing competition between the two species. A study of diets and habitat-use of both species revealed substantial diet overlap only during some seasons, but there were considerable spatial and habitat separations between wild horses and bighorns during all seasons (Kissell and others, 1996). This empirical data was then used in a modeling exercise that predicted that neither the current (about 160 horses at the time of the analysis) nor larger numbers of wild horses on the area (e.g., about 200 horses) would result in reduced numbers or condition of bighorn sheep (Coughenour 1999). But competition is a very complex biological process to document. Bighorns might have already been spatially avoiding wild horses when these studies were conducted. A second concern for managers is that earlier studies suggest both species are not using many areas of the range that appear to be suitable (Gudorf and others, 1996; Kissell and others, 1996). A primary goal for the management of both species is to increase their numbers for purposes of genetic conservation and viability. The bighorn sheep population declined during the mid-1990’s from a peak of about 211 animals to ~ 100 animals at present. Absolute minimum goals for genetic viability in the bighorn sheep herd (genetic effective population size of N >50) suggest at least 150 animals should be present, while studies of persistence suggest populations of 250+ are e more likely to recover rapidly and persist should the population experience an epizootic die-off (Singer and others, 2001). Since all bighorn sheep populations are potentially vulnerable to disease epizootics, managing for larger populations of 200–300 animals appears to increase the potential for long-term persistence (Berger, 1990; Singer and others, 2001). Wild horses are not prone to rapid disease die-offs. However, minimum goals for genetic viability in the Pryor Mountain wild horses ( Ne > 50) require that at least 160 animals be present on the range (Singer and others, 2000). Since the Ne > 50 goal is set for the breeding of domestic animals, and since the vagaries of drought, severe winters, predation, and other stochastic events cause stress in wild animals, larger goals for Ne (e.g. Ne > 100) for wild horses are even more desirable (USDI, BLM, 1999; Gross, 2000). Expanding the area of the wild horse range is one option, but the prospects for expanding the range do not appear to be great (L. Coates-Markle, BLM, oral comm.). A second option would be to increase the amount of useable habitat for horses on the existing range. One goal of this modeling effort was to use GIS-based habitat analyses to determine the reason wild horses are not using some areas of the range, and to explore the potential for making some of these areas useable. The National Park Service (NPS) has shown considerable interest in management actions within BICA that will increase the range, useable habitat, and population size of bighorn sheep. There has also been interest expressed by the Bureau of Land Management (BLM) and wild horse advocates to improve the useable habitat for wild horses and to possibly increase the size of the horse range.

  11. [New population curves in spanish extremely preterm neonates].

    PubMed

    García-Muñoz Rodrigo, F; García-Alix Pérez, A; Figueras Aloy, J; Saavedra Santana, P

    2014-08-01

    Most anthropometric reference data for extremely preterm infants used in Spain are outdated and based on non-Spanish populations, or are derived from small hospital-based samples that failed to include neonates of borderline viability. To develop gender-specific, population-based curves for birth weight, length, and head circumference in extremely preterm Caucasian infants, using a large contemporary sample size of Spanish singletons. Anthropometric data from neonates ≤ 28 weeks of gestational age were collected between January 2002 and December 2010 using the Spanish database SEN1500. Gestational age was estimated according to obstetric data (early pregnancy ultrasound). The data were analyzed with the SPSS.20 package, and centile tables were created for males and females using the Cole and Green LMS method. This study presents the first population-based growth curves for extremely preterm infants, including those of borderline viability, in Spain. A sexual dimorphism is evident for all of the studied parameters, starting at early gestation. These new gender-specific and population-based data could be useful for the improvement of growth assessments of extremely preterm infants in our country, for the development of epidemiological studies, for the evaluation of temporal trends, and for clinical or public health interventions seeking to optimize fetal growth. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  12. The effects of climate change and land-use change on demographic rates and population viability.

    PubMed

    Selwood, Katherine E; McGeoch, Melodie A; Mac Nally, Ralph

    2015-08-01

    Understanding the processes that lead to species extinctions is vital for lessening pressures on biodiversity. While species diversity, presence and abundance are most commonly used to measure the effects of human pressures, demographic responses give a more proximal indication of how pressures affect population viability and contribute to extinction risk. We reviewed how demographic rates are affected by the major anthropogenic pressures, changed landscape condition caused by human land use, and climate change. We synthesized the results of 147 empirical studies to compare the relative effect size of climate and landscape condition on birth, death, immigration and emigration rates in plant and animal populations. While changed landscape condition is recognized as the major driver of species declines and losses worldwide, we found that, on average, climate variables had equally strong effects on demographic rates in plant and animal populations. This is significant given that the pressures of climate change will continue to intensify in coming decades. The effects of climate change on some populations may be underestimated because changes in climate conditions during critical windows of species life cycles may have disproportionate effects on demographic rates. The combined pressures of land-use change and climate change may result in species declines and extinctions occurring faster than otherwise predicted, particularly if their effects are multiplicative. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  13. Population and genetic outcomes 20 years after reintroducing bobcats (Lynx rufus) to Cumberland Island, Georgia USA

    USGS Publications Warehouse

    Diefenbach, Duane R.; Hansen, Leslie A.; Bohling, Justin H.; Miller-Butterworth, Cassandra

    2015-01-01

    In 1988–1989, 32 bobcats Lynx rufus were reintroduced to Cumberland Island (CUIS), Georgia, USA, from which they had previously been extirpated. They were monitored intensively for 3 years immediately post-reintroduction, but no estimation of the size or genetic diversity of the population had been conducted in over 20 years since reintroduction. We returned to CUIS in 2012 to estimate abundance and effective population size of the present-day population, as well as to quantify genetic diversity and inbreeding. We amplified 12 nuclear microsatellite loci from DNA isolated from scats to establish genetic profiles to identify individuals. We used spatially explicit capture–recapture population estimation to estimate abundance. From nine unique genetic profiles, we estimate a population size of 14.4 (SE = 3.052) bobcats, with an effective population size (Ne) of 5–8 breeding individuals. This is consistent with predictions of a population viability analysis conducted at the time of reintroduction, which estimated the population would average 12–13 bobcats after 10 years. We identified several pairs of related bobcats (parent-offspring and full siblings), but ~75% of the pairwise comparisons were typical of unrelated individuals, and only one individual appeared inbred. Despite the small population size and other indications that it has likely experienced a genetic bottleneck, levels of genetic diversity in the CUIS bobcat population remain high compared to other mammalian carnivores. The reintroduction of bobcats to CUIS provides an opportunity to study changes in genetic diversity in an insular population without risk to this common species. Opportunities for natural immigration to the island are limited; therefore, continued monitoring and supplemental bobcat reintroductions could be used to evaluate the effect of different management strategies to maintain genetic diversity and population viability. The successful reintroduction and maintenance of a bobcat population on CUIS illustrates the suitability of translocation as a management tool for re-establishing felid populations.

  14. Strongly asymmetric hybridization barriers shape the origin of a new polyploid species and its hybrid ancestor.

    PubMed

    Vallejo-Marín, Mario; Cooley, Arielle M; Lee, Michelle Yuequi; Folmer, Madison; McKain, Michael R; Puzey, Joshua R

    2016-07-01

    Hybridization between diploids and tetraploids can lead to new allopolyploid species, often via a triploid intermediate. Viable triploids are often produced asymmetrically, with greater success observed for "maternal-excess" crosses where the mother has a higher ploidy than the father. Here we investigated the evolutionary origins of Mimulus peregrinus, an allohexaploid recently derived from the triploid M. ×robertsii, to determine whether reproductive asymmetry has shaped the formation of this new species. We used reciprocal crosses between the diploid (M. guttatus) and tetraploid (M. luteus) progenitors to determine the viability of triploid M. ×robertsii hybrids resulting from paternal- vs. maternal-excess crosses. To investigate whether experimental results predict patterns seen in the field, we performed parentage analyses comparing natural populations of M. peregrinus to its diploid, tetraploid, and triploid progenitors. Organellar sequences obtained from pre-existing genomic data, supplemented with additional genotyping was used to establish the maternal ancestry of multiple M. peregrinus and M. ×robertsii populations. We found strong evidence for asymmetric origins of M. peregrinus, but opposite to the common pattern, with paternal-excess crosses significantly more successful than maternal-excess crosses. These results successfully predicted hybrid formation in nature: 111 of 114 M. ×robertsii individuals, and 27 of 27 M. peregrinus, had an M. guttatus maternal haplotype. This study, which includes the first Mimulus chloroplast genome assembly, demonstrates the utility of parentage analysis through genome skimming. We highlight the benefits of complementing genomic analyses with experimental approaches to understand asymmetry in allopolyploid speciation. © 2016 Botanical Society of America.

  15. 3-Bromopyruvate inhibits cell proliferation and induces apoptosis in CD133+ population in human glioma.

    PubMed

    Xu, Dong-Qiang; Tan, Xiao-Yu; Zhang, Bao-Wei; Wu, Tao; Liu, Ping; Sun, Shao-Jun; Cao, Yin-Guang

    2016-03-01

    The study was aimed to investigate the role of 3-bromopyruvate in inhibition of CD133+ U87 human glioma cell population growth. The results demonstrated that 3-bromopyruvate inhibited the viability of both CD133+ and parental cells derived from U87 human glioma cell line. However, the 3-bromopyruvate-induced inhibition in viability was more prominent in CD133+ cells at 10 μM concentration after 48 h. Treatment of CD133+ cells with 3-bromopyruvate caused reduction in cell population and cell size, membrane bubbling, and degradation of cell membranes. Hoechst 33258 staining showed condensation of chromatin material and fragmentation of DNA in treated CD133+ cells after 48 h. 3-Bromopyruvate inhibited the migration rate of CD133+ cells significantly compared to the parental cells. Flow cytometry revealed that exposure of CD133+ cells to 3-bromopyruvate increased the cell population in S phase from 24.5 to 37.9 % with increase in time from 12 to 48 h. In addition, 3-bromopyruvate significantly enhanced the expression of Bax and cleaved caspase 3 in CD133+ cells compared to the parental cells. Therefore, 3-bromopyruvate is a potent chemotherapeutic agent for the treatment of glioma by targeting stem cells selectively.

  16. Segregation for fertility and meiotic stability in novel Brassica allohexaploids.

    PubMed

    Mwathi, Margaret W; Gupta, Mehak; Atri, Chaya; Banga, Surinder S; Batley, Jacqueline; Mason, Annaliese S

    2017-04-01

    Allohexaploid Brassica populations reveal ongoing segregation for fertility, while genotype influences fertility and meiotic stability. Creation of a new Brassica allohexaploid species is of interest for the development of a crop type with increased heterosis and adaptability. At present, no naturally occurring, meiotically stable Brassica allohexaploid exists, with little data available on chromosome behaviour and meiotic control in allohexaploid germplasm. In this study, 100 plants from the cross B. carinata × B. rapa (A2 allohexaploid population) and 69 plants from the cross (B. napus × B. carinata) × B. juncea (H2 allohexaploid population) were assessed for fertility and meiotic behaviour. Estimated pollen viability, self-pollinated seed set, number of seeds on the main shoot, number of pods on the main shoot, seeds per ten pods and plant height were measured for both the A2 and H2 populations and for a set of reference control cultivars. The H2 population had high segregation for pollen viability and meiotic stability, while the A2 population was characterised by low pollen fertility and a high level of chromosome loss. Both populations were taller, but had lower average fertility trait values than the control cultivar samples. The study also characterises fertility and meiotic chromosome behaviour in genotypes and progeny sets in heterozygous allotetraploid Brassica derived lines, and indicates that genotypes of the parents and H1 hybrids are affecting chromosome pairing and fertility phenotypes in the H2 population. The identification and characterisation of factors influencing stability in novel allohexaploid Brassica populations will assist in the development of this as a new crop species for food and agricultural benefit.

  17. Genetic structure and seed-mediated dispersal rates of an endangered shrub in a fragmented landscape: a case study for Juniperus communis in northwestern Europe

    PubMed Central

    2011-01-01

    Background Population extinction risk in a fragmented landscape is related to the differential ability of the species to spread its genes across the landscape. The impact of landscape fragmentation on plant population dynamics will therefore vary across different spatial scales. We quantified successful seed-mediated dispersal of the dioecious shrub Juniperus communis in a fragmented landscape across northwestern Europe by using amplified fragment length polymorphism (AFLP) markers. Furthermore we investigated the genetic diversity and structure on two spatial scales: across northwestern Europe and across Flanders (northern Belgium). We also studied whether seed viability and populations size were correlated with genetic diversity. Results Unexpectedly, estimated seed-mediated dispersal rates were quite high and ranged between 3% and 14%. No population differentiation and no spatial genetic structure were detected on the local, Flemish scale. A significant low to moderate genetic differentiation between populations was detected at the regional, northwest European scale (PhiPT = 0.10). In general, geographically nearby populations were also genetically related. High levels of within-population genetic diversity were detected but no correlation was found between any genetic diversity parameter and population size or seed viability. Conclusions In northwestern Europe, landscape fragmentation has lead to a weak isolation-by-distance pattern but not to genetic impoverishment of common juniper. Substantial rates of successful migration by seed-mediated gene flow indicate a high dispersal ability which could enable Juniperus communis to naturally colonize suitable habitats. However, it is not clear whether the observed levels of migration will suffice to counterbalance the effects of genetic drift in small populations on the long run. PMID:21859457

  18. Genetic structure and seed-mediated dispersal rates of an endangered shrub in a fragmented landscape: a case study for Juniperus communis in northwestern Europe.

    PubMed

    Vanden-Broeck, An; Gruwez, Robert; Cox, Karen; Adriaenssens, Sandy; Michalczyk, Inga M; Verheyen, Kris

    2011-08-22

    Population extinction risk in a fragmented landscape is related to the differential ability of the species to spread its genes across the landscape. The impact of landscape fragmentation on plant population dynamics will therefore vary across different spatial scales. We quantified successful seed-mediated dispersal of the dioecious shrub Juniperus communis in a fragmented landscape across northwestern Europe by using amplified fragment length polymorphism (AFLP) markers. Furthermore we investigated the genetic diversity and structure on two spatial scales: across northwestern Europe and across Flanders (northern Belgium). We also studied whether seed viability and populations size were correlated with genetic diversity. Unexpectedly, estimated seed-mediated dispersal rates were quite high and ranged between 3% and 14%. No population differentiation and no spatial genetic structure were detected on the local, Flemish scale. A significant low to moderate genetic differentiation between populations was detected at the regional, northwest European scale (PhiPT = 0.10). In general, geographically nearby populations were also genetically related. High levels of within-population genetic diversity were detected but no correlation was found between any genetic diversity parameter and population size or seed viability. In northwestern Europe, landscape fragmentation has lead to a weak isolation-by-distance pattern but not to genetic impoverishment of common juniper. Substantial rates of successful migration by seed-mediated gene flow indicate a high dispersal ability which could enable Juniperus communis to naturally colonize suitable habitats. However, it is not clear whether the observed levels of migration will suffice to counterbalance the effects of genetic drift in small populations on the long run.

  19. Energy return on investment (EROI) of solar PV: An attempt at reconciliation

    DOE PAGES

    Carbajales-Dale, Michael; Raugei, Marco; Fthenakis, Vasilis; ...

    2015-07-01

    This research examines the importance of energy return on investment (EROI) as a useful metric for assessing long-term viability of energy-dependent systems. Here, focuses on the methods, applications, and analyses for determining EROI for solar power and solar energy technologies.

  20. ACETOGENIC AND SULPHATE-REDUCING BACTERIA INHABITING THE RHIZOPLANE AND DEEP CORTEX CELLS OF THE SEAGRASS HALODULE WRIGHTII

    EPA Science Inventory

    Recent declines in sea grass distribution underscore the importance of understanding microbial community structure-function relationships in sea grass rhizosphere that might affect the viability of these plants. Phospholipid fatty acid analyses showed that sulfate-reducing bacter...

  1. The impact of α-Lipoic acid on cell viability and expression of nephrin and ZNF580 in normal human podocytes.

    PubMed

    Leppert, Ulrike; Gillespie, Allan; Orphal, Miriam; Böhme, Karen; Plum, Claudia; Nagorsen, Kaj; Berkholz, Janine; Kreutz, Reinhold; Eisenreich, Andreas

    2017-09-05

    Human podocytes (hPC) are essential for maintaining normal kidney function and dysfunction or loss of hPC play a pivotal role in the manifestation and progression of chronic kidney diseases including diabetic nephropathy. Previously, α-Lipoic acid (α-LA), a licensed drug for treatment of diabetic neuropathy, was shown to exhibit protective effects on diabetic nephropathy in vivo. However, the effect of α-LA on hPC under non-diabetic conditions is unknown. Therefore, we analyzed the impact of α-LA on cell viability and expression of nephrin and zinc finger protein 580 (ZNF580) in normal hPC in vitro. Protein analyses were done via Western blot techniques. Cell viability was determined using a functional assay. hPC viability was dynamically modulated via α-LA stimulation in a concentration-dependent manner. This was associated with reduced nephrin and ZNF580 expression and increased nephrin phosphorylation in normal hPC. Moreover, α-LA reduced nephrin and ZNF580 protein expression via 'kappa-light-chain-enhancer' of activated B-cells (NF-κB) inhibition. These data demonstrate that low α-LA had no negative influence on hPC viability, whereas, high α-LA concentrations induced cytotoxic effects on normal hPC and reduced nephrin and ZNF580 expression via NF-κB inhibition. These data provide first novel information about potential cytotoxic effects of α-LA on hPC under non-diabetic conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Dasatinib and Doxorubicin Treatment of Sarcoma Initiating Cells: A Possible New Treatment Strategy.

    PubMed

    Aggerholm-Pedersen, Ninna; Demuth, Christina; Safwat, Akmal; Meldgaard, Peter; Kassem, Moustapha; Sandahl Sorensen, Boe

    2016-01-01

    Background. One of the major challenges affecting sarcoma treatment outcome, particularly that of metastatic disease, is resistance to chemotherapy. Cancer-initiating cells are considered a major contributor to this resistance. Methods. An immortalised nontransformed human stromal (mesenchymal) stem cell line hMSC-TERT4 and a transformed cell line hMSC-TERT20-CE8, known to form sarcoma-like tumours when implanted in immune-deficient mice, were used as models. Receptor tyrosine kinase (RTK) activation was analysed by RTK arrays and cellular viability after tyrosine kinases inhibitor (TKI) treatment with or without doxorubicin was assessed by MTS assay. Results. Initial results showed that the hMSC-TERT4 was more doxorubicin-sensitive while hMSC-TERT20-CE8 was less doxorubicin-sensitive evidenced by monitoring cell viability in the presence of doxorubicin at different doses. The epidermal growth factor receptor (EGFR) was activated in both cell lines. However hMSC-TERT20-CE8 exhibited significantly higher expression of the EGFR ligands. EGFR inhibitors such as erlotinib and afatinib alone or in combination with doxorubicin failed to further decrease cell viability of hMSC-TERT20-CE8. However, inhibition with the TKI dasatinib in combination with doxorubicin decreased cell viability of the hMSC-TERT20-CE8 cell line. Conclusion. Our results demonstrate that dasatinib, but not EGFR-directed treatment, can decrease cell viability of stromal cancer stem cells less sensitive to doxorubicin.

  3. Effects of size and surface of zinc oxide and aluminum-doped zinc oxide nanoparticles on cell viability inferred by proteomic analyses.

    PubMed

    Pan, Chih-Hong; Liu, Wen-Te; Bien, Mauo-Ying; Lin, I-Chan; Hsiao, Ta-Chih; Ma, Chih-Ming; Lai, Ching-Huang; Chen, Mei-Chieh; Chuang, Kai-Jen; Chuang, Hsiao-Chi

    2014-01-01

    Although the health effects of zinc oxide nanoparticles (ZnONPs) on the respiratory system have been reported, the fate, potential toxicity, and mechanisms in biological cells of these particles, as related to particle size and surface characteristics, have not been well elucidated. To determine the physicochemical properties of ZnONPs that govern cytotoxicity, we investigated the effects of size, electronic properties, zinc concentration, and pH on cell viability using human alveolar-basal epithelial A549 cells as a model. We observed that a 2-hour or longer exposure to ZnONPs induced changes in cell viability. The alteration in cell viability was associated with the zeta potentials and pH values of the ZnONPs. Proteomic profiling of A549 exposed to ZnONPs for 2 and 4 hours was used to determine the biological mechanisms of ZnONP toxicity. p53-pathway activation was the core mechanism regulating cell viability in response to particle size. Activation of the Wnt and TGFβ signaling pathways was also important in the cellular response to ZnONPs of different sizes. The cadherin and Wnt signaling pathways were important cellular mechanisms triggered by surface differences. These results suggested that the size and surface characteristics of ZnONPs might play an important role in their observed cytotoxicity. This approach facilitates the design of more comprehensive systems for the evaluation of nanoparticles.

  4. The effects of landscape modifications on the long-term persistence of animal populations.

    PubMed

    Nabe-Nielsen, Jacob; Sibly, Richard M; Forchhammer, Mads C; Forbes, Valery E; Topping, Christopher J

    2010-01-28

    The effects of landscape modifications on the long-term persistence of wild animal populations is of crucial importance to wildlife managers and conservation biologists, but obtaining experimental evidence using real landscapes is usually impossible. To circumvent this problem we used individual-based models (IBMs) of interacting animals in experimental modifications of a real Danish landscape. The models incorporate as much as possible of the behaviour and ecology of four species with contrasting life-history characteristics: skylark (Alauda arvensis), vole (Microtus agrestis), a ground beetle (Bembidion lampros) and a linyphiid spider (Erigone atra). This allows us to quantify the population implications of experimental modifications of landscape configuration and composition. Starting with a real agricultural landscape, we progressively reduced landscape complexity by (i) homogenizing habitat patch shapes, (ii) randomizing the locations of the patches, and (iii) randomizing the size of the patches. The first two steps increased landscape fragmentation. We assessed the effects of these manipulations on the long-term persistence of animal populations by measuring equilibrium population sizes and time to recovery after disturbance. Patch rearrangement and the presence of corridors had a large effect on the population dynamics of species whose local success depends on the surrounding terrain. Landscape modifications that reduced population sizes increased recovery times in the short-dispersing species, making small populations vulnerable to increasing disturbance. The species that were most strongly affected by large disturbances fluctuated little in population sizes in years when no perturbations took place. Traditional approaches to the management and conservation of populations use either classical methods of population analysis, which fail to adequately account for the spatial configurations of landscapes, or landscape ecology, which accounts for landscape structure but has difficulty predicting the dynamics of populations living in them. Here we show how realistic and replicable individual-based models can bridge the gap between non-spatial population theory and non-dynamic landscape ecology. A major strength of the approach is its ability to identify population vulnerabilities not detected by standard population viability analyses.

  5. Female mating preferences determine system-level evolution in a gene network model.

    PubMed

    Fierst, Janna L

    2013-06-01

    Environmental patterns of directional, stabilizing and fluctuating selection can influence the evolution of system-level properties like evolvability and mutational robustness. Intersexual selection produces strong phenotypic selection and these dynamics may also affect the response to mutation and the potential for future adaptation. In order to to assess the influence of mating preferences on these evolutionary properties, I modeled a male trait and female preference determined by separate gene regulatory networks. I studied three sexual selection scenarios: sexual conflict, a Gaussian model of the Fisher process described in Lande (in Proc Natl Acad Sci 78(6):3721-3725, 1981) and a good genes model in which the male trait signalled his mutational condition. I measured the effects these mating preferences had on the potential for traits and preferences to evolve towards new states, and mutational robustness of both the phenotype and the individual's overall viability. All types of sexual selection increased male phenotypic robustness relative to a randomly mating population. The Fisher model also reduced male evolvability and mutational robustness for viability. Under good genes sexual selection, males evolved an increased mutational robustness for viability. Females choosing their mates is a scenario that is sufficient to create selective forces that impact genetic evolution and shape the evolutionary response to mutation and environmental selection. These dynamics will inevitably develop in any population where sexual selection is operating, and affect the potential for future adaptation.

  6. Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology.

    PubMed

    Canetta, Elisabetta; Adya, Ashok K; Walker, Graeme M

    2006-02-01

    The detrimental effects of ethanol toxicity on the cell surface morphology of Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354) were investigated using an atomic force microscope (AFM). In combination with culture viability and mean cell volume measurements AFM studies allowed us to relate the cell surface morphological changes, observed on nanometer lateral resolution, with the cellular stress physiology. Exposing yeasts to increasing stressful concentrations of ethanol led to decreased cell viabilities and mean cell volumes. Together with the roughness and bearing volume analyses of the AFM images, the results provided novel insight into the relative ethanol tolerance of S. cerevisiae and Sc. pombe.

  7. No evidence of an MHC-based female mating preference in great reed warblers.

    PubMed

    Westerdahl, Helena

    2004-08-01

    Female mate-choice based on genetic compatibility is an area of growing interest. The major histocompatibility complex (MHC) genes are likely candidates for such mate-choice since these highly polymorphic genes may both increase offspring viability and also provide direct cues for mate-choice. In great reed warblers, females actively choose a breeding partner out of a handful of males that they visit and evaluate; thus, female preference for compatible or heterozygous MHC genes could have evolved. Here, I investigate whether great reed warbler females preferentially mate with males with dissimilar MHC class I alleles or with males that are heterozygous at MHC class I. Despite favourable conditions, a thorough screening method and a large sample size, there was no evidence of an MHC-based female mating preference based on either genetic compatibility or heterozygosity in this population. Power analyses of the data sets revealed that relatively small differences (15% and 8%, respectively) between true and random pairs should have been detected. Copyright 2004 Blackwell Publishing Ltd

  8. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells.

    PubMed

    Saari, Heikki; Lázaro-Ibáñez, Elisa; Viitala, Tapani; Vuorimaa-Laukkanen, Elina; Siljander, Pia; Yliperttula, Marjo

    2015-12-28

    Extracellular vesicles (EVs) are naturally occurring membrane particles that mediate intercellular communication by delivering molecular information between cells. In this study, we investigated the effectiveness of two different populations of EVs (microvesicle- and exosome-enriched) as carriers of Paclitaxel to autologous prostate cancer cells. EVs were isolated from LNCaP- and PC-3 prostate cancer cell cultures using differential centrifugation and characterized by electron microscopy, nanoparticle tracking analysis, and Western blot. The uptake of microvesicles and exosomes by the autologous prostate cancer cells was assessed by flow cytometry and confocal microscopy. The EVs were loaded with Paclitaxel and the effectiveness of EV-mediated drug delivery was assessed with viability assays. The distribution of EVs and EV-delivered Paclitaxel in cells was inspected by confocal microscopy. Our main finding was that the loading of Paclitaxel to autologous prostate cancer cell-derived EVs increased its cytotoxic effect. This capacity was independent of the EV population and the cell line tested. Although the EVs without the drug increased cancer cell viability, the net effect of enhanced cytotoxicity remained. Both EV populations delivered Paclitaxel to the recipient cells through endocytosis, leading to the release of the drug from within the cells. The removal of EV surface proteins did not affect exosomes, while the drug delivery mediated by microvesicles was partially inhibited. Cancer cell-derived EVs can be used as effective carriers of Paclitaxel to their parental cells, bringing the drug into the cells through an endocytic pathway and increasing its cytotoxicity. However, due to the increased cell viability, the use of cancer cell-derived EVs must be further investigated before any clinical applications can be designed. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Reduction in sea lamprey hatching success due to release of sterilized males

    USGS Publications Warehouse

    Bergstedt, Roger A.; McDonald, Rodney B.; Twohey, Michael B.; Mullett, Katherine M.; Young, Robert J.; Heinrich, John W.

    2003-01-01

    Male sea lampreys (Petromyzon marinus), sterilized by injection with bisazir, were released in Lake Superior tributaries from 1991 to 1996 and exclusively in the St. Marys River (the outflow from Lake Superior to Lake Huron) since 1997 as an alternative to chemical control. To determine effectiveness in reducing reproductive potential through the time of hatch, males were observed on nests and egg viability was determined in nests in selected Lake Superior tributaries and the St. Marys River. The proportions of sterilized males observed on nests were not significantly different than their estimated proportion in the population for all streams and years combined or for the St. Marys River alone. It was concluded that sterilized males survive, appear on the spawning grounds, and nest at near their estimated proportion in the population. There was a significant reduction in egg viability corresponding with release of sterilized males for all streams and years combined or for the St. Marys River alone. In the St. Marys River from 1993 to 2000, the percent reduction in egg viability was significantly correlated with the observed proportion of sterile males on nests. It was further concluded that sterilized males remain sterile through nesting and attract and mate with females. Reduction in reproductive potential in the St. Marys River due to both removal of females by traps and sterile-male-release ranged from 34 to 92% from 1993 to 2001 and averaged 64%. From 1999 to 2001, when the program stabilized, reductions ranged from 71 to 92% and averaged 81%. The current release of sterile males in the St. Marys River effectively reduced reproductive potential through the time of hatch and did so near theoretical levels based on numbers released, estimates of population size, and the assumptions of full sterility and competitiveness.

  10. Development of a flow cytometric method to analyze subpopulations of bacteria in probiotic products and dairy starters.

    PubMed

    Bunthof, Christine J; Abee, Tjakko

    2002-06-01

    Flow cytometry (FCM) is a rapid and sensitive technique that can determine cell numbers and measure various physiological characteristics of individual cells by using appropriate fluorescent probes. Previously, we developed an FCM assay with the viability probes carboxyfluorescein diacetate (cFDA) and TOTO-1 [1'-(4,4,7,7-tetramethyl-4,7-diazaundecamethylene)-bis-4-[3-methyl-2,3dihydro(benzo-1,3-oxazole)-2-methylidene]-1-(3'-trimethylammoniumpropyl)-pyridinium tetraiodide] for (stressed) lactic acid bacteria (C. J. Bunthof, K. Bloemen, P. Breeuwer, F. M. Rombouts, and T. Abee, Appl. Environ. Microbiol. 67:2326-2335, 2001). cFDA stains intact cells with enzymatic activity, and TOTO-1 stains membrane-permeabilized cells. Here we used this assay to study the viability of bacterial suspensions in milk, dairy fermentation starters, and probiotic products. To facilitate FCM analysis of bacteria in milk, a commercially available milk-clearing solution was used. The procedure was optimized to increase the signal-to-noise ratio. FCM enumerations were accurate down to a concentration of 10(5) cells ml(-1). The level of retrieval of Lactobacillus plantarum WCFS 1 suspended in milk was high, and viability was not affected by the procedure. The plate counts for cleared samples of untreated cell suspensions were nearly as high as the total FCM counts, and the correlation was strong (r > 0.99). In dairy fermentation starters and in probiotic products the FCM total cell counts were substantially higher than the numbers of CFU. Three functional populations could be distinguished: culturable cells, cells that are intact and metabolically active but not culturable, and permeabilized cells. The proportions of the populations differed in the products tested. This FCM method provides tools to assess the functionality of different populations in fermentation starters and probiotic products.

  11. Development of a Flow Cytometric Method To Analyze Subpopulations of Bacteria in Probiotic Products and Dairy Starters

    PubMed Central

    Bunthof, Christine J.; Abee, Tjakko

    2002-01-01

    Flow cytometry (FCM) is a rapid and sensitive technique that can determine cell numbers and measure various physiological characteristics of individual cells by using appropriate fluorescent probes. Previously, we developed an FCM assay with the viability probes carboxyfluorescein diacetate (cFDA) and TOTO-1 {1′-(4,4,7,7-tetramethyl-4,7-diazaundecamethylene)-bis-4-[3-methyl-2,3dihydro(benzo-1,3-oxazole)-2-methylidene]-1-(3′-trimethylammoniumpropyl)-pyridinium tetraiodide} for (stressed) lactic acid bacteria (C. J. Bunthof, K. Bloemen, P. Breeuwer, F. M. Rombouts, and T. Abee, Appl. Environ. Microbiol. 67:2326-2335, 2001). cFDA stains intact cells with enzymatic activity, and TOTO-1 stains membrane-permeabilized cells. Here we used this assay to study the viability of bacterial suspensions in milk, dairy fermentation starters, and probiotic products. To facilitate FCM analysis of bacteria in milk, a commercially available milk-clearing solution was used. The procedure was optimized to increase the signal-to-noise ratio. FCM enumerations were accurate down to a concentration of 105 cells ml−1. The level of retrieval of Lactobacillus plantarum WCFS 1 suspended in milk was high, and viability was not affected by the procedure. The plate counts for cleared samples of untreated cell suspensions were nearly as high as the total FCM counts, and the correlation was strong (r > 0.99). In dairy fermentation starters and in probiotic products the FCM total cell counts were substantially higher than the numbers of CFU. Three functional populations could be distinguished: culturable cells, cells that are intact and metabolically active but not culturable, and permeabilized cells. The proportions of the populations differed in the products tested. This FCM method provides tools to assess the functionality of different populations in fermentation starters and probiotic products. PMID:12039752

  12. Shelf-life evaluation of bilayered human skin equivalent, MyDerm™.

    PubMed

    Seet, Wan Tai; Manira, Maarof; Maarof, Manira; Khairul Anuar, Khairoji; Chua, Kien-Hui; Ahmad Irfan, Abdul Wahab; Ng, Min Hwei; Aminuddin, Bin Saim; Ruszymah, Bt Hj Idrus

    2012-01-01

    Skin plays an important role in defense against infection and other harmful biological agents. Due to its fragile structure, skin can be easily damaged by heat, chemicals, traumatic injuries and diseases. An autologous bilayered human skin equivalent, MyDerm™, was engineered to provide a living skin substitute to treat critical skin loss. However, one of the disadvantages of living skin substitute is its short shelf-life, hence limiting its distribution worldwide. The aim of this study was to evaluate the shelf-life of MyDerm™ through assessment of cell morphology, cell viability, population doubling time and functional gene expression levels before transplantation. Skin samples were digested with 0.6% Collagenase Type I followed by epithelial cells dissociation with TrypLE Select. Dermal fibroblasts and keratinocytes were culture-expanded to obtain sufficient cells for MyDerm™ construction. MyDerm™ was constructed with plasma-fibrin as temporary biomaterial and evaluated at 0, 24, 48 and 72 hours after storage at 4°C for its shelf-life determination. The morphology of skin cells derived from MyDerm™ remained unchanged across storage times. Cells harvested from MyDerm™ after storage appeared in good viability (90.5%±2.7% to 94.9%±1.6%) and had short population doubling time (58.4±8.7 to 76.9±19 hours). The modest drop in cell viability and increased in population doubling time at longer storage duration did not demonstrate a significant difference. Gene expression for CK10, CK14 and COL III were also comparable between different storage times. In conclusion, MyDerm™ can be stored in basal medium at 4°C for at least 72 hours before transplantation without compromising its functionality.

  13. Ceramic port shields cast in an iron engine head

    NASA Technical Reports Server (NTRS)

    Hakim, Nabil S.; Groeneweg, Mark A.

    1989-01-01

    Silicon nitride exhaust and intake port shields have been successfully cast into a gray iron cylinder head of a heavy duty diesel single cylinder research engine. Careful design considerations, finite element, and probability of survival analyses indicated viability of the design. Foundry experience, NDE, and failure investigations are reported.

  14. Geothermal Research | Geothermal Technologies | NREL

    Science.gov Websites

    . Impact Analysis Conducting analyses to determine the viability of geothermal energy production and Hybrid Systems Exploring the potential benefits of combining geothermal with other renewable energy Designing new models and studying new techniques to increase the production of geothermal energy.

  15. The Viability of Merging Three Academic Libraries in Worcester.

    ERIC Educational Resources Information Center

    Kaser, David; Davis, Jinnie Y.

    This study was undertaken to determine whether the libraries of Worcester Polytechnic Institute, the College of the Holy Cross, and Clark University should be merged. Four types of data were collected: (1) objective--quantitative analyses of faculty and student use of the libraries and collection duplication/triplication; (2) subjective--opinions…

  16. Border Disease Virus: An Exceptional Driver of Chamois Populations Among Other Threats.

    PubMed

    Serrano, Emmanuel; Colom-Cadena, Andreu; Gilot-Fromont, Emmanuelle; Garel, Mathieu; Cabezón, Oscar; Velarde, Roser; Fernández-Sirera, Laura; Fernández-Aguilar, Xavier; Rosell, Rosa; Lavín, Santiago; Marco, Ignasi

    2015-01-01

    Though it is accepted that emerging infectious diseases are a threat to planet biodiversity, little information exists about their role as drivers of species extinction. Populations are also affected by natural catastrophes and other pathogens, making it difficult to estimate the particular impact of emerging infectious diseases. Border disease virus genogroup 4 (BDV-4) caused a previously unreported decrease in populations of Pyrenean chamois (Rupicapra pyrenaica pyrenaica) in Spain. Using a population viability analysis, we compared probabilities of extinction of a virtual chamois population affected by winter conditions, density dependence, keratoconjunctivitis, sarcoptic mange, and BD outbreaks. BD-affected populations showed double risk of becoming extinct in 50 years, confirming the exceptional ability of this virus to drive chamois populations.

  17. Native fishes in the Truckee River: Are in-stream structures and patterns of population genetic structure related?

    PubMed

    Peacock, Mary M; Gustin, Mae S; Kirchoff, Veronica S; Robinson, Morgan L; Hekkala, Evon; Pizzarro-Barraza, Claudia; Loux, Tim

    2016-09-01

    In-stream structures are recognized as significant impediments to movement for freshwater fishes. Apex predators such as salmonids have been the focus of much research on the impacts of such barriers to population dynamics and population viability however much less research has focused on native fishes, where in-stream structures may have a greater impact on long term population viability of these smaller, less mobile species. Patterns of genetic structure on a riverscape can provide information on which structures represent real barriers to movement for fish species and under what specific flow conditions. Here we characterize the impact of 41 dam and diversion structures on movement dynamics under varying flow conditions for a suite of six native fishes found in the Truckee River of California and Nevada. Microsatellite loci were used to estimate total allelic diversity, effective population size and assess genetic population structure. Although there is spatial overlap among species within the river there are clear differences in species distributions within the watershed. Observed population genetic structure was associated with in-stream structures, but only under low flow conditions. High total discharge in 2006 allowed fish to move over potential barriers resulting in no observed population genetic structure for any species in 2007. The efficacy of in-stream structures to impede movement and isolate fish emerged only after multiple years of low flow conditions. Our results suggest that restricted movement of fish species, as a result of in-stream barriers, can be mitigated by flow management. However, as flow dynamics are likely to be altered under global climate change, fragmentation due to barriers could isolate stream fishes into small subpopulations susceptible to both demographic losses and losses of genetic variation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The Interactive Role of Immature Stage Competition, Cohort Overlap, and Resource Limitation on the Population Viability of the Treehole Mosquito Aedes triseriatus (Diptera: Culicidae).

    PubMed

    Hanly, Patrick J; Haase, Amanda T

    2016-05-01

    The size and success of epidemiologically significant adult mosquito populations are inherently tied to the conditions of the aquatic habitat in which juvenile stages grow until eclosion. While resource competition and quality are well-established controls to juvenile growth and survival, the implications to overall population rates of increase are less understood due to the large sample sizes needed to parameterize population models for all five juvenile life stages under multiple environmental and demographic conditions. Here, we present the results of >4,300 trials of wild-caught Aedes triseriatus (Say, 1823) larvae and pupae reared under varying resource quantity crossed by the presence or absence of competition within a single cohort as well as multiple overlapping cohorts. Demographic projection was used to make predictions of the realized growth rates of simulated Ae. triseriatus populations across the range of potential Ae. triseriatus fecundity. Further, to inform control efforts on juvenile habitat, we constructed a stochastic simulation to estimate the rates of successful emergence from habitats under different resource regimes and levels of cohort overlap. We found that while Ae. triseriatus populations were robust to low resource levels and competition within a cohort, the combination of these stressors with multiple cohort overlap led to self-limitation or complete collapse of mosquito populations. Despite this importance of intraspecific competition to population viability, the stochastic simulation revealed only a modest self-limitation of adult emergence, with the clear implication that high-resource habitats are a higher value control target. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies.

    PubMed

    Radchuk, Viktoriia; Turlure, Camille; Schtickzelle, Nicolas

    2013-01-01

    As ectothermic organisms, butterflies have widely been used as models to explore the predicted impacts of climate change. However, most studies explore only one life stage; to our best knowledge, none have integrated the impact of temperature on the vital rates of all life stages for a species of conservation concern. Besides, most population viability analysis models for butterflies are based on yearly population growth rate, precluding the implementation and assessment of important climate change scenarios, where climate change occurs mainly, or differently, during some seasons. Here, we used a combination of laboratory and field experiments to quantify the impact of temperature on all life stages of a vulnerable glacial relict butterfly. Next, we integrated these impacts into an overall population response using a deterministic periodic matrix model and explored the impact of several climate change scenarios. Temperature positively affected egg, pre-diapause larva and pupal survival, and the number of eggs laid by a female; only the survival of overwintering larva was negatively affected by an increase in temperature. Despite the positive impact of warming on many life stages, population viability was reduced under all scenarios, with predictions of much shorter times to extinction than under the baseline (current temperature situation) scenario. Indeed, model predictions were the most sensitive to changes in survival of overwintering larva, the only stage negatively affected by warming. A proper consideration of every stage of the life cycle is important when designing conservation guidelines in the light of climate change. This is in line with the resource-based habitat view, which explicitly refers to the habitat as a collection of resources needed for all life stages of the species. We, therefore, encourage adopting a resource-based habitat view for population viability analysis and development of conservation guidelines for butterflies, and more generally, other organisms. Life stages that are cryptic or difficult to study should not be forsaken as they may be key determinants in the overall response to climate change, as we found with overwintering Boloria eunomia larvae. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  20. Evaluating the Potential of Tributary Restoration to Increase the Overall Survival of Salmon

    NASA Astrophysics Data System (ADS)

    Budy, P.; Schaller, H.

    2006-12-01

    Stream restoration has become a major focus of conservation efforts with millions of dollars spent each year on efforts aimed at recovering imperiled species; however, for animals with complex life-history strategies, this reliance on stream restoration for increasing overall survival requires that several key assumptions be met. We addressed fundamental uncertainties of the current focus on tributary restoration for recovery of endangered Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha): 1) is there potential for improving habitat in tributary streams, 2) what magnitude of early survival improvement can be expected based on stream restoration, and 3) will incremental increases in early survival be sufficient to ensure viability of the populations that compose the Evolutionarily Significant Unit (ESU)? We combined simple mechanistic habitat models, population viability measures, and categorical filters to quantify the potential for increasing total life-cycle survival (TLCS) across all 32 populations (ESU), based on increases to early freshwater survival, predicted to occur in response to restored tributary condition. A wide gap remains between how much survival improvement is needed, versus what is likely to occur under tributary restoration; tributary restoration has the potential to increase survival to the necessary minimum for only four populations in the ESU while the remaining populations (84%) still fall far below the survival needed for future viability. In addition, across the ESU; on average, a 171% increase in TLCS is necessary, whereas only ~106% appears possible. A recovery strategy for these salmon that relies largely on tributary restoration, to mitigate for known mortality imposed at other life stages (e.g., migration through hydropower dams) is risky and has a low probability of success. For animals with complex life cycles and exhibiting long migrations, stream restoration efforts may be ineffective and misplaced, if the targeted life stage is not limiting or unresponsive, and/or if there is little potential for increasing survival overall. We demonstrate both an approach for, and the importance of, completing a comprehensive a prior evaluation of restoration potential, such that scarce resources can be allocated to efforts with the greatest potential and the least amount of risk.

  1. Influence of seminal plasma on the kinematics of boar spermatozoa during freezing.

    PubMed

    Rodríguez-Martínez, H; Saravia, F; Wallgren, M; Roca, J; Peña, F J

    2008-11-01

    Sperm motility is, for its relation to cell viability and fertility, a central component of the spermiogram, where consideration of motion patterns allows discrimination of sub-populations among boar spermatozoa. Extension and cryo-preservation imposes changes in these patterns in connection to handling, additives, temperature changes and the removal of boar seminal plasma (BSP) which apparently makes spermatozoa susceptible to oxidative stress, thus affecting survival and motility post-thaw. Detailed kinematic analyses during sperm cooling are sparse, particularly when considering the instrumentation and settings used for analyses, the effect of extenders, and of the BSP the processed spermatozoa are exposed to. Spermatozoa present in the first collectable 10mL of the sperm-rich fraction of the ejaculate (portion 1, P1-BSP), have shown an increased ability to sustain motility during and after cryo-preservation than spermatozoa immersed in the rest of the ejaculate (portion 2, P2). When P2-spermatozoa were cleansed from their BSP and exposed for 60min to pooled P1-BSP, their motility post-thaw increased to similar levels as P1-spermatozoa. This BSP-influence is sire-dependent, presumably related to the protein concentration in the different ejaculate portions, and apparently unrelated to changes in membrane integrity or membrane stability through conventional, controlled cooling.

  2. Roles of free radicals in type 1 phototherapeutic agents: aromatic amines, sulfenamides, and sulfenates.

    PubMed

    Lin, Tien-Sung; Rajagopalan, Raghavan; Shen, Yuefei; Park, Sungho; Poreddy, Amruta R; Asmelash, Bethel; Karwa, Amolkumar S; Taylor, John-Stephen A

    2013-07-03

    Detailed analyses of the electron spin resonance (ESR) spectra, cell viability, and DNA degradation studies are presented for the photolyzed Type I phototherapeutic agents: aromatic amines, sulfenamides, and sulfenates. The ESR studies provided evidence that copious free radicals can be generated from these N-H, N-S, and S-O containing compounds upon photoirradiation with UV/visible light. The analyses of spectral data allowed us to identify the free radical species. The cell viability studies showed that these agents after exposure to light exert cytotoxicity to kill cancer cells (U937 leukemia cell lines HTC11, KB, and HT29 cell lines) in a dosage- and time-dependent manner. We examined a possible pathway of cell death via DNA degradation by a plasmid cleavage assay for several compounds. The effects of photosensitization with benzophenone in the presence of oxygen were examined. The studies indicate that planar tricyclic amines and sulfenamides tend to form π-electron delocalized aminyl radicals, whereas nonplanar ones tend to yield nitroxide radicals resulting from the recombination of aminyl radicals with oxygen. The ESR studies coupled with the results of cell viability measurements and DNA degradation reveal that planar N-centered radicals can provide higher potency in cell death and allow us to provide some insights on the reaction mechanisms. We also found the formation of azatropylium cations possessing high aromaticity derived from azepines can facilitate secondary electron transfer to form toxic O2(•-) radicals, which can further exert oxidative stress and cause cell death.

  3. Flexibility in community pharmacy: a qualitative study of business models and cognitive services.

    PubMed

    Feletto, Eleonora; Wilson, Laura K; Roberts, Alison S; Benrimoj, Shalom I

    2010-04-01

    To identify the capacity of current pharmacy business models, and the dimensions of organisational flexibility within them, to integrate products and services as well as the perceptions of viability of these models. Fifty-seven semi-structured interviews were conducted with community pharmacy owners or managers and support staff in 30 pharmacies across Australia. A framework of organisational flexibility was used to analyse their capacity to integrate services and perceptions of viability. Data were analysed using the method of constant comparison by two independent researchers. The study found that Australian community pharmacies have used the four types of flexibility to build capacity in distinct ways and react to changes in the local environment. This capacity building was manifested in four emerging business models which integrate services to varying degrees: classic community pharmacy, retail destination pharmacy, health care solution pharmacy and networked pharmacy. The perception of viability is less focused on dispensing medications and more focused on differentiating pharmacies through either a retail or services focus. Strategic flexibility appeared to offer pharmacies the ability to integrate and sustainably deliver services more successfully than other types, as exhibited by health care solution and networked pharmacies. Active support and encouragement to transition from being dependent on dispensing to implementing services is needed. The study showed that pharmacies where services were implemented and showed success are those strategically differentiating their businesses to become focused health care providers. This holistic approach should inevitably influence the sustainability of services.

  4. Promiscuity in sand lizards (Lacerta agilis) and adder snakes (Vipera berus): causes and consequences.

    PubMed

    Olsson, M; Madsen, T

    2001-01-01

    We review postcopulatory phenomena in the Swedish sand lizard (Lacerta agilis) and adder (Vipera berus), and in particular, links between female promiscuity, determinants of paternity, and offspring viability. In both species, females mate multiply and exhibit a positive relationship between the number of partners and offspring viability. We conclude that this relationship is most likely the result of variable genetic compatibility between mates arising from postcopulatory phenomena, predominantly assortative fertilization with respect to parental genotypes. However, males who were more successful at mate acquisition were also more successful in situations of sperm competition, suggesting a possible link between male (diploid and haploid) genetic quality per se and probability of fertilization. Neither the number of partners nor the number of matings influenced the risk of infertility in sand lizards, suggesting that selection for reduced risk of infertility is not a sufficient explanation for maintaining female promiscuity in this population. Finally, we conclude that the relatively low genetic variability exhibited by our study populations may have facilitated detection of genetic benefits compared to more outbred ones. However, recent work derived from outbred populations in other taxa suggest a greater generality of the principles we discuss than previously may have been appreciated.

  5. Genomic signatures of parasite-driven natural selection in north European Atlantic salmon (Salmo salar).

    PubMed

    Zueva, Ksenia J; Lumme, Jaakko; Veselov, Alexey E; Kent, Matthew P; Primmer, Craig R

    2018-06-01

    Understanding the genomic basis of host-parasite adaptation is important for predicting the long-term viability of species and developing successful management practices. However, in wild populations, identifying specific signatures of parasite-driven selection often presents a challenge, as it is difficult to unravel the molecular signatures of selection driven by different, but correlated, environmental factors. Furthermore, separating parasite-mediated selection from similar signatures due to genetic drift and population history can also be difficult. Populations of Atlantic salmon (Salmo salar L.) from northern Europe have pronounced differences in their reactions to the parasitic flatworm Gyrodactylus salaris Malmberg 1957 and are therefore a good model to search for specific genomic regions underlying inter-population differences in pathogen response. We used a dense Atlantic salmon SNP array, along with extensive sampling of 43 salmon populations representing the two G. salaris response extremes (extreme susceptibility vs resistant), to screen the salmon genome for signatures of directional selection while attempting to separate the parasite effect from other factors. After combining the results from two independent genome scan analyses, 57 candidate genes potentially under positive selection were identified, out of which 50 were functionally annotated. This candidate gene set was shown to be functionally enriched for lymph node development, focal adhesion genes and anti-viral response, which suggests that the regulation of both innate and acquired immunity might be an important mechanism for salmon response to G. salaris. Overall, our results offer insights into the apparently complex genetic basis of pathogen susceptibility in salmon and highlight methodological challenges for separating the effects of various environmental factors. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Optimization of low energy sonication treatment for granular activated carbon colonizing biomass assessment.

    PubMed

    Saccani, G; Bernasconi, M; Antonelli, M

    2014-01-01

    This study is aimed at optimizing a low energy sonication (LES) treatment for granular activated carbon (GAC)-colonizing biomass detachment and determination, evaluating detachment efficiency and the effects of ultrasound exposure on bacterial cell viability. GAC samples were collected from two filters fed with groundwater. Conventional heterotrophic plate count (HPC) and fluorescence microscopy with a double staining method were used to evaluate cell viability, comparing two LES procedures, without and with periodical bulk substitution. A 20 min LES treatment, with bulk substitution after cycles of 5 min as maximum treatment time, allowed to recover 87%/100% of attached biomass, protecting detached bacteria from ultrasound damaging effects. Observed viable cell inactivation rate was 6.5/7.9% cell/min, with membrane-compromised cell damage appearing to be even higher (11.5%/13.1% cell/min). Assessing bacterial detachment and damaging ultrasound effects, fluorescence microscopy turned out to be more sensitive compared to conventional HPC. The optimized method revealed a GAC-colonizing biomass of 9.9 x 10(7) cell/gGAC for plant 1 and 8.8 x 10(7) cell/gGAC for plant 2, 2 log lower than reported in literature. The difference between the two GAC-colonizing biomasses is higher in terms of viable cells (46.3% of total cells in plant 1 GAC-colonizing biomass compared to the 33.3% in plant 2). Studying influent water contamination through multivariate statistical analyses, apossible combined toxic and genotoxic effect of chromium VI and trichloroethylene was suggested as a reason for the lower viable cell fraction observed in plant 2 GAC-colonizing population.

  7. Treatment of ovarian cancer by targeting the tumor stem cell-associated carbohydrate antigen, Sialyl-Thomsen-nouveau

    PubMed Central

    Starbuck, Kristen; Al-Alem, Linah; Eavarone, David A.; Hernandez, Silvia Fatima; Bellio, Chiara; Prendergast, Jillian M.; Stein, Jenna; Dransfield, Daniel T.; Zarrella, Bianca; Growdon, Whitfield B.; Behrens, Jeff; Foster, Rosemary; Rueda, Bo R.

    2018-01-01

    Recurrent ovarian cancer (OvCa) is thought to result in part from the inability to eliminate rare quiescent cancer stem cells (CSCs) that survive cytotoxic chemotherapy and drive tumor resurgence. The Sialyl-Thomsen-nouveau antigen (STn) is a carbohydrate moiety present on protein markers of CSCs in pancreatic, colon, and gastric malignancies. We have demonstrated that human OvCa cell lines contain varying levels of cells that independently express either STn or the ovarian CSC marker CD133. Here we determine co-expression of STn and CD133 in a subset of human OvCa cell lines. Analyses of colony and sphere forming capacity and of response to standard-of-care cytotoxic therapy suggest a subset of OvCa STn+ cells display some CSC features. The effect of the anti-STn antibody-drug conjugates (ADCs) S3F-CL-MMAE and 2G12-2B2-CL-MMAE on OvCa cell viability in vitro and in vivo was also assessed. Treatment with S3F-CL-MMAE reduced the viability of two of three OvCa cell lines in vitro and exposure to either S3F-CL-MMAE or 2G12-2B2-CL-MMAE reduced OVCAR3-derived xenograft volume in vivo, depleting STn+ tumor cells. In summary, STn+ cells demonstrate some stem-like properties and specific therapeutic targeting of STn in ovarian tumors may be an effective clinical strategy to eliminate both STn+ CSC and STn+ non-CSC populations. PMID:29796189

  8. The use of highway underpasses by large mammals in Virginia and factors influencing their effectiveness.

    DOT National Transportation Integrated Search

    2005-01-01

    The rapid increase in animal-vehicle collisions on U.S. roadways is a growing concern in terms of human safety, property damage and injury costs, and viability of wildlife populations. Wildlife crossing structures are gaining national recognition by ...

  9. Estimating Viability of Gopher Tortoise Populations

    DTIC Science & Technology

    2009-01-01

    30 years of intensive data collection on Emy- doidea blandingii and Chelydra serpentina (Congdon et al. 1993, 1994). However, given that such...7:826–833. Congdon, J. D., A. E. Dunham, and R. C. van Loben Sels. 1994. Demographics of common snapping turtles (Chelydra serpentina ): Implications

  10. 36 CFR 219.11 - Monitoring and evaluation for adaptive management.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... viability is high and population characteristics cannot be reliably inferred from ecological conditions. The...) Monitoring and evaluation of social and economic sustainability. The plan monitoring strategy for the monitoring and evaluation of social and economic sustainability should provide for periodic review of...

  11. Manganese-Enhanced Magnetic Resonance Imaging Enables In Vivo Confirmation of Peri-Infarct Restoration Following Stem Cell Therapy in a Porcine Ischemia-Reperfusion Model.

    PubMed

    Dash, Rajesh; Kim, Paul J; Matsuura, Yuka; Ikeno, Fumiaki; Metzler, Scott; Huang, Ngan F; Lyons, Jennifer K; Nguyen, Patricia K; Ge, Xiaohu; Foo, Cheryl Wong Po; McConnell, Michael V; Wu, Joseph C; Yeung, Alan C; Harnish, Phillip; Yang, Phillip C

    2015-07-27

    The exact mechanism of stem cell therapy in augmenting the function of ischemic cardiomyopathy is unclear. In this study, we hypothesized that increased viability of the peri-infarct region (PIR) produces restorative benefits after stem cell engraftment. A novel multimodality imaging approach simultaneously assessed myocardial viability (manganese-enhanced magnetic resonance imaging [MEMRI]), myocardial scar (delayed gadolinium enhancement MRI), and transplanted stem cell engraftment (positron emission tomography reporter gene) in the injured porcine hearts. Twelve adult swine underwent ischemia-reperfusion injury. Digital subtraction of MEMRI-negative myocardium (intrainfarct region) from delayed gadolinium enhancement MRI-positive myocardium (PIR and intrainfarct region) clearly delineated the PIR in which the MEMRI-positive signal reflected PIR viability. Human amniotic mesenchymal stem cells (hAMSCs) represent a unique population of immunomodulatory mesodermal stem cells that restored the murine PIR. Immediately following hAMSC delivery, MEMRI demonstrated an increased PIR viability signal compared with control. Direct PIR viability remained higher in hAMSC-treated hearts for >6 weeks. Increased PIR viability correlated with improved regional contractility, left ventricular ejection fraction, infarct size, and hAMSC engraftment, as confirmed by immunocytochemistry. Increased MEMRI and positron emission tomography reporter gene signal in the intrainfarct region and the PIR correlated with sustained functional augmentation (global and regional) within the hAMSC group (mean change, left ventricular ejection fraction: hAMSC 85±60%, control 8±10%; P<0.05) and reduced chamber dilatation (left ventricular end-diastole volume increase: hAMSC 24±8%, control 110±30%; P<0.05). The positron emission tomography reporter gene signal of hAMSC engraftment correlates with the improved MEMRI signal in the PIR. The increased MEMRI signal represents PIR viability and the restorative potential of the injured heart. This in vivo multimodality imaging platform represents a novel, real-time method of tracking PIR viability and stem cell engraftment while providing a mechanistic explanation of the therapeutic efficacy of cardiovascular stem cells. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  12. Storage effect on viability and biofunctionality of human adipose tissue-derived stromal cells.

    PubMed

    Falah, Mizied; Rayan, Anwar; Srouji, Samer

    2015-09-01

    In our recent studies, the transplantation of human adipose tissue-derived stromal cells (ASCs) has shown promise for treatment of diseases related to bone and joint disorders. For the current clinical applications, ASCs were formulated and suspended in PlasmaLyte A supplemented with heparin, glucose and human serum albumin, balanced to pH 7.4 with sodium bicarbonate. This cell solution constitutes 20% of the overall transplanted mixture and is supplemented with hyaluronic acid (60%) and OraGraft particles (20%). We intended to investigate the effect of this transplantation mixture on the viability and biofunctionality of ASCs in bone formation. Freshly harvested cells were resuspended and incubated in the indicated mixture for up to 48 h at 4°C. Cell viability was assessed using trypan blue and AlamarBlue, and cell functionality was determined by quantifying their adhesion rate in vitro and bone formation in an ectopic mouse model. More than 80% of the ASCs stored in the transplantation mixture were viable for up to 24 h. Cell viability beyond 24 h in storage decreased to approximately 50%. In addition, an equal degree of bone formation was observed between the cells transplanted following incubation in transplantation mixture for up to 24 h and zero-time non-incubated cells (control). The viability and functionality of ASCs stored in the presented formulation will make such cell therapy accessible to larger and more remote populations. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  13. Powdered coconut water as a storage medium to preserve the viability of periodontal ligament cells: a laboratory study.

    PubMed

    Moura, C C G; Soares, P B F; Reis, M V P; Dechichi, P; Salgueiro, C C M; Sobral, M H N R; Zanetta Barbosa, D; Soares, C J

    2017-01-01

    To investigate the ability of newly developed powdered coconut water formulas (ACP) with different osmolarities to maintain the viability of periodontal ligament (PDL) cells over time compared with other solutions. Dogs teeth were extracted and stored for two periods, 3 h or 24 h, in the following media: long-shelf life CW (CW), pH-adjusted long-shelf life CW (pH-CW) and powdered CW that was pH and osmolality adjusted (ACP-404-I, 250 mOsm kg -1 H 2 O; pH 7.0; ACP-404-II, 372 mOsm kg -1 H 2 O; pH 7.0; ACP-404-III, 300 mOsm kg -1 H 2 O; pH 7.4). The positive control group (Pc) corresponded to immediate measurement after tooth extraction, and two negative controls (Nc) corresponded to 3 h and 24 h of dry time. PDL cells were extracted, and cell viability analysed by Trypan blue exclusion. Data were analysed statistically using two-way anova followed by the Tukey test and one-way anova followed by the Dunnett test (P < 0.05). At 3 h and 24 h, ACP-404-I had a performance similar to those of ACP-404-II and pH-CW, with significantly higher (P = 0.004) percentages of viable cells than ACP-404-III and CW. The positive control group had a significantly higher (P = 0.002) percentage of viable cells than the negative control groups, CW and ACP-404-III, irrespective of the period evaluated. Powdered coconut water formulas, ACP-404-I and ACP-404-II, preserved viability for up to 24 h. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  14. Cell viability of mycorrhiza helper bacteria solid inoculant in different carrier material

    NASA Astrophysics Data System (ADS)

    Asyiah, Iis Nur; Hindersah, Reginawanti; Harni, Rita

    2018-02-01

    Roots of food crops are colonized by nonpathogenic mycorrhizal fungi which show natural ability to control plant pathogen. Mycorrhizal establishment in plant roots is affected by rhizobacteria, known as mycorrhiza helper bacteria (MHB), which has synergetic effects on mycorrhizal associations. Laboratory experiment has been conducted to assess the best carrier material to develop well-qualified MHB of Pseudomonas diminuta and Bacillus subtilis solid inoculant. Carrier materials were 100 mesh organic matter of agricultural waste. Different spore concentration of both bacterial liquid inoculants were grown on three kinds of 100-mesh organic matter and stored at room temperature up to 90 days. Cell viability of both MHB were counted by serial dilution plate method by using specific medium. The results showed that sugar cane baggase ash was the best carrier material to maintain cell viability for both MHB. However, the population of Pseudomonas diminuta and Bacillus subtilis in sugar cane baggase ash were slightly decreased after 90 days. The use of sugarcane baggase ash for solid MHB inoculant development could be suggested.

  15. Multimodality molecular imaging and extracellular vesicle release based genetic profiling with porphyrin nanodroplets (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zemp, Roger J.; Paproski, Robert J.

    2017-03-01

    For emerging tissue-engineering applications, transplants, and cell-based therapies it is important to assess cell viability and function in vivo in deep tissues. Bioluminescence and fluorescence methods are poorly suited to deep monitoring applications with high resolution and require genetically-engineered reporters which are not always feasible. We report on a method for imaging cell viability using deep, high-resolution photoacoustic imaging. We use an exogenous dye, Resazurin, itself weakly fluorescent until it is reduced from blue to a pink color with bright red fluorescence. Upon cell death fluorescence is lost and an absorption shift is observed. The irreversible reaction of resazurin to resorufin is proportional to aerobic respiration. We detect colorimetric absorption shifts using multispectral photoacoustic imaging and quantify the fraction of viable cells. SKOV-3 cells with and without ±80oC heat treatment were imaged after Resazurin treatment. High 575nm:620nm ratiometric absorption and photoacoustic signals in viable cells were observed with a much lower ratio in low-viability populations.

  16. Global Deletion of TSPO Does Not Affect the Viability and Gene Expression Profile

    PubMed Central

    Wang, Huaishan; Yang, Jia; Yang, Qi; Fu, Yi; Hu, Yu; Liu, Fang; Wang, Weiqing; Cui, Lianxian; Chen, Hui; Zhang, Jianmin; He, Wei

    2016-01-01

    Translocator Protein (18kDa, TSPO) is a mitochondrial outer membrane transmembrane protein. Its expression is elevated during inflammation and injury. However, the function of TSPO in vivo is still controversial. Here, we constructed a TSPO global knockout (KO) mouse with a Cre-LoxP system that abolished TSPO protein expression in all tissues and showed normal phenotypes in the physiological condition. The birth rates of TSPO heterozygote (Het) x Het or KO x KO breeding were consistent with Mendel’s Law, suggesting a normal viability of TSPO KO mice at birth. RNA-seq analysis showed no significant difference in the gene expression profile of lung tissues from TSPO KO mice compared with wild type mice, including the genes associated with bronchial alveoli immune homeostasis. The alveolar macrophage population was not affected by TSPO deletion in the physiological condition. Our findings contradict the results of Papadopoulos, but confirmed Selvaraj’s findings. This study confirms TSPO deficiency does not affect viability and bronchial alveolar immune homeostasis. PMID:27907096

  17. Demography of a reintroduced population: moving toward management models for an endangered species, the whooping crane

    USGS Publications Warehouse

    Servanty, Sabrina; Converse, Sarah J.; Bailey, Larissa L.

    2014-01-01

    The reintroduction of threatened and endangered species is now a common method for reestablishing populations. Typically, a fundamental objective of reintroduction is to establish a self-sustaining population. Estimation of demographic parameters in reintroduced populations is critical, as these estimates serve multiple purposes. First, they support evaluation of progress toward the fundamental objective via construction of population viability analyses (PVAs) to predict metrics such as probability of persistence. Second, PVAs can be expanded to support evaluation of management actions, via management modeling. Third, the estimates themselves can support evaluation of the demographic performance of the reintroduced population, e.g., via comparison with wild populations. For each of these purposes, thorough treatment of uncertainties in the estimates is critical. Recently developed statistical methods - namely, hierarchical Bayesian implementations of state-space models - allow for effective integration of different types of uncertainty in estimation. We undertook a demographic estimation effort for a reintroduced population of endangered whooping cranes with the purpose of ultimately developing a Bayesian PVA for determining progress toward establishing a self-sustaining population, and for evaluating potential management actions via a Bayesian PVA-based management model. We evaluated individual and temporal variation in demographic parameters based upon a multi-state mark-recapture model. We found that survival was relatively high across time and varied little by sex. There was some indication that survival varied by release method. Survival was similar to that observed in the wild population. Although overall reproduction in this reintroduced population is poor, birds formed social pairs when relatively young, and once a bird was in a social pair, it had a nearly 50% chance of nesting the following breeding season. Also, once a bird had nested, it had a high probability of nesting again. These results are encouraging considering that survival and reproduction have been major challenges in past reintroductions of this species. The demographic estimates developed will support construction of a management model designed to facilitate exploration of management actions of interest, and will provide critical guidance in future planning for this reintroduction. An approach similar to what we describe could be usefully applied to many reintroduced populations.

  18. High genetic structure and low mitochondrial diversity in bottlenose dolphins of the Archipelago of Bocas del Toro, Panama: A population at risk?

    PubMed Central

    Tezanos-Pinto, Gabriela; Islas-Villanueva, Valentina; Correa-Cárdenas, Camilo A.

    2017-01-01

    The current conservation status of the bottlenose dolphin (Tursiops truncatus) under the IUCN is ‘least concern’. However, in the Caribbean, small and localized populations of the ‘inshore form’ may be at higher risk of extinction than the ‘worldwide distributed form’ due to a combination of factors including small population size, high site fidelity, genetic isolation, and range overlap with human activities. Here, we study the population genetic structure of bottlenose dolphins from the Archipelago of Bocas del Toro in Panama. This is a small population characterized by high site fidelity and is currently heavily-impacted by the local dolphin-watching industry. We collected skin tissue samples from 25 dolphins to study the genetic diversity and structure of this population. We amplified a portion of the mitochondrial Control Region (mtDNA-CR) and nine microsatellite loci. The mtDNA-CR analyses revealed that dolphins in Bocas del Toro belong to the ‘inshore form’, grouped with the Bahamas-Colombia-Cuba-Mexico population unit. They also possess a unique haplotype new for the Caribbean. The microsatellite data indicated that the Bocas del Toro dolphin population is highly structured, likely due to restricted movement patterns. Previous abundance estimates obtained with mark-recapture methods reported a small population of 80 dolphins (95% CI = 72–87), which is similar to the contemporary effective population size estimated in this study (Ne = 73 individuals; CI = 18.0 - ∞; 0.05). The combination of small population size, high degree of genetic isolation, and intense daily interactions with dolphin-watching boats puts the Bocas del Toro dolphin to at high risk of extinction. Despite national guidelines to regulate the dolphin-watching industry in Bocas del Toro and ongoing educational programs for tour operators, only in 2012 seven animals have died due to boat collisions. Our results suggest that the conservation status of bottlenose dolphins in Bocas del Toro should be elevated to ‘endangered’ at the national level, as a precautionary measure while population and viability estimates are conducted. PMID:29236757

  19. Sperm DNA fragmentation induced by cryopreservation: new insights and effect of a natural extract from Opuntia ficus-indica.

    PubMed

    Meamar, Mehrdad; Zribi, Nassira; Cambi, Marta; Tamburrino, Lara; Marchiani, Sara; Filimberti, Erminio; Fino, Maria Grazia; Biggeri, Annibale; Menezo, Yves; Forti, Gianni; Baldi, Elisabetta; Muratori, Monica

    2012-08-01

    To analyze the effect of cryopreservation on sperm DNA fragmentation (SDF) in two cytometric sperm populations, PI(brighter) and PI(dimmer), and to test the effects of Opuntia ficus-indica (OFI) extracts, which contain antioxidants and flavanoids, and of resveratrol on cryopreservation of human semen. In vitro prospective study. Institutional study. Twenty-one normozoospermic men undergoing semen analysis for couple infertility. Cryopreservation using the routine method in the presence of OFI extracts or resveratrol. Measurement of SDF by TUNEL/PI flow cytometric method to evaluate sperm motility (by automated motion analysis, CASA system) and viability (by eosin/nigrosin staining) in the two populations of sperm PI(br) and PI(dim). Cryopreservation induced an increase of SDF only in the PI(br) sperm population. The increase was negatively dependent on the basal values of SDF in the same population. Addition of OFI extracts and resveratrol to the cryopreservation medium slightly but statistically significantly reduced SDF in the PI(br) population without affecting the deleterious effect of cryopreservation on sperm motion parameters or viability. The increase of SDF in the PI(br) population, which is unrelated to semen quality, suggests that caution must be taken in using cryopreserved semen, as morphologically normal and motile sperm may be damaged. The addition of substances with multifunctional properties such as OFI extracts to cryopreservation medium is only slightly effective in preventing the dramatic effects on SDF. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Systematic mapping review about costs and economic evaluations of skin conditions and diseases in the aged.

    PubMed

    Lichterfeld-Kottner, Andrea; Hahnel, Elisabeth; Blume-Peytavi, Ulrike; Kottner, Jan

    2017-02-01

    Skin conditions and dermatological diseases associated with advanced age (e.g. fungal infection, dry skin and itch) receive increasingly attention in clinical practice and research. Cost and economic evaluations are important sources to inform priority setting and ressource allocation decisions in healthcare. The economics of skin conditions in aged populations has not been systematically reviewed so far. The aim of this mapping review was to summarize the economic evidence of selected skin conditions in the aged (65 + years). A mapping literature review and evidence summary was conducted. Searches were conducted in data bases Medline and Embase via OVID. Cinahl was searched using EBSCO. References lists of potential eligible studies, reviews, guidelines or other sources were screened for additional literature. For evaluation of methodological quality of full economic analyses the Consensus on Health Economic Criteria (CHEC) checklist was used. Database searches resulted in 1388 records. A total of 270 articles were read in full-text. Thirty-five publications were finally included in the data analysis reporting 38 economic analyses. Ten cost of illness analyses and 26 cost-effectiveness analyses reporting about pressure ulcers, skin tears, pressure ulcers, incontinence associated dermatitis and intertrigo/contact dermatitis/candidiasis treatment and prevention and onychomycosis testing were identified. Limited evidence indicated that low air loss beds were more cost effective than standard beds for prevention of pressure ulcers. Standardized skin care regimens seem to lower the incidence of pressure ulcers, skin tears and IAD but a cost saving effect was not always observed. Findings of this mapping review indicate that there is a paucity of high quality evidence regarding the economic impact of age-associated skin conditions and diseases. Substantial heterogeneity in terms of study design, evaluation perspective, time period, and way of cost estimation was identified. Because of the overall low methodological quality clear cut conclusions cannot be drawn. Robust and large scales economic evaluations about skin conditions and disease in aged populations are needed in the future. Copyright © 2016 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  1. Induction and viability of tetraploids in brook trout (Salvelinus fontinalis)

    USDA-ARS?s Scientific Manuscript database

    Brook trout (Salvelinus fontinalis) populations are threatened by introduction of invasive species, habitat loss, and habitat degradation in their native range; and are a problem invasive species in western Unites States and Canada, and in Europe. Stocking sterile triploids has been promoted as an ...

  2. THE EFFECTS OF ENDOCRINE DISRUPTING COMPOUNDS ON GULF PIPEFISH

    EPA Science Inventory

    Pipefish exposed to endocrine disruptors, such as EE2, are expected to have lower reproductive success, resulting in a decrease in recruitment in exposed populations. Egg viability also is expected to be lowest in the paired mating of an exposed male and female, compared to...

  3. Improved Chondrotoxic Profile of Liposomal Bupivacaine Compared With Standard Bupivacaine After Intra-articular Infiltration in a Porcine Model.

    PubMed

    Shaw, K Aaron; Moreland, Colleen; Jacobs, Jeremy; Hire, Justin M; Topolski, Richard; Hoyt, Nathan; Parada, Stephen A; Cameron, Craig D

    2018-01-01

    Increasingly, liposomal bupivacaine is being used with multimodal pain management strategies. In vitro investigations have shown decreased chondrotoxicity profiles for liposomal bupivacaine; however, there is no evidence regarding its in vivo effects. Hypothesis/Purpose: This study sought to investigate the in vivo chondrotoxicity of liposomal bupivacaine, hypothesizing that there would be increased chondrocyte viability after exposure to liposomal bupivacaine when compared with standard bupivacaine. Controlled laboratory study. Eight juvenile, female Yorkshire cross piglets underwent a lateral stifle joint injection with either 1.3% liposomal bupivacaine or 0.5% bupivacaine. Injections were performed on one joint per animal with no injection to the contralateral knee, which served as the control. Chondrocyte viability was assessed 1 week after injection with a live-dead staining protocol and histologic examination. Significant chondrocyte death was seen with the live-dead staining in the bupivacaine group (33% nonviable cells) in comparison with liposomal bupivacaine (6.2%) and control (5.8%) groups ( P < .01). However, histologic examination showed no differences in chondral surface integrity, fibrillation, and chondrocyte viability. Liposomal bupivacaine was found to be safe for intra-articular injection in this animal model. Although bupivacaine demonstrated decreased chondrocyte viability on a cellular level, histologically there were no changes. This study highlights the dichotomy between fluorescent staining and histologic appearance of articular chondrocytes in short-term analyses of viability. This study supports the peri-articular application of liposomal bupivacaine in the setting of preserved articular cartilage. A single injection of standard bupivacaine did not produce histologic changes in the articular cartilage.

  4. Impact of ZnO and Ag Nanoparticles on Bacterial Growth and Viability

    NASA Astrophysics Data System (ADS)

    Olson, M. S.; Digiovanni, K. A.

    2007-12-01

    Hundreds of consumer products containing nanomaterials are currently available in the U.S., including computers, clothing, cosmetics, sports equipment, medical devices and product packaging. Metallic nanoparticles can be embedded in or coated on product surfaces to provide antimicrobial, deodorizing, and stain- resistant properties. Although these products have the potential to provide significant benefit to the user, the impact of these products on the environment remains largely unknown. The purpose of this project is to study the effect of metallic nanoparticles released to the environment on bacterial growth and viability. Inhibition of bacterial growth was tested by adding doses of suspended ZnO and Ag nanoparticles into luria broth prior to inoculation of Escherichia coli cells. ZnO particles (approximately 40 nm) were obtained commercially and Ag particles (12-14 nm) were fabricated by reduction of silver nitrate with sodium borohydride. Toxicity assays were performed to test the viability of E. coli cells exposed to both ZnO and Ag nanoparticles using the LIVE/DEAD BacLight bacterial viability kit (Invitrogen). Live cells stain green whereas cells with compromised membranes that are considered dead or dying stain red. Cells were first grown, stained, and exposed to varying doses of metallic nanoparticles, and then bacterial viability was measured hourly using fluorescence microscopy. Results indicate that both ZnO and Ag nanoparticles inhibit the growth of E. coli in liquid media. Preliminary results from toxicity assays confirm the toxic effect of ZnO and Ag nanoparticles on active cell cultures. Calculated death rates resulting from analyses of toxicity studies will be presented.

  5. Effect of 25% Sodium Reduction on Sales of a Top-Selling Bread in Remote Indigenous Australian Community Stores: A Controlled Intervention Trial

    PubMed Central

    McMahon, Emma; Webster, Jacqui; Brimblecombe, Julie

    2017-01-01

    Reducing sodium in the food supply is key to achieving population salt targets, but maintaining sales is important to ensuring commercial viability and maximising clinical impact. We investigated whether 25% sodium reduction in a top-selling bread affected sales in 26 remote Indigenous community stores. After a 23-week baseline period, 11 control stores received the regular-salt bread (400 mg Na/100 g) and 15 intervention stores received the reduced-salt version (300 mg Na/100 g) for 12-weeks. Sales data were collected to examine difference between groups in change from baseline to follow-up (effect size) in sales (primary outcome) or sodium density, analysed using a mixed model. There was no significant effect on market share (−0.31%; 95% CI −0.68, 0.07; p = 0.11) or weekly dollars ($58; −149, 266; p = 0.58). Sodium density of all purchases was not significantly reduced (−8 mg Na/MJ; −18, 2; p = 0.14), but 25% reduction across all bread could significantly reduce sodium (−12; −23, −1; p = 0.03). We found 25% salt reduction in a top-selling bread did not affect sales in remote Indigenous community stores. If achieved across all breads, estimated salt intake in remote Indigenous Australian communities would be reduced by approximately 15% of the magnitude needed to achieve population salt targets, which could lead to significant health gains at the population-level. PMID:28264485

  6. Comparison of various physiological traits in flies (Drosophila melanogaster) of wild origin, infected or uninfected by the hereditary Rhabdovirus sigma.

    PubMed

    Fleuriet, A

    1981-01-01

    Flies infected or uninfected by the hereditary Rhabdovirus sigma have been collected in the natural French populations of Drosophila melanogaster. The have been compared for various physiological traits: male and female fertility, female longevity, sexual selection and egg viability. The only significant difference was the lower viability of eggs laid by infected females. For all the other traits, infected and uninfected flies were quite comparable. The viral types found in flies of wild origin, thus appear to be almost harmless for their carriers. This result can be connected with previous findings which gave evidence for the relative infrequency of infectious particles in stabilized flies of wild origin.

  7. Unified reduction principle for the evolution of mutation, migration, and recombination

    PubMed Central

    Altenberg, Lee; Liberman, Uri; Feldman, Marcus W.

    2017-01-01

    Modifier-gene models for the evolution of genetic information transmission between generations of organisms exhibit the reduction principle: Selection favors reduction in the rate of variation production in populations near equilibrium under a balance of constant viability selection and variation production. Whereas this outcome has been proven for a variety of genetic models, it has not been proven in general for multiallelic genetic models of mutation, migration, and recombination modification with arbitrary linkage between the modifier and major genes under viability selection. We show that the reduction principle holds for all of these cases by developing a unifying mathematical framework that characterizes all of these evolutionary models. PMID:28265103

  8. Demographic rates and population viability of black bears in Louisiana

    USGS Publications Warehouse

    Laufenberg, Jared S.; Clark, Joseph D.; Hooker, Michael J.; Lowe, Carrie L.; O'Connell-Goode, Kaitlin C.; Troxler, Jesse C.; Davidson, Maria M.; Chamberlain, Michael J.; Chandler, Richard B.

    2015-01-01

    The Louisiana black bear (Ursus americanus luteolus) was reduced to a few small, fragmented, and isolated subpopulations in the Lower Mississippi Alluvial Valley by the mid-twentieth century resulting from loss and fragmentation of habitat. In 1992, the United States Fish and Wildlife Service (USFWS) granted the Louisiana black bear threatened status under the United States Endangered Species Act of 1973. Since that time, a recovery plan was developed, a reintroduced population was established, and habitat recovery has occurred. The Recovery Plan states that a minimum of 2 populations must be viable (i.e., persistence probabilities over 100 years >0.95), 1 in the Tensas River Basin and 1 in the Atchafalaya River Basin. Consequently, our objectives were to 1) estimate demographic rates of Louisiana black bear subpopulations, 2) develop data-driven stochastic population projection models, and 3) determine how different projection model assumptions affect population trajectories and predictions about long-term persistence. Our overall goal was to assess long-term persistence of the bear subpopulations in Louisiana, individually and as a whole. We collected data using varying combinations of non-invasive DNA sampling, live capture, winter den visits, and radio monitoring from 2002 to 2012 in the 4 areas currently supporting breeding subpopulations in Louisiana: Tensas River Basin (TRB), Upper Atchafalaya River Basin (UARB), Lower Atchafalaya River Basin (LARB), and a recently reintroduced population at the Three Rivers Complex (TRC). From 2002 to 2012, we radio monitored fates of 86 adult females within the TRB and 43 in the TRC. Mean estimates of annual adult survival for the TRB and TRC were 0.997 and 0.990, respectively, when unknown fates were assumed alive and 0.970 and 0.926 when unknown fates were assumed dead. From 2003 to 2013, we observed 130 cub litters from 74 females in the TRB, and 74 cub litters from 45 females in the TRC. During the same period, we observed 43 yearling litters for 33 females in the TRB and 21 yearling litters for 19 females in the TRC. The estimated number of cubs and number of yearlings produced per breeding adult female was 0.47 and 0.20, respectively, in the TRB and 0.32 and 0.18 in the TRC. On the basis of matrix projection models, asymptotic growth rates ranged from 1.053 to 1.078 for the TRB and from 1.005 to 1.062 for the TRC, depending on how we treated unresolved fates of adult females. Persistence probabilities estimated from stochastic population models based on telemetry data ranged from 0.997 to 0.998 for the TRC subpopulation depending on model assumptions and were >0.999 for the TRB regardless of model assumptions. We extracted DNA from hair collected at baited, barbed-wire enclosures in the TRB, UARB, and LARB to determine individual identities for capture-mark-recapture (CMR) analysis. We used those detection histories to estimate apparent survival (φ), per-capita recruitment (f), abundance (N), realized growth rate (λ), and long-term viability, based on Bayesian hierarchical modeling methods that allowed estimation of temporal process variance and parameter uncertainty. Based on 23,312 hair samples, annual N for females in the TRB ranged from 133 to 164 during 2006–2012, depending on year and how detection heterogeneity was modeled. Geometric mean of λ ranged from 0.996 to 1.002. In the UARB, we collected 11,643 hair samples from 2007 to 2012, from which estimates of N for females ranged from 23 to 43 during the study period, depending on detection heterogeneity model. The geometric mean of λ ranged from 1.038 to 1.059. Estimated N for females in LARB ranged from 69 to 96, and annual λ ranged from 0.80 to 1.11 based on 3,698 hair samples collected during 2010–2012, also depending on year and heterogeneity model. Probabilities of persistence over 100 years for the TRC and TRB based on stochastic matrix projection models that used vital rate estimates from telemetry data were >0.95 for all scenarios. Probability of persistence at the TRB and the UARB based on projection models that used vital rate estimates from CMR analyses ranged from 0.928 to 0.954 and from 0.906 to 0.959, respectively, depending on model assumptions. Data from the LARB were insufficient for a viability assessment. Thus, individual persistence probabilities for TRB and UARB did not meet the strict definition of viability (i.e., >0.95) under some model assumptions. However, the joint probability of bears persisting either in the TRB or UARB was >0.993 assuming individual population dynamics were independent and was >0.958 assuming dynamics were perfectly correlated. Furthermore, including the TRC increased the joint probability of bears persisting somewhere in the TRB, UARB, or TRC to >0.999 based on the most pessimistic individual persistence estimates from those subpopulations. Therefore, if the intent of specifying that 2 subpopulations should be viable was to ensure the persistence of Louisiana black bears somewhere within its historical range, then the viability threshold was met. © 2016 The Wildlife Society.

  9. Increase of the spontaneous mutation rate in a long-term experiment with Drosophila melanogaster.

    PubMed

    Avila, Victoria; Chavarrías, David; Sánchez, Enrique; Manrique, Antonio; López-Fanjul, Carlos; García-Dorado, Aurora

    2006-05-01

    In a previous experiment, the effect of 255 generations of mutation accumulation (MA) on the second chromosome viability of Drosophila melanogaster was studied using 200 full-sib MA1 lines and a large C1 control, both derived from a genetically homogeneous base population. At generation 265, one of those MA1 lines was expanded to start 150 new full-sib MA2 lines and a new C2 large control. After 46 generations, the rate of decline in mean viability in MA2 was approximately 2.5 times that estimated in MA1, while the average degree of dominance of mutations was small and nonsignificant by generation 40 and moderate by generation 80. In parallel, the inbreeding depression rate for viability and the amount of additive variance for two bristle traits in C2 were 2-3 times larger than those in C1. The results are consistent with a mutation rate in the line from which MA2 and C2 were derived about 2.5 times larger than that in MA1. The mean viability of C2 remained roughly similar to that of C1, but the rate of MA2 line extinction increased progressively, leading to mutational collapse, which can be ascribed to accelerated mutation and/or synergy after important deleterious accumulation.

  10. Nest inundation from sea-level rise threatens sea turtle population viability.

    PubMed

    Pike, David A; Roznik, Elizabeth A; Bell, Ian

    2015-07-01

    Contemporary sea-level rise will inundate coastal habitats with seawater more frequently, disrupting the life cycles of terrestrial fauna well before permanent habitat loss occurs. Sea turtles are reliant on low-lying coastal habitats worldwide for nesting, where eggs buried in the sand remain vulnerable to inundation until hatching. We show that saltwater inundation directly lowers the viability of green turtle eggs (Chelonia mydas) collected from the world's largest green turtle nesting rookery at Raine Island, Australia, which is undergoing enigmatic decline. Inundation for 1 or 3 h reduced egg viability by less than 10%, whereas inundation for 6 h reduced viability by approximately 30%. All embryonic developmental stages were vulnerable to mortality from saltwater inundation. Although the hatchlings that emerged from inundated eggs displayed normal physical and behavioural traits, hypoxia during incubation could influence other aspects of the physiology or behaviour of developing embryos, such as learning or spatial orientation. Saltwater inundation can directly lower hatching success, but it does not completely explain the consistently low rates of hatchling production observed on Raine Island. More frequent nest inundation associated with sea-level rise will increase variability in sea turtle hatching success spatially and temporally, due to direct and indirect impacts of saltwater inundation on developing embryos.

  11. [Evolution and viability of an outpatient surgery center for cataract surgery on a large scale in a university hospital].

    PubMed

    Kara-Junior, Newton; Espíndola, Rodrigo França de

    2010-01-01

    To analyze the number of surgeries performed in outpatient surgical center at a university hospital and to assess its financial viability during and after the interruption of the Cataract National Campaign in 2006. Retrospective analytical study between 2005 and 2009 at the Clinical Hospital of the University of São Paulo (HC-FMUSP) which evaluated the economic viability of the outpatient surgical center, the number of cataract surgeries performed and the number of surgeons present daily in that unit. It would be necessary to perform at least 400 procedures monthly to ensure the financial viability of the outpatient surgical center. This number was lower than the expected in the years of 2008 and 2009 (average of 370.6 and 390.1 surgeries respectively). The number of cataract fellows decreased from 13 in 2005 to 3 in 2009. The main factor for the reduction in the number of cataract surgeries performed in the outpatient surgical center after 2006 was the difficulty of access of the population to the hospital due to restrictions on the development of screening projects. The increased use of the operating rooms by other clinics and the decrease in the admission of new surgeons, made the outpatient surgical center appropriate and viable for the new political-economic reality.

  12. Nest inundation from sea-level rise threatens sea turtle population viability

    PubMed Central

    Pike, David A.; Roznik, Elizabeth A.; Bell, Ian

    2015-01-01

    Contemporary sea-level rise will inundate coastal habitats with seawater more frequently, disrupting the life cycles of terrestrial fauna well before permanent habitat loss occurs. Sea turtles are reliant on low-lying coastal habitats worldwide for nesting, where eggs buried in the sand remain vulnerable to inundation until hatching. We show that saltwater inundation directly lowers the viability of green turtle eggs (Chelonia mydas) collected from the world's largest green turtle nesting rookery at Raine Island, Australia, which is undergoing enigmatic decline. Inundation for 1 or 3 h reduced egg viability by less than 10%, whereas inundation for 6 h reduced viability by approximately 30%. All embryonic developmental stages were vulnerable to mortality from saltwater inundation. Although the hatchlings that emerged from inundated eggs displayed normal physical and behavioural traits, hypoxia during incubation could influence other aspects of the physiology or behaviour of developing embryos, such as learning or spatial orientation. Saltwater inundation can directly lower hatching success, but it does not completely explain the consistently low rates of hatchling production observed on Raine Island. More frequent nest inundation associated with sea-level rise will increase variability in sea turtle hatching success spatially and temporally, due to direct and indirect impacts of saltwater inundation on developing embryos. PMID:26587269

  13. Viability of in-house datamarting approaches for population genetics analysis of SNP genotypes

    PubMed Central

    Amigo, Jorge; Phillips, Christopher; Salas, Antonio; Carracedo, Ángel

    2009-01-01

    Background Databases containing very large amounts of SNP (Single Nucleotide Polymorphism) data are now freely available for researchers interested in medical and/or population genetics applications. While many of these SNP repositories have implemented data retrieval tools for general-purpose mining, these alone cannot cover the broad spectrum of needs of most medical and population genetics studies. Results To address this limitation, we have built in-house customized data marts from the raw data provided by the largest public databases. In particular, for population genetics analysis based on genotypes we have built a set of data processing scripts that deal with raw data coming from the major SNP variation databases (e.g. HapMap, Perlegen), stripping them into single genotypes and then grouping them into populations, then merged with additional complementary descriptive information extracted from dbSNP. This allows not only in-house standardization and normalization of the genotyping data retrieved from different repositories, but also the calculation of statistical indices from simple allele frequency estimates to more elaborate genetic differentiation tests within populations, together with the ability to combine population samples from different databases. Conclusion The present study demonstrates the viability of implementing scripts for handling extensive datasets of SNP genotypes with low computational costs, dealing with certain complex issues that arise from the divergent nature and configuration of the most popular SNP repositories. The information contained in these databases can also be enriched with additional information obtained from other complementary databases, in order to build a dedicated data mart. Updating the data structure is straightforward, as well as permitting easy implementation of new external data and the computation of supplementary statistical indices of interest. PMID:19344481

  14. Reintroducing Guanaco in the Upper Belt of Central Argentina: Using Population Viability Analysis to Evaluate Extinction Risk and Management Priorities

    PubMed Central

    Barri, Fernando Rafael

    2016-01-01

    Wildlife reintroduction is an increasingly used strategy to reverse anthropocene defaunation. For the purpose of ecosystem restoration, in 2007 the guanaco (Lama guanicoe) was reintroduced to the Quebrada del Condorito National Park, situated in the mountains of central Argentina. With the aim of developing management recommendations, the project included permanently monitoring the population to evaluate its dynamics and the ecological response of the individuals released into the area. Nine years later and after two releases of guanacos (113 individuals in 2007 without and 25 in 2011 with a pre-adaptation period), only 24 individuals, which conform three reproductive groups, and one group of solitary males were settled in the Park. Here I modeled a population viability analysis to evaluate extinction risk, using VORTEX software. Initial population structure, specified age distribution, mortality and reproductive rates, and mate monopolization recorded during field work were used in the model, whereas the remaining used demographic parameters, such as age of first offspring, maximum number of broods per year, mean foaling rate, and length of fecundity period, were taken from the literature. Each of the three different scenarios (without supplementation of individuals, and with a realistic and optimistic supplementation) and two possible catastrophic events (fires and food shortage) covering 100 years was repeated 1000 times. Even though the guanaco reintroduction project can be considered to have been partially successful since its start, the model predicts that the current reintroduced population could be extinct in the next few decades if no reinforcements occur, and that only a continuous supplementation can reach the probability that the population survives over the next 100 years. I conclude that, so far, the current population is at a high risk of extinction if further supplementation of individuals is discontinued. PMID:27741302

  15. Viability of in-house datamarting approaches for population genetics analysis of SNP genotypes.

    PubMed

    Amigo, Jorge; Phillips, Christopher; Salas, Antonio; Carracedo, Angel

    2009-03-19

    Databases containing very large amounts of SNP (Single Nucleotide Polymorphism) data are now freely available for researchers interested in medical and/or population genetics applications. While many of these SNP repositories have implemented data retrieval tools for general-purpose mining, these alone cannot cover the broad spectrum of needs of most medical and population genetics studies. To address this limitation, we have built in-house customized data marts from the raw data provided by the largest public databases. In particular, for population genetics analysis based on genotypes we have built a set of data processing scripts that deal with raw data coming from the major SNP variation databases (e.g. HapMap, Perlegen), stripping them into single genotypes and then grouping them into populations, then merged with additional complementary descriptive information extracted from dbSNP. This allows not only in-house standardization and normalization of the genotyping data retrieved from different repositories, but also the calculation of statistical indices from simple allele frequency estimates to more elaborate genetic differentiation tests within populations, together with the ability to combine population samples from different databases. The present study demonstrates the viability of implementing scripts for handling extensive datasets of SNP genotypes with low computational costs, dealing with certain complex issues that arise from the divergent nature and configuration of the most popular SNP repositories. The information contained in these databases can also be enriched with additional information obtained from other complementary databases, in order to build a dedicated data mart. Updating the data structure is straightforward, as well as permitting easy implementation of new external data and the computation of supplementary statistical indices of interest.

  16. Reintroducing Guanaco in the Upper Belt of Central Argentina: Using Population Viability Analysis to Evaluate Extinction Risk and Management Priorities.

    PubMed

    Barri, Fernando Rafael

    2016-01-01

    Wildlife reintroduction is an increasingly used strategy to reverse anthropocene defaunation. For the purpose of ecosystem restoration, in 2007 the guanaco (Lama guanicoe) was reintroduced to the Quebrada del Condorito National Park, situated in the mountains of central Argentina. With the aim of developing management recommendations, the project included permanently monitoring the population to evaluate its dynamics and the ecological response of the individuals released into the area. Nine years later and after two releases of guanacos (113 individuals in 2007 without and 25 in 2011 with a pre-adaptation period), only 24 individuals, which conform three reproductive groups, and one group of solitary males were settled in the Park. Here I modeled a population viability analysis to evaluate extinction risk, using VORTEX software. Initial population structure, specified age distribution, mortality and reproductive rates, and mate monopolization recorded during field work were used in the model, whereas the remaining used demographic parameters, such as age of first offspring, maximum number of broods per year, mean foaling rate, and length of fecundity period, were taken from the literature. Each of the three different scenarios (without supplementation of individuals, and with a realistic and optimistic supplementation) and two possible catastrophic events (fires and food shortage) covering 100 years was repeated 1000 times. Even though the guanaco reintroduction project can be considered to have been partially successful since its start, the model predicts that the current reintroduced population could be extinct in the next few decades if no reinforcements occur, and that only a continuous supplementation can reach the probability that the population survives over the next 100 years. I conclude that, so far, the current population is at a high risk of extinction if further supplementation of individuals is discontinued.

  17. Pre-dispersal predation effect on seed packaging strategies and seed viability.

    PubMed

    DeSoto, Lucía; Tutor, David; Torices, Rubén; Rodríguez-Echeverría, Susana; Nabais, Cristina

    2016-01-01

    An increased understanding of intraspecific seed packaging (i.e. seed size/number strategy) variation across different environments may improve current knowledge of the ecological forces that drive seed evolution in plants. In particular, pre-dispersal seed predation may influence seed packaging strategies, triggering a reduction of the resources allocated to undamaged seeds within the preyed fruits. Assessing plant reactions to pre-dispersal seed predation is crucial to a better understanding of predation effects, but the response of plants to arthropod attacks remains unexplored. We have assessed the effect of cone predation on the size and viability of undamaged seeds in populations of Juniperus thurifera with contrasting seed packaging strategies, namely, North African populations with single-large-seeded cones and South European populations with multi-small-seeded cones. Our results show that the incidence of predation was lower on the single-large-seeded African cones than on the multi-small-seeded European ones. Seeds from non-preyed cones were also larger and had a higher germination success than uneaten seeds from preyed cones, but only in populations with multi-seeded cones and in cones attacked by Trisetacus sp., suggesting a differential plastic response to predation. It is possible that pre-dispersal seed predation has been a strong selective pressure in European populations with high cone predation rates, being a process which maintains multi-small-seeded cones and empty seeds as a strategy to save some seeds from predation. Conversely, pre-dispersal predation might not have a strong effect in the African populations with single-large-seeded cones characterized by seed germination and filling rates higher than those in the European populations. Our results indicate that differences in pre-dispersal seed predators and predation levels may affect both selection on and intraspecific variation in seed packaging.

  18. Random and non-random mating populations: Evolutionary dynamics in meiotic drive.

    PubMed

    Sarkar, Bijan

    2016-01-01

    Game theoretic tools are utilized to analyze a one-locus continuous selection model of sex-specific meiotic drive by considering nonequivalence of the viabilities of reciprocal heterozygotes that might be noticed at an imprinted locus. The model draws attention to the role of viability selections of different types to examine the stable nature of polymorphic equilibrium. A bridge between population genetics and evolutionary game theory has been built up by applying the concept of the Fundamental Theorem of Natural Selection. In addition to pointing out the influences of male and female segregation ratios on selection, configuration structure reveals some noted results, e.g., Hardy-Weinberg frequencies hold in replicator dynamics, occurrence of faster evolution at the maximized variance fitness, existence of mixed Evolutionarily Stable Strategy (ESS) in asymmetric games, the tending evolution to follow not only a 1:1 sex ratio but also a 1:1 different alleles ratio at particular gene locus. Through construction of replicator dynamics in the group selection framework, our selection model introduces a redefining bases of game theory to incorporate non-random mating where a mating parameter associated with population structure is dependent on the social structure. Also, the model exposes the fact that the number of polymorphic equilibria will depend on the algebraic expression of population structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Cone and Seed Maturation of Southern Pines

    Treesearch

    James P. Barnett

    1976-01-01

    If slightly reduced yields and viability are acceptable, loblolly and slash cone collections can begin 2 to 3 weeks before maturity if the cones are stored before processing. Longleaf(P. palestris Mill.) pine cones should be collected only when mature, as storage decreased germination of seeds from immature cones. Biochemical analyses to determine reducing sugar...

  20. Participation and Service Access Rights for People with Intellectual Disability: A Role for Law?

    ERIC Educational Resources Information Center

    Carney, Terry

    2013-01-01

    Background: Supported decision-making and personal budgets for services are the new paradigms. Method: Supported decision-making proposals from the Australian State of Victoria are analysed against international trends to determine the viability of laws reflecting new international norms of the United Nations Convention on the Rights of Persons…

  1. Detection of high concentrations of organic acids in fish emulsion and their role in pathogen or disease suppression.

    PubMed

    Abbasi, Pervaiz A; Lazarovits, George; Jabaji-Hare, Suha

    2009-03-01

    Fish emulsion (FE) added to a sandy-loam soil at 1 and 2% rates reduced the viability of Verticillium dahliae microsclerotia by 39 and 74% in 1 day, 87 and 98% in 3 days, and 95 and 99% in 6 days, respectively. The immediate kill of microsclerotia indicated that FE contains toxic substances. We found in FE high concentrations (400 mmol/liter) of organic acids, including some known toxicants. Glycolic, acetic, formic, n-butyric, and propionic acids were the major organic acids detected in FE at the proportions of 52.5, 26.9, 7.9, 7.2, and 4.7%, respectively. In solution assays, the viability of V. dahliae microsclerotia treated for 24 h in 1, 2, 5, and 10% FE (pH 3.6 to 3.0) or a mixture of organic acids (pH 4.1 to 3.9) equivalent to the proportions in FE was reduced by 74, 94, 97, and 99% or 81, 91, 98, and 99%, respectively. The viability of microsclerotia was increased when the treatment solutions were buffered to pH 6.0. The organic acids mixtures and formic (0.025%) and acetic (0.1%) acids were toxic to Pythium ultimum. A mixture of organic acids (1, 2, and 4%) provided immediate protection of cucumber seedlings from damping-off in P. ultimum-infested muck and sandy-loam soils but not in peat-based mix. FE (1 and 2%) provided immediate protection of cucumber seedlings from damping-off in an infested muck soil, and disease protection was consistent when planting was delayed for 7, 14, and 28 days after adding FE. FE (1, 2, and 4%) did not provide immediate protection of cucumber seedlings from damping-off in a P. ultimum-infested peat-based mix; however, disease suppression was evident when planting was delayed for 7, 14, and 21 days after adding FE. Real-time polymerase chain reaction analyses of the peat-based mix indicated that the P. ultimum populations in the FE-amended mix declined over time. This study suggests that these organic acids in FE played a major role in pathogen or disease suppression, depending on the soil and substrate.

  2. Genetic Allee effects and their interaction with ecological Allee effects.

    PubMed

    Wittmann, Meike J; Stuis, Hanna; Metzler, Dirk

    2018-01-01

    It is now widely accepted that genetic processes such as inbreeding depression and loss of genetic variation can increase the extinction risk of small populations. However, it is generally unclear whether extinction risk from genetic causes gradually increases with decreasing population size or whether there is a sharp transition around a specific threshold population size. In the ecological literature, such threshold phenomena are called 'strong Allee effects' and they can arise for example from mate limitation in small populations. In this study, we aim to (i) develop a meaningful notion of a 'strong genetic Allee effect', (ii) explore whether and under what conditions such an effect can arise from inbreeding depression due to recessive deleterious mutations, and (iii) quantify the interaction of potential genetic Allee effects with the well-known mate-finding Allee effect. We define a strong genetic Allee effect as a genetic process that causes a population's survival probability to be a sigmoid function of its initial size. The inflection point of this function defines the critical population size. To characterize survival-probability curves, we develop and analyse simple stochastic models for the ecology and genetics of small populations. Our results indicate that inbreeding depression can indeed cause a strong genetic Allee effect, but only if individuals carry sufficiently many deleterious mutations (lethal equivalents). Populations suffering from a genetic Allee effect often first grow, then decline as inbreeding depression sets in and then potentially recover as deleterious mutations are purged. Critical population sizes of ecological and genetic Allee effects appear to be often additive, but even superadditive interactions are possible. Many published estimates for the number of lethal equivalents in birds and mammals fall in the parameter range where strong genetic Allee effects are expected. Unfortunately, extinction risk due to genetic Allee effects can easily be underestimated as populations with genetic problems often grow initially, but then crash later. Also interactions between ecological and genetic Allee effects can be strong and should not be neglected when assessing the viability of endangered or introduced populations. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  3. Viability criteria for steelhead of the south-central and southern California coast

    USGS Publications Warehouse

    Boughton, David A.; Adams, Peter B.; Anderson, Eric; Fusaro, Craig; Keller, Edward A.; Kelley, Elsie; Lentsch, Leo; Nielsen, Jennifer L.; Perry, Katie; Regan, Helen; Smith, Jerry; Swift, Camm C.; Thompson, Lisa; Watson, Fred

    2007-01-01

    Recovery planning for threatened and endangered steelhead requires measurable, objective criteria for determining an acceptably low risk of extinction. Here we propose viability criteria for two levels of biological organization: individual populations, and groups of populations within the SouthCentral/Southern California Coast Steelhead Recovery Planning Domain. For populations, we adapt criteria commonly used by the IUCN (The World Conservation Union) for identifying at-risk species. For groups of populations we implement a diversity-based “representation and redundancy rule,” in which diversity includes both life-history diversity and biogeographic groupings of populations. The resulting criteria have the potential for straightforward assessment of the risks posed by evolutionary, demographic, environmental, and catastrophic factors; and are designed to use data that are readily collected. However, our prescriptive approach led to one criterion whose threshold could not yet be specified due to inadequate data, and others in which the simplicity of the criteria may render them inefficient for populations with stable run sizes or stable life-history polymorphisms. Both of these problems could likely be solved by directed programs of research and monitoring aimed at developing more efficient (but equally risk-averse) “performance-based criteria.” Of particular utility would be data on the natural fluctuations of populations, research into the stabilizing influence of life-history polymorphisms, and research on the implications of drought, wildfires, and fluvial sediment regimes. Research on estuarine habitat could also yield useful information on the generality and reliability of its role as nursery habitat. Currently, risk assessment at the population level is not possible due to data deficiency, highlighting the need to implement a comprehensive effort to monitor run sizes, anadromous fractions, spawner densities and perhaps marine survival. Assessment at the group level indicates a priority for securing inland populations in the southern Coast Ranges and Transverse Ranges, and a need to maintain not just the fluvial-anadromous life-history form, but also lagoon-anadromous and freshwater-resident forms in each population.

  4. The Genetic Basis for Variation in Sensitivity to Lead Toxicity in Drosophila melanogaster.

    PubMed

    Zhou, Shanshan; Morozova, Tatiana V; Hussain, Yasmeen N; Luoma, Sarah E; McCoy, Lenovia; Yamamoto, Akihiko; Mackay, Trudy F C; Anholt, Robert R H

    2016-07-01

    Lead toxicity presents a worldwide health problem, especially due to its adverse effects on cognitive development in children. However, identifying genes that give rise to individual variation in susceptibility to lead toxicity is challenging in human populations. Our goal was to use Drosophila melanogaster to identify evolutionarily conserved candidate genes associated with individual variation in susceptibility to lead exposure. To identify candidate genes associated with variation in susceptibility to lead toxicity, we measured effects of lead exposure on development time, viability and adult activity in the Drosophila melanogaster Genetic Reference Panel (DGRP) and performed genome-wide association analyses to identify candidate genes. We used mutants to assess functional causality of candidate genes and constructed a genetic network associated with variation in sensitivity to lead exposure, on which we could superimpose human orthologs. We found substantial heritabilities for all three traits and identified candidate genes associated with variation in susceptibility to lead exposure for each phenotype. The genetic architectures that determine variation in sensitivity to lead exposure are highly polygenic. Gene ontology and network analyses showed enrichment of genes associated with early development and function of the nervous system. Drosophila melanogaster presents an advantageous model to study the genetic underpinnings of variation in susceptibility to lead toxicity. Evolutionary conservation of cellular pathways that respond to toxic exposure allows predictions regarding orthologous genes and pathways across phyla. Thus, studies in the D. melanogaster model system can identify candidate susceptibility genes to guide subsequent studies in human populations. Zhou S, Morozova TV, Hussain YN, Luoma SE, McCoy L, Yamamoto A, Mackay TF, Anholt RR. 2016. The genetic basis for variation in sensitivity to lead toxicity in Drosophila melanogaster. Environ Health Perspect 124:1062-1070; http://dx.doi.org/10.1289/ehp.1510513.

  5. Assessing the feasibility of community health insurance in Uganda: A mixed-methods exploratory analysis.

    PubMed

    Biggeri, M; Nannini, M; Putoto, G

    2018-03-01

    Community health insurance (CHI) aims to provide financial protection and facilitate health care access among poor rural populations. Given common operational challenges that hamper the full development of the scheme, there is need to undertake systematic feasibility studies. These are scarce in the literature and usually they do not provide a comprehensive analysis of the local context. The present research intends to adopt a mixed-methods approach to assess ex-ante the feasibility of CHI. In particular, eight preconditions are proposed to inform the viability of introducing the micro insurance. A case study located in rural northern Uganda is presented to test the effectiveness of the mixed-methods procedure for the feasibility purpose. A household survey covering 180 households, 8 structured focus group discussions, and 40 key informant interviews were performed between October and December 2016 in order to provide a complete and integrated analysis of the feasibility preconditions. Through the data collected at the household level, the population health seeking behaviours and the potential insurance design were examined; econometric analyses were carried out to investigate the perception of health as a priority need and the willingness to pay for the scheme. The latter component, in particular, was analysed through a contingent valuation method. The results validated the relevant feasibility preconditions. Econometric estimates demonstrated that awareness of catastrophic health expenditures and the distance to the hospital play a critical influence on household priorities and willingness to pay. Willingness is also significantly affected by socio-economic status and basic knowledge of insurance principles. Overall, the mixed-methods investigation showed that a comprehensive feasibility analysis can shape a viable CHI model to be implemented in the local context. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Terrestrial species viability assessments for national forests in northeastern Washington

    Treesearch

    William L. Gaines; Barbara C. Wales; Lowell H. Suring; James S. Begley; Kim Mellen-McLean; Shawne. Mohoric

    2017-01-01

    We developed a process to address terrestrial wildlife species for which management for ecosystem diversity may be inadequate for providing ecological conditions capable of sustaining viable populations. The process includes (1) identifying species of conservation concern, (2) describing source habitats, and other important ecological factors, (3) organizing species...

  7. A new tool that links landscale connectivity and source-sink dynamics to population viability

    EPA Science Inventory

    The importance of connectivity and source-sink dynamics to conservation planning is widely appreciated. But the use of these concepts in practical applications such as the identification of critical habitat has been slowed because few models are designed to identify demographic s...

  8. Second Home Owners, Locals and Their Perspectives on Rural Development

    ERIC Educational Resources Information Center

    Farstad, Maja; Rye, Johan Fredrik

    2013-01-01

    Dominating strands within the research literature on second homes explain social conflicts between rural hosting and visiting second home populations by describing their differing perspectives on rural development. Such presentations suggest that locals are likely to welcome new developments in order to enhance the economic viability of their…

  9. Purple nutsedge (Cyperus rotundus) tuber production and viability is reduced by imazapic

    USDA-ARS?s Scientific Manuscript database

    Weeds exploit underutilized space, causing economic losses in cropping systems. Weed management tactics alter that underutilized space until the crop can mature and efficiently use that space. One tactic is to reduce the weed populations that persist quiescent in the soil, including minimizing pro...

  10. Watching what widlife want and need

    Treesearch

    Natasha Vizcarra; Mary Rowland; Christina Vojta

    2016-01-01

    National forests and grasslands are home to a diverse array of wildlife. To keep tabs on the general viability and wellbeing of these inhabitants, land managers need practical, defensible monitoring protocols. Population monitoring is one method. Another is habitat monitoring, which provides critical information about the quantity and quality of key habitat attributes...

  11. The California spotted owl: current state of knowledge

    Treesearch

    R.J. Gutiérrez; Patricia N. Manley; Peter A. Stine

    2017-01-01

    This conservation assessment represents a comprehensive review by scientists of the current scientific knowledge about the ecology, habitat use, population dynamics, and current threats to the viability of the California spotted owl (Strix occidentalis). It is based primarily on peer-reviewed published information with an emphasis on new scientific...

  12. Population Viability Analysis of the Endangered Shortnose Sturgeon

    DTIC Science & Technology

    2011-12-01

    Processing techniques for caviar and their effects on product composition. International Review of Hydrobiology 87(5-6):645-650. Homer CCH, Yang L...Inc. 1998). We measured NO3 concentration using cadmium reduction of nitrate, followed by azo- dye colorimetry (QuickChem method 31-107-04-1-C

  13. Effects of maternal and pre-weaning undernutrition in rat offspring: Age at reproductive senescence and intergenerational pup growth and viability

    EPA Science Inventory

    Maternal and/or postnatal undernutrition are widespread in human populations and are components of many experimental developmental and reproductive toxicology bio-assays. This study investigated in utero and/or pre-weaning undernutrition effects on reproductive maturation and se...

  14. Coptis chinensis Franch. exhibits neuroprotective properties against oxidative stress in human neuroblastoma cells.

    PubMed

    Friedemann, Thomas; Otto, Benjamin; Klätschke, Kristin; Schumacher, Udo; Tao, Yi; Leung, Alexander Kai-Man; Efferth, Thomas; Schröder, Sven

    2014-08-08

    The dried rhizome of Coptis chinensis Franch. (family Ranunculaceae) is traditionally used in Chinese medicine for the treatment of inflammatory diseases and diabetes. Recent studies showed a variety of activities of Coptis chinensis Franch. alkaloids, including neuroprotective, neuroregenerative, anti-diabetic, anti-oxidative and anti-inflammatory effects. However, there is no report on the neuroprotective effect of Coptis chinensis Franch. watery extract against tert-butylhydroperoxide (t-BOOH) induced oxidative damage. The aim of the study is to investigate neuroprotective properties of Coptis chinensis Franch. rhizome watery extract (CRE) and to evaluate its potential mechanism of action. Neuroprotective properties on t-BOOH induced oxidative stress were investigated in SH-SY5Y human neuroblastoma cells. Cells were pretreated with CRE for 2 h or 24 h followed by 2 h of treatment with t-BOOH. To evaluate the neuroprotective effect of CRE, cell viability, cellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and the apoptotic rate were determined and microarray analyses, as well as qRT-PCR analyses were conducted. Two hours of exposure to 100 µM t-BOOH resulted in a significant reduction of cell viability, increased apoptotic rate, declined mitochondrial membrane potential (MMP) and increased ROS production. Reduction of cell viability, increased apoptotic rate and declined mitochondrial membrane potential (MMP) could be significantly reduced in cells pretreated with CRE (100 µg/ml) for 2h or 24h ahead of t-BOOH exposure with the greatest effect after 24h of pretreatment; however ROS production was not changed significantly. Furthermore, microarray analyses revealed that the expressions of 2 genes; thioredoxin-interacting protein (TXNIP) and mitochondrially encoded NADH dehydrogenase 1, were significantly regulated. Down regulation of TXNIP was confirmed by qRT-PCR. Due to its neuroprotective properties CRE might be a potential therapeutic agent for the prevention or amelioration of diseases like diabetic neuropathy and neurodegenerative disorders like Alzheimer and Parkinsons disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Artificial evolution by viability rather than competition.

    PubMed

    Maesani, Andrea; Fernando, Pradeep Ruben; Floreano, Dario

    2014-01-01

    Evolutionary algorithms are widespread heuristic methods inspired by natural evolution to solve difficult problems for which analytical approaches are not suitable. In many domains experimenters are not only interested in discovering optimal solutions, but also in finding the largest number of different solutions satisfying minimal requirements. However, the formulation of an effective performance measure describing these requirements, also known as fitness function, represents a major challenge. The difficulty of combining and weighting multiple problem objectives and constraints of possibly varying nature and scale into a single fitness function often leads to unsatisfactory solutions. Furthermore, selective reproduction of the fittest solutions, which is inspired by competition-based selection in nature, leads to loss of diversity within the evolving population and premature convergence of the algorithm, hindering the discovery of many different solutions. Here we present an alternative abstraction of artificial evolution, which does not require the formulation of a composite fitness function. Inspired from viability theory in dynamical systems, natural evolution and ethology, the proposed method puts emphasis on the elimination of individuals that do not meet a set of changing criteria, which are defined on the problem objectives and constraints. Experimental results show that the proposed method maintains higher diversity in the evolving population and generates more unique solutions when compared to classical competition-based evolutionary algorithms. Our findings suggest that incorporating viability principles into evolutionary algorithms can significantly improve the applicability and effectiveness of evolutionary methods to numerous complex problems of science and engineering, ranging from protein structure prediction to aircraft wing design.

  16. Measuring Total and Germinable Spore Populations

    NASA Technical Reports Server (NTRS)

    Noell, A.C.; Yung, P.T.; Yang, W.; Lee, C.; Ponce, A.

    2011-01-01

    It has been shown that bacterial endospores can be enumerated using a microscopy based assay that images the luminescent halos from terbium ions bound to dipicolinic acid, a spore specific chemical marker released upon spore germination. Further development of the instrument has simplified it towards automation while at the same time improving image quality. Enumeration of total spore populations has also been developed allowing measurement of the percentage of viable spores in any population by comparing the germinable/culturable spores to the total. Percentage viability will allow a more quantitative comparison of the ability of spores to survive across a wide range of extreme environments.

  17. Study of low density air transportation concepts

    NASA Technical Reports Server (NTRS)

    Webb, H. M.

    1972-01-01

    Low density air transport refers to air service to sparsely populated regions. There are two major objectives. The first is to examine those characteristics of sparsely populated areas which pertain to air transportation. This involves determination of geographical, commercial and population trends, as well as those traveler characteristics which affect the viability of air transport in the region. The second objective is to analyze the technical, economic and operational characteristics of low density air service. Two representative, but diverse arenas, West Virginia and Arizona, were selected for analysis: The results indicate that Arizona can support air service under certain assumptions whereas West Virginia cannot.

  18. The effect of non-standard heat treatment of sheep's milk on physico-chemical properties, sensory characteristics, and the bacterial viability of classical and probiotic yogurt.

    PubMed

    Zamberlin, Šimun; Samaržija, Dubravka

    2017-06-15

    Classical and probiotic set yogurt were made using non-standard heat treatment of sheep's milk at 60°C/5min. Physico-chemical properties, sensory characteristics, and the viability of bacteria that originated from cultures in classical and probiotic yogurt were analysed during 21days of storage at 4°C. For the production of yogurt, a standard yogurt culture and a probiotic strain Lactobacillus rhamnosus GG were used. At the end of storage time of the classical and probiotic yogurt the totals of non-denatured whey proteins were 92.31 and 91.03%. The viability of yogurt culture bacteria and Lactobacillus rhamnosus GG were higher than 10 6 cfu/g. The total sensory score (maximum - 20) was 18.49 for the classical and 18.53 for the probiotic. In nutritional and functional terms it is possible to produce classical and probiotic sheep's milk yogurt by using a non-standard temperature of heat treatment with a shelf life of 21days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The evolutionary dynamics of haplodiploidy: Genome architecture and haploid viability

    PubMed Central

    Blackmon, Heath; Hardy, Nate B.; Ross, Laura

    2015-01-01

    Haplodiploid reproduction, in which males are haploid and females are diploid, is widespread among animals, yet we understand little about the forces responsible for its evolution. The current theory is that haplodiploidy has evolved through genetic conflicts, as it provides a transmission advantage to mothers. Male viability is thought to be a major limiting factor; diploid individuals tend to harbor many recessive lethal mutations. This theory predicts that the evolution of haplodiploidy is more likely in male heterogametic lineages with few chromosomes, as genes on the X chromosome are often expressed in a haploid environment, and the fewer the chromosome number, the greater the proportion of the total genome that is X‐linked. We test this prediction with comparative phylogenetic analyses of mites, among which haplodiploidy has evolved repeatedly. We recover a negative correlation between chromosome number and haplodiploidy, find evidence that low chromosome number evolved prior to haplodiploidy, and that it is unlikely that diplodiploidy has reevolved from haplodiploid lineages of mites. These results are consistent with the predicted importance of haploid male viability. PMID:26462452

  20. An antagonist of the retinoid X receptor reduces the viability of Trichuris muris in vitro.

    PubMed

    Hurst, Rebecca J M; Hopwood, Thomas; Gallagher, Amanda L; Partridge, Frederick A; Burgis, Timothy; Sattelle, David B; Else, Kathryn J

    2014-09-27

    Trichuriasis is a parasitic disease caused by the human whipworm, Trichuris trichiura. It affects millions worldwide, particularly in the tropics. This nematode parasite burrows into the colonic epithelium resulting in inflammation and morbidity, especially in children. Current treatment relies mainly on general anthelmintics such as mebendazole but resistance to these drugs is increasingly problematic. Therefore, new treatments are urgently required. The prospect of using the retinoid X receptor (RXR) antagonist HX531 as a novel anthelmintic was investigated by carrying out multiple viability assays with the mouse whipworm Trichuris muris. HX531 reduced both the motility and viability of T. muris at its L3, L4 and adult stages. Further, bioinformatic analyses show that the T. muris genome possesses an RXR-like receptor, a possible target for HX531. The study suggested that Trichuris-specific RXR antagonists may be a source of much-needed novel anthelmintic candidates for the treatment of trichuriasis. The identification of an RXR-like sequence in the T. muris genome also paves the way for further research based on this new anthelmintic lead compound.

  1. Assessment of the cytotoxicity of aluminium oxide nanoparticles on selected mammalian cells.

    PubMed

    Radziun, E; Dudkiewicz Wilczyńska, J; Książek, I; Nowak, K; Anuszewska, E L; Kunicki, A; Olszyna, A; Ząbkowski, T

    2011-12-01

    The rapid development of nanotechnology raises both enthusiasm and anxiety among researchers, which is related to the safety use of the manufactured materials. Thus, the aim of this study was to investigate the effect of aluminium oxide nanoparticles on the viability of selected mammalian cells in vitro. The aluminium oxide nanoparticles were characterised using SEM and BET analyses. Based on Zeta (ζ) potential measurements and particle size distribution, the tested suspensions of aluminium oxide nanoparticles in water and nutrient solutions with or without FBS were classified as unstable. Cell viability, the degree of apoptosis induction and nanoparticles internalization into the cells were assessed after 24 h of cell exposure to Al2O3 nanoparticles. Our results confirm the ability of aluminium oxide nanoparticles to penetrate through the membranes of L929 and BJ cells. Despite this, there was no significant increase in apoptosis or decrease in cell viability observed, suggesting that aluminium oxide nanoparticles in the tested range of concentrations has no cytotoxic effects on the selected mammalian cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. The genetic rescue of two bottlenecked South Island robin populations using translocations of inbred donors.

    PubMed

    Heber, S; Varsani, A; Kuhn, S; Girg, A; Kempenaers, B; Briskie, J

    2013-02-07

    Populations forced through bottlenecks typically lose genetic variation and exhibit inbreeding depression. 'Genetic rescue' techniques that introduce individuals from outbred populations can be highly effective in reversing the deleterious effects of inbreeding, but have limited application for the majority of endangered species, which survive only in a few bottlenecked populations. We tested the effectiveness of using highly inbred populations as donors to rescue two isolated and bottlenecked populations of the South Island robin (Petroica australis). Reciprocal translocations significantly increased heterozygosity and allelic diversity. Increased genetic diversity was accompanied by increased juvenile survival and recruitment, sperm quality, and immunocompetence of hybrid individuals (crosses between the two populations) compared with inbred control individuals (crosses within each population). Our results confirm that the implementation of 'genetic rescue' using bottlenecked populations as donors provides a way of preserving endangered species and restoring their viability when outbred donor populations no longer exist.

  3. The antioxidant effects of soybean lecithin- or low-density lipoprotein-based extenders for the cryopreservation of brown-bear (Ursus arctos) spermatozoa.

    PubMed

    Alvarez-Rodríguez, M; Alvarez, M; Anel-López, L; Martínez-Rodríguez, C; Martínez-Pastor, F; Borragan, S; Anel, L; de Paz, P

    2013-01-01

    Egg yolk low-density lipoproteins (LDL) and soybean lecithin were evaluated as replacements for egg yolk in extenders used for the cryopreservation of brown-bear spermatozoa. The motility, viability and acrosomal status of post-thawed spermatozoa were analysed, and an egg-yolk extender was used as a control. The total antioxidant capacity of these extenders was tested. Soybean lecithin showed an effect that was dependent on the soybean concentration (2%, 3.5% and 5%) and source (Type A: 24% L-α-phosphatidylcholine, and Type B: 14-23% L-α-phosphatidylcholine). Only semen cryopreserved with 5% Type A soybean exhibited a sperm motility similar to that of semen cryopreserved in egg-yolk-based extender after thawing, although the sperm viability and acrosome status were not as high. Semen frozen in an extender containing LDL (10-15%) exhibited improved sperm viability in comparison with the control, but sperm motility was lower. The LDL-based extender exhibited a higher anti-oxidant activity than the egg-yolk extender and soy lecithin-based extenders. The extenders with higher anti-oxidant activity showed improvements in frozen sperm viability but lower semen motility. These results indicate that soybean lecithin did not have the same protective effect as egg yolk during the freezing of brown-bear spermatozoa but suggest that LDL (10-15%) could be a useful substitute for egg yolk in these extenders.

  4. Preliminary viability assessment of Lake Mendocino forecast informed reservoir operations

    USGS Publications Warehouse

    Jasperse, Jay; Ralph, Marty; Anderson, Michael; Brekke, Levi D.; Dillabough, Mike; Dettinger, Michael; Haynes, Alan; Hartman, Robert; Jones, Christy; Forbis, Joe; Rutten, Patrick; Talbot, Cary; Webb, Robert H.

    2017-01-01

    This report describes the preliminary viability assessment (PVA) of forecast informed reservoir operations (FIRO) for Lake Mendocino, which is located on the East Fork Russian River three miles east of Ukiah, California. The results described in this report represent the collective activities of the Lake Mendocino FIRO Steering Committee (SC) (SC members are named on the inside cover of the report). The SC consists of water managers and scientists from several federal, state, and local agencies, and universities who have teamed to evaluate whether current technology and scientific understanding can be utilized to improve reliability of meeting water management objectives of Lake Mendocino while not impairing flood protection. While the PVA provides an initial evaluation of the viability of FIRO as a concept, additional steps remain to complete the full viability assessment (FVA). Also, the PVA does not identify how FIRO strategies would be implemented. That effort would be the focus of the FVA, which builds off the analyses developed in the PVA. This report summarizes current Lake Mendocino operation and a preliminary analysis of FIRO alternatives, including analysis methods, results, and recommendations. A set of accompanying reports describes the analysis in detail. These are referred to herein as the Sonoma County Water Agency (SCWA) report, the Hydrologic Engineering Center (HEC) report, and the Center for Western Weather and Water Extremes (CW3E) report (SCWA 2017, USACE 2017, and CW3E 2017, respectively).

  5. Assessment of the commercial viability of selected options for on-orbit servicing (OOS)

    NASA Astrophysics Data System (ADS)

    Graham, Andrew Robert; Kingston, Jennifer

    2015-12-01

    The aim of this paper is to determine the commercial viability of on-orbit servicing of communications satellites in geostationary orbit. Previous studies have shown the technical feasibility of servicing as well as the financial viability of some missions, in particular refuelling, therefore this paper analyses these repair missions and life extension missions. A simple parametric model for simulating communications satellite revenue streams is developed and the results are used to determine the maximum possible revenue for a servicing satellite operator. From this, the maximum cost of the servicing satellite as a proportion of the cost of the communications satellite is determined under three profit scenarios representing zero profit, acceptable profit to an operator in a mature industry and acceptable profit to an operator in an emerging industry. The results show that while servicing is financially viable (zero profit scenario), those missions which result in an increase in Comsat life which is a multiple of the mission duration are more likely to be commercially viable. Refuelling is therefore viable in all cases but life extension in most cases is only marginally viable. Repair missions to satellites which are partially operable are also unlikely to deliver sufficient value to justify carrying out servicing. Also the timing of a servicing mission in relation to the expected remaining life expectancy is a major factor in determining the mission's viability.

  6. Characteristics associated with regional health information organization viability.

    PubMed

    Adler-Milstein, Julia; Landefeld, John; Jha, Ashish K

    2010-01-01

    Regional Health Information Organizations (RHIOs) will likely play a key role in our nation's effort to catalyze health information exchange. Yet we know little about why some efforts succeed while others fail. We sought to identify factors associated with RHIO viability. Using data from a national survey of RHIOs that we conducted in mid-2008, we examined factors associated with becoming operational and factors associated with financial viability. We used multivariate logistic regression models to identify unique predictors. We classified RHIOs actively facilitating data exchange as operational and measured financial viability as the percent of operating costs covered by revenue from participants in data exchange (0-24%, 25-74%, 75-100%). Predictors included breadth of participants, breadth of data exchanged, whether the RHIO focused on a specific population, whether RHIO participants had a history of collaborating, and sources of revenue during the planning phase. Exchanging a narrow set of data and involving a broad group of stakeholders were independently associated with a higher likelihood of being operational. Involving hospitals and ambulatory physicians, and securing early funding from participants were associated with a higher likelihood of financial viability, while early grant funding seemed to diminish the likelihood. Finding ways to help RHIOs become operational and self-sustaining will bolster the current approach to nationwide health information exchange. Our work suggests that convening a broad coalition of stakeholders to focus on a narrow set of data is an important step in helping RHIOs become operational. Convincing stakeholders to financially commit early in the process may help RHIOs become self-sustaining.

  7. The effect of Aloe vera gel on viability of dental pulp stem cells.

    PubMed

    Sholehvar, Fatemeh; Mehrabani, Davood; Yaghmaei, Parichehr; Vahdati, Akbar

    2016-10-01

    Dental pulp stem cells (DPSCs) can play a prominent role in tissue regeneration. Aloe vera L. (Liliaceae) contains the polysaccharide of acemannan that was shown to be a trigger factor for cell proliferation, differentiation, mineralization, and dentin formation. This study sought to determine the viability of DPSCs in Aloe vera in comparison with Hank's balanced salt solution (HBSS). Twelve rabbits underwent anesthesia, and their incisor teeth were extracted; the pulp tissue was removed, chopped, treated with collagenase and plated in culture flasks. DPSCs from passage 3 were cultured in 24-well plates, and after 3 days, the culture media changed to 10, 25, 50, and 100% concentrations of Aloe vera at intervals of 45 and 90 min and 3 and 6 h. Distilled water was used as negative and HBSS as positive control for comparison. The cell morphology, viability, population doubling time (PDT), and growth kinetics were evaluated. RT-PCR was carried out for characterization and karyotyping for chromosomal stability. Aloe vera showed a significant higher viability than HBSS (74.74%). The 50% Aloe vera showed higher viability (97.73%) than other concentrations. PDT in 50% concentration was 35.1 h and for HBSS was 49.5 h. DPSCs were spindle shaped and were positive for CD73 and negative for CD34 and CD45. Karyotyping was normal. Aloe vera as an inexpensive and available herb can improve survival of avulsed or broken teeth in emergency cases as a transfer media. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Nitrofen induces apoptosis independently of retinaldehyde dehydrogenase (RALDH) inhibition.

    PubMed

    Kling, David E; Cavicchio, Amanda J; Sollinger, Christina A; Schnitzer, Jay J; Kinane, T Bernard; Newburg, David S

    2010-06-01

    Nitrofen is a diphenyl ether that induces congenital diaphragmatic hernia (CDH) in rodents. Its mechanism of action has been hypothesized as inhibition of the retinaldehyde dehydrogenase (RALDH) enzymes with consequent reduced retinoic acid signaling. To determine if nitrofen inhibits RALDH enzymes, a reporter gene construct containing a retinoic acid response-element (RARE) was transfected into HEK-293 cells and treated with varying concentrations of nitrofen in the presence of retinaldehyde (retinal). Cell death was characterized by caspace-cleavage microplate assays and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assays. Ex vivo analyses of cell viability were characterized in fetal rat lung explants using Live/Dead staining. Cell proliferation and apoptosis were assessed using fluorescent immunohistochemistry with phosphorylated histone and activated caspase antibodies on explant tissues. Nile red staining was used to identify intracellular lipid droplets. Nitrofen-induced dose-dependent declines in RARE-reporter gene expression. However, similar reductions were observed in control-reporter constructs suggesting that nitrofen compromised cell viability. These observed declines in cell viability resulted from increased cell death and were confirmed using two independent assays. Ex vivo analyses showed that mesenchymal cells were particularly susceptible to nitrofen-induced apoptosis while epithelial cell proliferation was dramatically reduced in fetal rat lung explants. Nitrofen treatment of these explants also showed profound lipid redistribution, primarily to phagocytes. The observed declines in nitrofen-associated retinoic acid signaling appear to be independent of RALDH inhibition and likely result from nitrofen induced cell death/apoptosis. These results support a cellular apoptotic mechanism of CDH development, independent of RALDH inhibition.

  9. The genealogy and genetic viability of reintroduced Yellowstone grey wolves.

    PubMed

    Vonholdt, Bridgett M; Stahler, Daniel R; Smith, Douglas W; Earl, Dent A; Pollinger, John P; Wayne, Robert K

    2008-01-01

    The recovery of the grey wolf in Yellowstone National Park is an outstanding example of a successful reintroduction. A general question concerning reintroduction is the degree to which genetic variation has been preserved and the specific behavioural mechanisms that enhance the preservation of genetic diversity and reduce inbreeding. We have analysed 200 Yellowstone wolves, including all 31 founders, for variation in 26 microsatellite loci over the 10-year reintroduction period (1995-2004). The population maintained high levels of variation (1995 H(0) = 0.69; 2004 H(0) = 0.73) with low levels of inbreeding (1995 F(IS) = -0.063; 2004 F(IS) = -0.051) and throughout, the population expanded rapidly (N(1995) = 21; N(2004) = 169). Pedigree-based effective population size ratios did not vary appreciably over the duration of population expansion (1995 N(e)/N(g) = 0.29; 2000 N(e)/N(g) = 0.26; 2004 N(e)/N(g) = 0.33). We estimated kinship and found only two of 30 natural breeding pairs showed evidence of being related (average r = -0.026, SE = 0.03). We reconstructed the genealogy of 200 wolves based on genetic and field data and discovered that they avoid inbreeding through a wide variety of behavioural mechanisms including absolute avoidance of breeding with related pack members, male-biased dispersal to packs where they breed with nonrelatives, and female-biased subordinate breeding. We documented a greater diversity of such population assembly patterns in Yellowstone than previously observed in any other natural wolf population. Inbreeding avoidance is nearly absolute despite the high probability of within-pack inbreeding opportunities and extensive interpack kinship ties between adjacent packs. Simulations showed that the Yellowstone population has levels of genetic variation similar to that of a population managed for high variation and low inbreeding, and greater than that expected for random breeding within packs or across the entire breeding pool. Although short-term losses in variation seem minimal, future projections of the population at carrying capacity suggest significant inbreeding depression will occur without connectivity and migratory exchange with other populations.

  10. Rocky Mountain Center for Conservation Genetics and Systematics

    USGS Publications Warehouse

    Oyler-McCance, S.J.; Quinn, T.W.

    2005-01-01

    The use of molecular genetic tools has become increasingly important in addressing conservation issues pertaining to plants and animals. Genetic information can be used to augment studies of population dynamics and population viability, investigate systematic, refine taxonomic definitions, investigate population structure and gene flow, and document genetic diversity in a variety of plant and animal species. Further, genetic techniques are being used to investigate mating systems through paternity analysis, and analyze ancient DNA samples from museum specimens, and estimate population size and survival rates using DNA as a unique marker. Such information is essential for the sound management of small, isolated populations of concern and is currently being used by universities, zoos, the U.S. Fish and Wildlife Service, and numerous state fish and wildlife agencies.

  11. Ecological genetics at the USGS National Wetlands Research Center

    USGS Publications Warehouse

    Travis, Steven

    2006-01-01

    The Ecological Genetics Program at the USGS National Wetlands Research Center (NWRC) employs state-of-the-art DNA fingerprinting technologies in characterizing critical management aspects of the population biology of species of concern (fig. 1). The overarching themes of this program have been (1) the critical role that genetic diversity plays in maintaining population viability and (2) how management strategies might incorporate genetic information in preventing the decline of desirable species or in controlling the spread of invasive species.

  12. Plant quality and local adaptation undermine relocation in a bog specialist butterfly

    PubMed Central

    Turlure, Camille; Radchuk, Viktoriia; Baguette, Michel; Meijrink, Mark; den Burg, Arnold; Vries, Michiel Wallis; Duinen, Gert-Jan

    2013-01-01

    The butterfly Boloria aquilonaris is a specialist of oligotrophic ecosystems. Population viability analysis predicted the species to be stable in Belgium and to collapse in the Netherlands with reduced host plant quality expected to drive species decline in the latter. We tested this hypothesis by rearing B. aquilonaris caterpillars from Belgian and Dutch sites on host plants (the cranberry, Vaccinium oxycoccos). Dutch plant quality was lower than Belgian one conferring lower caterpillar growth rate and survival. Reintroduction and/or supplementation may be necessary to ensure the viability of the species in the Netherlands, but some traits may have been selected solely in Dutch caterpillars to cope with gradual changes in host plant quality. To test this hypothesis, the performance of Belgian and Dutch caterpillars fed with plants from both countries were compared. Dutch caterpillars performed well on both plant qualities, whereas Belgian caterpillars could not switch to lower quality plants. This can be considered as an environmentally induced plastic response of caterpillars and/or a local adaptation to plant quality, which precludes the use of Belgian individuals as a unique solution for strengthening Dutch populations. More generally, these results stress that the relevance of local adaptation in selecting source populations for relocation may be as important as restoring habitat quality. PMID:23467336

  13. Regional Genetic Structure and Environmental Variables Influence our Conservation Approach for Feather Heads (Ptilotus macrocephalus)

    PubMed Central

    2016-01-01

    Continued alterations to the Australian environment compromise the long-term viability of many plant species. We investigate the population genetics of Ptilotus macrocephalus, a perennial herb that occurs in 2 nationally endangered communities on the Victorian Volcanic Plain Bioregion (VVP), Australia, to answer key questions regarding regional differentiation and to guide conservation strategies. We evaluate genetic structure and diversity within and among 17 P. macrocephalus populations from 3 regions of southeastern Australia using 17 microsatellite markers developed de novo. Genetic structure was present in P. macrocephalus between the 3 regions but not at the population level. Environmental factors, namely temperature and precipitation, significantly explained differentiation between the North region and the other 2 regions indicating isolation by environment. Within regions, genetic structure currently shows a high level of gene flow and genetic variation. Our results suggest that within-region gene flow does not reflect current habitat fragmentation in southeastern Australia whereas temperature and precipitation are likely to be responsible for the differentiation detected among regions. Climate change may severely impact P. macrocephalus on the VVP and test its evolutionary resilience. We suggest taking a proactive conservation approach to improve long-term viability by sourcing material for restoration to assist gene flow to the VVP region to promote an increased adaptive capacity. PMID:26865733

  14. In vitro adverse effects of iron ore dusts on human lymphoblastoid cells in culture.

    PubMed

    Wang, He; Wang, Jing J; Sanderson, Barbara J S

    2013-01-01

    The aim of this study was to investigate the adverse effects produced by four types of iron (Fe) ore dust using cultured human cells. Genotoxicity and cytotoxicity induced by Fe ore dusts were determined by assays including cytokinesis block micronucleus (CBMN), population growth, and methyl tetrazolium (MTT). Four iron ore dusts were tested, namely, 1002 Limonite & Goethite (1002), HG2 hematite (HG2), HG1 Soutlem Pit (HG1), and HG4. WIL2 -NS cells were incubated for 10 h with extracts from a range of concentrations (0, 75, or 150 μg/ml) of Fe ore dust. Significant decreases in percent cell viability were seen at 150 μg/ml HG2 and 1002 as measured by MTT, with viability that decreased to 75 and 73%, respectively, compared to untreated controls. The cell population regrew to a different extent after Fe ore dust was removed, except for HG1, where population remained declined. An approximately twofold significant increase in the frequency of micronucleated binucleated cells (MNBNC) was seen with 1002, HG2, and HG1 at 150 μg/ml. A significant rise in apoptosis induction was observed at 150 μg/ml HG1. Data indicate that Fe ore dusts at 150 μg/ml produced cytotoxicity and genotoxicity.

  15. Assessing the viability of bacterial species in drinking water by combined cellular and molecular analyses.

    PubMed

    Kahlisch, Leila; Henne, Karsten; Gröbe, Lothar; Brettar, Ingrid; Höfle, Manfred G

    2012-02-01

    The question which bacterial species are present in water and if they are viable is essential for drinking water safety but also of general relevance in aquatic ecology. To approach this question we combined propidium iodide/SYTO9 staining ("live/dead staining" indicating membrane integrity), fluorescence-activated cell sorting (FACS) and community fingerprinting for the analysis of a set of tap water samples. Live/dead staining revealed that about half of the bacteria in the tap water had intact membranes. Molecular analysis using 16S rRNA and 16S rRNA gene-based single-strand conformation polymorphism (SSCP) fingerprints and sequencing of drinking water bacteria before and after FACS sorting revealed: (1) the DNA- and RNA-based overall community structure differed substantially, (2) the community retrieved from RNA and DNA reflected different bacterial species, classified as 53 phylotypes (with only two common phylotypes), (3) the percentage of phylotypes with intact membranes or damaged cells were comparable for RNA- and DNA-based analyses, and (4) the retrieved species were primarily of aquatic origin. The pronounced difference between phylotypes obtained from DNA extracts (dominated by Betaproteobacteria, Bacteroidetes, and Actinobacteria) and from RNA extracts (dominated by Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, and Cyanobacteria) demonstrate the relevance of concomitant RNA and DNA analyses for drinking water studies. Unexpected was that a comparable fraction (about 21%) of phylotypes with membrane-injured cells was observed for DNA- and RNA-based analyses, contradicting the current understanding that RNA-based analyses represent the actively growing fraction of the bacterial community. Overall, we think that this combined approach provides an interesting tool for a concomitant phylogenetic and viability analysis of bacterial species of drinking water.

  16. Crash and rebound of indigenous populations in lowland South America

    NASA Astrophysics Data System (ADS)

    Hamilton, Marcus J.; Walker, Robert S.; Kesler, Dylan C.

    2014-04-01

    Lowland South America has long been a battle-ground between European colonization and indigenous survival. Initial waves of European colonization brought disease epidemics, slavery, and violence that had catastrophic impacts on indigenous cultures. In this paper we focus on the demography of 238 surviving populations in Brazil. We use longitudinal censuses from all known indigenous Brazilian societies to quantify three demographic metrics: 1) effects of European contact on indigenous populations; 2) empirical estimates of minimum viable population sizes; and 3) estimates of post-contact population growth rates. We use this information to conduct population viability analysis (PVA). Our results show that all surviving populations suffered extensive mortality during, and shortly after, contact. However, most surviving populations exhibit positive growth rates within the first decade post-contact. Our findings paint a positive demographic outlook for these indigenous populations, though long-term survival remains subject to powerful externalities, including politics, economics, and the pervasive illegal exploitation of indigenous lands.

  17. Origin of C. latifolia and C. aurantiifolia triploid limes: the preferential disomic inheritance of doubled-diploid 'Mexican' lime is consistent with an interploid hybridization hypothesis.

    PubMed

    Rouiss, H; Bakry, F; Froelicher, Y; Navarro, L; Aleza, P; Ollitrault, P

    2018-03-05

    Two main types of triploid limes are produced worldwide. The 'Tahiti' lime type (Citrus latifolia) is predominant, while the 'Tanepao' type (C. aurantiifolia) is produced to a lesser extent. Both types result from natural interspecific hybridization involving a diploid gamete of C. aurantiifolia 'Mexican' lime type (itself a direct interspecific C. micrantha × C. medica hybrid). The meiotic behaviour of a doubled-diploid 'Mexican' lime, the interspecific micrantha/medica recombination and the resulting diploid gamete structures were analysed to investigate the possibility that 'Tahiti' and 'Tanepao' varieties are derived from natural interploid hybridization. A population of 85 tetraploid hybrids was established between a doubled-diploid clementine and a doubled-diploid 'Mexican' lime and used to infer the genotypes of 'Mexican' lime diploid gametes. Meiotic behaviour was studied through combined segregation analysis of 35 simple sequenbce repeat (SSR) and single nucleotide polymorphismn (SNP) markers covering the nine citrus chromosomes and cytogenetic studies. It was supplemented by pollen viability assessment. Pollen viability of the doubled-diploid Mexican lime (64 %) was much higher than that of the diploid. On average, 65 % of the chromosomes paired as bivalents and 31.4 % as tetravalents. Parental heterozygosity restitution ranged from 83 to 99 %. Disomic inheritance with high preferential pairing values was deduced for three chromosomes. Intermediate inheritances, with disomic trend, were found for five chromosomes, and an intermediate inheritance was observed for one chromosome. The average effective interspecific recombination rate was low (1.2 cM Mb-1). The doubled-diploid 'Mexican' lime had predominantly disomic segregation, producing interspecific diploid gamete structures with high C. medica/C. micrantha heterozygosity, compatible with the phylogenomic structures of triploid C. latifolia and C. aurantiifolia varieties. This disomic trend limits effective interspecific recombination and diversity of the diploid gamete population. Interploid reconstruction breeding using doubled-diploid lime as one parent is a promising approach for triploid lime diversification. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Deploying dengue-suppressing Wolbachia : Robust models predict slow but effective spatial spread in Aedes aegypti.

    PubMed

    Turelli, Michael; Barton, Nicholas H

    2017-06-01

    A novel strategy for controlling the spread of arboviral diseases such as dengue, Zika and chikungunya is to transform mosquito populations with virus-suppressing Wolbachia. In general, Wolbachia transinfected into mosquitoes induce fitness costs through lower viability or fecundity. These maternally inherited bacteria also produce a frequency-dependent advantage for infected females by inducing cytoplasmic incompatibility (CI), which kills the embryos produced by uninfected females mated to infected males. These competing effects, a frequency-dependent advantage and frequency-independent costs, produce bistable Wolbachia frequency dynamics. Above a threshold frequency, denoted pˆ, CI drives fitness-decreasing Wolbachia transinfections through local populations; but below pˆ, infection frequencies tend to decline to zero. If pˆ is not too high, CI also drives spatial spread once infections become established over sufficiently large areas. We illustrate how simple models provide testable predictions concerning the spatial and temporal dynamics of Wolbachia introductions, focusing on rate of spatial spread, the shape of spreading waves, and the conditions for initiating spread from local introductions. First, we consider the robustness of diffusion-based predictions to incorporating two important features of wMel-Aedes aegypti biology that may be inconsistent with the diffusion approximations, namely fast local dynamics induced by complete CI (i.e., all embryos produced from incompatible crosses die) and long-tailed, non-Gaussian dispersal. With complete CI, our numerical analyses show that long-tailed dispersal changes wave-width predictions only slightly; but it can significantly reduce wave speed relative to the diffusion prediction; it also allows smaller local introductions to initiate spatial spread. Second, we use approximations for pˆ and dispersal distances to predict the outcome of 2013 releases of wMel-infected Aedes aegypti in Cairns, Australia, Third, we describe new data from Ae. aegypti populations near Cairns, Australia that demonstrate long-distance dispersal and provide an approximate lower bound on pˆ for wMel in northeastern Australia. Finally, we apply our analyses to produce operational guidelines for efficient transformation of vector populations over large areas. We demonstrate that even very slow spatial spread, on the order of 10-20 m/month (as predicted), can produce area-wide population transformation within a few years following initial releases covering about 20-30% of the target area. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. On the genetic parameter determining the efficiency of purging: an estimate for Drosophila egg-to-pupae viability.

    PubMed

    Bersabé, D; García-Dorado, A

    2013-02-01

    The consequences of inbreeding on fitness can be crucial in evolutionary and conservation grounds and depend upon the efficiency of purging against deleterious recessive alleles. Recently, analytical expressions have been derived to predict the evolution of mean fitness, taking into account both inbreeding and purging, which depend on an 'effective purging coefficient (d(e) )'. Here, we explore the validity of that predictive approach and assay the strength of purging by estimating d(e) for egg-to-pupae viability (EPV) after a drastic reduction in population size in a recently captured base population of Drosophila melanogaster. For this purpose, we first obtained estimates of the inbreeding depression rate (δ) for EPV in the base population, and we found that about 40% was due to segregating recessive lethals. Then, two sets of lines were founded from this base population and were maintained with different effective size throughout the rest of the experiment (N = 6; N = 12), their mean EPV being assayed at different generations. Due to purging, the reductions in mean EPV experienced by these lines were considerably smaller than the corresponding neutral predictions. For the 60% of δ attributable to nonlethal deleterious alleles, our results suggest an effective purging coefficient d(e) > 0.02. Similarly, we obtain that d(e) > 0.09 is required to roughly account for purging against the pooled inbreeding depression from lethal and nonlethal deleterious alleles. This implies that purging should be efficient for population sizes of the order of a few tens and larger, but might be inefficient against nonlethal deleterious alleles in smaller populations. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  20. Fish and fire: Post-wildfire sediment dynamics and implications for the viability of trout populations

    NASA Astrophysics Data System (ADS)

    Murphy, B. P.; Czuba, J. A.; Belmont, P.; Budy, P.; Finch, C.

    2017-12-01

    Episodic events in steep landscapes, such as wildfire and mass wasting, contribute large pulses of sediment to rivers and can significantly alter the quality and connectivity of fish habitat. Understanding where these sediment inputs occur, how they are transported and processed through the watershed, and their geomorphic effect on the river network is critical to predicting the impact on ecological aquatic communities. The Tushar Mountains of southern Utah experienced a severe wildfire in 2010, resulting in numerous debris flows and the extirpation of trout populations. Following many years of habitat and ecological monitoring in the field, we have developed a modeling framework that links post-wildfire debris flows, fluvial sediment routing, and population ecology in order to evaluate the impact and response of trout to wildfire. First, using the Tushar topographic and wildfire parameters, as well as stochastic precipitation generation, we predict the post-wildfire debris flow probabilities and volumes of mainstem tributaries using the Cannon et al. [2010] model. This produces episodic hillslope sediment inputs, which are delivered to a fluvial sediment, river-network routing model (modified from Czuba et al. [2017]). In this updated model, sediment transport dynamics are driven by time-varying discharge associated with the stochastic precipitation generation, include multiple grain sizes (including gravel), use mixed-size transport equations (Wilcock & Crowe [2003]), and incorporate channel slope adjustments with aggradation and degradation. Finally, with the spatially explicit adjustments in channel bed elevation and grain size, we utilize a new population viability analysis (PVA) model to predict the impact and recovery of fish populations in response to these changes in habitat. Our model provides a generalizable framework for linking physical and ecological models and for evaluating the extirpation risk of isolated fish populations throughout the Intermountain West to the increasing threat of wildfire.

  1. A projection of lesser prairie chicken (Tympanuchus pallidicinctus) populations range-wide

    USGS Publications Warehouse

    Cummings, Jonathan W.; Converse, Sarah J.; Moore, Clinton T.; Smith, David R.; Nichols, Clay T.; Allan, Nathan L.; O'Meilia, Chris M.

    2017-08-09

    We built a population viability analysis (PVA) model to predict future population status of the lesser prairie-chicken (Tympanuchus pallidicinctus, LEPC) in four ecoregions across the species’ range. The model results will be used in the U.S. Fish and Wildlife Service's (FWS) Species Status Assessment (SSA) for the LEPC. Our stochastic projection model combined demographic rate estimates from previously published literature with demographic rate estimates that integrate the influence of climate conditions. This LEPC PVA projects declining populations with estimated population growth rates well below 1 in each ecoregion regardless of habitat or climate change. These results are consistent with estimates of LEPC population growth rates derived from other demographic process models. Although the absolute magnitude of the decline is unlikely to be as low as modeling tools indicate, several different lines of evidence suggest LEPC populations are declining.

  2. Prolonged viability of human organotypic skin explant in culture method (hOSEC)*

    PubMed Central

    Frade, Marco Andrey Cipriani; de Andrade, Thiago Antônio Moretti; Aguiar, Andréia Fernanda Carvalho Leone; Guedes, Flávia Araújo; Leite, Marcel Nani; Passos, Williane Rodrigues; Coelho, Eduardo Barbosa; Das, Pranab Kummar

    2015-01-01

    BACKGROUND: Currently, the cosmetic industry is overwhelmed in keeping up with the safety assessment of the increasing number of new products entering the market. To meet such demand, research centers have explored alternative methods to animal testing and also the large number of volunteers necessary for preclinical and clinical tests. OBJECTIVES: This work describes the human skin ex-vivo model (hOSEC: Human Organotypic Skin Explant Culture) as an alternative to test the effectiveness of cosmetics and demonstrate its viability through cutaneous keratinocytes' proliferative capacity up to 75 days in culture. METHODS: The skin explants obtained from surgeries were cultured in CO2-humid incubator. After 1, 7, 30 and 75 days in culture, skin fragments were harvested for analysis with histomorphological exam (HE staining) on all days of follow-up and immunohistochemistry for Ck5/6, Ck10 and Ki-67 only on the 75th day. RESULTS: On the 7th day, the epidermis was perfect in the dermoepidermal junction, showing the viability of the model. On the 30th day, the epidermis was thicker, with fewer layers on the stratum corneum, although the cutaneous structure was unaltered. On the 75th day, the skin became thinner but the dermoepidermal junctions were preserved and epidermal proliferation was maintained. After the 75th day on culture, the skin was similar to normal skin, expressing keratinocytes with Ck5/6 on supra-basal layers; Ck10 on differentiated layers; and viability could be assessed by the positivity of basal cells by Ki-67. CONCLUSION: The hOSEC model seems a good alternative to animal testing; it can be used as a preclinical test analogous to clinical human skin test with similar effectiveness and viability proven by immunohistological analyses. PMID:26131864

  3. Prolonged viability of human organotypic skin explant in culture method (hOSEC).

    PubMed

    Frade, Marco Andrey Cipriani; Andrade, Thiago Antônio Moretti de; Aguiar, Andréia Fernanda Carvalho Leone; Guedes, Flávia Araújo; Leite, Marcel Nani; Passos, Williane Rodrigues; Coelho, Eduardo Barbosa; Das, Pranab Kummar

    2015-01-01

    Currently, the cosmetic industry is overwhelmed in keeping up with the safety assessment of the increasing number of new products entering the market. To meet such demand, research centers have explored alternative methods to animal testing and also the large number of volunteers necessary for preclinical and clinical tests. This work describes the human skin ex-vivo model (hOSEC: Human Organotypic Skin Explant Culture) as an alternative to test the effectiveness of cosmetics and demonstrate its viability through cutaneous keratinocytes' proliferative capacity up to 75 days in culture. The skin explants obtained from surgeries were cultured in CO2-humid incubator. After 1, 7, 30 and 75 days in culture, skin fragments were harvested for analysis with histomorphological exam (HE staining) on all days of follow-up and immunohistochemistry for Ck5/6, Ck10 and Ki-67 only on the 75th day. On the 7th day, the epidermis was perfect in the dermoepidermal junction, showing the viability of the model. On the 30th day, the epidermis was thicker, with fewer layers on the stratum corneum, although the cutaneous structure was unaltered. On the 75th day, the skin became thinner but the dermoepidermal junctions were preserved and epidermal proliferation was maintained. After the 75th day on culture, the skin was similar to normal skin, expressing keratinocytes with Ck5/6 on supra-basal layers; Ck10 on differentiated layers; and viability could be assessed by the positivity of basal cells by Ki-67. The hOSEC model seems a good alternative to animal testing; it can be used as a preclinical test analogous to clinical human skin test with similar effectiveness and viability proven by immunohistological analyses.

  4. Wolves Recolonizing Islands: Genetic Consequences and Implications for Conservation and Management.

    PubMed

    Plumer, Liivi; Keis, Marju; Remm, Jaanus; Hindrikson, Maris; Jõgisalu, Inga; Männil, Peep; Kübarsepp, Marko; Saarma, Urmas

    2016-01-01

    After a long and deliberate persecution, the grey wolf (Canis lupus) is slowly recolonizing its former areas in Europe, and the genetic consequences of this process are of particular interest. Wolves, though present in mainland Estonia for a long time, have only recently started to recolonize the country's two largest islands, Saaremaa and Hiiumaa. The main objective of this study was to analyse wolf population structure and processes in Estonia, with particular attention to the recolonization of islands. Fifteen microsatellite loci were genotyped for 185 individuals across Estonia. As a methodological novelty, all putative wolf-dog hybrids were identified and removed (n = 17) from the dataset beforehand to avoid interference of dog alleles in wolf population analysis. After the preliminary filtering, our final dataset comprised of 168 "pure" wolves. We recommend using hybrid-removal step as a standard precautionary procedure not only for wolf population studies, but also for other taxa prone to hybridization. STRUCTURE indicated four genetic groups in Estonia. Spatially explicit DResD analysis identified two areas, one of them on Saaremaa island and the other in southwestern Estonia, where neighbouring individuals were genetically more similar than expected from an isolation-by-distance null model. Three blending areas and two contrasting transition zones were identified in central Estonia, where the sampled individuals exhibited strong local differentiation over relatively short distance. Wolves on the largest Estonian islands are part of human-wildlife conflict due to livestock depredation. Negative public attitude, especially on Saaremaa where sheep herding is widespread, poses a significant threat for island wolves. To maintain the long-term viability of the wolf population on Estonian islands, not only wolf hunting quota should be targeted with extreme care, but effective measures should be applied to avoid inbreeding and minimize conflicts with local communities and stakeholders.

  5. A multicenter study to standardize reporting and analyses of fluorescence-activated cell-sorted murine intestinal epithelial cells

    PubMed Central

    Magness, Scott T.; Puthoff, Brent J.; Crissey, Mary Ann; Dunn, James; Henning, Susan J.; Houchen, Courtney; Kaddis, John S.; Kuo, Calvin J.; Li, Linheng; Lynch, John; Martin, Martin G.; May, Randal; Niland, Joyce C.; Olack, Barbara; Qian, Dajun; Stelzner, Matthias; Swain, John R.; Wang, Fengchao; Wang, Jiafang; Wang, Xinwei; Yan, Kelley; Yu, Jian

    2013-01-01

    Fluorescence-activated cell sorting (FACS) is an essential tool for studies requiring isolation of distinct intestinal epithelial cell populations. Inconsistent or lack of reporting of the critical parameters associated with FACS methodologies has complicated interpretation, comparison, and reproduction of important findings. To address this problem a comprehensive multicenter study was designed to develop guidelines that limit experimental and data reporting variability and provide a foundation for accurate comparison of data between studies. Common methodologies and data reporting protocols for tissue dissociation, cell yield, cell viability, FACS, and postsort purity were established. Seven centers tested the standardized methods by FACS-isolating a specific crypt-based epithelial population (EpCAM+/CD44+) from murine small intestine. Genetic biomarkers for stem/progenitor (Lgr5 and Atoh 1) and differentiated cell lineages (lysozyme, mucin2, chromogranin A, and sucrase isomaltase) were interrogated in target and control populations to assess intra- and intercenter variability. Wilcoxon's rank sum test on gene expression levels showed limited intracenter variability between biological replicates. Principal component analysis demonstrated significant intercenter reproducibility among four centers. Analysis of data collected by standardized cell isolation methods and data reporting requirements readily identified methodological problems, indicating that standard reporting parameters facilitate post hoc error identification. These results indicate that the complexity of FACS isolation of target intestinal epithelial populations can be highly reproducible between biological replicates and different institutions by adherence to common cell isolation methods and FACS gating strategies. This study can be considered a foundation for continued method development and a starting point for investigators that are developing cell isolation expertise to study physiology and pathophysiology of the intestinal epithelium. PMID:23928185

  6. Geographic variation and genetic structure in Spotted Owls

    USGS Publications Warehouse

    Haig, Susan M.; Wagner, R.S.; Forsman, E.D.; Mullins, Thomas D.

    2001-01-01

    We examined genetic variation, population structure, and definition of conservation units in Spotted Owls (Strix occidentalis). Spotted Owls are mostly non-migratory, long-lived, socially monogamous birds that have decreased population viability due to their occupation of highly-fragmented late successional forests in western North America. To investigate potential effects of habitat fragmentation on population structure, we used random amplified polymorphic DNA (RAPD) to examine genetic variation hierarchically among local breeding areas, subregional groups, regional groups, and subspecies via sampling of 21 breeding areas (276 individuals) among the three subspecies of Spotted Owls. Data from 11 variable bands suggest a significant relationship between geographic distance among local breeding groups and genetic distance (Mantel r = 0.53, P < 0.02) although multi-dimensional scaling of three significant axes did not identify significant grouping at any hierarchical level. Similarly, neighbor-joining clustering of Manhattan distances indicated geographic structure at all levels and identified Mexican Spotted Owls as a distinct clade. RAPD analyses did not clearly differentiate Northern Spotted Owls from California Spotted Owls. Among Northern Spotted Owls, estimates of population differentiation (FST) ranged from 0.27 among breeding areas to 0.11 among regions. Concordantly, within-group agreement values estimated via multi-response permutation procedures of Jaccarda??s distances ranged from 0.22 among local sites to 0.11 among regions. Pairwise comparisons of FST and geographic distance within regions suggested only the Klamath region was in equilibrium with respect to gene flow and genetic drift. Merging nuclear data with recent mitochondrial data provides support for designation of an Evolutionary Significant Unit for Mexican Spotted Owls and two overlapping Management Units for Northern and California Spotted Owls.

  7. A century of landscape disturbance and urbanization of the San Francisco Bay region affects the present-day genetic diversity of the California Ridgway’s rail (Rallus obsoletus obsoletus)

    USGS Publications Warehouse

    Wood, Dustin A.; Bui, Thuy-Vy D.; Overton, Cory T.; Vandergast, Amy; Casazza, Michael L.; Hull, Joshua M.; Takekawa, John Y.

    2016-01-01

    Fragmentation and loss of natural habitat have important consequences for wild populations and can negatively affect long-term viability and resilience to environmental change. Salt marsh obligate species, such as those that occupy the San Francisco Bay Estuary in western North America, occupy already impaired habitats as result of human development and modifications and are highly susceptible to increased habitat loss and fragmentation due to global climate change. We examined the genetic variation of the California Ridgway’s rail (Rallus obsoletus obsoletus), a state and federally endangered species that occurs within the fragmented salt marsh of the San Francisco Bay Estuary. We genotyped 107 rails across 11 microsatellite loci and a single mitochondrial gene to estimate genetic diversity and population structure among seven salt marsh fragments and assessed demographic connectivity by inferring patterns of gene flow and migration rates. We found pronounced genetic structuring among four geographically separate genetic clusters across the San Francisco Bay. Gene flow analyses supported a stepping stone model of gene flow from south-to-north. However, contemporary gene flow among the regional embayments was low. Genetic diversity among occupied salt marshes and genetic clusters were not significantly different. We detected low effective population sizes and significantly high relatedness among individuals within salt marshes. Preserving genetic diversity and connectivity throughout the San Francisco Bay may require attention to salt marsh restoration in the Central Bay where habitat is both most limited and most fragmented. Incorporating periodic genetic sampling into the management regime may help evaluate population trends and guide long-term management priorities.

  8. A comparison of cryopreservation methods: Slow-cooling vs. rapid-cooling based on cell viability, oxidative stress, apoptosis, and CD34+ enumeration of human umbilical cord blood mononucleated cells

    PubMed Central

    2011-01-01

    Background The finding of human umbilical cord blood as one of the most likely sources of hematopoietic stem cells offers a less invasive alternative for the need of hematopoietic stem cell transplantation. Due to the once-in-a-life time chance of collecting it, an optimum cryopreservation method that can preserve the life and function of the cells contained is critically needed. Methods Until now, slow-cooling has been the routine method of cryopreservation; however, rapid-cooling offers a simple, efficient, and harmless method for preserving the life and function of the desired cells. Therefore, this study was conducted to compare the effectiveness of slow- and rapid-cooling to preserve umbilical cord blood of mononucleated cells suspected of containing hematopoietic stem cells. The parameters used in this study were differences in cell viability, malondialdehyde content, and apoptosis level. The identification of hematopoietic stem cells themselves was carried out by enumerating CD34+ in a flow cytometer. Results Our results showed that mononucleated cell viability after rapid-cooling (91.9%) was significantly higher than that after slow-cooling (75.5%), with a p value = 0.003. Interestingly, the malondialdehyde level in the mononucleated cell population after rapid-cooling (56.45 μM) was also significantly higher than that after slow-cooling (33.25 μM), with a p value < 0.001. The apoptosis level in rapid-cooling population (5.18%) was not significantly different from that of the mononucleated cell population that underwent slow-cooling (3.81%), with a p value = 0.138. However, CD34+ enumeration was much higher in the population that underwent slow-cooling (23.32 cell/μl) than in the one that underwent rapid-cooling (2.47 cell/μl), with a p value = 0.001. Conclusions Rapid-cooling is a potential cryopreservation method to be used to preserve the umbilical cord blood of mononucleated cells, although further optimization of the number of CD34+ cells after rapid-cooling is critically needed. PMID:21943045

  9. Exosomes secreted by placental stem cells selectively inhibit growth of aggressive prostate cancer cells.

    PubMed

    Peak, Taylor C; Praharaj, Prakash P; Panigrahi, Gati K; Doyle, Michael; Su, Yixin; Schlaepfer, Isabel R; Singh, Ravi; Vander Griend, Donald J; Alickson, Julie; Hemal, Ashok; Atala, Anthony; Deep, Gagan

    2018-05-23

    The current paradigm in the development of new cancer therapies is the ability to target tumor cells while avoiding harm to noncancerous cells. Furthermore, there is a need to develop novel therapeutic options against drug-resistant cancer cells. Herein, we characterized the placental-derived stem cell (PLSC) exosomes (PLSC Exo ) and evaluated their anti-cancer efficacy in prostate cancer (PCa) cell lines. Nanoparticle tracking analyses revealed the size distribution (average size 131.4 ± 0.9 nm) and concentration of exosomes (5.23 × 10 10 ±1.99 × 10 9 per ml) secreted by PLSC. PLSC Exo treatment strongly inhibited the viability of enzalutamide-sensitive and -resistant PCa cell lines (C4-2B, CWR-R1, and LNCaP cells). Interestingly, PLSC Exo treatment had no effect on the viability of a non-neoplastic human prostate cell line (PREC-1). Mass spectrometry (MS) analyses showed that PLSC Exo are loaded with 241 proteins and mainly with saturated fatty acids. Further, Ingenuity Pathway Analysis analyses of proteins loaded in PLSC Exo suggested the role of retinoic acid receptor/liver x receptor pathways in their biological effects. Together, these results suggest the novel selective anti-cancer effects of PLSC Exo against aggressive PCa cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Genetic variation in the invasive avian parasite, Philornis downsi (Diptera, Muscidae) on the Galápagos archipelago

    PubMed Central

    Dudaniec, Rachael Y; Gardner, Michael G; Donnellan, Steve; Kleindorfer, Sonia

    2008-01-01

    Background Understanding the dispersal and genetic structure of invasive insects across islands is important for designing management plans that are appropriate at spatial and temporal scales. For invasive parasites, population dynamics are largely determined by the distribution and density of their host species. The introduced parasitic fly, Philornis downsi, parasitises nestlings of endemic birds on all major islands of the Galápagos archipelago. The fly's high mortality and fitness impacts are of conservation concern for vulnerable and declining species of Darwin's finches. Using microsatellite data in Bayesian clustering and landscape genetic analyses, we examine gene flow and dispersal in P. downsi between three islands and across habitats (highlands, lowlands) and examine for the presence of population bottlenecks. We also examine variation at the mitochondrial gene CO1 across islands to establish if cryptic species were present. Results Both the mitochondrial and microsatellite data were consistent with there being a single species across islands. We found low genetic differentiation between islands and strong evidence for inter-island gene flow, or shared recent ancestry among individuals. Landscape genetic analysis identified two genetic clusters: one encompassing Santa Cruz and Isabela, and one on Floreana Island. There was no evidence of genetic differentiation between habitats and molecular variance was mainly attributable to within individuals. The combined P. downsi population was found to have undergone a population bottleneck. Conclusion Philornis downsi populations have high connectivity within and between islands, with low levels of genetic differentiation between Floreana and the other two islands examined. The genetic bottleneck found across islands suggests there was a small founding population or few introduction events of P. downsi. The high dispersal capacity and wide habitat use of P. downsi highlights the significant threat that this parasite poses to the Galápagos avifauna. Our findings are relevant for assessing the viability of methods to control P. downsi on Galápagos, such as the sterile insect technique. PMID:18671861

  11. Demographic outcomes and ecosystem implications of giant tortoise reintroduction to Española Island, Galapagos.

    PubMed

    Gibbs, James P; Hunter, Elizabeth A; Shoemaker, Kevin T; Tapia, Washington H; Cayot, Linda J

    2014-01-01

    Restoration of extirpated species via captive breeding has typically relied on population viability as the primary criterion for evaluating success. This criterion is inadequate when species reintroduction is undertaken to restore ecological functions and interactions. Herein we report on the demographic and ecological outcomes of a five-decade-long population restoration program for a critically endangered species of "ecosystem engineer": the endemic Española giant Galapagos tortoise (Chelonoidis hoodensis). Our analysis of complementary datasets on tortoise demography and movement, tortoise-plant interactions and Española Island's vegetation history indicated that the repatriated tortoise population is secure from a strictly demographic perspective: about half of tortoises released on the island since 1975 were still alive in 2007, in situ reproduction is now significant, and future extinction risk is low with or without continued repatriation. Declining survival rates, somatic growth rates, and body condition of repatriates suggests, however, that resources for continued population growth are increasingly limited. Soil stable carbon isotope analyses indicated a pronounced shift toward woody plants in the recent history of the island's plant community, likely a legacy of changes in competitive relations between woody and herbaceous plants induced by now-eradicated feral goats and prolonged absence of tortoises. Woody plants are of concern because they block tortoise movement and hinder recruitment of cactus--a critical resource for tortoises. Tortoises restrict themselves to remnant cactus patches and areas of low woody plant density in the center of the island despite an apparent capacity to colonize a far greater range, likely because of a lack of cactus elsewhere on the island. We conclude that ecosystem-level criteria for success of species reintroduction efforts take much longer to achieve than population-level criteria; moreover, reinstatement of endangered species as fully functioning ecosystem engineers may often require large-scale habitat restoration efforts in concert with population restoration.

  12. Genetic variation in the invasive avian parasite, Philornis downsi (Diptera, Muscidae) on the Galápagos archipelago.

    PubMed

    Dudaniec, Rachael Y; Gardner, Michael G; Donnellan, Steve; Kleindorfer, Sonia

    2008-07-31

    Understanding the dispersal and genetic structure of invasive insects across islands is important for designing management plans that are appropriate at spatial and temporal scales. For invasive parasites, population dynamics are largely determined by the distribution and density of their host species. The introduced parasitic fly, Philornis downsi, parasitises nestlings of endemic birds on all major islands of the Galápagos archipelago. The fly's high mortality and fitness impacts are of conservation concern for vulnerable and declining species of Darwin's finches. Using microsatellite data in Bayesian clustering and landscape genetic analyses, we examine gene flow and dispersal in P. downsi between three islands and across habitats (highlands, lowlands) and examine for the presence of population bottlenecks. We also examine variation at the mitochondrial gene CO1 across islands to establish if cryptic species were present. Both the mitochondrial and microsatellite data were consistent with there being a single species across islands. We found low genetic differentiation between islands and strong evidence for inter-island gene flow, or shared recent ancestry among individuals. Landscape genetic analysis identified two genetic clusters: one encompassing Santa Cruz and Isabela, and one on Floreana Island. There was no evidence of genetic differentiation between habitats and molecular variance was mainly attributable to within individuals. The combined P. downsi population was found to have undergone a population bottleneck. Philornis downsi populations have high connectivity within and between islands, with low levels of genetic differentiation between Floreana and the other two islands examined. The genetic bottleneck found across islands suggests there was a small founding population or few introduction events of P. downsi. The high dispersal capacity and wide habitat use of P. downsi highlights the significant threat that this parasite poses to the Galápagos avifauna. Our findings are relevant for assessing the viability of methods to control P. downsi on Galápagos, such as the sterile insect technique.

  13. Importance of Donor Chondrocyte Viability for Osteochondral Allografts.

    PubMed

    Cook, James L; Stannard, James P; Stoker, Aaron M; Bozynski, Chantelle C; Kuroki, Keiichi; Cook, Cristi R; Pfeiffer, Ferris M

    2016-05-01

    Osteochondral allograft (OCA) transplantation provides a biological treatment option for functional restoration of large articular cartilage defects in multiple joints. While successful outcomes after OCA transplantation have been linked to viable donor chondrocytes, the importance of donor cell viability has not been comprehensively validated. To use a canine model to determine the importance of donor chondrocyte viability at the time of implantation with respect to functional success of femoral condylar OCAs based on radiographic, gross, cell viability, histologic, biochemical, and biomechanical outcome measures. Controlled laboratory study. After approval was obtained from the institutional animal care and use committee, adult female dogs (N = 16) were implanted with 8-mm cylindrical OCAs from male dogs in the lateral and medial femoral condyles of 1 knee. OCAs were preserved for 28 or 60 days after procurement, and chondrocyte viability was quantified before implantation. Two different storage media, temperatures, and time points were used to obtain a spectrum of percentage chondrocyte viability at the time of implantation. A successful outcome was defined as an OCA that was associated with graft integration, maintenance of hyaline cartilage, lack of associated cartilage disorder, and lack of fibrillation, fissuring, or fibrous tissue infiltration of the allograft based on subjective radiographic, gross, and histologic assessments at 6 months after implantation. Chondrocyte viability ranged from 23% to 99% at the time of implantation. All successful grafts had >70% chondrocyte viability at the time of implantation, and no graft with chondrocyte viability <70% was associated with a successful outcome. Live-dead stained sections and histologic findings with respect to cell morphological features suggested that successful grafts were consistently composed of viable chondrocytes in lacunae, while grafts that were not successful were composed of nonviable chondrocytes with infiltration of fibroblasts from the surrounding recipient tissues. In situ polymerase chain reaction (fluorescence in situ hybridization [FISH]) assays were performed in an attempt to distinguish donor (male) cells from recipient (female) cells. Unfortunately, this technique was exceptionally difficult to perform on intact articular cartilage sections, and consistent, repeatable data could not be obtained from this testing. However, the data did support histologic and live-dead data, which strongly suggested that successful grafts retained viable donor (male) chondrocytes and unsuccessful grafts degraded and were replaced by fibrous tissue populated with recipient (female) fibroblasts. Viable chondrocytes in OCAs at the time of transplantation are primarily responsible for maintenance of donor articular cartilage health in the long term. Optimizing chondrocyte viability in all aspects of OCA transplantation-including procurement, processing, storage, transportation, and surgical implantation-needs to be a primary focus for OCA clinical use. © 2016 The Author(s).

  14. Improving restoration to control plant invasions under climate change

    Treesearch

    Qinfeng Guo; Steve Norman

    2012-01-01

    Native forests and grasslands worldwide have been converted to developed lands or invaded by exotic species due to human activities. These pressures are predicted to increase with population growth and climatic stress in coming decades, escalating concerns for the viability of native species and communities that are affected. Ecological restoration is frequently...

  15. Ecological correlates of flying squirrel microhabitat use and density in temperate rainforests of southeastern Alaska

    Treesearch

    Winston P. Smith; Scott M. Gende; Jeffrey V. Nichols

    2004-01-01

    We studied habitat relations of the Prince of Wales flying squirrel (Glaucomys sabrinus griseifrons), an endemic of the temperate, coniferous rainforest of southeastern Alaska, because of concerns over population viability from extensive clear-cut logging in the region. We used stepwise logistic regression to examine relationships between...

  16. Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide Imidacloprid and the organophosphate Acaricide Coumaphos

    USDA-ARS?s Scientific Manuscript database

    Honey bee population declines are a global concern. Numerous factors appear to cause the decline including parasites, pathogens, malnutrition and pesticides. Residues of the organophosphate acaricide coumaphos and the neonicotinoid insecticide imidacloprid, widely used to combat Varroa mites and for...

  17. Comparing extinction risk and economic cost in wildlife conservation planning

    Treesearch

    Robert G. Haight

    1995-01-01

    Planning regulations pursuant to the National Forest Management Act of 1976 require the USDA Forest Service to produce cost-effective, multiple-use forest plans that ensure the viability of native wildlife populations within the planning area. In accordance with these regulations, this paper presents a method for determining cost-effective conservation plans for...

  18. Evaluation of habitat suitability models for forest passerines using demographic data

    Treesearch

    Chadwick D. Rittenhouse; Frank R., III Thompson; William D. Dijak; Joshua J. Millspaugh; Richard L. Clawson

    2010-01-01

    Habitat suitability is often used as a surrogate for demographic responses (i.e., abundance, survival, fecundity, or population viability) in the application of habitat suitability index (HSI) models. Whether habitat suitability actually relates to demographics, however, has rarely been evaluated. We validated HSI models of breeding habitat suitability for wood thrush...

  19. Variation in MHC class II B genes in marbled murrelets: implications for delineating conservation units

    Treesearch

    C. Vásquez-Carrillo; V. Friesen; L. Hall; M.Z. Peery

    2013-01-01

    Conserving genetic variation is critical for maintaining the evolutionary potential and viability of a species. Genetic studies seeking to delineate conservation units, however, typically focus on characterizing neutral genetic variation and may not identify populations harboring local adaptations. Here, variation at two major histocompatibility complex (MHC) class II...

  20. Probing the biology of dry biological systems to address the basis of seed longevity

    USDA-ARS?s Scientific Manuscript database

    Drying cells reduces molecular mobility and slows chemical and physical reactions. As a result, dry biological systems deteriorate slowly. The time course of deterioration in a population of living cells often follows a sigmoidal pattern in which aging is occurring but no changes to viability are ...

  1. The effects of temperature on nest predation by mammals, birds, and snakes

    Treesearch

    W. Andrew Cox; F.R. Thompson III; J.L. Reidy

    2013-01-01

    Understanding how weather influences survival and reproduction is an important component of forecasting how climate change will influence wildlife population viability. Nest predation is the primary source of reproductive failure for passerine birds and can change in response to temperature. However, it is unclear which predator species are responsible for such...

  2. Effect of synthetic auxin herbicides on seed development and viability in genetically-engineered glyphosate-resistant alfalfa

    USDA-ARS?s Scientific Manuscript database

    Feral populations of cultivated crops have the potential to function as bridges and reservoirs that contribute to the unwanted movement of novel genetically engineered (GE) traits. Recognizing that feral alfalfa has the potential to lower genetic purity in alfalfa seed production fields when it is g...

  3. A priori assessment of reintroduction strategies for a native ungulate: Using HexSim to guide release site selection

    EPA Science Inventory

    Reintroduction of native species to unoccupied portions of their historical range is a common management strategy to enhance the future viability of animal populations. This approach has met with mixed success, due to unforeseen impacts caused by human or other factors. Some of t...

  4. The use of FAME analyses to discriminate between different strains of Geotrichum klebahnii with different viabilities.

    PubMed

    Schwarzenauer, Thomas; Lins, Philipp; Reitschuler, Christoph; Illmer, Paul

    2012-02-01

    A considerable decline in viability of spray dried cells of Geotrichum klebahnii was observed and was attributed to an undefined alteration of the used strain. As common techniques were not able to distinguish the altered from the still viable strains, we used the fatty acid methyl ester (FAME) analysis. On the basis of FAME data we were able to discriminate the three strains under investigation. Especially the ratios of cis/trans fatty acid ratios and of saturated/unsaturated fatty acid were significantly reduced in the less viable strain, pointing to an increased stress level in this strain. These findings clearly show the applicability of the FAME analysis to detect strain alterations and that this method is therefore a suitable, fast and feasible tool for quality assurance.

  5. Niche evolution and thermal adaptation in the temperate species Drosophila americana.

    PubMed

    Sillero, N; Reis, M; Vieira, C P; Vieira, J; Morales-Hojas, R

    2014-08-01

    The study of ecological niche evolution is fundamental for understanding how the environment influences species' geographical distributions and their adaptation to divergent environments. Here, we present a study of the ecological niche, demographic history and thermal performance (locomotor activity, developmental time and fertility/viability) of the temperate species Drosophila americana and its two chromosomal forms. Temperature is the environmental factor that contributes most to the species' and chromosomal forms' ecological niches, although precipitation is also important in the model of the southern populations. The past distribution model of the species predicts a drastic reduction in the suitable area for the distribution of the species during the last glacial maximum (LGM), suggesting a strong bottleneck. However, DNA analyses did not detect a bottleneck signature during the LGM. These contrasting results could indicate that D. americana niche preference evolves with environmental change, and thus, there is no evidence to support niche conservatism in this species. Thermal performance experiments show no difference in the locomotor activity across a temperature range of 15 to 38 °C between flies from the north and the south of its distribution. However, we found significant differences in developmental time and fertility/viability between the two chromosomal forms at the model's optimal temperatures for the two forms. However, results do not indicate that they perform better for the traits studied here in their respective optimal niche temperatures. This suggests that behaviour plays an important role in thermoregulation, supporting the capacity of this species to adapt to different climatic conditions across its latitudinal distribution. © 2014 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

  6. Artemisia leaf extract induces apoptosis in human endometriotic cells through regulation of the p38 and NFκB pathways.

    PubMed

    Kim, Ji-Hyun; Jung, Seung-Hyun; Yang, Yeong-In; Ahn, Ji-Hye; Cho, Jin-Gyeong; Lee, Kyung-Tae; Baek, Nam-In; Choi, Jung-Hye

    2013-02-13

    Artemisia leaves have long been used for the treatment of gynecological disorders, including infertility and dysmenorrhea, which can be commonly caused by endometriosis. In the present study, we investigated the effect of Artemisia princeps extract (APE) on the cell growth and apoptosis of human endometriotic cells. MTT assays and FACS analysis using PI and Annexin staining were performed to study cell viability, cell cycle progression, and apoptosis. We also explored the mechanism of APE-induced effects by evaluating the activation of caspases, Akt, p38, and NFκB. The expressions of XIAP, Bcl-2, and Bcl-xL were measured by real-time RT-PCR and Western blot analyses. APE significantly inhibited the cell viability of 11Z and 12Z human endometriotic epithelial cells. Interestingly, endometriotic cells were more sensitive to APE treatment than immortalized endometrial cells (HES). Treatment with APE induced apoptosis of 11Z cells in a time-dependent manner, as shown by accumulation of sub G1 and apoptotic cell populations. In addition, treatment with APE stimulated the activation of caspase -3, -8, and -9 in a dose- and time-dependent manner. Furthermore, p38 was activated by APE treatment, and the p38 inhibitor SB203580 markedly inhibited APE-induced cell death in 11Z cells. Moreover, treatment with APE suppressed the activation of NFκB and the expressions of anti-apoptotic factors such as XIAP, Bcl-2, and Bcl-xL. These results indicate that APE is a potential anti-endometriotic agent, acting to induce apoptosis of endometrial cells through the modulation of the p38 and NFκB pathways. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Fractional flow reserve and myocardial viability as assessed by SPECT perfusion scintigraphy in patients with prior myocardial infarction.

    PubMed

    Beleslin, Branko; Dobric, Milan; Sobic-Saranovic, Dragana; Giga, Vojislav; Stepanovic, Jelena; Djordjevic-Dikic, Ana; Nedeljkovic, Milan; Stojkovic, Sinisa; Vukcevic, Vladan; Stankovic, Goran; Orlic, Dejan; Petrasinovic, Zorica; Pavlovic, Smiljana; Obradovic, Vladimir; Ostojic, Miodrag

    2010-10-01

    In patients with previous myocardial infarction (MI), assessment of myocardial viability and physiological significance of coronary artery stenoses are essential for appropriate guidance of revascularization. The aim of the study was to evaluate the relation between fractional flow reserve (FFR) and myocardial viability as assessed by gated SPECT MIBI perfusion scintigraphy in patients with previous MI undergoing elective PCI. The study population consisted of 26 patients (mean age 55 ± 7 years; 21 male) with a previous MI and a significant coronary stenosis in a single infarct-related coronary vessel for which PCI was being performed. In all patients, FFR was evaluated before and immediately after PCI. SPECT imaging was done before and 3 ± 1 months after PCI. A region representing the MI was considered viable if MIBI uptake was ≥55% of the normal region. Improvement in perfusion after revascularization was considered achieved if perfusion abnormalities decreased by 5% or more and there was a decrease in segmental score of ≥1 in three segments in PCI-related vascular territory. Extent of perfusion abnormalities decreased from 32 ± 16% to 27 ± 19% after PCI (P < .001). In patients with myocardial viability in comparison to patients with no viability, there was significant difference in FFR before PCI (.57 ± .14 vs .76 ± .12, P = .002), despite almost the same values of diameter stenosis of infarct-related artery (63 ± 8% vs 64 ± 3%, respectively, P = .572). In addition, FFR prior to PCI was related to improvement in perfusion abnormalities after revascularization (P = .047), as well as with peak activity of creatine-kinase measured during previous MI (r = .56, P = .005). Lower values of FFR before angioplasty are associated with myocardial viability and functional improvement as assessed by SPECT perfusion scintigraphy.

  8. Quantifying Textures of Rapakivi Granites and Mantle Formation Insights

    NASA Astrophysics Data System (ADS)

    Ashauer, Z.; Currier, R. M.

    2017-12-01

    Rapakivi texture, the mantling of plagioclase on alkali feldspar, is a common occurrence in granitoids derived from crustal melting. Presented here, are several textural analyses that quantify mantle thickness and the overall distribution of crystal populations. Analyses were performed on outcrops and slabbed samples from the Wolf River Batholith, Wisconsin, USA and the Wiborg Batholith, Finland. Both localities are "classical" rapakivi granites of Proterozoic age associated with incipient rifting of the supercontinent Nuna/Columbia. Mantle thickness analysis reveals a relationship between the characteristic size of the mantle and the size of the core. The thickest mantles tend to be on relatively small cores while relatively large cores display thin mantles. This relationship is consistent with a replacement origin as a result of alkali feldspar dissolution with concomitant reprecipitation of plagioclase, due to disequilibrium between crystal and melt. If this is the case then crystal size distributions should be similar between unmantled and mantled megacrysts. Preliminary results confirm this supposition: rapakivi mantle formation in these classical systems appear to be the result of replacement. These textural analyses immediately call into question the viability of epitaxial growth models. A certain amount of disequilibrium is required to drive the replacement reaction. Two potential mechanisms are 1) mechanical transfer of crystals into a magma of more mafic composition (i.e., magma mixing), and 2) the production of a heterogeneous melt during rapid melting of granitic rock and reaction between unmelted crystals and partial melt. The classical rapakivi granites are associated with prolonged bimodal magmatism, and so there is clear potential to drive either of these mantling mechanisms.

  9. Increase of the Spontaneous Mutation Rate in a Long-Term Experiment With Drosophila melanogaster

    PubMed Central

    Ávila, Victoria; Chavarrías, David; Sánchez, Enrique; Manrique, Antonio; López-Fanjul, Carlos; García-Dorado, Aurora

    2006-01-01

    In a previous experiment, the effect of 255 generations of mutation accumulation (MA) on the second chromosome viability of Drosophila melanogaster was studied using 200 full-sib MA1 lines and a large C1 control, both derived from a genetically homogeneous base population. At generation 265, one of those MA1 lines was expanded to start 150 new full-sib MA2 lines and a new C2 large control. After 46 generations, the rate of decline in mean viability in MA2 was ∼2.5 times that estimated in MA1, while the average degree of dominance of mutations was small and nonsignificant by generation 40 and moderate by generation 80. In parallel, the inbreeding depression rate for viability and the amount of additive variance for two bristle traits in C2 were 2–3 times larger than those in C1. The results are consistent with a mutation rate in the line from which MA2 and C2 were derived about 2.5 times larger than that in MA1. The mean viability of C2 remained roughly similar to that of C1, but the rate of MA2 line extinction increased progressively, leading to mutational collapse, which can be ascribed to accelerated mutation and/or synergy after important deleterious accumulation. PMID:16547099

  10. Addition of grape pomace extract to probiotic fermented goat milk: the effect on phenolic content, probiotic viability and sensory acceptability.

    PubMed

    Dos Santos, Karina Mo; de Oliveira, Isabel C; Lopes, Marcos Ac; Cruz, Ana Paula Gil; Buriti, Flávia Ca; Cabral, Lourdes M

    2017-03-01

    Grape pomace is a source of phenolic compounds, which are associated with health benefits in humans. Additionally, fermented dairy foods with probiotics can be good vehicles to deliver these bioactive compounds. The effects of the addition of grape pomace extract (GPE) on the total phenolic (TP) content, physico-chemical characteristics and viability of Lactobacillus acidophilus LA-5 or Lactobacillus rhamnosus HN001 in fermented goat milks prepared with grape juice were investigated. The TP concentration increased significantly in fermented milks with the addition of GPE. A protective effect of GPE on the viability of L. acidophilus was observed. However, after 14 days of storage, the populations of L. acidophilus were significantly lower when compared with those of L. rhamnosus, and only the last probiotic maintained its viability above 7 log CFU mL -1 throughout the period investigated. The sensory scores of flavor, color and overall acceptability of the fermented milk containing L. rhamnosus HN001 were significantly increased when GPE was added. The use of GPE might increase the functionality of probiotic fermented goat milk processed with L. rhamnosus HN001 and grape juice because grape polyphenols are known for their antioxidant properties and positive effect on the modulation of gut microbiota. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma.

    PubMed

    Petrachi, Tiziana; Romagnani, Alessandra; Albini, Adriana; Longo, Caterina; Argenziano, Giuseppe; Grisendi, Giulia; Dominici, Massimo; Ciarrocchi, Alessia; Dallaglio, Katiuscia

    2017-01-24

    Melanoma is the most dangerous and treatment-resistant skin cancer. Tumor resistance and recurrence are due to the persistence in the patient of aggressive cells with stem cell features, the cancer stem cells (CSC). Recent evidences have shown that CSC display a distinct metabolic profile as compared to tumor bulk population: a promising anti-tumor strategy is therefore to target specific metabolic pathways driving CSC behavior. Biguanides (metformin and phenformin) are anti-diabetic drugs able to perturb cellular metabolism and displaying anti-cancer activity. However, their ability to target the CSC compartment in melanoma is not known. Here we show that phenformin, but not metformin, strongly reduces melanoma cell viability, growth and invasion in both 2D and 3D (spheroids) models. While phenformin decreases melanoma CSC markers expression and the levels of the pro-survival factor MITF, MITF overexpression fails to prevent phenformin effects. Phenformin significantly reduces cell viability in melanoma by targeting both CSC (ALDHhigh) and non-CSC cells and by significantly reducing the number of viable cells in ALDHhigh and ALDHlow-derived spheroids. Consistently, phenformin reduces melanoma cell viability and growth independently from SOX2 levels. Our results show that phenformin is able to affect both CSC and non-CSC melanoma cell viability and growth and suggests its potential use as anti-cancer therapy in melanoma.

  12. Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma

    PubMed Central

    Albini, Adriana; Longo, Caterina; Argenziano, Giuseppe; Grisendi, Giulia; Dominici, Massimo; Ciarrocchi, Alessia; Dallaglio, Katiuscia

    2017-01-01

    Melanoma is the most dangerous and treatment-resistant skin cancer. Tumor resistance and recurrence are due to the persistence in the patient of aggressive cells with stem cell features, the cancer stem cells (CSC). Recent evidences have shown that CSC display a distinct metabolic profile as compared to tumor bulk population: a promising anti-tumor strategy is therefore to target specific metabolic pathways driving CSC behavior. Biguanides (metformin and phenformin) are anti-diabetic drugs able to perturb cellular metabolism and displaying anti-cancer activity. However, their ability to target the CSC compartment in melanoma is not known. Here we show that phenformin, but not metformin, strongly reduces melanoma cell viability, growth and invasion in both 2D and 3D (spheroids) models. While phenformin decreases melanoma CSC markers expression and the levels of the pro-survival factor MITF, MITF overexpression fails to prevent phenformin effects. Phenformin significantly reduces cell viability in melanoma by targeting both CSC (ALDHhigh) and non-CSC cells and by significantly reducing the number of viable cells in ALDHhigh and ALDHlow-derived spheroids. Consistently, phenformin reduces melanoma cell viability and growth independently from SOX2 levels. Our results show that phenformin is able to affect both CSC and non-CSC melanoma cell viability and growth and suggests its potential use as anti-cancer therapy in melanoma. PMID:28036292

  13. Model description and evaluation of the mark-recapture survival model used to parameterize the 2012 status and threats analysis for the Florida manatee (Trichechus manatus latirostris)

    USGS Publications Warehouse

    Langtimm, Catherine A.; Kendall, William L.; Beck, Cathy A.; Kochman, Howard I.; Teague, Amy L.; Meigs-Friend, Gaia; Peñaloza, Claudia L.

    2016-11-30

    This report provides supporting details and evidence for the rationale, validity and efficacy of a new mark-recapture model, the Barker Robust Design, to estimate regional manatee survival rates used to parameterize several components of the 2012 version of the Manatee Core Biological Model (CBM) and Threats Analysis (TA).  The CBM and TA provide scientific analyses on population viability of the Florida manatee subspecies (Trichechus manatus latirostris) for U.S. Fish and Wildlife Service’s 5-year reviews of the status of the species as listed under the Endangered Species Act.  The model evaluation is presented in a standardized reporting framework, modified from the TRACE (TRAnsparent and Comprehensive model Evaluation) protocol first introduced for environmental threat analyses.  We identify this new protocol as TRACE-MANATEE SURVIVAL and this model evaluation specifically as TRACE-MANATEE SURVIVAL, Barker RD version 1. The longer-term objectives of the manatee standard reporting format are to (1) communicate to resource managers consistent evaluation information over sequential modeling efforts; (2) build understanding and expertise on the structure and function of the models; (3) document changes in model structures and applications in response to evolving management objectives, new biological and ecological knowledge, and new statistical advances; and (4) provide greater transparency for management and research review.

  14. Comparative analyses of semen and endocrine characteristics of free-living versus captive jaguars (Panthera onca).

    PubMed

    Morato, R G; Conforti, V A; Azevedo, F C; Jacomo, A T; Silveira, L; Sana, D; Nunes, A L; Guimarães, M A; Barnabe, R C

    2001-11-01

    Semen and blood samples were obtained from free-living (n = 6) and captive (n = 8) jaguars (Panthera onca) to compare reproductive characteristics between the two populations. Semen samples were analysed for volume (ml), percentage of motile spermatozoa, rate of forward progression (0-5), concentration (10(6) ml(-1)), total sperm count (10(6)) and sperm morphology. Serum testosterone concentration was determined by radioimmunoassay. Although ejaculate volume was greater in captive jaguars (n = 47 samples) than in free-living jaguars (n = 7 samples) (P < 0.05), the free-living jaguars produced more total spermatozoa (59.3 +/- 12.8 versus 152.0 +/- 88.0 x 10(6), respectively; not significant) with better viability and forward progression (2.8 +/- 0.1 versus 3.5 +/- 0.2, respectively; P < 0.05) and more spermatozoa with normal morphology (73.5 +/- 3.9 versus 5.0 +/- 1.1%, respectively; P < 0.05). Serum testosterone concentrations were similar for captive and free-living male jaguars (3.1 +/- 0.7 and 2.1 +/- 0.8 ng ml(-1), respectively). In summary, the data showed that semen may be collected successfully from free-living jaguars and evaluated under field conditions to establish normative reproductive values in this species. The results also indicate that jaguars maintained in zoos show inferior seminal characteristics compared with free-living animals.

  15. Adult nutrition, but not inbreeding, affects male primary sexual traits in the leaf-footed cactus bug Narnia femorata (Hemiptera: Coreidae).

    PubMed

    Joseph, Paul N; Sasson, Daniel A; Allen, Pablo E; Somjee, Ummat; Miller, Christine W

    2016-07-01

    Adverse conditions may be the norm rather than the exception in natural populations. Many populations experience poor nutrition on a seasonal basis. Further, brief interludes of inbreeding can be common as population density fluctuates and because of habitat fragmentation. Here, we investigated the effects of poor nutrition and inbreeding on traits that can be very important to reproductive success and fitness in males: testes mass, sperm concentration, and sperm viability. Our study species was Narnia femorata, a species introduced to north-central Florida in the 1950s. This species encounters regular, seasonal changes in diet that can have profound phenotypic effects on morphology and behavior. We generated inbred and outbred individuals through a single generation of full-sibling mating or outcrossing, respectively. All juveniles were provided a natural, high-quality diet of Opuntia humifusa cactus cladode with fruit until they reached adulthood. New adult males were put on a high- or low-quality diet for at least 21 days before measurements were taken. As expected, the low-quality diet led to significantly decreased testes mass in both inbred and outbred males, although there were surprisingly no detectable effects on sperm traits. We did not find evidence that inbreeding affected testes mass, sperm concentration, and sperm viability. Our results highlight the immediate and overwhelming effects of nutrition on testes mass, while suggesting that a single generation of inbreeding might not be detrimental for primary sexual traits in this particular population.

  16. Using Bayesian Population Viability Analysis to Define Relevant Conservation Objectives.

    PubMed

    Green, Adam W; Bailey, Larissa L

    2015-01-01

    Adaptive management provides a useful framework for managing natural resources in the face of uncertainty. An important component of adaptive management is identifying clear, measurable conservation objectives that reflect the desired outcomes of stakeholders. A common objective is to have a sustainable population, or metapopulation, but it can be difficult to quantify a threshold above which such a population is likely to persist. We performed a Bayesian metapopulation viability analysis (BMPVA) using a dynamic occupancy model to quantify the characteristics of two wood frog (Lithobates sylvatica) metapopulations resulting in sustainable populations, and we demonstrate how the results could be used to define meaningful objectives that serve as the basis of adaptive management. We explored scenarios involving metapopulations with different numbers of patches (pools) using estimates of breeding occurrence and successful metamorphosis from two study areas to estimate the probability of quasi-extinction and calculate the proportion of vernal pools producing metamorphs. Our results suggest that ≥50 pools are required to ensure long-term persistence with approximately 16% of pools producing metamorphs in stable metapopulations. We demonstrate one way to incorporate the BMPVA results into a utility function that balances the trade-offs between ecological and financial objectives, which can be used in an adaptive management framework to make optimal, transparent decisions. Our approach provides a framework for using a standard method (i.e., PVA) and available information to inform a formal decision process to determine optimal and timely management policies.

  17. Demographic and genetic viability of a medium-sized ground-dwelling mammal in a fire prone, rapidly urbanizing landscape.

    PubMed

    Ramalho, Cristina E; Ottewell, Kym M; Chambers, Brian K; Yates, Colin J; Wilson, Barbara A; Bencini, Roberta; Barrett, Geoff

    2018-01-01

    The rapid and large-scale urbanization of peri-urban areas poses major and complex challenges for wildlife conservation. We used population viability analysis (PVA) to evaluate the influence of urban encroachment, fire, and fauna crossing structures, with and without accounting for inbreeding effects, on the metapopulation viability of a medium-sized ground-dwelling mammal, the southern brown bandicoot (Isoodon obesulus), in the rapidly expanding city of Perth, Australia. We surveyed two metapopulations over one and a half years, and parameterized the PVA models using largely field-collected data. The models revealed that spatial isolation imposed by housing and road encroachment has major impacts on I. obesulus. Although the species is known to persist in small metapopulations at moderate levels of habitat fragmentation, the models indicate that these populations become highly vulnerable to demographic decline, genetic deterioration, and local extinction under increasing habitat connectivity loss. Isolated metapopulations were also predicted to be highly sensitive to fire, with large-scale fires having greater negative impacts on population abundance than small-scale ones. To reduce the risk of decline and local extirpation of I. obesulus and other small- to medium-sized ground-dwelling mammals in urbanizing, fire prone landscapes, we recommend that remnant vegetation and vegetated, structurally-complex corridors between habitat patches be retained. Well-designed road underpasses can be effective to connect habitat patches and reduce the probability of inbreeding and genetic differentiation; however, adjustment of fire management practices to limit the size of unplanned fires and ensure the retention of long unburnt vegetation will also be required to ensure persistence. Our study supports the evidence that in rapidly urbanizing landscapes, a pro-active conservation approach is required that manages species at the metapopulation level and that prioritizes metapopulations and habitat with greater long-term probability of persistence and conservation capacity, respectively. This strategy may help us prevent future declines and local extirpations, and currently relatively common species from becoming rare.

  18. Parasitological Confirmation and Analysis of Leishmania Diversity in Asymptomatic and Subclinical Infection following Resolution of Cutaneous Leishmaniasis.

    PubMed

    Rosales-Chilama, Mariana; Gongora, Rafael E; Valderrama, Liliana; Jojoa, Jimena; Alexander, Neal; Rubiano, Luisa C; Cossio, Alexandra; Adams, Emily R; Saravia, Nancy G; Gomez, María Adelaida

    2015-12-01

    The contribution of individuals with subclinical infection to the transmission and endemicity of cutaneous leishmaniasis (CL) is unknown. Immunological evidence of exposure to Leishmania in residents of endemic areas has been the basis for defining the human population with asymptomatic infection. However, parasitological confirmation of subclinical infection is lacking. We investigated the presence and viability of Leishmania in blood and non-invasive mucosal tissue samples from individuals with immunological evidence of subclinical infection in endemic areas for CL caused by Leishmania (Viannia) in Colombia. Detection of Leishmania kDNA was conducted by PCR-Southern Blot, and parasite viability was confirmed by amplification of parasite 7SLRNA gene transcripts. A molecular tool for genetic diversity analysis of parasite populations causing persistent subclinical infection based on PCR amplification and sequence analysis of an 82bp region between kDNA conserved blocks 1 and 2 was developed. Persistent Leishmania infection was demonstrated in 40% (46 of 114) of leishmanin skin test (LST) positive individuals without active disease; parasite viability was established in 59% of these (27 of 46; 24% of total). Parasite burden quantified from circulating blood monocytes, nasal, conjunctival or tonsil mucosal swab samples was comparable, and ranged between 0.2 to 22 parasites per reaction. kDNA sequences were obtained from samples from 2 individuals with asymptomatic infection and from 26 with history of CL, allowing genetic distance analysis that revealed diversity among sequences and clustering within the L. (Viannia) subgenus. Our results provide parasitological confirmation of persistent infection among residents of endemic areas of L. (Viannia) transmission who have experienced asymptomatic infection or recovered from CL, revealing a reservoir of infection that potentially contributes to the endemicity and transmission of disease. kDNA genotyping establishes proof-of-principle of the feasibility of genetic diversity analysis in previously inaccessible and unexplored parasite populations in subclinically infected individuals.

  19. Demographic and genetic viability of a medium-sized ground-dwelling mammal in a fire prone, rapidly urbanizing landscape

    PubMed Central

    Ottewell, Kym M.; Chambers, Brian K.; Yates, Colin J.; Wilson, Barbara A.; Bencini, Roberta; Barrett, Geoff

    2018-01-01

    The rapid and large-scale urbanization of peri-urban areas poses major and complex challenges for wildlife conservation. We used population viability analysis (PVA) to evaluate the influence of urban encroachment, fire, and fauna crossing structures, with and without accounting for inbreeding effects, on the metapopulation viability of a medium-sized ground-dwelling mammal, the southern brown bandicoot (Isoodon obesulus), in the rapidly expanding city of Perth, Australia. We surveyed two metapopulations over one and a half years, and parameterized the PVA models using largely field-collected data. The models revealed that spatial isolation imposed by housing and road encroachment has major impacts on I. obesulus. Although the species is known to persist in small metapopulations at moderate levels of habitat fragmentation, the models indicate that these populations become highly vulnerable to demographic decline, genetic deterioration, and local extinction under increasing habitat connectivity loss. Isolated metapopulations were also predicted to be highly sensitive to fire, with large-scale fires having greater negative impacts on population abundance than small-scale ones. To reduce the risk of decline and local extirpation of I. obesulus and other small- to medium-sized ground-dwelling mammals in urbanizing, fire prone landscapes, we recommend that remnant vegetation and vegetated, structurally-complex corridors between habitat patches be retained. Well-designed road underpasses can be effective to connect habitat patches and reduce the probability of inbreeding and genetic differentiation; however, adjustment of fire management practices to limit the size of unplanned fires and ensure the retention of long unburnt vegetation will also be required to ensure persistence. Our study supports the evidence that in rapidly urbanizing landscapes, a pro-active conservation approach is required that manages species at the metapopulation level and that prioritizes metapopulations and habitat with greater long-term probability of persistence and conservation capacity, respectively. This strategy may help us prevent future declines and local extirpations, and currently relatively common species from becoming rare. PMID:29444118

  20. The viability of lytic bacteriophage ΦD5 in potato-associated environments and its effect on Dickeya solani in potato (Solanum tuberosum L.) plants

    PubMed Central

    Smolarska, Anna; Ozymko, Zofia

    2017-01-01

    Dickeya solani is one of the most important pectinolytic phytopathogens responsible for high losses in potato, especially in seed potato production in Europe. Lytic bacteriophages can affect the structure of the host population and may influence spread, survival and virulence of the pathogen and in consequence, infection of the plant. In this study, we aimed to acquire information on the viability of the broad host lytic bacteriophage ΦD5 on potato, as well as to apprehend the specific effect of this bacteriophage on its host D. solani type-strain in different settings, as a preliminary step to target co-adaptation of phages and host bacteria in plant environment. Viability of the ΦD5 phage in tuber extract, on tuber surface, in potting compost, in rainwater and on the leaf surface, as well as the effect of copper sulfate, were examined under laboratory conditions. Also, the interaction of ΦD5 with the target host D. solani in vitro and in compost-grown potato plants was evaluated. ΦD5 remained infectious in potato tuber extract and rain water for up to 72 h but was inactivated in solutions containing 50 mM of copper. The phage population was stable for up to 28 days on potato tuber surface and in potting compost. In both, tissue culture and compost-grown potato plants, ΦD5 reduced infection by D. solani by more than 50%. The implications of these findings are discussed. PMID:28800363

  1. Bioreactor-Based Online Recovery of Human Progenitor Cells with Uncompromised Regenerative Potential: A Bone Tissue Engineering Perspective

    PubMed Central

    Sonnaert, Maarten; Luyten, Frank P.; Papantoniou, Ioannis

    2015-01-01

    The use of a 3D perfusion culture environment for stem cell expansion has been shown to be beneficial for maintenance of the original cell functionality but due to several system inherent characteristics such as the presence of extracellular matrix, the continued development and implementation of 3D perfusion bioreactor technologies is hampered. Therefore, this study developed a methodology for harvesting a progenitor cell population from a 3D open porous culture surface after expansion in a perfusion bioreactor and performed a functional characterization of the expanded cells. An initial screening showed collagenase to be the most interesting reagent to release the cells from the 3D culture surface as it resulted in high yields without compromising cell viability. Subsequently a Design of Experiment approach was used to obtain optimized 3D harvest conditions by assessing the interplay of flow rate, collagenase concentration and incubation time on the harvest efficiency, viability and single cell fraction. Cells that were recovered with the optimized harvest protocol, by perfusing a 880 U/ml collagenase solution for 7 hours at a flow rate of 4 ml/min, were thereafter functionally analyzed for their characteristics as expanded progenitor cell population. As both the in vitro tri-lineage differentiation capacity and the in vivo bone forming potential were maintained after 3D perfusion bioreactor expansion we concluded that the developed seeding, culture and harvest processes did not significantly compromise the viability and potency of the cells and can contribute to the future development of integrated bioprocesses for stem cell expansion. PMID:26313143

  2. Bioreactor-Based Online Recovery of Human Progenitor Cells with Uncompromised Regenerative Potential: A Bone Tissue Engineering Perspective.

    PubMed

    Sonnaert, Maarten; Luyten, Frank P; Schrooten, Jan; Papantoniou, Ioannis

    2015-01-01

    The use of a 3D perfusion culture environment for stem cell expansion has been shown to be beneficial for maintenance of the original cell functionality but due to several system inherent characteristics such as the presence of extracellular matrix, the continued development and implementation of 3D perfusion bioreactor technologies is hampered. Therefore, this study developed a methodology for harvesting a progenitor cell population from a 3D open porous culture surface after expansion in a perfusion bioreactor and performed a functional characterization of the expanded cells. An initial screening showed collagenase to be the most interesting reagent to release the cells from the 3D culture surface as it resulted in high yields without compromising cell viability. Subsequently a Design of Experiment approach was used to obtain optimized 3D harvest conditions by assessing the interplay of flow rate, collagenase concentration and incubation time on the harvest efficiency, viability and single cell fraction. Cells that were recovered with the optimized harvest protocol, by perfusing a 880 U/ml collagenase solution for 7 hours at a flow rate of 4 ml/min, were thereafter functionally analyzed for their characteristics as expanded progenitor cell population. As both the in vitro tri-lineage differentiation capacity and the in vivo bone forming potential were maintained after 3D perfusion bioreactor expansion we concluded that the developed seeding, culture and harvest processes did not significantly compromise the viability and potency of the cells and can contribute to the future development of integrated bioprocesses for stem cell expansion.

  3. The viability of lytic bacteriophage ΦD5 in potato-associated environments and its effect on Dickeya solani in potato (Solanum tuberosum L.) plants.

    PubMed

    Czajkowski, Robert; Smolarska, Anna; Ozymko, Zofia

    2017-01-01

    Dickeya solani is one of the most important pectinolytic phytopathogens responsible for high losses in potato, especially in seed potato production in Europe. Lytic bacteriophages can affect the structure of the host population and may influence spread, survival and virulence of the pathogen and in consequence, infection of the plant. In this study, we aimed to acquire information on the viability of the broad host lytic bacteriophage ΦD5 on potato, as well as to apprehend the specific effect of this bacteriophage on its host D. solani type-strain in different settings, as a preliminary step to target co-adaptation of phages and host bacteria in plant environment. Viability of the ΦD5 phage in tuber extract, on tuber surface, in potting compost, in rainwater and on the leaf surface, as well as the effect of copper sulfate, were examined under laboratory conditions. Also, the interaction of ΦD5 with the target host D. solani in vitro and in compost-grown potato plants was evaluated. ΦD5 remained infectious in potato tuber extract and rain water for up to 72 h but was inactivated in solutions containing 50 mM of copper. The phage population was stable for up to 28 days on potato tuber surface and in potting compost. In both, tissue culture and compost-grown potato plants, ΦD5 reduced infection by D. solani by more than 50%. The implications of these findings are discussed.

  4. Riboflavin deprivation inhibits macrophage viability and activity - a study on the RAW 264.7 cell line.

    PubMed

    Mazur-Bialy, Agnieszka Irena; Buchala, Beata; Plytycz, Barbara

    2013-08-28

    Riboflavin, or vitamin B2, as a precursor of the coenzymes FAD and FMN, has an indirect influence on many metabolic processes and determines the proper functioning of several systems, including the immune system. In the human population, plasma riboflavin concentration varies from 3·1 nM (in a moderate deficiency, e.g. in pregnant women) to 10·4 nM (in healthy adults) and 300 nM (in cases of riboflavin supplementation). The purpose of the present study was to investigate the effects of riboflavin concentration on the activity and viability of macrophages, i.e. on one of the immunocompetent cell populations. The study was performed on the murine monocyte/macrophage RAW 264.7 cell line cultured in medium with various riboflavin concentrations (3·1, 10·4, 300 and 531 nM). The results show that riboflavin deprivation has negative effects on both the activity and viability of macrophages and reduces their ability to generate an immune response. Signs of riboflavin deficiency developed in RAW 264.7 cells within 4 d of culture in the medium with a low riboflavin concentration (3·1 nM). In particular, the low riboflavin content reduced the proliferation rate and enhanced apoptotic cell death connected with the release of lactate dehydrogenase. The riboflavin deprivation impaired cell adhesion, completely inhibited the respiratory burst and slightly impaired phagocytosis of the zymosan particles. In conclusion, macrophages are sensitive to riboflavin deficiency; thus, a low riboflavin intake in the diet may affect the immune system and may consequently decrease proper host immune defence.

  5. Improving ovarian tissue cryopreservation for oncologic patients: slow freezing versus vitrification, effect of different procedures and devices.

    PubMed

    Herraiz, Sonia; Novella-Maestre, Edurne; Rodríguez, Beatriz; Díaz, César; Sánchez-Serrano, María; Mirabet, Vicente; Pellicer, Antonio

    2014-03-01

    To compare slow freezing (SF) with four vitrification techniques (VT) for cryopreservation of ovarian tissue (OT) and to evaluate the best protocol for human OT in a xenograft model. Experimental study. University hospital. Patients undergoing fertility preservation. Ovariectomized nude mice. Cryopreservation of bovine OT after SF and four VTs (VT1, VT2, VT3, and VT4) by combining two cryoprotectant vitrification solutions (VS1 and VS2) and two devices (metallic grid and ethyl vinyl acetate bag), after which the cryopreservation of human OT by SF and VT1 and xenograft into nude mice. Follicular densities, proliferation, vascularization, fibrosis, apoptosis, tissue viability. The in vitro study in bovine OT showed a lower percentage of quiescent follicles in the SF group but not in the vitrification groups (VT1-VT4). Apoptosis increased and cell proliferation decreased in all the experimental groups except VT1 (20% ethylene glycol, 20% dimethyl sulfoxide, 0.5 M sucrose, and 20% synthetic serum substitute in HEPES-buffered M199 culture media with Cryotissue metallic grids). Tissue viability was diminished in VT3, and the SF-xenografted human samples showed reduced primordial and secondary densities and unbalanced follicular populations when compared with fresh and VT1 tissue. VT1 offers similar conditions to fresh tissue for follicular density, proliferation, viability, and cell death and preserves a larger population of quiescent follicles than SF after transplantation, thus ensuring the maintenance of graft potential fertility. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Long-term growth of Desert Tortoises (Gopherus agassizii) in a southern Nevada population

    USGS Publications Warehouse

    Medica, P.A.; Nussear, Kenneth E.; Esque, Todd C.; Saethre, Mary B.

    2012-01-01

    Knowledge of growth rates, age at maturity, and longevity are important aspects of a species life history and are directly applicable to life table creation and population viability analyses. We measured the growth of a cohort of 17 semi-wild Desert Tortoises (Gopherus agassizii) located in Rock Valley, Nevada over a 47-yr period beginning in 1963. The tortoises were initially marked as hatchling and juvenile animals between the years 1963 and 1965 and ranged in size from 47 to 77 mm in plastron length. We assigned ages of 1-4 yr to the tortoises at initial capture based on their body size. These tortoises were recaptured, measured, and weighed approximately annually since their initial capture. Growth of male and female tortoises did not differ significantly until animals reached the age of 23-25 yr. Annual tortoise growth was correlated with the production of ephemeral vegetation, while accounting for size, sex, and repeated measurements of the animals as well as the interval between measurements. However, the production of ephemeral plants was likewise highly correlated (non-linearly) with winter rainfall. Stochastic predation events between 2003 and 2007 decimated this cohort of tortoises. The average age of the long-term surviving tortoises from this cohort was 43 yr with a range of 39-47 yr. Twelve of the tortoises survived to the age of 39 yr and 11 of the 12 reached 40 yr.

  7. Increased temperatures negatively affect Juniperus communis seeds: evidence from transplant experiments along a latitudinal gradient.

    PubMed

    Gruwez, R; De Frenne, P; Vander Mijnsbrugge, K; Vangansbeke, P; Verheyen, K

    2016-05-01

    With a distribution range that covers most of the Northern hemisphere, common juniper (Juniperus communis) has one of the largest ranges of all vascular plant species. In several regions in Europe, however, populations are decreasing in size and number due to failing recruitment. One of the main causes for this failure is low seed viability. Observational evidence suggests that this is partly induced by climate warming, but our mechanistic understanding of this effect remains incomplete. Here, we experimentally assess the influence of temperature on two key developmental phases during sexual reproduction, i.e. gametogenesis and fertilisation (seed phase two, SP2) and embryo development (seed phase three, SP3). Along a latitudinal gradient from southern France to central Sweden, we installed a transplant experiment with shrubs originating from Belgium, a region with unusually low juniper seed viability. Seeds of both seed phases were sampled during three consecutive years, and seed viability assessed. Warming temperatures negatively affected the seed viability of both SP2 and SP3 seeds along the latitudinal gradient. Interestingly, the effect on embryo development (SP3) only occurred in the third year, i.e. when the gametogenesis and fertilisation also took place in warmer conditions. We found strong indications that this negative influence mostly acts via disrupting growth of the pollen tube, the development of the female gametophyte and fertilisation (SP2). This, in turn, can lead to failing embryo development, for example, due to nutritional problems. Our results confirm that climate warming can negatively affect seed viability of juniper. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. Condition and fate of logged forests in the Brazilian Amazon.

    Treesearch

    Gregory P. Asner; Eben N. Broadbent; Paulo J. C. Oliveira; Michael Keller; David E. Knapp; Jose N. M. Silva

    2006-01-01

    The long-term viability of a forest industry in the Amazon region of Brazil depends on the maintenance of adequate timber volume and growth in healthy forests. Using extensive high-resolution satellite analyses, we studied the forest damage caused by recent logging operations and the likelihood that logged forests would be cleared within 4 years after timber harvest....

  9. Recalcitrant Behavior of Temperate Forest Tree Seeds: Storage, Biochemistry, and Physiology

    Treesearch

    Kristina F. Connor; Sharon Sowa

    2002-01-01

    The recalcitrant behavior of seeds of live oak (Quercus virginiana Mill.), and Durand oak (Quercus durandii Buckl.) was examined after hydrated storage at two temperatures, +4°C and -2°C for up to 1 year. Samples were collected and analyses performed at monthly intervals. At each sampling time, seeds were tested for viability and...

  10. Physiology limits commercially viable photoautotrophic production of microalgal biofuels.

    PubMed

    Kenny, Philip; Flynn, Kevin J

    2017-01-01

    Algal biofuels have been offered as an alternative to fossil fuels, based on claims that microalgae can provide a highly productive source of compounds as feedstocks for sustainable transport fuels. Life cycle analyses identify algal productivity as a critical factor affecting commercial and environmental viability. Here, we use mechanistic modelling of the biological processes driving microalgal growth to explore optimal production scenarios in an industrial setting, enabling us to quantify limits to algal biofuels potential. We demonstrate how physiological and operational trade-offs combine to restrict the potential for solar-powered algal-biodiesel production in open ponds to a ceiling of ca. 8000 L ha -1 year -1 . For industrial-scale operations, practical considerations limit production to ca. 6000 L ha -1 year -1 . According to published economic models and life cycle analyses, such production rates cannot support long-term viable commercialisation of solar-powered cultivation of natural microalgae strains exclusively as feedstock for biofuels. The commercial viability of microalgal biofuels depends critically upon limitations in microalgal physiology (primarily in rates of C-fixation); we discuss the scope for addressing this bottleneck concluding that even deployment of genetically modified microalgae with radically enhanced characteristics would leave a very significant logistical if not financial burden.

  11. Reproductive biology and pollination of the carnivorous Genlisea violacea (Lentibulariaceae).

    PubMed

    Aranguren, Y; Płachno, B J; Stpiczyńska, M; Miranda, V F O

    2018-05-01

    Genlisea violacea is a Brazilian endemic carnivorous plant species distributed in the cerrado biome, mainly in humid environments, on sandy and oligotrophic soil or wet rocks. Studies on reproductive biology or pollination in the Lentibulariaceae are notably scarce; regarding the genus Genlisea, the current study is the first to show systematic and standardised research on reproductive biology from field studies to describe the foraging of visiting insects and determine the effective pollinators of Genlisea. We studied two populations of G. violacea through the observation of flower visitors for 4 months of the rainy and dry seasons. Stigmatic receptivity, pollen viability, and breeding system were evaluated together with histochemistry and morphological analyses of flowers. The flowers showed stigmatic receptivity of 100% in open buds and mature flowers, reducing to 80% for senescent flowers. Nearly 80% of pollen grains are viable, decreasing to 40-45% after 48 h. Nectar is produced by glandular trichomes inside the spur. Two bee species are effective pollinators: one of the genus Lasioglossum (subgenus Dialictus: Halictidae) and the other of the genus Ceratina (subgenus Ceratinula: family Apidae). Moreover, bee-like flies of the Syrphidae family may also be additional pollinators. Genlisea violacea is an allogamous and self-compatible species. The differences in flower-visiting fauna for both populations can be attributed to factors such as climate, anthropogenic effect, seasonal factors related to insects and plants, as well as the morphological variation of flowers in both populations. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  12. Adaptive population divergence and directional gene flow across steep elevational gradients in a climate-sensitive mammal.

    PubMed

    Waterhouse, Matthew D; Erb, Liesl P; Beever, Erik A; Russello, Michael A

    2018-06-01

    The ecological effects of climate change have been shown in most major taxonomic groups; however, the evolutionary consequences are less well-documented. Adaptation to new climatic conditions offers a potential long-term mechanism for species to maintain viability in rapidly changing environments, but mammalian examples remain scarce. The American pika (Ochotona princeps) has been impacted by recent climate-associated extirpations and range-wide reductions in population sizes, establishing it as a sentinel mammalian species for climate change. To investigate evidence for local adaptation and reconstruct patterns of genomic diversity and gene flow across rapidly changing environments, we used a space-for-time design and restriction site-associated DNA sequencing to genotype American pikas along two steep elevational gradients at 30,966 SNPs and employed independent outlier detection methods that scanned for genotype-environment associations. We identified 338 outlier SNPs detected by two separate analyses and/or replicated in both transects, several of which were annotated to genes involved in metabolic function and oxygen transport. Additionally, we found evidence of directional gene flow primarily downslope from high-elevation populations, along with reduced gene flow at outlier loci. If this trend continues, elevational range contractions in American pikas will likely be from local extirpation rather than upward movement of low-elevation individuals; this, in turn, could limit the potential for adaptation within this landscape. These findings are of particular relevance for future conservation and management of American pikas and other elevationally restricted, thermally sensitive species. © 2018 John Wiley & Sons Ltd.

  13. Effect of 25% Sodium Reduction on Sales of   a Top-Selling Bread in Remote Indigenous Australian  Community Stores: A Controlled Intervention Trial.

    PubMed

    McMahon, Emma; Webster, Jacqui; Brimblecombe, Julie

    2017-02-28

    Reducing sodium in the food supply is key to achieving population salt targets, but maintaining sales is important to ensuring commercial viability and maximising clinical impact. We investigated whether 25% sodium reduction in a top-selling bread affected sales in 26 remote Indigenous community stores. After a 23-week baseline period, 11 control stores received the regular-salt bread (400 mg Na/100 g) and 15 intervention stores received the reduced-salt version (300 mg Na/100 g) for 12-weeks. Sales data were collected to examine difference between groups in change from baseline to follow-up (effect size) in sales (primary outcome) or sodium density, analysed using a mixed model. There was no significant effect on market share (-0.31%; 95% CI -0.68, 0.07; p = 0.11) or weekly dollars ($58; -149, 266; p = 0.58). Sodium density of all purchases was not significantly reduced (-8 mg Na/MJ; -18, 2; p = 0.14), but 25% reduction across all bread could significantly reduce sodium (-12; -23, -1; p = 0.03). We found 25% salt reduction in a top-selling bread did not affect sales in remote Indigenous community stores. If achieved across all breads, estimated salt intake in remote Indigenous Australian communities would be reduced by approximately 15% of the magnitude needed to achieve population salt targets, which could lead to significant health gains at the population-level.

  14. Effects of the antimicrobial peptide protegrine 1 on sperm viability and bacterial load of boar seminal doses.

    PubMed

    Sancho, S; Briz, M; Yeste, M; Bonet, S; Bussalleu, E

    2017-10-01

    The presence of bacteria adversely affects boar sperm quality of seminal doses intended for artificial insemination. Currently, the most common measure to prevent bacteriospermia is the addition of antibiotics in semen extenders; however, mounting evidence shows that microbial resistance exists. A promising alternative to replace antibiotics are antimicrobial peptides. In this study, the effects of the antimicrobial peptide protegrine 1 (PG1) on the sperm viability and bacterial load of boar seminal doses were evaluated. Three different concentrations of PG1 (2.5, 25 and 100 μg/ml) were tested over a storing period of 10 days at 17°C. Sperm viability was analysed by fluorescence microscopy (SYBR14/propidium iodide), and bacterial load was assessed by plating 100 μl of each sample in Luria-Bertani medium and incubated at 37°C for 72 hr under aerobic conditions. Protegrine 1 was effective in controlling the bacterial load in all the assessed concentrations (p < .05), reaching the lowest values at the highest concentrations of the antimicrobial peptide. Nevertheless, sperm viability was significantly (p < .05) reduced by all tested concentrations of this peptide, the most cytotoxic effects being observed at the highest PG1 concentrations. Despite these results, the use of PG1 as an alternative to antibiotics cannot be totally discarded, as further studies using the truncated form of this peptide are needed. © 2017 Blackwell Verlag GmbH.

  15. The relationship between cisplatin resistance and histone deacetylase isoform overexpression in epithelial ovarian cancer cell lines

    PubMed Central

    Kim, Min-Gyun; Pak, Jhang Ho; Choi, Won Ho; Park, Jeong-Yeol; Nam, Joo-Hyun

    2012-01-01

    Objective To investigate the relationship between cisplatin resistance and histone deacetylase (HDAC) isoform overexpression in ovarian cancer cell lines. Methods Expression of four HDAC isoforms (HDAC 1, 2, 3, and 4) in two ovarian cancer cell lines, SKOV3 and OVCAR3, exposed to various concentrations of cisplatin was examined by western blot analyses. Cells were transfected with plasmid DNA of each HDAC. The overexpression of protein and mRNA of each HDAC was confirmed by western blot and reverse transcriptase-polymerase chain reaction analyses, respectively. The cell viability of the SKOV3 and OVCAR3 cells transfected with HDAC plasmid DNA was measured using the cell counting kit-8 assay after treatment with cisplatin. Results The 50% inhibitory concentration of the SKOV3 and OVCAR3 cells can be determined 15-24 hours after treatment with 15 µg/mL cisplatin. The expression level of acetylated histone 3 protein in SKOV3 cells increased after exposure to cisplatin. Compared with control cells at 24 hours after cisplatin exposure, the viability of SKOV3 cells overexpressing HDAC 1 and 3 increased by 15% and 13% (p<0.05), respectively. On the other hand, OVCAR3 cells that overexpressed HDAC 2 and 4 exhibited increased cell viability by 23% and 20% (p<0.05), respectively, compared with control cells 24 hours after exposure to cisplatin. Conclusion In SKOV3 and OVCAR3 epithelial ovarian cancer cell lines, the correlation between HDAC overexpression and cisplatin resistance was confirmed. However, the specific HDAC isoform associated with resistance to cisplatin varied depending on the ovarian cancer cell line. These results may suggest that each HDAC isoform conveys cisplatin resistance via different mechanisms. PMID:22808361

  16. Toxicity evaluations of nanoclays and thermally degraded byproducts through spectroscopical and microscopical approaches

    PubMed Central

    Wagner, Alixandra; Eldawud, Reem; White, Andrew; Agarwal, Sushant; Stueckle, Todd A.; Sierros, Konstantinos A.; Rojanasakul, Yon; Gupta, Rakesh K.; Dinu, Cerasela Zoica

    2016-01-01

    Background Montmorillonite is a type of nanoclay that originates from the clay fraction of the soil and is incorporated into polymers to form nanocomposites with enhanced mechanical strength, barrier, and flammability properties used for food packaging, automotive, and medical devices. However, with implementation in such consumer applications, the interaction of montmorillonite-based composites or derived byproducts with biological systems needs to be investigated. Methods Herein we examined the potential of Cloisite Na+ (pristine) and Cloisite 30B (organically modified montmorillonite nanoclay) and their thermally degraded byproducts’ to induce toxicity in model human lung epithelial cells. The experimental set-up mimicked biological exposure in manufacturing and disposal areas and employed cellular treatments with occupationally relevant doses of nanoclays previously characterized using spectroscopical and microscopical approaches. For nanoclay-cellular interactions and for cellular analyses respectively, biosensorial-based analytical platforms were used, with induced cellular changes being confirmed via live cell counts, viability assays, and cell imaging. Results Our analysis of byproducts’ chemical and physical properties revealed both structural and functional changes. Real-time high throughput analyses of exposed cellular systems confirmed that nanoclay induced significant toxic effects, with Cloisite 30B showing time-dependent decreases in live cell count and cellular viability relative to control and pristine nanoclay, respectively. Byproducts produced less toxic effects; all treatments caused alterations in the cell morphology upon exposure. Conclusions Our morphological, behavioral, and viability cellular changes show that nanoclays have the potential to produce toxic effects when used both in manufacturing or disposal environments. General significance The reported toxicological mechanisms prove the extensibility of a biosensorial-based platform for cellular behavior analysis upon treatment with a variety of nanomaterials. PMID:27612663

  17. [Tumor cells transfer between the patient and laboratory animal as a basic methodological approach to the study of cancerogenesis and identification of biomarkers].

    PubMed

    Klos, D; Stašek, M; Loveček, M; Skalický, P; Vrba, R; Aujeský, R; Havlík, R; Neoral, Č; Varanashi, L; Hajdúch, M; Vrbková, J; Džubák, P

    The investigation of prognostic and predictive factors for early diagnosis of tumors, their surveillance and monitoring of the impact of therapeutic modalities using hybrid laboratory models in vitro/in vivo is an experimental approach with a significant potential. It is preconditioned by the preparation of in vivo tumor models, which may face a number of potential technical difficulties. The assessment of technical success of grafting and xenotransplantation based on the type of the tumor or cell line is important for the preparation of these models and their further use for proteomic and genomic analyses. Surgically harvested gastrointestinal tract tumor tissue was processed or stable cancer cell lines were cultivated; the viability was assessed, and subsequently the cells were inoculated subcutaneously to SCID mice with an individual duration of tumor growth, followed by its extraction. We analysed 140 specimens of tumor tissue including 17 specimens of esophageal cancer (viability 13/successful inoculations 0), 13 tumors of the cardia (11/0), 39 gastric tumors (24/4), 47 pancreatic tumors (34/1) and 24 specimens of colorectal cancer (22/9). 3 specimens were excluded due to histological absence of the tumor (complete remission after neoadjuvant therapy in 2 cases of esophageal carcinoma, 1 case of chronic pancreatitis). We observed successful inoculation in 17 of 28 tumor cell lines. The probability of successful grafting to the mice model in tumors of the esophagus, stomach and pancreas is significantly lower in comparison with colorectal carcinoma and cell lines generated tumors. The success rate is enhanced upon preservation of viability of the harvested tumor tissue, which depends on the sequence of clinical and laboratory algorithms with a high level of cooperation.Key words: proteomic analysis - xenotransplantation - prognostic and predictive factors - gastrointestinal tract tumors.

  18. Analysis of concentration-dependent effects of copper and PCB on different Chattonella spp. microalgae (raphidophyceae) cultivated in artificial seawater medium

    PubMed Central

    Niestroy, Jeanette; Martínez, Alfonso Bárbara; Band-Schmidt, Christine J.

    2014-01-01

    In the present study, the effect on the chlorophyll a and the total protein content as well as the Chattonella spp. cell viability were examined after concentration-dependent exposure to CuCl2 and Aroclor 1242. The comparison between various raphidophyte strains provides an insight into the different susceptibilities to contaminants of Chattonella subsalsa (CSNAV-1), C. marina var. marina (CMCV-1) and C. marina var. ovata (COPV-2). The microalgae were cultivated in artificial seawater medium. Exponentially growing microalgae (8-10 days in culture) were used for exposure experiments. We observed in all three raphidophyte species cytotoxicity-mediated modifications beginning at concentrations of 150 and 200 µM of the heavy metal copper after 24 hours exposure. But interestingly, the three strains exhibited only slight differences in their susceptibility to CuCl2. C. subsalsa and C. marina var. marina cells were first affected at the chlorophyll a level and in cell viability. The total protein amount was reduced significantly only after exposure to 300 µM of CuCl2. However, C. marina var. ovata microalgae showed similar reduction curves for all three analysed cytotoxicity endpoints after heavy metal exposure. On the other hand, after Aroclor 1242 incubation the cytotoxic modification pattern indicated clearly the different susceptibilities of the three raphidophyte strains. C. subsalsa cells noticeably exhibited a decrease in the analysed pigment amount (30-20 % compared to that of the control) already after 0.007 mg/L PCB exposure. In contrast, cell viability and total protein content were slightly reduced and fell below the 50 % threshold after 0.7 and 3.3 mg/L of Aroclor 1242, respectively. Interestingly, C. marina var. ovata showed almost no cytotoxic modification caused by the PCB mixture. Only the concentration of 0.7 mg/L Aroclor 1242 clearly affected the cell viability. As opposed to that we observed a concentration-dependent decrease of cell viability and chlorophyll a amount in CMCV-1 microalgae. These observations confirmed that the susceptibility of the raphidophytes strains CSNAV-1, CMCV-1 and COPV-2 is contaminant-dependent. We showed differences even between two variants of Chattonella (Chattonella marina var. marina and C. marina var. ovata). Furthermore, we were able to show the different mode of action of two common pollutants by simple cytotoxic parameters like total protein and chlorophyll a content as well as by cell counting analysis. PMID:26417254

  19. Analysis of concentration-dependent effects of copper and PCB on different Chattonella spp. microalgae (raphidophyceae) cultivated in artificial seawater medium.

    PubMed

    Niestroy, Jeanette; Martínez, Alfonso Bárbara; Band-Schmidt, Christine J

    2014-01-01

    In the present study, the effect on the chlorophyll a and the total protein content as well as the Chattonella spp. cell viability were examined after concentration-dependent exposure to CuCl2 and Aroclor 1242. The comparison between various raphidophyte strains provides an insight into the different susceptibilities to contaminants of Chattonella subsalsa (CSNAV-1), C. marina var. marina (CMCV-1) and C. marina var. ovata (COPV-2). The microalgae were cultivated in artificial seawater medium. Exponentially growing microalgae (8-10 days in culture) were used for exposure experiments. We observed in all three raphidophyte species cytotoxicity-mediated modifications beginning at concentrations of 150 and 200 µM of the heavy metal copper after 24 hours exposure. But interestingly, the three strains exhibited only slight differences in their susceptibility to CuCl2. C. subsalsa and C. marina var. marina cells were first affected at the chlorophyll a level and in cell viability. The total protein amount was reduced significantly only after exposure to 300 µM of CuCl2. However, C. marina var. ovata microalgae showed similar reduction curves for all three analysed cytotoxicity endpoints after heavy metal exposure. On the other hand, after Aroclor 1242 incubation the cytotoxic modification pattern indicated clearly the different susceptibilities of the three raphidophyte strains. C. subsalsa cells noticeably exhibited a decrease in the analysed pigment amount (30-20 % compared to that of the control) already after 0.007 mg/L PCB exposure. In contrast, cell viability and total protein content were slightly reduced and fell below the 50 % threshold after 0.7 and 3.3 mg/L of Aroclor 1242, respectively. Interestingly, C. marina var. ovata showed almost no cytotoxic modification caused by the PCB mixture. Only the concentration of 0.7 mg/L Aroclor 1242 clearly affected the cell viability. As opposed to that we observed a concentration-dependent decrease of cell viability and chlorophyll a amount in CMCV-1 microalgae. These observations confirmed that the susceptibility of the raphidophytes strains CSNAV-1, CMCV-1 and COPV-2 is contaminant-dependent. We showed differences even between two variants of Chattonella (Chattonella marina var. marina and C. marina var. ovata). Furthermore, we were able to show the different mode of action of two common pollutants by simple cytotoxic parameters like total protein and chlorophyll a content as well as by cell counting analysis.

  20. The evolutionary dynamics of haplodiploidy: Genome architecture and haploid viability.

    PubMed

    Blackmon, Heath; Hardy, Nate B; Ross, Laura

    2015-11-01

    Haplodiploid reproduction, in which males are haploid and females are diploid, is widespread among animals, yet we understand little about the forces responsible for its evolution. The current theory is that haplodiploidy has evolved through genetic conflicts, as it provides a transmission advantage to mothers. Male viability is thought to be a major limiting factor; diploid individuals tend to harbor many recessive lethal mutations. This theory predicts that the evolution of haplodiploidy is more likely in male heterogametic lineages with few chromosomes, as genes on the X chromosome are often expressed in a haploid environment, and the fewer the chromosome number, the greater the proportion of the total genome that is X-linked. We test this prediction with comparative phylogenetic analyses of mites, among which haplodiploidy has evolved repeatedly. We recover a negative correlation between chromosome number and haplodiploidy, find evidence that low chromosome number evolved prior to haplodiploidy, and that it is unlikely that diplodiploidy has reevolved from haplodiploid lineages of mites. These results are consistent with the predicted importance of haploid male viability. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  1. Antimony trichloride induces a loss of cell viability via reactive oxygen species-dependent autophagy in A549 cells.

    PubMed

    Zhao, Xinyuan; Xing, Fengjun; Cong, Yewen; Zhuang, Yin; Han, Muxi; Wu, Zhiqiang; Yu, Shali; Wei, Haiyan; Wang, Xiaoke; Chen, Gang

    2017-12-01

    Antimony (Sb) is one of the most prevalent heavy metals and frequently leads to biological toxicity. Although autophagy is believed to be involved in metal-associated cytotoxicity, there is no evidence of its involvement following exposure. Moreover, the underlying mechanism of autophagy remains unclear. In this study, treatment with antimony trichloride caused autophagy in a dose- and time-dependent manner in A549 cells but did not affect the level of Atg5 or Atg7 mRNA expression. Furthermore, Sb enhanced autophagic flux while upregulating p62 gene and protein levels. The classic mechanistic target of rapamycin (mTOR) pathway is not involved in Sb-induced autophagy. However, Sb-induced autophagy and the upregulation of p62 were inhibited by treatment with the antioxidant N-acetylcysteine (NAC). Subsequent analyses demonstrated that the inhibition of autophagy protected A549 cells from a loss of cell viability, while the activation of autophagy by rapamycin had the opposite effect. These data suggest that reactive oxygen species-dependent autophagy mediates Sb-stimulated cell viability loss in A549 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. [Peri-viability: limits of prematurity in a regional hospital in the last 10 years].

    PubMed

    Solís Sánchez, G; Pérez González, C; García López, E; Costa Romero, M; Arias Llorente, R P; Suárez Rodríguez, M; Fernández Colomer, B; Coto Cotallo, G D

    2014-03-01

    To determine the preterm viability between 22 and 25 gestational weeks in our hospital in last 10 years. A descriptive retrospective study was conducted on preterms between 22-25 gestational weeks born between 1-1-2002 and 12-31-2011. There were 121 newborns, 45 (37%) stillbirths and 76 (63%) live births (16 died in delivery room, and 60 admitted to neonatal intensive unit). Among the 60 admitted, 34 died before hospital discharge, and 26 survived (21% of total, 34% of live births and 43% of those admitted to neonatal intensive unit). The causes of death were: 16 therapeutic effort limitation in delivery room, 8 therapeutic effort limitation in neonatal ward, 7 nosocomial sepsis, 7 NEC, 4 respiratory problems, and 8 of unknown cause. There were no survivors below 24 gestational weeks. Of the 26 survivors, 4 had major neurological disorders, and 11 with a normal neurological outcome. No significant statistical differences were found in the mortality between the two five-year periods analysed. The peri-viability has important clinical and ethical problems for neonatologist. Copyright © 2012 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  3. Bioactive sesquiterpene lactones and other compounds isolated from Vernonia cinerea

    PubMed Central

    Youn, Ui Joung; Miklossy, Gabriella; Chai, Xingyun; Wongwiwatthananukit, Supakit; Toyama, Onoomar; Songsak, Thanapat; Turkson, James; Chang, Leng Chee

    2014-01-01

    Four new sesquiterpene lactones, 8α-(2′Z-tigloyloxy)-hirsutinolide (1), 8α-(2′Z-tigloyloxy)-hirsutinolide-13-O-acetate (2), 8α-(4-hydroxytigloyloxy)-hirsutinolide (3), and 8α-hydroxy-13-O-tigloyl-hirsutinolide (4), along with seven known derivatives (5–11), three norisoprenoids (12–14), a flavonoid (15), and a linoleic acid derivative (16), were isolated from the chloroform partition of a methanol extract from the combined leaves and stems of Vernonia cinerea. Their structures were established by 1D and 2D NMR, UV, and MS analyses. Compounds 1–16 were evaluated for their inhibitory effects against the viability of U251MG glioblastoma and MDA-MB-231 breast cancer cells that harbour aberrantly-active STAT3, compared to normal NIH3T3 mouse fibroblasts that show no evidence of activated STAT3. Among the isolates, compounds 2 and 7 inhibited the aberrant STAT3 activity in glioblastoma or breast cancer cells. Further, compounds 7 and 8 inhibited viability of all three cell lines, compounds 2, 4, and 9 predominantly inhibited the viability of the U251MG glioblastoma cell line. PMID:24370662

  4. Bioactive sesquiterpene lactones and other compounds isolated from Vernonia cinerea.

    PubMed

    Youn, Ui Joung; Miklossy, Gabriella; Chai, Xingyun; Wongwiwatthananukit, Supakit; Toyama, Onoomar; Songsak, Thanapat; Turkson, James; Chang, Leng Chee

    2014-03-01

    Four new sesquiterpene lactones, 8α-(2'Z-tigloyloxy)-hirsutinolide (1), 8α-(2'Z-tigloyloxy)-hirsutinolide-13-O-acetate (2), 8α-(4-hydroxytigloyloxy)-hirsutinolide (3), and 8α-hydroxy-13-O-tigloyl-hirsutinolide (4), along with seven known derivatives (5-11), three norisoprenoids (12-14), a flavonoid (15), and a linoleic acid derivative (16), were isolated from the chloroform partition of a methanol extract from the combined leaves and stems of Vernonia cinerea. Their structures were established by 1D and 2D NMR, UV, and MS analyses. Compounds 1-16 were evaluated for their inhibitory effects against the viability of U251MG glioblastoma and MDA-MB-231 breast cancer cells that harbour aberrantly-active STAT3, compared to normal NIH3T3 mouse fibroblasts that show no evidence of activated STAT3. Among the isolates, compounds 2 and 7 inhibited the aberrant STAT3 activity in glioblastoma or breast cancer cells. Further, compounds 7 and 8 inhibited viability of all three cell lines, compounds 2, 4, and 9 predominantly inhibited the viability of the U251MG glioblastoma cell line. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Superior anticancer activity is demonstrated by total extract of Curcuma longa L. as opposed to individual curcuminoids separated by centrifugal partition chromatography.

    PubMed

    Kukula-Koch, Wirginia; Grabarska, Aneta; Łuszczki, Jarogniew; Czernicka, Lidia; Nowosadzka, Ewa; Gumbarewicz, Ewelina; Jarząb, Agata; Audo, Gregoire; Upadhyay, Shakti; Głowniak, Kazimierz; Stepulak, Andrzej

    2018-05-01

    Three curcuminoids: bisdemethoxycurcumin, demethoxycurcumin, and curcumin from turmeric were successfully separated by a high capacity solvent system composed of heptane: chloroform: methanol: water mixture (5: 6: 3: 2 v/v/v/v) tailored for centrifugal partition chromatographs at K-values of 0.504, 1.057, 1.644, respectively. These three ferulic acid derivatives obtained at a purity rate exceeding 95% were analysed by an HPLC-MS spectrometer. Turmeric extract inhibited the proliferation/viability of A549 human lung cancer, HT29 colon cancer, and T98G glioblastoma cell lines in (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) tetrazolium reduction assay (MTT). Single curcuminoids significantly decreased the viability/proliferation of lung cancer cells in a dose-dependent manner. However, total extract displayed the superior anticancer activity in the investigated cell lines. Crude extract in combination with cisplatin augmented the decrease in the viability of cancer cells compared with single compound treatment in A549 lung cancer cells. Total extract of Curcuma longa could be regarded as being more effective against lung cancer cells in vitro than its separated compounds. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Patterns of ovarian and luteal activity in captive and wild Canada lynx (Lynx canadensis)

    Treesearch

    Kerry V. Fanson; Nadja C. Wielebnowski; Tanya M. Shenk; Jennifer H. Vashon; John R. Squires; Jeffrey R. Lucas

    2010-01-01

    Canada lynx face some unique breeding restrictions, which may have implications for population viability and captive management. The goal of this study was to improve our understanding of basic reproductive physiology in Canada lynx. Using fecal hormone metabolite analysis, we established normative patterns of fecal estrogen (fE) and progestagen (fP)...

  7. 78 FR 34347 - Endangered and Threatened Species; Recovery Plan for the North Pacific Right Whale

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... analysis standard for threatened status (has no more than a 1 percent chance of extinction in 100 years... contribute to a real risk of extinction that cannot be incorporated into a Population Viability Analysis will... thought to substantially contribute to a real risk of extinction that cannot be incorporated into a...

  8. Threats to the viability of California spotted owls

    Treesearch

    John J. Keane

    2017-01-01

    The California spotted owl (Strix occidentalis occidentalis) is a species of conservation concern owing to threats to its habitat and populations. Verner et al. (1992) first assessed the status of the California spotted owl "The California Spotted Owl: A technical Assessment of it’s current status" (CASPO) and identified four factors as either threats or...

  9. An Exploratory Study on Factors Affecting Private College Non-Viability in Korea

    ERIC Educational Resources Information Center

    Choi, Bo Young

    2017-01-01

    Korean private colleges, especially institutions which depend largely on tuition revenue, are in danger due to the decrease in the college-aged population affecting their student enrollment. Given that private institutions become nonviable at different points in time, this study examines the effects of covariates on the occurrence as well as the…

  10. 78 FR 13460 - Chartering and Field of Membership Manual for Federal Credit Unions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... dispersed.\\9\\ As a result, a higher potential population is required to ensure the economic viability of... prepare an analysis of any significant economic impact a regulation may have on a substantial number of... economic impact on a substantial number of small credit unions. \\10\\ 5 U.S.C. 603(a). Paperwork Reduction...

  11. Recovering marbled murrelets via corvid management: a population viability analysis approach

    Treesearch

    M. Zachariah Peery; R. William Henry

    2010-01-01

    The expansion of human activities into rural areas and natural landscapes has resulted in widespread increases in the abundance of synanthropic species that threaten rarer native species. Quantitative assessments of how much impacts need to be reduced to reach acceptable levels of risk to the affected species are rarely conducted prior to the implementation of control...

  12. Maintaining wildlife habitat in southeastern Alaska: implications of new knowledge for forest management and research.

    Treesearch

    Thomas A. Hanley; Winston P. Smith; Scott M. Gende

    2005-01-01

    We review results and implications from recent wildlife studies that followed from the 1997 Tongass Land Management Plan (TLMP) and identify information needs and directions for research, development, and application. Sustained population viability of wildlife species was identified as a major issue in the TLMP planning process. Several species were identified as...

  13. The interaction between propagule pressure, habitat suitablility and density-dependent reproduction in species invasion

    Treesearch

    Robert J. II Warren; Bahn Volker; Mark A. Bradford

    2011-01-01

    Seedling recruitment limitations create a demographic bottleneck that largely determines the viability and structure of plant populations and communities, and pose a core restriction on the colonization of novel habitat. We use a shade tolerant, invasive grass, Microstegium vimineum, to examine the interplay between seed and establishment limitations – phenomena that...

  14. The Centrality of the "Mediation" Concept in the Participatory Management of Water Resources

    ERIC Educational Resources Information Center

    dos Santos, Irenilda Angela; Berlinck, Christian Niel; de Santana Araujo, Symone Christine; Steinke, Ercilia Torres; Steinke, Valdir Adilson; Pianta, Taissa Ferreira; Graebner, Ivete Teresinha; Saito, Carlos Hiroo

    2005-01-01

    This work presents questions related to the viability and the requirements for the implementation of a National Policy of Water Resources in Brazil, and identifies the means to bring about active participation by the population in the management of water resources. While social inequalities may be an impediment to the implementation of full…

  15. A plan for the North American Bat Monitoring Program (NABat)

    Treesearch

    Susan C. Loeb; Thomas J. Rodhouse; Laura E. Ellison; Cori L. Lausen; Jonathan D. Reichard; Kathryn M. Irvine; Thomas E. Ingersoll; Jeremy T.H. Coleman; Wayne E. Thogmartin; John R. Sauer; Charles M. Francis; Mylea L. Bayless; Thomas R. Stanley; Douglas H. Johnson

    2015-01-01

    The purpose of the North American Bat Monitoring Program (NABat) is to create a continent-wide program to monitor bats at local to rangewide scales that will provide reliable data to promote effective conservation decisionmaking and the long-term viability of bat populations across the continent. This is an international, multiagency program. Four approaches will be...

  16. Missing lynx and trophic cascades in food webs: A reply to Ripple et al.

    Treesearch

    John R. Squires; Nicholas J. DeCesare; Mark Hebblewhite; Joel Berger

    2012-01-01

    Ripple et al. (2011) proposed a hypothesis that the recovery of gray wolves (Canis lupus) may positively affect the viability of threatened Canada lynx (Lynx canadensis) populations in the contiguous United States through indirect species interactions. Ripple et al. (2011) proposed 2 key trophic linkages connecting wolf restoration with lynx recovery. First, recovering...

  17. Basin of Mexico: A history of watershed mismanagement

    Treesearch

    Luis A. Bojorquez Tapia; Exequiel Ezcurra; Marisa Mazari-Hiriart; Salomon Diaz; Paola Gomez; Georgina Alcantar; Daniela Megarejo

    2000-01-01

    Mexico City Metropolitan Zone (MCMZ) is located within the Basin of Mexico. Because of its large population and demand for natural resources, several authors have questioned the viability of the city, especially in terms of water resources. These are reviewed at the regional and the local scales. It is concluded that a multi-basin management approach is necessary to...

  18. A new image-based tool for the high throughput phenotyping of pollen viability: evaluation of inter- and intra-cultivar diversity in grapevine.

    PubMed

    Tello, Javier; Montemayor, María Ignacia; Forneck, Astrid; Ibáñez, Javier

    2018-01-01

    Low pollen viability may limit grapevine yield under certain conditions, causing relevant economic losses to grape-growers. It is usually evaluated by the quantification of the number of viable and non-viable pollen grains that are present in a sample after an adequate pollen grain staining procedure. Although the manual counting of both types of grains is the simplest and most sensitive approach, it is a laborious and time-demanding process. In this regard, novel image-based approaches can assist in the objective, accurate and cost-effective phenotyping of this trait. Here, we introduce PollenCounter, an open-source macro implemented as a customizable Fiji tool for the high-throughput phenotyping of pollen viability. This tool splits RGB images of stained pollen grains into its primary channels, retaining red and green color fractionated images (which contain information on total and only viable pollen grains, respectively) for the subsequent isolation and counting of the regions of interest (pollen grains). This framework was successfully used for the analysis of pollen viability of a high number of samples collected in a large collection of grapevine cultivars. Results revealed a great genetic variability, from cultivars having very low pollen viability (like Corinto Bianco; viability: 14.1 ± 1.3%) to others with a very low presence of sterile pollen grains (Cuelga; viability: 98.2 ± 0.5%). A wide range of variability was also observed among several clones of cv. Tempranillo Tinto (from 97.9 ± 0.9 to 60.6 ± 5.9%, in the first season). Interestingly, the evaluation of this trait in a second season revealed differential genotype-specific sensitivity to environment. The use of PollenCounter is expected to aid in different areas, including genetics research studies, crop improvement and breeding strategies that need of fast, precise and accurate results. Considering its flexibility, it can be used not only in grapevine, but also in other species showing a differential staining of viable and non-viable pollen grains. The wide phenotypic diversity observed at a species level, together with the identification of specific cultivars and clones largely differing in this trait, pave the way of further analyses aimed to understand the physiological and genetic causes driving to male sterility in grapevine.

  19. Infarct characterization using CT

    PubMed Central

    Toia, Patrizia; Maffei, Erica; Cademartiri, Filippo; Lagalla, Roberto; Midiri, Massimo

    2017-01-01

    Myocardial infarction (MI) is a major cause of death and disability worldwide. The incidence is not expected to diminish, despite better prevention, diagnosis and treatment, because of the ageing population in industrialized countries and unhealthy lifestyles in developing countries. Nowadays it is highly requested an imaging tool able to evaluate MI and viability. Technology improvements determined an expansion of clinical indications from coronary plaque evaluation to functional applications (perfusion, ischemia and viability after MI) integrating additional phases and information in the mainstream examination. Cardiac computed tomography (CCT) and cardiac MR (CMR) employ different contrast media, but may characterize MI with overlapping imaging findings due to the similar kinetics and tissue distribution of gadolinium and iodinated contrast media. CCT may detect first-pass perfusion defects, dynamic perfusion after pharmacological stress, and delayed enhancement (DE) of non-viable territories. PMID:28540212

  20. Factors affecting settling, survival, and viability of black bears reintroduced to Felsenthal National Wildlife Refuge, Arkansas

    USGS Publications Warehouse

    Wear, B.J.; Eastridge, R.; Clark, J.D.

    2005-01-01

    We used radiotelemetry and population modeling techniques to examine factors related to population establishment of black bears (Ursus americanus) reintroduced to Felsenthal National Wildlife Refuge (NWR), Arkansas. Our objectives were to determine whether settling (i.e., establishment of a home range at or near the release site), survival, recruitment, and population viability were related to age class of reintroduced bears, presence of cubs, time since release, or number of translocated animals. We removed 23 adult female black bears with 56 cubs from their winter dens at White River NWR and transported them 160 km to man-made den structures at Felsenthal NWR during spring 2000–2002. Total movement and average circuity of adult females decreased from 1 month, 6 months, and 1 year post-emergence (F2,14 =19.7, P < 0.001 and F2,14 =5.76, P=0.015, respectively). Mean first-year post-release survival of adult female bears was 0.624 (SE = 0.110, SEinterannual = 0.144), and the survival rate of their cubs was 0.750 (SE = 0.088, SEinterannual = 0.109). The homing rate (i.e., the proportion of bears that returned to White River NWR) was 13%. Annual survival for female bears that remained at the release site and survived >1-year post-release increased to 0.909 (SE = 0.097, SEinterannual=0.067; Z=3.5, P < 0.001). Based on stochastic population growth simulations, the average annual growth rate (λ) was 1.093 (SD = 0.053) and the probability of extinction with no additional stockings ranged from 0.56-1.30%. The bear population at Felsenthal NWR is at or above the number after which extinction risk declines dramatically, although additional releases of bears could significantly decrease time to population reestablishment. Poaching accounted for at least 3 of the 8 adult mortalities that we documented; illegal kills could be a significant impediment to population re-establishment at Felsenthal NWR should poaching rates escalate.

Top