Mosquito population dynamics from cellular automata-based simulation
NASA Astrophysics Data System (ADS)
Syafarina, Inna; Sadikin, Rifki; Nuraini, Nuning
2016-02-01
In this paper we present an innovative model for simulating mosquito-vector population dynamics. The simulation consist of two stages: demography and dispersal dynamics. For demography simulation, we follow the existing model for modeling a mosquito life cycles. Moreover, we use cellular automata-based model for simulating dispersal of the vector. In simulation, each individual vector is able to move to other grid based on a random walk. Our model is also capable to represent immunity factor for each grid. We simulate the model to evaluate its correctness. Based on the simulations, we can conclude that our model is correct. However, our model need to be improved to find a realistic parameters to match real data.
Michael A. Larson; Frank R., III Thompson; Joshua J. Millspaugh; William D. Dijak; Stephen R. Shifley
2004-01-01
Methods for habitat modeling based on landscape simulations and population viability modeling based on habitat quality are well developed, but no published study of which we are aware has effectively joined them in a single, comprehensive analysis. We demonstrate the application of a population viability model for ovenbirds (Seiurus aurocapillus)...
Exact Hybrid Particle/Population Simulation of Rule-Based Models of Biochemical Systems
Stover, Lori J.; Nair, Niketh S.; Faeder, James R.
2014-01-01
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This “network-free” approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of “partial network expansion” into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility. PMID:24699269
Exact hybrid particle/population simulation of rule-based models of biochemical systems.
Hogg, Justin S; Harris, Leonard A; Stover, Lori J; Nair, Niketh S; Faeder, James R
2014-04-01
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility.
NASA Astrophysics Data System (ADS)
Yamana, Teresa K.; Eltahir, Elfatih A. B.
2011-02-01
This paper describes the use of satellite-based estimates of rainfall to force the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS), a hydrology-based mechanistic model of malaria transmission. We first examined the temporal resolution of rainfall input required by HYDREMATS. Simulations conducted over Banizoumbou village in Niger showed that for reasonably accurate simulation of mosquito populations, the model requires rainfall data with at least 1 h resolution. We then investigated whether HYDREMATS could be effectively forced by satellite-based estimates of rainfall instead of ground-based observations. The Climate Prediction Center morphing technique (CMORPH) precipitation estimates distributed by the National Oceanic and Atmospheric Administration are available at a 30 min temporal resolution and 8 km spatial resolution. We compared mosquito populations simulated by HYDREMATS when the model is forced by adjusted CMORPH estimates and by ground observations. The results demonstrate that adjusted rainfall estimates from satellites can be used with a mechanistic model to accurately simulate the dynamics of mosquito populations.
Climate-based models for West Nile Culex mosquito vectors in the Northeastern US
NASA Astrophysics Data System (ADS)
Gong, Hongfei; Degaetano, Arthur T.; Harrington, Laura C.
2011-05-01
Climate-based models simulating Culex mosquito population abundance in the Northeastern US were developed. Two West Nile vector species, Culex pipiens and Culex restuans, were included in model simulations. The model was optimized by a parameter-space search within biological bounds. Mosquito population dynamics were driven by major environmental factors including temperature, rainfall, evaporation rate and photoperiod. The results show a strong correlation between the timing of early population increases (as early warning of West Nile virus risk) and decreases in late summer. Simulated abundance was highly correlated with actual mosquito capture in New Jersey light traps and validated with field data. This climate-based model simulates the population dynamics of both the adult and immature mosquito life stage of Culex arbovirus vectors in the Northeastern US. It is expected to have direct and practical application for mosquito control and West Nile prevention programs.
Gustafsson, Leif; Sternad, Mikael
2007-10-01
Population models concern collections of discrete entities such as atoms, cells, humans, animals, etc., where the focus is on the number of entities in a population. Because of the complexity of such models, simulation is usually needed to reproduce their complete dynamic and stochastic behaviour. Two main types of simulation models are used for different purposes, namely micro-simulation models, where each individual is described with its particular attributes and behaviour, and macro-simulation models based on stochastic differential equations, where the population is described in aggregated terms by the number of individuals in different states. Consistency between micro- and macro-models is a crucial but often neglected aspect. This paper demonstrates how the Poisson Simulation technique can be used to produce a population macro-model consistent with the corresponding micro-model. This is accomplished by defining Poisson Simulation in strictly mathematical terms as a series of Poisson processes that generate sequences of Poisson distributions with dynamically varying parameters. The method can be applied to any population model. It provides the unique stochastic and dynamic macro-model consistent with a correct micro-model. The paper also presents a general macro form for stochastic and dynamic population models. In an appendix Poisson Simulation is compared with Markov Simulation showing a number of advantages. Especially aggregation into state variables and aggregation of many events per time-step makes Poisson Simulation orders of magnitude faster than Markov Simulation. Furthermore, you can build and execute much larger and more complicated models with Poisson Simulation than is possible with the Markov approach.
McKay, Virginia R; Hoffer, Lee D; Combs, Todd B; Margaret Dolcini, M
2018-06-05
Sustaining evidence-based interventions (EBIs) is an ongoing challenge for dissemination and implementation science in public health and social services. Characterizing the relationship among human resource capacity within an agency and subsequent population outcomes is an important step to improving our understanding of how EBIs are sustained. Although human resource capacity and population outcomes are theoretically related, examining them over time within real-world experiments is difficult. Simulation approaches, especially agent-based models, offer advantages that complement existing methods. We used an agent-based model to examine the relationships among human resources, EBI delivery, and population outcomes by simulating provision of an EBI through a hypothetical agency and its staff. We used data from existing studies examining a widely implemented HIV prevention intervention to inform simulation design, calibration, and validity. Once we developed a baseline model, we used the model as a simulated laboratory by systematically varying three human resource variables: the number of staff positions, the staff turnover rate, and timing in training. We tracked the subsequent influence on EBI delivery and the level of population risk over time to describe the overall and dynamic relationships among these variables. Higher overall levels of human resource capacity at an agency (more positions) led to more extensive EBI delivery over time and lowered population risk earlier in time. In simulations representing the typical human resource investments, substantial influences on population risk were visible after approximately 2 years and peaked around 4 years. Human resources, especially staff positions, have an important impact on EBI sustainability and ultimately population health. A minimum level of human resources based on the context (e.g., size of the initial population and characteristics of the EBI) is likely needed for an EBI to have a meaningful impact on population outcomes. Furthermore, this model demonstrates how ABMs may be leveraged to inform research design and assess the impact of EBI sustainability in practice.
Singh, Karandeep; Ahn, Chang-Won; Paik, Euihyun; Bae, Jang Won; Lee, Chun-Hee
2018-01-01
Artificial life (ALife) examines systems related to natural life, its processes, and its evolution, using simulations with computer models, robotics, and biochemistry. In this article, we focus on the computer modeling, or "soft," aspects of ALife and prepare a framework for scientists and modelers to be able to support such experiments. The framework is designed and built to be a parallel as well as distributed agent-based modeling environment, and does not require end users to have expertise in parallel or distributed computing. Furthermore, we use this framework to implement a hybrid model using microsimulation and agent-based modeling techniques to generate an artificial society. We leverage this artificial society to simulate and analyze population dynamics using Korean population census data. The agents in this model derive their decisional behaviors from real data (microsimulation feature) and interact among themselves (agent-based modeling feature) to proceed in the simulation. The behaviors, interactions, and social scenarios of the agents are varied to perform an analysis of population dynamics. We also estimate the future cost of pension policies based on the future population structure of the artificial society. The proposed framework and model demonstrates how ALife techniques can be used by researchers in relation to social issues and policies.
IBSEM: An Individual-Based Atlantic Salmon Population Model.
Castellani, Marco; Heino, Mikko; Gilbey, John; Araki, Hitoshi; Svåsand, Terje; Glover, Kevin A
2015-01-01
Ecology and genetics can influence the fate of individuals and populations in multiple ways. However, to date, few studies consider them when modelling the evolutionary trajectory of populations faced with admixture with non-local populations. For the Atlantic salmon, a model incorporating these elements is urgently needed because many populations are challenged with gene-flow from non-local and domesticated conspecifics. We developed an Individual-Based Salmon Eco-genetic Model (IBSEM) to simulate the demographic and population genetic change of an Atlantic salmon population through its entire life-cycle. Processes such as growth, mortality, and maturation are simulated through stochastic procedures, which take into account environmental variables as well as the genotype of the individuals. IBSEM is based upon detailed empirical data from salmon biology, and parameterized to reproduce the environmental conditions and the characteristics of a wild population inhabiting a Norwegian river. Simulations demonstrated that the model consistently and reliably reproduces the characteristics of the population. Moreover, in absence of farmed escapees, the modelled populations reach an evolutionary equilibrium that is similar to our definition of a 'wild' genotype. We assessed the sensitivity of the model in the face of assumptions made on the fitness differences between farm and wild salmon, and evaluated the role of straying as a buffering mechanism against the intrusion of farm genes into wild populations. These results demonstrate that IBSEM is able to capture the evolutionary forces shaping the life history of wild salmon and is therefore able to model the response of populations under environmental and genetic stressors.
CDPOP: A spatially explicit cost distance population genetics program
Erin L. Landguth; S. A. Cushman
2010-01-01
Spatially explicit simulation of gene flow in complex landscapes is essential to explain observed population responses and provide a foundation for landscape genetics. To address this need, we wrote a spatially explicit, individual-based population genetics model (CDPOP). The model implements individual-based population modelling with Mendelian inheritance and k-allele...
IBSEM: An Individual-Based Atlantic Salmon Population Model
Castellani, Marco; Heino, Mikko; Gilbey, John; Araki, Hitoshi; Svåsand, Terje; Glover, Kevin A.
2015-01-01
Ecology and genetics can influence the fate of individuals and populations in multiple ways. However, to date, few studies consider them when modelling the evolutionary trajectory of populations faced with admixture with non-local populations. For the Atlantic salmon, a model incorporating these elements is urgently needed because many populations are challenged with gene-flow from non-local and domesticated conspecifics. We developed an Individual-Based Salmon Eco-genetic Model (IBSEM) to simulate the demographic and population genetic change of an Atlantic salmon population through its entire life-cycle. Processes such as growth, mortality, and maturation are simulated through stochastic procedures, which take into account environmental variables as well as the genotype of the individuals. IBSEM is based upon detailed empirical data from salmon biology, and parameterized to reproduce the environmental conditions and the characteristics of a wild population inhabiting a Norwegian river. Simulations demonstrated that the model consistently and reliably reproduces the characteristics of the population. Moreover, in absence of farmed escapees, the modelled populations reach an evolutionary equilibrium that is similar to our definition of a ‘wild’ genotype. We assessed the sensitivity of the model in the face of assumptions made on the fitness differences between farm and wild salmon, and evaluated the role of straying as a buffering mechanism against the intrusion of farm genes into wild populations. These results demonstrate that IBSEM is able to capture the evolutionary forces shaping the life history of wild salmon and is therefore able to model the response of populations under environmental and genetic stressors. PMID:26383256
Building Better Planet Populations for EXOSIMS
NASA Astrophysics Data System (ADS)
Garrett, Daniel; Savransky, Dmitry
2018-01-01
The Exoplanet Open-Source Imaging Mission Simulator (EXOSIMS) software package simulates ensembles of space-based direct imaging surveys to provide a variety of science and engineering yield distributions for proposed mission designs. These mission simulations rely heavily on assumed distributions of planetary population parameters including semi-major axis, planetary radius, eccentricity, albedo, and orbital orientation to provide heuristics for target selection and to simulate planetary systems for detection and characterization. The distributions are encoded in PlanetPopulation modules within EXOSIMS which are selected by the user in the input JSON script when a simulation is run. The earliest written PlanetPopulation modules available in EXOSIMS are based on planet population models where the planetary parameters are considered to be independent from one another. While independent parameters allow for quick computation of heuristics and sampling for simulated planetary systems, results from planet-finding surveys have shown that many parameters (e.g., semi-major axis/orbital period and planetary radius) are not independent. We present new PlanetPopulation modules for EXOSIMS which are built on models based on planet-finding survey results where semi-major axis and planetary radius are not independent and provide methods for sampling their joint distribution. These new modules enhance the ability of EXOSIMS to simulate realistic planetary systems and give more realistic science yield distributions.
Landguth, Erin L; Bearlin, Andrew; Day, Casey; Dunham, Jason B.
2016-01-01
1. Combining landscape demographic and genetics models offers powerful methods for addressing questions for eco-evolutionary applications.2. Using two illustrative examples, we present Cost–Distance Meta-POPulation, a program to simulate changes in neutral and/or selection-driven genotypes through time as a function of individual-based movement, complex spatial population dynamics, and multiple and changing landscape drivers.3. Cost–Distance Meta-POPulation provides a novel tool for questions in landscape genetics by incorporating population viability analysis, while linking directly to conservation applications.
A multi-model framework for simulating wildlife population response to land-use and climate change
McRae, B.H.; Schumaker, N.H.; McKane, R.B.; Busing, R.T.; Solomon, A.M.; Burdick, C.A.
2008-01-01
Reliable assessments of how human activities will affect wildlife populations are essential for making scientifically defensible resource management decisions. A principle challenge of predicting effects of proposed management, development, or conservation actions is the need to incorporate multiple biotic and abiotic factors, including land-use and climate change, that interact to affect wildlife habitat and populations through time. Here we demonstrate how models of land-use, climate change, and other dynamic factors can be integrated into a coherent framework for predicting wildlife population trends. Our framework starts with land-use and climate change models developed for a region of interest. Vegetation changes through time under alternative future scenarios are predicted using an individual-based plant community model. These predictions are combined with spatially explicit animal habitat models to map changes in the distribution and quality of wildlife habitat expected under the various scenarios. Animal population responses to habitat changes and other factors are then projected using a flexible, individual-based animal population model. As an example application, we simulated animal population trends under three future land-use scenarios and four climate change scenarios in the Cascade Range of western Oregon. We chose two birds with contrasting habitat preferences for our simulations: winter wrens (Troglodytes troglodytes), which are most abundant in mature conifer forests, and song sparrows (Melospiza melodia), which prefer more open, shrubby habitats. We used climate and land-use predictions from previously published studies, as well as previously published predictions of vegetation responses using FORCLIM, an individual-based forest dynamics simulator. Vegetation predictions were integrated with other factors in PATCH, a spatially explicit, individual-based animal population simulator. Through incorporating effects of landscape history and limited dispersal, our framework predicted population changes that typically exceeded those expected based on changes in mean habitat suitability alone. Although land-use had greater impacts on habitat quality than did climate change in our simulations, we found that small changes in vital rates resulting from climate change or other stressors can have large consequences for population trajectories. The ability to integrate bottom-up demographic processes like these with top-down constraints imposed by climate and land-use in a dynamic modeling environment is a key advantage of our approach. The resulting framework should allow researchers to synthesize existing empirical evidence, and to explore complex interactions that are difficult or impossible to capture through piecemeal modeling approaches. ?? 2008 Elsevier B.V.
Modeling wildlife populations with HexSim
HexSim is a framework for constructing spatially-explicit, individual-based computer models designed for simulating terrestrial wildlife population dynamics and interactions. HexSim is useful for a broad set of modeling applications including population viability analysis for on...
A parallel implementation of an off-lattice individual-based model of multicellular populations
NASA Astrophysics Data System (ADS)
Harvey, Daniel G.; Fletcher, Alexander G.; Osborne, James M.; Pitt-Francis, Joe
2015-07-01
As computational models of multicellular populations include ever more detailed descriptions of biophysical and biochemical processes, the computational cost of simulating such models limits their ability to generate novel scientific hypotheses and testable predictions. While developments in microchip technology continue to increase the power of individual processors, parallel computing offers an immediate increase in available processing power. To make full use of parallel computing technology, it is necessary to develop specialised algorithms. To this end, we present a parallel algorithm for a class of off-lattice individual-based models of multicellular populations. The algorithm divides the spatial domain between computing processes and comprises communication routines that ensure the model is correctly simulated on multiple processors. The parallel algorithm is shown to accurately reproduce the results of a deterministic simulation performed using a pre-existing serial implementation. We test the scaling of computation time, memory use and load balancing as more processes are used to simulate a cell population of fixed size. We find approximate linear scaling of both speed-up and memory consumption on up to 32 processor cores. Dynamic load balancing is shown to provide speed-up for non-regular spatial distributions of cells in the case of a growing population.
A network-based approach for resistance transmission in bacterial populations.
Gehring, Ronette; Schumm, Phillip; Youssef, Mina; Scoglio, Caterina
2010-01-07
Horizontal transfer of mobile genetic elements (conjugation) is an important mechanism whereby resistance is spread through bacterial populations. The aim of our work is to develop a mathematical model that quantitatively describes this process, and to use this model to optimize antimicrobial dosage regimens to minimize resistance development. The bacterial population is conceptualized as a compartmental mathematical model to describe changes in susceptible, resistant, and transconjugant bacteria over time. This model is combined with a compartmental pharmacokinetic model to explore the effect of different plasma drug concentration profiles. An agent-based simulation tool is used to account for resistance transfer occurring when two bacteria are adjacent or in close proximity. In addition, a non-linear programming optimal control problem is introduced to minimize bacterial populations as well as the drug dose. Simulation and optimization results suggest that the rapid death of susceptible individuals in the population is pivotal in minimizing the number of transconjugants in a population. This supports the use of potent antimicrobials that rapidly kill susceptible individuals and development of dosage regimens that maintain effective antimicrobial drug concentrations for as long as needed to kill off the susceptible population. Suggestions are made for experiments to test the hypotheses generated by these simulations.
Modeling the Population Dynamics of Antibiotic-Resistant Bacteria:. AN Agent-Based Approach
NASA Astrophysics Data System (ADS)
Murphy, James T.; Walshe, Ray; Devocelle, Marc
The response of bacterial populations to antibiotic treatment is often a function of a diverse range of interacting factors. In order to develop strategies to minimize the spread of antibiotic resistance in pathogenic bacteria, a sound theoretical understanding of the systems of interactions taking place within a colony must be developed. The agent-based approach to modeling bacterial populations is a useful tool for relating data obtained at the molecular and cellular level with the overall population dynamics. Here we demonstrate an agent-based model, called Micro-Gen, which has been developed to simulate the growth and development of bacterial colonies in culture. The model also incorporates biochemical rules and parameters describing the kinetic interactions of bacterial cells with antibiotic molecules. Simulations were carried out to replicate the development of methicillin-resistant S. aureus (MRSA) colonies growing in the presence of antibiotics. The model was explored to see how the properties of the system emerge from the interactions of the individual bacterial agents in order to achieve a better mechanistic understanding of the population dynamics taking place. Micro-Gen provides a good theoretical framework for investigating the effects of local environmental conditions and cellular properties on the response of bacterial populations to antibiotic exposure in the context of a simulated environment.
Heinrichs, Julie; Aldridge, Cameron L.; O'Donnell, Michael; Schumaker, Nathan
2017-01-01
Prioritizing habitats for conservation is a challenging task, particularly for species with fluctuating populations and seasonally dynamic habitat needs. Although the use of resource selection models to identify and prioritize habitat for conservation is increasingly common, their ability to characterize important long-term habitats for dynamic populations are variable. To examine how habitats might be prioritized differently if resource selection was directly and dynamically linked with population fluctuations and movement limitations among seasonal habitats, we constructed a spatially explicit individual-based model for a dramatically fluctuating population requiring temporally varying resources. Using greater sage-grouse (Centrocercus urophasianus) in Wyoming as a case study, we used resource selection function maps to guide seasonal movement and habitat selection, but emergent population dynamics and simulated movement limitations modified long-term habitat occupancy. We compared priority habitats in RSF maps to long-term simulated habitat use. We examined the circumstances under which the explicit consideration of movement limitations, in combination with population fluctuations and trends, are likely to alter predictions of important habitats. In doing so, we assessed the future occupancy of protected areas under alternative population and habitat conditions. Habitat prioritizations based on resource selection models alone predicted high use in isolated parcels of habitat and in areas with low connectivity among seasonal habitats. In contrast, results based on more biologically-informed simulations emphasized central and connected areas near high-density populations, sometimes predicted to be low selection value. Dynamic models of habitat use can provide additional biological realism that can extend, and in some cases, contradict habitat use predictions generated from short-term or static resource selection analyses. The explicit inclusion of population dynamics and movement propensities via spatial simulation modeling frameworks may provide an informative means of predicting long-term habitat use, particularly for fluctuating populations with complex seasonal habitat needs. Importantly, our results indicate the possible need to consider habitat selection models as a starting point rather than the common end point for refining and prioritizing habitats for protection for cyclic and highly variable populations.
Dengue fever spreading based on probabilistic cellular automata with two lattices
NASA Astrophysics Data System (ADS)
Pereira, F. M. M.; Schimit, P. H. T.
2018-06-01
Modeling and simulation of mosquito-borne diseases have gained attention due to a growing incidence in tropical countries in the past few years. Here, we study the dengue spreading in a population modeled by cellular automata, where there are two lattices to model the human-mosquitointeraction: one lattice for human individuals, and one lattice for mosquitoes in order to enable different dynamics in populations. The disease considered is the dengue fever with one, two or three different serotypes coexisting in population. Although many regions exhibit the incidence of only one serotype, here we set a complete framework to also study the occurrence of two and three serotypes at the same time in a population. Furthermore, the flexibility of the model allows its use to other mosquito-borne diseases, like chikungunya, yellow fever and malaria. An approximation of the cellular automata is proposed in terms of ordinary differential equations; the spreading of mosquitoes is studied and the influence of some model parameters are analyzed with numerical simulations. Finally, a method to combat dengue spreading is simulated based on a reduction of mosquito birth and mosquito bites in population.
We describe and analyze a spatially explicit, individual-based model for the local population dynamics of mottled sculpin (Cottus bairdi). The model simulated daily growth, mortality, movement and spawning of individuals within a reach of stream. Juvenile and adult growth was bas...
Brenda Rashleigh; Gary D. Grossman
2005-01-01
We describe and analyze a spatially explicit, individual-based model for the local population dynamics of mottled sculpin (Cottus bairdi). The model simulated daily growth, mortality, movement and spawning of individuals within a reach of stream. Juvenile and adult growth was based on consumption bioenergetics of benthic macroinvertebrate prey;...
LEGEND, a LEO-to-GEO Environment Debris Model
NASA Technical Reports Server (NTRS)
Liou, Jer Chyi; Hall, Doyle T.
2013-01-01
LEGEND (LEO-to-GEO Environment Debris model) is a three-dimensional orbital debris evolutionary model that is capable of simulating the historical and future debris populations in the near-Earth environment. The historical component in LEGEND adopts a deterministic approach to mimic the known historical populations. Launched rocket bodies, spacecraft, and mission-related debris (rings, bolts, etc.) are added to the simulated environment. Known historical breakup events are reproduced, and fragments down to 1 mm in size are created. The LEGEND future projection component adopts a Monte Carlo approach and uses an innovative pair-wise collision probability evaluation algorithm to simulate the future breakups and the growth of the debris populations. This algorithm is based on a new "random sampling in time" approach that preserves characteristics of the traditional approach and captures the rapidly changing nature of the orbital debris environment. LEGEND is a Fortran 90-based numerical simulation program. It operates in a UNIX/Linux environment.
Zhang, Donglan; Giabbanelli, Philippe J; Arah, Onyebuchi A; Zimmerman, Frederick J
2014-07-01
Unhealthy eating is a complex-system problem. We used agent-based modeling to examine the effects of different policies on unhealthy eating behaviors. We developed an agent-based simulation model to represent a synthetic population of adults in Pasadena, CA, and how they make dietary decisions. Data from the 2007 Food Attitudes and Behaviors Survey and other empirical studies were used to calibrate the parameters of the model. Simulations were performed to contrast the potential effects of various policies on the evolution of dietary decisions. Our model showed that a 20% increase in taxes on fast foods would lower the probability of fast-food consumption by 3 percentage points, whereas improving the visibility of positive social norms by 10%, either through community-based or mass-media campaigns, could improve the consumption of fruits and vegetables by 7 percentage points and lower fast-food consumption by 6 percentage points. Zoning policies had no significant impact. Interventions emphasizing healthy eating norms may be more effective than directly targeting food prices or regulating local food outlets. Agent-based modeling may be a useful tool for testing the population-level effects of various policies within complex systems.
Revisiting node-based SIR models in complex networks with degree correlations
NASA Astrophysics Data System (ADS)
Wang, Yi; Cao, Jinde; Alofi, Abdulaziz; AL-Mazrooei, Abdullah; Elaiw, Ahmed
2015-11-01
In this paper, we consider two growing networks which will lead to the degree-degree correlations between two nearest neighbors in the network. When the network grows to some certain size, we introduce an SIR-like disease such as pandemic influenza H1N1/09 to the population. Due to its rapid spread, the population size changes slowly, and thus the disease spreads on correlated networks with approximately fixed size. To predict the disease evolution on correlated networks, we first review two node-based SIR models incorporating degree correlations and an edge-based SIR model without considering degree correlation, and then compare the predictions of these models with stochastic SIR simulations, respectively. We find that the edge-based model, even without considering degree correlations, agrees much better than the node-based models incorporating degree correlations with stochastic SIR simulations in many respects. Moreover, simulation results show that for networks with positive correlation, the edge-based model provides a better upper bound of the cumulative incidence than the node-based SIR models, whereas for networks with negative correlation, it provides a lower bound of the cumulative incidence.
Genetic demographic networks: Mathematical model and applications.
Kimmel, Marek; Wojdyła, Tomasz
2016-10-01
Recent improvement in the quality of genetic data obtained from extinct human populations and their ancestors encourages searching for answers to basic questions regarding human population history. The most common and successful are model-based approaches, in which genetic data are compared to the data obtained from the assumed demography model. Using such approach, it is possible to either validate or adjust assumed demography. Model fit to data can be obtained based on reverse-time coalescent simulations or forward-time simulations. In this paper we introduce a computational method based on mathematical equation that allows obtaining joint distributions of pairs of individuals under a specified demography model, each of them characterized by a genetic variant at a chosen locus. The two individuals are randomly sampled from either the same or two different populations. The model assumes three types of demographic events (split, merge and migration). Populations evolve according to the time-continuous Moran model with drift and Markov-process mutation. This latter process is described by the Lyapunov-type equation introduced by O'Brien and generalized in our previous works. Application of this equation constitutes an original contribution. In the result section of the paper we present sample applications of our model to both simulated and literature-based demographies. Among other we include a study of the Slavs-Balts-Finns genetic relationship, in which we model split and migrations between the Balts and Slavs. We also include another example that involves the migration rates between farmers and hunters-gatherers, based on modern and ancient DNA samples. This latter process was previously studied using coalescent simulations. Our results are in general agreement with the previous method, which provides validation of our approach. Although our model is not an alternative to simulation methods in the practical sense, it provides an algorithm to compute pairwise distributions of alleles, in the case of haploid non-recombining loci such as mitochondrial and Y-chromosome loci in humans. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Politikos, D.; Somarakis, S.; Tsiaras, K. P.; Giannoulaki, M.; Petihakis, G.; Machias, A.; Triantafyllou, G.
2015-11-01
A 3-D full life cycle population model for the North Aegean Sea (NAS) anchovy stock is presented. The model is two-way coupled with a hydrodynamic-biogeochemical model (POM-ERSEM). The anchovy life span is divided into seven life stages/age classes. Embryos and early larvae are passive particles, but subsequent stages exhibit active horizontal movements based on specific rules. A bioenergetics model simulates the growth in both the larval and juvenile/adult stages, while the microzooplankton and mesozooplankton fields of the biogeochemical model provide the food for fish consumption. The super-individual approach is adopted for the representation of the anchovy population. A dynamic egg production module, with an energy allocation algorithm, is embedded in the bioenergetics equation and produces eggs based on a new conceptual model for anchovy vitellogenesis. A model simulation for the period 2003-2006 with realistic initial conditions reproduced well the magnitude of population biomass and daily egg production estimated from acoustic and daily egg production method (DEPM) surveys, carried out in the NAS during June 2003-2006. Model simulated adult and egg habitats were also in good agreement with observed spatial distributions of acoustic biomass and egg abundance in June. Sensitivity simulations were performed to investigate the effect of different formulations adopted for key processes, such as reproduction and movement. The effect of the anchovy population on plankton dynamics was also investigated, by comparing simulations adopting a two-way or a one-way coupling of the fish with the biogeochemical model.
Cimler, Richard; Tomaskova, Hana; Kuhnova, Jitka; Dolezal, Ondrej; Pscheidl, Pavel; Kuca, Kamil
2018-01-01
Alzheimer's disease is one of the most common mental illnesses. It is posited that more than 25% of the population is affected by some mental disease during their lifetime. Treatment of each patient draws resources from the economy concerned. Therefore, it is important to quantify the potential economic impact. Agent-based, system dynamics and numerical approaches to dynamic modeling of the population of the European Union and its patients with Alzheimer's disease are presented in this article. Simulations, their characteristics, and the results from different modeling tools are compared. The results of these approaches are compared with EU population growth predictions from the statistical office of the EU by Eurostat. The methodology of a creation of the models is described and all three modeling approaches are compared. The suitability of each modeling approach for the population modeling is discussed. In this case study, all three approaches gave us the results corresponding with the EU population prediction. Moreover, we were able to predict the number of patients with AD and, based on the modeling method, we were also able to monitor different characteristics of the population. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Comparison of an Agent-based Model of Disease Propagation with the Generalised SIR Epidemic Model
2009-08-01
has become a practical method for conducting Epidemiological Modelling. In the agent- based approach the whole township can be modelled as a system of...SIR system was initially developed based on a very simplified model of social interaction. For instance an assumption of uniform population mixing was...simulating the progress of a disease within a host and of transmission between hosts is based upon Transportation Analysis and Simulation System
Development of a paediatric population-based model of the pharmacokinetics of rivaroxaban.
Willmann, Stefan; Becker, Corina; Burghaus, Rolf; Coboeken, Katrin; Edginton, Andrea; Lippert, Jörg; Siegmund, Hans-Ulrich; Thelen, Kirstin; Mück, Wolfgang
2014-01-01
Venous thromboembolism has been increasingly recognised as a clinical problem in the paediatric population. Guideline recommendations for antithrombotic therapy in paediatric patients are based mainly on extrapolation from adult clinical trial data, owing to the limited number of clinical trials in paediatric populations. The oral, direct Factor Xa inhibitor rivaroxaban has been approved in adult patients for several thromboembolic disorders, and its well-defined pharmacokinetic and pharmacodynamic characteristics and efficacy and safety profiles in adults warrant further investigation of this agent in the paediatric population. The objective of this study was to develop and qualify a physiologically based pharmacokinetic (PBPK) model for rivaroxaban doses of 10 and 20 mg in adults and to scale this model to the paediatric population (0-18 years) to inform the dosing regimen for a clinical study of rivaroxaban in paediatric patients. Experimental data sets from phase I studies supported the development and qualification of an adult PBPK model. This adult PBPK model was then scaled to the paediatric population by including anthropometric and physiological information, age-dependent clearance and age-dependent protein binding. The pharmacokinetic properties of rivaroxaban in virtual populations of children were simulated for two body weight-related dosing regimens equivalent to 10 and 20 mg once daily in adults. The quality of the model was judged by means of a visual predictive check. Subsequently, paediatric simulations of the area under the plasma concentration-time curve (AUC), maximum (peak) plasma drug concentration (C max) and concentration in plasma after 24 h (C 24h) were compared with the adult reference simulations. Simulations for AUC, C max and C 24h throughout the investigated age range largely overlapped with values obtained for the corresponding dose in the adult reference simulation for both body weight-related dosing regimens. However, pharmacokinetic values in infants and preschool children (body weight <40 kg) were lower than the 90 % confidence interval threshold of the adult reference model and, therefore, indicated that doses in these groups may need to be increased to achieve the same plasma levels as in adults. For children with body weight between 40 and 70 kg, simulated plasma pharmacokinetic parameters (C max, C 24h and AUC) overlapped with the values obtained in the corresponding adult reference simulation, indicating that body weight-related exposure was similar between these children and adults. In adolescents of >70 kg body weight, the simulated 90 % prediction interval values of AUC and C 24h were much higher than the 90 % confidence interval of the adult reference population, owing to the weight-based simulation approach, but for these patients rivaroxaban would be administered at adult fixed doses of 10 and 20 mg. The paediatric PBPK model developed here allowed an exploratory analysis of the pharmacokinetics of rivaroxaban in children to inform the dosing regimen for a clinical study in paediatric patients.
The simcyp population based simulator: architecture, implementation, and quality assurance.
Jamei, Masoud; Marciniak, Steve; Edwards, Duncan; Wragg, Kris; Feng, Kairui; Barnett, Adrian; Rostami-Hodjegan, Amin
2013-01-01
Developing a user-friendly platform that can handle a vast number of complex physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) models both for conventional small molecules and larger biologic drugs is a substantial challenge. Over the last decade the Simcyp Population Based Simulator has gained popularity in major pharmaceutical companies (70% of top 40 - in term of R&D spending). Under the Simcyp Consortium guidance, it has evolved from a simple drug-drug interaction tool to a sophisticated and comprehensive Model Based Drug Development (MBDD) platform that covers a broad range of applications spanning from early drug discovery to late drug development. This article provides an update on the latest architectural and implementation developments within the Simulator. Interconnection between peripheral modules, the dynamic model building process and compound and population data handling are all described. The Simcyp Data Management (SDM) system, which contains the system and drug databases, can help with implementing quality standards by seamless integration and tracking of any changes. This also helps with internal approval procedures, validation and auto-testing of the new implemented models and algorithms, an area of high interest to regulatory bodies.
Model reduction for agent-based social simulation: coarse-graining a civil violence model.
Zou, Yu; Fonoberov, Vladimir A; Fonoberova, Maria; Mezic, Igor; Kevrekidis, Ioannis G
2012-06-01
Agent-based modeling (ABM) constitutes a powerful computational tool for the exploration of phenomena involving emergent dynamic behavior in the social sciences. This paper demonstrates a computer-assisted approach that bridges the significant gap between the single-agent microscopic level and the macroscopic (coarse-grained population) level, where fundamental questions must be rationally answered and policies guiding the emergent dynamics devised. Our approach will be illustrated through an agent-based model of civil violence. This spatiotemporally varying ABM incorporates interactions between a heterogeneous population of citizens [active (insurgent), inactive, or jailed] and a population of police officers. Detailed simulations exhibit an equilibrium punctuated by periods of social upheavals. We show how to effectively reduce the agent-based dynamics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed citizens and the number of active ones. The coarse-grained model captures the ABM dynamics while drastically reducing the computation time (by a factor of approximately 20).
Model reduction for agent-based social simulation: Coarse-graining a civil violence model
NASA Astrophysics Data System (ADS)
Zou, Yu; Fonoberov, Vladimir A.; Fonoberova, Maria; Mezic, Igor; Kevrekidis, Ioannis G.
2012-06-01
Agent-based modeling (ABM) constitutes a powerful computational tool for the exploration of phenomena involving emergent dynamic behavior in the social sciences. This paper demonstrates a computer-assisted approach that bridges the significant gap between the single-agent microscopic level and the macroscopic (coarse-grained population) level, where fundamental questions must be rationally answered and policies guiding the emergent dynamics devised. Our approach will be illustrated through an agent-based model of civil violence. This spatiotemporally varying ABM incorporates interactions between a heterogeneous population of citizens [active (insurgent), inactive, or jailed] and a population of police officers. Detailed simulations exhibit an equilibrium punctuated by periods of social upheavals. We show how to effectively reduce the agent-based dynamics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed citizens and the number of active ones. The coarse-grained model captures the ABM dynamics while drastically reducing the computation time (by a factor of approximately 20).
Giabbanelli, Philippe J.; Arah, Onyebuchi A.; Zimmerman, Frederick J.
2014-01-01
Objectives. Unhealthy eating is a complex-system problem. We used agent-based modeling to examine the effects of different policies on unhealthy eating behaviors. Methods. We developed an agent-based simulation model to represent a synthetic population of adults in Pasadena, CA, and how they make dietary decisions. Data from the 2007 Food Attitudes and Behaviors Survey and other empirical studies were used to calibrate the parameters of the model. Simulations were performed to contrast the potential effects of various policies on the evolution of dietary decisions. Results. Our model showed that a 20% increase in taxes on fast foods would lower the probability of fast-food consumption by 3 percentage points, whereas improving the visibility of positive social norms by 10%, either through community-based or mass-media campaigns, could improve the consumption of fruits and vegetables by 7 percentage points and lower fast-food consumption by 6 percentage points. Zoning policies had no significant impact. Conclusions. Interventions emphasizing healthy eating norms may be more effective than directly targeting food prices or regulating local food outlets. Agent-based modeling may be a useful tool for testing the population-level effects of various policies within complex systems. PMID:24832414
Bivalves: From individual to population modelling
NASA Astrophysics Data System (ADS)
Saraiva, S.; van der Meer, J.; Kooijman, S. A. L. M.; Ruardij, P.
2014-11-01
An individual based population model for bivalves was designed, built and tested in a 0D approach, to simulate the population dynamics of a mussel bed located in an intertidal area. The processes at the individual level were simulated following the dynamic energy budget theory, whereas initial egg mortality, background mortality, food competition, and predation (including cannibalism) were additional population processes. Model properties were studied through the analysis of theoretical scenarios and by simulation of different mortality parameter combinations in a realistic setup, imposing environmental measurements. Realistic criteria were applied to narrow down the possible combination of parameter values. Field observations obtained in the long-term and multi-station monitoring program were compared with the model scenarios. The realistically selected modeling scenarios were able to reproduce reasonably the timing of some peaks in the individual abundances in the mussel bed and its size distribution but the number of individuals was not well predicted. The results suggest that the mortality in the early life stages (egg and larvae) plays an important role in population dynamics, either by initial egg mortality, larvae dispersion, settlement failure or shrimp predation. Future steps include the coupling of the population model with a hydrodynamic and biogeochemical model to improve the simulation of egg/larvae dispersion, settlement probability, food transport and also to simulate the feedback of the organisms' activity on the water column properties, which will result in an improvement of the food quantity and quality characterization.
Agent-Based Deterministic Modeling of the Bone Marrow Homeostasis.
Kurhekar, Manish; Deshpande, Umesh
2016-01-01
Modeling of stem cells not only describes but also predicts how a stem cell's environment can control its fate. The first stem cell populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow (that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death (apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made available on a publicly accessible website.
Egelund, E F; Isaza, R; Brock, A P; Alsultan, A; An, G; Peloquin, C A
2015-04-01
The objective of this study was to develop a population pharmacokinetic model for rifampin in elephants. Rifampin concentration data from three sources were pooled to provide a total of 233 oral concentrations from 37 Asian elephants. The population pharmacokinetic models were created using Monolix (version 4.2). Simulations were conducted using ModelRisk. We examined the influence of age, food, sex, and weight as model covariates. We further optimized the dosing of rifampin based upon simulations using the population pharmacokinetic model. Rifampin pharmacokinetics were best described by a one-compartment open model including first-order absorption with a lag time and first-order elimination. Body weight was a significant covariate for volume of distribution, and food intake was a significant covariate for lag time. The median Cmax of 6.07 μg/mL was below the target range of 8-24 μg/mL. Monte Carlo simulations predicted the highest treatable MIC of 0.25 μg/mL with the current initial dosing recommendation of 10 mg/kg, based upon a previously published target AUC0-24/MIC > 271 (fAUC > 41). Simulations from the population model indicate that the current dose of 10 mg/kg may be adequate for MICs up to 0.25 μg/mL. While the targeted AUC/MIC may be adequate for most MICs, the median Cmax for all elephants is below the human and elephant targeted ranges. © 2014 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Street, Garrett M.; Laubach, Timothy A.
2013-01-01
We provide a 5E structured-inquiry lesson so that students can learn more of the mathematics behind the logistic model of population biology. By using models and mathematics, students understand how population dynamics can be influenced by relatively simple changes in the environment.
SHEDS - Multimedia is EPA's premier physically-based, probabilistic model, that can simulate cumulative or aggregate exposures for a population across a variety of multimedia, multipathway environmental chemicals.
Agent-based modeling of malaria vectors: the importance of spatial simulation.
Bomblies, Arne
2014-07-03
The modeling of malaria vector mosquito populations yields great insight into drivers of malaria transmission at the village scale. Simulation of individual mosquitoes as "agents" in a distributed, dynamic model domain may be greatly beneficial for simulation of spatial relationships of vectors and hosts. In this study, an agent-based model is used to simulate the life cycle and movement of individual malaria vector mosquitoes in a Niger Sahel village, with individual simulated mosquitoes interacting with their physical environment as well as humans. Various processes that are known to be epidemiologically important, such as the dependence of parity on flight distance between developmental habitat and blood meal hosts and therefore spatial relationships of pools and houses, are readily simulated using this modeling paradigm. Impacts of perturbations can be evaluated on the basis of vectorial capacity, because the interactions between individuals that make up the population- scale metric vectorial capacity can be easily tracked for simulated mosquitoes and human blood meal hosts, without the need to estimate vectorial capacity parameters. As expected, model results show pronounced impacts of pool source reduction from larvicide application and draining, but with varying degrees of impact depending on the spatial relationship between pools and human habitation. Results highlight the importance of spatially-explicit simulation that can model individuals such as in an agent-based model. The impacts of perturbations on village scale malaria transmission depend on spatial locations of individual mosquitoes, as well as the tracking of relevant life cycle events and characteristics of individual mosquitoes. This study demonstrates advantages of using an agent-based approach for village-scale mosquito simulation to address questions in which spatial relationships are known to be important.
Incorporating parametric uncertainty into population viability analysis models
McGowan, Conor P.; Runge, Michael C.; Larson, Michael A.
2011-01-01
Uncertainty in parameter estimates from sampling variation or expert judgment can introduce substantial uncertainty into ecological predictions based on those estimates. However, in standard population viability analyses, one of the most widely used tools for managing plant, fish and wildlife populations, parametric uncertainty is often ignored in or discarded from model projections. We present a method for explicitly incorporating this source of uncertainty into population models to fully account for risk in management and decision contexts. Our method involves a two-step simulation process where parametric uncertainty is incorporated into the replication loop of the model and temporal variance is incorporated into the loop for time steps in the model. Using the piping plover, a federally threatened shorebird in the USA and Canada, as an example, we compare abundance projections and extinction probabilities from simulations that exclude and include parametric uncertainty. Although final abundance was very low for all sets of simulations, estimated extinction risk was much greater for the simulation that incorporated parametric uncertainty in the replication loop. Decisions about species conservation (e.g., listing, delisting, and jeopardy) might differ greatly depending on the treatment of parametric uncertainty in population models.
Boskova, Veronika; Bonhoeffer, Sebastian; Stadler, Tanja
2014-01-01
Quantifying epidemiological dynamics is crucial for understanding and forecasting the spread of an epidemic. The coalescent and the birth-death model are used interchangeably to infer epidemiological parameters from the genealogical relationships of the pathogen population under study, which in turn are inferred from the pathogen genetic sequencing data. To compare the performance of these widely applied models, we performed a simulation study. We simulated phylogenetic trees under the constant rate birth-death model and the coalescent model with a deterministic exponentially growing infected population. For each tree, we re-estimated the epidemiological parameters using both a birth-death and a coalescent based method, implemented as an MCMC procedure in BEAST v2.0. In our analyses that estimate the growth rate of an epidemic based on simulated birth-death trees, the point estimates such as the maximum a posteriori/maximum likelihood estimates are not very different. However, the estimates of uncertainty are very different. The birth-death model had a higher coverage than the coalescent model, i.e. contained the true value in the highest posterior density (HPD) interval more often (2–13% vs. 31–75% error). The coverage of the coalescent decreases with decreasing basic reproductive ratio and increasing sampling probability of infecteds. We hypothesize that the biases in the coalescent are due to the assumption of deterministic rather than stochastic population size changes. Both methods performed reasonably well when analyzing trees simulated under the coalescent. The methods can also identify other key epidemiological parameters as long as one of the parameters is fixed to its true value. In summary, when using genetic data to estimate epidemic dynamics, our results suggest that the birth-death method will be less sensitive to population fluctuations of early outbreaks than the coalescent method that assumes a deterministic exponentially growing infected population. PMID:25375100
Morales, Y.; Weber, L.J.; Mynett, A.E.; Newton, T.J.
2006-01-01
A model for simulating freshwater mussel population dynamics is presented. The model is a hydroinformatics tool that integrates principles from ecology, river hydraulics, fluid mechanics and sediment transport, and applies the individual-based modelling approach for simulating population dynamics. The general model layout, data requirements, and steps of the simulation process are discussed. As an illustration, simulation results from an application in a 10 km reach of the Upper Mississippi River are presented. The model was used to investigate the spatial distribution of mussels and the effects of food competition in native unionid mussel communities, and communities infested by Dreissena polymorpha, the zebra mussel. Simulation results were found to be realistic and coincided with data obtained from the literature. These results indicate that the model can be a useful tool for assessing the potential effects of different stressors on long-term population dynamics, and consequently, may improve the current understanding of cause and effect relationships in freshwater mussel communities. ?? 2006 Elsevier B.V. All rights reserved.
van der Heijden, A A W A; Feenstra, T L; Hoogenveen, R T; Niessen, L W; de Bruijne, M C; Dekker, J M; Baan, C A; Nijpels, G
2015-12-01
To test a simulation model, the MICADO model, for estimating the long-term effects of interventions in people with and without diabetes. The MICADO model includes micro- and macrovascular diseases in relation to their risk factors. The strengths of this model are its population scope and the possibility to assess parameter uncertainty using probabilistic sensitivity analyses. Outcomes include incidence and prevalence of complications, quality of life, costs and cost-effectiveness. We externally validated MICADO's estimates of micro- and macrovascular complications in a Dutch cohort with diabetes (n = 498,400) by comparing these estimates with national and international empirical data. For the annual number of people undergoing amputations, MICADO's estimate was 592 (95% interquantile range 291-842), which compared well with the registered number of people with diabetes-related amputations in the Netherlands (728). The incidence of end-stage renal disease estimated using the MICADO model was 247 people (95% interquartile range 120-363), which was also similar to the registered incidence in the Netherlands (277 people). MICADO performed well in the validation of macrovascular outcomes of population-based cohorts, while it had more difficulty in reflecting a highly selected trial population. Validation by comparison with independent empirical data showed that the MICADO model simulates the natural course of diabetes and its micro- and macrovascular complications well. As a population-based model, MICADO can be applied for projections as well as scenario analyses to evaluate the long-term (cost-)effectiveness of population-level interventions targeting diabetes and its complications in the Netherlands or similar countries. © 2015 The Authors. Diabetic Medicine © 2015 Diabetes UK.
An Agent-Based Modeling Template for a Cohort of Veterans with Diabetic Retinopathy.
Day, Theodore Eugene; Ravi, Nathan; Xian, Hong; Brugh, Ann
2013-01-01
Agent-based models are valuable for examining systems where large numbers of discrete individuals interact with each other, or with some environment. Diabetic Veterans seeking eye care at a Veterans Administration hospital represent one such cohort. The objective of this study was to develop an agent-based template to be used as a model for a patient with diabetic retinopathy (DR). This template may be replicated arbitrarily many times in order to generate a large cohort which is representative of a real-world population, upon which in-silico experimentation may be conducted. Agent-based template development was performed in java-based computer simulation suite AnyLogic Professional 6.6. The model was informed by medical data abstracted from 535 patient records representing a retrospective cohort of current patients of the VA St. Louis Healthcare System Eye clinic. Logistic regression was performed to determine the predictors associated with advancing stages of DR. Predicted probabilities obtained from logistic regression were used to generate the stage of DR in the simulated cohort. The simulated cohort of DR patients exhibited no significant deviation from the test population of real-world patients in proportion of stage of DR, duration of diabetes mellitus (DM), or the other abstracted predictors. Simulated patients after 10 years were significantly more likely to exhibit proliferative DR (P<0.001). Agent-based modeling is an emerging platform, capable of simulating large cohorts of individuals based on manageable data abstraction efforts. The modeling method described may be useful in simulating many different conditions where course of disease is described in categorical stages.
SHEDS - Multimedia is EPA's premier physically-based, probabilistic model, that can simulate cumulative or aggregate exposures for a population across a variety of multimedia, multipathway environmental chemicals.
SHEDS - Multimedia is EPA's premier physically-based, probabilistic model, that can simulate cumulative or aggregate exposures for a population across a variety of multimedia, multipathway environmental chemicals.
SHEDS - Multimedia is EPA's premier physically-based, probabilistic model, that can simulate cumulative or aggregate exposures for a population across a variety of multimedia, multipathway environmental chemicals.
Modeling livestock population structure: a geospatial database for Ontario swine farms.
Khan, Salah Uddin; O'Sullivan, Terri L; Poljak, Zvonimir; Alsop, Janet; Greer, Amy L
2018-01-30
Infectious diseases in farmed animals have economic, social, and health consequences. Foreign animal diseases (FAD) of swine are of significant concern. Mathematical and simulation models are often used to simulate FAD outbreaks and best practices for control. However, simulation outcomes are sensitive to the population structure used. Within Canada, access to individual swine farm population data with which to parameterize models is a challenge because of privacy concerns. Our objective was to develop a methodology to model the farmed swine population in Ontario, Canada that could represent the existing population structure and improve the efficacy of simulation models. We developed a swine population model based on the factors such as facilities supporting farm infrastructure, land availability, zoning and local regulations, and natural geographic barriers that could affect swine farming in Ontario. Assigned farm locations were equal to the swine farm density described in the 2011 Canadian Census of Agriculture. Farms were then randomly assigned to farm types proportional to the existing swine herd types. We compared the swine population models with a known database of swine farm locations in Ontario and found that the modeled population was representative of farm locations with a high accuracy (AUC: 0.91, Standard deviation: 0.02) suggesting that our algorithm generated a reasonable approximation of farm locations in Ontario. In the absence of a readily accessible dataset providing details of the relative locations of swine farms in Ontario, development of a model livestock population that captures key characteristics of the true population structure while protecting privacy concerns is an important methodological advancement. This methodology will be useful for individuals interested in modeling the spread of pathogens between farms across a landscape and using these models to evaluate disease control strategies.
Background / Question / Methods Planning for the recovery of threatened species is increasingly informed by spatially-explicit population models. However, using simulation model results to guide land management decisions can be difficult due to the volume and complexity of model...
Mathematical modelling of vector-borne diseases and insecticide resistance evolution.
Gabriel Kuniyoshi, Maria Laura; Pio Dos Santos, Fernando Luiz
2017-01-01
Vector-borne diseases are important public health issues and, consequently, in silico models that simulate them can be useful. The susceptible-infected-recovered (SIR) model simulates the population dynamics of an epidemic and can be easily adapted to vector-borne diseases, whereas the Hardy-Weinberg model simulates allele frequencies and can be used to study insecticide resistance evolution. The aim of the present study is to develop a coupled system that unifies both models, therefore enabling the analysis of the effects of vector population genetics on the population dynamics of an epidemic. Our model consists of an ordinary differential equation system. We considered the populations of susceptible, infected and recovered humans, as well as susceptible and infected vectors. Concerning these vectors, we considered a pair of alleles, with complete dominance interaction that determined the rate of mortality induced by insecticides. Thus, we were able to separate the vectors according to the genotype. We performed three numerical simulations of the model. In simulation one, both alleles conferred the same mortality rate values, therefore there was no resistant strain. In simulations two and three, the recessive and dominant alleles, respectively, conferred a lower mortality. Our numerical results show that the genetic composition of the vector population affects the dynamics of human diseases. We found that the absolute number of vectors and the proportion of infected vectors are smaller when there is no resistant strain, whilst the ratio of infected people is larger in the presence of insecticide-resistant vectors. The dynamics observed for infected humans in all simulations has a very similar shape to real epidemiological data. The population genetics of vectors can affect epidemiological dynamics, and the presence of insecticide-resistant strains can increase the number of infected people. Based on the present results, the model is a basis for development of other models and for investigating population dynamics.
Bret C. Harvey; Steven F. Railsback
2009-01-01
We explored the effects of elevated turbidity on stream-resident populations of coastal cutthroat trout Oncorhynchus clarkii clarkii using a spatially explicit individual-based model. Turbidity regimes were contrasted by means of 15-year simulations in a third-order stream in northwestern California. The alternative regimes were based on multiple-year, continuous...
Gerber, Brian D.; Kendall, William L.
2017-01-01
Monitoring animal populations can be difficult. Limited resources often force monitoring programs to rely on unadjusted or smoothed counts as an index of abundance. Smoothing counts is commonly done using a moving-average estimator to dampen sampling variation. These indices are commonly used to inform management decisions, although their reliability is often unknown. We outline a process to evaluate the biological plausibility of annual changes in population counts and indices from a typical monitoring scenario and compare results with a hierarchical Bayesian time series (HBTS) model. We evaluated spring and fall counts, fall indices, and model-based predictions for the Rocky Mountain population (RMP) of Sandhill Cranes (Antigone canadensis) by integrating juvenile recruitment, harvest, and survival into a stochastic stage-based population model. We used simulation to evaluate population indices from the HBTS model and the commonly used 3-yr moving average estimator. We found counts of the RMP to exhibit biologically unrealistic annual change, while the fall population index was largely biologically realistic. HBTS model predictions suggested that the RMP changed little over 31 yr of monitoring, but the pattern depended on assumptions about the observational process. The HBTS model fall population predictions were biologically plausible if observed crane harvest mortality was compensatory up to natural mortality, as empirical evidence suggests. Simulations indicated that the predicted mean of the HBTS model was generally a more reliable estimate of the true population than population indices derived using a moving 3-yr average estimator. Practitioners could gain considerable advantages from modeling population counts using a hierarchical Bayesian autoregressive approach. Advantages would include: (1) obtaining measures of uncertainty; (2) incorporating direct knowledge of the observational and population processes; (3) accommodating missing years of data; and (4) forecasting population size.
SHEDS - Multimedia is EPA's premier physically-based, probabilistic model, that can simulate cumulative or aggregate exposures for a population across a variety of multimedia, multipathway environmental chemicals.
SHEDS - Multimedia is EPA's premier physically-based, probabilistic model, that can simulate cumulative or aggregate exposures for a population across a variety of multimedia, multipathway environmental chemicals.
PM2.5 Population Exposure in New Delhi Using a Probabilistic Simulation Framework.
Saraswat, Arvind; Kandlikar, Milind; Brauer, Michael; Srivastava, Arun
2016-03-15
This paper presents a Geographical Information System (GIS) based probabilistic simulation framework to estimate PM2.5 population exposure in New Delhi, India. The framework integrates PM2.5 output from spatiotemporal LUR models and trip distribution data using a Gravity model based on zonal data for population, employment and enrollment in educational institutions. Time-activity patterns were derived from a survey of randomly sampled individuals (n = 1012) and in-vehicle exposure was estimated using microenvironmental monitoring data based on field measurements. We simulated population exposure for three different scenarios to capture stay-at-home populations (Scenario 1), working population exposed to near-road concentrations during commutes (Scenario 2), and the working population exposed to on-road concentrations during commutes (Scenario 3). Simulated annual average levels of PM2.5 exposure across the entire city were very high, and particularly severe in the winter months: ∼200 μg m(-3) in November, roughly four times higher compared to the lower levels in the monsoon season. Mean annual exposures ranged from 109 μg m(-3) (IQR: 97-120 μg m(-3)) for Scenario 1, to 121 μg m(-3) (IQR: 110-131 μg m(-3)), and 125 μg m(-3) (IQR: 114-136 μ gm(-3)) for Scenarios 2 and 3 respectively. Ignoring the effects of mobility causes the average annual PM2.5 population exposure to be underestimated by only 11%.
Computer simulation of the coffee leaf miner using sexual Penna aging model
NASA Astrophysics Data System (ADS)
de Oliveira, A. C. S.; Martins, S. G. F.; Zacarias, M. S.
2008-01-01
Forecast models based on climatic conditions are of great interest in Integrated Pest Management (IPM) programs. The success of these models depends, among other factors, on the knowledge of the temperature effect on the pests’ population dynamics. In this direction, a computer simulation was made for the population dynamics of the coffee leaf miner, L. coffeella, at different temperatures, considering experimental data relative to the pest. The age structure was inserted into the dynamics through sexual Penna Model. The results obtained, such as life expectancy, growth rate and annual generations’ number, in agreement to those in laboratory and field conditions, show that the simulation can be used as a forecast model for controlling L. coffeella.
Sampling ARG of multiple populations under complex configurations of subdivision and admixture.
Carrieri, Anna Paola; Utro, Filippo; Parida, Laxmi
2016-04-01
Simulating complex evolution scenarios of multiple populations is an important task for answering many basic questions relating to population genomics. Apart from the population samples, the underlying Ancestral Recombinations Graph (ARG) is an additional important means in hypothesis checking and reconstruction studies. Furthermore, complex simulations require a plethora of interdependent parameters making even the scenario-specification highly non-trivial. We present an algorithm SimRA that simulates generic multiple population evolution model with admixture. It is based on random graphs that improve dramatically in time and space requirements of the classical algorithm of single populations.Using the underlying random graphs model, we also derive closed forms of expected values of the ARG characteristics i.e., height of the graph, number of recombinations, number of mutations and population diversity in terms of its defining parameters. This is crucial in aiding the user to specify meaningful parameters for the complex scenario simulations, not through trial-and-error based on raw compute power but intelligent parameter estimation. To the best of our knowledge this is the first time closed form expressions have been computed for the ARG properties. We show that the expected values closely match the empirical values through simulations.Finally, we demonstrate that SimRA produces the ARG in compact forms without compromising any accuracy. We demonstrate the compactness and accuracy through extensive experiments. SimRA (Simulation based on Random graph Algorithms) source, executable, user manual and sample input-output sets are available for downloading at: https://github.com/ComputationalGenomics/SimRA CONTACT: : parida@us.ibm.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Stochastic simulation of multiscale complex systems with PISKaS: A rule-based approach.
Perez-Acle, Tomas; Fuenzalida, Ignacio; Martin, Alberto J M; Santibañez, Rodrigo; Avaria, Rodrigo; Bernardin, Alejandro; Bustos, Alvaro M; Garrido, Daniel; Dushoff, Jonathan; Liu, James H
2018-03-29
Computational simulation is a widely employed methodology to study the dynamic behavior of complex systems. Although common approaches are based either on ordinary differential equations or stochastic differential equations, these techniques make several assumptions which, when it comes to biological processes, could often lead to unrealistic models. Among others, model approaches based on differential equations entangle kinetics and causality, failing when complexity increases, separating knowledge from models, and assuming that the average behavior of the population encompasses any individual deviation. To overcome these limitations, simulations based on the Stochastic Simulation Algorithm (SSA) appear as a suitable approach to model complex biological systems. In this work, we review three different models executed in PISKaS: a rule-based framework to produce multiscale stochastic simulations of complex systems. These models span multiple time and spatial scales ranging from gene regulation up to Game Theory. In the first example, we describe a model of the core regulatory network of gene expression in Escherichia coli highlighting the continuous model improvement capacities of PISKaS. The second example describes a hypothetical outbreak of the Ebola virus occurring in a compartmentalized environment resembling cities and highways. Finally, in the last example, we illustrate a stochastic model for the prisoner's dilemma; a common approach from social sciences describing complex interactions involving trust within human populations. As whole, these models demonstrate the capabilities of PISKaS providing fertile scenarios where to explore the dynamics of complex systems. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Havas, K A; Boone, R B; Hill, A E; Salman, M D
2014-06-01
Brucellosis has been reported in livestock and humans in the country of Georgia with Brucella melitensis as the most common species causing disease. Georgia lacked sufficient data to assess effectiveness of the various potential control measures utilizing a reliable population-based simulation model of animal-to-human transmission of this infection. Therefore, an agent-based model was built using data from previous studies to evaluate the effect of an animal-level infection control programme on human incidence and sheep flock and cattle herd prevalence of brucellosis in the Kakheti region of Georgia. This model simulated the patterns of interaction of human-animal workers, sheep flocks and cattle herds with various infection control measures and returned population-based data. The model simulates the use of control measures needed for herd and flock prevalence to fall below 2%. As per the model output, shepherds had the greatest disease reduction as a result of the infection control programme. Cattle had the greatest influence on the incidence of human disease. Control strategies should include all susceptible animal species, sheep and cattle, identify the species of brucellosis present in the cattle population and should be conducted at the municipality level. This approach can be considered as a model to other countries and regions when assessment of control strategies is needed but data are scattered. © 2013 Blackwell Verlag GmbH.
Antle, John M.; Stoorvogel, Jetse J.; Valdivia, Roberto O.
2014-01-01
This article presents conceptual and empirical foundations for new parsimonious simulation models that are being used to assess future food and environmental security of farm populations. The conceptual framework integrates key features of the biophysical and economic processes on which the farming systems are based. The approach represents a methodological advance by coupling important behavioural processes, for example, self-selection in adaptive responses to technological and environmental change, with aggregate processes, such as changes in market supply and demand conditions or environmental conditions as climate. Suitable biophysical and economic data are a critical limiting factor in modelling these complex systems, particularly for the characterization of out-of-sample counterfactuals in ex ante analyses. Parsimonious, population-based simulation methods are described that exploit available observational, experimental, modelled and expert data. The analysis makes use of a new scenario design concept called representative agricultural pathways. A case study illustrates how these methods can be used to assess food and environmental security. The concluding section addresses generalizations of parametric forms and linkages of regional models to global models. PMID:24535388
Antle, John M; Stoorvogel, Jetse J; Valdivia, Roberto O
2014-04-05
This article presents conceptual and empirical foundations for new parsimonious simulation models that are being used to assess future food and environmental security of farm populations. The conceptual framework integrates key features of the biophysical and economic processes on which the farming systems are based. The approach represents a methodological advance by coupling important behavioural processes, for example, self-selection in adaptive responses to technological and environmental change, with aggregate processes, such as changes in market supply and demand conditions or environmental conditions as climate. Suitable biophysical and economic data are a critical limiting factor in modelling these complex systems, particularly for the characterization of out-of-sample counterfactuals in ex ante analyses. Parsimonious, population-based simulation methods are described that exploit available observational, experimental, modelled and expert data. The analysis makes use of a new scenario design concept called representative agricultural pathways. A case study illustrates how these methods can be used to assess food and environmental security. The concluding section addresses generalizations of parametric forms and linkages of regional models to global models.
E. L. Landguth; S. A. Cushman; M. A. Murphy; G. Luikart
2010-01-01
Linking landscape effects on gene flow to processes such as dispersal and mating is essential to provide a conceptual foundation for landscape genetics. It is particularly important to determine how classical population genetic models relate to recent individual-based landscape genetic models when assessing individual movement and its influence on population genetic...
NASA Astrophysics Data System (ADS)
Mastmeyer, Andre; Wilms, Matthias; Handels, Heinz
2018-03-01
Virtual reality (VR) training simulators of liver needle insertion in the hepatic area of breathing virtual patients often need 4D image data acquisitions as a prerequisite. Here, first a population-based breathing virtual patient 4D atlas is built and second the requirement of a dose-relevant or expensive acquisition of a 4D CT or MRI data set for a new patient can be mitigated by warping the mean atlas motion. The breakthrough contribution of this work is the construction and reuse of population-based, learned 4D motion models.
Iraeus, Johan; Lindquist, Mats
2016-10-01
Frontal crashes still account for approximately half of all fatalities in passenger cars, despite several decades of crash-related research. For serious injuries in this crash mode, several authors have listed the thorax as the most important. Computer simulation provides an effective tool to study crashes and evaluate injury mechanisms, and using stochastic input data, whole populations of crashes can be studied. The aim of this study was to develop a generic buck model and to validate this model on a population of real-life frontal crashes in terms of the risk of rib fracture. The study was conducted in four phases. In the first phase, real-life validation data were derived by analyzing NASS/CDS data to find the relationship between injury risk and crash parameters. In addition, available statistical distributions for the parameters were collected. In the second phase, a generic parameterized finite element (FE) model of a vehicle interior was developed based on laser scans from the A2MAC1 database. In the third phase, model parameters that could not be found in the literature were estimated using reverse engineering based on NCAP tests. Finally, in the fourth phase, the stochastic FE model was used to simulate a population of real-life crashes, and the result was compared to the validation data from phase one. The stochastic FE simulation model overestimates the risk of rib fracture, more for young occupants and less for senior occupants. However, if the effect of underestimation of rib fractures in the NASS/CDS material is accounted for using statistical simulations, the risk of rib fracture based on the stochastic FE model matches the risk based on the NASS/CDS data for senior occupants. The current version of the stochastic model can be used to evaluate new safety measures using a population of frontal crashes for senior occupants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Forecasting the use of elderly care: a static micro-simulation model.
Eggink, Evelien; Woittiez, Isolde; Ras, Michiel
2016-07-01
This paper describes a model suitable for forecasting the use of publicly funded long-term elderly care, taking into account both ageing and changes in the health status of the population. In addition, the impact of socioeconomic factors on care use is included in the forecasts. The model is also suitable for the simulation of possible implications of some specific policy measures. The model is a static micro-simulation model, consisting of an explanatory model and a population model. The explanatory model statistically relates care use to individual characteristics. The population model mimics the composition of the population at future points in time. The forecasts of care use are driven by changes in the composition of the population in terms of relevant characteristics instead of dynamics at the individual level. The results show that a further 37 % increase in the use of elderly care (from 7 to 9 % of the Dutch 30-plus population) between 2008 and 2030 can be expected due to a further ageing of the population. However, the use of care is expected to increase less than if it were based on the increasing number of elderly only (+70 %), due to decreasing disability levels and increasing levels of education. As an application of the model, we simulated the effects of restricting access to residential care to elderly people with severe physical disabilities. The result was a lower growth of residential care use (32 % instead of 57 %), but a somewhat faster growth in the use of home care (35 % instead of 32 %).
Agent-Based Modeling of Cancer Stem Cell Driven Solid Tumor Growth.
Poleszczuk, Jan; Macklin, Paul; Enderling, Heiko
2016-01-01
Computational modeling of tumor growth has become an invaluable tool to simulate complex cell-cell interactions and emerging population-level dynamics. Agent-based models are commonly used to describe the behavior and interaction of individual cells in different environments. Behavioral rules can be informed and calibrated by in vitro assays, and emerging population-level dynamics may be validated with both in vitro and in vivo experiments. Here, we describe the design and implementation of a lattice-based agent-based model of cancer stem cell driven tumor growth.
Wong, William W L; Feng, Zeny Z; Thein, Hla-Hla
2016-11-01
Agent-based models (ABMs) are computer simulation models that define interactions among agents and simulate emergent behaviors that arise from the ensemble of local decisions. ABMs have been increasingly used to examine trends in infectious disease epidemiology. However, the main limitation of ABMs is the high computational cost for a large-scale simulation. To improve the computational efficiency for large-scale ABM simulations, we built a parallelizable sliding region algorithm (SRA) for ABM and compared it to a nonparallelizable ABM. We developed a complex agent network and performed two simulations to model hepatitis C epidemics based on the real demographic data from Saskatchewan, Canada. The first simulation used the SRA that processed on each postal code subregion subsequently. The second simulation processed the entire population simultaneously. It was concluded that the parallelizable SRA showed computational time saving with comparable results in a province-wide simulation. Using the same method, SRA can be generalized for performing a country-wide simulation. Thus, this parallel algorithm enables the possibility of using ABM for large-scale simulation with limited computational resources.
Stochastic Human Exposure and Dose Simulation for Air Toxics
The Stochastic Human Exposure and Dose Simulation model for Air Toxics (SHEDS-AirToxics) is a multimedia, multipathway population-based exposure and dose model for air toxics developed by the US EPA's National Exposure Research Laboratory (NERL). SHEDS-AirToxics uses a probabili...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostova, T; Carlsen, T
2003-11-21
We present a spatially-explicit individual-based computational model of rodent dynamics, customized for the prairie vole species, M. Ochrogaster. The model is based on trophic relationships and represents important features such as territorial competition, mating behavior, density-dependent predation and dispersal out of the modeled spatial region. Vegetation growth and vole fecundity are dependent on climatic components. The results of simulations show that the model correctly predicts the overall temporal dynamics of the population density. Time-series analysis shows a very good match between the periods corresponding to the peak population density frequencies predicted by the model and the ones reported in themore » literature. The model is used to study the relation between persistence, landscape area and predation. We introduce the notions of average time to extinction (ATE) and persistence frequency to quantify persistence. While the ATE decreases with decrease of area, it is a bell-shaped function of the predation level: increasing for 'small' and decreasing for 'large' predation levels.« less
Sallah, Kankoé; Giorgi, Roch; Bengtsson, Linus; Lu, Xin; Wetter, Erik; Adrien, Paul; Rebaudet, Stanislas; Piarroux, Renaud; Gaudart, Jean
2017-11-22
Mathematical models of human mobility have demonstrated a great potential for infectious disease epidemiology in contexts of data scarcity. While the commonly used gravity model involves parameter tuning and is thus difficult to implement without reference data, the more recent radiation model based on population densities is parameter-free, but biased. In this study we introduce the new impedance model, by analogy with electricity. Previous research has compared models on the basis of a few specific available spatial patterns. In this study, we use a systematic simulation-based approach to assess the performances. Five hundred spatial patterns were generated using various area sizes and location coordinates. Model performances were evaluated based on these patterns. For simulated data, comparison measures were average root mean square error (aRMSE) and bias criteria. Modeling of the 2010 Haiti cholera epidemic with a basic susceptible-infected-recovered (SIR) framework allowed an empirical evaluation through assessing the goodness-of-fit of the observed epidemic curve. The new, parameter-free impedance model outperformed previous models on simulated data according to average aRMSE and bias criteria. The impedance model achieved better performances with heterogeneous population densities and small destination populations. As a proof of concept, the basic compartmental SIR framework was used to confirm the results obtained with the impedance model in predicting the spread of cholera in Haiti in 2010. The proposed new impedance model provides accurate estimations of human mobility, especially when the population distribution is highly heterogeneous. This model can therefore help to achieve more accurate predictions of disease spread in the context of an epidemic.
Eco-evolutionary population simulation models are powerful new forecasting tools for exploring management strategies for climate change and other dynamic disturbance regimes. Additionally, eco-evo individual-based models (IBMs) are useful for investigating theoretical feedbacks ...
Variance in binary stellar population synthesis
NASA Astrophysics Data System (ADS)
Breivik, Katelyn; Larson, Shane L.
2016-03-01
In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations in less than a week, thus allowing a full exploration of the variance associated with a binary stellar evolution model.
Studying Variance in the Galactic Ultra-compact Binary Population
NASA Astrophysics Data System (ADS)
Larson, Shane L.; Breivik, Katelyn
2017-01-01
In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations on week-long timescales, thus allowing a full exploration of the variance associated with a binary stellar evolution model.
NASA Astrophysics Data System (ADS)
Garedew, Efrem; Sandewall, Mats; Soderberg, Ulf
2012-01-01
The dynamic interactions between society and land resources have to be taken into account when planning and managing natural resources. A computer model, using STELLA software, was developed through active participation of purposively selected farm households from different wealth groups, age groups and gender within a rural community and some members of Kebelle council. The aim of the modeling was to study the perceived changes in land-use, population and livelihoods over the next 30 years and to improve our understanding of the interactions among them. The modeling output is characterized by rapid population growth, declining farm size and household incomes, deteriorating woody vegetation cover and worsening land degradation if current conditions remain. However, through integrated intervention strategies (including forest increase, micro-finance, family planning, health and education) the woody vegetation cover is likely to increase in the landscape, population growth is likely to slow down and households' income is likely to improve. A validation assessment of the simulation model based on historical data on land-use and population from 1973 to 2006 showed that the model is relatively robust. We conclude that as a supporting tool, the simulation model can contribute to the decision making process.
Tomaskova, Hana; Kuhnova, Jitka; Cimler, Richard; Dolezal, Ondrej; Kuca, Kamil
2016-01-01
Alzheimer's disease (AD) is a slowly progressing neurodegenerative brain disease with irreversible brain effects; it is the most common cause of dementia. With increasing age, the probability of suffering from AD increases. In this research, population growth of the European Union (EU) until the year 2080 and the number of patients with AD are modeled. The aim of this research is to predict the spread of AD in the EU population until year 2080 using a computer simulation. For the simulation of the EU population and the occurrence of AD in this population, a system dynamics modeling approach has been used. System dynamics is a useful and effective method for the investigation of complex social systems. Over the past decades, its applicability has been demonstrated in a wide variety of applications. In this research, this method has been used to investigate the growth of the EU population and predict the number of patients with AD. The model has been calibrated on the population prediction data created by Eurostat. Based on data from Eurostat, the EU population until year 2080 has been modeled. In 2013, the population of the EU was 508 million and the number of patients with AD was 7.5 million. Based on the prediction, in 2040, the population of the EU will be 524 million and the number of patients with AD will be 13.1 million. By the year 2080, the EU population will be 520 million and the number of patients with AD will be 13.7 million. System dynamics modeling approach has been used for the prediction of the number of patients with AD in the EU population till the year 2080. These results can be used to determine the economic burden of the treatment of these patients. With different input data, the simulation can be used also for the different regions as well as for different noncontagious disease predictions.
Stochastic Individual-Based Modeling of Bacterial Growth and Division Using Flow Cytometry.
García, Míriam R; Vázquez, José A; Teixeira, Isabel G; Alonso, Antonio A
2017-01-01
A realistic description of the variability in bacterial growth and division is critical to produce reliable predictions of safety risks along the food chain. Individual-based modeling of bacteria provides the theoretical framework to deal with this variability, but it requires information about the individual behavior of bacteria inside populations. In this work, we overcome this problem by estimating the individual behavior of bacteria from population statistics obtained with flow cytometry. For this objective, a stochastic individual-based modeling framework is defined based on standard assumptions during division and exponential growth. The unknown single-cell parameters required for running the individual-based modeling simulations, such as cell size growth rate, are estimated from the flow cytometry data. Instead of using directly the individual-based model, we make use of a modified Fokker-Plank equation. This only equation simulates the population statistics in function of the unknown single-cell parameters. We test the validity of the approach by modeling the growth and division of Pediococcus acidilactici within the exponential phase. Estimations reveal the statistics of cell growth and division using only data from flow cytometry at a given time. From the relationship between the mother and daughter volumes, we also predict that P. acidilactici divide into two successive parallel planes.
Design of a digital phantom population for myocardial perfusion SPECT imaging research.
Ghaly, Michael; Du, Yong; Fung, George S K; Tsui, Benjamin M W; Links, Jonathan M; Frey, Eric
2014-06-21
Digital phantoms and Monte Carlo (MC) simulations have become important tools for optimizing and evaluating instrumentation, acquisition and processing methods for myocardial perfusion SPECT (MPS). In this work, we designed a new adult digital phantom population and generated corresponding Tc-99m and Tl-201 projections for use in MPS research. The population is based on the three-dimensional XCAT phantom with organ parameters sampled from the Emory PET Torso Model Database. Phantoms included three variations each in body size, heart size, and subcutaneous adipose tissue level, for a total of 27 phantoms of each gender. The SimSET MC code and angular response functions were used to model interactions in the body and the collimator-detector system, respectively. We divided each phantom into seven organs, each simulated separately, allowing use of post-simulation summing to efficiently model uptake variations. Also, we adapted and used a criterion based on the relative Poisson effective count level to determine the required number of simulated photons for each simulated organ. This technique provided a quantitative estimate of the true noise in the simulated projection data, including residual MC simulation noise. Projections were generated in 1 keV wide energy windows from 48-184 keV assuming perfect energy resolution to permit study of the effects of window width, energy resolution, and crosstalk in the context of dual isotope MPS. We have developed a comprehensive method for efficiently simulating realistic projections for a realistic population of phantoms in the context of MPS imaging. The new phantom population and realistic database of simulated projections will be useful in performing mathematical and human observer studies to evaluate various acquisition and processing methods such as optimizing the energy window width, investigating the effect of energy resolution on image quality and evaluating compensation methods for degrading factors such as crosstalk in the context of single and dual isotope MPS.
Design of a digital phantom population for myocardial perfusion SPECT imaging research
NASA Astrophysics Data System (ADS)
Ghaly, Michael; Du, Yong; Fung, George S. K.; Tsui, Benjamin M. W.; Links, Jonathan M.; Frey, Eric
2014-06-01
Digital phantoms and Monte Carlo (MC) simulations have become important tools for optimizing and evaluating instrumentation, acquisition and processing methods for myocardial perfusion SPECT (MPS). In this work, we designed a new adult digital phantom population and generated corresponding Tc-99m and Tl-201 projections for use in MPS research. The population is based on the three-dimensional XCAT phantom with organ parameters sampled from the Emory PET Torso Model Database. Phantoms included three variations each in body size, heart size, and subcutaneous adipose tissue level, for a total of 27 phantoms of each gender. The SimSET MC code and angular response functions were used to model interactions in the body and the collimator-detector system, respectively. We divided each phantom into seven organs, each simulated separately, allowing use of post-simulation summing to efficiently model uptake variations. Also, we adapted and used a criterion based on the relative Poisson effective count level to determine the required number of simulated photons for each simulated organ. This technique provided a quantitative estimate of the true noise in the simulated projection data, including residual MC simulation noise. Projections were generated in 1 keV wide energy windows from 48-184 keV assuming perfect energy resolution to permit study of the effects of window width, energy resolution, and crosstalk in the context of dual isotope MPS. We have developed a comprehensive method for efficiently simulating realistic projections for a realistic population of phantoms in the context of MPS imaging. The new phantom population and realistic database of simulated projections will be useful in performing mathematical and human observer studies to evaluate various acquisition and processing methods such as optimizing the energy window width, investigating the effect of energy resolution on image quality and evaluating compensation methods for degrading factors such as crosstalk in the context of single and dual isotope MPS.
A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds
Hagos, Samson; Feng, Zhe; Plant, Robert S.; ...
2018-02-20
A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii)more » the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. Finally, in addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.« less
A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds
NASA Astrophysics Data System (ADS)
Hagos, Samson; Feng, Zhe; Plant, Robert S.; Houze, Robert A.; Xiao, Heng
2018-02-01
A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii) the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. In addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.
A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagos, Samson; Feng, Zhe; Plant, Robert S.
A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii)more » the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. Finally, in addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.« less
Weston, Bronson; Fogal, Benjamin; Cook, Daniel; Dhurjati, Prasad
2015-04-01
The number of cases diagnosed with Autism Spectrum Disorders is rising at an alarming rate with the Centers for Disease Control estimating the 2014 incidence rate as 1 in 68. Recently, it has been hypothesized that gut bacteria may contribute to the development of autism. Specifically, the relative balances between the inflammatory microbes clostridia and desulfovibrio and the anti-inflammatory microbe bifidobacteria may become destabilized prior to autism development. The imbalance leads to a leaky gut, characterized by a more porous epithelial membrane resulting in microbial toxin release into the blood, which may contribute to brain inflammation and autism development. To test how changes in population dynamics of the gut microbiome may lead to the imbalanced microbial populations associated with autism patients, we constructed a novel agent-based model of clostridia, desulfovibrio, and bifidobacteria population interactions in the gut. The model demonstrates how changing physiological conditions in the gut can affect the population dynamics of the microbiome. Simulations using our agent-based model indicate that despite large perturbations to initial levels of bacteria, the populations robustly achieve a single steady-state given similar gut conditions. These simulation results suggests that disturbance such as a prebiotic or antibiotic treatment may only transiently affect the gut microbiome. However, sustained prebiotic treatments may correct low population counts of bifidobacteria. Furthermore, our simulations suggest that clostridia growth rate is a key determinant of risk of autism development. Treatment of high-risk infants with supra-physiological levels of lysozymes may suppress clostridia growth rate, resulting in a steep decrease in the clostridia population and therefore reduced risk of autism development. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wilson, R; Abbott, J H
2018-04-01
To describe the construction and preliminary validation of a new population-based microsimulation model developed to analyse the health and economic burden and cost-effectiveness of treatments for knee osteoarthritis (OA) in New Zealand (NZ). We developed the New Zealand Management of Osteoarthritis (NZ-MOA) model, a discrete-time state-transition microsimulation model of the natural history of radiographic knee OA. In this article, we report on the model structure, derivation of input data, validation of baseline model parameters against external data sources, and validation of model outputs by comparison of the predicted population health loss with previous estimates. The NZ-MOA model simulates both the structural progression of radiographic knee OA and the stochastic development of multiple disease symptoms. Input parameters were sourced from NZ population-based data where possible, and from international sources where NZ-specific data were not available. The predicted distributions of structural OA severity and health utility detriments associated with OA were externally validated against other sources of evidence, and uncertainty resulting from key input parameters was quantified. The resulting lifetime and current population health-loss burden was consistent with estimates of previous studies. The new NZ-MOA model provides reliable estimates of the health loss associated with knee OA in the NZ population. The model structure is suitable for analysis of the effects of a range of potential treatments, and will be used in future work to evaluate the cost-effectiveness of recommended interventions within the NZ healthcare system. Copyright © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Vincenzi, Simone; Crivelli, Alain J; Jesensek, Dusan; De Leo, Giulio A
2008-06-01
Theoretical and empirical models of populations dynamics have paid little attention to the implications of density-dependent individual growth on the persistence and regulation of small freshwater salmonid populations. We have therefore designed a study aimed at testing our hypothesis that density-dependent individual growth is a process that enhances population recovery and reduces extinction risk in salmonid populations in a variable environment subject to disturbance events. This hypothesis was tested in two newly introduced marble trout (Salmo marmoratus) populations living in Slovenian streams (Zakojska and Gorska) subject to severe autumn floods. We developed a discrete-time stochastic individual-based model of population dynamics for each population with demographic parameters and compensatory responses tightly calibrated on data from individually tagged marble trout. The occurrence of severe flood events causing population collapses was explicitly accounted for in the model. We used the model in a population viability analysis setting to estimate the quasi-extinction risk and demographic indexes of the two marble trout populations when individual growth was density-dependent. We ran a set of simulations in which the effect of floods on population abundance was explicitly accounted for and another set of simulations in which flood events were not included in the model. These simulation results were compared with those of scenarios in which individual growth was modelled with density-independent Von Bertalanffy growth curves. Our results show how density-dependent individual growth may confer remarkable resilience to marble trout populations in case of major flood events. The resilience to flood events shown by the simulation results can be explained by the increase in size-dependent fecundity as a consequence of the drop in population size after a severe flood, which allows the population to quickly recover to the pre-event conditions. Our results suggest that density-dependent individual growth plays a potentially powerful role in the persistence of freshwater salmonids living in streams subject to recurrent yet unpredictable flood events.
A NEO population generation and observation simulation software tool
NASA Astrophysics Data System (ADS)
Müller, Sven; Gelhaus, Johannes; Hahn, Gerhard; Franco, Raffaella
One of the main targets of ESA's Space Situational Awareness (SSA) program is to build a wide knowledge base about objects that can potentially harm Earth (Near-Earth Objects, NEOs). An important part of this effort is to create the Small Bodies Data Centre (SBDC) which is going to aggregate measurement data from a fully-integrated NEO observation sensor network. Until this network is developed, artificial NEO measurement data is needed in order to validate SBDC algorithms. Moreover, to establish a functioning NEO observation sensor network, it has to be determined where to place sensors, what technical requirements have to be met in order to be able to detect NEOs and which observation strategies work the best. Because of this, a sensor simulation software was needed. This paper presents a software tool which allows users to create and analyse NEO populations and to simulate and analyse population observations. It is a console program written in Fortran and comes with a Graphical User Interface (GUI) written in Java and C. The tool can be distinguished into the components ``Population Generator'' and ``Observation Simulator''. The Population Generator component is responsible for generating and analysing a NEO population. Users can choose between creating fictitious (random) and synthetic populations. The latter are based on one of two models describing the orbital and size distribution of observed NEOs: The existing socalled ``Bottke Model'' (Bottke et al. 2000, 2002) and the new ``Granvik Model'' (Granvik et al. 2014, in preparation) which has been developed in parallel to the tool. Generated populations can be analysed by defining 2D, 3D and scatter plots using various NEO attributes. As a result, the tool creates the appropiate files for the plotting tool ``gnuplot''. The tool's Observation Simulator component yields the Observation Simulation and Observation Analysis functions. Users can define sensor systems using ground- or space-based locations as well as optical or radar sensors and simulate observation campaigns. The tool outputs field-of-view crossings and actual detections of the selected NEO population objects. Using the Observation Analysis users are able to process and plot the results of the Observation Simulation. In order to enable end-users to handle the tool in a user-intuitive and comfortable way, a GUI has been created based on the modular Eclipse Rich Client Platform (RCP) technology. Through the GUI users can easily enter input data for the tool, execute it and view its output data in a clear way. Additionally, the GUI runs gnuplot to create plot pictures and presents them to the user. Furthermore, users can create projects to organise executions of the tool.
Human judgment vs. quantitative models for the management of ecological resources.
Holden, Matthew H; Ellner, Stephen P
2016-07-01
Despite major advances in quantitative approaches to natural resource management, there has been resistance to using these tools in the actual practice of managing ecological populations. Given a managed system and a set of assumptions, translated into a model, optimization methods can be used to solve for the most cost-effective management actions. However, when the underlying assumptions are not met, such methods can potentially lead to decisions that harm the environment and economy. Managers who develop decisions based on past experience and judgment, without the aid of mathematical models, can potentially learn about the system and develop flexible management strategies. However, these strategies are often based on subjective criteria and equally invalid and often unstated assumptions. Given the drawbacks of both methods, it is unclear whether simple quantitative models improve environmental decision making over expert opinion. In this study, we explore how well students, using their experience and judgment, manage simulated fishery populations in an online computer game and compare their management outcomes to the performance of model-based decisions. We consider harvest decisions generated using four different quantitative models: (1) the model used to produce the simulated population dynamics observed in the game, with the values of all parameters known (as a control), (2) the same model, but with unknown parameter values that must be estimated during the game from observed data, (3) models that are structurally different from those used to simulate the population dynamics, and (4) a model that ignores age structure. Humans on average performed much worse than the models in cases 1-3, but in a small minority of scenarios, models produced worse outcomes than those resulting from students making decisions based on experience and judgment. When the models ignored age structure, they generated poorly performing management decisions, but still outperformed students using experience and judgment 66% of the time. © 2016 by the Ecological Society of America.
Jin, Wenfei; Wang, Sijia; Wang, Haifeng; Jin, Li; Xu, Shuhua
2012-01-01
The processes of genetic admixture determine the haplotype structure and linkage disequilibrium patterns of the admixed population, which is important for medical and evolutionary studies. However, most previous studies do not consider the inherent complexity of admixture processes. Here we proposed two approaches to explore population admixture dynamics, and we demonstrated, by analyzing genome-wide empirical and simulated data, that the approach based on the distribution of chromosomal segments of distinct ancestry (CSDAs) was more powerful than that based on the distribution of individual ancestry proportions. Analysis of 1,890 African Americans showed that a continuous gene flow model, in which the African American population continuously received gene flow from European populations over about 14 generations, best explained the admixture dynamics of African Americans among several putative models. Interestingly, we observed that some African Americans had much more European ancestry than the simulated samples, indicating substructures of local ancestries in African Americans that could have been caused by individuals from some particular lineages having repeatedly admixed with people of European ancestry. In contrast, the admixture dynamics of Mexicans could be explained by a gradual admixture model in which the Mexican population continuously received gene flow from both European and Amerindian populations over about 24 generations. Our results also indicated that recent gene flows from Sub-Saharan Africans have contributed to the gene pool of Middle Eastern populations such as Mozabite, Bedouin, and Palestinian. In summary, this study not only provides approaches to explore population admixture dynamics, but also advances our understanding on population history of African Americans, Mexicans, and Middle Eastern populations. PMID:23103229
Simulation modeling of population viability for the leopard darter (Percidae: Percina pantherina)
Williams, L.R.; Echelle, A.A.; Toepfer, C.S.; Williams, M.G.; Fisher, W.L.
1999-01-01
We used the computer program RAMAS to perform a population viability analysis for the leopard darter, Percina pantherina. This percid fish is a threatened species confined to five isolated rivers in the Ouachita Mountains of Oklahoma and Arkansas. A base model created from life history data indicated a 6% probability that the leopard darter would go extinct in 50 years. We performed sensitivity analyses to determine the effects of initial population size, variation in age structure, variation in severity and probability of catastrophe, and migration rate. Catastrophe (modeled as the probability and severity of drought) and migration had the greatest effects on persistence. Results of these simulations have implications for management of this species.
Comas, Mercè; Arrospide, Arantzazu; Mar, Javier; Sala, Maria; Vilaprinyó, Ester; Hernández, Cristina; Cots, Francesc; Martínez, Juan; Castells, Xavier
2014-01-01
To assess the budgetary impact of switching from screen-film mammography to full-field digital mammography in a population-based breast cancer screening program. A discrete-event simulation model was built to reproduce the breast cancer screening process (biennial mammographic screening of women aged 50 to 69 years) combined with the natural history of breast cancer. The simulation started with 100,000 women and, during a 20-year simulation horizon, new women were dynamically entered according to the aging of the Spanish population. Data on screening were obtained from Spanish breast cancer screening programs. Data on the natural history of breast cancer were based on US data adapted to our population. A budget impact analysis comparing digital with screen-film screening mammography was performed in a sample of 2,000 simulation runs. A sensitivity analysis was performed for crucial screening-related parameters. Distinct scenarios for recall and detection rates were compared. Statistically significant savings were found for overall costs, treatment costs and the costs of additional tests in the long term. The overall cost saving was 1,115,857€ (95%CI from 932,147 to 1,299,567) in the 10th year and 2,866,124€ (95%CI from 2,492,610 to 3,239,638) in the 20th year, representing 4.5% and 8.1% of the overall cost associated with screen-film mammography. The sensitivity analysis showed net savings in the long term. Switching to digital mammography in a population-based breast cancer screening program saves long-term budget expense, in addition to providing technical advantages. Our results were consistent across distinct scenarios representing the different results obtained in European breast cancer screening programs.
Comas, Mercè; Arrospide, Arantzazu; Mar, Javier; Sala, Maria; Vilaprinyó, Ester; Hernández, Cristina; Cots, Francesc; Martínez, Juan; Castells, Xavier
2014-01-01
Objective To assess the budgetary impact of switching from screen-film mammography to full-field digital mammography in a population-based breast cancer screening program. Methods A discrete-event simulation model was built to reproduce the breast cancer screening process (biennial mammographic screening of women aged 50 to 69 years) combined with the natural history of breast cancer. The simulation started with 100,000 women and, during a 20-year simulation horizon, new women were dynamically entered according to the aging of the Spanish population. Data on screening were obtained from Spanish breast cancer screening programs. Data on the natural history of breast cancer were based on US data adapted to our population. A budget impact analysis comparing digital with screen-film screening mammography was performed in a sample of 2,000 simulation runs. A sensitivity analysis was performed for crucial screening-related parameters. Distinct scenarios for recall and detection rates were compared. Results Statistically significant savings were found for overall costs, treatment costs and the costs of additional tests in the long term. The overall cost saving was 1,115,857€ (95%CI from 932,147 to 1,299,567) in the 10th year and 2,866,124€ (95%CI from 2,492,610 to 3,239,638) in the 20th year, representing 4.5% and 8.1% of the overall cost associated with screen-film mammography. The sensitivity analysis showed net savings in the long term. Conclusions Switching to digital mammography in a population-based breast cancer screening program saves long-term budget expense, in addition to providing technical advantages. Our results were consistent across distinct scenarios representing the different results obtained in European breast cancer screening programs. PMID:24832200
Hulme, Adam; Thompson, Jason; Nielsen, Rasmus Oestergaard; Read, Gemma J M; Salmon, Paul M
2018-06-18
There have been recent calls for the application of the complex systems approach in sports injury research. However, beyond theoretical description and static models of complexity, little progress has been made towards formalising this approach in way that is practical to sports injury scientists and clinicians. Therefore, our objective was to use a computational modelling method and develop a dynamic simulation in sports injury research. Agent-based modelling (ABM) was used to model the occurrence of sports injury in a synthetic athlete population. The ABM was developed based on sports injury causal frameworks and was applied in the context of distance running-related injury (RRI). Using the acute:chronic workload ratio (ACWR), we simulated the dynamic relationship between changes in weekly running distance and RRI through the manipulation of various 'athlete management tools'. The findings confirmed that building weekly running distances over time, even within the reported ACWR 'sweet spot', will eventually result in RRI as athletes reach and surpass their individual physical workload limits. Introducing training-related error into the simulation and the modelling of a 'hard ceiling' dynamic resulted in a higher RRI incidence proportion across the population at higher absolute workloads. The presented simulation offers a practical starting point to further apply more sophisticated computational models that can account for the complex nature of sports injury aetiology. Alongside traditional forms of scientific inquiry, the use of ABM and other simulation-based techniques could be considered as a complementary and alternative methodological approach in sports injury research. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
HexSim - A general purpose framework for spatially-explicit, individual-based modeling
HexSim is a framework for constructing spatially-explicit, individual-based computer models designed for simulating terrestrial wildlife population dynamics and interactions. HexSim is useful for a broad set of modeling applications. This talk will focus on a subset of those ap...
Liu, Chun; Bridges, Melissa E; Kaundun, Shiv S; Glasgow, Les; Owen, Micheal Dk; Neve, Paul
2017-02-01
Simulation models are useful tools for predicting and comparing the risk of herbicide resistance in weed populations under different management strategies. Most existing models assume a monogenic mechanism governing herbicide resistance evolution. However, growing evidence suggests that herbicide resistance is often inherited in a polygenic or quantitative fashion. Therefore, we constructed a generalised modelling framework to simulate the evolution of quantitative herbicide resistance in summer annual weeds. Real-field management parameters based on Amaranthus tuberculatus (Moq.) Sauer (syn. rudis) control with glyphosate and mesotrione in Midwestern US maize-soybean agroecosystems demonstrated that the model can represent evolved herbicide resistance in realistic timescales. Sensitivity analyses showed that genetic and management parameters were impactful on the rate of quantitative herbicide resistance evolution, whilst biological parameters such as emergence and seed bank mortality were less important. The simulation model provides a robust and widely applicable framework for predicting the evolution of quantitative herbicide resistance in summer annual weed populations. The sensitivity analyses identified weed characteristics that would favour herbicide resistance evolution, including high annual fecundity, large resistance phenotypic variance and pre-existing herbicide resistance. Implications for herbicide resistance management and potential use of the model are discussed. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
McDonald, Scott A; Devleesschauwer, Brecht; Wallinga, Jacco
2016-12-08
Disease burden is not evenly distributed within a population; this uneven distribution can be due to individual heterogeneity in progression rates between disease stages. Composite measures of disease burden that are based on disease progression models, such as the disability-adjusted life year (DALY), are widely used to quantify the current and future burden of infectious diseases. Our goal was to investigate to what extent ignoring the presence of heterogeneity could bias DALY computation. Simulations using individual-based models for hypothetical infectious diseases with short and long natural histories were run assuming either "population-averaged" progression probabilities between disease stages, or progression probabilities that were influenced by an a priori defined individual-level frailty (i.e., heterogeneity in disease risk) distribution, and DALYs were calculated. Under the assumption of heterogeneity in transition rates and increasing frailty with age, the short natural history disease model predicted 14% fewer DALYs compared with the homogenous population assumption. Simulations of a long natural history disease indicated that assuming homogeneity in transition rates when heterogeneity was present could overestimate total DALYs, in the present case by 4% (95% quantile interval: 1-8%). The consequences of ignoring population heterogeneity should be considered when defining transition parameters for natural history models and when interpreting the resulting disease burden estimates.
Nilsen, Erlend B; Strand, Olav
2018-01-01
We developed a model for estimating demographic rates and population abundance based on multiple data sets revealing information about population age- and sex structure. Such models have previously been described in the literature as change-in-ratio models, but we extend the applicability of the models by i) using time series data allowing the full temporal dynamics to be modelled, by ii) casting the model in an explicit hierarchical modelling framework, and by iii) estimating parameters based on Bayesian inference. Based on sensitivity analyses we conclude that the approach developed here is able to obtain estimates of demographic rate with high precision whenever unbiased data of population structure are available. Our simulations revealed that this was true also when data on population abundance are not available or not included in the modelling framework. Nevertheless, when data on population structure are biased due to different observability of different age- and sex categories this will affect estimates of all demographic rates. Estimates of population size is particularly sensitive to such biases, whereas demographic rates can be relatively precisely estimated even with biased observation data as long as the bias is not severe. We then use the models to estimate demographic rates and population abundance for two Norwegian reindeer (Rangifer tarandus) populations where age-sex data were available for all harvested animals, and where population structure surveys were carried out in early summer (after calving) and late fall (after hunting season), and population size is counted in winter. We found that demographic rates were similar regardless whether we include population count data in the modelling, but that the estimated population size is affected by this decision. This suggest that monitoring programs that focus on population age- and sex structure will benefit from collecting additional data that allow estimation of observability for different age- and sex classes. In addition, our sensitivity analysis suggests that focusing monitoring towards changes in demographic rates might be more feasible than monitoring abundance in many situations where data on population age- and sex structure can be collected.
Trotter, R Talbot; Keena, Melody A
2016-12-01
Efforts to manage and eradicate invasive species can benefit from an improved understanding of the physiology, biology, and behavior of the target species, and ongoing efforts to eradicate the Asian longhorned beetle (Anoplophora glabripennis Motschulsky) highlight the roles this information may play. Here, we present a climate-driven phenology model for A. glabripennis that provides simulated life-tables for populations of individual beetles under variable climatic conditions that takes into account the variable number of instars beetles may undergo as larvae. Phenology parameters in the model are based on a synthesis of published data and studies of A. glabripennis, and the model output was evaluated using a laboratory-reared population maintained under varying temperatures mimicking those typical of Central Park in New York City. The model was stable under variations in population size, simulation length, and the Julian dates used to initiate individual beetles within the population. Comparison of model results with previously published field-based phenology studies in native and invasive populations indicates both this new phenology model, and the previously published heating-degree-day model show good agreement in the prediction of the beginning of the flight season for adults. However, the phenology model described here avoids underpredicting the cumulative emergence of adults through the season, in addition to providing tables of life stages and estimations of voltinism for local populations. This information can play a key role in evaluating risk by predicting the potential for population growth, and may facilitate the optimization of management and eradication efforts. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.
Garedew, Efrem; Sandewall, Mats; Soderberg, Ulf
2012-01-01
The dynamic interactions between society and land resources have to be taken into account when planning and managing natural resources. A computer model, using STELLA software, was developed through active participation of purposively selected farm households from different wealth groups, age groups and gender within a rural community and some members of Kebelle council. The aim of the modeling was to study the perceived changes in land-use, population and livelihoods over the next 30 years and to improve our understanding of the interactions among them. The modeling output is characterized by rapid population growth, declining farm size and household incomes, deteriorating woody vegetation cover and worsening land degradation if current conditions remain. However, through integrated intervention strategies (including forest increase, micro-finance, family planning, health and education) the woody vegetation cover is likely to increase in the landscape, population growth is likely to slow down and households' income is likely to improve. A validation assessment of the simulation model based on historical data on land-use and population from 1973 to 2006 showed that the model is relatively robust. We conclude that as a supporting tool, the simulation model can contribute to the decision making process.
Simulating the Performance of Ground-Based Optical Asteroid Surveys
NASA Astrophysics Data System (ADS)
Christensen, Eric J.; Shelly, Frank C.; Gibbs, Alex R.; Grauer, Albert D.; Hill, Richard E.; Johnson, Jess A.; Kowalski, Richard A.; Larson, Stephen M.
2014-11-01
We are developing a set of asteroid survey simulation tools in order to estimate the capability of existing and planned ground-based optical surveys, and to test a variety of possible survey cadences and strategies. The survey simulator is composed of several layers, including a model population of solar system objects and an orbital integrator, a site-specific atmospheric model (including inputs for seeing, haze and seasonal cloud cover), a model telescope (with a complete optical path to estimate throughput), a model camera (including FOV, pixel scale, and focal plane fill factor) and model source extraction and moving object detection layers with tunable detection requirements. We have also developed a flexible survey cadence planning tool to automatically generate nightly survey plans. Inputs to the cadence planner include camera properties (FOV, readout time), telescope limits (horizon, declination, hour angle, lunar and zenithal avoidance), preferred and restricted survey regions in RA/Dec, ecliptic, and Galactic coordinate systems, and recent coverage by other asteroid surveys. Simulated surveys are created for a subset of current and previous NEO surveys (LINEAR, Pan-STARRS and the three Catalina Sky Survey telescopes), and compared against the actual performance of these surveys in order to validate the model’s performance. The simulator tracks objects within the FOV of any pointing that were not discovered (e.g. too few observations, too trailed, focal plane array gaps, too fast or slow), thus dividing the population into “discoverable” and “discovered” subsets, to inform possible survey design changes. Ongoing and future work includes generating a realistic “known” subset of the model NEO population, running multiple independent simulated surveys in coordinated and uncoordinated modes, and testing various cadences to find optimal strategies for detecting NEO sub-populations. These tools can also assist in quantifying the efficiency of novel yet unverified survey cadences (e.g. the baseline LSST cadence) that sparsely spread the observations required for detection over several days or weeks.
Scalable Entity-Based Modeling of Population-Based Systems, Final LDRD Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleary, A J; Smith, S G; Vassilevska, T K
2005-01-27
The goal of this project has been to develop tools, capabilities and expertise in the modeling of complex population-based systems via scalable entity-based modeling (EBM). Our initial focal application domain has been the dynamics of large populations exposed to disease-causing agents, a topic of interest to the Department of Homeland Security in the context of bioterrorism. In the academic community, discrete simulation technology based on individual entities has shown initial success, but the technology has not been scaled to the problem sizes or computational resources of LLNL. Our developmental emphasis has been on the extension of this technology to parallelmore » computers and maturation of the technology from an academic to a lab setting.« less
Yan, Xiaoyu; Lowe, Philip J.; Fink, Martin; Berghout, Alexander; Balser, Sigrid; Krzyzanski, Wojciech
2012-01-01
The aim of this study was to develop an integrated pharmacokinetic and pharmacodynamic (PK/PD) model and assess the comparability between epoetin alfa HEXAL/Binocrit (HX575) and a comparator epoetin alfa by a model-based approach. PK/PD data—including serum drug concentrations, reticulocyte counts, red blood cells, and hemoglobin levels—were obtained from 2 clinical studies. In sum, 149 healthy men received multiple intravenous or subcutaneous doses of HX575 (100 IU/kg) and the comparator 3 times a week for 4 weeks. A population model based on pharmacodynamics-mediated drug disposition and cell maturation processes was used to characterize the PK/PD data for the 2 drugs. Simulations showed that due to target amount changes, total clearance may increase up to 2.4-fold as compared with the baseline. Further simulations suggested that once-weekly and thrice-weekly subcutaneous dosing regimens would result in similar efficacy. The findings from the model-based analysis were consistent with previous results using the standard noncompartmental approach demonstrating PK/PD comparability between HX575 and comparator. However, due to complexity of the PK/PD model, control of random effects was not straightforward. Whereas population PK/PD model-based analyses are suited for studying complex biological systems, such models have their limitations (statistical), and their comparability results should be interpreted carefully. PMID:22162538
Modeling of Tool-Tissue Interactions for Computer-Based Surgical Simulation: A Literature Review
Misra, Sarthak; Ramesh, K. T.; Okamura, Allison M.
2009-01-01
Surgical simulators present a safe and potentially effective method for surgical training, and can also be used in robot-assisted surgery for pre- and intra-operative planning. Accurate modeling of the interaction between surgical instruments and organs has been recognized as a key requirement in the development of high-fidelity surgical simulators. Researchers have attempted to model tool-tissue interactions in a wide variety of ways, which can be broadly classified as (1) linear elasticity-based, (2) nonlinear (hyperelastic) elasticity-based finite element (FE) methods, and (3) other techniques that not based on FE methods or continuum mechanics. Realistic modeling of organ deformation requires populating the model with real tissue data (which are difficult to acquire in vivo) and simulating organ response in real time (which is computationally expensive). Further, it is challenging to account for connective tissue supporting the organ, friction, and topological changes resulting from tool-tissue interactions during invasive surgical procedures. Overcoming such obstacles will not only help us to model tool-tissue interactions in real time, but also enable realistic force feedback to the user during surgical simulation. This review paper classifies the existing research on tool-tissue interactions for surgical simulators specifically based on the modeling techniques employed and the kind of surgical operation being simulated, in order to inform and motivate future research on improved tool-tissue interaction models. PMID:20119508
NASA Astrophysics Data System (ADS)
Soderberg, Patti; Price, Frank
2003-01-01
This study describes a lesson in which students engaged in inquiry in evolutionary biology in order to develop a better understanding of the concepts and reasoning skills necessary to support knowledge claims about changes in the genetic structure of populations, also known as microevolution. This paper describes how a software simulation called EVOLVE can be used to foster discussions about the conceptual knowledge used by advanced secondary or introductory college students when investigating the effects of natural selection on hypothetical populations over time. An experienced professor's use and rationale of a problem-based lesson using the simulation is examined. Examples of student misconceptions and naïve (incomplete) conceptions are described and an analysis of the procedural knowledge for experimenting with the computer model is provided. The results of this case study provide a model of how EVOLVE can be used to engage students in a complex problem-solving experience that encourages student meta-cognitive reflection about their understanding of evolution at the population level. Implications for teaching are provided and ways to improve student learning and problem solving in population genetics are suggested.
Park, Gwansik; Forman, Jason; Kim, Taewung; Panzer, Matthew B; Crandall, Jeff R
2018-02-28
The goal of this study was to explore a framework for developing injury risk functions (IRFs) in a bottom-up approach based on responses of parametrically variable finite element (FE) models representing exemplar populations. First, a parametric femur modeling tool was developed and validated using a subject-specific (SS)-FE modeling approach. Second, principal component analysis and regression were used to identify parametric geometric descriptors of the human femur and the distribution of those factors for 3 target occupant sizes (5th, 50th, and 95th percentile males). Third, distributions of material parameters of cortical bone were obtained from the literature for 3 target occupant ages (25, 50, and 75 years) using regression analysis. A Monte Carlo method was then implemented to generate populations of FE models of the femur for target occupants, using a parametric femur modeling tool. Simulations were conducted with each of these models under 3-point dynamic bending. Finally, model-based IRFs were developed using logistic regression analysis, based on the moment at fracture observed in the FE simulation. In total, 100 femur FE models incorporating the variation in the population of interest were generated, and 500,000 moments at fracture were observed (applying 5,000 ultimate strains for each synthesized 100 femur FE models) for each target occupant characteristics. Using the proposed framework on this study, the model-based IRFs for 3 target male occupant sizes (5th, 50th, and 95th percentiles) and ages (25, 50, and 75 years) were developed. The model-based IRF was located in the 95% confidence interval of the test-based IRF for the range of 15 to 70% injury risks. The 95% confidence interval of the developed IRF was almost in line with the mean curve due to a large number of data points. The framework proposed in this study would be beneficial for developing the IRFs in a bottom-up manner, whose range of variabilities is informed by the population-based FE model responses. Specifically, this method mitigates the uncertainties in applying empirical scaling and may improve IRF fidelity when a limited number of experimental specimens are available.
Efficient coarse simulation of a growing avascular tumor
Kavousanakis, Michail E.; Liu, Ping; Boudouvis, Andreas G.; Lowengrub, John; Kevrekidis, Ioannis G.
2013-01-01
The subject of this work is the development and implementation of algorithms which accelerate the simulation of early stage tumor growth models. Among the different computational approaches used for the simulation of tumor progression, discrete stochastic models (e.g., cellular automata) have been widely used to describe processes occurring at the cell and subcell scales (e.g., cell-cell interactions and signaling processes). To describe macroscopic characteristics (e.g., morphology) of growing tumors, large numbers of interacting cells must be simulated. However, the high computational demands of stochastic models make the simulation of large-scale systems impractical. Alternatively, continuum models, which can describe behavior at the tumor scale, often rely on phenomenological assumptions in place of rigorous upscaling of microscopic models. This limits their predictive power. In this work, we circumvent the derivation of closed macroscopic equations for the growing cancer cell populations; instead, we construct, based on the so-called “equation-free” framework, a computational superstructure, which wraps around the individual-based cell-level simulator and accelerates the computations required for the study of the long-time behavior of systems involving many interacting cells. The microscopic model, e.g., a cellular automaton, which simulates the evolution of cancer cell populations, is executed for relatively short time intervals, at the end of which coarse-scale information is obtained. These coarse variables evolve on slower time scales than each individual cell in the population, enabling the application of forward projection schemes, which extrapolate their values at later times. This technique is referred to as coarse projective integration. Increasing the ratio of projection times to microscopic simulator execution times enhances the computational savings. Crucial accuracy issues arising for growing tumors with radial symmetry are addressed by applying the coarse projective integration scheme in a cotraveling (cogrowing) frame. As a proof of principle, we demonstrate that the application of this scheme yields highly accurate solutions, while preserving the computational savings of coarse projective integration. PMID:22587128
Cannibalism in discrete-time predator-prey systems.
Chow, Yunshyong; Jang, Sophia R-J
2012-01-01
In this study, we propose and investigate a two-stage population model with cannibalism. It is shown that cannibalism can destabilize and lower the magnitude of the interior steady state. However, it is proved that cannibalism has no effect on the persistence of the population. Based on this model, we study two systems of predator-prey interactions where the prey population is cannibalistic. A sufficient condition based on the nontrivial boundary steady state for which both populations can coexist is derived. It is found via numerical simulations that introduction of the predator population may either stabilize or destabilize the prey dynamics, depending on cannibalism coefficients and other vital parameters.
The Hydrology of Malaria: Model Development and Application to a Sahelian Village
NASA Astrophysics Data System (ADS)
Bomblies, A.; Duchemin, J.; Eltahir, E. A.
2008-12-01
We present a coupled hydrology and entomology model for the mechanistic simulation of local-scale response of malaria transmission to hydrological and climatological determinants in semi-arid, desert fringe environments. The model is applied to the Sahel village of Banizoumbou, Niger, to predict interannual variability in malaria vector mosquito populations which lead to variations in malaria transmission. Using a high-resolution, small-scale distributed hydrology model that incorporates remotely-sensed data for land cover and topography, we simulate the formation and persistence of the pools constituting the primary breeding habitat of Anopheles gambiae s.l. mosquitoes, the principal regional malaria vector mosquitoes. An agent-based mosquito population model is coupled to the distributed hydrology model, with aquatic stage and adult stage components. For each individual adult mosquito, the model tracks attributes relevant to population dynamics and malaria transmission, which are updated as mosquitoes interact with their environment, humans, and animals. Weekly field observations were made in 2005 and 2006. The model reproduces mosquito population variability at seasonal and interannual time scales, and highlights individual pool persistence as a dominant control. Future developments to the presented model can be used in the evaluation of impacts of climate change on malaria, as well as the a priori evaluation of environmental management-based interventions.
Ducrot, Virginie; Billoir, Elise; Péry, Alexandre R R; Garric, Jeanne; Charles, Sandrine
2010-05-01
Effects of zinc were studied in the freshwater worm Branchiura sowerbyi using partial and full life-cycle tests. Only newborn and juveniles were sensitive to zinc, displaying effects on survival, growth, and age at first brood at environmentally relevant concentrations. Threshold effect models were proposed to assess toxic effects on individuals. They were fitted to life-cycle test data using Bayesian inference and adequately described life-history trait data in exposed organisms. The daily asymptotic growth rate of theoretical populations was then simulated with a matrix population model, based upon individual-level outputs. Population-level outputs were in accordance with existing literature for controls. Working in a Bayesian framework allowed incorporating parameter uncertainty in the simulation of the population-level response to zinc exposure, thus increasing the relevance of test results in the context of ecological risk assessment.
Wang, Han-I; Smith, Alexandra; Aas, Eline; Roman, Eve; Crouch, Simon; Burton, Cathy; Patmore, Russell
2017-03-01
Diffuse large B-cell lymphoma (DLBCL) is the commonest non-Hodgkin lymphoma. Previous studies examining the cost of treating DLBCL have generally focused on a specific first-line therapy alone; meaning that their findings can neither be extrapolated to the general patient population nor to other points along the treatment pathway. Based on empirical data from a representative population-based patient cohort, the objective of this study was to develop a simulation model that could predict costs and life expectancy of treating DLBCL. All patients newly diagnosed with DLBCL in the UK's population-based Haematological Malignancy Research Network ( www.hmrn.org ) in 2007 were followed until 2013 (n = 271). Mapped treatment pathways, alongside cost information derived from the National Tariff 2013/14, were incorporated into a patient-level simulation model in order to reflect the heterogeneities of patient characteristics and treatment options. The NHS and social services perspective was adopted, and all outcomes were discounted at 3.5 % per annum. Overall, the expected total medical costs were £22,122 for those treated with curative intent, and £2930 for those managed palliatively. For curative chemotherapy, the predicted medical costs were £14,966, £23,449 and £7376 for first-, second- and third-line treatments, respectively. The estimated annual cost for treating DLBCL across the UK was around £88-92 million. This is the first cost modelling study using empirical data to provide 'real world' evidence throughout the DLBCL treatment pathway. Future application of the model could include evaluation of new technologies/treatments to support healthcare decision makers, especially in the era of personalised medicine.
Scoglio, Caterina M.
2016-01-01
Rift Valley fever (RVF) is a zoonotic disease endemic in sub-Saharan Africa with periodic outbreaks in human and animal populations. Mosquitoes are the primary disease vectors; however, Rift Valley fever virus (RVFV) can also spread by direct contact with infected tissues. The transmission cycle is complex, involving humans, livestock, and multiple species of mosquitoes. The epidemiology of RVFV in endemic areas is strongly affected by climatic conditions and environmental variables. In this research, we adapt and use a network-based modeling framework to simulate the transmission of RVFV among hypothetical cattle operations in Kansas, US. Our model considers geo-located livestock populations at the individual level while incorporating the role of mosquito populations and the environment at a coarse resolution. Extensive simulations show the flexibility of our modeling framework when applied to specific scenarios to quantitatively evaluate the efficacy of mosquito control and livestock movement regulations in reducing the extent and intensity of RVF outbreaks in the United States. PMID:27662585
Scoglio, Caterina M; Bosca, Claudio; Riad, Mahbubul H; Sahneh, Faryad D; Britch, Seth C; Cohnstaedt, Lee W; Linthicum, Kenneth J
Rift Valley fever (RVF) is a zoonotic disease endemic in sub-Saharan Africa with periodic outbreaks in human and animal populations. Mosquitoes are the primary disease vectors; however, Rift Valley fever virus (RVFV) can also spread by direct contact with infected tissues. The transmission cycle is complex, involving humans, livestock, and multiple species of mosquitoes. The epidemiology of RVFV in endemic areas is strongly affected by climatic conditions and environmental variables. In this research, we adapt and use a network-based modeling framework to simulate the transmission of RVFV among hypothetical cattle operations in Kansas, US. Our model considers geo-located livestock populations at the individual level while incorporating the role of mosquito populations and the environment at a coarse resolution. Extensive simulations show the flexibility of our modeling framework when applied to specific scenarios to quantitatively evaluate the efficacy of mosquito control and livestock movement regulations in reducing the extent and intensity of RVF outbreaks in the United States.
Kinetic Model of Growth of Arthropoda Populations
NASA Astrophysics Data System (ADS)
Ershov, Yu. A.; Kuznetsov, M. A.
2018-05-01
Kinetic equations were derived for calculating the growth of crustacean populations ( Crustacea) based on the biological growth model suggested earlier using shrimp ( Caridea) populations as an example. The development cycle of successive stages for populations can be represented in the form of quasi-chemical equations. The kinetic equations that describe the development cycle of crustaceans allow quantitative prediction of the development of populations depending on conditions. In contrast to extrapolation-simulation models, in the developed kinetic model of biological growth the kinetic parameters are the experimental characteristics of population growth. Verification and parametric identification of the developed model on the basis of the experimental data showed agreement with experiment within the error of the measurement technique.
Simulating natural selection in landscape genetics
E. L. Landguth; S. A. Cushman; N. Johnson
2012-01-01
Linking landscape effects to key evolutionary processes through individual organism movement and natural selection is essential to provide a foundation for evolutionary landscape genetics. Of particular importance is determining how spatially- explicit, individual-based models differ from classic population genetics and evolutionary ecology models based on ideal...
Efficient simulation and likelihood methods for non-neutral multi-allele models.
Joyce, Paul; Genz, Alan; Buzbas, Erkan Ozge
2012-06-01
Throughout the 1980s, Simon Tavaré made numerous significant contributions to population genetics theory. As genetic data, in particular DNA sequence, became more readily available, a need to connect population-genetic models to data became the central issue. The seminal work of Griffiths and Tavaré (1994a , 1994b , 1994c) was among the first to develop a likelihood method to estimate the population-genetic parameters using full DNA sequences. Now, we are in the genomics era where methods need to scale-up to handle massive data sets, and Tavaré has led the way to new approaches. However, performing statistical inference under non-neutral models has proved elusive. In tribute to Simon Tavaré, we present an article in spirit of his work that provides a computationally tractable method for simulating and analyzing data under a class of non-neutral population-genetic models. Computational methods for approximating likelihood functions and generating samples under a class of allele-frequency based non-neutral parent-independent mutation models were proposed by Donnelly, Nordborg, and Joyce (DNJ) (Donnelly et al., 2001). DNJ (2001) simulated samples of allele frequencies from non-neutral models using neutral models as auxiliary distribution in a rejection algorithm. However, patterns of allele frequencies produced by neutral models are dissimilar to patterns of allele frequencies produced by non-neutral models, making the rejection method inefficient. For example, in some cases the methods in DNJ (2001) require 10(9) rejections before a sample from the non-neutral model is accepted. Our method simulates samples directly from the distribution of non-neutral models, making simulation methods a practical tool to study the behavior of the likelihood and to perform inference on the strength of selection.
Tennant, Marc; Kruger, Estie
2013-02-01
This study developed a Monte Carlo simulation approach to examining the prevalence and incidence of dental decay using Australian children as a test environment. Monte Carlo simulation has been used for a half a century in particle physics (and elsewhere); put simply, it is the probability for various population-level outcomes seeded randomly to drive the production of individual level data. A total of five runs of the simulation model for all 275,000 12-year-olds in Australia were completed based on 2005-2006 data. Measured on average decayed/missing/filled teeth (DMFT) and DMFT of highest 10% of sample (Sic10) the runs did not differ from each other by more than 2% and the outcome was within 5% of the reported sampled population data. The simulations rested on the population probabilities that are known to be strongly linked to dental decay, namely, socio-economic status and Indigenous heritage. Testing the simulated population found DMFT of all cases where DMFT<>0 was 2.3 (n = 128,609) and DMFT for Indigenous cases only was 1.9 (n = 13,749). In the simulation population the Sic25 was 3.3 (n = 68,750). Monte Carlo simulations were created in particle physics as a computational mathematical approach to unknown individual-level effects by resting a simulation on known population-level probabilities. In this study a Monte Carlo simulation approach to childhood dental decay was built, tested and validated. © 2013 FDI World Dental Federation.
Impacts of high resolution data on traveler compliance levels in emergency evacuation simulations
Lu, Wei; Han, Lee D.; Liu, Cheng; ...
2016-05-05
In this article, we conducted a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) with detailed real world roads network. A platform for evacuation modeling built on high resolution population distribution data and activity-based microscopic traffic simulation was proposed. This platform can be extended to any cities in the world. The results indicated that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it did not significantly compromise the performance with high resolution LPC assignment. The TAZ assignment also underestimated the real travel time during evacuation. Thismore » suggests that high data resolution can improve the accuracy of traffic modeling and simulation. The evacuation manager should consider more diverse assignment during emergency evacuation to avoid congestions.« less
Statistical power calculations for mixed pharmacokinetic study designs using a population approach.
Kloprogge, Frank; Simpson, Julie A; Day, Nicholas P J; White, Nicholas J; Tarning, Joel
2014-09-01
Simultaneous modelling of dense and sparse pharmacokinetic data is possible with a population approach. To determine the number of individuals required to detect the effect of a covariate, simulation-based power calculation methodologies can be employed. The Monte Carlo Mapped Power method (a simulation-based power calculation methodology using the likelihood ratio test) was extended in the current study to perform sample size calculations for mixed pharmacokinetic studies (i.e. both sparse and dense data collection). A workflow guiding an easy and straightforward pharmacokinetic study design, considering also the cost-effectiveness of alternative study designs, was used in this analysis. Initially, data were simulated for a hypothetical drug and then for the anti-malarial drug, dihydroartemisinin. Two datasets (sampling design A: dense; sampling design B: sparse) were simulated using a pharmacokinetic model that included a binary covariate effect and subsequently re-estimated using (1) the same model and (2) a model not including the covariate effect in NONMEM 7.2. Power calculations were performed for varying numbers of patients with sampling designs A and B. Study designs with statistical power >80% were selected and further evaluated for cost-effectiveness. The simulation studies of the hypothetical drug and the anti-malarial drug dihydroartemisinin demonstrated that the simulation-based power calculation methodology, based on the Monte Carlo Mapped Power method, can be utilised to evaluate and determine the sample size of mixed (part sparsely and part densely sampled) study designs. The developed method can contribute to the design of robust and efficient pharmacokinetic studies.
Mina, Petros; Tsaneva-Atanasova, Krasimira; Bernardo, Mario di
2016-07-15
We extend a spatially explicit agent based model (ABM) developed previously to investigate entrainment and control of the emergent behavior of a population of synchronized oscillating cells in a microfluidic chamber. Unlike most of the work in models of control of cellular systems which focus on temporal changes, we model individual cells with spatial dependencies which may contribute to certain behavioral responses. We use the model to investigate the response of both open loop and closed loop strategies, such as proportional control (P-control), proportional-integral control (PI-control) and proportional-integral-derivative control (PID-control), to heterogeinities and growth in the cell population, variations of the control parameters and spatial effects such as diffusion in the spatially explicit setting of a microfluidic chamber setup. We show that, as expected from the theory of phase locking in dynamical systems, open loop control can only entrain the cell population in a subset of forcing periods, with a wide variety of dynamical behaviors obtained outside these regions of entrainment. Closed-loop control is shown instead to guarantee entrainment in a much wider region of control parameter space although presenting limitations when the population size increases over a certain threshold. In silico tracking experiments are also performed to validate the ability of classical control approaches to achieve other reference behaviors such as a desired constant output or a linearly varying one. All simulations are carried out in BSim, an advanced agent-based simulator of microbial population which is here extended ad hoc to include the effects of control strategies acting onto the population.
A Global System for Transportation Simulation and Visualization in Emergency Evacuation Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wei; Liu, Cheng; Thomas, Neil
2015-01-01
Simulation-based studies are frequently used for evacuation planning and decision making processes. Given the transportation systems complexity and data availability, most evacuation simulation models focus on certain geographic areas. With routine improvement of OpenStreetMap road networks and LandScanTM global population distribution data, we present WWEE, a uniform system for world-wide emergency evacuation simulations. WWEE uses unified data structure for simulation inputs. It also integrates a super-node trip distribution model as the default simulation parameter to improve the system computational performance. Two levels of visualization tools are implemented for evacuation performance analysis, including link-based macroscopic visualization and vehicle-based microscopic visualization. Formore » left-hand and right-hand traffic patterns in different countries, the authors propose a mirror technique to experiment with both scenarios without significantly changing traffic simulation models. Ten cities in US, Europe, Middle East, and Asia are modeled for demonstration. With default traffic simulation models for fast and easy-to-use evacuation estimation and visualization, WWEE also retains the capability of interactive operation for users to adopt customized traffic simulation models. For the first time, WWEE provides a unified platform for global evacuation researchers to estimate and visualize their strategies performance of transportation systems under evacuation scenarios.« less
Kamstrup, Danna; Berthelsen, Ragna; Sassene, Philip Jonas; Selen, Arzu; Müllertz, Anette
2017-02-01
The focus on drug delivery for the pediatric population has been steadily increasing in the last decades. In terms of developing in vitro models simulating characteristics of the targeted pediatric population, with the purpose of predicting drug product performance after oral administration, it is important to simulate the gastro-intestinal conditions and processes the drug will encounter upon oral administration. When a drug is administered in the fed state, which is commonly the case for neonates, as they are typically fed every 3 h, the digestion of the milk will affect the composition of the fluid available for drug dissolution/solubilization. Therefore, in order to predict the solubilized amount of drug available for absorption, an in vitro model simulating digestion in the gastro-intestinal tract should be utilized. In order to simulate the digestion process and the drug solubilization taking place in vivo, the following aspects should be considered; physiologically relevant media, media volume, use of physiological enzymes in proper amounts, as well as correct pH and addition of relevant co-factors, e.g., bile salts and co-enzymes. Furthermore, physiological transit times and appropriate mixing should be considered and mimicked as close as possible. This paper presents a literature review on physiological factors relevant for digestion and drug solubilization in neonates. Based on the available literature data, a novel in vitro digestion model simulating digestion and drug solubilization in the neonate and young infant pediatric population (2 months old and younger) was designed.
NASA Astrophysics Data System (ADS)
Esquível, Manuel L.; Fernandes, José Moniz; Guerreiro, Gracinda R.
2016-06-01
We introduce a schematic formalism for the time evolution of a random population entering some set of classes and such that each member of the population evolves among these classes according to a scheme based on a Markov chain model. We consider that the flow of incoming members is modeled by a time series and we detail the time series structure of the elements in each of the classes. We present a practical application to data from a credit portfolio of a Cape Verdian bank; after modeling the entering population in two different ways - namely as an ARIMA process and as a deterministic sigmoid type trend plus a SARMA process for the residues - we simulate the behavior of the population and compare the results. We get that the second method is more accurate in describing the behavior of the populations when compared to the observed values in a direct simulation of the Markov chain.
Kleinmann, Joachim U; Wang, Magnus
2017-09-01
Spatial behavior is of crucial importance for the risk assessment of pesticides and for the assessment of effects of agricultural practice or multiple stressors, because it determines field use, exposition, and recovery. Recently, population models have increasingly been used to understand the mechanisms driving risk and recovery or to conduct landscape-level risk assessments. To include spatial behavior appropriately in population models for use in risk assessments, a new method, "probabilistic walk," was developed, which simulates the detailed daily movement of individuals by taking into account food resources, vegetation cover, and the presence of conspecifics. At each movement step, animals decide where to move next based on probabilities being determined from this information. The model was parameterized to simulate populations of brown hares (Lepus europaeus). A detailed validation of the model demonstrated that it can realistically reproduce various natural patterns of brown hare ecology and behavior. Simulated proportions of time animals spent in fields (PT values) were also comparable to field observations. It is shown that these important parameters for the risk assessment may, however, vary in different landscapes. The results demonstrate the value of using population models to reduce uncertainties in risk assessment and to better understand which factors determine risk in a landscape context. Environ Toxicol Chem 2017;36:2299-2307. © 2017 SETAC. © 2017 SETAC.
Chen, H-J; Xue, H; Liu, S; Huang, T T K; Wang, Y C; Wang, Y
2018-05-29
To study the country-level dynamics and influences between population weight status and socio-economic distribution (employment status and family income) in the US and to project the potential impacts of socio-economic-based intervention options on obesity prevalence. Ecological study and simulation. Using the longitudinal data from the 2001-2011 Medical Expenditure Panel Survey (N = 88,453 adults), we built and calibrated a system dynamics model (SDM) capturing the feedback loops between body weight status and socio-economic status distribution and simulated the effects of employment- and income-based intervention options. The SDM-based simulation projected rising overweight/obesity prevalence in the US in the future. Improving people's income from lower to middle-income group would help control the rising prevalence, while only creating jobs for the unemployed did not show such effect. Improving people from low- to middle-income levels may be effective, instead of solely improving reemployment rate, in curbing the rising obesity trend in the US adult population. This study indicates the value of the SDM as a virtual laboratory to evaluate complex distributive phenomena of the interplay between population health and economy. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Iwamura, T.; Fragoso, J.; Lambin, E.
2012-12-01
The interactions with animals are vital to the Amerindian, indigenous people, of Rupunini savannah-forest in Guyana. Their connections extend from basic energy and protein resource to spiritual bonding through "paring" to a certain animal in the forest. We collected extensive dataset of 23 indigenous communities for 3.5 years, consisting 9900 individuals from 1307 households, as well as animal observation data in 8 transects per communities (47,000 data entries). In this presentation, our research interest is to model the driver of land use change of the indigenous communities and its impacts on the ecosystem in the Rupunini area under global change. Overarching question we would like to answer with this program is to find how and why "tipping-point" from hunting gathering society to the agricultural society occurs in the future. Secondary question is what is the implication of the change to agricultural society in terms of biodiversity and carbon stock in the area, and eventually the well-being of Rupunini people. To answer the questions regarding the society shift in agriculture activities, we built as simulation with Agent-Based Modeling (Multi Agents Simulation). We developed this simulation by using Netlogo, the programming environment specialized for spatially explicit agent-based modeling (ABM). This simulation consists of four different process in the Rupunini landscape; forest succession, animal population growth, hunting of animals, and land clearing for agriculture. All of these processes are carried out by a set of computational unit, called "agents". In this program, there are four types of agents - patches, villages, households, and animals. Here, we describe the impacts of hunting on the biodiversity based on actual demographic data from one village named Crush Water. Animal population within the hunting territory of the village stabilized but Agouti/Paca dominates the landscape with little population of armadillos and peccaries. White-tailed deers, Tapirs, Capybara exist but very low. This finding is well aligned with the hunting dataset - Agouti/Paca consists 27% of total hunting. Based on our simulation, it seems the dominance of Agouti/Paca among hunted animals shown in the field data can be explained solely by their high carrying capacity against human extraction (population density of the Paca/Agouti = 60 per square km, whereas other animals ranges 0.63 to 7). When we incorporate agriculture, the "rodentation" of the animal population toward Agouti/Paca becomes more obvious. This simulation shows the interactions of people and animals through land change and hunting, which were observed in our fields.
Schalkwijk, Stein; Buaben, Aaron O; Freriksen, Jolien J M; Colbers, Angela P; Burger, David M; Greupink, Rick; Russel, Frans G M
2017-07-25
Fetal antiretroviral exposure is usually derived from the cord-to-maternal concentration ratio. This static parameter does not provide information on the pharmacokinetics in utero, limiting the assessment of a fetal exposure-effect relationship. The aim of this study was to incorporate placental transfer into a pregnancy physiologically based pharmacokinetic model to simulate and evaluate fetal darunavir exposure at term. An existing and validated pregnancy physiologically based pharmacokinetic model of maternal darunavir/ritonavir exposure was extended with a feto-placental unit. To parameterize the model, we determined maternal-to-fetal and fetal-to-maternal darunavir/ritonavir placental clearance with an ex-vivo human cotyledon perfusion model. Simulated maternal and fetal pharmacokinetic profiles were compared with observed clinical data to qualify the model for simulation. Next, population fetal pharmacokinetic profiles were simulated for different maternal darunavir/ritonavir dosing regimens. An average (±standard deviation) maternal-to-fetal cotyledon clearance of 0.91 ± 0.11 mL/min and fetal-to-maternal clearance of 1.6 ± 0.3 mL/min was determined (n = 6 perfusions). Scaled placental transfer was integrated into the pregnancy physiologically based pharmacokinetic model. For darunavir 600/100 mg twice a day, the predicted fetal maximum plasma concentration, trough concentration, time to maximum plasma concentration, and half-life were 1.1, 0.57 mg/L, 3, and 21 h, respectively. This indicates that the fetal population trough concentration is higher or around the half-maximal effective darunavir concentration for a resistant virus (0.55 mg/L). The results indicate that the population fetal exposure after oral maternal darunavir dosing is therapeutic and this may provide benefits to the prevention of mother-to-child transmission of human immunodeficiency virus. Moreover, this integrated approach provides a tool to prevent fetal toxicity or enhance the development of more selectively targeted fetal drug treatments.
Zhang, Rong; Leng, Yun-fa; Zhu, Meng-meng; Wang, Fang
2007-11-01
Based on geographic information system and geostatistics, the spatial structure of Therioaphis trifolii population of different periods in Yuanzhou district of Guyuan City, the southern Ningxia Province, was analyzed. The spatial distribution of Therioaphis trifolii population was also simulated by ordinary Kriging interpretation. The results showed that Therioaphis trifolii population of different periods was correlated spatially in the study area. The semivariograms of Therioaphis trifolii could be described by exponential model, indicating an aggregated spatial arrangement. The spatial variance varied from 34.13%-48.77%, and the range varied from 8.751-12.049 km. The degree and direction of aggregation showed that the trend was increased gradually from southwest to northeast. The dynamic change of Therioaphis trifolii population in different periods could be analyzed intuitively on the simulated maps of the spatial distribution from the two aspects of time and space, The occurrence position and degree of Therioaphis trifolii to a state of certain time could be determined easily.
Dynamics of climate-based malaria transmission model with age-structured human population
NASA Astrophysics Data System (ADS)
Addawe, Joel; Pajimola, Aprimelle Kris
2016-10-01
In this paper, we proposed to study the dynamics of malaria transmission with periodic birth rate of the vector and an age-structure for the human population. The human population is divided into two compartments: pre-school (0-5 years) and the rest of the human population. We showed the existence of a disease-free equilibrium point. Using published epidemiological parameters, we use numerical simulations to show potential effect of climate change in the dynamics of age-structured malaria transmission. Numerical simulations suggest that there exists an asymptotically attractive solution that is positive and periodic.
Menshutkin, V V; Kazanskiĭ, A B; Levchenko, V F
2010-01-01
The history of rise and development of evolutionary methods in Saint Petersburg school of biological modelling is traced and analyzed. Some pioneering works in simulation of ecological and evolutionary processes, performed in St.-Petersburg school became an exemplary ones for many followers in Russia and abroad. The individual-based approach became the crucial point in the history of the school as an adequate instrument for construction of models of biological evolution. This approach is natural for simulation of the evolution of life-history parameters and adaptive processes in populations and communities. In some cases simulated evolutionary process was used for solving a reverse problem, i. e., for estimation of uncertain life-history parameters of population. Evolutionary computations is one more aspect of this approach application in great many fields. The problems and vistas of ecological and evolutionary modelling in general are discussed.
Costs of detection bias in index-based population monitoring
Moore, C.T.; Kendall, W.L.
2004-01-01
Managers of wildlife populations commonly rely on indirect, count-based measures of the population in making decisions regarding conservation, harvest, or control. The main appeal in the use of such counts is their low material expense compared to methods that directly measure the population. However, their correct use rests on the rarely-tested but often-assumed premise that they proportionately reflect population size, i.e., that they constitute a population index. This study investigates forest management for the endangered Red-cockaded Woodpecker (Picoides borealis) and the Wood Thrush (Hylocichla mustelina) at the Piedmont National Wildlife Refuge in central Georgia, U.S.A. Optimal decision policies for a joint species objective were derived for two alternative models of Wood Thrush population dynamics. Policies were simulated under scenarios of unbiasedness, consistent negative bias, and habitat-dependent negative bias in observed Wood Thrush densities. Differences in simulation outcomes between biased and unbiased detection scenarios indicated the expected loss in resource objectives (here, forest habitat and birds) through decision-making based on biased population counts. Given the models and objective function used in our analysis, expected losses were as great as 11%, a degree of loss perhaps not trivial for applications such as endangered species management. Our analysis demonstrates that costs of uncertainty about the relationship between the population and its observation can be measured in units of the resource, costs which may offset apparent savings achieved by collecting uncorrected population counts.
Comparing predictions of extinction risk using models and subjective judgement
NASA Astrophysics Data System (ADS)
McCarthy, Michael A.; Keith, David; Tietjen, Justine; Burgman, Mark A.; Maunder, Mark; Master, Larry; Brook, Barry W.; Mace, Georgina; Possingham, Hugh P.; Medellin, Rodrigo; Andelman, Sandy; Regan, Helen; Regan, Tracey; Ruckelshaus, Mary
2004-10-01
Models of population dynamics are commonly used to predict risks in ecology, particularly risks of population decline. There is often considerable uncertainty associated with these predictions. However, alternatives to predictions based on population models have not been assessed. We used simulation models of hypothetical species to generate the kinds of data that might typically be available to ecologists and then invited other researchers to predict risks of population declines using these data. The accuracy of the predictions was assessed by comparison with the forecasts of the original model. The researchers used either population models or subjective judgement to make their predictions. Predictions made using models were only slightly more accurate than subjective judgements of risk. However, predictions using models tended to be unbiased, while subjective judgements were biased towards over-estimation. Psychology literature suggests that the bias of subjective judgements is likely to vary somewhat unpredictably among people, depending on their stake in the outcome. This will make subjective predictions more uncertain and less transparent than those based on models.
NASA Astrophysics Data System (ADS)
Rana, Navdeep; Ghosh, Pushpita; Perlekar, Prasad
2017-11-01
We study spreading of a nonmotile bacteria colony on a hard agar plate by using agent-based and continuum models. We show that the spreading dynamics depends on the initial nutrient concentration, the motility, and the inherent demographic noise. Population fluctuations are inherent in an agent-based model, whereas for the continuum model we model them by using a stochastic Langevin equation. We show that the intrinsic population fluctuations coupled with nonlinear diffusivity lead to a transition from a diffusion limited aggregation type of morphology to an Eden-like morphology on decreasing the initial nutrient concentration.
Population viability of Pediocactus bradyi (Cactaceae) in a changing climate.
Shryock, Daniel F; Esque, Todd C; Hughes, Lee
2014-11-01
A key question concerns the vulnerability of desert species adapted to harsh, variable climates to future climate change. Evaluating this requires coupling long-term demographic models with information on past and projected future climates. We investigated climatic drivers of population growth using a 22-yr demographic model for Pediocactus bradyi, an endangered cactus in northern Arizona. We used a matrix model to calculate stochastic population growth rates (λs) and the relative influences of life-cycle transitions on population growth. Regression models linked population growth with climatic variability, while stochastic simulations were used to (1) understand how predicted increases in drought frequency and extreme precipitation would affect λs, and (2) quantify variability in λs based on temporal replication of data. Overall λs was below unity (0.961). Population growth was equally influenced by fecundity and survival and significantly correlated with increased annual precipitation and higher winter temperatures. Stochastic simulations increasing the probability of drought and extreme precipitation reduced λs, but less than simulations increasing the probability of drought alone. Simulations varying the temporal replication of data suggested 14 yr were required for accurate λs estimates. Pediocactus bradyi may be vulnerable to increases in the frequency and intensity of extreme climatic events, particularly drought. Biotic interactions resulting in low survival during drought years outweighed increased seedling establishment following heavy precipitation. Climatic extremes beyond historical ranges of variability may threaten rare desert species with low population growth rates and therefore high susceptibility to stochastic events. © 2014 Botanical Society of America, Inc.
Trait-based Modeling of Larval Dispersal in the Gulf of Maine
NASA Astrophysics Data System (ADS)
Jones, B.; Richardson, D.; Follows, M. J.; Hill, C. N.; Solow, A.; Ji, R.
2016-02-01
Population connectivity of marine species is the inter-generational movement of individuals among geographically separated subpopulations and is a crucial determinant of population dynamics, community structure, and optimal management strategies. For many marine species, population connectivity is largely determined by the dispersal patterns that emerge from a pelagic larval phase. These dispersal patterns are a result of interactions between the physical environment, adult spawning strategy, and larval ecology. Using a generalized trait-based model that represents the adult spawning strategy as a distribution of larval releases in time and space and the larval trait space with the pelagic larval duration, vertical swimming behavior, and settlement habitat preferences, we simulate dispersal patterns in the Gulf of Maine and surrounding regions. We implement this model as an individual-based simulation that tracks Lagrangian particles on a graphics processing unit as they move through hourly archived output from the Finite-Volume Community Ocean Model. The particles are released between the Hudson Canyon and Nova Scotia and the release distributions are determined using a novel method that minimizes the number of simulations required to achieve a predetermined level of precision for the connectivity matrices. The simulated larvae have a variable pelagic larval duration and exhibit multiple forms of dynamic depth-keeping behavior. We describe how these traits influence the dispersal trajectories and connectivity patterns among regions in the northwest Atlantic. Our description includes the probability of successful recruitment, patchiness of larval distributions, and the variability of these properties in time and space under a variety of larval dispersal strategies.
Modeling Test and Treatment Strategies for Presymptomatic Alzheimer Disease
Burke, James F.; Langa, Kenneth M.; Hayward, Rodney A.; Albin, Roger L.
2014-01-01
Objectives In this study, we developed a model of presymptomatic treatment of Alzheimer disease (AD) after a screening diagnostic evaluation and explored the circumstances required for an AD prevention treatment to produce aggregate net population benefit. Methods Monte Carlo simulation methods were used to estimate outcomes in a simulated population derived from data on AD incidence and mortality. A wide variety of treatment parameters were explored. Net population benefit was estimated in aggregated QALYs. Sensitivity analyses were performed by individually varying the primary parameters. Findings In the base-case scenario, treatment effects were uniformly positive, and net benefits increased with increasing age at screening. A highly efficacious treatment (i.e. relative risk 0.6) modeled in the base-case is estimated to save 20 QALYs per 1000 patients screened and 221 QALYs per 1000 patients treated. Conclusions Highly efficacious presymptomatic screen and treat strategies for AD are likely to produce substantial aggregate population benefits that are likely greater than the benefits of aspirin in primary prevention of moderate risk cardiovascular disease (28 QALYS per 1000 patients treated), even in the context of an imperfect treatment delivery environment. PMID:25474698
Individual-based models in ecology after four decades
Grimm, Volker
2014-01-01
Individual-based models simulate populations and communities by following individuals and their properties. They have been used in ecology for more than four decades, with their use and ubiquity in ecology growing rapidly in the last two decades. Individual-based models have been used for many applied or “pragmatic” issues, such as informing the protection and management of particular populations in specific locations, but their use in addressing theoretical questions has also grown rapidly, recently helping us to understand how the sets of traits of individual organisms influence the assembly of communities and food webs. Individual-based models will play an increasingly important role in questions posed by complex ecological systems. PMID:24991416
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, April M; Piburn, Jesse O; McManamay, Ryan A
2017-01-01
Monte Carlo simulation is a popular numerical experimentation technique used in a range of scientific fields to obtain the statistics of unknown random output variables. Despite its widespread applicability, it can be difficult to infer required input probability distributions when they are related to population counts unknown at desired spatial resolutions. To overcome this challenge, we propose a framework that uses a dasymetric model to infer the probability distributions needed for a specific class of Monte Carlo simulations which depend on population counts.
Kip, Anke E; Castro, María Del Mar; Gomez, Maria Adelaida; Cossio, Alexandra; Schellens, Jan H M; Beijnen, Jos H; Saravia, Nancy Gore; Dorlo, Thomas P C
2018-05-10
Leishmania parasites reside within macrophages and the direct target of antileishmanial drugs is therefore intracellular. We aimed to characterize the intracellular PBMC miltefosine kinetics by developing a population pharmacokinetic (PK) model simultaneously describing plasma and intracellular PBMC pharmacokinetics. Furthermore, we explored exposure-response relationships and simulated alternative dosing regimens. A population PK model was developed with NONMEM, based on 339 plasma and 194 PBMC miltefosine concentrations from Colombian cutaneous leishmaniasis patients [29 children (2-12 years old) and 22 adults] receiving 1.8-2.5 mg/kg/day miltefosine for 28 days. A three-compartment model with miltefosine distribution into an intracellular PBMC effect compartment best fitted the data. Intracellular PBMC distribution was described with an intracellular-to-plasma concentration ratio of 2.17 [relative standard error (RSE) 4.9%] and intracellular distribution rate constant of 1.23 day-1 (RSE 14%). In exploring exposure-response relationships, both plasma and intracellular model-based exposure estimates significantly influenced probability of cure. A proposed PK target for the area under the plasma concentration-time curve (day 0-28) of >535 mg·day/L corresponded to >95% probability of cure. In linear dosing simulations, 18.3% of children compared with 2.8% of adults failed to reach 535 mg·day/L. In children, this decreased to 1.8% after allometric dosing simulation. The developed population PK model described the rate and extent of miltefosine distribution from plasma into PBMCs. Miltefosine exposure was significantly related to probability of cure in this cutaneous leishmaniasis patient population. We propose an exploratory PK target, which should be validated in a larger cohort study.
Stochastic foundations in nonlinear density-regulation growth
NASA Astrophysics Data System (ADS)
Méndez, Vicenç; Assaf, Michael; Horsthemke, Werner; Campos, Daniel
2017-08-01
In this work we construct individual-based models that give rise to the generalized logistic model at the mean-field deterministic level and that allow us to interpret the parameters of these models in terms of individual interactions. We also study the effect of internal fluctuations on the long-time dynamics for the different models that have been widely used in the literature, such as the theta-logistic and Savageau models. In particular, we determine the conditions for population extinction and calculate the mean time to extinction. If the population does not become extinct, we obtain analytical expressions for the population abundance distribution. Our theoretical results are based on WKB theory and the probability generating function formalism and are verified by numerical simulations.
Spanakis, Marios; Marias, Kostas
2014-12-01
Gadofosveset is a Gd-based contrast agent used for magnetic resonance imaging (MRI). Gadolinium kinetic distribution models are implemented in T1-weighted dynamic contrast-enhanced perfusion MRI for characterization of lesion sites in the body. Physiology changes in a disease state potentially can influence the pharmacokinetics of drugs and to this respect modify the distribution properties of contrast agents. This work focuses on the in silico modelling of pharmacokinetic properties of gadofosveset in different population groups through the application of physiologically-based pharmacokinetic models (PBPK) embedded in Simcyp® population pharmacokinetics platform. Physicochemical and pharmacokinetic properties of gadofosveset were introduced into Simcyp® simulator platform and a min-PBPK model was applied. In silico clinical trials were generated simulating the administration of the recommended dose for the contrast agent (i.v., 30 mg/kg) in population cohorts of healthy volunteers, obese, renal and liver impairment, and in a generated virtual oncology population. Results were evaluated regarding basic pharmacokinetic parameters of Cmax, AUC and systemic CL and differences were assessed through ANOVA and estimation of ratio of geometric mean between healthy volunteers and the other population groups. Simcyp® predicted a mean Cmax = 551.60 mg/l, a mean AUC = 4079.12 mg/L*h and a mean systemic CL = 0.56 L/h for the virtual population of healthy volunteers. Obese population showed a modulation in Cmax and CL, attributed to increased administered dose. In renal and liver impairment cohorts a significant modulation in Cmax, AUC and CL of gadofosveset is predicted. Oncology population exhibited statistical significant differences regarding AUC when compared with healthy volunteers. This work employed Simcyp® population pharmacokinetics platform in order to compute gadofosveset's pharmacokinetic profiles through PBPK models and in silico clinical trials and evaluate possible differences between population groups. The approach showed promising results that could provide new insights regarding administration of contrast agents in special population cohorts. In silico pharmacokinetics could further be used for evaluating of possible toxicity, interpretation of MRI PK image maps and development of novel contrast agents.
Studies on the population dynamics of a rumor-spreading model in online social networks
NASA Astrophysics Data System (ADS)
Dong, Suyalatu; Fan, Feng-Hua; Huang, Yong-Chang
2018-02-01
This paper sets up a rumor spreading model in online social networks based on the European fox rabies SIR model. The model considers the impact of changing number of online social network users, combines the transmission dynamics to set up a population dynamics of rumor spreading model in online social networks. Simulation is carried out on online social network, and results show that the new rumor spreading model is in accordance with the real propagation characteristics in online social networks.
A framework for the use of agent based modeling to simulate ...
Simulation of human behavior in exposure modeling is a complex task. Traditionally, inter-individual variation in human activity has been modeled by drawing from a pool of single day time-activity diaries such as the US EPA Consolidated Human Activity Database (CHAD). Here, an agent-based model (ABM) is used to simulate population distributions of longitudinal patterns of four macro activities (sleeping, eating, working, and commuting) in populations of adults over a period of one year. In this ABM, an individual is modeled as an agent whose movement through time and space is determined by a set of decision rules. The rules are based on the agent having time-varying “needs” that are satisfied by performing actions. Needs are modeled as increasing over time, and taking an action reduces the need. Need-satisfying actions include sleeping (meeting the need for rest), eating (meeting the need for food), and commuting/working (meeting the need for income). Every time an action is completed, the model determines the next action the agent will take based on the magnitude of each of the agent’s needs at that point in time. Different activities advertise their ability to satisfy various needs of the agent (such as food to eat or sleeping in a bed or on a couch). The model then chooses the activity that satisfies the greatest of the agent’s needs. When multiple actions could address a need, the model will choose the most effective of the actions (bed over the couc
2013-04-30
resulting impact on residents and transportation infrastructure. The three-dimensional coastal ocean model FVCOM coupled with a two-dimensional...shallow water model is used to simulate hydrodynamic flooding from coastal ocean water with fine-resolution meshes, and a topography-based hydrologic... ocean model FVCOM coupled with a two-dimensional shallow water model is used to simulate hydrodynamic flooding from coastal ocean water with fine
Computational Model of Population Dynamics Based on the Cell Cycle and Local Interactions
NASA Astrophysics Data System (ADS)
Oprisan, Sorinel Adrian; Oprisan, Ana
2005-03-01
Our study bridges cellular (mesoscopic) level interactions and global population (macroscopic) dynamics of carcinoma. The morphological differences and transitions between well and smooth defined benign tumors and tentacular malignat tumors suggest a theoretical analysis of tumor invasion based on the development of mathematical models exhibiting bifurcations of spatial patterns in the density of tumor cells. Our computational model views the most representative and clinically relevant features of oncogenesis as a fight between two distinct sub-systems: the immune system of the host and the neoplastic system. We implemented the neoplastic sub-system using a three-stage cell cycle: active, dormant, and necrosis. The second considered sub-system consists of cytotoxic active (effector) cells — EC, with a very broad phenotype ranging from NK cells to CTL cells, macrophages, etc. Based on extensive numerical simulations, we correlated the fractal dimensions for carcinoma, which could be obtained from tumor imaging, with the malignat stage. Our computational model was able to also simulate the effects of surgical, chemotherapeutical, and radiotherapeutical treatments.
Silverman, Barry G; Hanrahan, Nancy; Bharathy, Gnana; Gordon, Kim; Johnson, Dan
2015-02-01
Explore whether agent-based modeling and simulation can help healthcare administrators discover interventions that increase population wellness and quality of care while, simultaneously, decreasing costs. Since important dynamics often lie in the social determinants outside the health facilities that provide services, this study thus models the problem at three levels (individuals, organizations, and society). The study explores the utility of translating an existing (prize winning) software for modeling complex societal systems and agent's daily life activities (like a Sim City style of software), into a desired decision support system. A case study tests if the 3 levels of system modeling approach is feasible, valid, and useful. The case study involves an urban population with serious mental health and Philadelphia's Medicaid population (n=527,056), in particular. Section 3 explains the models using data from the case study and thereby establishes feasibility of the approach for modeling a real system. The models were trained and tuned using national epidemiologic datasets and various domain expert inputs. To avoid co-mingling of training and testing data, the simulations were then run and compared (Section 4.1) to an analysis of 250,000 Philadelphia patient hospital admissions for the year 2010 in terms of re-hospitalization rate, number of doctor visits, and days in hospital. Based on the Student t-test, deviations between simulated vs. real world outcomes are not statistically significant. Validity is thus established for the 2008-2010 timeframe. We computed models of various types of interventions that were ineffective as well as 4 categories of interventions (e.g., reduced per-nurse caseload, increased check-ins and stays, etc.) that result in improvement in well-being and cost. The 3 level approach appears to be useful to help health administrators sort through system complexities to find effective interventions at lower costs. Copyright © 2014 Elsevier B.V. All rights reserved.
A microcomputer based traffic evacuation modeling system for emergency planning application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rathi, A.K.
1994-12-01
Vehicular evacuation is one of the major and often preferred protective action options available for emergency management in a real or anticipated disaster. Computer simulation models of evacuation traffic flow are used to estimate the time required for the affected populations to evacuate to safer areas, to evaluate effectiveness of vehicular evacuations as a protective action option. and to develop comprehensive evacuation plans when required. Following a review of the past efforts to simulate traffic flow during emergency evacuations, an overview of the key features in Version 2.0 of the Oak Ridge Evacuation Modeling System (OREMS) are presented in thismore » paper. OREMS is a microcomputer-based model developed to simulate traffic flow during regional emergency evacuations. OREMS integrates a state-of-the-art dynamic traffic flow and simulation model with advanced data editing and output display programs operating under a MS-Windows environment.« less
Mosler, Hans-Joachim; Martens, Thomas
2008-09-01
Agent-based computer simulation was used to create artificial communities in which each individual was constructed according to the principles of the elaboration likelihood model of Petty and Cacioppo [1986. The elaboration likelihood model of persuasion. In: Berkowitz, L. (Ed.), Advances in Experimental Social Psychology. Academic Press, New York, NY, pp. 123-205]. Campaigning strategies and community characteristics were varied systematically to understand and test their impact on attitudes towards environmental protection. The results show that strong arguments influence a green (environmentally concerned) population with many contacts most effectively, while peripheral cues have the greatest impact on a non-green population with fewer contacts. Overall, deeper information scrutiny increases the impact of strong arguments but is especially important for convincing green populations. Campaigns involving person-to-person communication are superior to mass-media campaigns because they can be adapted to recipients' characteristics.
A microcomputer based traffic evacuation modeling system for emergency planning application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rathi, A.K.
1995-12-31
The US Army stockpiles unitary chemical weapons, both as bulk chemicals and as munitions, at eight major sites in the United States. The continued storage and disposal of the chemical stockpile has the potential for accidental releases of toxic gases that could escape the installation boundaries and pose a threat to the civilian population in the vicinity. Vehicular evacuation is one of the major and often preferred protective action options available for emergency management in a real or anticipated disaster. Computer simulation models of evacuation traffic flow are used to estimate the time required for the affected populations to evacuatemore » to safer areas, to evaluate effectiveness of vehicular evacuations as a protective action option, and to develop comprehensive evacuation plans when required. Following a review of the past efforts to simulate traffic flow during emergency evacuations, an overview of the key features in Version 2.0 of the Oak Ridge Evacuation Modeling System (OREMS) are presented in this paper. OREMS is a microcomputer-based model developed to simulate traffic flow during regional emergency evacuations. OREMS integrates a state-of-the-art dynamic traffic flow and simulation model with advanced data editing and output display programs operating under a MS-Windows environment.« less
Consistent post-reaction vibrational energy redistribution in DSMC simulations using TCE model
NASA Astrophysics Data System (ADS)
Borges Sebastião, Israel; Alexeenko, Alina
2016-10-01
The direct simulation Monte Carlo (DSMC) method has been widely applied to study shockwaves, hypersonic reentry flows, and other nonequilibrium flow phenomena. Although there is currently active research on high-fidelity models based on ab initio data, the total collision energy (TCE) and Larsen-Borgnakke (LB) models remain the most often used chemistry and relaxation models in DSMC simulations, respectively. The conventional implementation of the discrete LB model, however, may not satisfy detailed balance when recombination and exchange reactions play an important role in the flow energy balance. This issue can become even more critical in reacting mixtures involving polyatomic molecules, such as in combustion. In this work, this important shortcoming is addressed and an empirical approach to consistently specify the post-reaction vibrational states close to thermochemical equilibrium conditions is proposed within the TCE framework. Following Bird's quantum-kinetic (QK) methodology for populating post-reaction states, the new TCE-based approach involves two main steps. The state-specific TCE reaction probabilities for a forward reaction are first pre-computed from equilibrium 0-D simulations. These probabilities are then employed to populate the post-reaction vibrational states of the corresponding reverse reaction. The new approach is illustrated by application to exchange and recombination reactions relevant to H2-O2 combustion processes.
NASA Astrophysics Data System (ADS)
Engström, Kerstin; Olin, Stefan; Rounsevell, Mark D. A.; Brogaard, Sara; van Vuuren, Detlef P.; Alexander, Peter; Murray-Rust, Dave; Arneth, Almut
2016-11-01
We present a modelling framework to simulate probabilistic futures of global cropland areas that are conditional on the SSP (shared socio-economic pathway) scenarios. Simulations are based on the Parsimonious Land Use Model (PLUM) linked with the global dynamic vegetation model LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator) using socio-economic data from the SSPs and climate data from the RCPs (representative concentration pathways). The simulated range of global cropland is 893-2380 Mha in 2100 (± 1 standard deviation), with the main uncertainties arising from differences in the socio-economic conditions prescribed by the SSP scenarios and the assumptions that underpin the translation of qualitative SSP storylines into quantitative model input parameters. Uncertainties in the assumptions for population growth, technological change and cropland degradation were found to be the most important for global cropland, while uncertainty in food consumption had less influence on the results. The uncertainties arising from climate variability and the differences between climate change scenarios do not strongly affect the range of global cropland futures. Some overlap occurred across all of the conditional probabilistic futures, except for those based on SSP3. We conclude that completely different socio-economic and climate change futures, although sharing low to medium population development, can result in very similar cropland areas on the aggregated global scale.
The Lagrangian Ensemble metamodel for simulating plankton ecosystems
NASA Astrophysics Data System (ADS)
Woods, J. D.
2005-10-01
This paper presents a detailed account of the Lagrangian Ensemble (LE) metamodel for simulating plankton ecosystems. It uses agent-based modelling to describe the life histories of many thousands of individual plankters. The demography of each plankton population is computed from those life histories. So too is bio-optical and biochemical feedback to the environment. The resulting “virtual ecosystem” is a comprehensive simulation of the plankton ecosystem. It is based on phenotypic equations for individual micro-organisms. LE modelling differs significantly from population-based modelling. The latter uses prognostic equations to compute demography and biofeedback directly. LE modelling diagnoses them from the properties of individual micro-organisms, whose behaviour is computed from prognostic equations. That indirect approach permits the ecosystem to adjust gracefully to changes in exogenous forcing. The paper starts with theory: it defines the Lagrangian Ensemble metamodel and explains how LE code performs a number of computations “behind the curtain”. They include budgeting chemicals, and deriving biofeedback and demography from individuals. The next section describes the practice of LE modelling. It starts with designing a model that complies with the LE metamodel. Then it describes the scenario for exogenous properties that provide the computation with initial and boundary conditions. These procedures differ significantly from those used in population-based modelling. The next section shows how LE modelling is used in research, teaching and planning. The practice depends largely on hindcasting to overcome the limits to predictability of weather forecasting. The scientific method explains observable ecosystem phenomena in terms of finer-grained processes that cannot be observed, but which are controlled by the basic laws of physics, chemistry and biology. What-If? Prediction ( WIP), used for planning, extends hindcasting by adding events that describe natural or man-made hazards and remedial actions. Verification is based on the Ecological Turing Test, which takes account of uncertainties in the observed and simulated versions of a target ecological phenomenon. The rest of the paper is devoted to a case study designed to show what LE modelling offers the biological oceanographer. The case study is presented in two parts. The first documents the WB model (Woods & Barkmann, 1994) and scenario used to simulate the ecosystem in a mesocosm moored in deep water off the Azores. The second part illustrates the emergent properties of that virtual ecosystem. The behaviour and development of an individual plankton lineage are revealed by an audit trail of the agent used in the computation. The fields of environmental properties reveal the impact of biofeedback. The fields of demographic properties show how changes in individuals cumulatively affect the birth and death rates of their population. This case study documents the virtual ecosystem used by Woods, Perilli and Barkmann (2005; hereafter WPB); to investigate the stability of simulations created by the Lagrangian Ensemble metamodel. The Azores virtual ecosystem was created and analysed on the Virtual Ecology Workbench (VEW) which is described briefly in the Appendix.
Siragusa, Enrico; Haiminen, Niina; Utro, Filippo; Parida, Laxmi
2017-10-09
Computer simulations can be used to study population genetic methods, models and parameters, as well as to predict potential outcomes. For example, in plant populations, predicting the outcome of breeding operations can be studied using simulations. In-silico construction of populations with pre-specified characteristics is an important task in breeding optimization and other population genetic studies. We present two linear time Simulation using Best-fit Algorithms (SimBA) for two classes of problems where each co-fits two distributions: SimBA-LD fits linkage disequilibrium and minimum allele frequency distributions, while SimBA-hap fits founder-haplotype and polyploid allele dosage distributions. An incremental gap-filling version of previously introduced SimBA-LD is here demonstrated to accurately fit the target distributions, allowing efficient large scale simulations. SimBA-hap accuracy and efficiency is demonstrated by simulating tetraploid populations with varying numbers of founder haplotypes, we evaluate both a linear time greedy algoritm and an optimal solution based on mixed-integer programming. SimBA is available on http://researcher.watson.ibm.com/project/5669.
Computer simulation models of pre-diabetes populations: a systematic review protocol
Khurshid, Waqar; Pagano, Eva; Feenstra, Talitha
2017-01-01
Introduction Diabetes is a major public health problem and prediabetes (intermediate hyperglycaemia) is associated with a high risk of developing diabetes. With evidence supporting the use of preventive interventions for prediabetes populations and the discovery of novel biomarkers stratifying the risk of progression, there is a need to evaluate their cost-effectiveness across jurisdictions. In diabetes and prediabetes, it is relevant to inform cost-effectiveness analysis using decision models due to their ability to forecast long-term health outcomes and costs beyond the time frame of clinical trials. To support good implementation and reimbursement decisions of interventions in these populations, models should be clinically credible, based on best available evidence, reproducible and validated against clinical data. Our aim is to identify recent studies on computer simulation models and model-based economic evaluations of populations of individuals with prediabetes, qualify them and discuss the knowledge gaps, challenges and opportunities that need to be addressed for future evaluations. Methods and analysis A systematic review will be conducted in MEDLINE, Embase, EconLit and National Health Service Economic Evaluation Database. We will extract peer-reviewed studies published between 2000 and 2016 that describe computer simulation models of the natural history of individuals with prediabetes and/or decision models to evaluate the impact of interventions, risk stratification and/or screening on these populations. Two reviewers will independently assess each study for inclusion. Data will be extracted using a predefined pro forma developed using best practice. Study quality will be assessed using a modelling checklist. A narrative synthesis of all studies will be presented, focussing on model structure, quality of models and input data, and validation status. Ethics and dissemination This systematic review is exempt from ethics approval because the work is carried out on published documents. The findings of the review will be disseminated in a related peer-reviewed journal and presented at conferences. Reviewregistration number CRD42016047228. PMID:28982807
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostova, T; Carlsen, T
We present a study, based on simulations with SERDYCA, a spatially-explicit individual-based model of rodent dynamics, on the relation between population persistence and the presence of numerous isolated disturbances in the habitat. We are specifically interested in the effect of disturbances that do not fragment the environment on population persistence. Our results suggest that the presence of disturbances in the absence of fragmentation can actually increase the average time to extinction of the modeled population. The presence of disturbances decreases population density but can increase the chance for mating in monogamous species and consequently, the ratio of juveniles in themore » population. It thus provides a better chance for the population to restore itself after a severe period with critically low population density. We call this the ''disturbance-forced localization effect''.« less
Heinonen, Johannes P M; Palmer, Stephen C F; Redpath, Steve M; Travis, Justin M J
2014-01-01
Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations. We introduce an individual-based model for understanding and predicting spatial hen harrier (Circus cyaneus) population dynamics in Great Britain. The model uses a landscape with habitat, prey and game management indices. The hen harrier population was initialised according to empirical census estimates for 1988/89 and simulated until 2030, and predictions for 1998, 2004 and 2010 were compared to empirical census estimates for respective years. The model produced a good qualitative match to overall trends between 1989 and 2010. Parameter explorations revealed relatively high elasticity in particular to demographic parameters such as juvenile male mortality. This highlights the need for robust parameter estimates from empirical research. There are clearly challenges for replication of real-world population trends, but this model provides a useful tool for increasing understanding of drivers of hen harrier dynamics and focusing research efforts in order to inform conflict management decisions.
Heinonen, Johannes P. M.; Palmer, Stephen C. F.; Redpath, Steve M.; Travis, Justin M. J.
2014-01-01
Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations. We introduce an individual-based model for understanding and predicting spatial hen harrier (Circus cyaneus) population dynamics in Great Britain. The model uses a landscape with habitat, prey and game management indices. The hen harrier population was initialised according to empirical census estimates for 1988/89 and simulated until 2030, and predictions for 1998, 2004 and 2010 were compared to empirical census estimates for respective years. The model produced a good qualitative match to overall trends between 1989 and 2010. Parameter explorations revealed relatively high elasticity in particular to demographic parameters such as juvenile male mortality. This highlights the need for robust parameter estimates from empirical research. There are clearly challenges for replication of real-world population trends, but this model provides a useful tool for increasing understanding of drivers of hen harrier dynamics and focusing research efforts in order to inform conflict management decisions. PMID:25405860
A bootstrap based space-time surveillance model with an application to crime occurrences
NASA Astrophysics Data System (ADS)
Kim, Youngho; O'Kelly, Morton
2008-06-01
This study proposes a bootstrap-based space-time surveillance model. Designed to find emerging hotspots in near-real time, the bootstrap based model is characterized by its use of past occurrence information and bootstrap permutations. Many existing space-time surveillance methods, using population at risk data to generate expected values, have resulting hotspots bounded by administrative area units and are of limited use for near-real time applications because of the population data needed. However, this study generates expected values for local hotspots from past occurrences rather than population at risk. Also, bootstrap permutations of previous occurrences are used for significant tests. Consequently, the bootstrap-based model, without the requirement of population at risk data, (1) is free from administrative area restriction, (2) enables more frequent surveillance for continuously updated registry database, and (3) is readily applicable to criminology and epidemiology surveillance. The bootstrap-based model performs better for space-time surveillance than the space-time scan statistic. This is shown by means of simulations and an application to residential crime occurrences in Columbus, OH, year 2000.
Population viability analysis for endangered Roanoke logperch
Roberts, James H.; Angermeier, Paul; Anderson, Gregory B.
2016-01-01
A common strategy for recovering endangered species is ensuring that populations exceed the minimum viable population size (MVP), a demographic benchmark that theoretically ensures low long-term extinction risk. One method of establishing MVP is population viability analysis, a modeling technique that simulates population trajectories and forecasts extinction risk based on a series of biological, environmental, and management assumptions. Such models also help identify key uncertainties that have a large influence on extinction risk. We used stochastic count-based simulation models to explore extinction risk, MVP, and the possible benefits of alternative management strategies in populations of Roanoke logperch Percina rex, an endangered stream fish. Estimates of extinction risk were sensitive to the assumed population growth rate and model type, carrying capacity, and catastrophe regime (frequency and severity of anthropogenic fish kills), whereas demographic augmentation did little to reduce extinction risk. Under density-dependent growth, the estimated MVP for Roanoke logperch ranged from 200 to 4200 individuals, depending on the assumed severity of catastrophes. Thus, depending on the MVP threshold, anywhere from two to all five of the logperch populations we assessed were projected to be viable. Despite this uncertainty, these results help identify populations with the greatest relative extinction risk, as well as management strategies that might reduce this risk the most, such as increasing carrying capacity and reducing fish kills. Better estimates of population growth parameters and catastrophe regimes would facilitate the refinement of MVP and extinction-risk estimates, and they should be a high priority for future research on Roanoke logperch and other imperiled stream-fish species.
Andres Perez-Figueroa; Rick L. Wallen; Tiago Antao; Jason A. Coombs; Michael K. Schwartz; P. J. White; Gordon Luikart
2012-01-01
Loss of genetic variation through genetic drift can reduce population viability. However, relatively little is known about loss of variation caused by the combination of fluctuating population size and variance in reproductive success in age structured populations. We built an individual-based computer simulation model to examine how actual culling and hunting...
Wildhaber, Mark L.; Lamberson, Peter J.
2004-01-01
Various mechanisms of habitat choice in fishes based on food and/or temperature have been proposed: optimal foraging for food alone; behavioral thermoregulation for temperature alone; and behavioral energetics and discounted matching for food and temperature combined. Along with development of habitat choice mechanisms, there has been a major push to develop and apply to fish populations individual-based models that incorporate various forms of these mechanisms. However, it is not known how the wide variation in observed and hypothesized mechanisms of fish habitat choice could alter fish population predictions (e.g. growth, size distributions, etc.). We used spatially explicit, individual-based modeling to compare predicted fish populations using different submodels of patch choice behavior under various food and temperature distributions. We compared predicted growth, temperature experience, food consumption, and final spatial distribution using the different models. Our results demonstrated that the habitat choice mechanism assumed in fish population modeling simulations was critical to predictions of fish distribution and growth rates. Hence, resource managers who use modeling results to predict fish population trends should be very aware of and understand the underlying patch choice mechanisms used in their models to assure that those mechanisms correctly represent the fish populations being modeled.
Kang, Jeon-Young; Aldstadt, Jared
2017-07-15
Dengue is a mosquito-borne infectious disease that is endemic in tropical and subtropical countries. Many individual-level simulation models have been developed to test hypotheses about dengue virus transmission. Often these efforts assume that human host and mosquito vector populations are randomly or uniformly distributed in the environment. Although, the movement of mosquitoes is affected by spatial configuration of buildings and mosquito populations are highly clustered in key buildings, little research has focused on the influence of the local built environment in dengue transmission models. We developed an agent-based model of dengue transmission in a village setting to test the importance of using realistic environments in individual-level models of dengue transmission. The results from one-way ANOVA analysis of simulations indicated that the differences between scenarios in terms of infection rates as well as serotype-specific dominance are statistically significant. Specifically, the infection rates in scenarios of a realistic environment are more variable than those of a synthetic spatial configuration. With respect to dengue serotype-specific cases, we found that a single dengue serotype is more often dominant in realistic environments than in synthetic environments. An agent-based approach allows a fine-scaled analysis of simulated dengue incidence patterns. The results provide a better understanding of the influence of spatial heterogeneity on dengue transmission at a local scale.
Kisiel, Luz Maria; Jones-Bitton, Andria; Sargeant, Jan M.; Coe, Jason B.; Flockhart, D. T. Tyler; Canales Vargas, Erick J.
2018-01-01
Surgical sterilization programs for dogs have been proposed as interventions to control dog population size. Models can be used to help identify the long-term impact of reproduction control interventions for dogs. The objective of this study was to determine the projected impact of surgical sterilization interventions on the owned dog population size in Villa de Tezontepec, Hidalgo, Mexico. A stochastic, individual-based simulation model was constructed and parameterized using a combination of empirical data collected on the demographics of owned dogs in Villa de Tezontepec and data available from the peer-reviewed literature. Model outcomes were assessed using a 20-year time horizon. The model was used to examine: the effect of surgical sterilization strategies focused on: 1) dogs of any age and sex, 2) female dogs of any age, 3) young dogs (i.e., not yet reached sexual maturity) of any sex, and 4) young, female dogs. Model outcomes suggested that as surgical capacity increases from 21 to 84 surgeries/month, (8.6% to 34.5% annual sterilization) for dogs of any age, the mean dog population size after 20 years was reduced between 14% and 79% compared to the base case scenario (i.e. in the absence of intervention). Surgical sterilization interventions focused only on young dogs of any sex yielded greater reductions (81% - 90%) in the mean population size, depending on the level of surgical capacity. More focused sterilization targeted at female dogs of any age, resulted in reductions that were similar to focusing on mixed sex sterilization of only young dogs (82% - 92%). The greatest mean reduction in population size (90% - 91%) was associated with sterilization of only young, female dogs. Our model suggests that targeting sterilization to young females could enhance the efficacy of existing surgical dog population control interventions in this location, without investing extra resources. PMID:29856830
Monte Carlo simulation models of breeding-population advancement.
J.N. King; G.R. Johnson
1993-01-01
Five generations of population improvement were modeled using Monte Carlo simulations. The model was designed to address questions that are important to the development of an advanced generation breeding population. Specifically we addressed the effects on both gain and effective population size of different mating schemes when creating a recombinant population for...
Leveraging social networks for understanding the evolution of epidemics
2011-01-01
Background To understand how infectious agents disseminate throughout a population it is essential to capture the social model in a realistic manner. This paper presents a novel approach to modeling the propagation of the influenza virus throughout a realistic interconnection network based on actual individual interactions which we extract from online social networks. The advantage is that these networks can be extracted from existing sources which faithfully record interactions between people in their natural environment. We additionally allow modeling the characteristics of each individual as well as customizing his daily interaction patterns by making them time-dependent. Our purpose is to understand how the infection spreads depending on the structure of the contact network and the individuals who introduce the infection in the population. This would help public health authorities to respond more efficiently to epidemics. Results We implement a scalable, fully distributed simulator and validate the epidemic model by comparing the simulation results against the data in the 2004-2005 New York State Department of Health Report (NYSDOH), with similar temporal distribution results for the number of infected individuals. We analyze the impact of different types of connection models on the virus propagation. Lastly, we analyze and compare the effects of adopting several different vaccination policies, some of them based on individual characteristics -such as age- while others targeting the super-connectors in the social model. Conclusions This paper presents an approach to modeling the propagation of the influenza virus via a realistic social model based on actual individual interactions extracted from online social networks. We implemented a scalable, fully distributed simulator and we analyzed both the dissemination of the infection and the effect of different vaccination policies on the progress of the epidemics. The epidemic values predicted by our simulator match real data from NYSDOH. Our results show that our simulator can be a useful tool in understanding the differences in the evolution of an epidemic within populations with different characteristics and can provide guidance with regard to which, and how many, individuals should be vaccinated to slow down the virus propagation and reduce the number of infections. PMID:22784620
Computer simulation for integrated pest management of spruce budworms
Carroll B. Williams; Patrick J. Shea
1982-01-01
Some field studies of the effects of various insecticides on the spruce budworm (Choristoneura sp.) and their parasites have shown severe suppression of host (budworm) populations and increased parasitism after treatment. Computer simulation using hypothetical models of spruce budworm-parasite systems based on these field data revealed that (1)...
Royle, J. Andrew; Chandler, Richard B.; Gazenski, Kimberly D.; Graves, Tabitha A.
2013-01-01
Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture–recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on “ecological distance,” i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture–recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture–recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.
Royle, J Andrew; Chandler, Richard B; Gazenski, Kimberly D; Graves, Tabitha A
2013-02-01
Population size and landscape connectivity are key determinants of population viability, yet no methods exist for simultaneously estimating density and connectivity parameters. Recently developed spatial capture--recapture (SCR) models provide a framework for estimating density of animal populations but thus far have not been used to study connectivity. Rather, all applications of SCR models have used encounter probability models based on the Euclidean distance between traps and animal activity centers, which implies that home ranges are stationary, symmetric, and unaffected by landscape structure. In this paper we devise encounter probability models based on "ecological distance," i.e., the least-cost path between traps and activity centers, which is a function of both Euclidean distance and animal movement behavior in resistant landscapes. We integrate least-cost path models into a likelihood-based estimation scheme for spatial capture-recapture models in order to estimate population density and parameters of the least-cost encounter probability model. Therefore, it is possible to make explicit inferences about animal density, distribution, and landscape connectivity as it relates to animal movement from standard capture-recapture data. Furthermore, a simulation study demonstrated that ignoring landscape connectivity can result in negatively biased density estimators under the naive SCR model.
Sun, Xiangfei; Ng, Carla A; Small, Mitchell J
2018-06-12
Organisms have long been treated as receptors in exposure studies of polychlorinated biphenyls (PCBs) and other persistent organic pollutants (POPs). The influences of environmental pollution on organisms are well recognized. However, the impact of biota on PCB transport in an environmental system has not been considered in sufficient detail. In this study, a population-based multi-compartment fugacity model is developed by reconfiguring the organisms as populated compartments and reconstructing all the exchange processes between the organism compartments and environmental compartments, especially the previously ignored feedback routes from biota to the environment. We evaluate the model performance by simulating the PCB concentration distribution in Lake Ontario using published loading records. The lake system is divided into three environment compartments (air, water, and sediment) and several organism groups according to the dominant local biotic species. The comparison indicates that the simulated results are well-matched by a list of published field measurements from different years. We identify a new process, called Facilitated Biotic Intermedia Transport (FBIT), to describe the enhanced pollution transport that occurs between environmental media and organisms. As the hydrophobicity of PCB congener increases, the organism population exerts greater influence on PCB mass flows. In a high biomass scenario, the model simulation indicates significant FBIT effects and biotic storage effects with hydrophobic PCB congeners, which also lead to significant shifts in systemic contaminant exchange rates between organisms and the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mena, Carlos F; Walsh, Stephen J; Frizzelle, Brian G; Xiaozheng, Yao; Malanson, George P
2011-01-01
This paper describes the design and implementation of an Agent-Based Model (ABM) used to simulate land use change on household farms in the Northern Ecuadorian Amazon (NEA). The ABM simulates decision-making processes at the household level that is examined through a longitudinal, socio-economic and demographic survey that was conducted in 1990 and 1999. Geographic Information Systems (GIS) are used to establish spatial relationships between farms and their environment, while classified Landsat Thematic Mapper (TM) imagery is used to set initial land use/land cover conditions for the spatial simulation, assess from-to land use/land cover change patterns, and describe trajectories of land use change at the farm and landscape levels. Results from prior studies in the NEA provide insights into the key social and ecological variables, describe human behavioral functions, and examine population-environment interactions that are linked to deforestation and agricultural extensification, population migration, and demographic change. Within the architecture of the model, agents are classified as active or passive. The model comprises four modules, i.e., initialization, demography, agriculture, and migration that operate individually, but are linked through key household processes. The main outputs of the model include a spatially-explicit representation of the land use/land cover on survey and non-survey farms and at the landscape level for each annual time-step, as well as simulated socio-economic and demographic characteristics of households and communities. The work describes the design and implementation of the model and how population-environment interactions can be addressed in a frontier setting. The paper contributes to land change science by examining important pattern-process relations, advocating a spatial modeling approach that is capable of synthesizing fundamental relationships at the farm level, and links people and environment in complex ways.
Rapid Monte Carlo Simulation of Gravitational Wave Galaxies
NASA Astrophysics Data System (ADS)
Breivik, Katelyn; Larson, Shane L.
2015-01-01
With the detection of gravitational waves on the horizon, astrophysical catalogs produced by gravitational wave observatories can be used to characterize the populations of sources and validate different galactic population models. Efforts to simulate gravitational wave catalogs and source populations generally focus on population synthesis models that require extensive time and computational power to produce a single simulated galaxy. Monte Carlo simulations of gravitational wave source populations can also be used to generate observation catalogs from the gravitational wave source population. Monte Carlo simulations have the advantes of flexibility and speed, enabling rapid galactic realizations as a function of galactic binary parameters with less time and compuational resources required. We present a Monte Carlo method for rapid galactic simulations of gravitational wave binary populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowan, J.H., Jr.; Rose, K.A.
1991-01-01
We have used a bioenergetically-driven, individual-based model (IBM) of striped bass as a framework for synthesizing available information on population biology and quantifying, in a relative sense, factors that potentially affect year class success. The IBM has been configured to simulate environmental conditions experienced by several striped bass populations; i.e., in the Potomac River, MD; in Hudson River, NY; in the Santee-Cooper River System, SC, and; in the San Joaquin-Sacramento River System CA. These sites represent extremes in the geographic distribution and thus, environmental variability of striped bass spawning. At each location, data describing the physio-chemical and biological characteristics ofmore » the spawning population and nursery area are being collected and synthesized by means of a prioritized, directed field sampling program that is organized by the individual-based recruitment model. Here, we employ the striped bass IBM configured for the Potomac River, MD from spawning into the larval period to evaluate the potential for maternal contribution to affect larva survival and growth. Model simulations in which the size distribution and spawning day of females are altered indicate that larva survival is enhanced (3.3-fold increase) when a high fraction of females in the spawning population are large. Larva stage duration also is less ({bar X} = 18.4 d and 22.2 d) when large and small females, respectively, are mothers in simulations. Although inconclusive, these preliminary results for Potomac River striped bass suggest that the effects of female size, timing of spawning nad maternal contribution on recruitment dynamics potentially are important and illustrate our approach to the study of recruitment in striped bass. We hope to use the model, field collections and management alternatives that vary from site to site, in an iterative manner for some time to come. 54 refs., 4 figs., 1 tab.« less
Marini, Simone; Trifoglio, Emanuele; Barbarini, Nicola; Sambo, Francesco; Di Camillo, Barbara; Malovini, Alberto; Manfrini, Marco; Cobelli, Claudio; Bellazzi, Riccardo
2015-10-01
The increasing prevalence of diabetes and its related complications is raising the need for effective methods to predict patient evolution and for stratifying cohorts in terms of risk of developing diabetes-related complications. In this paper, we present a novel approach to the simulation of a type 1 diabetes population, based on Dynamic Bayesian Networks, which combines literature knowledge with data mining of a rich longitudinal cohort of type 1 diabetes patients, the DCCT/EDIC study. In particular, in our approach we simulate the patient health state and complications through discretized variables. Two types of models are presented, one entirely learned from the data and the other partially driven by literature derived knowledge. The whole cohort is simulated for fifteen years, and the simulation error (i.e. for each variable, the percentage of patients predicted in the wrong state) is calculated every year on independent test data. For each variable, the population predicted in the wrong state is below 10% on both models over time. Furthermore, the distributions of real vs. simulated patients greatly overlap. Thus, the proposed models are viable tools to support decision making in type 1 diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.
A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagos, Samson; Feng, Zhe; Plant, Robert S.
A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The approach used follows the non-equilibrium statistical mechanical approach through a master equation. The aim is to represent the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics: (i) the probability of growth, (ii) the probability of decay, and (iii)more » the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and mass flux is a non-linear function of convective cell area, mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated mass flux variability under diurnally varying forcing. Besides its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to be capable of providing alternative, non-equilibrium, closure formulations for spectral mass flux parameterizations.« less
Katsube, Takayuki; Wajima, Toshihiro; Ishibashi, Toru; Arjona Ferreira, Juan Camilo; Echols, Roger
2017-01-01
Cefiderocol, a novel parenteral siderophore cephalosporin, exhibits potent efficacy against most Gram-negative bacteria, including carbapenem-resistant strains. Since cefiderocol is excreted primarily via the kidneys, this study was conducted to develop a population pharmacokinetics (PK) model to determine dose adjustment based on renal function. Population PK models were developed based on data for cefiderocol concentrations in plasma, urine, and dialysate with a nonlinear mixed-effects model approach. Monte-Carlo simulations were conducted to calculate the probability of target attainment (PTA) of fraction of time during the dosing interval where the free drug concentration in plasma exceeds the MIC (T f >MIC ) for an MIC range of 0.25 to 16 μg/ml. For the simulations, dose regimens were selected to compare cefiderocol exposure among groups with different levels of renal function. The developed models well described the PK of cefiderocol for each renal function group. A dose of 2 g every 8 h with 3-h infusions provided >90% PTA for 75% T f >MIC for an MIC of ≤4 μg/ml for patients with normal renal function, while a more frequent dose (every 6 h) could be used for patients with augmented renal function. A reduced dose and/or extended dosing interval was selected for patients with impaired renal function. A supplemental dose immediately after intermittent hemodialysis was proposed for patients requiring intermittent hemodialysis. The PK of cefiderocol could be adequately modeled, and the modeling-and-simulation approach suggested dose regimens based on renal function, ensuring drug exposure with adequate bactericidal effect. Copyright © 2016 American Society for Microbiology.
Erin L. Landguth,; Muhlfeld, Clint C.; Luikart, Gordon
2012-01-01
We introduce Cost Distance FISHeries (CDFISH), a simulator of population genetics and connectivity in complex riverscapes for a wide range of environmental scenarios of aquatic organisms. The spatially-explicit program implements individual-based genetic modeling with Mendelian inheritance and k-allele mutation on a riverscape with resistance to movement. The program simulates individuals in subpopulations through time employing user-defined functions of individual migration, reproduction, mortality, and dispersal through straying on a continuous resistance surface.
1999-01-01
This article reports on the PEDA (population changes, environment, socioeconomic development and agriculture) model and its implication for policy-making in Africa. PEDA is an interactive computer simulation model (developed for a Windows environment) demonstrating the long-term impacts of alternative national policies on food security status of the population. The model is based on multistate demographic techniques, projecting at the same time 8 different subgroups (by age and sex) in the population, and based on 3 dichotomous individual characteristics: urban/rural place of residence; literacy status; and food security status. Through the manipulation of scenario variables, the model enables the user to project the proportion of the population that will be food secure and food insecure for a chosen point in time. This model developed by Dr. W. Lutz, Director of the International Institute for Applied Systems Analysis, will serve as an advocacy tool to help convince policy-makers and country experts in Africa of the negative synergy arising from the interconnections of population growth, environmental deterioration, and declining agricultural production.
NASA Astrophysics Data System (ADS)
Jordan, C.; Bouwes, N.; Wheaton, J. M.; Pollock, M.
2013-12-01
Over the past several centuries, the population of North American Beaver has been dramatically reduced through fur trapping. As a result, the geomorphic impacts long-term beaver occupancy and activity can have on fluvial systems have been lost, both from the landscape and from our collective memory such that physical and biological models of floodplain system function neither consider nor have the capacity to incorporate the role beaver can play in structuring the dynamics of streams. Concomitant with the decline in beaver populations was an increasing pressure on streams and floodplains through human activity, placing numerous species of stream rearing fishes in peril, most notably the ESA listing of trout and salmon populations across the entirety of the Western US. The rehabilitation of stream systems is seen as one of the primary means by which population and ecosystem recovery can be achieved, yet the methods of stream rehabilitation are applied almost exclusively with the expected outcome of a static idealized stream planform, occasionally with an acknowledgement of restoring processes rather than form and only rarely with the goal of a beaver dominated riverscape. We have constructed an individual based model of trout and beaver populations that allows the exploration of fish population dynamics as a function of stream habitat quality and quantity. We based the simulation tool on Bridge Creek (John Day River basin, Oregon) where we have implemented a large-scale restoration experiment using wooden posts to provide beavers with stable platforms for dam building and to simulate the dams themselves. Extensive monitoring captured geomorphic and riparian changes, as well as fish and beaver population responses; information we use to parameterize the model as to the geomorphic and fish response to dam building beavers. In the simulation environment, stream habitat quality and quantity can be manipulated directly through rehabilitation actions and indirectly through the dynamics of the co-occurring beaver population. The model allowed to us to ask questions critical for designing restoration strategies based on dam building beaver activity, such as what beaver population growth rate is required to develop and maintain floodplain connectivity in an incised system, or what beaver population size is required to increase juvenile steelhead production? The model was sensitive to several variables including beaver colony size, dams and colony dynamics and site fidelity, and thus highlights further research needs to fill critical information gaps.
Improving Agent Based Models and Validation through Data Fusion
Laskowski, Marek; Demianyk, Bryan C.P.; Friesen, Marcia R.; McLeod, Robert D.; Mukhi, Shamir N.
2011-01-01
This work is contextualized in research in modeling and simulation of infection spread within a community or population, with the objective to provide a public health and policy tool in assessing the dynamics of infection spread and the qualitative impacts of public health interventions. This work uses the integration of real data sources into an Agent Based Model (ABM) to simulate respiratory infection spread within a small municipality. Novelty is derived in that the data sources are not necessarily obvious within ABM infection spread models. The ABM is a spatial-temporal model inclusive of behavioral and interaction patterns between individual agents on a real topography. The agent behaviours (movements and interactions) are fed by census / demographic data, integrated with real data from a telecommunication service provider (cellular records) and person-person contact data obtained via a custom 3G Smartphone application that logs Bluetooth connectivity between devices. Each source provides data of varying type and granularity, thereby enhancing the robustness of the model. The work demonstrates opportunities in data mining and fusion that can be used by policy and decision makers. The data become real-world inputs into individual SIR disease spread models and variants, thereby building credible and non-intrusive models to qualitatively simulate and assess public health interventions at the population level. PMID:23569606
Improving Agent Based Models and Validation through Data Fusion.
Laskowski, Marek; Demianyk, Bryan C P; Friesen, Marcia R; McLeod, Robert D; Mukhi, Shamir N
2011-01-01
This work is contextualized in research in modeling and simulation of infection spread within a community or population, with the objective to provide a public health and policy tool in assessing the dynamics of infection spread and the qualitative impacts of public health interventions. This work uses the integration of real data sources into an Agent Based Model (ABM) to simulate respiratory infection spread within a small municipality. Novelty is derived in that the data sources are not necessarily obvious within ABM infection spread models. The ABM is a spatial-temporal model inclusive of behavioral and interaction patterns between individual agents on a real topography. The agent behaviours (movements and interactions) are fed by census / demographic data, integrated with real data from a telecommunication service provider (cellular records) and person-person contact data obtained via a custom 3G Smartphone application that logs Bluetooth connectivity between devices. Each source provides data of varying type and granularity, thereby enhancing the robustness of the model. The work demonstrates opportunities in data mining and fusion that can be used by policy and decision makers. The data become real-world inputs into individual SIR disease spread models and variants, thereby building credible and non-intrusive models to qualitatively simulate and assess public health interventions at the population level.
Fukae, Masato; Shiraishi, Yoshimasa; Hirota, Takeshi; Sasaki, Yuka; Yamahashi, Mika; Takayama, Koichi; Nakanishi, Yoichi; Ieiri, Ichiro
2016-11-01
Docetaxel is used to treat many cancers, and neutropenia is the dose-limiting factor for its clinical use. A population pharmacokinetic-pharmacodynamic (PK-PD) model was introduced to predict the development of docetaxel-induced neutropenia in Japanese patients with non-small cell lung cancer (NSCLC). Forty-seven advanced or recurrent Japanese patients with NSCLC were enrolled. Patients received 50 or 60 mg/m 2 docetaxel as monotherapy, and blood samples for a PK analysis were collected up to 24 h after its infusion. Laboratory tests including absolute neutrophil count data and demographic information were used in population PK-PD modeling. The model was built by NONMEM 7.2 with a first-order conditional estimation using an interaction method. Based on the final model, a Monte Carlo simulation was performed to assess the impact of covariates on and the predictability of neutropenia. A three-compartment model was employed to describe PK data, and the PK model adequately described the docetaxel concentrations observed. Serum albumin (ALB) was detected as a covariate of clearance (CL): CL (L/h) = 32.5 × (ALB/3.6) 0.965 × (WGHT/70) 3/4 . In population PK-PD modeling, a modified semi-mechanistic myelosuppression model was applied, and characterization of the time course of neutrophil counts was adequate. The covariate selection indicated that α1-acid glycoprotein (AAG) was a predictor of neutropenia. The model-based simulation also showed that ALB and AAG negatively correlated with the development of neutropenia and that the time course of neutrophil counts was predictable. The developed model may facilitate the prediction and care of docetaxel-induced neutropenia.
2015-01-01
Computational simulations are currently used to identify epidemic dynamics, to test potential prevention and intervention strategies, and to study the effects of social behaviors on HIV transmission. The author describes an agent-based epidemic simulation model of a network of individuals who participate in high-risk sexual practices, using number of partners, condom usage, and relationship length to distinguish between high- and low-risk populations. Two new concepts—free links and fixed links—are used to indicate tendencies among individuals who either have large numbers of short-term partners or stay in long-term monogamous relationships. An attempt was made to reproduce epidemic curves of reported HIV cases among male homosexuals in Taiwan prior to using the agent-based model to determine the effects of various policies on epidemic dynamics. Results suggest that when suitable adjustments are made based on available social survey statistics, the model accurately simulates real-world behaviors on a large scale. PMID:25815047
NASA Astrophysics Data System (ADS)
Rose, K.; Creekmore, S.; Thomas, P.; Craig, K.; Neilan, R.; Rahman, S.; Wang, L.; Justic, D.
2016-02-01
The northwestern Gulf of Mexico (USA) currently experiences a large hypoxic area ("dead zone") during the summer. The population-level effects of hypoxia on coastal fish are largely unknown. We developed a spatially-explicit, individual-based model to analyze how hypoxia effects on reproduction, growth, and mortality of individual Atlantic croaker could lead to population-level responses. The model follows the hourly growth, mortality, reproduction, and movement of individuals on a 300 x 800 spatial grid of 1 km2 cells for 140 years. Chlorophyll-a concentration and water temperature were specified daily for each grid cell. Dissolved oxygen (DO) was obtained from a 3-D water quality model for four years that differed in their severity of hypoxia. A bioenergetics model was used to represent growth, mortality was assumed stage- and age-dependent, and movement behavior was based on temperature preferences and avoidance of low DO. Hypoxia effects were imposed using exposure-effects sub-models that converted time-varying exposure to DO to reductions in growth and fecundity, and increases in mortality. Using sequences of mild, intermediate, and severe hypoxia years, the model predicted a 20% decrease in population abundance. Additional simulations were performed under the assumption that river-based nutrients loadings that lead to more hypoxia also lead to higher primary production and more food for croaker. Twenty-five percent and 50% nutrient reduction scenarios were simulated by adjusting the cholorphyll-a concentrations used as food proxy for the croaker. We then incrementally increased the DO concentrations to determine how much hypoxia would need to be reduced to offset the lower food production resulting from reduced nutrients. We discuss the generality of our results, the hidden effects of hypoxia on fish, and our overall strategy of combining laboratory and field studies with modeling to produce robust predictions of population responses to stressors under dynamic and multi-stressor conditions.
Zhang, Z; Guillaume, F; Sartelet, A; Charlier, C; Georges, M; Farnir, F; Druet, T
2012-10-01
In many situations, genome-wide association studies are performed in populations presenting stratification. Mixed models including a kinship matrix accounting for genetic relatedness among individuals have been shown to correct for population and/or family structure. Here we extend this methodology to generalized linear mixed models which properly model data under various distributions. In addition we perform association with ancestral haplotypes inferred using a hidden Markov model. The method was shown to properly account for stratification under various simulated scenari presenting population and/or family structure. Use of ancestral haplotypes resulted in higher power than SNPs on simulated datasets. Application to real data demonstrates the usefulness of the developed model. Full analysis of a dataset with 4600 individuals and 500 000 SNPs was performed in 2 h 36 min and required 2.28 Gb of RAM. The software GLASCOW can be freely downloaded from www.giga.ulg.ac.be/jcms/prod_381171/software. francois.guillaume@jouy.inra.fr Supplementary data are available at Bioinformatics online.
Utility of computer simulations in landscape genetics
Bryan K. Epperson; Brad H. McRae; Kim Scribner; Samuel A. Cushman; Michael S. Rosenberg; Marie-Josee Fortin; Patrick M. A. James; Melanie Murphy; Stephanie Manel; Pierre Legendre; Mark R. T. Dale
2010-01-01
Population genetics theory is primarily based on mathematical models in which spatial complexity and temporal variability are largely ignored. In contrast, the field of landscape genetics expressly focuses on how population genetic processes are affected by complex spatial and temporal environmental heterogeneity. It is spatially explicit and relates patterns to...
Whitman, Karyl L; Starfield, Anthony M; Quadling, Henley; Packer, Craig
2007-06-01
Tanzania is a premier destination for trophy hunting of African lions (Panthera leo) and is home to the most extensive long-term study of unhunted lions. Thus, it provides a unique opportunity to apply data from a long-term field study to a conservation dilemma: How can a trophy-hunted species whose reproductive success is closely tied to social stability be harvested sustainably? We used an individually based, spatially explicit, stochastic model, parameterized with nearly 40 years of behavioral and demographic data on lions in the Serengeti, to examine the separate effects of trophy selection and environmental disturbance on the viability of a simulated lion population in response to annual harvesting. Female population size was sensitive to the harvesting of young males (> or = 3 years), whereas hunting represented a relatively trivial threat to population viability when the harvest was restricted to mature males (> or = 6 years). Overall model performance was robust to environmental disturbance and to errors in age assessment based on nose coloration as an index used to age potential trophies. Introducing an environmental disturbance did not eliminate the capacity to maintain a viable breeding population when harvesting only older males, and initially depleted populations recovered within 15-25 years after the disturbance to levels comparable to hunted populations that did not experience a catastrophic event. These results are consistent with empirical observations of lion resilience to environmental stochasticity.
Bhaskar, Anand; Javanmard, Adel; Courtade, Thomas A; Tse, David
2017-03-15
Genetic variation in human populations is influenced by geographic ancestry due to spatial locality in historical mating and migration patterns. Spatial population structure in genetic datasets has been traditionally analyzed using either model-free algorithms, such as principal components analysis (PCA) and multidimensional scaling, or using explicit spatial probabilistic models of allele frequency evolution. We develop a general probabilistic model and an associated inference algorithm that unify the model-based and data-driven approaches to visualizing and inferring population structure. Our spatial inference algorithm can also be effectively applied to the problem of population stratification in genome-wide association studies (GWAS), where hidden population structure can create fictitious associations when population ancestry is correlated with both the genotype and the trait. Our algorithm Geographic Ancestry Positioning (GAP) relates local genetic distances between samples to their spatial distances, and can be used for visually discerning population structure as well as accurately inferring the spatial origin of individuals on a two-dimensional continuum. On both simulated and several real datasets from diverse human populations, GAP exhibits substantially lower error in reconstructing spatial ancestry coordinates compared to PCA. We also develop an association test that uses the ancestry coordinates inferred by GAP to accurately account for ancestry-induced correlations in GWAS. Based on simulations and analysis of a dataset of 10 metabolic traits measured in a Northern Finland cohort, which is known to exhibit significant population structure, we find that our method has superior power to current approaches. Our software is available at https://github.com/anand-bhaskar/gap . abhaskar@stanford.edu or ajavanma@usc.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation
Sherfey, Jason S.; Soplata, Austin E.; Ardid, Salva; Roberts, Erik A.; Stanley, David A.; Pittman-Polletta, Benjamin R.; Kopell, Nancy J.
2018-01-01
DynaSim is an open-source MATLAB/GNU Octave toolbox for rapid prototyping of neural models and batch simulation management. It is designed to speed up and simplify the process of generating, sharing, and exploring network models of neurons with one or more compartments. Models can be specified by equations directly (similar to XPP or the Brian simulator) or by lists of predefined or custom model components. The higher-level specification supports arbitrarily complex population models and networks of interconnected populations. DynaSim also includes a large set of features that simplify exploring model dynamics over parameter spaces, running simulations in parallel using both multicore processors and high-performance computer clusters, and analyzing and plotting large numbers of simulated data sets in parallel. It also includes a graphical user interface (DynaSim GUI) that supports full functionality without requiring user programming. The software has been implemented in MATLAB to enable advanced neural modeling using MATLAB, given its popularity and a growing interest in modeling neural systems. The design of DynaSim incorporates a novel schema for model specification to facilitate future interoperability with other specifications (e.g., NeuroML, SBML), simulators (e.g., NEURON, Brian, NEST), and web-based applications (e.g., Geppetto) outside MATLAB. DynaSim is freely available at http://dynasimtoolbox.org. This tool promises to reduce barriers for investigating dynamics in large neural models, facilitate collaborative modeling, and complement other tools being developed in the neuroinformatics community. PMID:29599715
DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation.
Sherfey, Jason S; Soplata, Austin E; Ardid, Salva; Roberts, Erik A; Stanley, David A; Pittman-Polletta, Benjamin R; Kopell, Nancy J
2018-01-01
DynaSim is an open-source MATLAB/GNU Octave toolbox for rapid prototyping of neural models and batch simulation management. It is designed to speed up and simplify the process of generating, sharing, and exploring network models of neurons with one or more compartments. Models can be specified by equations directly (similar to XPP or the Brian simulator) or by lists of predefined or custom model components. The higher-level specification supports arbitrarily complex population models and networks of interconnected populations. DynaSim also includes a large set of features that simplify exploring model dynamics over parameter spaces, running simulations in parallel using both multicore processors and high-performance computer clusters, and analyzing and plotting large numbers of simulated data sets in parallel. It also includes a graphical user interface (DynaSim GUI) that supports full functionality without requiring user programming. The software has been implemented in MATLAB to enable advanced neural modeling using MATLAB, given its popularity and a growing interest in modeling neural systems. The design of DynaSim incorporates a novel schema for model specification to facilitate future interoperability with other specifications (e.g., NeuroML, SBML), simulators (e.g., NEURON, Brian, NEST), and web-based applications (e.g., Geppetto) outside MATLAB. DynaSim is freely available at http://dynasimtoolbox.org. This tool promises to reduce barriers for investigating dynamics in large neural models, facilitate collaborative modeling, and complement other tools being developed in the neuroinformatics community.
Kundu, Suman; Mazumdar, Madhu; Ferket, Bart
2017-04-19
The area under the ROC curve (AUC) of risk models is known to be influenced by differences in case-mix and effect size of predictors. The impact of heterogeneity in correlation among predictors has however been under investigated. We sought to evaluate how correlation among predictors affects the AUC in development and external populations. We simulated hypothetical populations using two different methods based on means, standard deviations, and correlation of two continuous predictors. In the first approach, the distribution and correlation of predictors were assumed for the total population. In the second approach, these parameters were modeled conditional on disease status. In both approaches, multivariable logistic regression models were fitted to predict disease risk in individuals. Each risk model developed in a population was validated in the remaining populations to investigate external validity. For both approaches, we observed that the magnitude of the AUC in the development and external populations depends on the correlation among predictors. Lower AUCs were estimated in scenarios of both strong positive and negative correlation, depending on the direction of predictor effects and the simulation method. However, when adjusted effect sizes of predictors were specified in the opposite directions, increasingly negative correlation consistently improved the AUC. AUCs in external validation populations were higher or lower than in the derivation cohort, even in the presence of similar predictor effects. Discrimination of risk prediction models should be assessed in various external populations with different correlation structures to make better inferences about model generalizability.
Schmitt, Walter; Auteri, Domenica; Bastiansen, Finn; Ebeling, Markus; Liu, Chun; Luttik, Robert; Mastitsky, Sergey; Nacci, Diane; Topping, Chris; Wang, Magnus
2016-01-01
This article presents a case study demonstrating the application of 3 individual-based, spatially explicit population models (IBMs, also known as agent-based models) in ecological risk assessments to predict long-term effects of a pesticide to populations of small mammals. The 3 IBMs each used a hypothetical fungicide (FungicideX) in different scenarios: spraying in cereals (common vole, Microtus arvalis), spraying in orchards (field vole, Microtus agrestis), and cereal seed treatment (wood mouse, Apodemus sylvaticus). Each scenario used existing model landscapes, which differed greatly in size and structural complexity. The toxicological profile of FungicideX was defined so that the deterministic long-term first tier risk assessment would result in high risk to small mammals, thus providing the opportunity to use the IBMs for risk assessment refinement (i.e., higher tier risk assessment). Despite differing internal model design and scenarios, results indicated in all 3 cases low population sensitivity unless FungicideX was applied at very high (×10) rates. Recovery from local population impacts was generally fast. Only when patch extinctions occured in simulations of intentionally high acute toxic effects, recovery periods, then determined by recolonization, were of any concern. Conclusions include recommendations for the most important input considerations, including the selection of exposure levels, duration of simulations, statistically robust number of replicates, and endpoints to report. However, further investigation and agreement are needed to develop recommendations for landscape attributes such as size, structure, and crop rotation to define appropriate regulatory risk assessment scenarios. Overall, the application of IBMs provides multiple advantages to higher tier ecological risk assessments for small mammals, including consistent and transparent direct links to specific protection goals, and the consideration of more realistic scenarios. © 2015 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostova, T; Carlsen, T; Kercher, J
2002-06-17
We present an individual-based, spatially-explicit model of the dynamics of a small mammal and its resource. The life histories of each individual animal are modeled separately. The individuals can have the status of residents or wanderers and belong to behaviorally differing groups of juveniles or adults and males or females. Their territory defending and monogamous behavior is taken into consideration. The resource, green vegetation, grows depending on seasonal climatic characteristics and is diminished due to the herbivore's grazing. Other specifics such as a varying personal energetic level due to feeding and starvation of the individuals, mating preferences, avoidance of competitors,more » dispersal of juveniles, as a result of site overgrazing, etc. are included in the model. We determined model parameters from real data for the species Microtus ochrogaster (prairie vole). The simulations are done for a case of an enclosed habitat without predators or other species competitors. The goal of the study is to find the relation between size of habitat and population persistence. The experiments with the model show the populations go extinct due to severe overgrazing, but that the length of population persistence depends on the area of the habitat as well as on the presence of fragmentation. Additionally, the total population size of the vole population obtained during the simulations exhibits yearly fluctuations as well as multi-yearly peaks of fluctuations. This dynamics is similar to the one observed in prairie vole field studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostova, T; Carlsen, T
We present a study, based on simulations with SERDYCA, a spatially-explicit individual based model of rodent dynamics, on the connection between population persistence and the presence of inhomogeneities in the habitat. We are specifically interested on the effect that inhomogeneities that do not fragment the environment, have on population persistence. Our results suggest that a certain percentage of inhomogeneities can increase the average time to extinction of the population. Inhomogeneities decrease the population density and can increase the ratio of juveniles in the population thus providing a better chance for the population to restore itself after a severe period withmore » critically low population density. We call this the ''inhomogeneity localization effect''.« less
Allee effect and the uncertainty of population recovery.
Kuparinen, Anna; Keith, David M; Hutchings, Jeffrey A
2014-06-01
Recovery of depleted populations is fundamentally important for conservation biology and sustainable resource harvesting. At low abundance, population growth rate, a primary determinant of population recovery, is generally assumed to be relatively fast because competition is low (i.e., negative density dependence). But population growth can be limited in small populations by an Allee effect. This is particularly relevant for collapsed populations or species that have not recovered despite large reductions in, or elimination of, threats. We investigated how an Allee effect can influence the dynamics of recovery. We used Atlantic cod (Gadus morhua) as the study organism and an empirically quantified Allee effect for the species to parameterize our simulations. We simulated recovery through an individual-based mechanistic simulation model and then compared recovery among scenarios incorporating an Allee effect, negative density dependence, and an intermediate scenario. Although an Allee effect significantly slowed recovery, such that population increase could be negligible even after 100 years or more, it also made the time required for biomass rebuilding much less predictable. Our finding that an Allee effect greatly increased the uncertainty in recovery time frames provides an empirically based explanation for why the removal of threat does not always result in the recovery of depleted populations or species. © 2014 Society for Conservation Biology.
Agent-based modeling of the spread of the 1918-1919 flu in three Canadian fur trading communities.
O'Neil, Caroline A; Sattenspiel, Lisa
2010-01-01
Previous attempts to study the 1918-1919 flu in three small communities in central Manitoba have used both three-community population-based and single-community agent-based models. These studies identified critical factors influencing epidemic spread, but they also left important questions unanswered. The objective of this project was to design a more realistic agent-based model that would overcome limitations of earlier models and provide new insights into these outstanding questions. The new model extends the previous agent-based model to three communities so that results can be compared to those from the population-based model. Sensitivity testing was conducted, and the new model was used to investigate the influence of seasonal settlement and mobility patterns, the geographic heterogeneity of the observed 1918-1919 epidemic in Manitoba, and other questions addressed previously. Results confirm outcomes from the population-based model that suggest that (a) social organization and mobility strongly influence the timing and severity of epidemics and (b) the impact of the epidemic would have been greater if it had arrived in the summer rather than the winter. New insights from the model suggest that the observed heterogeneity among communities in epidemic impact was not unusual and would have been the expected outcome given settlement structure and levels of interaction among communities. Application of an agent-based computer simulation has helped to better explain observed patterns of spread of the 1918-1919 flu epidemic in central Manitoba. Contrasts between agent-based and population-based models illustrate the advantages of agent-based models for the study of small populations. © 2010 Wiley-Liss, Inc.
Simulating Cancer Growth with Multiscale Agent-Based Modeling
Wang, Zhihui; Butner, Joseph D.; Kerketta, Romica; Cristini, Vittorio; Deisboeck, Thomas S.
2014-01-01
There have been many techniques developed in recent years to in silico model a variety of cancer behaviors. Agent-based modeling is a specific discrete-based hybrid modeling approach that allows simulating the role of diversity in cell populations as well as within each individual cell; it has therefore become a powerful modeling method widely used by computational cancer researchers. Many aspects of tumor morphology including phenotype-changing mutations, the adaptation to microenvironment, the process of angiogenesis, the influence of extracellular matrix, reactions to chemotherapy or surgical intervention, the effects of oxygen and nutrient availability, and metastasis and invasion of healthy tissues have been incorporated and investigated in agent-based models. In this review, we introduce some of the most recent agent-based models that have provided insight into the understanding of cancer growth and invasion, spanning multiple biological scales in time and space, and we further describe several experimentally testable hypotheses generated by those models. We also discuss some of the current challenges of multiscale agent-based cancer models. PMID:24793698
CFD-PBM coupled simulation of a nanobubble generator with honeycomb structure
NASA Astrophysics Data System (ADS)
Ren, F.; Noda, N. A.; Ueda, T.; Sano, Y.; Takase, Y.; Umekage, T.; Yonezawa, Y.; Tanaka, H.
2018-06-01
In recent years, nanobubble technologies have drawn great attention due to their wide applications in many fields of science and technology. The nitrogen nanobubble water circulation can be used to slow the progressions of oxidation and spoilage for the seafood long- term storage. From previous studies, a kind of honeycomb structure for high-efficiency nanobubble generation has been proposed. In this paper, the bubbly flow in the honeycomb structure was studied. The numerical simulations of honeycomb structure were performed by using a computational fluid dynamics–population balance model (CFD-PBM) coupled model. The numerical model was based on the Eulerian multiphase model and the population balance model (PBM) was used to calculate the gas bubble size distribution. The bubble coalescence and breakage were included. Considering the effect of bubble diameter on the fluid flow, the phase interactions were coupled with the PBM. The bubble size distributions in the honeycomb structure under different work conditions were predicted. The experimental results were compared with the simulation predictions.
Ca-Pri a Cellular Automata Phenomenological Research Investigation: Simulation Results
NASA Astrophysics Data System (ADS)
Iannone, G.; Troisi, A.
2013-05-01
Following the introduction of a phenomenological cellular automata (CA) model capable to reproduce city growth and urban sprawl, we develop a toy model simulation considering a realistic framework. The main characteristic of our approach is an evolution algorithm based on inhabitants preferences. The control of grown cells is obtained by means of suitable functions which depend on the initial condition of the simulation. New born urban settlements are achieved by means of a logistic evolution of the urban pattern while urban sprawl is controlled by means of the population evolution function. In order to compare model results with a realistic urban framework we have considered, as the area of study, the island of Capri (Italy) in the Mediterranean Sea. Two different phases of the urban evolution on the island have been taken into account: a new born initial growth as induced by geographic suitability and the simulation of urban spread after 1943 induced by the population evolution after this date.
NASA Astrophysics Data System (ADS)
Holoien, Thomas W.-S.; Marshall, Philip J.; Wechsler, Risa H.
2017-06-01
We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holoien, Thomas W. -S.; Marshall, Philip J.; Wechsler, Risa H.
We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of amore » subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.« less
Applying the multivariate time-rescaling theorem to neural population models
Gerhard, Felipe; Haslinger, Robert; Pipa, Gordon
2011-01-01
Statistical models of neural activity are integral to modern neuroscience. Recently, interest has grown in modeling the spiking activity of populations of simultaneously recorded neurons to study the effects of correlations and functional connectivity on neural information processing. However any statistical model must be validated by an appropriate goodness-of-fit test. Kolmogorov-Smirnov tests based upon the time-rescaling theorem have proven to be useful for evaluating point-process-based statistical models of single-neuron spike trains. Here we discuss the extension of the time-rescaling theorem to the multivariate (neural population) case. We show that even in the presence of strong correlations between spike trains, models which neglect couplings between neurons can be erroneously passed by the univariate time-rescaling test. We present the multivariate version of the time-rescaling theorem, and provide a practical step-by-step procedure for applying it towards testing the sufficiency of neural population models. Using several simple analytically tractable models and also more complex simulated and real data sets, we demonstrate that important features of the population activity can only be detected using the multivariate extension of the test. PMID:21395436
NASA Astrophysics Data System (ADS)
Wang, Y.; Porter, W.; Miller, P. A.; Graham, R. W.; Williams, J. W.
2016-12-01
Estimate of megafauna behaviors dynamically under associated environmental factors is important to understand the mechanisms and causes of the late Quaternary megafaunal extinctions. On St. Paul Island, an isolated remnant of the Bering Land Bridge, a late-surviving population of woolly mammoth (Mammuthus primigenius) persisted until 5,600 cal BP, while 37 out of 54 megafauna species in the continent of North America, all herbivores, went extinct at the end of Pleistocene between 13,800 and 11,500 cal BP. Proposed natural drivers of the extinction events include abrupt temperature changes, food resource loss and freshwater shortage. Here we tested these three hypothesized mechanisms, using a physiological model (Niche Mapper) to estimate individual megafauna behaviors from the perspectives of metabolic rate, individual vegetation and freshwater requirement under simulated climates from Community Climate System Model version 3 (CCSM3), vegetation reconstructions based on dynamic LPJ-GUESS model and woolly mammoth and megafauna species trait data reconstructed based on mammal fossils. Preliminary simulations of woolly mammoth on St. Paul Island point to the importance of net vegetation primary productivity and freshwater availability as limits on the carrying capacity of St. Paul for mammoth populations, with a low carrying capacity in the middle Holocene making this population highly vulnerable to extinction. Results also indicate that the abrupt warming based around 14,000 cal BP in Bering land bridge on CCSM3 simulations causes woolly mammoth extinction, by driving metabolic rate high up beyond the active basic metabolic rate. Analysis suggests a positive relationship between temperature and metabolic rate, and woolly mammoth would go extinct when summer temperature is up to 12 °C or higher. However the temperature reconstructed based on regional proxies is relatively stable compared to CCSM3 simulations, and leads to stable metabolic rate of woolly mammoth and no extinction events. Proposed simulations of megafauna species in North America indicate the role of ice sheets in limiting habitats. This work helps resolve the drivers of extinction for a small island surviving woolly mammoth population and worldwide megafauna extinctions in the late Quaternary.
Internet Based Simulations of Debris Dispersion of Shuttle Launch
NASA Technical Reports Server (NTRS)
Bardina, Jorge; Thirumalainambi, Rajkumar
2004-01-01
The debris dispersion model (which dispersion model?) is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models are useful in understanding the complexity of launch and range operations. Modeling and simulation in this area mainly focuses on orbital dynamics and range safety concepts, including destruct limits, telemetry and tracking, and population risk. Particle explosion modeling is the process of simulating an explosion by breaking the rocket into many pieces. The particles are scattered throughout their motion using the laws of physics eventually coming to rest. The size of the foot print explains the type of explosion and distribution of the particles. The shuttle launch and range operations in this paper are discussed based on the operations of the Kennedy Space Center, Florida, USA. Java 3D graphics provides geometric and visual content with suitable modeling behaviors of Shuttle launches.
Including the Group Quarters Population in the US Synthesized Population Database
Chasteen, Bernadette M.; Wheaton, William D.; Cooley, Philip C.; Ganapathi, Laxminarayana; Wagener, Diane K.
2011-01-01
In 2005, RTI International researchers developed methods to generate synthesized population data on US households for the US Synthesized Population Database. These data are used in agent-based modeling, which simulates large-scale social networks to test how changes in the behaviors of individuals affect the overall network. Group quarters are residences where individuals live in close proximity and interact frequently. Although the Synthesized Population Database represents the population living in households, data for the nation’s group quarters residents are not easily quantified because of US Census Bureau reporting methods designed to protect individuals’ privacy. Including group quarters population data can be an important factor in agent-based modeling because the number of residents and the frequency of their interactions are variables that directly affect modeling results. Particularly with infectious disease modeling, the increased frequency of agent interaction may increase the probability of infectious disease transmission between individuals and the probability of disease outbreaks. This report reviews our methods to synthesize data on group quarters residents to match US Census Bureau data. Our goal in developing the Group Quarters Population Database was to enable its use with RTI’s US Synthesized Population Database in the Modeling of Infectious Diseases Agent Study. PMID:21841972
Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex.
Ulloa, Antonio; Horwitz, Barry
2016-01-01
A number of recent efforts have used large-scale, biologically realistic, neural models to help understand the neural basis for the patterns of activity observed in both resting state and task-related functional neural imaging data. An example of the former is The Virtual Brain (TVB) software platform, which allows one to apply large-scale neural modeling in a whole brain framework. TVB provides a set of structural connectomes of the human cerebral cortex, a collection of neural processing units for each connectome node, and various forward models that can convert simulated neural activity into a variety of functional brain imaging signals. In this paper, we demonstrate how to embed a previously or newly constructed task-based large-scale neural model into the TVB platform. We tested our method on a previously constructed large-scale neural model (LSNM) of visual object processing that consisted of interconnected neural populations that represent, primary and secondary visual, inferotemporal, and prefrontal cortex. Some neural elements in the original model were "non-task-specific" (NS) neurons that served as noise generators to "task-specific" neurons that processed shapes during a delayed match-to-sample (DMS) task. We replaced the NS neurons with an anatomical TVB connectome model of the cerebral cortex comprising 998 regions of interest interconnected by white matter fiber tract weights. We embedded our LSNM of visual object processing into corresponding nodes within the TVB connectome. Reciprocal connections between TVB nodes and our task-based modules were included in this framework. We ran visual object processing simulations and showed that the TVB simulator successfully replaced the noise generation originally provided by NS neurons; i.e., the DMS tasks performed with the hybrid LSNM/TVB simulator generated equivalent neural and fMRI activity to that of the original task-based models. Additionally, we found partial agreement between the functional connectivities using the hybrid LSNM/TVB model and the original LSNM. Our framework thus presents a way to embed task-based neural models into the TVB platform, enabling a better comparison between empirical and computational data, which in turn can lead to a better understanding of how interacting neural populations give rise to human cognitive behaviors.
Economic consequences of population size, structure and growth.
Lee, R
1983-01-01
There seems to be 4 major approaches to conceptualizing and modeling demographic influences on economic and social welfare. These approaches are combined in various ways to construct richer and more comprehensive models. The basic approaches are: demographic influences on household or family behavior; population growth and reproducible capital; population size and fixed factors; and population and advantages of scale. These 4 models emphasize the supply side effects of population. A few of the ways in which these theories have been combined are sketched. Neoclassical growth models often have been combined with age distributed populations of individuals (or households), assumed to pursue optimal life cycle consumption and saving. In some well known development models, neoclassical growth models for the modern sector are linked by labor markets and migration to fixed factor (land) models of the traditional (agricultural) sector. A whole series of macro simulation models for developed and developing countries was based on single sector neoclassical growth models with age distributed populations. Yet, typically the household level foundations of assumed age distribution effects were not worked out. Simon's (1977) simulation models are in a class by themselves, for they are the only models that attempt to incorporate all the kinds of effects discussed. The economic demography of the individual and family cycle, as it is affected by regimes of fertility, mortality, and nuptiality, taken as given, are considered. The examination touches on many of the purported consequences of aggregate population growth and age composition, since so many of these are based implicitly or explicitly on assertions about micro level behavior. Demographic influences on saving and consumption, on general labor supply and female labor supply, and on problems of youth and old age dependency frequently fall in this category. Finally, attention is focused specifically on macro economic issues in the consequences of population in both developed and developing countries. In general cross national studies have failed to provide rough and stylized depiction of the consequences of rapid population growth, unless the absence of significant results is itself the result.
A Risk-Based Framework for Assessing the Effectiveness of Stratospheric Aerosol Geoengineering
Ferraro, Angus J.; Charlton-Perez, Andrew J.; Highwood, Eleanor J.
2014-01-01
Geoengineering by stratospheric aerosol injection has been proposed as a policy response to warming from human emissions of greenhouse gases, but it may produce unequal regional impacts. We present a simple, intuitive risk-based framework for classifying these impacts according to whether geoengineering increases or decreases the risk of substantial climate change, with further classification by the level of existing risk from climate change from increasing carbon dioxide concentrations. This framework is applied to two climate model simulations of geoengineering counterbalancing the surface warming produced by a quadrupling of carbon dioxide concentrations, with one using a layer of sulphate aerosol in the lower stratosphere, and the other a reduction in total solar irradiance. The solar dimming model simulation shows less regional inequality of impacts compared with the aerosol geoengineering simulation. In the solar dimming simulation, 10% of the Earth's surface area, containing 10% of its population and 11% of its gross domestic product, experiences greater risk of substantial precipitation changes under geoengineering than under enhanced carbon dioxide concentrations. In the aerosol geoengineering simulation the increased risk of substantial precipitation change is experienced by 42% of Earth's surface area, containing 36% of its population and 60% of its gross domestic product. PMID:24533155
A Comparison of Three Approaches to Model Human Behavior
NASA Astrophysics Data System (ADS)
Palmius, Joel; Persson-Slumpi, Thomas
2010-11-01
One way of studying social processes is through the use of simulations. The use of simulations for this purpose has been established as its own field, social simulations, and has been used for studying a variety of phenomena. A simulation of a social setting can serve as an aid for thinking about that social setting, and for experimenting with different parameters and studying the outcomes caused by them. When using the simulation as an aid for thinking and experimenting, the chosen simulation approach will implicitly steer the simulationist towards thinking in a certain fashion in order to fit the model. To study the implications of model choice on the understanding of a setting where human anticipation comes into play, a simulation scenario of a coffee room was constructed using three different simulation approaches: Cellular Automata, Systems Dynamics and Agent-based modeling. The practical implementations of the models were done in three different simulation packages: Stella for Systems Dynamic, CaFun for Cellular automata and SesAM for Agent-based modeling. The models were evaluated both using Randers' criteria for model evaluation, and through introspection where the authors reflected upon how their understanding of the scenario was steered through the model choice. Further the software used for implementing the simulation models was evaluated, and practical considerations for the choice of software package are listed. It is concluded that the models have very different strengths. The Agent-based modeling approach offers the most intuitive support for thinking about and modeling a social setting where the behavior of the individual is in focus. The Systems Dynamics model would be preferable in situations where populations and large groups would be studied as wholes, but where individual behavior is of less concern. The Cellular Automata models would be preferable where processes need to be studied from the basis of a small set of very simple rules. It is further concluded that in most social simulation settings the Agent-based modeling approach would be the probable choice. This since the other models does not offer much in the way of supporting the modeling of the anticipatory behavior of humans acting in an organization.
Individual-based modelling of population growth and diffusion in discrete time.
Tkachenko, Natalie; Weissmann, John D; Petersen, Wesley P; Lake, George; Zollikofer, Christoph P E; Callegari, Simone
2017-01-01
Individual-based models (IBMs) of human populations capture spatio-temporal dynamics using rules that govern the birth, behavior, and death of individuals. We explore a stochastic IBM of logistic growth-diffusion with constant time steps and independent, simultaneous actions of birth, death, and movement that approaches the Fisher-Kolmogorov model in the continuum limit. This model is well-suited to parallelization on high-performance computers. We explore its emergent properties with analytical approximations and numerical simulations in parameter ranges relevant to human population dynamics and ecology, and reproduce continuous-time results in the limit of small transition probabilities. Our model prediction indicates that the population density and dispersal speed are affected by fluctuations in the number of individuals. The discrete-time model displays novel properties owing to the binomial character of the fluctuations: in certain regimes of the growth model, a decrease in time step size drives the system away from the continuum limit. These effects are especially important at local population sizes of <50 individuals, which largely correspond to group sizes of hunter-gatherers. As an application scenario, we model the late Pleistocene dispersal of Homo sapiens into the Americas, and discuss the agreement of model-based estimates of first-arrival dates with archaeological dates in dependence of IBM model parameter settings.
Parasuram, Harilal; Nair, Bipin; D'Angelo, Egidio; Hines, Michael; Naldi, Giovanni; Diwakar, Shyam
2016-01-01
Local Field Potentials (LFPs) are population signals generated by complex spatiotemporal interaction of current sources and dipoles. Mathematical computations of LFPs allow the study of circuit functions and dysfunctions via simulations. This paper introduces LFPsim, a NEURON-based tool for computing population LFP activity and single neuron extracellular potentials. LFPsim was developed to be used on existing cable compartmental neuron and network models. Point source, line source, and RC based filter approximations can be used to compute extracellular activity. As a demonstration of efficient implementation, we showcase LFPs from mathematical models of electrotonically compact cerebellum granule neurons and morphologically complex neurons of the neocortical column. LFPsim reproduced neocortical LFP at 8, 32, and 56 Hz via current injection, in vitro post-synaptic N2a, N2b waves and in vivo T-C waves in cerebellum granular layer. LFPsim also includes a simulation of multi-electrode array of LFPs in network populations to aid computational inference between biophysical activity in neural networks and corresponding multi-unit activity resulting in extracellular and evoked LFP signals.
Anticipating the unintended consequences of security dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Overfelt, James Robert; Malczynski, Leonard A.
2010-01-01
In a globalized world, dramatic changes within any one nation causes ripple or even tsunamic effects within neighbor nations and nations geographically far removed. Multinational interventions to prevent or mitigate detrimental changes can easily cause secondary unintended consequences more detrimental and enduring than the feared change instigating the intervention. This LDRD research developed the foundations for a flexible geopolitical and socioeconomic simulation capability that focuses on the dynamic national security implications of natural and man-made trauma for a nation-state and the states linked to it through trade or treaty. The model developed contains a database for simulating all 229 recognizedmore » nation-states and sovereignties with the detail of 30 economic sectors including consumers and natural resources. The model explicitly simulates the interactions among the countries and their governments. Decisions among governments and populations is based on expectation formation. In the simulation model, failed expectations are used as a key metric for tension across states, among ethnic groups, and between population factions. This document provides the foundational documentation for the model.« less
Simulated bat populations erode when exposed to climate change projections for western North America
Adams, Rick A.
2017-01-01
Recent research has demonstrated that temperature and precipitation conditions correlate with successful reproduction in some insectivorous bat species that live in arid and semiarid regions, and that hot and dry conditions correlate with reduced lactation and reproductive output by females of some species. However, the potential long-term impacts of climate-induced reproductive declines on bat populations in western North America are not well understood. We combined results from long-term field monitoring and experiments in our study area with information on vital rates to develop stochastic age-structured population dynamics models and analyzed how simulated fringed myotis (Myotis thysanodes) populations changed under projected future climate conditions in our study area near Boulder, Colorado (Boulder Models) and throughout western North America (General Models). Each simulation consisted of an initial population of 2,000 females and an approximately stable age distribution at the beginning of the simulation. We allowed each population to be influenced by the mean annual temperature and annual precipitation for our study area and a generalized range-wide model projected through year 2086, for each of four carbon emission scenarios (representative concentration pathways RCP2.6, RCP4.5, RCP6.0, RCP8.5). Each population simulation was repeated 10,000 times. Of the 8 Boulder Model simulations, 1 increased (+29.10%), 3 stayed approximately stable (+2.45%, +0.05%, -0.03%), and 4 simulations decreased substantially (-44.10%, -44.70%, -44.95%, -78.85%). All General Model simulations for western North America decreased by >90% (-93.75%, -96.70%, -96.70%, -98.75%). These results suggest that a changing climate in western North America has the potential to quickly erode some forest bat populations including species of conservation concern, such as fringed myotis. PMID:28686737
Hayes, Mark A; Adams, Rick A
2017-01-01
Recent research has demonstrated that temperature and precipitation conditions correlate with successful reproduction in some insectivorous bat species that live in arid and semiarid regions, and that hot and dry conditions correlate with reduced lactation and reproductive output by females of some species. However, the potential long-term impacts of climate-induced reproductive declines on bat populations in western North America are not well understood. We combined results from long-term field monitoring and experiments in our study area with information on vital rates to develop stochastic age-structured population dynamics models and analyzed how simulated fringed myotis (Myotis thysanodes) populations changed under projected future climate conditions in our study area near Boulder, Colorado (Boulder Models) and throughout western North America (General Models). Each simulation consisted of an initial population of 2,000 females and an approximately stable age distribution at the beginning of the simulation. We allowed each population to be influenced by the mean annual temperature and annual precipitation for our study area and a generalized range-wide model projected through year 2086, for each of four carbon emission scenarios (representative concentration pathways RCP2.6, RCP4.5, RCP6.0, RCP8.5). Each population simulation was repeated 10,000 times. Of the 8 Boulder Model simulations, 1 increased (+29.10%), 3 stayed approximately stable (+2.45%, +0.05%, -0.03%), and 4 simulations decreased substantially (-44.10%, -44.70%, -44.95%, -78.85%). All General Model simulations for western North America decreased by >90% (-93.75%, -96.70%, -96.70%, -98.75%). These results suggest that a changing climate in western North America has the potential to quickly erode some forest bat populations including species of conservation concern, such as fringed myotis.
Graceful Failure and Societal Resilience Analysis Via Agent-Based Modeling and Simulation
NASA Astrophysics Data System (ADS)
Schopf, P. S.; Cioffi-Revilla, C.; Rogers, J. D.; Bassett, J.; Hailegiorgis, A. B.
2014-12-01
Agent-based social modeling is opening up new methodologies for the study of societal response to weather and climate hazards, and providing measures of resiliency that can be studied in many contexts, particularly in coupled human and natural-technological systems (CHANTS). Since CHANTS are complex adaptive systems, societal resiliency may or may not occur, depending on dynamics that lack closed form solutions. Agent-based modeling has been shown to provide a viable theoretical and methodological approach for analyzing and understanding disasters and societal resiliency in CHANTS. Our approach advances the science of societal resilience through computational modeling and simulation methods that complement earlier statistical and mathematical approaches. We present three case studies of social dynamics modeling that demonstrate the use of these agent based models. In Central Asia, we exmaine mutltiple ensemble simulations with varying climate statistics to see how droughts and zuds affect populations, transmission of wealth across generations, and the overall structure of the social system. In Eastern Africa, we explore how successive episodes of drought events affect the adaptive capacity of rural households. Human displacement, mainly, rural to urban migration, and livelihood transition particularly from pastoral to farming are observed as rural households interacting dynamically with the biophysical environment and continually adjust their behavior to accommodate changes in climate. In the far north case we demonstrate one of the first successful attempts to model the complete climate-permafrost-infrastructure-societal interaction network as a complex adaptive system/CHANTS implemented as a ``federated'' agent-based model using evolutionary computation. Analysis of population changes resulting from extreme weather across these and other cases provides evidence for the emergence of new steady states and shifting patterns of resilience.
White, Edward W; Lumley, Thomas; Goodreau, Steven M; Goldbaum, Gary; Hawes, Stephen E
2010-12-01
To produce valid seroincidence estimates, the serological testing algorithm for recent HIV seroconversion (STARHS) assumes independence between infection and testing, which may be absent in clinical data. STARHS estimates are generally greater than cohort-based estimates of incidence from observable person-time and diagnosis dates. The authors constructed a series of partial stochastic models to examine whether testing motivated by suspicion of infection could bias STARHS. One thousand Monte Carlo simulations of 10,000 men who have sex with men were generated using parameters for HIV incidence and testing frequency from data from a clinical testing population in Seattle. In one set of simulations, infection and testing dates were independent. In another set, some intertest intervals were abbreviated to reflect the distribution of intervals between suspected HIV exposure and testing in a group of Seattle men who have sex with men recently diagnosed as having HIV. Both estimation methods were applied to the simulated datasets. Both cohort-based and STARHS incidence estimates were calculated using the simulated data and compared with previously calculated, empirical cohort-based and STARHS seroincidence estimates from the clinical testing population. Under simulated independence between infection and testing, cohort-based and STARHS incidence estimates resembled cohort estimates from the clinical dataset. Under simulated motivated testing, cohort-based estimates remained unchanged, but STARHS estimates were inflated similar to empirical STARHS estimates. Varying motivation parameters appreciably affected STARHS incidence estimates, but not cohort-based estimates. Cohort-based incidence estimates are robust against dependence between testing and acquisition of infection, whereas STARHS incidence estimates are not.
Detecting Directional Selection in the Presence of Recent Admixture in African-Americans
Lohmueller, Kirk E.; Bustamante, Carlos D.; Clark, Andrew G.
2011-01-01
We investigate the performance of tests of neutrality in admixed populations using plausible demographic models for African-American history as well as resequencing data from African and African-American populations. The analysis of both simulated and human resequencing data suggests that recent admixture does not result in an excess of false-positive results for neutrality tests based on the frequency spectrum after accounting for the population growth in the parental African population. Furthermore, when simulating positive selection, Tajima's D, Fu and Li's D, and haplotype homozygosity have lower power to detect population-specific selection using individuals sampled from the admixed population than from the nonadmixed population. Fay and Wu's H test, however, has more power to detect selection using individuals from the admixed population than from the nonadmixed population, especially when the selective sweep ended long ago. Our results have implications for interpreting recent genome-wide scans for positive selection in human populations. PMID:21196524
Modelling disease outbreaks in realistic urban social networks
NASA Astrophysics Data System (ADS)
Eubank, Stephen; Guclu, Hasan; Anil Kumar, V. S.; Marathe, Madhav V.; Srinivasan, Aravind; Toroczkai, Zoltán; Wang, Nan
2004-05-01
Most mathematical models for the spread of disease use differential equations based on uniform mixing assumptions or ad hoc models for the contact process. Here we explore the use of dynamic bipartite graphs to model the physical contact patterns that result from movements of individuals between specific locations. The graphs are generated by large-scale individual-based urban traffic simulations built on actual census, land-use and population-mobility data. We find that the contact network among people is a strongly connected small-world-like graph with a well-defined scale for the degree distribution. However, the locations graph is scale-free, which allows highly efficient outbreak detection by placing sensors in the hubs of the locations network. Within this large-scale simulation framework, we then analyse the relative merits of several proposed mitigation strategies for smallpox spread. Our results suggest that outbreaks can be contained by a strategy of targeted vaccination combined with early detection without resorting to mass vaccination of a population.
Application of a computer simulation model to migrating white-fronted geese in the Klamath Basin
Frederick, R.B.; Clark, William R.; Takekawa, John Y.; McCullough, Dale R.; Barrett, R.H.
1992-01-01
The Pacific greater white-fronted goose (Anser albifrons) population has declined precipitously over the past 20 years. Loss of wetland habitat in California wintering areas has had a significant effect on the population, so recovery of the population may depend on innovative management of the few remaining wetlands. A computer simulation model, REFMOD, was applied to greater white-fronted geese in the Klamath Basin, northern California, to investigate the importance of food availability and hunting disturbance to migrating and wintering populations. Time spent flying and feeding was simulated during fall and early winter, and the resulting energy expenditure was compared with energy consumed to calculate an overall energy balance. This energy balance and the ease with which waterfowl acquired needed food affected emigration rate, and thus, the waterfowl population level was directly tied to availability and distribution of food. The model validly described distances moved by geese from their Tule Lake Refuge roosting site (core) to feeding sites within the surrounding Klamath Basin arena, and exhibited a capability to simulate observed time spent feeding. Based on 25 stochastic simulations, greater white-fronted goose population dynamics were validly simulated over the fall and early-winter (P>0.8). When food was removed from the Tule Lake Refuge, simulated geese had to fly farther (P<0.0001) to find food, hastening emigration and resulting in a decline (P<0.05) in use of the Klamath Basin by geese. Although barley is normally abundant in the basin and is extensively used by geese, simulated elimination of barley in the arena did not cause a reduction in goose numbers (P>0.05). The elimination did cause an increase in the distance traveled to feed (P<0.05), but the availability of other foods in the basin (e.g., potatoes) was evidently sufficient to support the population. The elimination of hunting in the Klamath Basin, and the related decrease in disturbance of feeding birds, had little effect (P>0.05) on the distance traveled to feed or on goose numbers. A 10-fold increase in disturbance hastened emigration and reduced population levels (P<0.0001) during the season by about 30%; a 100-fold increase in disturbance reduced population levels (P<0.0001) by 85%. When goose immigration was increased to simulate an average peak population of approximately 500 000 geese, population levels remained high throughout the fall, indicating the Klamath Basin can sustain a population much larger than currently exists. This suggests food availability and disturbance levels in the Klamath Basin are not responsible for observed population declines during the last 2 decades. REFMOD can easily be used to evaluate the effects of other scenarios related to hunting regimes and food distribution and availability.
Extinction phase transitions in a model of ecological and evolutionary dynamics
NASA Astrophysics Data System (ADS)
Barghathi, Hatem; Tackkett, Skye; Vojta, Thomas
2017-07-01
We study the non-equilibrium phase transition between survival and extinction of spatially extended biological populations using an agent-based model. We especially focus on the effects of global temporal fluctuations of the environmental conditions, i.e., temporal disorder. Using large-scale Monte-Carlo simulations of up to 3 × 107 organisms and 105 generations, we find the extinction transition in time-independent environments to be in the well-known directed percolation universality class. In contrast, temporal disorder leads to a highly unusual extinction transition characterized by logarithmically slow population decay and enormous fluctuations even for large populations. The simulations provide strong evidence for this transition to be of exotic infinite-noise type, as recently predicted by a renormalization group theory. The transition is accompanied by temporal Griffiths phases featuring a power-law dependence of the life time on the population size.
Agent-Based Modeling in Systems Pharmacology.
Cosgrove, J; Butler, J; Alden, K; Read, M; Kumar, V; Cucurull-Sanchez, L; Timmis, J; Coles, M
2015-11-01
Modeling and simulation (M&S) techniques provide a platform for knowledge integration and hypothesis testing to gain insights into biological systems that would not be possible a priori. Agent-based modeling (ABM) is an M&S technique that focuses on describing individual components rather than homogenous populations. This tutorial introduces ABM to systems pharmacologists, using relevant case studies to highlight how ABM-specific strengths have yielded success in the area of preclinical mechanistic modeling.
Large-scale Individual-based Models of Pandemic Influenza Mitigation Strategies
NASA Astrophysics Data System (ADS)
Kadau, Kai; Germann, Timothy; Longini, Ira; Macken, Catherine
2007-03-01
We have developed a large-scale stochastic simulation model to investigate the spread of a pandemic strain of influenza virus through the U.S. population of 281 million people, to assess the likely effectiveness of various potential intervention strategies including antiviral agents, vaccines, and modified social mobility (including school closure and travel restrictions) [1]. The heterogeneous population structure and mobility is based on available Census and Department of Transportation data where available. Our simulations demonstrate that, in a highly mobile population, restricting travel after an outbreak is detected is likely to delay slightly the time course of the outbreak without impacting the eventual number ill. For large basic reproductive numbers R0, we predict that multiple strategies in combination (involving both social and medical interventions) will be required to achieve a substantial reduction in illness rates. [1] T. C. Germann, K. Kadau, I. M. Longini, and C. A. Macken, Proc. Natl. Acad. Sci. (USA) 103, 5935-5940 (2006).
SEIR model simulation for Hepatitis B
NASA Astrophysics Data System (ADS)
Side, Syafruddin; Irwan, Mulbar, Usman; Sanusi, Wahidah
2017-09-01
Mathematical modelling and simulation for Hepatitis B discuss in this paper. Population devided by four variables, namely: Susceptible, Exposed, Infected and Recovered (SEIR). Several factors affect the population in this model is vaccination, immigration and emigration that occurred in the population. SEIR Model obtained Ordinary Differential Equation (ODE) non-linear System 4-D which then reduces to 3-D. SEIR model simulation undertaken to predict the number of Hepatitis B cases. The results of the simulation indicates the number of Hepatitis B cases will increase and then decrease for several months. The result of simulation using the number of case in Makassar also found the basic reproduction number less than one, that means, Makassar city is not an endemic area of Hepatitis B.
INSTAR: simulating the biological cycle of a forest pest in Mediterranean pine stands
NASA Astrophysics Data System (ADS)
Suárez-Muñoz, María; Bonet García, Francisco J.; Hódar, José A.
2017-04-01
The pine processionary moth (Thaumetopoea pityocampa) is a typically Mediterranean forest pest feeding on pine needles during its larval stages. The outbreaks of this pest cause important landscape impacts and public health problems (i.e. larvae are very urticant). Larvae feed during winter months and cold temperature is the main limiting factor in their development. Therefore, rising temperatures are thought to benefit this species. Indeed, observations suggest that outbreaks are becoming more frequent and populations are shifting uphill. The objective of this work is to simulate the biological cycle of T. pityocampa to make predictions about where and when outbreaks will occur. Thus, we have created a model called INSTAR that will help to identify hotspots and foresee massive defoliation episodes. This will enhance the information available for the control of this pest. INSTAR is an Agent-Based Model, which allows the inclusion of important characteristics of the system: emergence, feedback (i.e. interaction between agents and their environment), adaptation (i.e. decision based on the mentioned interactions) and path dependence (i.e. possibilities at one time point are determined by past conditions). These characteristics arise from a set of functions simulating pine growth, processionary development, mortality and movement. These functions are easily extrapolable to other similar biological processes and therefore INSTAR aims at serving of example for other forest pest models. INSTAR is the first comprehensive approach to simulate the biological cycle of T pityocampa. It simulates the pest development in a given area, from which elevation and pine trees are considered. Moreover, it is also a good example of integrating environmental information into a population dynamic model: meteorological variables and soil moisture are obtained from a hydrological model (WiMMed, Herrero et al. 2009) executed for the area of interest. These variables are the inputs of the model, which feed the functions that simulate the processionary life cycle. Model's executions in two different areas and for relatively long time frames (1993-2014 and 2000-2014) yield relevant information about the biological cycle of the forest pest: the simulated peaks of larvae are followed by minimal values of pine biomass and pine infections are more abundant at the edge of the stands. Moreover, emerging patterns such as denso-dependency can be observed. To sum up, INSTAR is a promising tool for modeling T. pityocampa population dynamics. The obtained model will help to improve the decision making process regarding the control of the forest pest. Moreover, its simple structure of functions will facilitate the design of new models simulating other forest pests.
A supply model for nurse workforce projection in Malaysia.
Abas, Zuraida Abal; Ramli, Mohamad Raziff; Desa, Mohamad Ishak; Saleh, Nordin; Hanafiah, Ainul Nadziha; Aziz, Nuraini; Abidin, Zaheera Zainal; Shibghatullah, Abdul Samad; Rahman, Ahmad Fadzli Nizam Abdul; Musa, Haslinda
2017-08-18
The paper aims to provide an insight into the significance of having a simulation model to forecast the supply of registered nurses for health workforce planning policy using System Dynamics. A model is highly in demand to predict the workforce demand for nurses in the future, which it supports for complete development of a needs-based nurse workforce projection using Malaysia as a case study. The supply model consists of three sub-models to forecast the number of registered nurses for the next 15 years: training model, population model and Full Time Equivalent (FTE) model. In fact, the training model is for predicting the number of newly registered nurses after training is completed. Furthermore, the population model is for indicating the number of registered nurses in the nation and the FTE model is useful for counting the number of registered nurses with direct patient care. Each model is described in detail with the logical connection and mathematical governing equation for accurate forecasting. The supply model is validated using error analysis approach in terms of the root mean square percent error and the Theil inequality statistics, which is mportant for evaluating the simulation results. Moreover, the output of simulation results provides a useful insight for policy makers as a what-if analysis is conducted. Some recommendations are proposed in order to deal with the nursing deficit. It must be noted that the results from the simulation model will be used for the next stage of the Needs-Based Nurse Workforce projection project. The impact of this study is that it provides the ability for greater planning and policy making with better predictions.
Simulating a base population in honey bee for molecular genetic studies
2012-01-01
Background Over the past years, reports have indicated that honey bee populations are declining and that infestation by an ecto-parasitic mite (Varroa destructor) is one of the main causes. Selective breeding of resistant bees can help to prevent losses due to the parasite, but it requires that a robust breeding program and genetic evaluation are implemented. Genomic selection has emerged as an important tool in animal breeding programs and simulation studies have shown that it yields more accurate breeding value estimates, higher genetic gain and low rates of inbreeding. Since genomic selection relies on marker data, simulations conducted on a genomic dataset are a pre-requisite before selection can be implemented. Although genomic datasets have been simulated in other species undergoing genetic evaluation, simulation of a genomic dataset specific to the honey bee is required since this species has a distinct genetic and reproductive biology. Our software program was aimed at constructing a base population by simulating a random mating honey bee population. A forward-time population simulation approach was applied since it allows modeling of genetic characteristics and reproductive behavior specific to the honey bee. Results Our software program yielded a genomic dataset for a base population in linkage disequilibrium. In addition, information was obtained on (1) the position of markers on each chromosome, (2) allele frequency, (3) χ2 statistics for Hardy-Weinberg equilibrium, (4) a sorted list of markers with a minor allele frequency less than or equal to the input value, (5) average r2 values of linkage disequilibrium between all simulated marker loci pair for all generations and (6) average r2 value of linkage disequilibrium in the last generation for selected markers with the highest minor allele frequency. Conclusion We developed a software program that takes into account the genetic and reproductive biology specific to the honey bee and that can be used to constitute a genomic dataset compatible with the simulation studies necessary to optimize breeding programs. The source code together with an instruction file is freely accessible at http://msproteomics.org/Research/Misc/honeybeepopulationsimulator.html PMID:22520469
Simulating a base population in honey bee for molecular genetic studies.
Gupta, Pooja; Conrad, Tim; Spötter, Andreas; Reinsch, Norbert; Bienefeld, Kaspar
2012-06-27
Over the past years, reports have indicated that honey bee populations are declining and that infestation by an ecto-parasitic mite (Varroa destructor) is one of the main causes. Selective breeding of resistant bees can help to prevent losses due to the parasite, but it requires that a robust breeding program and genetic evaluation are implemented. Genomic selection has emerged as an important tool in animal breeding programs and simulation studies have shown that it yields more accurate breeding value estimates, higher genetic gain and low rates of inbreeding. Since genomic selection relies on marker data, simulations conducted on a genomic dataset are a pre-requisite before selection can be implemented. Although genomic datasets have been simulated in other species undergoing genetic evaluation, simulation of a genomic dataset specific to the honey bee is required since this species has a distinct genetic and reproductive biology. Our software program was aimed at constructing a base population by simulating a random mating honey bee population. A forward-time population simulation approach was applied since it allows modeling of genetic characteristics and reproductive behavior specific to the honey bee. Our software program yielded a genomic dataset for a base population in linkage disequilibrium. In addition, information was obtained on (1) the position of markers on each chromosome, (2) allele frequency, (3) χ(2) statistics for Hardy-Weinberg equilibrium, (4) a sorted list of markers with a minor allele frequency less than or equal to the input value, (5) average r(2) values of linkage disequilibrium between all simulated marker loci pair for all generations and (6) average r2 value of linkage disequilibrium in the last generation for selected markers with the highest minor allele frequency. We developed a software program that takes into account the genetic and reproductive biology specific to the honey bee and that can be used to constitute a genomic dataset compatible with the simulation studies necessary to optimize breeding programs. The source code together with an instruction file is freely accessible at http://msproteomics.org/Research/Misc/honeybeepopulationsimulator.html.
Hydrology of malaria: Model development and application to a Sahelian village
NASA Astrophysics Data System (ADS)
Bomblies, Arne; Duchemin, Jean-Bernard; Eltahir, Elfatih A. B.
2008-12-01
We present a coupled hydrology and entomology model for the mechanistic simulation of local-scale response of malaria transmission to hydrological and climatological determinants in semiarid, desert fringe environments. The model is applied to the Sahel village of Banizoumbou, Niger, to predict interannual variability in malaria vector mosquito populations that lead to variations in malaria transmission. Using a high-resolution, small-scale distributed hydrology model that incorporates remotely sensed data for land cover and topography, we simulate the formation and persistence of the pools constituting the primary breeding habitat of Anopheles gambiae s.l. mosquitoes, the principal regional malaria vector mosquitoes. An agent-based mosquito population model is coupled to the distributed hydrology model, with aquatic-stage and adult-stage components. Through a dependence of aquatic-stage mosquito development and adult emergence on pool persistence, we model small-scale hydrology as a dominant control of mosquito abundance. For each individual adult mosquito, the model tracks attributes relevant to population dynamics and malaria transmission, which are updated as mosquitoes interact with their environment, humans, and animals. Weekly field observations were made in 2005 and 2006. A 16% increase in rainfall between the two years was accompanied by a 132% increase in mosquito abundance between 2005 and 2006. The model reproduces mosquito population variability at seasonal and interannual timescales and highlights individual pool persistence as a dominant control. Future developments of the presented model can be used in the evaluation of impacts of climate change on malaria, as well as the a priori evaluation of environmental management-based interventions.
Estimation of the relative influence of climate change, compared to other human activities, on dynamics of Pacific salmon (Oncorhynchus spp.) populations can help management agencies take appropriate management actions. We used empirically based simulation modelling of 48 sockeye...
Reserve design to maximize species persistence
Robert G. Haight; Laurel E. Travis
2008-01-01
We develop a reserve design strategy to maximize the probability of species persistence predicted by a stochastic, individual-based, metapopulation model. Because the population model does not fit exact optimization procedures, our strategy involves deriving promising solutions from theory, obtaining promising solutions from a simulation optimization heuristic, and...
Debris Dispersion Model Using Java 3D
NASA Technical Reports Server (NTRS)
Thirumalainambi, Rajkumar; Bardina, Jorge
2004-01-01
This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.
Yao, Weiwei; Chen, Yuansheng
2018-04-01
Colorado River is a unique ecosystem and provides important ecological services such as habitat for fish species as well as water power energy supplies. River management for this ecosystem requires assessment and decision support tools for fish which involves protecting, restoring as well as forecasting of future conditions. In this paper, a habitat and population model was developed and used to determine the levels of fish habitat suitability and population density in Colorado River between Lees Ferry and Lake Mead. The short term target fish populations are also predicted based on native fish recovery strategy. This model has been developed by combining hydrodynamics, heat transfer and sediment transport models with a habitat suitability index model and then coupling with habitat model into life stage population model. The fish were divided into four life stages according to the fish length. Three most abundant and typical native and non-native fish were selected as target species, which are rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta) and flannelmouth sucker (Catostomus latipinnis). Flow velocity, water depth, water temperature and substrates were used as the suitability indicators in habitat model and overall suitability index (OSI) as well as weight usable area (WUA) was used as an indicator in population model. A comparison was made between simulated fish population alteration and surveyed fish number fluctuation during 2000 to 2009. The application of this habitat and population model indicates that this model can be accurate present habitat situation and targets fish population dynamics of in the study areas. The analysis also indicates the flannelmouth sucker population will steadily increase while the rainbow trout will decrease based on the native fish recovery scheme. Copyright © 2018. Published by Elsevier Inc.
Modelling the spread of innovation in wild birds.
Shultz, Thomas R; Montrey, Marcel; Aplin, Lucy M
2017-06-01
We apply three plausible algorithms in agent-based computer simulations to recent experiments on social learning in wild birds. Although some of the phenomena are simulated by all three learning algorithms, several manifestations of social conformity bias are simulated by only the approximate majority (AM) algorithm, which has roots in chemistry, molecular biology and theoretical computer science. The simulations generate testable predictions and provide several explanatory insights into the diffusion of innovation through a population. The AM algorithm's success raises the possibility of its usefulness in studying group dynamics more generally, in several different scientific domains. Our differential-equation model matches simulation results and provides mathematical insights into the dynamics of these algorithms. © 2017 The Author(s).
SEIR model simulation for Hepatitis B
NASA Astrophysics Data System (ADS)
Side, Syafruddin; Irwan, Mulbar, Usman; Sanusi, Wahidah
2017-09-01
Mathematical modelling and simulation for Hepatitis B discuss in this paper. Population devided by four variables, namely: Susceptible, Exposed, Infected and Recovered (SEIR). Several factors affect the population in this model is vaccination, immigration and emigration that occurred in the population. SEIR Model obtained Ordinary Differential Equation (ODE) non-linear System 4-D which then reduces to 3-D. SEIR model simulation undertaken to predict the number of Hepatitis B cases. The results of the simulation indicates the number of Hepatitis B cases will increase and then decrease for several months. The result of simulation using the number of case in Makassar also found the basic reproduction number less than one, that means, Makassar city is not an endemic area of Hepatitis B. With approval from the proceedings editor article 020185 titled, "SEIR model simulation for Hepatitis B," is retracted from the public record, as it is a duplication of article 020198 published in the same volume.
NASA Astrophysics Data System (ADS)
Zhang, Shaojun; Wu, Ye; Huang, Ruikun; Wang, Jiandong; Yan, Han; Zheng, Yali; Hao, Jiming
2016-08-01
Vehicle emissions containing air pollutants created substantial environmental impacts on air quality for many traffic-populated cities in eastern Asia. A high-resolution emission inventory is a useful tool compared with traditional tools (e.g. registration data-based approach) to accurately evaluate real-world traffic dynamics and their environmental burden. In this study, Macau, one of the most populated cities in the world, is selected to demonstrate a high-resolution simulation of vehicular emissions and their contribution to air pollutant concentrations by coupling multimodels. First, traffic volumes by vehicle category on 47 typical roads were investigated during weekdays in 2010 and further applied in a networking demand simulation with the TransCAD model to establish hourly profiles of link-level vehicle counts. Local vehicle driving speed and vehicle age distribution data were also collected in Macau. Second, based on a localized vehicle emission model (e.g. the emission factor model for the Beijing vehicle fleet - Macau, EMBEV-Macau), this study established a link-based vehicle emission inventory in Macau with high resolution meshed in a temporal and spatial framework. Furthermore, we employed the AERMOD (AMS/EPA Regulatory Model) model to map concentrations of CO and primary PM2.5 contributed by local vehicle emissions during weekdays in November 2010. This study has discerned the strong impact of traffic flow dynamics on the temporal and spatial patterns of vehicle emissions, such as a geographic discrepancy of spatial allocation up to 26 % between THC and PM2.5 emissions owing to spatially heterogeneous vehicle-use intensity between motorcycles and diesel fleets. We also identified that the estimated CO2 emissions from gasoline vehicles agreed well with the statistical fuel consumption in Macau. Therefore, this paper provides a case study and a solid framework for developing high-resolution environment assessment tools for other vehicle-populated cities in eastern Asia.
Pisu, Massimo; Concas, Alessandro; Cao, Giacomo
2015-04-01
Cell cycle regulates proliferative cell capacity under normal or pathologic conditions, and in general it governs all in vivo/in vitro cell growth and proliferation processes. Mathematical simulation by means of reliable and predictive models represents an important tool to interpret experiment results, to facilitate the definition of the optimal operating conditions for in vitro cultivation, or to predict the effect of a specific drug in normal/pathologic mammalian cells. Along these lines, a novel model of cell cycle progression is proposed in this work. Specifically, it is based on a population balance (PB) approach that allows one to quantitatively describe cell cycle progression through the different phases experienced by each cell of the entire population during its own life. The transition between two consecutive cell cycle phases is simulated by taking advantage of the biochemical kinetic model developed by Gérard and Goldbeter (2009) which involves cyclin-dependent kinases (CDKs) whose regulation is achieved through a variety of mechanisms that include association with cyclins and protein inhibitors, phosphorylation-dephosphorylation, and cyclin synthesis or degradation. This biochemical model properly describes the entire cell cycle of mammalian cells by maintaining a sufficient level of detail useful to identify check point for transition and to estimate phase duration required by PB. Specific examples are discussed to illustrate the ability of the proposed model to simulate the effect of drugs for in vitro trials of interest in oncology, regenerative medicine and tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Structure of the Distant Kuiper Belt in a Nice Model Scenario
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pike, R. E.; Shankman, C. J.; Kavelaars, J. J.
2017-03-01
This work explores the orbital distribution of minor bodies in the outer Solar System emplaced as a result of a Nice model migration from the simulations of Brasser and Morbidelli. This planetary migration scatters a planetesimal disk from between 29 and 34 au and emplaces a population of objects into the Kuiper Belt region. From the 2:1 Neptune resonance and outward, the test particles analyzed populate the outer resonances with orbital distributions consistent with trans-Neptunian object (TNO) detections in semimajor axis, inclination, and eccentricity, while capture into the closest resonances is too efficient. The relative populations of the simulated scatteringmore » objects and resonant objects in the 3:1 and 4:1 resonances are also consistent with observed populations based on debiased TNO surveys, but the 5:1 resonance is severely underpopulated compared to population estimates from survey results. Scattering emplacement results in the expected orbital distribution for the majority of the TNO populations; however, the origin of the large observed population in the 5:1 resonance remains unexplained.« less
Laurence, Caroline O; Heywood, Troy; Bell, Janice; Atkinson, Kaye; Karnon, Jonathan
2018-03-27
Health workforce planning models have been developed to estimate the future health workforce requirements for a population whom they serve and have been used to inform policy decisions. To adapt and further develop a need-based GP workforce simulation model to incorporate current and estimated geographic distribution of patients and GPs. A need-based simulation model that estimates the supply of GPs and levels of services required in South Australia (SA) was adapted and applied to the Western Australian (WA) workforce. The main outcome measure was the differences in the number of full-time equivalent (FTE) GPs supplied and required from 2013 to 2033. The base scenario estimated a shortage of GPs in WA from 2019 onwards with a shortage of 493 FTE GPs in 2033, while for SA, estimates showed an oversupply over the projection period. The WA urban and rural models estimated an urban shortage of GPs over this period. A reduced international medical graduate recruitment scenario resulted in estimated shortfalls of GPs by 2033 for WA and SA. The WA-specific scenarios of lower population projections and registrar work value resulted in a reduced shortage of FTE GPs in 2033, while unfilled training places increased the shortfall of FTE GPs in 2033. The simulation model incorporates contextual differences to its structure that allows within and cross jurisdictional comparisons of workforce estimations. It also provides greater insights into the drivers of supply and demand and the impact of changes in workforce policy, promoting more informed decision-making.
Simulating the evolution of glyphosate resistance in grains farming in northern Australia.
Thornby, David F; Walker, Steve R
2009-09-01
The evolution of resistance to herbicides is a substantial problem in contemporary agriculture. Solutions to this problem generally consist of the use of practices to control the resistant population once it evolves, and/or to institute preventative measures before populations become resistant. Herbicide resistance evolves in populations over years or decades, so predicting the effectiveness of preventative strategies in particular relies on computational modelling approaches. While models of herbicide resistance already exist, none deals with the complex regional variability in the northern Australian sub-tropical grains farming region. For this reason, a new computer model was developed. The model consists of an age- and stage-structured population model of weeds, with an existing crop model used to simulate plant growth and competition, and extensions to the crop model added to simulate seed bank ecology and population genetics factors. Using awnless barnyard grass (Echinochloa colona) as a test case, the model was used to investigate the likely rate of evolution under conditions expected to produce high selection pressure. Simulating continuous summer fallows with glyphosate used as the only means of weed control resulted in predicted resistant weed populations after approx. 15 years. Validation of the model against the paddock history for the first real-world glyphosate-resistant awnless barnyard grass population shows that the model predicted resistance evolution to within a few years of the real situation. This validation work shows that empirical validation of herbicide resistance models is problematic. However, the model simulates the complexities of sub-tropical grains farming in Australia well, and can be used to investigate, generate and improve glyphosate resistance prevention strategies.
Epstein, Joshua M.; Pankajakshan, Ramesh; Hammond, Ross A.
2011-01-01
We introduce a novel hybrid of two fields—Computational Fluid Dynamics (CFD) and Agent-Based Modeling (ABM)—as a powerful new technique for urban evacuation planning. CFD is a predominant technique for modeling airborne transport of contaminants, while ABM is a powerful approach for modeling social dynamics in populations of adaptive individuals. The hybrid CFD-ABM method is capable of simulating how large, spatially-distributed populations might respond to a physically realistic contaminant plume. We demonstrate the overall feasibility of CFD-ABM evacuation design, using the case of a hypothetical aerosol release in Los Angeles to explore potential effectiveness of various policy regimes. We conclude by arguing that this new approach can be powerfully applied to arbitrary population centers, offering an unprecedented preparedness and catastrophic event response tool. PMID:21687788
Suzuki, Misaki; Tse, Susanna; Hirai, Midori; Kurebayashi, Yoichi
2017-05-09
Tofacitinib (3-[(3R,4R)-4-methyl-3-[methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3 -oxopropanenitrile) is an oral Janus kinase inhibitor that is approved in countries including Japan and the United States for the treatment of rheumatoid arthritis, and is being developed across the globe for the treatment of inflammatory diseases. In the present study, a physiologically-based pharmacokinetic model was applied to compare the pharmacokinetics of tofacitinib in Japanese and Caucasians to assess the potential impact of ethnicity on the dosing regimen in the two populations. Simulated plasma concentration profiles and pharmacokinetic parameters, i.e. maximum concentration and area under plasma concentration-time curve, in Japanese and Caucasian populations after single or multiple doses of 1 to 30 mg tofacitinib were in agreement with clinically observed data. The similarity in simulated exposure between Japanese and Caucasian populations supports the currently approved dosing regimen in Japan and the United States, where there is no recommendation for dose adjustment according to race. Simulated results for single (1 to 100 mg) or multiple doses (5 mg twice daily) of tofacitinib in extensive and poor metabolizers of CYP2C19, an enzyme which has been shown to contribute in part to tofacitinib elimination and is known to exhibit higher frequency in Japanese compared to Caucasians, were also in support of no recommendation for dose adjustment in CYP2C19 poor metabolizers. This study demonstrated a successful application of physiologically-based pharmacokinetic modeling in evaluating ethnic sensitivity in pharmacokinetics at early stages of development, presenting its potential value as an efficient and scientific method for optimal dose setting in the Japanese population.
SUZUKI, MISAKI; TSE, SUSANNA; HIRAI, MIDORI; KUREBAYASHI, YOICHI
2016-01-01
Tofacitinib (3-[(3R,4R)-4-methyl-3-[methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3 -oxopropanenitrile) is an oral Janus kinase inhibitor that is approved in countries including Japan and the United States for the treatment of rheumatoid arthritis, and is being developed across the globe for the treatment of inflammatory diseases. In the present study, a physiologically-based pharmacokinetic model was applied to compare the pharmacokinetics of tofacitinib in Japanese and Caucasians to assess the potential impact of ethnicity on the dosing regimen in the two populations. Simulated plasma concentration profiles and pharmacokinetic parameters, i.e. maximum concentration and area under plasma concentration-time curve, in Japanese and Caucasian populations after single or multiple doses of 1 to 30 mg tofacitinib were in agreement with clinically observed data. The similarity in simulated exposure between Japanese and Caucasian populations supports the currently approved dosing regimen in Japan and the United States, where there is no recommendation for dose adjustment according to race. Simulated results for single (1 to 100 mg) or multiple doses (5 mg twice daily) of tofacitinib in extensive and poor metabolizers of CYP2C19, an enzyme which has been shown to contribute in part to tofacitinib elimination and is known to exhibit higher frequency in Japanese compared to Caucasians, were also in support of no recommendation for dose adjustment in CYP2C19 poor metabolizers. This study demonstrated a successful application of physiologically-based pharmacokinetic modeling in evaluating ethnic sensitivity in pharmacokinetics at early stages of development, presenting its potential value as an efficient and scientific method for optimal dose setting in the Japanese population. PMID:28490712
Hardiansyah, Deni; Attarwala, Ali Asgar; Kletting, Peter; Mottaghy, Felix M; Glatting, Gerhard
2017-10-01
To investigate the accuracy of predicted time-integrated activity coefficients (TIACs) in peptide-receptor radionuclide therapy (PRRT) using simulated dynamic PET data and a physiologically based pharmacokinetic (PBPK) model. PBPK parameters were estimated using biokinetic data of 15 patients after injection of (152±15)MBq of 111 In-DTPAOC (total peptide amount (5.78±0.25)nmol). True mathematical phantoms of patients (MPPs) were the PBPK model with the estimated parameters. Dynamic PET measurements were simulated as being done after bolus injection of 150MBq 68 Ga-DOTATATE using the true MPPs. Dynamic PET scans around 35min p.i. (P 1 ), 4h p.i. (P 2 ) and the combination of P 1 and P 2 (P 3 ) were simulated. Each measurement was simulated with four frames of 5min each and 2 bed positions. PBPK parameters were fitted to the PET data to derive the PET-predicted MPPs. Therapy was simulated assuming an infusion of 5.1GBq of 90 Y-DOTATATE over 30min in both true and PET-predicted MPPs. TIACs of simulated therapy were calculated, true MPPs (true TIACs) and predicted MPPs (predicted TIACs) followed by the calculation of variabilities v. For P 1 and P 2 the population variabilities of kidneys, liver and spleen were acceptable (v<10%). For the tumours and the remainders, the values were large (up to 25%). For P 3 , population variabilities for all organs including the remainder further improved, except that of the tumour (v>10%). Treatment planning of PRRT based on dynamic PET data seems possible for the kidneys, liver and spleen using a PBPK model and patient specific information. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
A malaria transmission-directed model of mosquito life cycle and ecology
2011-01-01
Background Malaria is a major public health issue in much of the world, and the mosquito vectors which drive transmission are key targets for interventions. Mathematical models for planning malaria eradication benefit from detailed representations of local mosquito populations, their natural dynamics and their response to campaign pressures. Methods A new model is presented for mosquito population dynamics, effects of weather, and impacts of multiple simultaneous interventions. This model is then embedded in a large-scale individual-based simulation and results for local elimination of malaria are discussed. Mosquito population behaviours, such as anthropophily and indoor feeding, are included to study their effect upon the efficacy of vector control-based elimination campaigns. Results Results for vector control tools, such as bed nets, indoor spraying, larval control and space spraying, both alone and in combination, are displayed for a single-location simulation with vector species and seasonality characteristic of central Tanzania, varying baseline transmission intensity and vector bionomics. The sensitivities to habitat type, anthropophily, indoor feeding, and baseline transmission intensity are explored. Conclusions The ability to model a spectrum of local vector species with different ecologies and behaviours allows local customization of packages of interventions and exploration of the effect of proposed new tools. PMID:21999664
ESTIMATING CHILDREN'S DERMAL AND NON-DIETARY INGESTION EXPOSURE AND DOSE WITH EPA'S SHEDS MODEL
A physically-based stochastic model (SHEDS) has been developed to estimate pesticide exposure and dose to children via dermal residue contact and non-dietary ingestion. Time-location-activity data are sampled from national survey results to generate a population of simulated ch...
Tewarie, Prejaas; Steenwijk, Martijn D; Brookes, Matthew J; Uitdehaag, Bernard M J; Geurts, Jeroen J G; Stam, Cornelis J; Schoonheim, Menno M
2018-06-01
To understand the heterogeneity of functional connectivity results reported in the literature, we analyzed the separate effects of grey and white matter damage on functional connectivity and networks in multiple sclerosis. For this, we employed a biophysical thalamo-cortical model consisting of interconnected cortical and thalamic neuronal populations, informed and amended by empirical diffusion MRI tractography data, to simulate functional data that mimic neurophysiological signals. Grey matter degeneration was simulated by decreasing within population connections and white matter degeneration by lowering between population connections, based on lesion predilection sites in multiple sclerosis. For all simulations, functional connectivity and functional network organization are quantified by phase synchronization and network integration, respectively. Modeling results showed that both cortical and thalamic grey matter damage induced a global increase in functional connectivity, whereas white matter damage induced an initially increased connectivity followed by a global decrease. Both white and especially grey matter damage, however, induced a decrease in network integration. These empirically informed simulations show that specific topology and timing of structural damage are nontrivial aspects in explaining functional abnormalities in MS. Insufficient attention to these aspects likely explains contradictory findings in multiple sclerosis functional imaging studies so far. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Zhang, Y; Roberts, J; Tortorici, M; Veldman, A; St Ledger, K; Feussner, A; Sidhu, J
2017-06-01
Essentials rVIII-SingleChain is a unique recombinant factor VIII (FVIII) molecule. A population pharmacokinetic model was based on FVIII activity of severe hemophilia A patients. The model was used to simulate factor VIII activity-time profiles for various dosing scenarios. The model supports prolonged dosing of rVIII-SingleChain with intervals of up to twice per week. Background Single-chain recombinant coagulation factor VIII (rVIII-SingleChain) is a unique recombinant coagulation factor VIII molecule. Objectives To: (i) characterize the population pharmacokinetics (PK) of rVIII-SingleChain in patients with severe hemophilia A; (ii) identify correlates of variability in rVIII-SingleChain PK; and (iii) simulate various dosing scenarios of rVIII-SingleChain. Patients/Methods A population PK model was developed, based on FVIII activity levels of 130 patients with severe hemophilia A (n = 91 for ≥ 12-65 years; n = 39 for < 12 years) who had participated in a single-dose PK investigation with rVIII-SingleChain 50 IU kg -1 . PK sampling was performed for up to 96 h. Results A two-compartment population PK model with first-order elimination adequately described FVIII activity. Body weight and predose level of von Willebrand factor were significant covariates on clearance, and body weight was a significant covariate on the central distribution volume. Simulations using the model with various dosing scenarios estimated that > 85% and > 93% of patients were predicted to maintain FVIII activity level above 1 IU dL -1 , at all times with three-times-weekly dosing (given on days 0, 2, and 4.5) at the lowest (20 IU kg -1 ) and highest (50 IU kg -1 ) doses, respectively. For twice weekly dosing (days 0 and 3.5) of 50 IU kg -1 rVIII-SingleChain, 62-80% of patients across all ages were predicted to maintain a FVIII activity level above 1 IU dL -1 at day 7. Conclusions The population PK model adequately characterized rVIII-SingleChain PK, and the model can be utilized to simulate FVIII activity-time profiles for various dosing scenarios. © 2017 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.
Simulating cancer growth with multiscale agent-based modeling.
Wang, Zhihui; Butner, Joseph D; Kerketta, Romica; Cristini, Vittorio; Deisboeck, Thomas S
2015-02-01
There have been many techniques developed in recent years to in silico model a variety of cancer behaviors. Agent-based modeling is a specific discrete-based hybrid modeling approach that allows simulating the role of diversity in cell populations as well as within each individual cell; it has therefore become a powerful modeling method widely used by computational cancer researchers. Many aspects of tumor morphology including phenotype-changing mutations, the adaptation to microenvironment, the process of angiogenesis, the influence of extracellular matrix, reactions to chemotherapy or surgical intervention, the effects of oxygen and nutrient availability, and metastasis and invasion of healthy tissues have been incorporated and investigated in agent-based models. In this review, we introduce some of the most recent agent-based models that have provided insight into the understanding of cancer growth and invasion, spanning multiple biological scales in time and space, and we further describe several experimentally testable hypotheses generated by those models. We also discuss some of the current challenges of multiscale agent-based cancer models. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghafouri, H. R.; Mosharaf-Dehkordi, M.; Afzalan, B.
2017-07-01
A simulation-optimization model is proposed for identifying the characteristics of local immiscible NAPL contaminant sources inside aquifers. This model employs the UTCHEM 9.0 software as its simulator for solving the governing equations associated with the multi-phase flow in porous media. As the optimization model, a novel two-level saturation based Imperialist Competitive Algorithm (ICA) is proposed to estimate the parameters of contaminant sources. The first level consists of three parallel independent ICAs and plays as a pre-conditioner for the second level which is a single modified ICA. The ICA in the second level is modified by dividing each country into a number of provinces (smaller parts). Similar to countries in the classical ICA, these provinces are optimized by the assimilation, competition, and revolution steps in the ICA. To increase the diversity of populations, a new approach named knock the base method is proposed. The performance and accuracy of the simulation-optimization model is assessed by solving a set of two and three-dimensional problems considering the effects of different parameters such as the grid size, rock heterogeneity and designated monitoring networks. The obtained numerical results indicate that using this simulation-optimization model provides accurate results at a less number of iterations when compared with the model employing the classical one-level ICA. A model is proposed to identify characteristics of immiscible NAPL contaminant sources. The contaminant is immiscible in water and multi-phase flow is simulated. The model is a multi-level saturation-based optimization algorithm based on ICA. Each answer string in second level is divided into a set of provinces. Each ICA is modified by incorporating a new knock the base model.
Conservation biology for suites of species: Demographic modeling for Pacific island kingfishers
Kesler, D.C.; Haig, S.M.
2007-01-01
Conservation practitioners frequently extrapolate data from single-species investigations when managing critically endangered populations. However, few researchers initiate work with the intent of making findings useful to conservation efforts for other species. We presented and explored the concept of conducting conservation-oriented research for suites of geographically separated populations with similar natural histories, resource needs, and extinction threats. An example was provided in the form of an investigation into the population demography of endangered Micronesian kingfishers (Todiramphus cinnamominus). We provided the first demographic parameter estimates for any of the 12 endangered Pacific Todiramphus species, and used results to develop a population projection matrix model for management throughout the insular Pacific. Further, we used the model for elasticity and simulation analyses with demographic values that randomly varied across ranges that might characterize congener populations. Results from elasticity and simulation analyses indicated that changes in breeding adult survival exerted the greatest magnitude of influence on population dynamics. However, changes in nestling survival were more consistently correlated with population dynamics as demographic rates were randomly altered. We concluded that conservation practitioners working with endangered Pacific kingfishers should primarily focus efforts on factors affecting nestling and breeder survival, and secondarily address fledgling juveniles and helpers. Further, we described how the generalized base model might be changed to focus on individual populations and discussed the potential application of multi-species models to other conservation situations. ?? 2007 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jager, Yetta
2005-01-01
This study uses a genetic individual-based model of white sturgeon (Acipenser transmontanus) populations in a river to examine the genetic and demographic trade-offs associated with operating a conservation hatchery. Simulation experiments evaluated three management practices: (i) setting quotas to equalize family contributions in an effort to prevent genetic swamping, (ii) an adaptive management scheme that interrupts stocking when introgression exceeds a specified threshold, and (iii) alternative broodstock selection strategies that influence domestication. The first set of simulations, designed to evaluate equalizing the genetic contribution of families, did not show the genetic benefits expected. The second set of simulations showed thatmore » simulated adaptive management was not successful in controlling introgression over the long term, especially with uncertain feedback. The third set of simulations compared the effects of three alternative broodstock selection strategies on domestication for hypothetical traits controlling early density-dependent survival. Simulated aquaculture selected for a density-tolerant phenotype when broodstock were taken from a genetically connected population. Using broodstock from an isolated population (i.e., above an upstream barrier or in a different watershed) was more effective at preventing domestication than using wild broodstock from a connected population.« less
Mena, Carlos F.; Walsh, Stephen J.; Frizzelle, Brian G.; Xiaozheng, Yao; Malanson, George P.
2010-01-01
This paper describes the design and implementation of an Agent-Based Model (ABM) used to simulate land use change on household farms in the Northern Ecuadorian Amazon (NEA). The ABM simulates decision-making processes at the household level that is examined through a longitudinal, socio-economic and demographic survey that was conducted in 1990 and 1999. Geographic Information Systems (GIS) are used to establish spatial relationships between farms and their environment, while classified Landsat Thematic Mapper (TM) imagery is used to set initial land use/land cover conditions for the spatial simulation, assess from-to land use/land cover change patterns, and describe trajectories of land use change at the farm and landscape levels. Results from prior studies in the NEA provide insights into the key social and ecological variables, describe human behavioral functions, and examine population-environment interactions that are linked to deforestation and agricultural extensification, population migration, and demographic change. Within the architecture of the model, agents are classified as active or passive. The model comprises four modules, i.e., initialization, demography, agriculture, and migration that operate individually, but are linked through key household processes. The main outputs of the model include a spatially-explicit representation of the land use/land cover on survey and non-survey farms and at the landscape level for each annual time-step, as well as simulated socio-economic and demographic characteristics of households and communities. The work describes the design and implementation of the model and how population-environment interactions can be addressed in a frontier setting. The paper contributes to land change science by examining important pattern-process relations, advocating a spatial modeling approach that is capable of synthesizing fundamental relationships at the farm level, and links people and environment in complex ways. PMID:24436501
A fortran program for Monte Carlo simulation of oil-field discovery sequences
Bohling, Geoffrey C.; Davis, J.C.
1993-01-01
We have developed a program for performing Monte Carlo simulation of oil-field discovery histories. A synthetic parent population of fields is generated as a finite sample from a distribution of specified form. The discovery sequence then is simulated by sampling without replacement from this parent population in accordance with a probabilistic discovery process model. The program computes a chi-squared deviation between synthetic and actual discovery sequences as a function of the parameters of the discovery process model, the number of fields in the parent population, and the distributional parameters of the parent population. The program employs the three-parameter log gamma model for the distribution of field sizes and employs a two-parameter discovery process model, allowing the simulation of a wide range of scenarios. ?? 1993.
Bret C. Harvey; Jason L. White; Rodney J. Nakamoto; Steven F. Railsback
2014-01-01
Resource managers commonly face the need to evaluate the ecological consequences of specific water diversions of small streams. We addressed this need by conducting 4 years of biophysical monitoring of stream reaches above and below a diversion and applying two individual-based models of salmonid fish that simulated different levels of behavioral complexity. The...
Importance of fish behaviour in modelling conservation problems: food limitation as an example
Steven Railsback; Bret Harvey
2011-01-01
Simulation experiments using the inSTREAM individual-based brown trout Salmo trutta population model explored the role of individual adaptive behaviour in food limitation, as an example of how behaviour can affect managersâ understanding of conservation problems. The model includes many natural complexities in habitat (spatial and temporal variation in characteristics...
The Lawrence Berkeley National Laboratory Population Impact Assessment Modeling Framework (PIAMF) was expanded to enable determination of indoor PM2.5 concentrations and exposures in a set of 50,000 homes representing the US housing stock. A mass-balance model is used to calculat...
InSTREAM: the individual-based stream trout research and environmental assessment model
Steven F. Railsback; Bret C. Harvey; Stephen K. Jackson; Roland H. Lamberson
2009-01-01
This report documents Version 4.2 of InSTREAM, including its formulation, software, and application to research and management problems. InSTREAM is a simulation model designed to understand how stream and river salmonid populations respond to habitat alteration, including altered flow, temperature, and turbidity regimes and changes in channel morphology. The model...
Monte Carlo simulations of parapatric speciation
NASA Astrophysics Data System (ADS)
Schwämmle, V.; Sousa, A. O.; de Oliveira, S. M.
2006-06-01
Parapatric speciation is studied using an individual-based model with sexual reproduction. We combine the theory of mutation accumulation for biological ageing with an environmental selection pressure that varies according to the individuals geographical positions and phenotypic traits. Fluctuations and genetic diversity of large populations are crucial ingredients to model the features of evolutionary branching and are intrinsic properties of the model. Its implementation on a spatial lattice gives interesting insights into the population dynamics of speciation on a geographical landscape and the disruptive selection that leads to the divergence of phenotypes. Our results suggest that assortative mating is not an obligatory ingredient to obtain speciation in large populations at low gene flow.
Hybrid stochastic simulations of intracellular reaction-diffusion systems.
Kalantzis, Georgios
2009-06-01
With the observation that stochasticity is important in biological systems, chemical kinetics have begun to receive wider interest. While the use of Monte Carlo discrete event simulations most accurately capture the variability of molecular species, they become computationally costly for complex reaction-diffusion systems with large populations of molecules. On the other hand, continuous time models are computationally efficient but they fail to capture any variability in the molecular species. In this study a hybrid stochastic approach is introduced for simulating reaction-diffusion systems. We developed an adaptive partitioning strategy in which processes with high frequency are simulated with deterministic rate-based equations, and those with low frequency using the exact stochastic algorithm of Gillespie. Therefore the stochastic behavior of cellular pathways is preserved while being able to apply it to large populations of molecules. We describe our method and demonstrate its accuracy and efficiency compared with the Gillespie algorithm for two different systems. First, a model of intracellular viral kinetics with two steady states and second, a compartmental model of the postsynaptic spine head for studying the dynamics of Ca+2 and NMDA receptors.
Ait Kaci Azzou, S; Larribe, F; Froda, S
2016-10-01
In Ait Kaci Azzou et al. (2015) we introduced an Importance Sampling (IS) approach for estimating the demographic history of a sample of DNA sequences, the skywis plot. More precisely, we proposed a new nonparametric estimate of a population size that changes over time. We showed on simulated data that the skywis plot can work well in typical situations where the effective population size does not undergo very steep changes. In this paper, we introduce an iterative procedure which extends the previous method and gives good estimates under such rapid variations. In the iterative calibrated skywis plot we approximate the effective population size by a piecewise constant function, whose values are re-estimated at each step. These piecewise constant functions are used to generate the waiting times of non homogeneous Poisson processes related to a coalescent process with mutation under a variable population size model. Moreover, the present IS procedure is based on a modified version of the Stephens and Donnelly (2000) proposal distribution. Finally, we apply the iterative calibrated skywis plot method to a simulated data set from a rapidly expanding exponential model, and we show that the method based on this new IS strategy correctly reconstructs the demographic history. Copyright © 2016. Published by Elsevier Inc.
McCarthy, Robert J; Levine, Stephen H; Reed, J Michael
2013-08-15
To predict effectiveness of 3 interventional methods of population control for feral cat colonies. Population model. Estimates of vital data for feral cats. Data were gathered from the literature regarding the demography and mating behavior of feral cats. An individual-based stochastic simulation model was developed to evaluate the effectiveness of trap-neuter-release (TNR), lethal control, and trap-vasectomy-hysterectomy-release (TVHR) in decreasing the size of feral cat populations. TVHR outperformed both TNR and lethal control at all annual capture probabilities between 10% and 90%. Unless > 57% of cats were captured and neutered annually by TNR or removed by lethal control, there was minimal effect on population size. In contrast, with an annual capture rate of ≥ 35%, TVHR caused population size to decrease. An annual capture rate of 57% eliminated the modeled population in 4,000 days by use of TVHR, whereas > 82% was required for both TNR and lethal control. When the effect of fraction of adult cats neutered on kitten and young juvenile survival rate was included in the analysis, TNR performed progressively worse and could be counterproductive, such that population size increased, compared with no intervention at all. TVHR should be preferred over TNR for management of feral cats if decrease in population size is the goal. This model allowed for many factors related to the trapping program and cats to be varied and should be useful for determining the financial and person-effort commitments required to have a desired effect on a given feral cat population.
SimBA: simulation algorithm to fit extant-population distributions.
Parida, Laxmi; Haiminen, Niina
2015-03-14
Simulation of populations with specified characteristics such as allele frequencies, linkage disequilibrium etc., is an integral component of many studies, including in-silico breeding optimization. Since the accuracy and sensitivity of population simulation is critical to the quality of the output of the applications that use them, accurate algorithms are required to provide a strong foundation to the methods in these studies. In this paper we present SimBA (Simulation using Best-fit Algorithm) a non-generative approach, based on a combination of stochastic techniques and discrete methods. We optimize a hill climbing algorithm and extend the framework to include multiple subpopulation structures. Additionally, we show that SimBA is very sensitive to the input specifications, i.e., very similar but distinct input characteristics result in distinct outputs with high fidelity to the specified distributions. This property of the simulation is not explicitly modeled or studied by previous methods. We show that SimBA outperforms the existing population simulation methods, both in terms of accuracy as well as time-efficiency. Not only does it construct populations that meet the input specifications more stringently than other published methods, SimBA is also easy to use. It does not require explicit parameter adaptations or calibrations. Also, it can work with input specified as distributions, without an exemplar matrix or population as required by some methods. SimBA is available at http://researcher.ibm.com/project/5669 .
Cherry, S.; White, G.C.; Keating, K.A.; Haroldson, Mark A.; Schwartz, Charles C.
2007-01-01
Current management of the grizzly bear (Ursus arctos) population in Yellowstone National Park and surrounding areas requires annual estimation of the number of adult female bears with cubs-of-the-year. We examined the performance of nine estimators of population size via simulation. Data were simulated using two methods for different combinations of population size, sample size, and coefficient of variation of individual sighting probabilities. We show that the coefficient of variation does not, by itself, adequately describe the effects of capture heterogeneity, because two different distributions of capture probabilities can have the same coefficient of variation. All estimators produced biased estimates of population size with bias decreasing as effort increased. Based on the simulation results we recommend the Chao estimator for model M h be used to estimate the number of female bears with cubs of the year; however, the estimator of Chao and Shen may also be useful depending on the goals of the research.
Discrete bivariate population balance modelling of heteroaggregation processes.
Rollié, Sascha; Briesen, Heiko; Sundmacher, Kai
2009-08-15
Heteroaggregation in binary particle mixtures was simulated with a discrete population balance model in terms of two internal coordinates describing the particle properties. The considered particle species are of different size and zeta-potential. Property space is reduced with a semi-heuristic approach to enable an efficient solution. Aggregation rates are based on deterministic models for Brownian motion and stability, under consideration of DLVO interaction potentials. A charge-balance kernel is presented, relating the electrostatic surface potential to the property space by a simple charge balance. Parameter sensitivity with respect to the fractal dimension, aggregate size, hydrodynamic correction, ionic strength and absolute particle concentration was assessed. Results were compared to simulations with the literature kernel based on geometric coverage effects for clusters with heterogeneous surface properties. In both cases electrostatic phenomena, which dominate the aggregation process, show identical trends: impeded cluster-cluster aggregation at low particle mixing ratio (1:1), restabilisation at high mixing ratios (100:1) and formation of complex clusters for intermediate ratios (10:1). The particle mixing ratio controls the surface coverage extent of the larger particle species. Simulation results are compared to experimental flow cytometric data and show very satisfactory agreement.
Mortality sensitivity in life-stage simulation analysis: A case study of southern sea otters
Gerber, L.R.; Tinker, M.T.; Doak, D.F.; Estes, J.A.; Jessup, David A.
2004-01-01
Currently, there are no generally recognized approaches for linking detailed mortality and pathology data to population-level analyses of extinction risk. We used a combination of analytical and simulation-based analyses to examine 20 years of age- and sex-specific mortality data for southern sea otters (Enhydra lutris), and we applied results to project the efficacy of alternative conservation strategies. Population recovery of the southern sea otter has been slow (rate of population increase ?? = 1.05) compared to other recovering populations (?? = 1.17-1.20), and the population declined (?? = 0.975) between 1995 and 1999. Age-based Leslie matrices were developed to explore explanations for the slow recovery and recent decline in the southern sea other population. An elasticity analysis was performed to predict effects of proportional changes in stage-specific reproductive or survival rates on the rate of population increase. A life-stage simulation analysis (LSA) was developed to evaluate the impact of changing age- and cause-specific mortality rates on ??. The information used to develop these models was derived from death assemblage, pathology, and live population census data to examine the sensitivity of sea otter population growth to different sources of mortality (e.g., disease and starvation, direct human take [fisheries, gun shot, boat strike, oil pollution], mating trauma and intraspecific aggression, shark bites, and unknown). We used resampling simulations to generate random combinations of vital rates for a large number of matrix replicates and drew on these to estimate potential effects of mortality sources on population growth (??). Our analyses suggest management actions that are likely and unlikely to promote recovery of the southern sea otter and more broadly indicate a methodology to better utilize cause-of-death data in conservation decision-making.
An agent-based approach for modeling dynamics of contagious disease spread
Perez, Liliana; Dragicevic, Suzana
2009-01-01
Background The propagation of communicable diseases through a population is an inherent spatial and temporal process of great importance for modern society. For this reason a spatially explicit epidemiologic model of infectious disease is proposed for a greater understanding of the disease's spatial diffusion through a network of human contacts. Objective The objective of this study is to develop an agent-based modelling approach the integrates geographic information systems (GIS) to simulate the spread of a communicable disease in an urban environment, as a result of individuals' interactions in a geospatial context. Methods The methodology for simulating spatiotemporal dynamics of communicable disease propagation is presented and the model is implemented using measles outbreak in an urban environment as a case study. Individuals in a closed population are explicitly represented by agents associated to places where they interact with other agents. They are endowed with mobility, through a transportation network allowing them to move between places within the urban environment, in order to represent the spatial heterogeneity and the complexity involved in infectious diseases diffusion. The model is implemented on georeferenced land use dataset from Metro Vancouver and makes use of census data sets from Statistics Canada for the municipality of Burnaby, BC, Canada study site. Results The results provide insights into the application of the model to calculate ratios of susceptible/infected in specific time frames and urban environments, due to its ability to depict the disease progression based on individuals' interactions. It is demonstrated that the dynamic spatial interactions within the population lead to high numbers of exposed individuals who perform stationary activities in areas after they have finished commuting. As a result, the sick individuals are concentrated in geographical locations like schools and universities. Conclusion The GIS-agent based model designed for this study can be easily customized to study the disease spread dynamics of any other communicable disease by simply adjusting the modeled disease timeline and/or the infection model and modifying the transmission process. This type of simulations can help to improve comprehension of disease spread dynamics and to take better steps towards the prevention and control of an epidemic outbreak. PMID:19656403
NASA Astrophysics Data System (ADS)
Scherstjanoi, M.; Kaplan, J. O.; Thürig, E.; Lischke, H.
2013-09-01
Models of vegetation dynamics that are designed for application at spatial scales larger than individual forest gaps suffer from several limitations. Typically, either a population average approximation is used that results in unrealistic tree allometry and forest stand structure, or models have a high computational demand because they need to simulate both a series of age-based cohorts and a number of replicate patches to account for stochastic gap-scale disturbances. The detail required by the latter method increases the number of calculations by two to three orders of magnitude compared to the less realistic population average approach. In an effort to increase the efficiency of dynamic vegetation models without sacrificing realism, we developed a new method for simulating stand-replacing disturbances that is both accurate and faster than approaches that use replicate patches. The GAPPARD (approximating GAP model results with a Probabilistic Approach to account for stand Replacing Disturbances) method works by postprocessing the output of deterministic, undisturbed simulations of a cohort-based vegetation model by deriving the distribution of patch ages at any point in time on the basis of a disturbance probability. With this distribution, the expected value of any output variable can be calculated from the output values of the deterministic undisturbed run at the time corresponding to the patch age. To account for temporal changes in model forcing (e.g., as a result of climate change), GAPPARD performs a series of deterministic simulations and interpolates between the results in the postprocessing step. We integrated the GAPPARD method in the vegetation model LPJ-GUESS, and evaluated it in a series of simulations along an altitudinal transect of an inner-Alpine valley. We obtained results very similar to the output of the original LPJ-GUESS model that uses 100 replicate patches, but simulation time was reduced by approximately the factor 10. Our new method is therefore highly suited for rapidly approximating LPJ-GUESS results, and provides the opportunity for future studies over large spatial domains, allows easier parameterization of tree species, faster identification of areas of interesting simulation results, and comparisons with large-scale datasets and results of other forest models.
Modeling Of In-Vehicle Human Exposure to Ambient Fine Particulate Matter
Liu, Xiaozhen; Frey, H. Christopher
2012-01-01
A method for estimating in-vehicle PM2.5 exposure as part of a scenario-based population simulation model is developed and assessed. In existing models, such as the Stochastic Exposure and Dose Simulation model for Particulate Matter (SHEDS-PM), in-vehicle exposure is estimated using linear regression based on area-wide ambient PM2.5 concentration. An alternative modeling approach is explored based on estimation of near-road PM2.5 concentration and an in-vehicle mass balance. Near-road PM2.5 concentration is estimated using a dispersion model and fixed site monitor (FSM) data. In-vehicle concentration is estimated based on air exchange rate and filter efficiency. In-vehicle concentration varies with road type, traffic flow, windspeed, stability class, and ventilation. Average in-vehicle exposure is estimated to contribute 10 to 20 percent of average daily exposure. The contribution of in-vehicle exposure to total daily exposure can be higher for some individuals. Recommendations are made for updating exposure models and implementation of the alternative approach. PMID:23101000
Epidemic modeling with discrete-space scheduled walkers: extensions and research opportunities
2009-01-01
Background This exploratory paper outlines an epidemic simulator built on an agent-based, data-driven model of the spread of a disease within an urban environment. An intent of the model is to provide insight into how a disease may reach a tipping point, spreading to an epidemic of uncontrollable proportions. Methods As a complement to analytical methods, simulation is arguably an effective means of gaining a better understanding of system-level disease dynamics within a population and offers greater utility in its modeling capabilities. Our investigation is based on this conjecture, supported by data-driven models that are reasonable, realistic and practical, in an attempt to demonstrate their efficacy in studying system-wide epidemic phenomena. An agent-based model (ABM) offers considerable flexibility in extending the study of the phenomena before, during and after an outbreak or catastrophe. Results An agent-based model was developed based on a paradigm of a 'discrete-space scheduled walker' (DSSW), modeling a medium-sized North American City of 650,000 discrete agents, built upon a conceptual framework of statistical reasoning (law of large numbers, statistical mechanics) as well as a correct-by-construction bias. The model addresses where, who, when and what elements, corresponding to network topography and agent characteristics, behaviours, and interactions upon that topography. The DSSW-ABM has an interface and associated scripts that allow for a variety of what-if scenarios modeling disease spread throughout the population, and for data to be collected and displayed via a web browser. Conclusion This exploratory paper also presents several research opportunities for exploiting data sources of a non-obvious and disparate nature for the purposes of epidemic modeling. There is an increasing amount and variety of data that will continue to contribute to the accuracy of agent-based models and improve their utility in modeling disease spread. The model developed here is well suited to diseases where there is not a predisposition for contraction within the population. One of the advantages of agent-based modeling is the ability to set up a rare event and develop policy as to how one may mitigate damages arising from it. PMID:19922684
Epidemic modeling with discrete-space scheduled walkers: extensions and research opportunities.
Borkowski, Maciej; Podaima, Blake W; McLeod, Robert D
2009-11-18
This exploratory paper outlines an epidemic simulator built on an agent-based, data-driven model of the spread of a disease within an urban environment. An intent of the model is to provide insight into how a disease may reach a tipping point, spreading to an epidemic of uncontrollable proportions. As a complement to analytical methods, simulation is arguably an effective means of gaining a better understanding of system-level disease dynamics within a population and offers greater utility in its modeling capabilities. Our investigation is based on this conjecture, supported by data-driven models that are reasonable, realistic and practical, in an attempt to demonstrate their efficacy in studying system-wide epidemic phenomena. An agent-based model (ABM) offers considerable flexibility in extending the study of the phenomena before, during and after an outbreak or catastrophe. An agent-based model was developed based on a paradigm of a 'discrete-space scheduled walker' (DSSW), modeling a medium-sized North American City of 650,000 discrete agents, built upon a conceptual framework of statistical reasoning (law of large numbers, statistical mechanics) as well as a correct-by-construction bias. The model addresses where, who, when and what elements, corresponding to network topography and agent characteristics, behaviours, and interactions upon that topography. The DSSW-ABM has an interface and associated scripts that allow for a variety of what-if scenarios modeling disease spread throughout the population, and for data to be collected and displayed via a web browser. This exploratory paper also presents several research opportunities for exploiting data sources of a non-obvious and disparate nature for the purposes of epidemic modeling. There is an increasing amount and variety of data that will continue to contribute to the accuracy of agent-based models and improve their utility in modeling disease spread. The model developed here is well suited to diseases where there is not a predisposition for contraction within the population. One of the advantages of agent-based modeling is the ability to set up a rare event and develop policy as to how one may mitigate damages arising from it.
Analysis of Predominance of Sexual Reproduction and Quadruplicity of Bases by Computer Simulation
NASA Astrophysics Data System (ADS)
Dasgupta, Subinay
We have presented elsewhere a model for computer simulation of a colony of individuals reproducing sexually, by meiotic parthenogenesis and by cloning. Our algorithm takes into account food and space restriction, and attacks of some diseases. Each individual is characterized by a string of L ``base'' units, each of which can be of four types (quaternary model) or two types (binary model). Our previous report was for the case of L=12 (quaternary model) and L=24 (binary model) and contained the result that the fluctuation of population was the lowest for sexual reproduction with four types of base units. The present communication reports that the same conclusion also holds for L=10 (quaternary model) and L=20 (binary model), and for L=8 (quaternary model) and L=16 (binary model). This model however, suffers from the drawback that it does not show the effect of aging. A modification of the model was attempted to remove this drawback, but the results were not encouraging.
Chapa, Joaquin; An, Gary; Kulkarni, Swati A
2016-01-01
Breast cancer, the product of numerous rare mutational events that occur over an extended time period, presents numerous challenges to investigators interested in studying the transformation from normal breast epithelium to malignancy using traditional laboratory methods, particularly with respect to characterizing transitional and pre-malignant states. Dynamic computational modeling can provide insight into these pathophysiological dynamics, and as such we use a previously validated agent-based computational model of the mammary epithelium (the DEABM) to investigate the probabilistic mechanisms by which normal populations of ductal cells could transform into states replicating features of both pre-malignant breast lesions and a diverse set of breast cancer subtypes. The DEABM consists of simulated cellular populations governed by algorithms based on accepted and previously published cellular mechanisms. Cells respond to hormones, undergo mitosis, apoptosis and cellular differentiation. Heritable mutations to 12 genes prominently implicated in breast cancer are acquired via a probabilistic mechanism. 3000 simulations of the 40-year period of menstrual cycling were run in wild-type (WT) and BRCA1-mutated groups. Simulations were analyzed by development of hyperplastic states, incidence of malignancy, hormone receptor and HER-2 status, frequency of mutation to particular genes, and whether mutations were early events in carcinogenesis. Cancer incidence in WT (2.6%) and BRCA1-mutated (45.9%) populations closely matched published epidemiologic rates. Hormone receptor expression profiles in both WT and BRCA groups also closely matched epidemiologic data. Hyperplastic populations carried more mutations than normal populations and mutations were similar to early mutations found in ER+ tumors (telomerase, E-cadherin, TGFB, RUNX3, p < .01). ER- tumors carried significantly more mutations and carried more early mutations in BRCA1, c-MYC and genes associated with epithelial-mesenchymal transition. The DEABM generates diverse tumors that express tumor markers consistent with epidemiologic data. The DEABM also generates non-invasive, hyperplastic populations, analogous to atypia or ductal carcinoma in situ (DCIS), via mutations to genes known to be present in hyperplastic lesions and as early mutations in breast cancers. The results demonstrate that agent-based models are well-suited to studying tumor evolution through stages of carcinogenesis and have the potential to be used to develop prevention and treatment strategies.
Theory and data for simulating fine-scale human movement in an urban environment
Perkins, T. Alex; Garcia, Andres J.; Paz-Soldán, Valerie A.; Stoddard, Steven T.; Reiner, Robert C.; Vazquez-Prokopec, Gonzalo; Bisanzio, Donal; Morrison, Amy C.; Halsey, Eric S.; Kochel, Tadeusz J.; Smith, David L.; Kitron, Uriel; Scott, Thomas W.; Tatem, Andrew J.
2014-01-01
Individual-based models of infectious disease transmission depend on accurate quantification of fine-scale patterns of human movement. Existing models of movement either pertain to overly coarse scales, simulate some aspects of movement but not others, or were designed specifically for populations in developed countries. Here, we propose a generalizable framework for simulating the locations that an individual visits, time allocation across those locations, and population-level variation therein. As a case study, we fit alternative models for each of five aspects of movement (number, distance from home and types of locations visited; frequency and duration of visits) to interview data from 157 residents of the city of Iquitos, Peru. Comparison of alternative models showed that location type and distance from home were significant determinants of the locations that individuals visited and how much time they spent there. We also found that for most locations, residents of two neighbourhoods displayed indistinguishable preferences for visiting locations at various distances, despite differing distributions of locations around those neighbourhoods. Finally, simulated patterns of time allocation matched the interview data in a number of ways, suggesting that our framework constitutes a sound basis for simulating fine-scale movement and for investigating factors that influence it. PMID:25142528
Simulating the evolution of glyphosate resistance in grains farming in northern Australia
Thornby, David F.; Walker, Steve R.
2009-01-01
Background and Aims The evolution of resistance to herbicides is a substantial problem in contemporary agriculture. Solutions to this problem generally consist of the use of practices to control the resistant population once it evolves, and/or to institute preventative measures before populations become resistant. Herbicide resistance evolves in populations over years or decades, so predicting the effectiveness of preventative strategies in particular relies on computational modelling approaches. While models of herbicide resistance already exist, none deals with the complex regional variability in the northern Australian sub-tropical grains farming region. For this reason, a new computer model was developed. Methods The model consists of an age- and stage-structured population model of weeds, with an existing crop model used to simulate plant growth and competition, and extensions to the crop model added to simulate seed bank ecology and population genetics factors. Using awnless barnyard grass (Echinochloa colona) as a test case, the model was used to investigate the likely rate of evolution under conditions expected to produce high selection pressure. Key Results Simulating continuous summer fallows with glyphosate used as the only means of weed control resulted in predicted resistant weed populations after approx. 15 years. Validation of the model against the paddock history for the first real-world glyphosate-resistant awnless barnyard grass population shows that the model predicted resistance evolution to within a few years of the real situation. Conclusions This validation work shows that empirical validation of herbicide resistance models is problematic. However, the model simulates the complexities of sub-tropical grains farming in Australia well, and can be used to investigate, generate and improve glyphosate resistance prevention strategies. PMID:19567415
Modeling disturbance-based native invasive species control and its implications for management.
Shackelford, Nancy; Renton, Michael; Perring, Michael P; Hobbs, Richard J
2013-09-01
Shifts in disturbance regime have often been linked to invasion in systems by native and nonnative species. This process can have negative effects on biodiversity and ecosystem function. Degradation may be ameliorated by the reinstatement of the disturbance regimes, such as the reintroduction of fire in pyrogenic systems. Modeling is one method through which potential outcomes of different regimes can be investigated. We created a population model to examine the control of a native invasive that is expanding and increasing in abundance due to suppressed fire. Our model, parameterized with field data from a case study of the tree Allocasuarina huegeliana in Australian sandplain heath, simulated different fire return intervals with and without the additional management effort of mechanical removal of the native invader. Population behavior under the different management options was assessed, and general estimates of potential biodiversity impacts were compared. We found that changes in fire return intervals made no significant difference in the increase and spread of the population. However, decreased fire return intervals did lower densities reached in the simulated heath patch as well as the estimated maximum biodiversity impacts. When simulating both mechanical removal and fire, we found that the effects of removal depended on the return intervals and the strategy used. Increase rates were not significantly affected by any removal strategy. However, we found that removal, particularly over the whole patch rather than focusing on satellite populations, could decrease average and maximum densities reached and thus decrease the predicted biodiversity impacts. Our simulation model shows that disturbance-based management has the potential to control native invasion in cases where shifted disturbance is the likely driver of the invasion. The increased knowledge gained through the modeling methods outlined can inform management decisions in fire regime planning that takes into consideration control of an invasive species. Although particularly applicable to native invasives, when properly informed by empirical knowledge these techniques can be expanded to management of invasion by nonnative species, either by restoring historic disturbance regimes or by instating novel regimes in innovative ways.
NASA Astrophysics Data System (ADS)
Crum, Dax M.; Valsaraj, Amithraj; David, John K.; Register, Leonard F.; Banerjee, Sanjay K.
2016-12-01
Particle-based ensemble semi-classical Monte Carlo (MC) methods employ quantum corrections (QCs) to address quantum confinement and degenerate carrier populations to model tomorrow's ultra-scaled metal-oxide-semiconductor-field-effect-transistors. Here, we present the most complete treatment of quantum confinement and carrier degeneracy effects in a three-dimensional (3D) MC device simulator to date, and illustrate their significance through simulation of n-channel Si and III-V FinFETs. Original contributions include our treatment of far-from-equilibrium degenerate statistics and QC-based modeling of surface-roughness scattering, as well as considering quantum-confined phonon and ionized-impurity scattering in 3D. Typical MC simulations approximate degenerate carrier populations as Fermi distributions to model the Pauli-blocking (PB) of scattering to occupied final states. To allow for increasingly far-from-equilibrium non-Fermi carrier distributions in ultra-scaled and III-V devices, we instead generate the final-state occupation probabilities used for PB by sampling the local carrier populations as function of energy and energy valley. This process is aided by the use of fractional carriers or sub-carriers, which minimizes classical carrier-carrier scattering intrinsically incompatible with degenerate statistics. Quantum-confinement effects are addressed through quantum-correction potentials (QCPs) generated from coupled Schrödinger-Poisson solvers, as commonly done. However, we use these valley- and orientation-dependent QCPs not just to redistribute carriers in real space, or even among energy valleys, but also to calculate confinement-dependent phonon, ionized-impurity, and surface-roughness scattering rates. FinFET simulations are used to illustrate the contributions of each of these QCs. Collectively, these quantum effects can substantially reduce and even eliminate otherwise expected benefits of considered In0.53Ga0.47 As FinFETs over otherwise identical Si FinFETs despite higher thermal velocities in In0.53Ga0.47 As. It also may be possible to extend these basic uses of QCPs, however calculated, to still more computationally efficient drift-diffusion and hydrodynamic simulations, and the basic concepts even to compact device modeling.
Manchanda, Ranjit; Legood, Rosa; Burnell, Matthew; McGuire, Alistair; Raikou, Maria; Loggenberg, Kelly; Wardle, Jane; Sanderson, Saskia; Gessler, Sue; Side, Lucy; Balogun, Nyala; Desai, Rakshit; Kumar, Ajith; Dorkins, Huw; Wallis, Yvonne; Chapman, Cyril; Taylor, Rohan; Jacobs, Chris; Tomlinson, Ian; Beller, Uziel; Menon, Usha
2015-01-01
Background: Population-based testing for BRCA1/2 mutations detects the high proportion of carriers not identified by cancer family history (FH)–based testing. We compared the cost-effectiveness of population-based BRCA testing with the standard FH-based approach in Ashkenazi Jewish (AJ) women. Methods: A decision-analytic model was developed to compare lifetime costs and effects amongst AJ women in the UK of BRCA founder-mutation testing amongst: 1) all women in the population age 30 years or older and 2) just those with a strong FH (≥10% mutation risk). The model assumes that BRCA carriers are offered risk-reducing salpingo-oophorectomy and annual MRI/mammography screening or risk-reducing mastectomy. Model probabilities utilize the Genetic Cancer Prediction through Population Screening trial/published literature to estimate total costs, effects in terms of quality-adjusted life-years (QALYs), cancer incidence, incremental cost-effectiveness ratio (ICER), and population impact. Costs are reported at 2010 prices. Costs/outcomes were discounted at 3.5%. We used deterministic/probabilistic sensitivity analysis (PSA) to evaluate model uncertainty. Results: Compared with FH-based testing, population-screening saved 0.090 more life-years and 0.101 more QALYs resulting in 33 days’ gain in life expectancy. Population screening was found to be cost saving with a baseline-discounted ICER of -£2079/QALY. Population-based screening lowered ovarian and breast cancer incidence by 0.34% and 0.62%. Assuming 71% testing uptake, this leads to 276 fewer ovarian and 508 fewer breast cancer cases. Overall, reduction in treatment costs led to a discounted cost savings of £3.7 million. Deterministic sensitivity analysis and 94% of simulations on PSA (threshold £20000) indicated that population screening is cost-effective, compared with current NHS policy. Conclusion: Population-based screening for BRCA mutations is highly cost-effective compared with an FH-based approach in AJ women age 30 years and older. PMID:25435542
Using Agent Based Modeling (ABM) to Develop Cultural Interaction Simulations
NASA Technical Reports Server (NTRS)
Drucker, Nick; Jones, Phillip N.
2012-01-01
Today, most cultural training is based on or built around "cultural engagements" or discrete interactions between the individual learner and one or more cultural "others". Often, success in the engagement is the end or the objective. In reality, these interactions usually involve secondary and tertiary effects with potentially wide ranging consequences. The concern is that learning culture within a strict engagement context might lead to "checklist" cultural thinking that will not empower learners to understand the full consequence of their actions. We propose the use of agent based modeling (ABM) to collect, store, and, simulating the effects of social networks, promulgate engagement effects over time, distance, and consequence. The ABM development allows for rapid modification to re-create any number of population types, extending the applicability of the model to any requirement for social modeling.
Namazi-Rad, Mohammad-Reza; Mokhtarian, Payam; Perez, Pascal
2014-01-01
Generating a reliable computer-simulated synthetic population is necessary for knowledge processing and decision-making analysis in agent-based systems in order to measure, interpret and describe each target area and the human activity patterns within it. In this paper, both synthetic reconstruction (SR) and combinatorial optimisation (CO) techniques are discussed for generating a reliable synthetic population for a certain geographic region (in Australia) using aggregated- and disaggregated-level information available for such an area. A CO algorithm using the quadratic function of population estimators is presented in this paper in order to generate a synthetic population while considering a two-fold nested structure for the individuals and households within the target areas. The baseline population in this study is generated from the confidentialised unit record files (CURFs) and 2006 Australian census tables. The dynamics of the created population is then projected over five years using a dynamic micro-simulation model for individual- and household-level demographic transitions. This projection is then compared with the 2011 Australian census. A prediction interval is provided for the population estimates obtained by the bootstrapping method, by which the variability structure of a predictor can be replicated in a bootstrap distribution. PMID:24733522
Population characteristics and the suppression of nonnative Burbot
Klein, Zachary B.; Quist, Michael C.; Rhea, Darren T.; Senecal, Anna C.
2016-01-01
Burbot Lota lota were illegally introduced into the Green River, Wyoming, drainage and have since proliferated throughout the system. Burbot in the Green River pose a threat to native species and to socially, economically, and ecologically important recreational fisheries. Therefore, managers of the Green River are interested in implementing a suppression program for Burbot. We collected demographic data on Burbot in the Green River (summer and autumn 2013) and used the information to construct an age-based population model (female-based Leslie matrix) to simulate the population-level response of Burbot to the selective removal of different age-classes. Burbot in the Green River grew faster, matured at relatively young ages, and were highly fecund compared with other Burbot populations within the species’ native distribution. The age-structured population model, in conjunction with demographic information, indicated that the Burbot population in the Green River could be expected to increase under current conditions. The model also indicated that the Burbot population in the Green River would decline once total annual mortality reached 58%. The population growth of Burbot in the Green River was most sensitive to age-0 and age-1 mortality. The age-structured population model indicated that an increase in mortality, particularly for younger age-classes, would result in the effective suppression of the Burbot population in the Green River.
Stewart, David R.; Long, James M.; Shoup, Daniel E.
2016-01-01
Management of Blue Catfish Ictalurus furcatus and Channel Catfish I. punctatus for trophy production has recently become more common. Typically, trophy management is attempted with length-based regulations that allow for the moderate harvest of small fish but restrict the harvest of larger fish. However, the specific regulations used vary considerably across populations, and no modeling efforts have evaluated their effectiveness. We used simulation modeling to compare total yield, trophy biomass (Btrophy), and sustainability (spawning potential ratio [SPR] > 0.30) of Blue Catfish and Channel Catfish populations under three scenarios: (1) current regulation (typically a length-based trophy regulation), (2) the best-performing minimum length regulation (MLRbest), and (3) the best-performing length-based trophy catfish regulation (LTRbest; “best performing” was defined as the regulation that maximized yield, Btrophy, and sustainability). The Btrophy produced did not differ among the three scenarios. For each fishery, the MLRbest and LTRbest produced greater yield (>22% more) than the current regulation and maintained sustainability at higher finite exploitation rates (>0.30) than the current regulation. The MLRbest and LTRbest produced similar yields and SPRs for Channel Catfish and similar yields for Blue Catfish; however, the MLRbest for Blue Catfish produced more resilient fisheries (higher SPR) than the LTRbest. Overall, the variation in yield, Btrophy, and SPR among populations was greater than the variation among regulations applied to any given population, suggesting that population-specific regulations may be preferable to regulations applied to geographic regions. We conclude that LTRs are useful for improving catfish yield and maintaining sustainability without overly restricting harvest but are not effective at increasing the Btrophy of catfish.
Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex
Ulloa, Antonio; Horwitz, Barry
2016-01-01
A number of recent efforts have used large-scale, biologically realistic, neural models to help understand the neural basis for the patterns of activity observed in both resting state and task-related functional neural imaging data. An example of the former is The Virtual Brain (TVB) software platform, which allows one to apply large-scale neural modeling in a whole brain framework. TVB provides a set of structural connectomes of the human cerebral cortex, a collection of neural processing units for each connectome node, and various forward models that can convert simulated neural activity into a variety of functional brain imaging signals. In this paper, we demonstrate how to embed a previously or newly constructed task-based large-scale neural model into the TVB platform. We tested our method on a previously constructed large-scale neural model (LSNM) of visual object processing that consisted of interconnected neural populations that represent, primary and secondary visual, inferotemporal, and prefrontal cortex. Some neural elements in the original model were “non-task-specific” (NS) neurons that served as noise generators to “task-specific” neurons that processed shapes during a delayed match-to-sample (DMS) task. We replaced the NS neurons with an anatomical TVB connectome model of the cerebral cortex comprising 998 regions of interest interconnected by white matter fiber tract weights. We embedded our LSNM of visual object processing into corresponding nodes within the TVB connectome. Reciprocal connections between TVB nodes and our task-based modules were included in this framework. We ran visual object processing simulations and showed that the TVB simulator successfully replaced the noise generation originally provided by NS neurons; i.e., the DMS tasks performed with the hybrid LSNM/TVB simulator generated equivalent neural and fMRI activity to that of the original task-based models. Additionally, we found partial agreement between the functional connectivities using the hybrid LSNM/TVB model and the original LSNM. Our framework thus presents a way to embed task-based neural models into the TVB platform, enabling a better comparison between empirical and computational data, which in turn can lead to a better understanding of how interacting neural populations give rise to human cognitive behaviors. PMID:27536235
James Grogan; R. Matthew Landis; Christopher M. Free; Mark D. Schulze; Marco Lentini; Mark S. Ashton
2014-01-01
Summary 1. The impacts of selective harvesting in tropical forests on population recovery and future timber yields by high-value species remain largely unknown for lack of demographic data spanning all phases of life history, from seed to senescence. In this study, we use an individual- based model parameterized using 15 years of annual census data to simulate...
Detecting directional selection in the presence of recent admixture in African-Americans.
Lohmueller, Kirk E; Bustamante, Carlos D; Clark, Andrew G
2011-03-01
We investigate the performance of tests of neutrality in admixed populations using plausible demographic models for African-American history as well as resequencing data from African and African-American populations. The analysis of both simulated and human resequencing data suggests that recent admixture does not result in an excess of false-positive results for neutrality tests based on the frequency spectrum after accounting for the population growth in the parental African population. Furthermore, when simulating positive selection, Tajima's D, Fu and Li's D, and haplotype homozygosity have lower power to detect population-specific selection using individuals sampled from the admixed population than from the nonadmixed population. Fay and Wu's H test, however, has more power to detect selection using individuals from the admixed population than from the nonadmixed population, especially when the selective sweep ended long ago. Our results have implications for interpreting recent genome-wide scans for positive selection in human populations. © 2011 by the Genetics Society of America
Technical Note: Approximate Bayesian parameterization of a complex tropical forest model
NASA Astrophysics Data System (ADS)
Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.
2013-08-01
Inverse parameter estimation of process-based models is a long-standing problem in ecology and evolution. A key problem of inverse parameter estimation is to define a metric that quantifies how well model predictions fit to the data. Such a metric can be expressed by general cost or objective functions, but statistical inversion approaches are based on a particular metric, the probability of observing the data given the model, known as the likelihood. Deriving likelihoods for dynamic models requires making assumptions about the probability for observations to deviate from mean model predictions. For technical reasons, these assumptions are usually derived without explicit consideration of the processes in the simulation. Only in recent years have new methods become available that allow generating likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional MCMC, performs well in retrieving known parameter values from virtual field data generated by the forest model. We analyze the results of the parameter estimation, examine the sensitivity towards the choice and aggregation of model outputs and observed data (summary statistics), and show results from using this method to fit the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss differences of this approach to Approximate Bayesian Computing (ABC), another commonly used method to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation, can successfully be applied to process-based models of high complexity. The methodology is particularly suited to heterogeneous and complex data structures and can easily be adjusted to other model types, including most stochastic population and individual-based models. Our study therefore provides a blueprint for a fairly general approach to parameter estimation of stochastic process-based models in ecology and evolution.
Effects of uncertainty and variability on population declines and IUCN Red List classifications.
Rueda-Cediel, Pamela; Anderson, Kurt E; Regan, Tracey J; Regan, Helen M
2018-01-22
The International Union for Conservation of Nature (IUCN) Red List Categories and Criteria is a quantitative framework for classifying species according to extinction risk. Population models may be used to estimate extinction risk or population declines. Uncertainty and variability arise in threat classifications through measurement and process error in empirical data and uncertainty in the models used to estimate extinction risk and population declines. Furthermore, species traits are known to affect extinction risk. We investigated the effects of measurement and process error, model type, population growth rate, and age at first reproduction on the reliability of risk classifications based on projected population declines on IUCN Red List classifications. We used an age-structured population model to simulate true population trajectories with different growth rates, reproductive ages and levels of variation, and subjected them to measurement error. We evaluated the ability of scalar and matrix models parameterized with these simulated time series to accurately capture the IUCN Red List classification generated with true population declines. Under all levels of measurement error tested and low process error, classifications were reasonably accurate; scalar and matrix models yielded roughly the same rate of misclassifications, but the distribution of errors differed; matrix models led to greater overestimation of extinction risk than underestimations; process error tended to contribute to misclassifications to a greater extent than measurement error; and more misclassifications occurred for fast, rather than slow, life histories. These results indicate that classifications of highly threatened taxa (i.e., taxa with low growth rates) under criterion A are more likely to be reliable than for less threatened taxa when assessed with population models. Greater scrutiny needs to be placed on data used to parameterize population models for species with high growth rates, particularly when available evidence indicates a potential transition to higher risk categories. © 2018 Society for Conservation Biology.
Incorporating GIS and remote sensing for census population disaggregation
NASA Astrophysics Data System (ADS)
Wu, Shuo-Sheng'derek'
Census data are the primary source of demographic data for a variety of researches and applications. For confidentiality issues and administrative purposes, census data are usually released to the public by aggregated areal units. In the United States, the smallest census unit is census blocks. Due to data aggregation, users of census data may have problems in visualizing population distribution within census blocks and estimating population counts for areas not coinciding with census block boundaries. The main purpose of this study is to develop methodology for estimating sub-block areal populations and assessing the estimation errors. The City of Austin, Texas was used as a case study area. Based on tax parcel boundaries and parcel attributes derived from ancillary GIS and remote sensing data, detailed urban land use classes were first classified using a per-field approach. After that, statistical models by land use classes were built to infer population density from other predictor variables, including four census demographic statistics (the Hispanic percentage, the married percentage, the unemployment rate, and per capita income) and three physical variables derived from remote sensing images and building footprints vector data (a landscape heterogeneity statistics, a building pattern statistics, and a building volume statistics). In addition to statistical models, deterministic models were proposed to directly infer populations from building volumes and three housing statistics, including the average space per housing unit, the housing unit occupancy rate, and the average household size. After population models were derived or proposed, how well the models predict populations for another set of sample blocks was assessed. The results show that deterministic models were more accurate than statistical models. Further, by simulating the base unit for modeling from aggregating blocks, I assessed how well the deterministic models estimate sub-unit-level populations. I also assessed the aggregation effects and the resealing effects on sub-unit estimates. Lastly, from another set of mixed-land-use sample blocks, a mixed-land-use model was derived and compared with a residential-land-use model. The results of per-field land use classification are satisfactory with a Kappa accuracy statistics of 0.747. Model Assessments by land use show that population estimates for multi-family land use areas have higher errors than those for single-family land use areas, and population estimates for mixed land use areas have higher errors than those for residential land use areas. The assessments of sub-unit estimates using a simulation approach indicate that smaller areas show higher estimation errors, estimation errors do not relate to the base unit size, and resealing improves all levels of sub-unit estimates.
Modeling and numerical simulations of the influenced Sznajd model
NASA Astrophysics Data System (ADS)
Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep
2017-08-01
This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.
Modeling and numerical simulations of the influenced Sznajd model.
Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep
2017-08-01
This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.
Modeling the effect of transient populations on epidemics in Washington DC.
Parikh, Nidhi; Youssef, Mina; Swarup, Samarth; Eubank, Stephen
2013-11-06
Large numbers of transients visit big cities, where they come into contact with many people at crowded areas. However, epidemiological studies have not paid much attention to the role of this subpopulation in disease spread. We evaluate the effect of transients on epidemics by extending a synthetic population model for the Washington DC metro area to include leisure and business travelers. A synthetic population is obtained by combining multiple data sources to build a detailed minute-by-minute simulation of population interaction resulting in a contact network. We simulate an influenza-like illness over the contact network to evaluate the effects of transients on the number of infected residents. We find that there are significantly more infections when transients are considered. Since much population mixing happens at major tourism locations, we evaluate two targeted interventions: closing museums and promoting healthy behavior (such as the use of hand sanitizers, covering coughs, etc.) at museums. Surprisingly, closing museums has no beneficial effect. However, promoting healthy behavior at the museums can both reduce and delay the epidemic peak. We analytically derive the reproductive number and perform stability analysis using an ODE-based model.
Modeling the effect of transient populations on epidemics in Washington DC
NASA Astrophysics Data System (ADS)
Parikh, Nidhi; Youssef, Mina; Swarup, Samarth; Eubank, Stephen
2013-11-01
Large numbers of transients visit big cities, where they come into contact with many people at crowded areas. However, epidemiological studies have not paid much attention to the role of this subpopulation in disease spread. We evaluate the effect of transients on epidemics by extending a synthetic population model for the Washington DC metro area to include leisure and business travelers. A synthetic population is obtained by combining multiple data sources to build a detailed minute-by-minute simulation of population interaction resulting in a contact network. We simulate an influenza-like illness over the contact network to evaluate the effects of transients on the number of infected residents. We find that there are significantly more infections when transients are considered. Since much population mixing happens at major tourism locations, we evaluate two targeted interventions: closing museums and promoting healthy behavior (such as the use of hand sanitizers, covering coughs, etc.) at museums. Surprisingly, closing museums has no beneficial effect. However, promoting healthy behavior at the museums can both reduce and delay the epidemic peak. We analytically derive the reproductive number and perform stability analysis using an ODE-based model.
Particle-Size-Grouping Model of Precipitation Kinetics in Microalloyed Steels
NASA Astrophysics Data System (ADS)
Xu, Kun; Thomas, Brian G.
2012-03-01
The formation, growth, and size distribution of precipitates greatly affects the microstructure and properties of microalloyed steels. Computational particle-size-grouping (PSG) kinetic models based on population balances are developed to simulate precipitate particle growth resulting from collision and diffusion mechanisms. First, the generalized PSG method for collision is explained clearly and verified. Then, a new PSG method is proposed to model diffusion-controlled precipitate nucleation, growth, and coarsening with complete mass conservation and no fitting parameters. Compared with the original population-balance models, this PSG method saves significant computation and preserves enough accuracy to model a realistic range of particle sizes. Finally, the new PSG method is combined with an equilibrium phase fraction model for plain carbon steels and is applied to simulate the precipitated fraction of aluminum nitride and the size distribution of niobium carbide during isothermal aging processes. Good matches are found with experimental measurements, suggesting that the new PSG method offers a promising framework for the future development of realistic models of precipitation.
Claret, L; Bruno, R; Lu, J-F; Sun, Y-N; Hsu, C-P
2014-04-01
The motesanib phase III MONET1 study failed to show improvement in overall survival (OS) in non-small cell lung cancer, but a subpopulation of Asian patients had a favorable outcome. We performed exploratory modeling and simulations based on MONET1 data to support further development of motesanib in Asian patients. A model-based estimate of time to tumor growth was the best of tested tumor size response metrics in a multivariate OS model (P < 0.00001) to capture treatment effect (hazard ratio, HR) in Asian patients. Significant independent prognostic factors for OS were baseline tumor size (P < 0.0001), smoking history (P < 0.0001), and ethnicity (P < 0.00001). The model successfully predicted OS distributions and HR in the full population and in Asian patients. Simulations indicated that a phase III study in 500 Asian patients would exceed 80% power to confirm superior efficacy of motesanib combination therapy (expected HR: 0.74), suggesting that motesanib combination therapy may benefit Asian patients.
Whittington, Jesse; Sawaya, Michael A
2015-01-01
Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal's home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786-1.071) for females, 0.844 (0.703-0.975) for males, and 0.882 (0.779-0.981) for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758-1.024) for females, 0.825 (0.700-0.948) for males, and 0.863 (0.771-0.957) for both sexes. The combination of low densities, low reproductive rates, and predominantly negative population growth rates suggest that Banff National Park's population of grizzly bears requires continued conservation-oriented management actions.
Alderton, Simon; Macleod, Ewan T; Anderson, Neil E; Palmer, Gwen; Machila, Noreen; Simuunza, Martin; Welburn, Susan C; Atkinson, Peter M
2018-02-01
This paper presents the development of an agent-based model (ABM) to incorporate climatic drivers which affect tsetse fly (G. m. morsitans) population dynamics, and ultimately disease transmission. The model was used to gain a greater understanding of how tsetse populations fluctuate seasonally, and investigate any response observed in Trypanosoma brucei rhodesiense human African trypanosomiasis (rHAT) disease transmission, with a view to gaining a greater understanding of disease dynamics. Such an understanding is essential for the development of appropriate, well-targeted mitigation strategies in the future. The ABM was developed to model rHAT incidence at a fine spatial scale along a 75 km transect in the Luangwa Valley, Zambia. The model incorporates climatic factors that affect pupal mortality, pupal development, birth rate, and death rate. In combination with fine scale demographic data such as ethnicity, age and gender for the human population in the region, as well as an animal census and a sample of daily routines, we create a detailed, plausible simulation model to explore tsetse population and disease transmission dynamics. The seasonally-driven model suggests that the number of infections reported annually in the simulation is likely to be a reasonable representation of reality, taking into account the high levels of under-detection observed. Similar infection rates were observed in human (0.355 per 1000 person-years (SE = 0.013)), and cattle (0.281 per 1000 cattle-years (SE = 0.025)) populations, likely due to the sparsity of cattle close to the tsetse interface. The model suggests that immigrant tribes and school children are at greatest risk of infection, a result that derives from the bottom-up nature of the ABM and conditioning on multiple constraints. This result could not be inferred using alternative population-level modelling approaches. In producing a model which models the tsetse population at a very fine resolution, we were able to analyse and evaluate specific elements of the output, such as pupal development and the progression of the teneral population, allowing the development of our understanding of the tsetse population as a whole. This is an important step in the production of a more accurate transmission model for rHAT which can, in turn, help us to gain a greater understanding of the transmission system as a whole.
NASA Astrophysics Data System (ADS)
Scutt Phillips, Joe; Sen Gupta, Alex; Senina, Inna; van Sebille, Erik; Lange, Michael; Lehodey, Patrick; Hampton, John; Nicol, Simon
2018-05-01
The distribution of marine species is often modeled using Eulerian approaches, in which changes to population density or abundance are calculated at fixed locations in space. Conversely, Lagrangian, or individual-based, models simulate the movement of individual particles moving in continuous space, with broader-scale patterns such as distribution being an emergent property of many, potentially adaptive, individuals. These models offer advantages in examining dynamics across spatiotemporal scales and making comparisons with observations from individual-scale data. Here, we introduce and describe such a model, the Individual-based Kinesis, Advection and Movement of Ocean ANimAls model (Ikamoana), which we use to replicate the movement processes of an existing Eulerian model for marine predators (the Spatial Ecosystem and Population Dynamics Model, SEAPODYM). Ikamoana simulates the movement of either individual or groups of animals by physical ocean currents, habitat-dependent stochastic movements (kinesis), and taxis movements representing active searching behaviours. Applying our model to Pacific skipjack tuna (Katsuwonus pelamis), we show that it accurately replicates the evolution of density distribution simulated by SEAPODYM with low time-mean error and a spatial correlation of density that exceeds 0.96 at all times. We demonstrate how the Lagrangian approach permits easy tracking of individuals' trajectories for examining connectivity between different regions, and show how the model can provide independent estimates of transfer rates between commonly used assessment regions. In particular, we find that retention rates in most assessment regions are considerably smaller (up to a factor of 2) than those estimated by this population of skipjack's primary assessment model. Moreover, these rates are sensitive to ocean state (e.g. El Nino vs La Nina) and so assuming fixed transfer rates between regions may lead to spurious stock estimates. A novel feature of the Lagrangian approach is that individual schools can be tracked through time, and we demonstrate that movement between two assessment regions at broad temporal scales includes extended transits through other regions at finer-scales. Finally, we discuss the utility of this modeling framework for the management of marine reserves, designing effective monitoring programmes, and exploring hypotheses regarding the behaviour of hard-to-observe oceanic animals.
Row, Jeffrey R.; Knick, Steven T.; Oyler-McCance, Sara J.; Lougheed, Stephen C.; Fedy, Bradley C.
2017-01-01
Dispersal can impact population dynamics and geographic variation, and thus, genetic approaches that can establish which landscape factors influence population connectivity have ecological and evolutionary importance. Mixed models that account for the error structure of pairwise datasets are increasingly used to compare models relating genetic differentiation to pairwise measures of landscape resistance. A model selection framework based on information criteria metrics or explained variance may help disentangle the ecological and landscape factors influencing genetic structure, yet there are currently no consensus for the best protocols. Here, we develop landscape-directed simulations and test a series of replicates that emulate independent empirical datasets of two species with different life history characteristics (greater sage-grouse; eastern foxsnake). We determined that in our simulated scenarios, AIC and BIC were the best model selection indices and that marginal R2 values were biased toward more complex models. The model coefficients for landscape variables generally reflected the underlying dispersal model with confidence intervals that did not overlap with zero across the entire model set. When we controlled for geographic distance, variables not in the underlying dispersal models (i.e., nontrue) typically overlapped zero. Our study helps establish methods for using linear mixed models to identify the features underlying patterns of dispersal across a variety of landscapes.
Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.
Yabe, Shiori; Yamasaki, Masanori; Ebana, Kaworu; Hayashi, Takeshi; Iwata, Hiroyoshi
2016-01-01
Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS), which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an "island model" inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the potential of genomic selection in autogamous crops, especially bringing long-term improvement.
Population growth, interest rate, and housing tax in the transitional China
NASA Astrophysics Data System (ADS)
He, Ling-Yun; Wen, Xing-Chun
2017-03-01
This paper combines and develops the models in Lastrapes (2002) and Mankiw and Weil (1989), which enables us to analyze the effects of interest rate and population growth shocks on housing price in one integrated framework. Based on this model, we carry out policy simulations to examine whether the housing (stock or flow) tax reduces the housing price fluctuations caused by interest rate or population growth shocks. Simulation results imply that the choice of housing tax tools depends on the kind of shock that housing market faces. In the situation where the housing price volatility is caused by the population growth shock, the flow tax can reduce the volatility of housing price while the stock tax makes no difference to it. If the shock is resulting from the interest rate, the policy maker should not impose any kind of the housing taxes. Furthermore, the effect of one kind of the housing tax can be strengthened by that of the other type of housing tax.
NASA Astrophysics Data System (ADS)
Hou, Rui; Wu, Jiawen; Du, Helen S.
2017-03-01
To explain the competition phenomenon and results between QQ and MSN (China) in the Chinese instant messaging software market, this paper developed a new population competition model based on customer social network. The simulation results show that the firm whose product with greater network externality effect will gain more market share than its rival when the same marketing strategy is used. The firm with the advantage of time, derived from the initial scale effect will become more competitive than its rival when facing a group of common penguin customers within a social network, verifying the winner-take-all phenomenon in this case.
DePasse, Jay V; Nowalk, Mary Patricia; Smith, Kenneth J; Raviotta, Jonathan M; Shim, Eunha; Zimmerman, Richard K; Brown, Shawn T
2017-07-13
In a prior agent-based modeling study, offering a choice of influenza vaccine type was shown to be cost-effective when the simulated population represented the large, Washington DC metropolitan area. This study calculated the public health impact and cost-effectiveness of the same four strategies: No Choice, Pediatric Choice, Adult Choice, or Choice for Both Age Groups in five United States (U.S.) counties selected to represent extremes in population age distribution. The choice offered was either inactivated influenza vaccine delivered intramuscularly with a needle (IIV-IM) or an age-appropriate needle-sparing vaccine, specifically, the nasal spray (LAIV) or intradermal (IIV-ID) delivery system. Using agent-based modeling, individuals were simulated as they interacted with others, and influenza was tracked as it spread through each population. Influenza vaccination coverage derived from Centers for Disease Control and Prevention (CDC) data, was increased by 6.5% (range 3.25%-11.25%) to reflect the effects of vaccine choice. Assuming moderate influenza infectivity, the number of averted cases was highest for the Choice for Both Age Groups in all five counties despite differing demographic profiles. In a cost-effectiveness analysis, Choice for Both Age Groups was the dominant strategy. Sensitivity analyses varying influenza infectivity, costs, and degrees of vaccine coverage increase due to choice, supported the base case findings. Offering a choice to receive a needle-sparing influenza vaccine has the potential to significantly reduce influenza disease burden and to be cost saving. Consistent findings across diverse populations confirmed these findings. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stratonovitch, Pierre; Elias, Jan; Denholm, Ian; Slater, Russell; Semenov, Mikhail A.
2014-01-01
Preventing a pest population from damaging an agricultural crop and, at the same time, preventing the development of pesticide resistance is a major challenge in crop protection. Understanding how farming practices and environmental factors interact with pest characteristics to influence the spread of resistance is a difficult and complex task. It is extremely challenging to investigate such interactions experimentally at realistic spatial and temporal scales. Mathematical modelling and computer simulation have, therefore, been used to analyse resistance evolution and to evaluate potential resistance management tactics. Of the many modelling approaches available, individual-based modelling of a pest population offers most flexibility to include and analyse numerous factors and their interactions. Here, a pollen beetle (Meligethes aeneus) population was modelled as an aggregate of individual insects inhabiting a spatially heterogeneous landscape. The development of the pest and host crop (oilseed rape) was driven by climatic variables. The agricultural land of the landscape was managed by farmers applying a specific rotation and crop protection strategy. The evolution of a single resistance allele to the pyrethroid lambda cyhalothrin was analysed for different combinations of crop management practices and for a recessive, intermediate and dominant resistance allele. While the spread of a recessive resistance allele was severely constrained, intermediate or dominant resistance alleles showed a similar response to the management regime imposed. Calendar treatments applied irrespective of pest density accelerated the development of resistance compared to ones applied in response to prescribed pest density thresholds. A greater proportion of spring-sown oilseed rape was also found to increase the speed of resistance as it increased the period of insecticide exposure. Our study demonstrates the flexibility and power of an individual-based model to simulate how farming practices affect pest population dynamics, and the consequent impact of different control strategies on the risk and speed of resistance development. PMID:25531104
Stratonovitch, Pierre; Elias, Jan; Denholm, Ian; Slater, Russell; Semenov, Mikhail A
2014-01-01
Preventing a pest population from damaging an agricultural crop and, at the same time, preventing the development of pesticide resistance is a major challenge in crop protection. Understanding how farming practices and environmental factors interact with pest characteristics to influence the spread of resistance is a difficult and complex task. It is extremely challenging to investigate such interactions experimentally at realistic spatial and temporal scales. Mathematical modelling and computer simulation have, therefore, been used to analyse resistance evolution and to evaluate potential resistance management tactics. Of the many modelling approaches available, individual-based modelling of a pest population offers most flexibility to include and analyse numerous factors and their interactions. Here, a pollen beetle (Meligethes aeneus) population was modelled as an aggregate of individual insects inhabiting a spatially heterogeneous landscape. The development of the pest and host crop (oilseed rape) was driven by climatic variables. The agricultural land of the landscape was managed by farmers applying a specific rotation and crop protection strategy. The evolution of a single resistance allele to the pyrethroid lambda cyhalothrin was analysed for different combinations of crop management practices and for a recessive, intermediate and dominant resistance allele. While the spread of a recessive resistance allele was severely constrained, intermediate or dominant resistance alleles showed a similar response to the management regime imposed. Calendar treatments applied irrespective of pest density accelerated the development of resistance compared to ones applied in response to prescribed pest density thresholds. A greater proportion of spring-sown oilseed rape was also found to increase the speed of resistance as it increased the period of insecticide exposure. Our study demonstrates the flexibility and power of an individual-based model to simulate how farming practices affect pest population dynamics, and the consequent impact of different control strategies on the risk and speed of resistance development.
Ring, Caroline L; Pearce, Robert G; Setzer, R Woodrow; Wetmore, Barbara A; Wambaugh, John F
2017-09-01
The thousands of chemicals present in the environment (USGAO, 2013) must be triaged to identify priority chemicals for human health risk research. Most chemicals have little of the toxicokinetic (TK) data that are necessary for relating exposures to tissue concentrations that are believed to be toxic. Ongoing efforts have collected limited, in vitro TK data for a few hundred chemicals. These data have been combined with biomonitoring data to estimate an approximate margin between potential hazard and exposure. The most "at risk" 95th percentile of adults have been identified from simulated populations that are generated either using standard "average" adult human parameters or very specific cohorts such as Northern Europeans. To better reflect the modern U.S. population, we developed a population simulation using physiologies based on distributions of demographic and anthropometric quantities from the most recent U.S. Centers for Disease Control and Prevention National Health and Nutrition Examination Survey (NHANES) data. This allowed incorporation of inter-individual variability, including variability across relevant demographic subgroups. Variability was analyzed with a Monte Carlo approach that accounted for the correlation structure in physiological parameters. To identify portions of the U.S. population that are more at risk for specific chemicals, physiologic variability was incorporated within an open-source high-throughput (HT) TK modeling framework. We prioritized 50 chemicals based on estimates of both potential hazard and exposure. Potential hazard was estimated from in vitro HT screening assays (i.e., the Tox21 and ToxCast programs). Bioactive in vitro concentrations were extrapolated to doses that produce equivalent concentrations in body tissues using a reverse dosimetry approach in which generic TK models are parameterized with: 1) chemical-specific parameters derived from in vitro measurements and predicted from chemical structure; and 2) with physiological parameters for a virtual population. For risk-based prioritization of chemicals, predicted bioactive equivalent doses were compared to demographic-specific inferences of exposure rates that were based on NHANES urinary analyte biomonitoring data. The inclusion of NHANES-derived inter-individual variability decreased predicted bioactive equivalent doses by 12% on average for the total population when compared to previous methods. However, for some combinations of chemical and demographic groups the margin was reduced by as much as three quarters. This TK modeling framework allows targeted risk prioritization of chemicals for demographic groups of interest, including potentially sensitive life stages and subpopulations. Published by Elsevier Ltd.
Ogungbenro, Kayode; Aarons, Leon
2011-08-01
In the recent years, interest in the application of experimental design theory to population pharmacokinetic (PK) and pharmacodynamic (PD) experiments has increased. The aim is to improve the efficiency and the precision with which parameters are estimated during data analysis and sometimes to increase the power and reduce the sample size required for hypothesis testing. The population Fisher information matrix (PFIM) has been described for uniresponse and multiresponse population PK experiments for design evaluation and optimisation. Despite these developments and availability of tools for optimal design of population PK and PD experiments much of the effort has been focused on repeated continuous variable measurements with less work being done on repeated discrete type measurements. Discrete data arise mainly in PDs e.g. ordinal, nominal, dichotomous or count measurements. This paper implements expressions for the PFIM for repeated ordinal, dichotomous and count measurements based on analysis by a mixed-effects modelling technique. Three simulation studies were used to investigate the performance of the expressions. Example 1 is based on repeated dichotomous measurements, Example 2 is based on repeated count measurements and Example 3 is based on repeated ordinal measurements. Data simulated in MATLAB were analysed using NONMEM (Laplace method) and the glmmML package in R (Laplace and adaptive Gauss-Hermite quadrature methods). The results obtained for Examples 1 and 2 showed good agreement between the relative standard errors obtained using the PFIM and simulations. The results obtained for Example 3 showed the importance of sampling at the most informative time points. Implementation of these expressions will provide the opportunity for efficient design of population PD experiments that involve discrete type data through design evaluation and optimisation.
NASA Technical Reports Server (NTRS)
Ballard, Jerrell R., Jr.; Howington, Stacy E.; Cinnella, Pasquale; Smith, James A.
2011-01-01
The temperature and moisture regimes in a forest are key components in the forest ecosystem dynamics. Observations and studies indicate that the internal temperature distribution and moisture content of the tree influence not only growth and development, but onset and cessation of cambial activity [1], resistance to insect predation[2], and even affect the population dynamics of the insects [3]. Moreover, temperature directly affects the uptake and metabolism of population from the soil into the tree tissue [4]. Additional studies show that soil and atmospheric temperatures are significant parameters that limit the growth of trees and impose treeline elevation limitation [5]. Directional thermal infrared radiance effects have long been observed in natural backgrounds [6]. In earlier work, we illustrated the use of physically-based models to simulate directional effects in thermal imaging [7-8]. In this paper, we illustrated the use of physically-based models to simulate directional effects in thermal, and net radiation in a adeciduous forest using our recently developed three-dimensional, macro-scale computational tool that simulates the heat and mass transfer interaction in a soil-root-stem systems (SRSS). The SRSS model includes the coupling of existing heat and mass transport tools to stimulate the diurnal internal and external temperatures, internal fluid flow and moisture distribution, and heat flow in the system.
SU-E-T-565: RAdiation Resistance of Cancer CElls Using GEANT4 DNA: RACE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perrot, Y; Payno, H; Delage, E
2014-06-01
Purpose: The objective of the RACE project is to develop a comparison between Monte Carlo simulation using the Geant4-DNA toolkit and measurements of radiation damage on 3D melanoma and chondrosarcoma culture cells coupled with gadolinium nanoparticles. We currently expose the status of the developments regarding simulations. Methods: Monte Carlo studies are driven using the Geant4 toolkit and the Geant4-DNA extension. In order to model the geometry of a cell population, the opensource CPOP++ program is being developed for the geometrical representation of 3D cell populations including a specific cell mesh coupled with a multi-agent system. Each cell includes cytoplasm andmore » nucleus. The correct modeling of the cell population has been validated with confocal microscopy images of spheroids. The Geant4 Livermore physics models are used to simulate the interactions of a 250 keV X-ray beam and the production of secondaries from gadolinium nanoparticles supposed to be fixed on the cell membranes. Geant4-DNA processes are used to simulate the interactions of charged particles with the cells. An atomistic description of the DNA molecule, from PDB (Protein Data Bank) files, is provided by the so-called PDB4DNA Geant4 user application we developed to score energy depositions in DNA base pairs and sugar-phosphate groups. Results: At the microscopic level, our simulations enable assessing microscopic energy distribution in each cell compartment of a realistic 3D cell population. Dose enhancement factors due to the presence of gadolinium nanoparticles can be estimated. At the nanometer scale, direct damages on nuclear DNA are also estimated. Conclusion: We successfully simulated the impact of direct radiations on a realistic 3D cell population model compatible with microdosimetry calculations using the Geant4-DNA toolkit. Upcoming validation and the future integration of the radiochemistry module of Geant4-DNA will propose to correlate clusters of ionizations with in vitro experiments. All those developments will be released publicly. This work was supported by grants from Plan Cancer 2009-2013 French national initiative managed by INSERM (Institut National de la Sante et de la Recherche Medicale)« less
NASA Astrophysics Data System (ADS)
Golinski, M. R.
2006-07-01
Ecologists have observed that environmental noise affects population variance in the logistic equation for one-species growth. Interactions between deterministic and stochastic dynamics in a one-dimensional system result in increased variance in species population density over time. Since natural populations do not live in isolation, the present paper simulates a discrete-time two-species competition model with environmental noise to determine the type of colored population noise generated by extreme conditions in the long-term population dynamics of competing populations. Discrete Fourier analysis is applied to the simulation results and the calculated Hurst exponent ( H) is used to determine how the color of population noise for the two species corresponds to extreme conditions in population dynamics. To interpret the biological meaning of the color of noise generated by the two-species model, the paper determines the color of noise generated by three reference models: (1) A two-dimensional discrete-time white noise model (0⩽ H<1/2); (2) A two-dimensional fractional Brownian motion model (H=1/2); and (3) A two-dimensional discrete-time model with noise for unbounded growth of two uncoupled species (1/2< H⩽1).
McKenna, James E.
2000-01-01
Although, perceiving genetic differences and their effects on fish population dynamics is difficult, simulation models offer a means to explore and illustrate these effects. I partitioned the intrinsic rate of increase parameter of a simple logistic-competition model into three components, allowing specification of effects of relative differences in fitness and mortality, as well as finite rate of increase. This model was placed into an interactive, stochastic environment to allow easy manipulation of model parameters (FITPOP). Simulation results illustrated the effects of subtle differences in genetic and population parameters on total population size, overall fitness, and sensitivity of the system to variability. Several consequences of mixing genetically distinct populations were illustrated. For example, behaviors such as depression of population size after initial introgression and extirpation of native stocks due to continuous stocking of genetically inferior fish were reproduced. It also was shown that carrying capacity relative to the amount of stocking had an important influence on population dynamics. Uncertainty associated with parameter estimates reduced confidence in model projections. The FITPOP model provided a simple tool to explore population dynamics, which may assist in formulating management strategies and identifying research needs.
Toolbox for Urban Mobility Simulation: High Resolution Population Dynamics for Global Cities
NASA Astrophysics Data System (ADS)
Bhaduri, B. L.; Lu, W.; Liu, C.; Thakur, G.; Karthik, R.
2015-12-01
In this rapidly urbanizing world, unprecedented rate of population growth is not only mirrored by increasing demand for energy, food, water, and other natural resources, but has detrimental impacts on environmental and human security. Transportation simulations are frequently used for mobility assessment in urban planning, traffic operation, and emergency management. Previous research, involving purely analytical techniques to simulations capturing behavior, has investigated questions and scenarios regarding the relationships among energy, emissions, air quality, and transportation. Primary limitations of past attempts have been availability of input data, useful "energy and behavior focused" models, validation data, and adequate computational capability that allows adequate understanding of the interdependencies of our transportation system. With increasing availability and quality of traditional and crowdsourced data, we have utilized the OpenStreetMap roads network, and has integrated high resolution population data with traffic simulation to create a Toolbox for Urban Mobility Simulations (TUMS) at global scale. TUMS consists of three major components: data processing, traffic simulation models, and Internet-based visualizations. It integrates OpenStreetMap, LandScanTM population, and other open data (Census Transportation Planning Products, National household Travel Survey, etc.) to generate both normal traffic operation and emergency evacuation scenarios. TUMS integrates TRANSIMS and MITSIM as traffic simulation engines, which are open-source and widely-accepted for scalable traffic simulations. Consistent data and simulation platform allows quick adaption to various geographic areas that has been demonstrated for multiple cities across the world. We are combining the strengths of geospatial data sciences, high performance simulations, transportation planning, and emissions, vehicle and energy technology development to design and develop a simulation framework to assist decision makers at all levels - local, state, regional, and federal. Using Cleveland, Tennessee as an example, in this presentation, we illustrate how emerging cities could easily assess future land use scenario driven impacts on energy and environment utilizing such a capability.
NASA Astrophysics Data System (ADS)
Fan, Meng; Ye, Dan
2005-09-01
This paper studies the dynamics of a system of retarded functional differential equations (i.e., RF=Es), which generalize the Hopfield neural network models, the bidirectional associative memory neural networks, the hybrid network models of the cellular neural network type, and some population growth model. Sufficient criteria are established for the globally exponential stability and the existence and uniqueness of pseudo almost periodic solution. The approaches are based on constructing suitable Lyapunov functionals and the well-known Banach contraction mapping principle. The paper ends with some applications of the main results to some neural network models and population growth models and numerical simulations.
Day, T Eugene; Ravi, Nathan; Xian, Hong; Brugh, Ann
2014-04-01
To examine the effect of changes to screening interval on the incidence of vision loss in a simulated cohort of Veterans with diabetic retinopathy (DR). This simulation allows us to examine potential interventions without putting patients at risk. Simulated randomized controlled trial. We develop a hybrid agent-based/discrete event simulation which incorporates a population of simulated Veterans--using abstracted data from a retrospective cohort of real-world diabetic Veterans--with a discrete event simulation (DES) eye clinic at which it seeks treatment for DR. We compare vision loss under varying screening policies, in a simulated population of 5000 Veterans over 50 independent ten-year simulation runs for each group. Diabetic Retinopathy associated vision loss increased as the screening interval was extended from one to five years (p<0.0001). This increase was concentrated in the third year of the screening interval (p<0.01). There was no increase in vision loss associated with increasing the screening interval from one year to two years (p=0.98). Increasing the screening interval for diabetic patients who have not yet developed diabetic retinopathy from 1 to 2 years appears safe, while increasing the interval to 3 years heightens risk for vision loss. Published by Elsevier Ltd.
Reduction of a metapopulation genetic model to an effective one-island model
NASA Astrophysics Data System (ADS)
Parra-Rojas, César; McKane, Alan J.
2018-04-01
We explore a model of metapopulation genetics which is based on a more ecologically motivated approach than is frequently used in population genetics. The size of the population is regulated by competition between individuals, rather than by artificially imposing a fixed population size. The increased complexity of the model is managed by employing techniques often used in the physical sciences, namely exploiting time-scale separation to eliminate fast variables and then constructing an effective model from the slow modes. We analyse this effective model and show that the predictions for the probability of fixation of the alleles and the mean time to fixation agree well with those found from numerical simulations of the original model. Contribution to the Focus Issue Evolutionary Modeling and Experimental Evolution edited by José Cuesta, Joachim Krug and Susanna Manrubia.
Jordan, D; McEwen, S A; Lammerding, A M; McNab, W B; Wilson, J B
1999-06-29
A Monte Carlo simulation model was constructed for assessing the quantity of microbial hazards deposited on cattle carcasses under different pre-slaughter management regimens. The model permits comparison of industry-wide and abattoir-based mitigation strategies and is suitable for studying pathogens such as Escherichia coli O157:H7 and Salmonella spp. Simulations are based on a hierarchical model structure that mimics important aspects of the cattle population prior to slaughter. Stochastic inputs were included so that uncertainty about important input assumptions (such as prevalence of a human pathogen in the live cattle-population) would be reflected in model output. Control options were built into the model to assess the benefit of having prior knowledge of animal or herd-of-origin pathogen status (obtained from the use of a diagnostic test). Similarly, a facility was included for assessing the benefit of re-ordering the slaughter sequence based on the extent of external faecal contamination. Model outputs were designed to evaluate the performance of an abattoir in a 1-day period and included outcomes such as the proportion of carcasses contaminated with a pathogen, the daily mean and selected percentiles of pathogen counts per carcass, and the position of the first infected animal in the slaughter run. A measure of the time rate of introduction of pathogen into the abattoir was provided by assessing the median, 5th percentile, and 95th percentile cumulative pathogen counts at 10 equidistant points within the slaughter run. Outputs can be graphically displayed as frequency distributions, probability densities, cumulative distributions or x-y plots. The model shows promise as an inexpensive method for evaluating pathogen control strategies such as those forming part of a Hazard Analysis and Critical Control Point (HACCP) system.
Liu, Shuaibing; Xue, Ling; Shi, Xiangfen; Sun, Zhiyong; Zhu, Zhenfeng; Zhang, Xiaojian; Tian, Xin
2018-06-01
Ticagrelor, the first reversible P2Y 12 receptor antagonist, exhibits faster onset and offset of antiplatelet effects and more consistent platelet inhibition than clopidogrel in both healthy subjects and patients with stable coronary artery disease. The objectives of this study were to establish a population pharmacokinetics (PK) and pharmacodynamics (PD) model of ticagrelor and to provide a theoretical basis for the optimization of ticagrelor treatment in clinic. A single oral dose of 180 mg ticagrelor was administered to 14 healthy male subjects in a randomized study. Common single-nucleotide polymorphisms (SNPs) in biotransformation enzymes CYP3A4 and CYP3A5 (CYP3A4*1G and CYP3A5*3) were genotyped by PCR-direct sequencing. Blood samples were collected to measure plasma concentrations of ticagrelor and its active metabolite AR-C124910XX and maximal platelet inhibition. Various models were evaluated to characterize the pharmacokinetics of ticagrelor and AR-C124910XX as well as their PK-PD relationship. Covariates that may potentially affect PK or PD of ticagrelor and AR-C124910XX were included and assessed. Simulation for dosage regimen was performed based on the final PK-PD model. Ticagrelor and AR-C124910XX PK were best described by a two-compartment model with first-order transit absorption model. CYP3A4*1G increased clearance for AR-C124910XX, but had no significant effect on ticagrelor clearance. The relationship between concentration and platelet response of ticagrelor was best described by a turnover model. Simulation results indicated that a lower dosage regimen of 30 mg maintenance dose (MD) could produce an anticipated anti-platelet response in comparison to the routine clinical dosage regimen (180 mg loading dose (LD), 90 mg MD). Our study developed a population PK-PD model for ticagrelor and further simulation for dosage regimen was performed based on the final model. Compared to the current recommended dosage regimen (180 mg LD, 90 mg MD), our simulation result of a relatively lower dose (30 mg MD) could also obtain an acceptable anti-platelet response, which may provide a reference for further dosage regimen design in Chinese population.
NASA Astrophysics Data System (ADS)
Pfeffer, Joel; Kruijssen, J. M. Diederik; Crain, Robert A.; Bastian, Nate
2018-04-01
We introduce the MOdelling Star cluster population Assembly In Cosmological Simulations within EAGLE (E-MOSAICS) project. E-MOSAICS incorporates models describing the formation, evolution, and disruption of star clusters into the EAGLE galaxy formation simulations, enabling the examination of the co-evolution of star clusters and their host galaxies in a fully cosmological context. A fraction of the star formation rate of dense gas is assumed to yield a cluster population; this fraction and the population's initial properties are governed by the physical properties of the natal gas. The subsequent evolution and disruption of the entire cluster population are followed accounting for two-body relaxation, stellar evolution, and gravitational shocks induced by the local tidal field. This introductory paper presents a detailed description of the model and initial results from a suite of 10 simulations of ˜L⋆ galaxies with disc-like morphologies at z = 0. The simulations broadly reproduce key observed characteristics of young star clusters and globular clusters (GCs), without invoking separate formation mechanisms for each population. The simulated GCs are the surviving population of massive clusters formed at early epochs (z ≳ 1-2), when the characteristic pressures and surface densities of star-forming gas were significantly higher than observed in local galaxies. We examine the influence of the star formation and assembly histories of galaxies on their cluster populations, finding that (at similar present-day mass) earlier-forming galaxies foster a more massive and disruption-resilient cluster population, while galaxies with late mergers are capable of forming massive clusters even at late cosmic epochs. We find that the phenomenological treatment of interstellar gas in EAGLE precludes the accurate modelling of cluster disruption in low-density environments, but infer that simulations incorporating an explicitly modelled cold interstellar gas phase will overcome this shortcoming.
Jiao, Jichao; Li, Fei; Deng, Zhongliang; Ma, Wenjing
2017-03-28
Considering the installation cost and coverage, the received signal strength indicator (RSSI)-based indoor positioning system is widely used across the world. However, the indoor positioning performance, due to the interference of wireless signals that are caused by the complex indoor environment that includes a crowded population, cannot achieve the demands of indoor location-based services. In this paper, we focus on increasing the signal strength estimation accuracy considering the population density, which is different to the other RSSI-based indoor positioning methods. Therefore, we propose a new wireless signal compensation model considering the population density, distance, and frequency. First of all, the number of individuals in an indoor crowded scenario can be calculated by our convolutional neural network (CNN)-based human detection approach. Then, the relationship between the population density and the signal attenuation is described in our model. Finally, we use the trilateral positioning principle to realize the pedestrian location. According to the simulation and tests in the crowded scenarios, the proposed model increases the accuracy of the signal strength estimation by 1.53 times compared to that without considering the human body. Therefore, the localization accuracy is less than 1.37 m, which indicates that our algorithm can improve the indoor positioning performance and is superior to other RSSI models.
Simulation of Population Processes with a Programmable Pocket Calculator.
ERIC Educational Resources Information Center
Kidd, N. A. C.
1979-01-01
Presents a set of simulation models for use in teaching population dynamics. These models are designed specifically for use with a programmable pocket calculator, and can be used to demonstrate growth of populations with discrete or overlapping generations and also to explore effects of density-dependent and -independent mortality. (Author/CS)
Development of a Novel Rabies Simulation Model for Application in a Non-endemic Environment
Dürr, Salome; Ward, Michael P.
2015-01-01
Domestic dog rabies is an endemic disease in large parts of the developing world and also epidemic in previously free regions. For example, it continues to spread in eastern Indonesia and currently threatens adjacent rabies-free regions with high densities of free-roaming dogs, including remote northern Australia. Mathematical and simulation disease models are useful tools to provide insights on the most effective control strategies and to inform policy decisions. Existing rabies models typically focus on long-term control programs in endemic countries. However, simulation models describing the dog rabies incursion scenario in regions where rabies is still exotic are lacking. We here describe such a stochastic, spatially explicit rabies simulation model that is based on individual dog information collected in two remote regions in northern Australia. Illustrative simulations produced plausible results with epidemic characteristics expected for rabies outbreaks in disease free regions (mean R0 1.7, epidemic peak 97 days post-incursion, vaccination as the most effective response strategy). Systematic sensitivity analysis identified that model outcomes were most sensitive to seven of the 30 model parameters tested. This model is suitable for exploring rabies spread and control before an incursion in populations of largely free-roaming dogs that live close together with their owners. It can be used for ad-hoc contingency or response planning prior to and shortly after incursion of dog rabies in previously free regions. One challenge that remains is model parameterisation, particularly how dogs’ roaming and contacts and biting behaviours change following a rabies incursion in a previously rabies free population. PMID:26114762
Simulation of Distributed PV Power Output in Oahu Hawaii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lave, Matthew Samuel
2016-08-01
Distributed solar photovoltaic (PV) power generation in Oahu has grown rapidly since 2008. For applications such as determining the value of energy storage, it is important to have PV power output timeseries. Since these timeseries of not typically measured, here we produce simulated distributed PV power output for Oahu. Simulated power output is based on (a) satellite-derived solar irradiance, (b) PV permit data by neighborhood, and (c) population data by census block. Permit and population data was used to model locations of distributed PV, and irradiance data was then used to simulate power output. PV power output simulations are presentedmore » by sub-neighborhood polygons, neighborhoods, and for the whole island of Oahu. Summary plots of annual PV energy and a sample week timeseries of power output are shown, and a the files containing the entire timeseries are described.« less
Hoffmeister, Lorena; Lavados, Pablo M; Mar, Javier; Comas, Merce; Arrospide, Arantzazu; Castells, Xavier
2016-06-15
The only pharmacological treatment with proven cost-effectiveness in reducing acute ischemic stroke (AIS) associated disability is intravenous thrombolysis with recombinant tissue plasminogen activator but it's utilization rate is still low in most of the world. We estimated the minimum thrombolysis utilization rate needed to decrease the prevalence of stroke-related disability at a population level by using a discrete-event simulation model. The model included efficacy according to time to treatment up to 4.5h, and four scenarios for the utilization of intravenous thrombolysis in eligible patients with AIS: a) 2%; b) 12% c) 25% and d) 40%. We calculated the prevalence of AIS related disability in each scenario, using population based data. The simulation was performed from 2002 to 2017 using the ARENA software. A 2% utilization rate yielded a prevalence of disability of 359.1 per 100,000. Increasing thrombolysis to 12% avoided 779 disabled patients. If the utilization rate was increased to 25%, 1783 disabled patients would be avoided. The maximum scenario of 40% decreased disability to 335.7 per 100,000, avoiding 17% of AIS-related disability. The current utilization rate of intravenous thrombolysis of 2% has minimal population impact. Increasing the rate of utilization to more than 12% is the minimum to have a significant population effect on disability and should be a public policy aim. Copyright © 2016 Elsevier B.V. All rights reserved.
SEIR Model of Rumor Spreading in Online Social Network with Varying Total Population Size
NASA Astrophysics Data System (ADS)
Dong, Suyalatu; Deng, Yan-Bin; Huang, Yong-Chang
2017-10-01
Based on the infectious disease model with disease latency, this paper proposes a new model for the rumor spreading process in online social network. In this paper what we establish an SEIR rumor spreading model to describe the online social network with varying total number of users and user deactivation rate. We calculate the exact equilibrium points and reproduction number for this model. Furthermore, we perform the rumor spreading process in the online social network with increasing population size based on the original real world Facebook network. The simulation results indicate that the SEIR model of rumor spreading in online social network with changing total number of users can accurately reveal the inherent characteristics of rumor spreading process in online social network. Supported by National Natural Science Foundation of China under Grant Nos. 11275017 and 11173028
NASA Astrophysics Data System (ADS)
Aburas, Maher Milad; Ho, Yuek Ming; Ramli, Mohammad Firuz; Ash'aari, Zulfa Hanan
2017-07-01
The creation of an accurate simulation of future urban growth is considered one of the most important challenges in urban studies that involve spatial modeling. The purpose of this study is to improve the simulation capability of an integrated CA-Markov Chain (CA-MC) model using CA-MC based on the Analytical Hierarchy Process (AHP) and CA-MC based on Frequency Ratio (FR), both applied in Seremban, Malaysia, as well as to compare the performance and accuracy between the traditional and hybrid models. Various physical, socio-economic, utilities, and environmental criteria were used as predictors, including elevation, slope, soil texture, population density, distance to commercial area, distance to educational area, distance to residential area, distance to industrial area, distance to roads, distance to highway, distance to railway, distance to power line, distance to stream, and land cover. For calibration, three models were applied to simulate urban growth trends in 2010; the actual data of 2010 were used for model validation utilizing the Relative Operating Characteristic (ROC) and Kappa coefficient methods Consequently, future urban growth maps of 2020 and 2030 were created. The validation findings confirm that the integration of the CA-MC model with the FR model and employing the significant driving force of urban growth in the simulation process have resulted in the improved simulation capability of the CA-MC model. This study has provided a novel approach for improving the CA-MC model based on FR, which will provide powerful support to planners and decision-makers in the development of future sustainable urban planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moerk, Anna-Karin, E-mail: anna-karin.mork@ki.s; Jonsson, Fredrik; Pharsight, a Certara company, St. Louis, MO
2009-11-01
The aim of this study was to derive improved estimates of population variability and uncertainty of physiologically based pharmacokinetic (PBPK) model parameters, especially of those related to the washin-washout behavior of polar volatile substances. This was done by optimizing a previously published washin-washout PBPK model for acetone in a Bayesian framework using Markov chain Monte Carlo simulation. The sensitivity of the model parameters was investigated by creating four different prior sets, where the uncertainty surrounding the population variability of the physiological model parameters was given values corresponding to coefficients of variation of 1%, 25%, 50%, and 100%, respectively. The PBPKmore » model was calibrated to toxicokinetic data from 2 previous studies where 18 volunteers were exposed to 250-550 ppm of acetone at various levels of workload. The updated PBPK model provided a good description of the concentrations in arterial, venous, and exhaled air. The precision of most of the model parameter estimates was improved. New information was particularly gained on the population distribution of the parameters governing the washin-washout effect. The results presented herein provide a good starting point to estimate the target dose of acetone in the working and general populations for risk assessment purposes.« less
Accounting for genotype uncertainty in the estimation of allele frequencies in autopolyploids.
Blischak, Paul D; Kubatko, Laura S; Wolfe, Andrea D
2016-05-01
Despite the increasing opportunity to collect large-scale data sets for population genomic analyses, the use of high-throughput sequencing to study populations of polyploids has seen little application. This is due in large part to problems associated with determining allele copy number in the genotypes of polyploid individuals (allelic dosage uncertainty-ADU), which complicates the calculation of important quantities such as allele frequencies. Here, we describe a statistical model to estimate biallelic SNP frequencies in a population of autopolyploids using high-throughput sequencing data in the form of read counts. We bridge the gap from data collection (using restriction enzyme based techniques [e.g. GBS, RADseq]) to allele frequency estimation in a unified inferential framework using a hierarchical Bayesian model to sum over genotype uncertainty. Simulated data sets were generated under various conditions for tetraploid, hexaploid and octoploid populations to evaluate the model's performance and to help guide the collection of empirical data. We also provide an implementation of our model in the R package polyfreqs and demonstrate its use with two example analyses that investigate (i) levels of expected and observed heterozygosity and (ii) model adequacy. Our simulations show that the number of individuals sampled from a population has a greater impact on estimation error than sequencing coverage. The example analyses also show that our model and software can be used to make inferences beyond the estimation of allele frequencies for autopolyploids by providing assessments of model adequacy and estimates of heterozygosity. © 2015 John Wiley & Sons Ltd.
The Red Queen model of recombination hot-spot evolution: a theoretical investigation.
Latrille, Thibault; Duret, Laurent; Lartillot, Nicolas
2017-12-19
In humans and many other species, recombination events cluster in narrow and short-lived hot spots distributed across the genome, whose location is determined by the Zn-finger protein PRDM9. To explain these fast evolutionary dynamics, an intra-genomic Red Queen model has been proposed, based on the interplay between two antagonistic forces: biased gene conversion, mediated by double-strand breaks, resulting in hot-spot extinction, followed by positive selection favouring new PRDM9 alleles recognizing new sequence motifs. Thus far, however, this Red Queen model has not been formalized as a quantitative population-genetic model, fully accounting for the intricate interplay between biased gene conversion, mutation, selection, demography and genetic diversity at the PRDM9 locus. Here, we explore the population genetics of the Red Queen model of recombination. A Wright-Fisher simulator was implemented, allowing exploration of the behaviour of the model (mean equilibrium recombination rate, diversity at the PRDM9 locus or turnover rate) as a function of the parameters (effective population size, mutation and erosion rates). In a second step, analytical results based on self-consistent mean-field approximations were derived, reproducing the scaling relations observed in the simulations. Empirical fit of the model to current data from the mouse suggests both a high mutation rate at PRDM9 and strong biased gene conversion on its targets.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'. © 2017 The Authors.
The Red Queen model of recombination hot-spot evolution: a theoretical investigation
Latrille, Thibault; Duret, Laurent
2017-01-01
In humans and many other species, recombination events cluster in narrow and short-lived hot spots distributed across the genome, whose location is determined by the Zn-finger protein PRDM9. To explain these fast evolutionary dynamics, an intra-genomic Red Queen model has been proposed, based on the interplay between two antagonistic forces: biased gene conversion, mediated by double-strand breaks, resulting in hot-spot extinction, followed by positive selection favouring new PRDM9 alleles recognizing new sequence motifs. Thus far, however, this Red Queen model has not been formalized as a quantitative population-genetic model, fully accounting for the intricate interplay between biased gene conversion, mutation, selection, demography and genetic diversity at the PRDM9 locus. Here, we explore the population genetics of the Red Queen model of recombination. A Wright–Fisher simulator was implemented, allowing exploration of the behaviour of the model (mean equilibrium recombination rate, diversity at the PRDM9 locus or turnover rate) as a function of the parameters (effective population size, mutation and erosion rates). In a second step, analytical results based on self-consistent mean-field approximations were derived, reproducing the scaling relations observed in the simulations. Empirical fit of the model to current data from the mouse suggests both a high mutation rate at PRDM9 and strong biased gene conversion on its targets. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109226
A Distributed Platform for Global-Scale Agent-Based Models of Disease Transmission
Parker, Jon; Epstein, Joshua M.
2013-01-01
The Global-Scale Agent Model (GSAM) is presented. The GSAM is a high-performance distributed platform for agent-based epidemic modeling capable of simulating a disease outbreak in a population of several billion agents. It is unprecedented in its scale, its speed, and its use of Java. Solutions to multiple challenges inherent in distributing massive agent-based models are presented. Communication, synchronization, and memory usage are among the topics covered in detail. The memory usage discussion is Java specific. However, the communication and synchronization discussions apply broadly. We provide benchmarks illustrating the GSAM’s speed and scalability. PMID:24465120
Testing spatial heterogeneity with stock assessment models
Eero, Margit; Silva, Alexandra; Ulrich, Clara; Pawlowski, Lionel; Holmes, Steven J.; Ibaibarriaga, Leire; De Oliveira, José A. A.; Riveiro, Isabel; Alzorriz, Nekane; Citores, Leire; Scott, Finlay; Uriarte, Andres; Carrera, Pablo; Duhamel, Erwan; Mosqueira, Iago
2018-01-01
This paper describes a methodology that combines meta-population theory and stock assessment models to gain insights about spatial heterogeneity of the meta-population in an operational time frame. The methodology was tested with stochastic simulations for different degrees of connectivity between sub-populations and applied to two case studies, North Sea cod (Gadus morua) and Northeast Atlantic sardine (Sardina pilchardus). Considering that the biological components of a population can be partitioned into discrete spatial units, we extended this idea into a property of additivity of sub-population abundances. If the additivity results hold true for putative sub-populations, then assessment results based on sub-populations will provide information to develop and monitor the implementation of finer scale/local management. The simulation study confirmed that when sub-populations are independent and not too heterogeneous with regards to productivity, the sum of stock assessment model estimates of sub-populations’ SSB is similar to the SSB estimates of the meta-population. It also showed that a strong diffusion process can be detected and that the stronger the connection between SSB and recruitment, the better the diffusion process will be detected. On the other hand it showed that weak to moderate diffusion processes are not easy to identify and large differences between sub-populations productivities may be confounded with weak diffusion processes. The application to North Sea cod and Atlantic sardine exemplified how much insight can be gained. In both cases the results obtained were sufficiently robust to support the regional analysis. PMID:29364901
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, C.C.; Weinstein, D.A.; Shugart, H.H.
1980-10-01
The Quechua Indians of the Peruvian Andes are an example of a human population which has developed special cultural adaptations to deal with hypocaloric stress imposed by a harsh environment. A highly detailed human ecosystem model, NUNOA, which simulates the yearly energy balance of individuals, families, and extended families in a hypothetical farming and herding Quechua community of the high Andes was developed. Unlike most population models which use sets of differential equations in which individuals are aggregated into groups, this model considers the response of each individual to a stochastic environment. The model calculates the yearly energy demand formore » each family based on caloric requirements of its members. For each family, the model simulates the cultivation of seven different crops and the impact of precipitation, temperature, and disease on yield. Herding, slaughter, and market sales of three different animal species are also simulated. Any energy production in excess of the family's energy demand is placed into extended family storage for possible redistribution. A family failing to meet their annual energy demand may slaughter additional herd animals, temporarily migrate from the community, or borrow food from the extended family storage. The energy balance is used in determining births, deaths, marriages, and resource sharing in the Indian community. In addition, the model maintains a record of each individual's ancestry as well as seven genetic traits for use in tracing lineage and gene flow. The model user has the opportunity to investigate the effect of changes in marriage patterns, resource sharing patterns, or subsistence activities on the ability of the human population to survive in the harsh Andean environment. In addition, the user may investigate the impact of external technology on the Indian culture.« less
Dobbins, RL; O'Connor‐Semmes, RL; Young, MA
2016-01-01
A systems model was developed to describe the metabolism and disposition of ursodeoxycholic acid (UDCA) and its conjugates in healthy subjects based on pharmacokinetic (PK) data from published studies in order to study the distribution of oral UDCA and potential interactions influencing therapeutic effects upon interruption of its enterohepatic recirculation. The base model was empirically adapted to patients with primary biliary cirrhosis (PBC) based on current understanding of disease pathophysiology and clinical measurements. Simulations were performed for patients with PBC under two competing hypotheses: one for inhibition of ileal absorption of both UDCA and conjugates and the other only of conjugates. The simulations predicted distinctly different bile acid distribution patterns in plasma and bile. The UDCA model adapted to patients with PBC provides a platform to investigate a complex therapeutic drug interaction among UDCA, UDCA conjugates, and inhibition of ileal bile acid transport in this rare disease population. PMID:27537780
Arnan, Xavier; Molowny-Horas, Roberto; Rodrigo, Anselm; Retana, Javier
2012-01-01
Secondary seed dispersal is an important plant-animal interaction, which is central to understanding plant population and community dynamics. Very little information is still available on the effects of dispersal on plant demography and, particularly, for ant-seed dispersal interactions. As many other interactions, seed dispersal by animals involves costs (seed predation) and benefits (seed dispersal), the balance of which determines the outcome of the interaction. Separate quantification of each of them is essential in order to understand the effects of this interaction. To address this issue, we have successfully separated and analyzed the costs and benefits of seed dispersal by seed-harvesting ants on the plant population dynamics of three shrub species with different traits. To that aim a stochastic, spatially-explicit individually-based simulation model has been implemented based on actual data sets. The results from our simulation model agree with theoretical models of plant response dependent on seed dispersal, for one plant species, and ant-mediated seed predation, for another one. In these cases, model predictions were close to the observed values at field. Nonetheless, these ecological processes did not affect in anyway a third species, for which the model predictions were far from the observed values. This indicates that the balance between costs and benefits associated to secondary seed dispersal is clearly related to specific traits. This study is one of the first works that analyze tradeoffs of secondary seed dispersal on plant population dynamics, by disentangling the effects of related costs and benefits. We suggest analyzing the effects of interactions on population dynamics as opposed to merely analyzing the partners and their interaction strength. PMID:22880125
Multi-agent Simulations of Population Behavior: A Promising Tool for Systems Biology.
Colosimo, Alfredo
2018-01-01
This contribution reports on the simulation of some dynamical events observed in the collective behavior of different kinds of populations, ranging from shape-changing cells in a Petri dish to functionally correlated brain areas in vivo. The unifying methodological approach, based upon a Multi-Agent Simulation (MAS) paradigm as incorporated in the NetLogo™ interpreter, is a direct consequence of the cornerstone that simple, individual actions within a population of interacting agents often give rise to complex, collective behavior.The discussion will mainly focus on the emergence and spreading of synchronous activities within the population, as well as on the modulation of the collective behavior exerted by environmental force-fields. A relevant section of this contribution is dedicated to the extension of the MAS paradigm to Brain Network models. In such a general framework some recent applications taken from the direct experience of the author, and exploring the activation patterns characteristic of specific brain functional states, are described, and their impact on the Systems-Biology universe underlined.
An overview of the utility of population simulation software in molecular ecology.
Hoban, Sean
2014-05-01
Stochastic simulation software that simultaneously model genetic, population and environmental processes can inform many topics in molecular ecology. These include forecasting species and community response to environmental change, inferring dispersal ecology, revealing cryptic mating, quantifying past population dynamics, assessing in situ management options and monitoring neutral and adaptive biodiversity change. Advances in population demographic-genetic simulation software, especially with respect to individual life history, landscapes and genetic processes, are transforming and expanding the ways that molecular data can be used. The aim of this review is to explain the roles that such software can play in molecular ecology studies (whether as a principal component or a supporting function) so that researchers can decide whether, when and precisely how simulations can be incorporated into their work. First, I use seven case studies to demonstrate how simulations are employed, their specific advantage/necessity and what alternative or complementary (nonsimulation) approaches are available. I also explain how simulations can be integrated with existing spatial, environmental, historical and genetic data sets. I next describe simulation features that may be of interest to molecular ecologists, such as spatial and behavioural considerations and species' interactions, to provide guidance on how particular simulation capabilities can serve particular needs. Lastly, I discuss the prospect of simulation software in emerging challenges (climate change, biodiversity monitoring, population exploitation) and opportunities (genomics, ancient DNA), in order to emphasize that the scope of simulation-based work is expanding. I also suggest practical considerations, priorities and elements of best practice. This should accelerate the uptake of simulation approaches and firmly embed them as a versatile tool in the molecular ecologist's toolbox. © 2014 John Wiley & Sons Ltd.
Tanigawa, Takahiko; Kaneko, Masato; Hashizume, Kensei; Kajikawa, Mariko; Ueda, Hitoshi; Tajiri, Masahiro; Paolini, John F; Mueck, Wolfgang
2013-01-01
The global ROCKET AF phase III trial evaluated rivaroxaban 20 mg once daily (o.d.) for stroke prevention in atrial fibrillation (AF). Based on rivaroxaban pharmacokinetics in Japanese subjects and lower anticoagulation preferences in Japan, particularly in elderly patients, the optimal dose regimen for Japanese AF patients was considered. The aim of this analysis was dose selection for Japanese patients from a pharmacokinetic aspect by comparison of simulated exposure in Japanese patients with those in Caucasian patients. As a result of population pharmacokinetics-pharmacodynamics analyses, a one-compartment pharmacokinetic model with first-order absorption and direct link pharmacokinetic-pharmacodynamic models optimally described the plasma concentration and pharmacodynamic models (Factor Xa activity, prothrombin time, activated partial thromboplastin time, and HepTest), which were also consistent with previous works. Steady-state simulations indicated 15 mg rivaroxaban o.d. doses in Japanese patients with AF would yield exposures comparable to the 20 mg o.d. dose in Caucasian patients with AF. In conclusion, in the context of the lower anticoagulation targets in Japanese practice, the population pharmacokinetic and pharmacodynamic modeling supports 15 mg o.d. as the principal rivaroxaban dose in J-ROCKET AF.
A statistical approach to quasi-extinction forecasting.
Holmes, Elizabeth Eli; Sabo, John L; Viscido, Steven Vincent; Fagan, William Fredric
2007-12-01
Forecasting population decline to a certain critical threshold (the quasi-extinction risk) is one of the central objectives of population viability analysis (PVA), and such predictions figure prominently in the decisions of major conservation organizations. In this paper, we argue that accurate forecasting of a population's quasi-extinction risk does not necessarily require knowledge of the underlying biological mechanisms. Because of the stochastic and multiplicative nature of population growth, the ensemble behaviour of population trajectories converges to common statistical forms across a wide variety of stochastic population processes. This paper provides a theoretical basis for this argument. We show that the quasi-extinction surfaces of a variety of complex stochastic population processes (including age-structured, density-dependent and spatially structured populations) can be modelled by a simple stochastic approximation: the stochastic exponential growth process overlaid with Gaussian errors. Using simulated and real data, we show that this model can be estimated with 20-30 years of data and can provide relatively unbiased quasi-extinction risk with confidence intervals considerably smaller than (0,1). This was found to be true even for simulated data derived from some of the noisiest population processes (density-dependent feedback, species interactions and strong age-structure cycling). A key advantage of statistical models is that their parameters and the uncertainty of those parameters can be estimated from time series data using standard statistical methods. In contrast for most species of conservation concern, biologically realistic models must often be specified rather than estimated because of the limited data available for all the various parameters. Biologically realistic models will always have a prominent place in PVA for evaluating specific management options which affect a single segment of a population, a single demographic rate, or different geographic areas. However, for forecasting quasi-extinction risk, statistical models that are based on the convergent statistical properties of population processes offer many advantages over biologically realistic models.
ERIC Educational Resources Information Center
Cangelosi, Angelo
2007-01-01
In this paper we present the "grounded adaptive agent" computational framework for studying the emergence of communication and language. This modeling framework is based on simulations of population of cognitive agents that evolve linguistic capabilities by interacting with their social and physical environment (internal and external symbol…
Nakagawa, Fumiyo; van Sighem, Ard; Thiebaut, Rodolphe; Smith, Colette; Ratmann, Oliver; Cambiano, Valentina; Albert, Jan; Amato-Gauci, Andrew; Bezemer, Daniela; Campbell, Colin; Commenges, Daniel; Donoghoe, Martin; Ford, Deborah; Kouyos, Roger; Lodwick, Rebecca; Lundgren, Jens; Pantazis, Nikos; Pharris, Anastasia; Quinten, Chantal; Thorne, Claire; Touloumi, Giota; Delpech, Valerie; Phillips, Andrew
2016-03-01
It is important not only to collect epidemiologic data on HIV but to also fully utilize such information to understand the epidemic over time and to help inform and monitor the impact of policies and interventions. We describe and apply a novel method to estimate the size and characteristics of HIV-positive populations. The method was applied to data on men who have sex with men living in the UK and to a pseudo dataset to assess performance for different data availability. The individual-based simulation model was calibrated using an approximate Bayesian computation-based approach. In 2013, 48,310 (90% plausibility range: 39,900-45,560) men who have sex with men were estimated to be living with HIV in the UK, of whom 10,400 (6,160-17,350) were undiagnosed. There were an estimated 3,210 (1,730-5,350) infections per year on average between 2010 and 2013. Sixty-two percent of the total HIV-positive population are thought to have viral load <500 copies/ml. In the pseudo-epidemic example, HIV estimates have narrower plausibility ranges and are closer to the true number, the greater the data availability to calibrate the model. We demonstrate that our method can be applied to settings with less data, however plausibility ranges for estimates will be wider to reflect greater uncertainty of the data used to fit the model.
Ji, W.; Jeske, C.
2000-01-01
A geographic information system (GIS)-based spatial modeling approach was developed to study environmental and land use impacts on the geographic distribution of wintering northern pintails (Arias acuta) in the Lower Mississippi River region. Pintails were fitted with backpack radio transmitter packages at Catahoula Lake, LA, in October 1992-1994 and located weekly through the following March. Pintail survey data were converted into a digital database in ARC/INFO GIS format and integrated with environmental GIS data through a customized modeling interface. The study verified the relationship between pintail distributions and major environmental factors and developed a conceptual relation model. Visualization-based spatial simulations were used to display the movement patterns of specific population groups under spatial and temporal constraints. The spatial modeling helped understand the seasonal movement patterns of pintails in relation to their habitat usage in Arkansas and southwestern Louisiana for wintering and interchange situations among population groups wintering in Texas and southeastern Louisiana. (C) 2000 Elsevier Science B.V.
Alawieh, Ali; Sabra, Zahraa; Langley, E Farris; Bizri, Abdul Rahman; Hamadeh, Randa; Zaraket, Fadi A
2017-11-25
After the re-introduction of poliovirus to Syria in 2013, Lebanon was considered at high transmission risk due to its proximity to Syria and the high number of Syrian refugees. However, after a large-scale national immunization initiative, Lebanon was able to prevent a potential outbreak of polio among nationals and refugees. In this work, we used a computational individual-simulation model to assess the risk of poliovirus threat to Lebanon prior and after the immunization campaign and to quantitatively assess the healthcare impact of the campaign and the required standards that need to be maintained nationally to prevent a future outbreak. Acute poliomyelitis surveillance in Lebanon was along with the design and coverage rate of the recent national polio immunization campaign were reviewed from the records of the Lebanese Ministry of Public Health. Lebanese population demographics including Syrian and Palestinian refugees were reviewed to design individual-based models that predicts the consequences of polio spread to Lebanon and evaluate the outcome of immunization campaigns. The model takes into account geographic, demographic and health-related features. Our simulations confirmed the high risk of polio outbreaks in Lebanon within 10 days of case introduction prior to the immunization campaign, and showed that the current immunization campaign significantly reduced the speed of the infection in the event poliomyelitis cases enter the country. A minimum of 90% national immunization coverage was found to be required to prevent exponential propagation of potential transmission. Both surveillance and immunization efforts should be maintained at high standards in Lebanon and other countries in the area to detect and limit any potential outbreak. The use of computational population simulation models can provide a quantitative approach to assess the impact of immunization campaigns and the burden of infectious diseases even in the context of population migration.
Recalibrating disease parameters for increasing realism in modeling epidemics in closed settings.
Bioglio, Livio; Génois, Mathieu; Vestergaard, Christian L; Poletto, Chiara; Barrat, Alain; Colizza, Vittoria
2016-11-14
The homogeneous mixing assumption is widely adopted in epidemic modelling for its parsimony and represents the building block of more complex approaches, including very detailed agent-based models. The latter assume homogeneous mixing within schools, workplaces and households, mostly for the lack of detailed information on human contact behaviour within these settings. The recent data availability on high-resolution face-to-face interactions makes it now possible to assess the goodness of this simplified scheme in reproducing relevant aspects of the infection dynamics. We consider empirical contact networks gathered in different contexts, as well as synthetic data obtained through realistic models of contacts in structured populations. We perform stochastic spreading simulations on these contact networks and in populations of the same size under a homogeneous mixing hypothesis. We adjust the epidemiological parameters of the latter in order to fit the prevalence curve of the contact epidemic model. We quantify the agreement by comparing epidemic peak times, peak values, and epidemic sizes. Good approximations of the peak times and peak values are obtained with the homogeneous mixing approach, with a median relative difference smaller than 20 % in all cases investigated. Accuracy in reproducing the peak time depends on the setting under study, while for the peak value it is independent of the setting. Recalibration is found to be linear in the epidemic parameters used in the contact data simulations, showing changes across empirical settings but robustness across groups and population sizes. An adequate rescaling of the epidemiological parameters can yield a good agreement between the epidemic curves obtained with a real contact network and a homogeneous mixing approach in a population of the same size. The use of such recalibrated homogeneous mixing approximations would enhance the accuracy and realism of agent-based simulations and limit the intrinsic biases of the homogeneous mixing.
Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops
Yabe, Shiori; Yamasaki, Masanori; Ebana, Kaworu; Hayashi, Takeshi; Iwata, Hiroyoshi
2016-01-01
Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS), which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an “island model” inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the potential of genomic selection in autogamous crops, especially bringing long-term improvement. PMID:27115872
A Mathematical Model of Economic Population Dynamics in a Country That Has Optimal Zakat Management
NASA Astrophysics Data System (ADS)
Subhan, M.
2018-04-01
Zakat is the main tools against two issues in Islamic economy: economic justice and helping the poor. However, no government of Islamic countries can solve the economic disparity today. A mathematical model could give some understanding about this phenomenon. The goal of this research is to obtain a mathematical model that can describe the dynamic of economic group population. The research is theoretical based on relevance references. From the analytical and numerical simulation, we conclude that well-manage zakat and full comitment of the wealthy can achieve wealth equilibrium that represents minimum poverty.
Bankhead, Armand; Magnuson, Nancy S; Heckendorn, Robert B
2007-06-07
A computer simulation is used to model ductal carcinoma in situ, a form of non-invasive breast cancer. The simulation uses known histological morphology, cell types, and stochastic cell proliferation to evolve tumorous growth within a duct. The ductal simulation is based on a hybrid cellular automaton design using genetic rules to determine each cell's behavior. The genetic rules are a mutable abstraction that demonstrate genetic heterogeneity in a population. Our goal was to examine the role (if any) that recently discovered mammary stem cell hierarchies play in genetic heterogeneity, DCIS initiation and aggressiveness. Results show that simpler progenitor hierarchies result in greater genetic heterogeneity and evolve DCIS significantly faster. However, the more complex progenitor hierarchy structure was able to sustain the rapid reproduction of a cancer cell population for longer periods of time.
Simulation models in population breast cancer screening: A systematic review.
Koleva-Kolarova, Rositsa G; Zhan, Zhuozhao; Greuter, Marcel J W; Feenstra, Talitha L; De Bock, Geertruida H
2015-08-01
The aim of this review was to critically evaluate published simulation models for breast cancer screening of the general population and provide a direction for future modeling. A systematic literature search was performed to identify simulation models with more than one application. A framework for qualitative assessment which incorporated model type; input parameters; modeling approach, transparency of input data sources/assumptions, sensitivity analyses and risk of bias; validation, and outcomes was developed. Predicted mortality reduction (MR) and cost-effectiveness (CE) were compared to estimates from meta-analyses of randomized control trials (RCTs) and acceptability thresholds. Seven original simulation models were distinguished, all sharing common input parameters. The modeling approach was based on tumor progression (except one model) with internal and cross validation of the resulting models, but without any external validation. Differences in lead times for invasive or non-invasive tumors, and the option for cancers not to progress were not explicitly modeled. The models tended to overestimate the MR (11-24%) due to screening as compared to optimal RCTs 10% (95% CI - 2-21%) MR. Only recently, potential harms due to regular breast cancer screening were reported. Most scenarios resulted in acceptable cost-effectiveness estimates given current thresholds. The selected models have been repeatedly applied in various settings to inform decision making and the critical analysis revealed high risk of bias in their outcomes. Given the importance of the models, there is a need for externally validated models which use systematical evidence for input data to allow for more critical evaluation of breast cancer screening. Copyright © 2015 Elsevier Ltd. All rights reserved.
Passini, Elisa; Britton, Oliver J; Lu, Hua Rong; Rohrbacher, Jutta; Hermans, An N; Gallacher, David J; Greig, Robert J H; Bueno-Orovio, Alfonso; Rodriguez, Blanca
2017-01-01
Early prediction of cardiotoxicity is critical for drug development. Current animal models raise ethical and translational questions, and have limited accuracy in clinical risk prediction. Human-based computer models constitute a fast, cheap and potentially effective alternative to experimental assays, also facilitating translation to human. Key challenges include consideration of inter-cellular variability in drug responses and integration of computational and experimental methods in safety pharmacology. Our aim is to evaluate the ability of in silico drug trials in populations of human action potential (AP) models to predict clinical risk of drug-induced arrhythmias based on ion channel information, and to compare simulation results against experimental assays commonly used for drug testing. A control population of 1,213 human ventricular AP models in agreement with experimental recordings was constructed. In silico drug trials were performed for 62 reference compounds at multiple concentrations, using pore-block drug models (IC 50 /Hill coefficient). Drug-induced changes in AP biomarkers were quantified, together with occurrence of repolarization/depolarization abnormalities. Simulation results were used to predict clinical risk based on reports of Torsade de Pointes arrhythmias, and further evaluated in a subset of compounds through comparison with electrocardiograms from rabbit wedge preparations and Ca 2+ -transient recordings in human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). Drug-induced changes in silico vary in magnitude depending on the specific ionic profile of each model in the population, thus allowing to identify cell sub-populations at higher risk of developing abnormal AP phenotypes. Models with low repolarization reserve (increased Ca 2+ /late Na + currents and Na + /Ca 2+ -exchanger, reduced Na + /K + -pump) are highly vulnerable to drug-induced repolarization abnormalities, while those with reduced inward current density (fast/late Na + and Ca 2+ currents) exhibit high susceptibility to depolarization abnormalities. Repolarization abnormalities in silico predict clinical risk for all compounds with 89% accuracy. Drug-induced changes in biomarkers are in overall agreement across different assays: in silico AP duration changes reflect the ones observed in rabbit QT interval and hiPS-CMs Ca 2+ -transient, and simulated upstroke velocity captures variations in rabbit QRS complex. Our results demonstrate that human in silico drug trials constitute a powerful methodology for prediction of clinical pro-arrhythmic cardiotoxicity, ready for integration in the existing drug safety assessment pipelines.
Bee++: An Object-Oriented, Agent-Based Simulator for Honey Bee Colonies
Betti, Matthew; LeClair, Josh; Wahl, Lindi M.; Zamir, Mair
2017-01-01
We present a model and associated simulation package (www.beeplusplus.ca) to capture the natural dynamics of a honey bee colony in a spatially-explicit landscape, with temporally-variable, weather-dependent parameters. The simulation tracks bees of different ages and castes, food stores within the colony, pollen and nectar sources and the spatial position of individual foragers outside the hive. We track explicitly the intake of pesticides in individual bees and their ability to metabolize these toxins, such that the impact of sub-lethal doses of pesticides can be explored. Moreover, pathogen populations (in particular, Nosema apis, Nosema cerenae and Varroa mites) have been included in the model and may be introduced at any time or location. The ability to study interactions among pesticides, climate, biodiversity and pathogens in this predictive framework should prove useful to a wide range of researchers studying honey bee populations. To this end, the simulation package is written in open source, object-oriented code (C++) and can be easily modified by the user. Here, we demonstrate the use of the model by exploring the effects of sub-lethal pesticide exposure on the flight behaviour of foragers. PMID:28287445
Biomimicry of quorum sensing using bacterial lifecycle model.
Niu, Ben; Wang, Hong; Duan, Qiqi; Li, Li
2013-01-01
Recent microbiologic studies have shown that quorum sensing mechanisms, which serve as one of the fundamental requirements for bacterial survival, exist widely in bacterial intra- and inter-species cell-cell communication. Many simulation models, inspired by the social behavior of natural organisms, are presented to provide new approaches for solving realistic optimization problems. Most of these simulation models follow population-based modelling approaches, where all the individuals are updated according to the same rules. Therefore, it is difficult to maintain the diversity of the population. In this paper, we present a computational model termed LCM-QS, which simulates the bacterial quorum-sensing (QS) mechanism using an individual-based modelling approach under the framework of Agent-Environment-Rule (AER) scheme, i.e. bacterial lifecycle model (LCM). LCM-QS model can be classified into three main sub-models: chemotaxis with QS sub-model, reproduction and elimination sub-model and migration sub-model. The proposed model is used to not only imitate the bacterial evolution process at the single-cell level, but also concentrate on the study of bacterial macroscopic behaviour. Comparative experiments under four different scenarios have been conducted in an artificial 3-D environment with nutrients and noxious distribution. Detailed study on bacterial chemotatic processes with quorum sensing and without quorum sensing are compared. By using quorum sensing mechanisms, artificial bacteria working together can find the nutrient concentration (or global optimum) quickly in the artificial environment. Biomimicry of quorum sensing mechanisms using the lifecycle model allows the artificial bacteria endowed with the communication abilities, which are essential to obtain more valuable information to guide their search cooperatively towards the preferred nutrient concentrations. It can also provide an inspiration for designing new swarm intelligence optimization algorithms, which can be used for solving the real-world problems.
Biomimicry of quorum sensing using bacterial lifecycle model
2013-01-01
Background Recent microbiologic studies have shown that quorum sensing mechanisms, which serve as one of the fundamental requirements for bacterial survival, exist widely in bacterial intra- and inter-species cell-cell communication. Many simulation models, inspired by the social behavior of natural organisms, are presented to provide new approaches for solving realistic optimization problems. Most of these simulation models follow population-based modelling approaches, where all the individuals are updated according to the same rules. Therefore, it is difficult to maintain the diversity of the population. Results In this paper, we present a computational model termed LCM-QS, which simulates the bacterial quorum-sensing (QS) mechanism using an individual-based modelling approach under the framework of Agent-Environment-Rule (AER) scheme, i.e. bacterial lifecycle model (LCM). LCM-QS model can be classified into three main sub-models: chemotaxis with QS sub-model, reproduction and elimination sub-model and migration sub-model. The proposed model is used to not only imitate the bacterial evolution process at the single-cell level, but also concentrate on the study of bacterial macroscopic behaviour. Comparative experiments under four different scenarios have been conducted in an artificial 3-D environment with nutrients and noxious distribution. Detailed study on bacterial chemotatic processes with quorum sensing and without quorum sensing are compared. By using quorum sensing mechanisms, artificial bacteria working together can find the nutrient concentration (or global optimum) quickly in the artificial environment. Conclusions Biomimicry of quorum sensing mechanisms using the lifecycle model allows the artificial bacteria endowed with the communication abilities, which are essential to obtain more valuable information to guide their search cooperatively towards the preferred nutrient concentrations. It can also provide an inspiration for designing new swarm intelligence optimization algorithms, which can be used for solving the real-world problems. PMID:23815296
Kumar, Supriya; Piper, Kaitlin; Galloway, David D; Hadler, James L; Grefenstette, John J
2015-09-23
In New Haven County, CT (NHC), influenza hospitalization rates have been shown to increase with census tract poverty in multiple influenza seasons. Though multiple factors have been hypothesized to cause these inequalities, including population structure, differential vaccine uptake, and differential access to healthcare, the impact of each in generating observed inequalities remains unknown. We can design interventions targeting factors with the greatest explanatory power if we quantify the proportion of observed inequalities that hypothesized factors are able to generate. Here, we ask if population structure is sufficient to generate the observed area-level inequalities in NHC. To our knowledge, this is the first use of simulation models to examine the causes of differential poverty-related influenza rates. Using agent-based models with a census-informed, realistic representation of household size, age-structure, population density in NHC census tracts, and contact rates in workplaces, schools, households, and neighborhoods, we measured poverty-related differential influenza attack rates over the course of an epidemic with a 23 % overall clinical attack rate. We examined the role of asthma prevalence rates as well as individual contact rates and infection susceptibility in generating observed area-level influenza inequalities. Simulated attack rates (AR) among adults increased with census tract poverty level (F = 30.5; P < 0.001) in an epidemic caused by a virus similar to A (H1N1) pdm09. We detected a steeper, earlier influenza rate increase in high-poverty census tracts-a finding that we corroborate with a temporal analysis of NHC surveillance data during the 2009 H1N1 pandemic. The ratio of the simulated adult AR in the highest- to lowest-poverty tracts was 33 % of the ratio observed in surveillance data. Increasing individual contact rates in the neighborhood did not increase simulated area-level inequalities. When we modified individual susceptibility such that it was inversely proportional to household income, inequalities in AR between high- and low-poverty census tracts were comparable to those observed in reality. To our knowledge, this is the first study to use simulations to probe the causes of observed inequalities in influenza disease patterns. Knowledge of the causes and their relative explanatory power will allow us to design interventions that have the greatest impact on reducing inequalities. Differential exposure due to population structure in our realistic simulation model explains a third of the observed inequality. Differential susceptibility to disease due to prevailing chronic conditions, vaccine uptake, and smoking should be considered in future models in order to quantify the role of additional factors in generating influenza inequalities.
NASA Astrophysics Data System (ADS)
Bharatham, Kavitha; Bharatham, Nagakumar; Kwon, Yong Jung; Lee, Keun Woo
2008-12-01
Allosteric inhibition of protein tyrosine phosphatase 1B (PTP1B), has paved a new path to design specific inhibitors for PTP1B, which is an important drug target for the treatment of type II diabetes and obesity. The PTP1B1-282-allosteric inhibitor complex crystal structure lacks α7 (287-298) and moreover there is no available 3D structure of PTP1B1-298 in open form. As the interaction between α7 and α6-α3 helices plays a crucial role in allosteric inhibition, α7 was modeled to the PTP1B1-282 in open form complexed with an allosteric inhibitor (compound-2) and a 5 ns MD simulation was performed to investigate the relative orientation of the α7-α6-α3 helices. The simulation conformational space was statistically sampled by clustering analyses. This approach was helpful to reveal certain clues on PTP1B allosteric inhibition. The simulation was also utilized in the generation of receptor based pharmacophore models to include the conformational flexibility of the protein-inhibitor complex. Three cluster representative structures of the highly populated clusters were selected for pharmacophore model generation. The three pharmacophore models were subsequently utilized for screening databases to retrieve molecules containing the features that complement the allosteric site. The retrieved hits were filtered based on certain drug-like properties and molecular docking simulations were performed in two different conformations of protein. Thus, performing MD simulation with α7 to investigate the changes at the allosteric site, then developing receptor based pharmacophore models and finally docking the retrieved hits into two distinct conformations will be a reliable methodology in identifying PTP1B allosteric inhibitors.
Effects of sample size on estimates of population growth rates calculated with matrix models.
Fiske, Ian J; Bruna, Emilio M; Bolker, Benjamin M
2008-08-28
Matrix models are widely used to study the dynamics and demography of populations. An important but overlooked issue is how the number of individuals sampled influences estimates of the population growth rate (lambda) calculated with matrix models. Even unbiased estimates of vital rates do not ensure unbiased estimates of lambda-Jensen's Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of lambda due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among size classes lead to biases in estimates of lambda. Using data from a long-term field study of plant demography, we simulated the effects of sampling variance by drawing vital rates and calculating lambda for increasingly larger populations drawn from a total population of 3842 plants. We then compared these estimates of lambda with those based on the entire population and calculated the resulting bias. Finally, we conducted a review of the literature to determine the sample sizes typically used when parameterizing matrix models used to study plant demography. We found significant bias at small sample sizes when survival was low (survival = 0.5), and that sampling with a more-realistic inverse J-shaped population structure exacerbated this bias. However our simulations also demonstrate that these biases rapidly become negligible with increasing sample sizes or as survival increases. For many of the sample sizes used in demographic studies, matrix models are probably robust to the biases resulting from sampling variance of vital rates. However, this conclusion may depend on the structure of populations or the distribution of sampling effort in ways that are unexplored. We suggest more intensive sampling of populations when individual survival is low and greater sampling of stages with high elasticities.
Azari, Mansour R; Sadighzadeh, Asghar; Bayatian, Majid
2018-06-19
Accidents have happened in the chemical industries all over the world with serious consequences for the adjacent heavily populated areas. In this study, the impact of the probable hypothetical event, releasing considerable amounts of hydrogen fluoride (HF) as a strong irritant into the atmosphere over the city of Isfahan from a strategic chemical plant, was simulated by computational fluid dynamics (CFD). In this model, the meteorological parameters were integrated into time and space, and dispersion of the pollutants was estimated based on a probable accidental release of HF. According to the hypothetical results of the simulation model in this study, HF clouds reached Isfahan in 20 min and exposed 80% of the general public to HF concentration in the range of 0-34 ppm. Then, they dissipated 240 min after the time of the incident. Supposing the uniform population density within the proximity of the city of Isfahan with the population of 1.75 million, 5% of the population (87,500 people) could be exposed for a few minutes to a HF concentration as high as 34 ppm. This concentration is higher than a very hazardous concentration described as the Immediate Danger to Life and Health (30 ppm). This hypothetical risk evaluation of environmental exposure to HF with the potential of health risks was very instrumental for the general public of Isfahan in terms of risk management. Similar studies based on probable accidental scenarios along with the application of a simulation model for computation of dispersed pollutants are recommended for risk evaluation and management of cities in the developing countries with a fast pace of urbanization around the industrial sites.
Tompkins, Adrian M; Ermert, Volker
2013-02-18
The relative roles of climate variability and population related effects in malaria transmission could be better understood if regional-scale dynamical malaria models could account for these factors. A new dynamical community malaria model is introduced that accounts for the temperature and rainfall influences on the parasite and vector life cycles which are finely resolved in order to correctly represent the delay between the rains and the malaria season. The rainfall drives a simple but physically based representation of the surface hydrology. The model accounts for the population density in the calculation of daily biting rates. Model simulations of entomological inoculation rate and circumsporozoite protein rate compare well to data from field studies from a wide range of locations in West Africa that encompass both seasonal endemic and epidemic fringe areas. A focus on Bobo-Dioulasso shows the ability of the model to represent the differences in transmission rates between rural and peri-urban areas in addition to the seasonality of malaria. Fine spatial resolution regional integrations for Eastern Africa reproduce the malaria atlas project (MAP) spatial distribution of the parasite ratio, and integrations for West and Eastern Africa show that the model grossly reproduces the reduction in parasite ratio as a function of population density observed in a large number of field surveys, although it underestimates malaria prevalence at high densities probably due to the neglect of population migration. A new dynamical community malaria model is publicly available that accounts for climate and population density to simulate malaria transmission on a regional scale. The model structure facilitates future development to incorporate migration, immunity and interventions.
2013-01-01
Background The relative roles of climate variability and population related effects in malaria transmission could be better understood if regional-scale dynamical malaria models could account for these factors. Methods A new dynamical community malaria model is introduced that accounts for the temperature and rainfall influences on the parasite and vector life cycles which are finely resolved in order to correctly represent the delay between the rains and the malaria season. The rainfall drives a simple but physically based representation of the surface hydrology. The model accounts for the population density in the calculation of daily biting rates. Results Model simulations of entomological inoculation rate and circumsporozoite protein rate compare well to data from field studies from a wide range of locations in West Africa that encompass both seasonal endemic and epidemic fringe areas. A focus on Bobo-Dioulasso shows the ability of the model to represent the differences in transmission rates between rural and peri-urban areas in addition to the seasonality of malaria. Fine spatial resolution regional integrations for Eastern Africa reproduce the malaria atlas project (MAP) spatial distribution of the parasite ratio, and integrations for West and Eastern Africa show that the model grossly reproduces the reduction in parasite ratio as a function of population density observed in a large number of field surveys, although it underestimates malaria prevalence at high densities probably due to the neglect of population migration. Conclusions A new dynamical community malaria model is publicly available that accounts for climate and population density to simulate malaria transmission on a regional scale. The model structure facilitates future development to incorporate migration, immunity and interventions. PMID:23419192
Skin Stem Cell Hypotheses and Long Term Clone Survival – Explored Using Agent-based Modelling
Li, X.; Upadhyay, A. K.; Bullock, A. J.; Dicolandrea, T.; Xu, J.; Binder, R. L.; Robinson, M. K.; Finlay, D. R.; Mills, K. J.; Bascom, C. C.; Kelling, C. K.; Isfort, R. J.; Haycock, J. W.; MacNeil, S.; Smallwood, R. H.
2013-01-01
Epithelial renewal in skin is achieved by the constant turnover and differentiation of keratinocytes. Three popular hypotheses have been proposed to explain basal keratinocyte regeneration and epidermal homeostasis: 1) asymmetric division (stem-transit amplifying cell); 2) populational asymmetry (progenitor cell with stochastic fate); and 3) populational asymmetry with stem cells. In this study, we investigated lineage dynamics using these hypotheses with a 3D agent-based model of the epidermis. The model simulated the growth and maintenance of the epidermis over three years. The offspring of each proliferative cell was traced. While all lineages were preserved in asymmetric division, the vast majority were lost when assuming populational asymmetry. The third hypothesis provided the most reliable mechanism for self-renewal by preserving genetic heterogeneity in quiescent stem cells, and also inherent mechanisms for skin ageing and the accumulation of genetic mutation. PMID:23712735
Skin stem cell hypotheses and long term clone survival--explored using agent-based modelling.
Li, X; Upadhyay, A K; Bullock, A J; Dicolandrea, T; Xu, J; Binder, R L; Robinson, M K; Finlay, D R; Mills, K J; Bascom, C C; Kelling, C K; Isfort, R J; Haycock, J W; MacNeil, S; Smallwood, R H
2013-01-01
Epithelial renewal in skin is achieved by the constant turnover and differentiation of keratinocytes. Three popular hypotheses have been proposed to explain basal keratinocyte regeneration and epidermal homeostasis: 1) asymmetric division (stem-transit amplifying cell); 2) populational asymmetry (progenitor cell with stochastic fate); and 3) populational asymmetry with stem cells. In this study, we investigated lineage dynamics using these hypotheses with a 3D agent-based model of the epidermis. The model simulated the growth and maintenance of the epidermis over three years. The offspring of each proliferative cell was traced. While all lineages were preserved in asymmetric division, the vast majority were lost when assuming populational asymmetry. The third hypothesis provided the most reliable mechanism for self-renewal by preserving genetic heterogeneity in quiescent stem cells, and also inherent mechanisms for skin ageing and the accumulation of genetic mutation.
Evolutionary game theory using agent-based methods.
Adami, Christoph; Schossau, Jory; Hintze, Arend
2016-12-01
Evolutionary game theory is a successful mathematical framework geared towards understanding the selective pressures that affect the evolution of the strategies of agents engaged in interactions with potential conflicts. While a mathematical treatment of the costs and benefits of decisions can predict the optimal strategy in simple settings, more realistic settings such as finite populations, non-vanishing mutations rates, stochastic decisions, communication between agents, and spatial interactions, require agent-based methods where each agent is modeled as an individual, carries its own genes that determine its decisions, and where the evolutionary outcome can only be ascertained by evolving the population of agents forward in time. While highlighting standard mathematical results, we compare those to agent-based methods that can go beyond the limitations of equations and simulate the complexity of heterogeneous populations and an ever-changing set of interactors. We conclude that agent-based methods can predict evolutionary outcomes where purely mathematical treatments cannot tread (for example in the weak selection-strong mutation limit), but that mathematics is crucial to validate the computational simulations. Copyright © 2016 Elsevier B.V. All rights reserved.
Agent based modeling of the coevolution of hostility and pacifism
NASA Astrophysics Data System (ADS)
Dalmagro, Fermin; Jimenez, Juan
2015-01-01
We propose a model based on a population of agents whose states represent either hostile or peaceful behavior. Randomly selected pairs of agents interact according to a variation of the Prisoners Dilemma game, and the probabilities that the agents behave aggressively or not are constantly updated by the model so that the agents that remain in the game are those with the highest fitness. We show that the population of agents oscillate between generalized conflict and global peace, without either reaching a stable state. We then use this model to explain some of the emergent behaviors in collective conflicts, by comparing the simulated results with empirical data obtained from social systems. In particular, using public data reports we show how the model precisely reproduces interesting quantitative characteristics of diverse types of armed conflicts, public protests, riots and strikes.
Modeling Political Populations with Bacteria
NASA Astrophysics Data System (ADS)
Cleveland, Chris; Liao, David
2011-03-01
Results from lattice-based simulations of micro-environments with heterogeneous nutrient resources reveal that competition between wild-type and GASP rpoS819 strains of E. Coli offers mutual benefit, particularly in nutrient deprived regions. Our computational model spatially maps bacteria populations and energy sources onto a set of 3D lattices that collectively resemble the topology of North America. By implementing Wright-Fishcer re- production into a probabilistic leap-frog scheme, we observe populations of wild-type and GASP rpoS819 cells compete for resources and, yet, aid each other's long term survival. The connection to how spatial political ideologies map in a similar way is discussed.
Schryver, Jack; Nutaro, James; Shankar, Mallikarjun
2015-10-30
An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schryver, Jack; Nutaro, James; Shankar, Mallikarjun
An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less
Verrest, Luka; Dorlo, Thomas P C
2017-06-01
Neglected tropical diseases (NTDs) affect more than one billion people, mainly living in developing countries. For most of these NTDs, treatment is suboptimal. To optimize treatment regimens, clinical pharmacokinetic studies are required where they have not been previously conducted to enable the use of pharmacometric modeling and simulation techniques in their application, which can provide substantial advantages. Our aim was to provide a systematic overview and summary of all clinical pharmacokinetic studies in NTDs and to assess the use of pharmacometrics in these studies, as well as to identify which of the NTDs or which treatments have not been sufficiently studied. PubMed was systematically searched for all clinical trials and case reports until the end of 2015 that described the pharmacokinetics of a drug in the context of treating any of the NTDs in patients or healthy volunteers. Eighty-two pharmacokinetic studies were identified. Most studies included small patient numbers (only five studies included >50 subjects) and only nine (11 %) studies included pediatric patients. A large part of the studies was not very recent; 56 % of studies were published before 2000. Most studies applied non-compartmental analysis methods for pharmacokinetic analysis (62 %). Twelve studies used population-based compartmental analysis (15 %) and eight (10 %) additionally performed simulations or extrapolation. For ten out of the 17 NTDs, none or only very few pharmacokinetic studies could be identified. For most NTDs, adequate pharmacokinetic studies are lacking and population-based modeling and simulation techniques have not generally been applied. Pharmacokinetic clinical trials that enable population pharmacokinetic modeling are needed to make better use of the available data. Simulation-based studies should be employed to enable the design of improved dosing regimens and more optimally use the limited resources to effectively provide therapy in this neglected area.
Pedestrians’ behavior in emergency evacuation: Modeling and simulation
NASA Astrophysics Data System (ADS)
Wang, Lei; Zheng, Jie-Hui; Zhang, Xiao-Shuang; Zhang, Jian-Lin; Wang, Qiu-Zhen; Zhang, Qian
2016-11-01
The social force model has been widely used to simulate pedestrian evacuation by analyzing attractive, repulsive, driving, and fluctuating forces among pedestrians. Many researchers have improved its limitations in simulating behaviors of large-scale population. This study modifies the well-accepted social force model by considering the impacts of interaction among companions and further develops a comprehensive model by combining that with a multi-exit utility function. Then numerical simulations of evacuations based on the comprehensive model are implemented in the waiting hall of the Wulin Square Subway Station in Hangzhou, China. The results provide safety thresholds of pedestrian density and panic levels in different operation situations. In spite of the operation situation and the panic level, a larger friend-group size results in lower evacuation efficiency. Our study makes important contributions to building a comprehensive multi-exit social force model and to applying it to actual scenarios, which produces data to facilitate decision making in contingency plans and emergency treatment. Project supported by the National Natural Science Foundation of China (Grant No. 71471163).
Bled, Florent; Belant, Jerrold L; Van Daele, Lawrence J; Svoboda, Nathan; Gustine, David; Hilderbrand, Grant; Barnes, Victor G
2017-11-01
Current management of large carnivores is informed using a variety of parameters, methods, and metrics; however, these data are typically considered independently. Sharing information among data types based on the underlying ecological, and recognizing observation biases, can improve estimation of individual and global parameters. We present a general integrated population model (IPM), specifically designed for brown bears ( Ursus arctos ), using three common data types for bear ( U . spp.) populations: repeated counts, capture-mark-recapture, and litter size. We considered factors affecting ecological and observation processes for these data. We assessed the practicality of this approach on a simulated population and compared estimates from our model to values used for simulation and results from count data only. We then present a practical application of this general approach adapted to the constraints of a case study using historical data available for brown bears on Kodiak Island, Alaska, USA. The IPM provided more accurate and precise estimates than models accounting for repeated count data only, with credible intervals including the true population 94% and 5% of the time, respectively. For the Kodiak population, we estimated annual average litter size (within one year after birth) to vary between 0.45 [95% credible interval: 0.43; 0.55] and 1.59 [1.55; 1.82]. We detected a positive relationship between salmon availability and adult survival, with survival probabilities greater for females than males. Survival probabilities increased from cubs to yearlings to dependent young ≥2 years old and decreased with litter size. Linking multiple information sources based on ecological and observation mechanisms can provide more accurate and precise estimates, to better inform management. IPMs can also reduce data collection efforts by sharing information among agencies and management units. Our approach responds to an increasing need in bear populations' management and can be readily adapted to other large carnivores.
Technical Note: Approximate Bayesian parameterization of a process-based tropical forest model
NASA Astrophysics Data System (ADS)
Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.
2014-02-01
Inverse parameter estimation of process-based models is a long-standing problem in many scientific disciplines. A key question for inverse parameter estimation is how to define the metric that quantifies how well model predictions fit to the data. This metric can be expressed by general cost or objective functions, but statistical inversion methods require a particular metric, the probability of observing the data given the model parameters, known as the likelihood. For technical and computational reasons, likelihoods for process-based stochastic models are usually based on general assumptions about variability in the observed data, and not on the stochasticity generated by the model. Only in recent years have new methods become available that allow the generation of likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional Markov chain Monte Carlo (MCMC) sampler, performs well in retrieving known parameter values from virtual inventory data generated by the forest model. We analyze the results of the parameter estimation, examine its sensitivity to the choice and aggregation of model outputs and observed data (summary statistics), and demonstrate the application of this method by fitting the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss how this approach differs from approximate Bayesian computation (ABC), another method commonly used to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation, can be successfully applied to process-based models of high complexity. The methodology is particularly suitable for heterogeneous and complex data structures and can easily be adjusted to other model types, including most stochastic population and individual-based models. Our study therefore provides a blueprint for a fairly general approach to parameter estimation of stochastic process-based models.
A novel approach to simulate gene-environment interactions in complex diseases.
Amato, Roberto; Pinelli, Michele; D'Andrea, Daniel; Miele, Gennaro; Nicodemi, Mario; Raiconi, Giancarlo; Cocozza, Sergio
2010-01-05
Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.). Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS), a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte Carlo process allows random variability. A knowledge-based approach reduces the complexity of the mathematical model by using reasonable biological constraints and makes the simulation more understandable in biological terms. Simulated data sets can be used for the assessment of novel statistical methods or for the evaluation of the statistical power when designing a study.
The evolution of dispersal conditioned on migration status
Asaduzzaman, Sarder Mohammed; Wild, Geoff
2012-01-01
We consider a model for the evolution of dispersal of offspring. Dispersal is treated as a parental trait that is expressed conditional upon a parent’s own “migration status,” that is, whether a parent, itself, is native or nonnative to the area in which it breeds. We compare the evolution of this kind of conditional dispersal to the evolution of unconditional dispersal, in order to determine the extent to which the former changes predictions about population-wide levels of dispersal. We use numerical simulations of an inclusive-fitness model, and individual-based simulations to predict population-average dispersal rates for the case in which dispersal based on migration status occurs. When our model predictions are compared to predictions that neglect conditional dispersal, observed differences between rates are only slight, and never exceed 0.06. While the effect of dispersal conditioned upon migration status could be detected in a carefully designed experiment, we argue that less-than-ideal experimental conditions, and factors such as dispersal conditioned on sex are likely to play a larger role that the type of conditional dispersal studied here. PMID:22837829
Human Health Risk Assessment Simulations in a Distributed Environment for Shuttle Launch
NASA Technical Reports Server (NTRS)
Thirumalainambi, Rajkumar; Bardina, Jorge
2004-01-01
During the launch of a rocket under prevailing weather conditions, commanders at Cape Canaveral Air Force station evaluate the possibility of whether wind blown toxic emissions might reach civilian and military personnel in the near by area. In our model, we focused mainly on Hydrogen chloride (HCL), Nitrogen oxides (NOx) and Nitric acid (HNO3), which are non-carcinogenic chemicals as per United States Environmental Protection Agency (USEPA) classification. We have used the hazard quotient model to estimate the number of people at risk. It is based on the number of people with exposure above a reference exposure level that is unlikely to cause adverse health effects. The risk to the exposed population is calculated by multiplying the individual risk and the number in exposed population. The risk values are compared against the acceptable risk values and GO or NO-go situation is decided based on risk values for the Shuttle launch. The entire model is simulated over the web and different scenaria can be generated which allows management to choose an optimum decision.
Estimating population trends with a linear model: Technical comments
Sauer, John R.; Link, William A.; Royle, J. Andrew
2004-01-01
Controversy has sometimes arisen over whether there is a need to accommodate the limitations of survey design in estimating population change from the count data collected in bird surveys. Analyses of surveys such as the North American Breeding Bird Survey (BBS) can be quite complex; it is natural to ask if the complexity is necessary, or whether the statisticians have run amok. Bart et al. (2003) propose a very simple analysis involving nothing more complicated than simple linear regression, and contrast their approach with model-based procedures. We review the assumptions implicit to their proposed method, and document that these assumptions are unlikely to be valid for surveys such as the BBS. One fundamental limitation of a purely design-based approach is the absence of controls for factors that influence detection of birds at survey sites. We show that failure to model observer effects in survey data leads to substantial bias in estimation of population trends from BBS data for the 20 species that Bart et al. (2003) used as the basis of their simulations. Finally, we note that the simulations presented in Bart et al. (2003) do not provide a useful evaluation of their proposed method, nor do they provide a valid comparison to the estimating- equations alternative they consider.
NASA Astrophysics Data System (ADS)
Al-Amin, S.
2015-12-01
Municipal water demands in growing population centers in the arid southwest US are typically met through increased groundwater withdrawals. Hydro-climatic uncertainties attributed to climate change and land use conversions may also alter demands and impact the replenishment of groundwater supply. Groundwater aquifers are not necessarily confined within municipal and management boundaries, and multiple diverse agencies may manage a shared resource in a decentralized approach, based on individual concerns and resources. The interactions among water managers, consumers, and the environment influence the performance of local management strategies and regional groundwater resources. This research couples an agent-based modeling (ABM) framework and a groundwater model to analyze the effects of different management approaches on shared groundwater resources. The ABM captures the dynamic interactions between household-level consumers and policy makers to simulate water demands under climate change and population growth uncertainties. The groundwater model is used to analyze the relative effects of management approaches on reducing demands and replenishing groundwater resources. The framework is applied for municipalities located in the Verde River Basin, Arizona that withdraw groundwater from the Verde Formation-Basin Fill-Carbonate aquifer system. Insights gained through this simulation study can be used to guide groundwater policy-making under changing hydro-climatic scenarios for a long-term planning horizon.
Bajard, Agathe; Chabaud, Sylvie; Cornu, Catherine; Castellan, Anne-Charlotte; Malik, Salma; Kurbatova, Polina; Volpert, Vitaly; Eymard, Nathalie; Kassai, Behrouz; Nony, Patrice
2016-01-01
The main objective of our work was to compare different randomized clinical trial (RCT) experimental designs in terms of power, accuracy of the estimation of treatment effect, and number of patients receiving active treatment using in silico simulations. A virtual population of patients was simulated and randomized in potential clinical trials. Treatment effect was modeled using a dose-effect relation for quantitative or qualitative outcomes. Different experimental designs were considered, and performances between designs were compared. One thousand clinical trials were simulated for each design based on an example of modeled disease. According to simulation results, the number of patients needed to reach 80% power was 50 for crossover, 60 for parallel or randomized withdrawal, 65 for drop the loser (DL), and 70 for early escape or play the winner (PW). For a given sample size, each design had its own advantage: low duration (parallel, early escape), high statistical power and precision (crossover), and higher number of patients receiving the active treatment (PW and DL). Our approach can help to identify the best experimental design, population, and outcome for future RCTs. This may be particularly useful for drug development in rare diseases, theragnostic approaches, or personalized medicine. Copyright © 2016 Elsevier Inc. All rights reserved.
Cheeseman, Bevan L.; Zhang, Dongcheng; Binder, Benjamin J.; Newgreen, Donald F.; Landman, Kerry A.
2014-01-01
Cell lineage tracing is a powerful tool for understanding how proliferation and differentiation of individual cells contribute to population behaviour. In the developing enteric nervous system (ENS), enteric neural crest (ENC) cells move and undergo massive population expansion by cell division within self-growing mesenchymal tissue. We show that single ENC cells labelled to follow clonality in the intestine reveal extraordinary and unpredictable variation in number and position of descendant cells, even though ENS development is highly predictable at the population level. We use an agent-based model to simulate ENC colonization and obtain agent lineage tracing data, which we analyse using econometric data analysis tools. In all realizations, a small proportion of identical initial agents accounts for a substantial proportion of the total final agent population. We term these individuals superstars. Their existence is consistent across individual realizations and is robust to changes in model parameters. This inequality of outcome is amplified at elevated proliferation rate. The experiments and model suggest that stochastic competition for resources is an important concept when understanding biological processes which feature high levels of cell proliferation. The results have implications for cell-fate processes in the ENS. PMID:24501272
Perry, Russell W.; Plumb, John M.; Jones, Edward C.; Som, Nicholas A.; Hetrick, Nicholas J.; Hardy, Thomas B.
2018-04-06
Fisheries and water managers often use population models to aid in understanding the effect of alternative water management or restoration actions on anadromous fish populations. We developed the Stream Salmonid Simulator (S3) to help resource managers evaluate the effect of management alternatives on juvenile salmonid populations. S3 is a deterministic stage-structured population model that tracks daily growth, movement, and survival of juvenile salmon. A key theme of the model is that river flow affects habitat availability and capacity, which in turn drives density dependent population dynamics. To explicitly link population dynamics to habitat quality and quantity, the river environment is constructed as a one-dimensional series of linked habitat units, each of which has an associated daily time series of discharge, water temperature, and usable habitat area or carrying capacity. The physical characteristics of each habitat unit and the number of fish occupying each unit, in turn, drive survival and growth within each habitat unit and movement of fish among habitat units.The purpose of this report is to outline the underlying general structure of the S3 model that is common among different applications of the model. We have developed applications of the S3 model for juvenile fall Chinook salmon (Oncorhynchus tshawytscha) in the lower Klamath River. Thus, this report is a companion to current application of the S3 model to the Trinity River (in review). The general S3 model structure provides a biological and physical framework for the salmonid freshwater life cycle. This framework captures important demographics of juvenile salmonids aimed at translating management alternatives into simulated population responses. Although the S3 model is built on this common framework, the model has been constructed to allow much flexibility in application of the model to specific river systems. The ability for practitioners to include system-specific information for the physical stream structure, survival, growth, and movement processes ensures that simulations provide results that are relevant to the questions asked about the population under study.
Pil, L; Fobelets, M; Putman, K; Trybou, J; Annemans, L
2016-07-01
Colorectal cancer (CRC) is one of the leading causes of cancer mortality in Belgium. In Flanders (Belgium), a population-based screening program with a biennial immunochemical faecal occult blood test (iFOBT) in women and men aged 56-74 has been organised since 2013. This study assessed the cost-effectiveness and budget impact of the colorectal population-based screening program in Flanders (Belgium). A health economic model was conducted, consisting of a decision tree simulating the screening process and a Markov model, with a time horizon of 20years, simulating natural progression. Predicted mortality and incidence, total costs, and quality-adjusted life-years (QALYs) with and without the screening program were calculated in order to determine the incremental cost-effectiveness ratio of CRC screening. Deterministic and probabilistic sensitivity analyses were conducted, taking into account uncertainty of the model parameters. Mortality and incidence were predicted to decrease over 20years. The colorectal screening program in Flanders is found to be cost-effective with an ICER of 1681/QALY (95% CI -1317 to 6601) in males and €4,484/QALY (95% CI -3254 to 18,163). The probability of being cost-effective given a threshold of €35,000/QALY was 100% and 97.3%, respectively. The budget impact analysis showed the extra cost for the health care payer to be limited. This health economic analysis has shown that despite the possible adverse effects of screening and the extra costs for the health care payer and the patient, the population-based screening program for CRC in Flanders is cost-effective and should therefore be maintained. Copyright © 2016 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Scherstjanoi, M.; Kaplan, J. O.; Thürig, E.; Lischke, H.
2013-02-01
Models of vegetation dynamics that are designed for application at spatial scales larger than individual forest gaps suffer from several limitations. Typically, either a population average approximation is used that results in unrealistic tree allometry and forest stand structure, or models have a high computational demand because they need to simulate both a series of age-based cohorts and a number of replicate patches to account for stochastic gap-scale disturbances. The detail required by the latter method increases the number of calculations by two to three orders of magnitude compared to the less realistic population average approach. In an effort to increase the efficiency of dynamic vegetation models without sacrificing realism, and to explore patterns of spatial scaling in forests, we developed a new method for simulating stand-replacing disturbances that is both accurate and 10-50x faster than approaches that use replicate patches. The GAPPARD (approximating GAP model results with a Probabilistic Approach to account for stand Replacing Disturbances) method works by postprocessing the output of deterministic, undisturbed simulations of a cohort-based vegetation model by deriving the distribution of patch ages at any point in time on the basis of a disturbance probability. With this distribution, the expected value of any output variable can be calculated from the output values of the deterministic undisturbed run at the time corresponding to the patch age. To account for temporal changes in model forcing, e.g., as a result of climate change, GAPPARD performs a series of deterministic simulations and interpolates between the results in the postprocessing step. We integrated the GAPPARD method in the forest models LPJ-GUESS and TreeM-LPJ, and evaluated these in a series of simulations along an altitudinal transect of an inner-alpine valley. With GAPPARD applied to LPJ-GUESS results were insignificantly different from the output of the original model LPJ-GUESS using 100 replicate patches, but simulation time was reduced by approximately the factor 10. Our new method is therefore highly suited rapidly approximating LPJ-GUESS results, and provides the opportunity for future studies over large spatial domains, allows easier parameterization of tree species, faster identification of areas of interesting simulation results, and comparisons with large-scale datasets and forest models.
Monteleone, Jon P. R.; Mokhtarani, M.; Diaz, G. A.; Rhead, W.; Lichter-Konecki, U.; Berry, S. A.; LeMons, C.; Dickinson, K.; Coakley, D.; Lee, B.; Scharschmidt, B. F.
2014-01-01
Sodium phenylbutyrate and glycerol phenylbutyrate mediate waste nitrogen excretion in the form of urinary phenylacetylglutamine (PAGN) in patients with urea cycle disorders (UCDs); rare genetic disorders characterized by impaired urea synthesis and hyperammonemia. Sodium phenylbutyrate is approved for UCD treatment; the development of glycerol phenylbutyrate afforded the opportunity to characterize the pharmacokinetics (PK) of both compounds. A population PK model was developed using data from four Phase II/III trials that collectively enrolled patients ages 2 months to 72 years. Dose simulations were performed with particular attention to phenylacetic acid (PAA), which has been associated with adverse events in non-UCD populations. The final model described metabolite levels in plasma and urine for both drugs and was characterized by (a) partial presystemic metabolism of phenylbutyric acid (PBA) to PAA and/or PAGN, (b) slower PBA absorption and greater presystemic conversion with glycerol phenylbutyrate, (c) similar systemic disposition with saturable conversion of PAA to PAGN for both drugs, and (d) body surface area (BSA) as a significant covariate accounting for age-related PK differences. Dose simulations demonstrated similar PAA exposure following mole-equivalent PBA dosing of both drugs and greater PAA exposure in younger patients based on BSA. PMID:23775211
Monteleone, Jon P R; Mokhtarani, M; Diaz, G A; Rhead, W; Lichter-Konecki, U; Berry, S A; Lemons, C; Dickinson, K; Coakley, D; Lee, B; Scharschmidt, B F
2013-07-01
Sodium phenylbutyrate and glycerol phenylbutyrate mediate waste nitrogen excretion in the form of urinary phenylacetylglutamine (PAGN) in patients with urea cycle disorders (UCDs); rare genetic disorders characterized by impaired urea synthesis and hyperammonemia. Sodium phenylbutyrate is approved for UCD treatment; the development of glycerol phenylbutyrate afforded the opportunity to characterize the pharmacokinetics (PK) of both compounds. A population PK model was developed using data from four Phase II/III trials that collectively enrolled patients ages 2 months to 72 years. Dose simulations were performed with particular attention to phenylacetic acid (PAA), which has been associated with adverse events in non-UCD populations. The final model described metabolite levels in plasma and urine for both drugs and was characterized by (a) partial presystemic metabolism of phenylbutyric acid (PBA) to PAA and/or PAGN, (b) slower PBA absorption and greater presystemic conversion with glycerol phenylbutyrate, (c) similar systemic disposition with saturable conversion of PAA to PAGN for both drugs, and (d) body surface area (BSA) as a significant covariate accounting for age-related PK differences. Dose simulations demonstrated similar PAA exposure following mole-equivalent PBA dosing of both drugs and greater PAA exposure in younger patients based on BSA. © The Author(s) 2013.
NASA Astrophysics Data System (ADS)
Anwar, R.; Khan, R.; Usmani, M.; Colwell, R. R.; Jutla, A.
2017-12-01
Vector borne infectious diseases such as Dengue, Zika and Chikungunya remain a public health threat. An estimate of the World Health Organization (WHO) suggests that about 2.5 billion people, representing ca. 40% of human population,are at increased risk of dengue; with more than 100 million infection cases every year. Vector-borne infections cannot be eradicated since disease causing pathogens survive in the environment. Over the last few decades dengue infection has been reported in more than 100 countries and is expanding geographically. Female Ae. Aegypti mosquito, the daytime active and a major vector for dengue virus, is associated with urban population density and regional climatic processes. However, mathematical quantification of relationships on abundance of vectors and climatic processes remain a challenge, particularly in regions where such data are not routinely collected. Here, using system dynamics based feedback mechanism, an algorithm integrating knowledge from entomological, meteorological and epidemiological processes is developed that has potential to provide ensemble simulations on risk of occurrence of dengue infection in human population. Using dataset from satellite remote sensing, the algorithm was calibrated and validated using actual dengue case data of Iquitos, Peru. We will show results on model capabilities in capturing initiation and peak in the observed time series. In addition, results from several simulation scenarios under different climatic conditions will be discussed.
Modeling the clinical and economic implications of obesity using microsimulation.
Su, W; Huang, J; Chen, F; Iacobucci, W; Mocarski, M; Dall, T M; Perreault, L
2015-01-01
The obesity epidemic has raised considerable public health concerns, but there are few validated longitudinal simulation models examining the human and economic cost of obesity. This paper describes a microsimulation model as a comprehensive tool to understand the relationship between body weight, health, and economic outcomes. Patient health and economic outcomes were simulated annually over 10 years using a Markov-based microsimulation model. The obese population examined is nationally representative of obese adults in the US from the 2005-2012 National Health and Nutrition Examination Surveys, while a matched normal weight population was constructed to have similar demographics as the obese population during the same period. Prediction equations for onset of obesity-related comorbidities, medical expenditures, economic outcomes, mortality, and quality-of-life came from published trials and studies supplemented with original research. Model validation followed International Society for Pharmacoeconomics and Outcomes Research practice guidelines. Among surviving adults, relative to a matched normal weight population, obese adults averaged $3900 higher medical expenditures in the initial year, growing to $4600 higher expenditures in year 10. Obese adults had higher initial prevalence and higher simulated onset of comorbidities as they aged. Over 10 years, excess medical expenditures attributed to obesity averaged $4280 annually-ranging from $2820 for obese category I to $5100 for obese category II, and $8710 for obese category III. Each excess kilogram of weight contributed to $140 higher annual costs, on average, ranging from $136 (obese I) to $152 (obese III). Poor health associated with obesity increased work absenteeism and mortality, and lowered employment probability, personal income, and quality-of-life. This validated model helps illustrate why obese adults have higher medical and indirect costs relative to normal weight adults, and shows that medical costs for obese adults rise more rapidly with aging relative to normal weight adults.
From blackbirds to black holes: Investigating capture-recapture methods for time domain astronomy
NASA Astrophysics Data System (ADS)
Laycock, Silas G. T.
2017-07-01
In time domain astronomy, recurrent transients present a special problem: how to infer total populations from limited observations. Monitoring observations may give a biassed view of the underlying population due to limitations on observing time, visibility and instrumental sensitivity. A similar problem exists in the life sciences, where animal populations (such as migratory birds) or disease prevalence, must be estimated from sparse and incomplete data. The class of methods termed Capture-Recapture is used to reconstruct population estimates from time-series records of encounters with the study population. This paper investigates the performance of Capture-Recapture methods in astronomy via a series of numerical simulations. The Blackbirds code simulates monitoring of populations of transients, in this case accreting binary stars (neutron star or black hole accreting from a stellar companion) under a range of observing strategies. We first generate realistic light-curves for populations of binaries with contrasting orbital period distributions. These models are then randomly sampled at observing cadences typical of existing and planned monitoring surveys. The classical capture-recapture methods, Lincoln-Peterson, Schnabel estimators, related techniques, and newer methods implemented in the Rcapture package are compared. A general exponential model based on the radioactive decay law is introduced which is demonstrated to recover (at 95% confidence) the underlying population abundance and duty cycle, in a fraction of the observing visits (10-50%) required to discover all the sources in the simulation. Capture-Recapture is a promising addition to the toolbox of time domain astronomy, and methods implemented in R by the biostats community can be readily called from within python.
NASA Astrophysics Data System (ADS)
Koutiva, Ifigeneia; Makropoulos, Christos
2015-04-01
The urban water system's sustainable evolution requires tools that can analyse and simulate the complete cycle including both physical and cultural environments. One of the main challenges, in this regard, is the design and development of tools that are able to simulate the society's water demand behaviour and the way policy measures affect it. The effects of these policy measures are a function of personal opinions that subsequently lead to the formation of people's attitudes. These attitudes will eventually form behaviours. This work presents the design of an ABM tool for addressing the social dimension of the urban water system. The created tool, called Urban Water Agents' Behaviour (UWAB) model, was implemented, using the NetLogo agent programming language. The main aim of the UWAB model is to capture the effects of policies and environmental pressures to water conservation behaviour of urban households. The model consists of agents representing urban households that are linked to each other creating a social network that influences the water conservation behaviour of its members. Household agents are influenced as well by policies and environmental pressures, such as drought. The UWAB model simulates behaviour resulting in the evolution of water conservation within an urban population. The final outcome of the model is the evolution of the distribution of different conservation levels (no, low, high) to the selected urban population. In addition, UWAB is implemented in combination with an existing urban water management simulation tool, the Urban Water Optioneering Tool (UWOT) in order to create a modelling platform aiming to facilitate an adaptive approach of water resources management. For the purposes of this proposed modelling platform, UWOT is used in a twofold manner: (1) to simulate domestic water demand evolution and (2) to simulate the response of the water system to the domestic water demand evolution. The main advantage of the UWAB - UWOT model integration is that it allows the investigation of the effects of different water demand management strategies to an urban population's water demand behaviour and ultimately the effects of these policies to the volume of domestic water demand and the water resources system. The proposed modelling platform is optimised to simulate the effects of water policies during the Athens drought period of 1988-1994. The calibrated modelling platform is then applied to evaluate scenarios of water supply, water demand and water demand management strategies.
NASA Astrophysics Data System (ADS)
Thanh, Vo Hong; Marchetti, Luca; Reali, Federico; Priami, Corrado
2018-02-01
The stochastic simulation algorithm (SSA) has been widely used for simulating biochemical reaction networks. SSA is able to capture the inherently intrinsic noise of the biological system, which is due to the discreteness of species population and to the randomness of their reciprocal interactions. However, SSA does not consider other sources of heterogeneity in biochemical reaction systems, which are referred to as extrinsic noise. Here, we extend two simulation approaches, namely, the integration-based method and the rejection-based method, to take extrinsic noise into account by allowing the reaction propensities to vary in time and state dependent manner. For both methods, new efficient implementations are introduced and their efficiency and applicability to biological models are investigated. Our numerical results suggest that the rejection-based method performs better than the integration-based method when the extrinsic noise is considered.
Joint Inference of Population Assignment and Demographic History
Choi, Sang Chul; Hey, Jody
2011-01-01
A new approach to assigning individuals to populations using genetic data is described. Most existing methods work by maximizing Hardy–Weinberg and linkage equilibrium within populations, neither of which will apply for many demographic histories. By including a demographic model, within a likelihood framework based on coalescent theory, we can jointly study demographic history and population assignment. Genealogies and population assignments are sampled from a posterior distribution using a general isolation-with-migration model for multiple populations. A measure of partition distance between assignments facilitates not only the summary of a posterior sample of assignments, but also the estimation of the posterior density for the demographic history. It is shown that joint estimates of assignment and demographic history are possible, including estimation of population phylogeny for samples from three populations. The new method is compared to results of a widely used assignment method, using simulated and published empirical data sets. PMID:21775468
Ghafouri, H R; Mosharaf-Dehkordi, M; Afzalan, B
2017-07-01
A simulation-optimization model is proposed for identifying the characteristics of local immiscible NAPL contaminant sources inside aquifers. This model employs the UTCHEM 9.0 software as its simulator for solving the governing equations associated with the multi-phase flow in porous media. As the optimization model, a novel two-level saturation based Imperialist Competitive Algorithm (ICA) is proposed to estimate the parameters of contaminant sources. The first level consists of three parallel independent ICAs and plays as a pre-conditioner for the second level which is a single modified ICA. The ICA in the second level is modified by dividing each country into a number of provinces (smaller parts). Similar to countries in the classical ICA, these provinces are optimized by the assimilation, competition, and revolution steps in the ICA. To increase the diversity of populations, a new approach named knock the base method is proposed. The performance and accuracy of the simulation-optimization model is assessed by solving a set of two and three-dimensional problems considering the effects of different parameters such as the grid size, rock heterogeneity and designated monitoring networks. The obtained numerical results indicate that using this simulation-optimization model provides accurate results at a less number of iterations when compared with the model employing the classical one-level ICA. Copyright © 2017 Elsevier B.V. All rights reserved.
Estimating population trends with a linear model
Bart, Jonathan; Collins, Brian D.; Morrison, R.I.G.
2003-01-01
We describe a simple and robust method for estimating trends in population size. The method may be used with Breeding Bird Survey data, aerial surveys, point counts, or any other program of repeated surveys at permanent locations. Surveys need not be made at each location during each survey period. The method differs from most existing methods in being design based, rather than model based. The only assumptions are that the nominal sampling plan is followed and that sample size is large enough for use of the t-distribution. Simulations based on two bird data sets from natural populations showed that the point estimate produced by the linear model was essentially unbiased even when counts varied substantially and 25% of the complete data set was missing. The estimating-equation approach, often used to analyze Breeding Bird Survey data, performed similarly on one data set but had substantial bias on the second data set, in which counts were highly variable. The advantages of the linear model are its simplicity, flexibility, and that it is self-weighting. A user-friendly computer program to carry out the calculations is available from the senior author.
HOW POPULATION STRUCTURE SHAPES NEIGHBORHOOD SEGREGATION*
Bruch, Elizabeth E.
2014-01-01
This study investigates how choices about social affiliation based on one attribute can exacerbate or attenuate segregation on another correlated attribute. The specific application is the role of racial and economic factors in generating patterns of racial residential segregation. I identify three population parameters—between-group inequality, within-group inequality, and relative group size—that determine how income inequality between race groups affects racial segregation. I use data from the Panel Study of Income Dynamics to estimate models of individual-level residential mobility, and incorporate these estimates into agent-based models. I then simulate segregation dynamics under alternative assumptions about: (1) the relative size of minority groups; and (2) the degree of correlation between race and income among individuals. I find that income inequality can have offsetting effects at the high and low ends of the income distribution. I demonstrate the empirical relevance of the simulation results using fixed-effects, metro-level regressions applied to 1980-2000 U.S. Census data. PMID:25009360
Cruz, Roberto de la; Guerrero, Pilar; Spill, Fabian; Alarcón, Tomás
2016-10-21
We propose a modelling framework to analyse the stochastic behaviour of heterogeneous, multi-scale cellular populations. We illustrate our methodology with a particular example in which we study a population with an oxygen-regulated proliferation rate. Our formulation is based on an age-dependent stochastic process. Cells within the population are characterised by their age (i.e. time elapsed since they were born). The age-dependent (oxygen-regulated) birth rate is given by a stochastic model of oxygen-dependent cell cycle progression. Once the birth rate is determined, we formulate an age-dependent birth-and-death process, which dictates the time evolution of the cell population. The population is under a feedback loop which controls its steady state size (carrying capacity): cells consume oxygen which in turn fuels cell proliferation. We show that our stochastic model of cell cycle progression allows for heterogeneity within the cell population induced by stochastic effects. Such heterogeneous behaviour is reflected in variations in the proliferation rate. Within this set-up, we have established three main results. First, we have shown that the age to the G1/S transition, which essentially determines the birth rate, exhibits a remarkably simple scaling behaviour. Besides the fact that this simple behaviour emerges from a rather complex model, this allows for a huge simplification of our numerical methodology. A further result is the observation that heterogeneous populations undergo an internal process of quasi-neutral competition. Finally, we investigated the effects of cell-cycle-phase dependent therapies (such as radiation therapy) on heterogeneous populations. In particular, we have studied the case in which the population contains a quiescent sub-population. Our mean-field analysis and numerical simulations confirm that, if the survival fraction of the therapy is too high, rescue of the quiescent population occurs. This gives rise to emergence of resistance to therapy since the rescued population is less sensitive to therapy. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Nikolov, Svetoslav; Santos, Guido; Wolkenhauer, Olaf; Vera, Julio
2018-02-01
Mathematical modeling of cell differentiated in colonic crypts can contribute to a better understanding of basic mechanisms underlying colonic tissue organization, but also its deregulation during carcinogenesis and tumor progression. Here, we combined bifurcation analysis to assess the effect that time delay has in the complex interplay of stem cells and semi-differentiated cells at the niche of colonic crypts, and systematic model perturbation and simulation to find model-based phenotypes linked to cancer progression. The models suggest that stem cell and semi-differentiated cell population dynamics in colonic crypts can display chaotic behavior. In addition, we found that clinical profiling of colorectal cancer correlates with the in silico phenotypes proposed by the mathematical model. Further, potential therapeutic targets for chemotherapy resistant phenotypes are proposed, which in any case will require experimental validation.
A Harris-Todaro Agent-Based Model to Rural-Urban Migration
NASA Astrophysics Data System (ADS)
Espíndola, Aquino L.; Silveira, Jaylson J.; Penna, T. J. P.
2006-09-01
The Harris-Todaro model of the rural-urban migration process is revisited under an agent-based approach. The migration of the workers is interpreted as a process of social learning by imitation, formalized by a computational model. By simulating this model, we observe a transitional dynamics with continuous growth of the urban fraction of overall population toward an equilibrium. Such an equilibrium is characterized by stabilization of rural-urban expected wages differential (generalized Harris-Todaro equilibrium condition), urban concentration and urban unemployment. These classic results obtained originally by Harris and Todaro are emergent properties of our model.
Fixation of slightly beneficial mutations: effects of life history.
Vindenes, Yngvild; Lee, Aline Magdalena; Engen, Steinar; Saether, Bernt-Erik
2010-04-01
Recent studies of rates of evolution have revealed large systematic differences among organisms with different life histories, both within and among taxa. Here, we consider how life history may affect the rate of evolution via its influence on the fixation probability of slightly beneficial mutations. Our approach is based on diffusion modeling for a finite, stage-structured population with stochastic population dynamics. The results, which are verified by computer simulations, demonstrate that even with complex population structure just two demographic parameters are sufficient to give an accurate approximation of the fixation probability of a slightly beneficial mutation. These are the reproductive value of the stage in which the mutation first occurs and the demographic variance of the population. The demographic variance also determines what influence population size has on the fixation probability. This model represents a substantial generalization of earlier models, covering a large range of life histories.
Van Meijgaard, Jeroen; Fielding, Jonathan E; Kominski, Gerald F
2009-01-01
A comprehensive population health-forecasting model has the potential to interject new and valuable information about the future health status of the population based on current conditions, socioeconomic and demographic trends, and potential changes in policies and programs. Our Health Forecasting Model uses a continuous-time microsimulation framework to simulate individuals' lifetime histories by using birth, risk exposures, disease incidence, and death rates to mark changes in the state of the individual. The model generates a reference forecast of future health in California, including details on physical activity, obesity, coronary heart disease, all-cause mortality, and medical expenditures. We use the model to answer specific research questions, inform debate on important policy issues in public health, support community advocacy, and provide analysis on the long-term impact of proposed changes in policies and programs, thus informing stakeholders at all levels and supporting decisions that can improve the health of populations.
PSRPOPPy: an open-source package for pulsar population simulations
NASA Astrophysics Data System (ADS)
Bates, S. D.; Lorimer, D. R.; Rane, A.; Swiggum, J.
2014-04-01
We have produced a new software package for the simulation of pulsar populations, PSRPOPPY, based on the PSRPOP package. The codebase has been re-written in Python (save for some external libraries, which remain in their native Fortran), utilizing the object-oriented features of the language, and improving the modularity of the code. Pre-written scripts are provided for running the simulations in `standard' modes of operation, but the code is flexible enough to support the writing of personalised scripts. The modular structure also makes the addition of experimental features (such as new models for period or luminosity distributions) more straightforward than with the previous code. We also discuss potential additions to the modelling capabilities of the software. Finally, we demonstrate some potential applications of the code; first, using results of surveys at different observing frequencies, we find pulsar spectral indices are best fitted by a normal distribution with mean -1.4 and standard deviation 1.0. Secondly, we model pulsar spin evolution to calculate the best fit for a relationship between a pulsar's luminosity and spin parameters. We used the code to replicate the analysis of Faucher-Giguère & Kaspi, and have subsequently optimized their power-law dependence of radio luminosity, L, with period, P, and period derivative, Ṗ. We find that the underlying population is best described by L ∝ P-1.39±0.09 Ṗ0.48±0.04 and is very similar to that found for γ-ray pulsars by Perera et al. Using this relationship, we generate a model population and examine the age-luminosity relation for the entire pulsar population, which may be measurable after future large-scale surveys with the Square Kilometre Array.
González, Edgar J; Martorell, Carlos
2013-07-01
Frequently, vital rates are driven by directional, long-term environmental changes. Many of these are of great importance, such as land degradation, climate change, and succession. Traditional demographic methods assume a constant or stationary environment, and thus are inappropriate to analyze populations subject to these changes. They also require repeat surveys of the individuals as change unfolds. Methods for reconstructing such lengthy processes are needed. We present a model that, based on a time series of population size structures and densities, reconstructs the impact of directional environmental changes on vital rates. The model uses integral projection models and maximum likelihood to identify the rates that best reconstructs the time series. The procedure was validated with artificial and real data. The former involved simulated species with widely different demographic behaviors. The latter used a chronosequence of populations of an endangered cactus subject to increasing anthropogenic disturbance. In our simulations, the vital rates and their change were always reconstructed accurately. Nevertheless, the model frequently produced alternative results. The use of coarse knowledge of the species' biology (whether vital rates increase or decrease with size or their plausible values) allowed the correct rates to be identified with a 90% success rate. With real data, the model correctly reconstructed the effects of disturbance on vital rates. These effects were previously known from two populations for which demographic data were available. Our procedure seems robust, as the data violated several of the model's assumptions. Thus, time series of size structures and densities contain the necessary information to reconstruct changing vital rates. However, additional biological knowledge may be required to provide reliable results. Because time series of size structures and densities are available for many species or can be rapidly generated, our model can contribute to understand populations that face highly pressing environmental problems.
González, Edgar J; Martorell, Carlos
2013-01-01
Frequently, vital rates are driven by directional, long-term environmental changes. Many of these are of great importance, such as land degradation, climate change, and succession. Traditional demographic methods assume a constant or stationary environment, and thus are inappropriate to analyze populations subject to these changes. They also require repeat surveys of the individuals as change unfolds. Methods for reconstructing such lengthy processes are needed. We present a model that, based on a time series of population size structures and densities, reconstructs the impact of directional environmental changes on vital rates. The model uses integral projection models and maximum likelihood to identify the rates that best reconstructs the time series. The procedure was validated with artificial and real data. The former involved simulated species with widely different demographic behaviors. The latter used a chronosequence of populations of an endangered cactus subject to increasing anthropogenic disturbance. In our simulations, the vital rates and their change were always reconstructed accurately. Nevertheless, the model frequently produced alternative results. The use of coarse knowledge of the species' biology (whether vital rates increase or decrease with size or their plausible values) allowed the correct rates to be identified with a 90% success rate. With real data, the model correctly reconstructed the effects of disturbance on vital rates. These effects were previously known from two populations for which demographic data were available. Our procedure seems robust, as the data violated several of the model's assumptions. Thus, time series of size structures and densities contain the necessary information to reconstruct changing vital rates. However, additional biological knowledge may be required to provide reliable results. Because time series of size structures and densities are available for many species or can be rapidly generated, our model can contribute to understand populations that face highly pressing environmental problems. PMID:23919169
Jacobs, Matthieu; Grégoire, Nicolas; Couet, William; Bulitta, Jurgen B.
2016-01-01
Semi-mechanistic pharmacokinetic-pharmacodynamic (PK-PD) modeling is increasingly used for antimicrobial drug development and optimization of dosage regimens, but systematic simulation-estimation studies to distinguish between competing PD models are lacking. This study compared the ability of static and dynamic in vitro infection models to distinguish between models with different resistance mechanisms and support accurate and precise parameter estimation. Monte Carlo simulations (MCS) were performed for models with one susceptible bacterial population without (M1) or with a resting stage (M2), a one population model with adaptive resistance (M5), models with pre-existing susceptible and resistant populations without (M3) or with (M4) inter-conversion, and a model with two pre-existing populations with adaptive resistance (M6). For each model, 200 datasets of the total bacterial population were simulated over 24h using static antibiotic concentrations (256-fold concentration range) or over 48h under dynamic conditions (dosing every 12h; elimination half-life: 1h). Twelve-hundred random datasets (each containing 20 curves for static or four curves for dynamic conditions) were generated by bootstrapping. Each dataset was estimated by all six models via population PD modeling to compare bias and precision. For M1 and M3, most parameter estimates were unbiased (<10%) and had good imprecision (<30%). However, parameters for adaptive resistance and inter-conversion for M2, M4, M5 and M6 had poor bias and large imprecision under static and dynamic conditions. For datasets that only contained viable counts of the total population, common statistical criteria and diagnostic plots did not support sound identification of the true resistance mechanism. Therefore, it seems advisable to quantify resistant bacteria and characterize their MICs and resistance mechanisms to support extended simulations and translate from in vitro experiments to animal infection models and ultimately patients. PMID:26967893
A Simulation Model to Determine Sensitivity and Timeliness of Surveillance Strategies.
Schulz, J; Staubach, C; Conraths, F J; Schulz, K
2017-12-01
Animal surveillance systems need regular evaluation. We developed an easily applicable simulation model of the German wild boar population to investigate two evaluation attributes: the sensitivity and timeliness (i.e. the ability to detect a disease outbreak rapidly) of a surveillance system. Classical swine fever (CSF) was used as an example for the model. CSF is an infectious disease that may lead to massive economic losses. It can affect wild boar as well as domestic pigs, and CSF outbreaks in domestic pigs have been linked to infections in wild boar. Awareness of the CSF status in wild boar is therefore vital. Our non-epidemic simulation model is based on real data and evaluates the currently implemented German surveillance system for CSF in wild boar. The results show that active surveillance for CSF fulfils the requirements of detecting an outbreak with 95% confidence within one year after the introduction of CSF into the wild boar population. Nevertheless, there is room for improved performance and efficiency by more homogeneous (active and passive) sampling of wild boar over the year. Passive surveillance alone is not sufficient to meet the requirements for detecting the infection. Although CSF was used as example to develop the model, it may also be applied to the evaluation of other surveillance systems for viral diseases in wild boar. It is also possible to compare sensitivity and timeliness across hypothetical alternative or risk-based surveillance strategies. © 2016 Blackwell Verlag GmbH.
Garza, Sarah J.; Miller, Ryan S.
2015-01-01
Livestock distribution in the United States (U.S.) can only be mapped at a county-level or worse resolution. We developed a spatial microsimulation model called the Farm Location and Agricultural Production Simulator (FLAPS) that simulated the distribution and populations of individual livestock farms throughout the conterminous U.S. Using domestic pigs (Sus scrofa domesticus) as an example species, we customized iterative proportional-fitting algorithms for the hierarchical structure of the U.S. Census of Agriculture and imputed unpublished state- or county-level livestock population totals that were redacted to ensure confidentiality. We used a weighted sampling design to collect data on the presence and absence of farms and used them to develop a national-scale distribution model that predicted the distribution of individual farms at a 100 m resolution. We implemented microsimulation algorithms that simulated the populations and locations of individual farms using output from our imputed Census of Agriculture dataset and distribution model. Approximately 19% of county-level pig population totals were unpublished in the 2012 Census of Agriculture and needed to be imputed. Using aerial photography, we confirmed the presence or absence of livestock farms at 10,238 locations and found livestock farms were correlated with open areas, cropland, and roads, and also areas with cooler temperatures and gentler topography. The distribution of swine farms was highly variable, but cross-validation of our distribution model produced an area under the receiver-operating characteristics curve value of 0.78, which indicated good predictive performance. Verification analyses showed FLAPS accurately imputed and simulated Census of Agriculture data based on absolute percent difference values of < 0.01% at the state-to-national scale, 3.26% for the county-to-state scale, and 0.03% for the individual farm-to-county scale. Our output data have many applications for risk management of agricultural systems including epidemiological studies, food safety, biosecurity issues, emergency-response planning, and conflicts between livestock and other natural resources. PMID:26571497
Burdett, Christopher L; Kraus, Brian R; Garza, Sarah J; Miller, Ryan S; Bjork, Kathe E
2015-01-01
Livestock distribution in the United States (U.S.) can only be mapped at a county-level or worse resolution. We developed a spatial microsimulation model called the Farm Location and Agricultural Production Simulator (FLAPS) that simulated the distribution and populations of individual livestock farms throughout the conterminous U.S. Using domestic pigs (Sus scrofa domesticus) as an example species, we customized iterative proportional-fitting algorithms for the hierarchical structure of the U.S. Census of Agriculture and imputed unpublished state- or county-level livestock population totals that were redacted to ensure confidentiality. We used a weighted sampling design to collect data on the presence and absence of farms and used them to develop a national-scale distribution model that predicted the distribution of individual farms at a 100 m resolution. We implemented microsimulation algorithms that simulated the populations and locations of individual farms using output from our imputed Census of Agriculture dataset and distribution model. Approximately 19% of county-level pig population totals were unpublished in the 2012 Census of Agriculture and needed to be imputed. Using aerial photography, we confirmed the presence or absence of livestock farms at 10,238 locations and found livestock farms were correlated with open areas, cropland, and roads, and also areas with cooler temperatures and gentler topography. The distribution of swine farms was highly variable, but cross-validation of our distribution model produced an area under the receiver-operating characteristics curve value of 0.78, which indicated good predictive performance. Verification analyses showed FLAPS accurately imputed and simulated Census of Agriculture data based on absolute percent difference values of < 0.01% at the state-to-national scale, 3.26% for the county-to-state scale, and 0.03% for the individual farm-to-county scale. Our output data have many applications for risk management of agricultural systems including epidemiological studies, food safety, biosecurity issues, emergency-response planning, and conflicts between livestock and other natural resources.
Pilditch, Toby D.
2018-01-01
In political campaigns, perceived candidate credibility influences the persuasiveness of messages. In campaigns aiming to influence people’s beliefs, micro-targeted campaigns (MTCs) that target specific voters using their psychological profile have become increasingly prevalent. It remains open how effective MTCs are, notably in comparison to population-targeted campaign strategies. Using an agent-based model, the paper applies recent insights from cognitive models of persuasion, extending them to the societal level in a novel framework for exploring political campaigning. The paper provides an initial treatment of the complex dynamics of population level political campaigning in a psychologically informed manner. Model simulations show that MTCs can take advantage of the psychology of the electorate by targeting voters favourable disposed towards the candidate. Relative to broad campaigning, MTCs allow for efficient and adaptive management of complex campaigns. Findings show that disliked MTC candidates can beat liked population-targeting candidates, pointing to societal questions concerning campaign regulations. PMID:29634722
Extinction in neutrally stable stochastic Lotka-Volterra models
NASA Astrophysics Data System (ADS)
Dobrinevski, Alexander; Frey, Erwin
2012-05-01
Populations of competing biological species exhibit a fascinating interplay between the nonlinear dynamics of evolutionary selection forces and random fluctuations arising from the stochastic nature of the interactions. The processes leading to extinction of species, whose understanding is a key component in the study of evolution and biodiversity, are influenced by both of these factors. Here, we investigate a class of stochastic population dynamics models based on generalized Lotka-Volterra systems. In the case of neutral stability of the underlying deterministic model, the impact of intrinsic noise on the survival of species is dramatic: It destroys coexistence of interacting species on a time scale proportional to the population size. We introduce a new method based on stochastic averaging which allows one to understand this extinction process quantitatively by reduction to a lower-dimensional effective dynamics. This is performed analytically for two highly symmetrical models and can be generalized numerically to more complex situations. The extinction probability distributions and other quantities of interest we obtain show excellent agreement with simulations.
Extinction in neutrally stable stochastic Lotka-Volterra models.
Dobrinevski, Alexander; Frey, Erwin
2012-05-01
Populations of competing biological species exhibit a fascinating interplay between the nonlinear dynamics of evolutionary selection forces and random fluctuations arising from the stochastic nature of the interactions. The processes leading to extinction of species, whose understanding is a key component in the study of evolution and biodiversity, are influenced by both of these factors. Here, we investigate a class of stochastic population dynamics models based on generalized Lotka-Volterra systems. In the case of neutral stability of the underlying deterministic model, the impact of intrinsic noise on the survival of species is dramatic: It destroys coexistence of interacting species on a time scale proportional to the population size. We introduce a new method based on stochastic averaging which allows one to understand this extinction process quantitatively by reduction to a lower-dimensional effective dynamics. This is performed analytically for two highly symmetrical models and can be generalized numerically to more complex situations. The extinction probability distributions and other quantities of interest we obtain show excellent agreement with simulations.
Madsen, Jens Koed; Pilditch, Toby D
2018-01-01
In political campaigns, perceived candidate credibility influences the persuasiveness of messages. In campaigns aiming to influence people's beliefs, micro-targeted campaigns (MTCs) that target specific voters using their psychological profile have become increasingly prevalent. It remains open how effective MTCs are, notably in comparison to population-targeted campaign strategies. Using an agent-based model, the paper applies recent insights from cognitive models of persuasion, extending them to the societal level in a novel framework for exploring political campaigning. The paper provides an initial treatment of the complex dynamics of population level political campaigning in a psychologically informed manner. Model simulations show that MTCs can take advantage of the psychology of the electorate by targeting voters favourable disposed towards the candidate. Relative to broad campaigning, MTCs allow for efficient and adaptive management of complex campaigns. Findings show that disliked MTC candidates can beat liked population-targeting candidates, pointing to societal questions concerning campaign regulations.
Effect of climate change on marine ecosystems
NASA Astrophysics Data System (ADS)
Vikebo, F. B.; Sundby, S.; Aadlandsvik, B.; Fiksen, O.
2003-04-01
As a part of the INTEGRATION project, headed by Potsdam Institute for Climate Impact Research, funded by the German Research Council, the impact of climate change scenarios on marine fish populations will be addressed on a spesific population basis and will focus on fish populations in the northern North Atlantic with special emphasis on cod. The approach taken will mainly be a modelling study supported by analysis of existing data on fish stocks and climate. Through down-scaling and nesting techniques, various climate change scenarios with reduced THC in the North Atlantic will be investigated with higher spatial resolution for selected shelf areas. The hydrodynamical model used for the regional ocean modeling is ROMS (http://marine.rutgers.edu/po/models/roms/). An individual based model will be implemented into the larval drift module to simulate growth of the larvae along the drift paths.
Cortical circuitry implementing graphical models.
Litvak, Shai; Ullman, Shimon
2009-11-01
In this letter, we develop and simulate a large-scale network of spiking neurons that approximates the inference computations performed by graphical models. Unlike previous related schemes, which used sum and product operations in either the log or linear domains, the current model uses an inference scheme based on the sum and maximization operations in the log domain. Simulations show that using these operations, a large-scale circuit, which combines populations of spiking neurons as basic building blocks, is capable of finding close approximations to the full mathematical computations performed by graphical models within a few hundred milliseconds. The circuit is general in the sense that it can be wired for any graph structure, it supports multistate variables, and it uses standard leaky integrate-and-fire neuronal units. Following previous work, which proposed relations between graphical models and the large-scale cortical anatomy, we focus on the cortical microcircuitry and propose how anatomical and physiological aspects of the local circuitry may map onto elements of the graphical model implementation. We discuss in particular the roles of three major types of inhibitory neurons (small fast-spiking basket cells, large layer 2/3 basket cells, and double-bouquet neurons), subpopulations of strongly interconnected neurons with their unique connectivity patterns in different cortical layers, and the possible role of minicolumns in the realization of the population-based maximum operation.
Chao, Anne; Jost, Lou; Hsieh, T C; Ma, K H; Sherwin, William B; Rollins, Lee Ann
2015-01-01
Shannon entropy H and related measures are increasingly used in molecular ecology and population genetics because (1) unlike measures based on heterozygosity or allele number, these measures weigh alleles in proportion to their population fraction, thus capturing a previously-ignored aspect of allele frequency distributions that may be important in many applications; (2) these measures connect directly to the rich predictive mathematics of information theory; (3) Shannon entropy is completely additive and has an explicitly hierarchical nature; and (4) Shannon entropy-based differentiation measures obey strong monotonicity properties that heterozygosity-based measures lack. We derive simple new expressions for the expected values of the Shannon entropy of the equilibrium allele distribution at a neutral locus in a single isolated population under two models of mutation: the infinite allele model and the stepwise mutation model. Surprisingly, this complex stochastic system for each model has an entropy expressable as a simple combination of well-known mathematical functions. Moreover, entropy- and heterozygosity-based measures for each model are linked by simple relationships that are shown by simulations to be approximately valid even far from equilibrium. We also identify a bridge between the two models of mutation. We apply our approach to subdivided populations which follow the finite island model, obtaining the Shannon entropy of the equilibrium allele distributions of the subpopulations and of the total population. We also derive the expected mutual information and normalized mutual information ("Shannon differentiation") between subpopulations at equilibrium, and identify the model parameters that determine them. We apply our measures to data from the common starling (Sturnus vulgaris) in Australia. Our measures provide a test for neutrality that is robust to violations of equilibrium assumptions, as verified on real world data from starlings.
Melbourne-Thomas, Jessica; Corney, Stuart P.; McMahon, Clive R.; Hindell, Mark A.
2018-01-01
Higher trophic-level species are an integral component of any marine ecosystem. Despite their importance, methods for representing these species in end-to-end ecosystem models often have limited representation of life histories, energetics and behaviour. We built an individual-based model coupled with a dynamic energy budget for female southern elephant seals Mirounga leonina to demonstrate a method for detailed representation of marine mammals. We aimed to develop a model which could i) simulate energy use and life histories, as well as breeding traits of southern elephant seals in an emergent manner, ii) project a stable population over time, and iii) have realistic population dynamics and structure based on emergent life history features (such as age at first breeding, lifespan, fecundity and (yearling) survival). We evaluated the model’s ability to represent a stable population over long time periods (>10 generations), including the sensitivity of the emergent properties to variations in key parameters. Analyses indicated that the model is sensitive to changes in resource availability and energy requirements for the transition from pup to juvenile, and juvenile to adult stage. This was particularly the case for breeding success and yearling survival. This model is suitable for use as a standalone tool for investigating the impacts of changes to behaviour and population responses of southern elephant seals. PMID:29596456
Population, internal migration, and economic growth: an empirical analysis.
Moreland, R S
1982-01-01
The role of population growth in the development process has received increasing attention during the last 15 years, as manifested in the literature in 3 broad categories. In the 1st category, the effects of rapid population growth on the growth of income have been studied with the use of simulation models, which sometimes include endogenous population growth. The 2nd category of the literature is concerned with theoretical and empirical studies of the economic determinants of various demographic rates--most usually fertility. Internal migration and dualism is the 3rd population development category to recieve attention. An attempt is made to synthesize developments in these 3 categories by estimating from a consistent set of data a 2 sector economic demographic model in which the major demographic rates are endogenous. Due to the fact that the interactions between economic and demographic variables are nonlinear and complex, the indirect effects of changes in a particular variable may depend upon the balance of numerical coefficients. For this reason it was felt that the model should be empirically grounded. A brief overview of the model is provided, and the model is compared to some similar existing models. Estimation of the model's 9 behavior equations is discussed, followed by a "base run" simulation of a developing country "stereotype" and a report of a number of policy experiments. The relatively new field of economic determinants of demographic variables was drawn upon in estimating equations to endogenize demographic phenomena that are frequently left exogenous in simulation models. The fertility and labor force participation rate functions are fairly standard, but a step beyong existing literature was taken in the life expectancy and intersectorial migration equations. On the economic side, sectoral savings functions were estimated, and it was found that the marginal propensity to save is lower in agriculture than in nonagriculture. Testing to see the effect of a population's age structure on savings rather than assuming a particular direction as Coale-Hoover and Simon do in their models, it was found that a higher proportion of children compete with savings in agriculture but complement savings in industrial areas. This was consistent with the economic value of children in agricultural and nonagricultural regions of less developed countries. The estimated production functions showed that marginal products of labor were considerably higher in agriculture than in nonagriculture. As with other simulation models, the effect of reducing fertility was to accelerate income growth. Reductions in rural fertility were more equitable and raised the overall level of per capita income more than similar efforts directed to urban areas only.
Towards a Hybrid Agent-based Model for Mosquito Borne Disease.
Mniszewski, S M; Manore, C A; Bryan, C; Del Valle, S Y; Roberts, D
2014-07-01
Agent-based models (ABM) are used to simulate the spread of infectious disease through a population. Detailed human movement, demography, realistic business location networks, and in-host disease progression are available in existing ABMs, such as the Epidemic Simulation System (EpiSimS). These capabilities make possible the exploration of pharmaceutical and non-pharmaceutical mitigation strategies used to inform the public health community. There is a similar need for the spread of mosquito borne pathogens due to the re-emergence of diseases such as chikungunya and dengue fever. A network-patch model for mosquito dynamics has been coupled with EpiSimS. Mosquitoes are represented as a "patch" or "cloud" associated with a location. Each patch has an ordinary differential equation (ODE) mosquito dynamics model and mosquito related parameters relevant to the location characteristics. Activities at each location can have different levels of potential exposure to mosquitoes based on whether they are inside, outside, or somewhere in-between. As a proof of concept, the hybrid network-patch model is used to simulate the spread of chikungunya through Washington, DC. Results are shown for a base case, followed by varying the probability of transmission, mosquito count, and activity exposure. We use visualization to understand the pattern of disease spread.
Whittington, Jesse; Sawaya, Michael A.
2015-01-01
Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal’s home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786–1.071) for females, 0.844 (0.703–0.975) for males, and 0.882 (0.779–0.981) for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758–1.024) for females, 0.825 (0.700–0.948) for males, and 0.863 (0.771–0.957) for both sexes. The combination of low densities, low reproductive rates, and predominantly negative population growth rates suggest that Banff National Park’s population of grizzly bears requires continued conservation-oriented management actions. PMID:26230262
Hook, T.O.; Rutherford, E.S.; Croley, T.E.; Mason, D.M.; Madenjian, C.P.
2008-01-01
The identification of important spawning and nursery habitats for fish stocks can aid fisheries management, but is complicated by various factors, including annual variation in recruitment success. The alewife (Alosa pseudoharengus) is an ecologically important species in Lake Michigan that utilizes a variety of habitats for spawning and early life growth. While productive, warm tributary mouths (connected to Lake Michigan) may contribute disproportionately more recruits (relative to their habitat volume) to the adult alewife population than cooler, less productive nearshore habitats, the extent of interannual variation in the relative contributions of recruits from these two habitat types remains unknown. We used an individual-based bioenergetics simulation model and input data on daily temperatures to estimate alewife recruitment to the adult population by these different habitat types. Simulations suggest that nearshore lake habitats typically produce the vast majority of young alewife recruits. However, tributary habitats may contribute the majority of alewife recruits during years of low recruitment. We suggest that high interannual variation in the relative importance of habitats for recruitment is a common phenomenon, which should be considered when developing habitat management plans for fish populations. ?? 2008 NRC.
NASA Astrophysics Data System (ADS)
Vagos, Márcia R.; Arevalo, Hermenegild; de Oliveira, Bernardo Lino; Sundnes, Joakim; Maleckar, Mary M.
2017-09-01
Models of cardiac cell electrophysiology are complex non-linear systems which can be used to gain insight into mechanisms of cardiac dynamics in both healthy and pathological conditions. However, the complexity of cardiac models can make mechanistic insight difficult. Moreover, these are typically fitted to averaged experimental data which do not incorporate the variability in observations. Recently, building populations of models to incorporate inter- and intra-subject variability in simulations has been combined with sensitivity analysis (SA) to uncover novel ionic mechanisms and potentially clarify arrhythmogenic behaviors. We used the Koivumäki human atrial cell model to create two populations, representing normal Sinus Rhythm (nSR) and chronic Atrial Fibrillation (cAF), by varying 22 key model parameters. In each population, 14 biomarkers related to the action potential and dynamic restitution were extracted. Populations were calibrated based on distributions of biomarkers to obtain reasonable physiological behavior, and subjected to SA to quantify correlations between model parameters and pro-arrhythmia markers. The two populations showed distinct behaviors under steady state and dynamic pacing. The nSR population revealed greater variability, and more unstable dynamic restitution, as compared to the cAF population, suggesting that simulated cAF remodeling rendered cells more stable to parameter variation and rate adaptation. SA revealed that the biomarkers depended mainly on five ionic currents, with noted differences in sensitivities to these between nSR and cAF. Also, parameters could be selected to produce a model variant with no alternans and unaltered action potential morphology, highlighting that unstable dynamical behavior may be driven by specific cell parameter settings. These results ultimately suggest that arrhythmia maintenance in cAF may not be due to instability in cell membrane excitability, but rather due to tissue-level effects which promote initiation and maintenance of reentrant arrhythmia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardiansyah, Deni
2016-09-15
Purpose: The aim of this study was to investigate the accuracy of PET-based treatment planning for predicting the time-integrated activity coefficients (TIACs). Methods: The parameters of a physiologically based pharmacokinetic (PBPK) model were fitted to the biokinetic data of 15 patients to derive assumed true parameters and were used to construct true mathematical patient phantoms (MPPs). Biokinetics of 150 MBq {sup 68}Ga-DOTATATE-PET was simulated with different noise levels [fractional standard deviation (FSD) 10%, 1%, 0.1%, and 0.01%], and seven combinations of measurements at 30 min, 1 h, and 4 h p.i. PBPK model parameters were fitted to the simulated noisymore » PET data using population-based Bayesian parameters to construct predicted MPPs. Therapy simulations were performed as 30 min infusion of {sup 90}Y-DOTATATE of 3.3 GBq in both true and predicted MPPs. Prediction accuracy was then calculated as relative variability v{sub organ} between TIACs from both MPPs. Results: Large variability values of one time-point protocols [e.g., FSD = 1%, 240 min p.i., v{sub kidneys} = (9 ± 6)%, and v{sub tumor} = (27 ± 26)%] show inaccurate prediction. Accurate TIAC prediction of the kidneys was obtained for the case of two measurements (1 and 4 h p.i.), e.g., FSD = 1%, v{sub kidneys} = (7 ± 3)%, and v{sub tumor} = (22 ± 10)%, or three measurements, e.g., FSD = 1%, v{sub kidneys} = (7 ± 3)%, and v{sub tumor} = (22 ± 9)%. Conclusions: {sup 68}Ga-DOTATATE-PET measurements could possibly be used to predict the TIACs of {sup 90}Y-DOTATATE when using a PBPK model and population-based Bayesian parameters. The two time-point measurement at 1 and 4 h p.i. with a noise up to FSD = 1% allows an accurate prediction of the TIACs in kidneys.« less
NASA Astrophysics Data System (ADS)
Jones, Mackenzie L.; Hickox, Ryan C.; Mutch, Simon J.; Croton, Darren J.; Ptak, Andrew F.; DiPompeo, Michael A.
2017-07-01
In studies of the connection between active galactic nuclei (AGNs) and their host galaxies, there is widespread disagreement on some key aspects of the connection. These disagreements largely stem from a lack of understanding of the nature of the full underlying AGN population. Recent attempts to probe this connection utilize both observations and simulations to correct for a missed population, but presently are limited by intrinsic biases and complicated models. We take a simple simulation for galaxy evolution and add a new prescription for AGN activity to connect galaxy growth to dark matter halo properties and AGN activity to star formation. We explicitly model selection effects to produce an “observed” AGN population for comparison with observations and empirically motivated models of the local universe. This allows us to bypass the difficulties inherent in models that attempt to infer the AGN population by inverting selection effects. We investigate the impact of selecting AGNs based on thresholds in luminosity or Eddington ratio on the “observed” AGN population. By limiting our model AGN sample in luminosity, we are able to recreate the observed local AGN luminosity function and specific star formation-stellar mass distribution, and show that using an Eddington ratio threshold introduces less bias into the sample by selecting the full range of growing black holes, despite the challenge of selecting low-mass black holes. We find that selecting AGNs using these various thresholds yield samples with different AGN host galaxy properties.
Lyons, James E.; Kendall, William L.; Royle, J. Andrew; Converse, Sarah J.; Andres, Brad A.; Buchanan, Joseph B.
2016-01-01
We present a novel formulation of a mark–recapture–resight model that allows estimation of population size, stopover duration, and arrival and departure schedules at migration areas. Estimation is based on encounter histories of uniquely marked individuals and relative counts of marked and unmarked animals. We use a Bayesian analysis of a state–space formulation of the Jolly–Seber mark–recapture model, integrated with a binomial model for counts of unmarked animals, to derive estimates of population size and arrival and departure probabilities. We also provide a novel estimator for stopover duration that is derived from the latent state variable representing the interim between arrival and departure in the state–space model. We conduct a simulation study of field sampling protocols to understand the impact of superpopulation size, proportion marked, and number of animals sampled on bias and precision of estimates. Simulation results indicate that relative bias of estimates of the proportion of the population with marks was low for all sampling scenarios and never exceeded 2%. Our approach does not require enumeration of all unmarked animals detected or direct knowledge of the number of marked animals in the population at the time of the study. This provides flexibility and potential application in a variety of sampling situations (e.g., migratory birds, breeding seabirds, sea turtles, fish, pinnipeds, etc.). Application of the methods is demonstrated with data from a study of migratory sandpipers.
Simulating pre-galactic metal enrichment for JWST deep-field observations
NASA Astrophysics Data System (ADS)
Jaacks, Jason
2017-08-01
We propose to create a new suite of mesoscale cosmological volume simulations with custom built sub-grid physics in which we independently track the contribution from Population III and Population II star formation to the total metals in the interstellar medium (ISM) of the first galaxies, and in the diffuse IGM at an epoch prior to reionization. These simulations will fill a gap in our simulation knowledge about chemical enrichment in the pre-reionization universe, which is a crucial need given the impending observational push into this epoch with near-future ground and space-based telescopes. This project is the natural extension of our successful Cycle 24 theory proposal (HST-AR-14569.001-A; PI Jaacks) in which we developed a new Pop III star formation sub-grid model which is currently being utilized to study the baseline metal enrichment of pre-reionization systems.
2016-01-01
Background: The price of food has long been considered one of the major factors that affects food choices. However, the price metric (e.g., the price of food per calorie or the price of food per gram) that individuals predominantly use when making food choices is unclear. Understanding which price metric is used is especially important for studying individuals with severe budget constraints because food price then becomes even more important in food choice. Objective: We assessed which price metric is used by low-income individuals in deciding what to eat. Methods: With the use of data from NHANES and the USDA Food and Nutrient Database for Dietary Studies, we created an agent-based model that simulated an environment representing the US population, wherein individuals were modeled as agents with a specific weight, age, and income. In our model, agents made dietary food choices while meeting their budget limits with the use of 1 of 3 different metrics for decision making: energy cost (price per calorie), unit price (price per gram), and serving price (price per serving). The food consumption patterns generated by our model were compared to 3 independent data sets. Results: The food choice behaviors observed in 2 of the data sets were found to be closest to the simulated dietary patterns generated by the price per calorie metric. The behaviors observed in the third data set were equidistant from the patterns generated by price per calorie and price per serving metrics, whereas results generated by the price per gram metric were further away. Conclusions: Our simulations suggest that dietary food choice based on price per calorie best matches actual consumption patterns and may therefore be the most salient price metric for low-income populations. PMID:27655757
Beheshti, Rahmatollah; Igusa, Takeru; Jones-Smith, Jessica
2016-11-01
The price of food has long been considered one of the major factors that affects food choices. However, the price metric (e.g., the price of food per calorie or the price of food per gram) that individuals predominantly use when making food choices is unclear. Understanding which price metric is used is especially important for studying individuals with severe budget constraints because food price then becomes even more important in food choice. We assessed which price metric is used by low-income individuals in deciding what to eat. With the use of data from NHANES and the USDA Food and Nutrient Database for Dietary Studies, we created an agent-based model that simulated an environment representing the US population, wherein individuals were modeled as agents with a specific weight, age, and income. In our model, agents made dietary food choices while meeting their budget limits with the use of 1 of 3 different metrics for decision making: energy cost (price per calorie), unit price (price per gram), and serving price (price per serving). The food consumption patterns generated by our model were compared to 3 independent data sets. The food choice behaviors observed in 2 of the data sets were found to be closest to the simulated dietary patterns generated by the price per calorie metric. The behaviors observed in the third data set were equidistant from the patterns generated by price per calorie and price per serving metrics, whereas results generated by the price per gram metric were further away. Our simulations suggest that dietary food choice based on price per calorie best matches actual consumption patterns and may therefore be the most salient price metric for low-income populations. © 2016 American Society for Nutrition.
Gilroy, D L; Phillips, K P; Richardson, D S; van Oosterhout, C
2017-07-01
Balancing selection can maintain immunogenetic variation within host populations, but detecting its signal in a postbottlenecked population is challenging due to the potentially overriding effects of drift. Toll-like receptor genes (TLRs) play a fundamental role in vertebrate immune defence and are predicted to be under balancing selection. We previously characterized variation at TLR loci in the Seychelles warbler (Acrocephalus sechellensis), an endemic passerine that has undergone a historical bottleneck. Five of seven TLR loci were polymorphic, which is in sharp contrast to the low genomewide variation observed. However, standard population genetic statistical methods failed to detect a contemporary signature of selection at any TLR locus. We examined whether the observed TLR polymorphism could be explained by neutral evolution, simulating the population's demography in the software DIYABC. This showed that the posterior distributions of mutation rates had to be unrealistically high to explain the observed genetic variation. We then conducted simulations with an agent-based model using typical values for the mutation rate, which indicated that weak balancing selection has acted on the three TLR genes. The model was able to detect evidence of past selection elevating TLR polymorphism in the prebottleneck populations, but was unable to discern any effects of balancing selection in the contemporary population. Our results show drift is the overriding evolutionary force that has shaped TLR variation in the contemporary Seychelles warbler population, and the observed TLR polymorphisms might be merely the 'ghost of selection past'. Forecast models predict immunogenetic variation in this species will continue to be eroded in the absence of contemporary balancing selection. Such 'drift debt' occurs when a gene pool has not yet reached its new equilibrium level of polymorphism, and this loss could be an important threat to many recently bottlenecked populations. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Effects of ventilation behaviour on indoor heat load based on test reference years.
Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas
2016-02-01
Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.
Effects of ventilation behaviour on indoor heat load based on test reference years
NASA Astrophysics Data System (ADS)
Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas
2016-02-01
Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.
Bled, Florent; Belant, Jerrold L.; Van Daele, Lawrence J.; Svoboda, Nathan; Gustine, David D.; Hilderbrand, Grant V.; Barnes, Victor G.
2017-01-01
Current management of large carnivores is informed using a variety of parameters, methods, and metrics; however, these data are typically considered independently. Sharing information among data types based on the underlying ecological, and recognizing observation biases, can improve estimation of individual and global parameters. We present a general integrated population model (IPM), specifically designed for brown bears (Ursus arctos), using three common data types for bear (U. spp.) populations: repeated counts, capture–mark–recapture, and litter size. We considered factors affecting ecological and observation processes for these data. We assessed the practicality of this approach on a simulated population and compared estimates from our model to values used for simulation and results from count data only. We then present a practical application of this general approach adapted to the constraints of a case study using historical data available for brown bears on Kodiak Island, Alaska, USA. The IPM provided more accurate and precise estimates than models accounting for repeated count data only, with credible intervals including the true population 94% and 5% of the time, respectively. For the Kodiak population, we estimated annual average litter size (within one year after birth) to vary between 0.45 [95% credible interval: 0.43; 0.55] and 1.59 [1.55; 1.82]. We detected a positive relationship between salmon availability and adult survival, with survival probabilities greater for females than males. Survival probabilities increased from cubs to yearlings to dependent young ≥2 years old and decreased with litter size. Linking multiple information sources based on ecological and observation mechanisms can provide more accurate and precise estimates, to better inform management. IPMs can also reduce data collection efforts by sharing information among agencies and management units. Our approach responds to an increasing need in bear populations’ management and can be readily adapted to other large carnivores.
Optimizing agent-based transmission models for infectious diseases.
Willem, Lander; Stijven, Sean; Tijskens, Engelbert; Beutels, Philippe; Hens, Niel; Broeckhove, Jan
2015-06-02
Infectious disease modeling and computational power have evolved such that large-scale agent-based models (ABMs) have become feasible. However, the increasing hardware complexity requires adapted software designs to achieve the full potential of current high-performance workstations. We have found large performance differences with a discrete-time ABM for close-contact disease transmission due to data locality. Sorting the population according to the social contact clusters reduced simulation time by a factor of two. Data locality and model performance can also be improved by storing person attributes separately instead of using person objects. Next, decreasing the number of operations by sorting people by health status before processing disease transmission has also a large impact on model performance. Depending of the clinical attack rate, target population and computer hardware, the introduction of the sort phase decreased the run time from 26% up to more than 70%. We have investigated the application of parallel programming techniques and found that the speedup is significant but it drops quickly with the number of cores. We observed that the effect of scheduling and workload chunk size is model specific and can make a large difference. Investment in performance optimization of ABM simulator code can lead to significant run time reductions. The key steps are straightforward: the data structure for the population and sorting people on health status before effecting disease propagation. We believe these conclusions to be valid for a wide range of infectious disease ABMs. We recommend that future studies evaluate the impact of data management, algorithmic procedures and parallelization on model performance.
Reinecke, Isabel; Schultze-Mosgau, Marcus-Hillert; Nave, Rüdiger; Schmitz, Heinz; Ploeger, Bart A
2017-05-01
Pharmacokinetics (PK) of anastrozole (ATZ) and levonorgestrel (LNG) released from an intravaginal ring (IVR) intended to treat endometriosis symptoms were characterized, and the exposure-response relationship focusing on the development of large ovarian follicle-like structures was investigated by modeling and simulation to support dose selection for further studies. A population PK analysis and simulations were performed for ATZ and LNG based on clinical phase 1 study data from 66 healthy women. A PK/PD model was developed to predict the probability of a maximum follicle size ≥30 mm and the potential contribution of ATZ beside the known LNG effects. Population PK models for ATZ and LNG were established where the interaction of LNG with sex hormone-binding globulin (SHBG) as well as a stimulating effect of estradiol on SHBG were considered. Furthermore, simulations showed that doses of 40 μg/d LNG combined with 300, 600, or 1050 μg/d ATZ reached anticipated exposure levels for both drugs, facilitating selection of ATZ and LNG doses in the phase 2 dose-finding study. The main driver for the effect on maximum follicle size appears to be unbound LNG exposure. A 50% probability of maximum follicle size ≥30 mm was estimated for 40 μg/d LNG based on the exposure-response analysis. ATZ in the dose range investigated does not increase the risk for ovarian cysts as occurs with LNG at a dose that does not inhibit ovulation. © 2016, The American College of Clinical Pharmacology.
Tramontano, Angela C; Sheehan, Deirdre F; McMahon, Pamela M; Dowling, Emily C; Holford, Theodore R; Ryczak, Karen; Lesko, Samuel M; Levy, David T; Kong, Chung Yin
2016-01-01
Objective While the US Preventive Services Task Force has issued recommendations for lung cancer screening, its effectiveness at reducing lung cancer burden may vary at local levels due to regional variations in smoking behaviour. Our objective was to use an existing model to determine the impacts of lung cancer screening alone or in addition to increased smoking cessation in a US region with a relatively high smoking prevalence and lung cancer incidence. Setting Computer-based simulation model. Participants Simulated population of individuals 55 and older based on smoking prevalence and census data from Northeast Pennsylvania. Interventions Hypothetical lung cancer control from 2014 to 2050 through (1) screening with CT, (2) intensified smoking cessation or (3) a combination strategy. Primary and secondary outcome measures Primary outcomes were lung cancer mortality rates. Secondary outcomes included number of people eligible for screening and number of radiation-induced lung cancers. Results Combining lung cancer screening with increased smoking cessation would yield an estimated 8.1% reduction in cumulative lung cancer mortality by 2050. Our model estimated that the number of screening-eligible individuals would progressively decrease over time, indicating declining benefit of a screening-only programme. Lung cancer screening achieved a greater mortality reduction in earlier years, but was later surpassed by smoking cessation. Conclusions Combining smoking cessation programmes with lung cancer screening would provide the most benefit to a population, especially considering the growing proportion of patients ineligible for screening based on current recommendations. PMID:26928026
Computational modeling of cardiovascular response to orthostatic stress
NASA Technical Reports Server (NTRS)
Heldt, Thomas; Shim, Eun B.; Kamm, Roger D.; Mark, Roger G.
2002-01-01
The objective of this study is to develop a model of the cardiovascular system capable of simulating the short-term (< or = 5 min) transient and steady-state hemodynamic responses to head-up tilt and lower body negative pressure. The model consists of a closed-loop lumped-parameter representation of the circulation connected to set-point models of the arterial and cardiopulmonary baroreflexes. Model parameters are largely based on literature values. Model verification was performed by comparing the simulation output under baseline conditions and at different levels of orthostatic stress to sets of population-averaged hemodynamic data reported in the literature. On the basis of experimental evidence, we adjusted some model parameters to simulate experimental data. Orthostatic stress simulations are not statistically different from experimental data (two-sided test of significance with Bonferroni adjustment for multiple comparisons). Transient response characteristics of heart rate to tilt also compare well with reported data. A case study is presented on how the model is intended to be used in the future to investigate the effects of post-spaceflight orthostatic intolerance.
Change-in-ratio estimators for populations with more than two subclasses
Udevitz, Mark S.; Pollock, Kenneth H.
1991-01-01
Change-in-ratio methods have been developed to estimate the size of populations with two or three population subclasses. Most of these methods require the often unreasonable assumption of equal sampling probabilities for individuals in all subclasses. This paper presents new models based on the weaker assumption that ratios of sampling probabilities are constant over time for populations with three or more subclasses. Estimation under these models requires that a value be assumed for one of these ratios when there are two samples. Explicit expressions are given for the maximum likelihood estimators under models for two samples with three or more subclasses and for three samples with two subclasses. A numerical method using readily available statistical software is described for obtaining the estimators and their standard errors under all of the models. Likelihood ratio tests that can be used in model selection are discussed. Emphasis is on the two-sample, three-subclass models for which Monte-Carlo simulation results and an illustrative example are presented.
Sensitivity analysis of Repast computational ecology models with R/Repast.
Prestes García, Antonio; Rodríguez-Patón, Alfonso
2016-12-01
Computational ecology is an emerging interdisciplinary discipline founded mainly on modeling and simulation methods for studying ecological systems. Among the existing modeling formalisms, the individual-based modeling is particularly well suited for capturing the complex temporal and spatial dynamics as well as the nonlinearities arising in ecosystems, communities, or populations due to individual variability. In addition, being a bottom-up approach, it is useful for providing new insights on the local mechanisms which are generating some observed global dynamics. Of course, no conclusions about model results could be taken seriously if they are based on a single model execution and they are not analyzed carefully. Therefore, a sound methodology should always be used for underpinning the interpretation of model results. The sensitivity analysis is a methodology for quantitatively assessing the effect of input uncertainty in the simulation output which should be incorporated compulsorily to every work based on in-silico experimental setup. In this article, we present R/Repast a GNU R package for running and analyzing Repast Simphony models accompanied by two worked examples on how to perform global sensitivity analysis and how to interpret the results.
Modeling the Fear Effect in Predator-Prey Interactions with Adaptive Avoidance of Predators.
Wang, Xiaoying; Zou, Xingfu
2017-06-01
Recent field experiments on vertebrates showed that the mere presence of a predator would cause a dramatic change of prey demography. Fear of predators increases the survival probability of prey, but leads to a cost of prey reproduction. Based on the experimental findings, we propose a predator-prey model with the cost of fear and adaptive avoidance of predators. Mathematical analyses show that the fear effect can interplay with maturation delay between juvenile prey and adult prey in determining the long-term population dynamics. A positive equilibrium may lose stability with an intermediate value of delay and regain stability if the delay is large. Numerical simulations show that both strong adaptation of adult prey and the large cost of fear have destabilizing effect while large population of predators has a stabilizing effect on the predator-prey interactions. Numerical simulations also imply that adult prey demonstrates stronger anti-predator behaviors if the population of predators is larger and shows weaker anti-predator behaviors if the cost of fear is larger.
Lee, Anthony; Yau, Christopher; Giles, Michael B.; Doucet, Arnaud; Holmes, Christopher C.
2011-01-01
We present a case-study on the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. Graphics cards, containing multiple Graphics Processing Units (GPUs), are self-contained parallel computational devices that can be housed in conventional desktop and laptop computers and can be thought of as prototypes of the next generation of many-core processors. For certain classes of population-based Monte Carlo algorithms they offer massively parallel simulation, with the added advantage over conventional distributed multi-core processors that they are cheap, easily accessible, easy to maintain, easy to code, dedicated local devices with low power consumption. On a canonical set of stochastic simulation examples including population-based Markov chain Monte Carlo methods and Sequential Monte Carlo methods, we nd speedups from 35 to 500 fold over conventional single-threaded computer code. Our findings suggest that GPUs have the potential to facilitate the growth of statistical modelling into complex data rich domains through the availability of cheap and accessible many-core computation. We believe the speedup we observe should motivate wider use of parallelizable simulation methods and greater methodological attention to their design. PMID:22003276
Harris, Stephen E; Xue, Alexander T; Alvarado-Serrano, Diego; Boehm, Joel T; Joseph, Tyler; Hickerson, Michael J; Munshi-South, Jason
2016-04-01
How urbanization shapes population genomic diversity and evolution of urban wildlife is largely unexplored. We investigated the impact of urbanization on white-footed mice,Peromyscus leucopus,in the New York City (NYC) metropolitan area using coalescent-based simulations to infer demographic history from the site-frequency spectrum. We assigned individuals to evolutionary clusters and then inferred recent divergence times, population size changes and migration using genome-wide single nucleotide polymorphisms genotyped in 23 populations sampled along an urban-to-rural gradient. Both prehistoric climatic events and recent urbanization impacted these populations. Our modelling indicates that post-glacial sea-level rise led to isolation of mainland and Long Island populations. These models also indicate that several urban parks represent recently isolated P. leucopus populations, and the estimated divergence times for these populations are consistent with the history of urbanization in NYC. © 2016 The Author(s).
The galaxy clustering crisis in abundance matching
NASA Astrophysics Data System (ADS)
Campbell, Duncan; van den Bosch, Frank C.; Padmanabhan, Nikhil; Mao, Yao-Yuan; Zentner, Andrew R.; Lange, Johannes U.; Jiang, Fangzhou; Villarreal, Antonio
2018-06-01
Galaxy clustering on small scales is significantly underpredicted by sub-halo abundance matching (SHAM) models that populate (sub-)haloes with galaxies based on peak halo mass, Mpeak. SHAM models based on the peak maximum circular velocity, Vpeak, have had much better success. The primary reason for Mpeak-based models fail is the relatively low abundance of satellite galaxies produced in these models compared to those based on Vpeak. Despite success in predicting clustering, a simple Vpeak-based SHAM model results in predictions for galaxy growth that are at odds with observations. We evaluate three possible remedies that could `save' mass-based SHAM: (1) SHAM models require a significant population of `orphan' galaxies as a result of artificial disruption/merging of sub-haloes in modern high-resolution dark matter simulations; (2) satellites must grow significantly after their accretion; and (3) stellar mass is significantly affected by halo assembly history. No solution is entirely satisfactory. However, regardless of the particulars, we show that popular SHAM models based on Mpeak cannot be complete physical models as presented. Either Vpeak truly is a better predictor of stellar mass at z ˜ 0 and it remains to be seen how the correlation between stellar mass and Vpeak comes about, or SHAM models are missing vital component(s) that significantly affect galaxy clustering.
Population profiling in China by gender and age: implication for HIV incidences.
Pan, Yuanyi; Wu, Jianhong
2009-11-18
With the world's largest population, HIV spread in China has been closely watched and widely studied by its government and the international community. One important factor that might contribute to the epidemic is China's numerous surplus of men, due to its imbalanced sex ratio in newborns. However, the sex ratio in the human population is often assumed to be 1:1 in most studies of sexually transmitted diseases (STDs). Here, a mathematical model is proposed to estimate the population size in each gender and within different stages of reproduction and sexual activities. This population profiling by age and gender will assist in more precise prediction of HIV incidences. The total population is divided into 6 subgroups by gender and age. A deterministic compartmental model is developed to describe birth, death, age and the interactions among different subgroups, with a focus on the preference for newborn boys and its impact for the sex ratios. Data from 2003 to 2007 is used to estimate model parameters, and simulations predict short-term and long-term population profiles. The population of China will go to a descending track around 2030. Despite the possible underestimated number of newborns in the last couple of years, model-based simulations show that there will be about 28 million male individuals in 2055 without female partners during their sexually active stages. The birth rate in China must be increased to keep the population viable. But increasing the birth rate without balancing the sex ratio in newborns is problematic, as this will generate a large number of surplus males. Besides other social, economic and psychological issues, the impact of this surplus of males on STD incidences, including HIV infections, must be dealt with as early as possible.
An econometric simulation model of income and electricity demand in Alaska's Railbelt, 1982-2022
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddigan, R.J.; Hill, L.J.; Hamblin, D.M.
1987-01-01
This report describes the specification of-and forecasts derived from-the Alaska Railbelt Electricity Load, Macroeconomic (ARELM) model. ARELM was developed as an independent, modeling tool for the evaluation of the need for power from the Susitna Hydroelectric Project which has been proposed by the Alaska Power Authority. ARELM is an econometric simulation model consisting of 61 equations - 46 behavioral equations and 15 identities. The system includes two components: (1) ARELM-MACRO which is a system of equations that simulates the performance of both the total Alaskan and Railbelt macroeconomies and (2) ARELM-LOAD which projects electricity-related activity in the Alaskan Railbelt region.more » The modeling system is block recursive in the sense that forecasts of population, personal income, and employment in the Railbelt derived from ARELM-MACRO are used as explanatory variables in ARELM-LOAD to simulate electricity demand, the real average price of electricity, and the number of customers in the Railbelt. Three scenarios based on assumptions about the future price of crude oil are simulated and documented in the report. The simulations, which do not include the cost-of-power impacts of Susitna-based generation, show that the growth rate in Railbelt electricity load is between 2.5 and 2.7% over the 1982 to 2022 forecast period. The forecasting results are consistent with other projections of load growth in the region using different modeling approaches.« less
Thornton, P. K.; Bowen, W. T.; Ravelo, A.C.; Wilkens, P. W.; Farmer, G.; Brock, J.; Brink, J. E.
1997-01-01
Early warning of impending poor crop harvests in highly variable environments can allow policy makers the time they need to take appropriate action to ameliorate the effects of regional food shortages on vulnerable rural and urban populations. Crop production estimates for the current season can be obtained using crop simulation models and remotely sensed estimates of rainfall in real time, embedded in a geographic information system that allows simple analysis of simulation results. A prototype yield estimation system was developed for the thirty provinces of Burkina Faso. It is based on CERES-Millet, a crop simulation model of the growth and development of millet (Pennisetum spp.). The prototype was used to estimate millet production in contrasting seasons and to derive production anomaly estimates for the 1986 season. Provincial yields simulated halfway through the growing season were generally within 15% of their final (end-of-season) values. Although more work is required to produce an operational early warning system of reasonable credibility, the methodology has considerable potential for providing timely estimates of regional production of the major food crops in countries of sub-Saharan Africa.
McDermott, S W; Altekruse, J M
1994-01-01
A dynamic simulation model is used to answer the question, "What is the most effective child health policy initiative for the prevention of mental retardation (MR)?" The impact of medical strategies is contrasted with social interventions to see how they affect the prevalence of MR in the general population. The model is based on data from four U.S. Census and California Vital Statistics reports (1960, 1970, 1980, 1990). An interstate comparison (California and South Carolina) uses 1990 data. The results of the simulations reveal that medical interventions to improve the developmental outcome of low birth weight (LBW) infants did not cause a reduction in the rate of MR in the population after a 24-year trial period. In contrast, reducing the proportion of children living in poverty who are exposed to environmental deprivation significantly decreased (10%) MR at the end of the model's time period. This analysis supports the view that long-term reduction in MR prevalence is attainable by modifying public policies that influence children's development. Effective MR prevention calls for public policy committed to multifaceted health and educational services for both affected parents and their young children.
An Ecohydrological Approach to the Resiliency and Stability of Ecosystems
NASA Astrophysics Data System (ADS)
Peña Alzate, S.; Canon Barriga, J. E.
2013-12-01
We introduce a simplified ecohydrological model to quantitatively assess the resiliency and stability of ecosystems. The proposed model couples a hydrological soil moisture balance with a set of spatiotemporal dynamics of systems and agent-based algorithms to represent the interactions among several plant populations in a gridded area under different water, soil and temperature constraints. The model also allows disturbances, representing mostly the effects of deforestation practices. The simulated ecosystem, composed by a set of plant populations, includes allometric rules (i.e., power laws for generational and reproductive times, linear approximations for water and temperature gains, losses and optimal values and a set of intra and interspecific interaction rules based on high, optimal and low competition responses among the populations). Disturbances are determined by a clearance of populations in a defined area within the model's domain. The effects of climate variability can be also incorporated through precipitation and temperature time series that exhibit trends and heteroskedasticity. Resiliency and stability are calculated with modified indices that are used in hydrology, in this case to determine the ability of the ecosystem to recover from a disturbance. The model represents different types of plant phenotypes showing exponential growth in the first steps of the simulations. The indices, evaluated on each population and over the structure of the entire ecosystem, show how different populations respond differently to disturbances, following behaviors similar to those expected in nature, like high reproduction rates on gregarious plants with short generation times, and low densities in plants with high generations times. The selection of plant populations was mainly focused on the concept of biodiversity with emphasis on tropical regions. The model can represent the spatial and temporal succession of the ecosystem after being disturbed. The model also shows the differences between a disturbed and undisturbed ecosystem in a temporal scale, and how the differences in the phenotypical characteristics of plant populations can be advantageous or disadvantageous when they are disturbed. This ecohydrological model is intended to be used as an aid for making decisions about restoration and conservation practices, and also to help understanding resilience and stability of ecosystems, especially in tropical forests under climate change scenarios. Acknowledgements: authors thank the financial support of COLCIENCIAS (program Jovenes Investigadores e innovadores 2012), GAIA group and Universidad de Antioquia through its Sustainability Program 2011-2012.
Epidemic Process over the Commute Network in a Metropolitan Area
Yashima, Kenta; Sasaki, Akira
2014-01-01
An understanding of epidemiological dynamics is important for prevention and control of epidemic outbreaks. However, previous studies tend to focus only on specific areas, indicating that application to another area or intervention strategy requires a similar time-consuming simulation. Here, we study the epidemic dynamics of the disease-spread over a commute network, using the Tokyo metropolitan area as an example, in an attempt to elucidate the general properties of epidemic spread over a commute network that could be used for a prediction in any metropolitan area. The model is formulated on the basis of a metapopulation network in which local populations are interconnected by actual commuter flows in the Tokyo metropolitan area and the spread of infection is simulated by an individual-based model. We find that the probability of a global epidemic as well as the final epidemic sizes in both global and local populations, the timing of the epidemic peak, and the time at which the epidemic reaches a local population are mainly determined by the joint distribution of the local population sizes connected by the commuter flows, but are insensitive to geographical or topological structure of the network. Moreover, there is a strong relation between the population size and the time that the epidemic reaches this local population and we are able to determine the reason for this relation as well as its dependence on the commute network structure and epidemic parameters. This study shows that the model based on the connection between the population size classes is sufficient to predict both global and local epidemic dynamics in metropolitan area. Moreover, the clear relation of the time taken by the epidemic to reach each local population can be used as a novel measure for intervention; this enables efficient intervention strategies in each local population prior to the actual arrival. PMID:24905831
Generalizing Evidence From Randomized Clinical Trials to Target Populations
Cole, Stephen R.; Stuart, Elizabeth A.
2010-01-01
Properly planned and conducted randomized clinical trials remain susceptible to a lack of external validity. The authors illustrate a model-based method to standardize observed trial results to a specified target population using a seminal human immunodeficiency virus (HIV) treatment trial, and they provide Monte Carlo simulation evidence supporting the method. The example trial enrolled 1,156 HIV-infected adult men and women in the United States in 1996, randomly assigned 577 to a highly active antiretroviral therapy and 579 to a largely ineffective combination therapy, and followed participants for 52 weeks. The target population was US people infected with HIV in 2006, as estimated by the Centers for Disease Control and Prevention. Results from the trial apply, albeit muted by 12%, to the target population, under the assumption that the authors have measured and correctly modeled the determinants of selection that reflect heterogeneity in the treatment effect. In simulations with a heterogeneous treatment effect, a conventional intent-to-treat estimate was biased with poor confidence limit coverage, but the proposed estimate was largely unbiased with appropriate confidence limit coverage. The proposed method standardizes observed trial results to a specified target population and thereby provides information regarding the generalizability of trial results. PMID:20547574
Coupling population dynamics with earth system models: the POPEM model.
Navarro, Andrés; Moreno, Raúl; Jiménez-Alcázar, Alfonso; Tapiador, Francisco J
2017-09-16
Precise modeling of CO 2 emissions is important for environmental research. This paper presents a new model of human population dynamics that can be embedded into ESMs (Earth System Models) to improve climate modeling. Through a system dynamics approach, we develop a cohort-component model that successfully simulates historical population dynamics with fine spatial resolution (about 1°×1°). The population projections are used to improve the estimates of CO 2 emissions, thus transcending the bulk approach of existing models and allowing more realistic non-linear effects to feature in the simulations. The module, dubbed POPEM (from Population Parameterization for Earth Models), is compared with current emission inventories and validated against UN aggregated data. Finally, it is shown that the module can be used to advance toward fully coupling the social and natural components of the Earth system, an emerging research path for environmental science and pollution research.
Wiśniowska, Barbara; Polak, Sebastian
2016-11-01
A Quantitative Systems Pharmacology approach was utilized to predict the cardiac consequences of drug-drug interaction (DDI) at the population level. The Simcyp in vitro-in vivo correlation and physiologically based pharmacokinetic platform was used to predict the pharmacokinetic profile of terfenadine following co-administration of the drug. Electrophysiological effects were simulated using the Cardiac Safety Simulator. The modulation of ion channel activity was dependent on the inhibitory potential of drugs on the main cardiac ion channels and a simulated free heart tissue concentration. ten Tusscher's human ventricular cardiomyocyte model was used to simulate the pseudo-ECG traces and further predict the pharmacodynamic consequences of DDI. Consistent with clinical observations, predicted plasma concentration profiles of terfenadine show considerable intra-subject variability with recorded C max values below 5 ng/mL for most virtual subjects. The pharmacokinetic and pharmacodynamic effects of inhibitors were predicted with reasonable accuracy. In all cases, a combination of the physiologically based pharmacokinetic and physiology-based pharmacodynamic models was able to differentiate between the terfenadine alone and terfenadine + inhibitor scenario. The range of QT prolongation was comparable in the clinical and virtual studies. The results indicate that mechanistic in vitro-in vivo correlation can be applied to predict the clinical effects of DDI even without comprehensive knowledge on all mechanisms contributing to the interaction. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Mollet, Pierre; Kery, Marc; Gardner, Beth; Pasinelli, Gilberto; Royle, Andy
2015-01-01
We conducted a survey of an endangered and cryptic forest grouse, the capercaillie Tetrao urogallus, based on droppings collected on two sampling occasions in eight forest fragments in central Switzerland in early spring 2009. We used genetic analyses to sex and individually identify birds. We estimated sex-dependent detection probabilities and population size using a modern spatial capture-recapture (SCR) model for the data from pooled surveys. A total of 127 capercaillie genotypes were identified (77 males, 46 females, and 4 of unknown sex). The SCR model yielded atotal population size estimate (posterior mean) of 137.3 capercaillies (posterior sd 4.2, 95% CRI 130–147). The observed sex ratio was skewed towards males (0.63). The posterior mean of the sex ratio under the SCR model was 0.58 (posterior sd 0.02, 95% CRI 0.54–0.61), suggesting a male-biased sex ratio in our study area. A subsampling simulation study indicated that a reduced sampling effort representing 75% of the actual detections would still yield practically acceptable estimates of total size and sex ratio in our population. Hence, field work and financial effort could be reduced without compromising accuracy when the SCR model is used to estimate key population parameters of cryptic species.
Gao, Yuan; Zhang, Chuanrong; He, Qingsong; Liu, Yaolin
2017-06-15
Ecological security is an important research topic, especially urban ecological security. As highly populated eco-systems, cities always have more fragile ecological environments. However, most of the research on urban ecological security in literature has focused on evaluating current or past status of the ecological environment. Very little literature has carried out simulation or prediction of future ecological security. In addition, there is even less literature exploring the urban ecological environment at a fine scale. To fill-in the literature gap, in this study we simulated and predicted urban ecological security at a fine scale (district level) using an improved Cellular Automata (CA) approach. First we used the pressure-state-response (PSR) method based on grid-scale data to evaluate urban ecological security. Then, based on the evaluation results, we imported the geographically weighted regression (GWR) concept into the CA model to simulate and predict urban ecological security. We applied the improved CA approach in a case study-simulating and predicting urban ecological security for the city of Wuhan in Central China. By comparing the simulated ecological security values from 2010 using the improved CA model to the actual ecological security values of 2010, we got a relatively high value of the kappa coefficient, which indicates that this CA model can simulate or predict well future development of ecological security in Wuhan. Based on the prediction results for 2020, we made some policy recommendations for each district in Wuhan.
Status update: is smoke on your mind? Using social media to assess smoke exposure
NASA Astrophysics Data System (ADS)
Ford, Bonne; Burke, Moira; Lassman, William; Pfister, Gabriele; Pierce, Jeffrey R.
2017-06-01
Exposure to wildland fire smoke is associated with negative effects on human health. However, these effects are poorly quantified. Accurately attributing health endpoints to wildland fire smoke requires determining the locations, concentrations, and durations of smoke events. Most current methods for assessing these smoke events (ground-based measurements, satellite observations, and chemical transport modeling) are limited temporally, spatially, and/or by their level of accuracy. In this work, we explore using daily social media posts from Facebook regarding smoke, haze, and air quality to assess population-level exposure for the summer of 2015 in the western US. We compare this de-identified, aggregated Facebook dataset to several other datasets that are commonly used for estimating exposure, such as satellite observations (MODIS aerosol optical depth and Hazard Mapping System smoke plumes), daily (24 h) average surface particulate matter measurements, and model-simulated (WRF-Chem) surface concentrations. After adding population-weighted spatial smoothing to the Facebook data, this dataset is well correlated (R2 generally above 0.5) with the other methods in smoke-impacted regions. The Facebook dataset is better correlated with surface measurements of PM2. 5 at a majority of monitoring sites (163 of 293 sites) than the satellite observations and our model simulation. We also present an example case for Washington state in 2015, for which we combine this Facebook dataset with MODIS observations and WRF-Chem-simulated PM2. 5 in a regression model. We show that the addition of the Facebook data improves the regression model's ability to predict surface concentrations. This high correlation of the Facebook data with surface monitors and our Washington state example suggests that this social-media-based proxy can be used to estimate smoke exposure in locations without direct ground-based particulate matter measurements.
Local Variability Mediates Vulnerability of Trout Populations to Land Use and Climate Change
Penaluna, Brooke E.; Dunham, Jason B.; Railsback, Steve F.; Arismendi, Ivan; Johnson, Sherri L.; Bilby, Robert E.; Safeeq, Mohammad; Skaugset, Arne E.
2015-01-01
Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii) to scenarios simulating identical changes in temperature and stream flows linked to forest harvest, climate change, and their combined effects over six decades. We parameterized the model for four neighboring streams located in a forested headwater catchment in northwestern Oregon, USA with multi-year, daily measurements of stream temperature, flow, and turbidity (2007–2011), and field measurements of both instream habitat structure and three years of annual trout population estimates. Model simulations revealed that variability in habitat conditions among streams (depth, available habitat) mediated the effects of forest harvest and climate change. Net effects for most simulated trout responses were different from or less than the sum of their separate scenarios. In some cases, forest harvest countered the effects of climate change through increased summer flow. Climate change most strongly influenced trout (earlier fry emergence, reductions in biomass of older trout, increased biomass of young-of-year), but these changes did not consistently translate into reductions in biomass over time. Forest harvest, in contrast, produced fewer and less consistent responses in trout. Earlier fry emergence driven by climate change was the most consistent simulated response, whereas survival, growth, and biomass were inconsistent. Overall our findings indicate a host of local processes can strongly influence how populations respond to broad scale effects of land use and climate change. PMID:26295478
Local variability mediates vulnerability of trout populations to land use and climate change
Penaluna, Brooke E.; Dunham, Jason B.; Railsback, Steve F.; Arismendi, Ivan; Johnson, Sherri L.; Bilby, Robert E; Safeeq, Mohammad; Skaugset, Arne E.
2015-01-01
Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii) to scenarios simulating identical changes in temperature and stream flows linked to forest harvest, climate change, and their combined effects over six decades. We parameterized the model for four neighboring streams located in a forested headwater catchment in northwestern Oregon, USA with multi-year, daily measurements of stream temperature, flow, and turbidity (2007–2011), and field measurements of both instream habitat structure and three years of annual trout population estimates. Model simulations revealed that variability in habitat conditions among streams (depth, available habitat) mediated the effects of forest harvest and climate change. Net effects for most simulated trout responses were different from or less than the sum of their separate scenarios. In some cases, forest harvest countered the effects of climate change through increased summer flow. Climate change most strongly influenced trout (earlier fry emergence, reductions in biomass of older trout, increased biomass of young-of-year), but these changes did not consistently translate into reductions in biomass over time. Forest harvest, in contrast, produced fewer and less consistent responses in trout. Earlier fry emergence driven by climate change was the most consistent simulated response, whereas survival, growth, and biomass were inconsistent. Overall our findings indicate a host of local processes can strongly influence how populations respond to broad scale effects of land use and climate change.
Local Variability Mediates Vulnerability of Trout Populations to Land Use and Climate Change.
Penaluna, Brooke E; Dunham, Jason B; Railsback, Steve F; Arismendi, Ivan; Johnson, Sherri L; Bilby, Robert E; Safeeq, Mohammad; Skaugset, Arne E
2015-01-01
Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii) to scenarios simulating identical changes in temperature and stream flows linked to forest harvest, climate change, and their combined effects over six decades. We parameterized the model for four neighboring streams located in a forested headwater catchment in northwestern Oregon, USA with multi-year, daily measurements of stream temperature, flow, and turbidity (2007-2011), and field measurements of both instream habitat structure and three years of annual trout population estimates. Model simulations revealed that variability in habitat conditions among streams (depth, available habitat) mediated the effects of forest harvest and climate change. Net effects for most simulated trout responses were different from or less than the sum of their separate scenarios. In some cases, forest harvest countered the effects of climate change through increased summer flow. Climate change most strongly influenced trout (earlier fry emergence, reductions in biomass of older trout, increased biomass of young-of-year), but these changes did not consistently translate into reductions in biomass over time. Forest harvest, in contrast, produced fewer and less consistent responses in trout. Earlier fry emergence driven by climate change was the most consistent simulated response, whereas survival, growth, and biomass were inconsistent. Overall our findings indicate a host of local processes can strongly influence how populations respond to broad scale effects of land use and climate change.
Lancelot, Renaud; Lesnoff, Matthieu
2016-01-01
Background Peste des petits ruminants (PPR) is an acute infectious viral disease affecting domestic small ruminants (sheep and goats) and some wild ruminant species in Africa, the Middle East and Asia. A global PPR control strategy based on mass vaccination—in regions where PPR is endemic—was recently designed and launched by international organizations. Sahelian Africa is one of the most challenging endemic regions for PPR control. Indeed, strong seasonal and annual variations in mating, mortality and offtake rates result in a complex population dynamics which might in turn alter the population post-vaccination immunity rate (PIR), and thus be important to consider for the implementation of vaccination campaigns. Methods In a context of preventive vaccination in epidemiological units without PPR virus transmission, we developed a predictive, dynamic model based on a seasonal matrix population model to simulate PIR dynamics. This model was mostly calibrated with demographic and epidemiological parameters estimated from a long-term follow-up survey of small ruminant herds. We used it to simulate the PIR dynamics following a single PPR vaccination campaign in a Sahelian sheep population, and to assess the effects of (i) changes in offtake rate related to the Tabaski (a Muslim feast following the lunar calendar), and (ii) the date of implementation of the vaccination campaigns. Results The persistence of PIR was not influenced by the Tabaski date. Decreasing the vaccination coverage from 100 to 80% had limited effects on PIR. However, lower vaccination coverage did not provide sufficient immunity rates (PIR < 70%). As a trade-off between model predictions and other considerations like animal physiological status, and suitability for livestock farmers, we would suggest to implement vaccination campaigns in September-October. This model is a first step towards better decision support for animal health authorities. It might be adapted to other species, livestock farming systems or diseases. PMID:27603710
NASA Astrophysics Data System (ADS)
Mazzocchi, M. G.; Buffoni, G.; Carotenuto, Y.; Pasquali, S.; Ribera d'Alcalà, M.
2006-08-01
We integrated field and laboratory data with modeling to determine the extent to which the temporal patterns in population abundance of a copepod species as observed at sea may be explained by differences in production and mortality rates due to diet. A Lagrangian individual-based model utilizing birth and mortality rates whose values and variance were derived from the effects of dietary composition was implemented to simulate the growth of the multi-staged population of Temora stylifera. The four diets considered were represented by unialgal cultures of the dinoflagellate Prorocentrum minimum or the diatom Thalassiosira rotula, a mixture of the two species, and natural particle assemblages < 50 μm. The aim of this work was to set up an exemplary study on a debated issue, i.e., whether the insidious effect of a diatom diet demonstrated in laboratory experiments plays a role in the time course of copepod populations in situ. Our numerical simulations showed that differences in life history parameters, as mainly dependent on diet, caused remarkably different population growth rates. However, our model reproduced the pattern of an average seasonal cycle of T. stylifera in Mediterranean coastal waters only when it utilized time-dependent field data, which evidently integrate all conditions the animals experience at sea. Proper tuning of the mortality term of developmental stages was crucial to reproduce the pattern of the time course of T. stylifera abundance in situ, which confirms that this term plays a major role in shaping the copepod population dynamics. The model also showed that, while dietary composition affects the population growth, it is far from being the only determinant of the cycle of abundance of T. stylifera at sea.
Sensitivity analyses for simulating pesticide impacts on honey bee colonies
We employ Monte Carlo simulation and sensitivity analysis techniques to describe the population dynamics of pesticide exposure to a honey bee colony using the VarroaPop + Pesticide model. Simulations are performed of hive population trajectories with and without pesti...
Zhao, Lei; Gossmann, Toni I; Waxman, David
2016-03-21
The Wright-Fisher model is an important model in evolutionary biology and population genetics. It has been applied in numerous analyses of finite populations with discrete generations. It is recognised that real populations can behave, in some key aspects, as though their size that is not the census size, N, but rather a smaller size, namely the effective population size, Ne. However, in the Wright-Fisher model, there is no distinction between the effective and census population sizes. Equivalently, we can say that in this model, Ne coincides with N. The Wright-Fisher model therefore lacks an important aspect of biological realism. Here, we present a method that allows Ne to be directly incorporated into the Wright-Fisher model. The modified model involves matrices whose size is determined by Ne. Thus apart from increased biological realism, the modified model also has reduced computational complexity, particularly so when Ne⪡N. For complex problems, it may be hard or impossible to numerically analyse the most commonly-used approximation of the Wright-Fisher model that incorporates Ne, namely the diffusion approximation. An alternative approach is simulation. However, the simulations need to be sufficiently detailed that they yield an effective size that is different to the census size. Simulations may also be time consuming and have attendant statistical errors. The method presented in this work may then be the only alternative to simulations, when Ne differs from N. We illustrate the straightforward application of the method to some problems involving allele fixation and the determination of the equilibrium site frequency spectrum. We then apply the method to the problem of fixation when three alleles are segregating in a population. This latter problem is significantly more complex than a two allele problem and since the diffusion equation cannot be numerically solved, the only other way Ne can be incorporated into the analysis is by simulation. We have achieved good accuracy in all cases considered. In summary, the present work extends the realism and tractability of an important model of evolutionary biology and population genetics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kadam, Shantanu; Vanka, Kumar
2013-02-15
Methods based on the stochastic formulation of chemical kinetics have the potential to accurately reproduce the dynamical behavior of various biochemical systems of interest. However, the computational expense makes them impractical for the study of real systems. Attempts to render these methods practical have led to the development of accelerated methods, where the reaction numbers are modeled by Poisson random numbers. However, for certain systems, such methods give rise to physically unrealistic negative numbers for species populations. The methods which make use of binomial variables, in place of Poisson random numbers, have since become popular, and have been partially successful in addressing this problem. In this manuscript, the development of two new computational methods, based on the representative reaction approach (RRA), has been discussed. The new methods endeavor to solve the problem of negative numbers, by making use of tools like the stochastic simulation algorithm and the binomial method, in conjunction with the RRA. It is found that these newly developed methods perform better than other binomial methods used for stochastic simulations, in resolving the problem of negative populations. Copyright © 2012 Wiley Periodicals, Inc.
Altruistic aging: The evolutionary dynamics balancing longevity and evolvability.
Herrera, Minette; Miller, Aaron; Nishimura, Joel
2017-04-01
Altruism is typically associated with traits or behaviors that benefit the population as a whole, but are costly to the individual. We propose that, when the environment is rapidly changing, senescence (age-related deterioration) can be altruistic. According to numerical simulations of an agent-based model, while long-lived individuals can outcompete their short lived peers, populations composed of long-lived individuals are more likely to go extinct during periods of rapid environmental change. Moreover, as in many situations where other cooperative behavior arises, senescence can be stabilized in a structured population.
Le Teuff, Gwenaël; Abrahamowicz, Michal; Bolard, Philippe; Quantin, Catherine
2005-12-30
In many prognostic studies focusing on mortality of persons affected by a particular disease, the cause of death of individual patients is not recorded. In such situations, the conventional survival analytical methods, such as the Cox's proportional hazards regression model, do not allow to discriminate the effects of prognostic factors on disease-specific mortality from their effects on all-causes mortality. In the last decade, the relative survival approach has been proposed to deal with the analyses involving population-based cancer registries, where the problem of missing information on the cause of death is very common. However, some questions regarding the ability of the relative survival methods to accurately discriminate between the two sources of mortality remain open. In order to systematically assess the performance of the relative survival model proposed by Esteve et al., and to quantify its potential advantages over the Cox's model analyses, we carried out a series of simulation experiments, based on the population-based colon cancer registry in the French region of Burgundy. Simulations showed a systematic bias induced by the 'crude' conventional Cox's model analyses when individual causes of death are unknown. In simulations where only about 10 per cent of patients died of causes other than colon cancer, the Cox's model over-estimated the effects of male gender and oldest age category by about 17 and 13 per cent, respectively, with the coverage rate of the 95 per cent CI for the latter estimate as low as 65 per cent. In contrast, the effect of higher cancer stages was under-estimated by 8-28 per cent. In contrast to crude survival, relative survival model largely reduced such problems and handled well even such challenging tasks as separating the opposite effects of the same variable on cancer-related versus other-causes mortality. Specifically, in all the cases discussed above, the relative bias in the estimates from the Esteve et al.'s model was always below 10 per cent, with the coverage rates above 81 per cent. Copyright 2005 John Wiley & Sons, Ltd.
A hierarchical model for spatial capture-recapture data
Royle, J. Andrew; Young, K.V.
2008-01-01
Estimating density is a fundamental objective of many animal population studies. Application of methods for estimating population size from ostensibly closed populations is widespread, but ineffective for estimating absolute density because most populations are subject to short-term movements or so-called temporary emigration. This phenomenon invalidates the resulting estimates because the effective sample area is unknown. A number of methods involving the adjustment of estimates based on heuristic considerations are in widespread use. In this paper, a hierarchical model of spatially indexed capture recapture data is proposed for sampling based on area searches of spatial sample units subject to uniform sampling intensity. The hierarchical model contains explicit models for the distribution of individuals and their movements, in addition to an observation model that is conditional on the location of individuals during sampling. Bayesian analysis of the hierarchical model is achieved by the use of data augmentation, which allows for a straightforward implementation in the freely available software WinBUGS. We present results of a simulation study that was carried out to evaluate the operating characteristics of the Bayesian estimator under variable densities and movement patterns of individuals. An application of the model is presented for survey data on the flat-tailed horned lizard (Phrynosoma mcallii) in Arizona, USA.
A mathematical model for the Andean Tiwanaku civilization collapse: climate variations.
Flores, J C; Bologna, Mauro; Urzagasti, Deterlino
2011-12-21
We propose a mathematical nonlinear model for the Tiwanaku civilization collapse based on the assumption, supported by archeological data, that a drought caused a lack of the main resource, water. We evaluate the parameter of our model using archaeological data. According to our numerical simulation the population core should have decreased from 45,000 to 2000 inhabitants due to lake surface contraction. Copyright © 2011 Elsevier Ltd. All rights reserved.
Exitus: An Agent-Based Evacuation Simulation Model for Heterogeneous Populations
ERIC Educational Resources Information Center
Manley, Matthew T.
2012-01-01
Evacuation planning for private-sector organizations is an important consideration given the continuing occurrence of both natural and human-caused disasters that inordinately affect them. Unfortunately, the traditional management approach that is focused on fire drills presents several practical challenges at the scale required for many…
NASA Astrophysics Data System (ADS)
Lin, Tsungpo
Performance engineers face the major challenge in modeling and simulation for the after-market power system due to system degradation and measurement errors. Currently, the majority in power generation industries utilizes the deterministic data matching method to calibrate the model and cascade system degradation, which causes significant calibration uncertainty and also the risk of providing performance guarantees. In this research work, a maximum-likelihood based simultaneous data reconciliation and model calibration (SDRMC) is used for power system modeling and simulation. By replacing the current deterministic data matching with SDRMC one can reduce the calibration uncertainty and mitigate the error propagation to the performance simulation. A modeling and simulation environment for a complex power system with certain degradation has been developed. In this environment multiple data sets are imported when carrying out simultaneous data reconciliation and model calibration. Calibration uncertainties are estimated through error analyses and populated to performance simulation by using principle of error propagation. System degradation is then quantified by performance comparison between the calibrated model and its expected new & clean status. To mitigate smearing effects caused by gross errors, gross error detection (GED) is carried out in two stages. The first stage is a screening stage, in which serious gross errors are eliminated in advance. The GED techniques used in the screening stage are based on multivariate data analysis (MDA), including multivariate data visualization and principal component analysis (PCA). Subtle gross errors are treated at the second stage, in which the serial bias compensation or robust M-estimator is engaged. To achieve a better efficiency in the combined scheme of the least squares based data reconciliation and the GED technique based on hypotheses testing, the Levenberg-Marquardt (LM) algorithm is utilized as the optimizer. To reduce the computation time and stabilize the problem solving for a complex power system such as a combined cycle power plant, meta-modeling using the response surface equation (RSE) and system/process decomposition are incorporated with the simultaneous scheme of SDRMC. The goal of this research work is to reduce the calibration uncertainties and, thus, the risks of providing performance guarantees arisen from uncertainties in performance simulation.
Simulation of emotional contagion using modified SIR model: A cellular automaton approach
NASA Astrophysics Data System (ADS)
Fu, Libi; Song, Weiguo; Lv, Wei; Lo, Siuming
2014-07-01
Emotion plays an important role in the decision-making of individuals in some emergency situations. The contagion of emotion may induce either normal or abnormal consolidated crowd behavior. This paper aims to simulate the dynamics of emotional contagion among crowds by modifying the epidemiological SIR model to a cellular automaton approach. This new cellular automaton model, entitled the “CA-SIRS model”, captures the dynamic process ‘susceptible-infected-recovered-susceptible', which is based on SIRS contagion in epidemiological theory. Moreover, in this new model, the process is integrated with individual movement. The simulation results of this model show that multiple waves and dynamical stability around a mean value will appear during emotion spreading. It was found that the proportion of initial infected individuals had little influence on the final stable proportion of infected population in a given system, and that infection frequency increased with an increase in the average crowd density. Our results further suggest that individual movement accelerates the spread speed of emotion and increases the stable proportion of infected population. Furthermore, decreasing the duration of an infection and the probability of reinfection can markedly reduce the number of infected individuals. It is hoped that this study will be helpful in crowd management and evacuation organization.
A call for tiger management using "reserves" of genetic diversity.
Bay, Rachael A; Ramakrishnan, Uma; Hadly, Elizabeth A
2014-01-01
Tigers (Panthera tigris), like many large carnivores, are threatened by anthropogenic impacts, primarily habitat loss and poaching. Current conservation plans for tigers focus on population expansion, with the goal of doubling census size in the next 10 years. Previous studies have shown that because the demographic decline was recent, tiger populations still retain a large amount of genetic diversity. Although maintaining this diversity is extremely important to avoid deleterious effects of inbreeding, management plans have yet to consider predictive genetic models. We used coalescent simulations based on previously sequenced mitochondrial fragments (n = 125) from 5 of 6 extant subspecies to predict the population growth needed to maintain current genetic diversity over the next 150 years. We found that the level of gene flow between populations has a large effect on the local population growth necessary to maintain genetic diversity, without which tigers may face decreases in fitness. In the absence of gene flow, we demonstrate that maintaining genetic diversity is impossible based on known demographic parameters for the species. Thus, managing for the genetic diversity of the species should be prioritized over the riskier preservation of distinct subspecies. These predictive simulations provide unique management insights, hitherto not possible using existing analytical methods.
Guerrin, F; Dumas, J
2001-02-01
This work aims at representing empirical knowledge of freshwater ecologists on the functioning of salmon redds (spawning areas of salmon) and its impact on mortality of early stages. For this, we use Qsim, a qualitative simulator. In this first part, we provide unfamiliar readers with the underlying qualitative differential equation (QDE) ontology of Qsim: representing quantities, qualitative variables, qualitative constraints, QDE structure. Based on a very simple example taken of the salmon redd application, we show how informal biological knowledge may be represented and simulated using an approach that was first intended to analyze qualitatively ordinary differential equations systems. A companion paper (Part II) gives the full description and simulation of the salmon redd qualitative model. This work was part of a project aimed at assessing the impact of the environment on salmon populations dynamics by the use of models of processes acting at different levels: catchment, river, and redds. Only the latter level is dealt with in this paper.
2013-01-01
Background Demographic bottlenecks can severely reduce the genetic variation of a population or a species. Establishing whether low genetic variation is caused by a bottleneck or a constantly low effective number of individuals is important to understand a species’ ecology and evolution, and it has implications for conservation management. Recent studies have evaluated the power of several statistical methods developed to identify bottlenecks. However, the false positive rate, i.e. the rate with which a bottleneck signal is misidentified in demographically stable populations, has received little attention. We analyse this type of error (type I) in forward computer simulations of stable populations having greater than Poisson variance in reproductive success (i.e., variance in family sizes). The assumption of Poisson variance underlies bottleneck tests, yet it is commonly violated in species with high fecundity. Results With large variance in reproductive success (Vk ≥ 40, corresponding to a ratio between effective and census size smaller than 0.1), tests based on allele frequencies, allelic sizes, and DNA sequence polymorphisms (heterozygosity excess, M-ratio, and Tajima’s D test) tend to show erroneous signals of a bottleneck. Similarly, strong evidence of population decline is erroneously detected when ancestral and current population sizes are estimated with the model based method MSVAR. Conclusions Our results suggest caution when interpreting the results of bottleneck tests in species showing high variance in reproductive success. Particularly in species with high fecundity, computer simulations are recommended to confirm the occurrence of a population bottleneck. PMID:24131797
Schummers, Laura; Himes, Katherine P; Bodnar, Lisa M; Hutcheon, Jennifer A
2016-09-21
Compelled by the intuitive appeal of predicting each individual patient's risk of an outcome, there is a growing interest in risk prediction models. While the statistical methods used to build prediction models are increasingly well understood, the literature offers little insight to researchers seeking to gauge a priori whether a prediction model is likely to perform well for their particular research question. The objective of this study was to inform the development of new risk prediction models by evaluating model performance under a wide range of predictor characteristics. Data from all births to overweight or obese women in British Columbia, Canada from 2004 to 2012 (n = 75,225) were used to build a risk prediction model for preeclampsia. The data were then augmented with simulated predictors of the outcome with pre-set prevalence values and univariable odds ratios. We built 120 risk prediction models that included known demographic and clinical predictors, and one, three, or five of the simulated variables. Finally, we evaluated standard model performance criteria (discrimination, risk stratification capacity, calibration, and Nagelkerke's r 2 ) for each model. Findings from our models built with simulated predictors demonstrated the predictor characteristics required for a risk prediction model to adequately discriminate cases from non-cases and to adequately classify patients into clinically distinct risk groups. Several predictor characteristics can yield well performing risk prediction models; however, these characteristics are not typical of predictor-outcome relationships in many population-based or clinical data sets. Novel predictors must be both strongly associated with the outcome and prevalent in the population to be useful for clinical prediction modeling (e.g., one predictor with prevalence ≥20 % and odds ratio ≥8, or 3 predictors with prevalence ≥10 % and odds ratios ≥4). Area under the receiver operating characteristic curve values of >0.8 were necessary to achieve reasonable risk stratification capacity. Our findings provide a guide for researchers to estimate the expected performance of a prediction model before a model has been built based on the characteristics of available predictors.
Boosting Population Quits Through Evidence-Based Cessation Treatment and Policy
Abrams, David B.; Graham, Amanda L.; Levy, David T.; Mabry, Patricia L.; Orleans, C. Tracy
2015-01-01
Only large increases in adult cessation will rapidly reduce population smoking prevalence. Evidence-based smoking-cessation treatments and treatment policies exist but are underutilized. More needs to be done to coordinate the widespread, efficient dissemination and implementation of effective treatments and policies. This paper is the first in a series of three to demonstrate the impact of an integrated, comprehensive systems approach to cessation treatment and policy. This paper provides an analytic framework and selected literature review that guide the two subsequent computer simulation modeling papers to show how critical leverage points may have an impact on reductions in smoking prevalence. Evidence is reviewed from the U.S. Public Health Service 2008 clinical practice guideline and other sources regarding the impact of five cessation treatment policies on quit attempts, use of evidence-based treatment, and quit rates. Cessation treatment policies would: (1) expand cessation treatment coverage and provider reimbursement; (2) mandate adequate funding for the use and promotion of evidence-based state-sponsored telephone quitlines; (3) support healthcare systems changes to prompt, guide, and incentivize tobacco treatment; (4) support and promote evidence-based treatment via the Internet; and (5) improve individually tailored, stepped-care approaches and the long-term effectiveness of evidence-based treatments. This series of papers provides an analytic framework to inform heuristic simulation models in order to take a new look at ways to markedly increase population smoking cessation by implementing a defined set of treatments and treatment-related policies with the potential to improve motivation to quit, evidence-based treatment use, and long-term effectiveness. PMID:20176308
Schwalger, Tilo; Deger, Moritz; Gerstner, Wulfram
2017-04-01
Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50-2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.
Dynamic social networks based on movement
Scharf, Henry; Hooten, Mevin B.; Fosdick, Bailey K.; Johnson, Devin S.; London, Joshua M.; Durban, John W.
2016-01-01
Network modeling techniques provide a means for quantifying social structure in populations of individuals. Data used to define social connectivity are often expensive to collect and based on case-specific, ad hoc criteria. Moreover, in applications involving animal social networks, collection of these data is often opportunistic and can be invasive. Frequently, the social network of interest for a given population is closely related to the way individuals move. Thus, telemetry data, which are minimally invasive and relatively inexpensive to collect, present an alternative source of information. We develop a framework for using telemetry data to infer social relationships among animals. To achieve this, we propose a Bayesian hierarchical model with an underlying dynamic social network controlling movement of individuals via two mechanisms: an attractive effect and an aligning effect. We demonstrate the model and its ability to accurately identify complex social behavior in simulation, and apply our model to telemetry data arising from killer whales. Using auxiliary information about the study population, we investigate model validity and find the inferred dynamic social network is consistent with killer whale ecology and expert knowledge.
Conn, Paul B.; Johnson, Devin S.; Ver Hoef, Jay M.; Hooten, Mevin B.; London, Joshua M.; Boveng, Peter L.
2015-01-01
Ecologists often fit models to survey data to estimate and explain variation in animal abundance. Such models typically require that animal density remains constant across the landscape where sampling is being conducted, a potentially problematic assumption for animals inhabiting dynamic landscapes or otherwise exhibiting considerable spatiotemporal variation in density. We review several concepts from the burgeoning literature on spatiotemporal statistical models, including the nature of the temporal structure (i.e., descriptive or dynamical) and strategies for dimension reduction to promote computational tractability. We also review several features as they specifically relate to abundance estimation, including boundary conditions, population closure, choice of link function, and extrapolation of predicted relationships to unsampled areas. We then compare a suite of novel and existing spatiotemporal hierarchical models for animal count data that permit animal density to vary over space and time, including formulations motivated by resource selection and allowing for closed populations. We gauge the relative performance (bias, precision, computational demands) of alternative spatiotemporal models when confronted with simulated and real data sets from dynamic animal populations. For the latter, we analyze spotted seal (Phoca largha) counts from an aerial survey of the Bering Sea where the quantity and quality of suitable habitat (sea ice) changed dramatically while surveys were being conducted. Simulation analyses suggested that multiple types of spatiotemporal models provide reasonable inference (low positive bias, high precision) about animal abundance, but have potential for overestimating precision. Analysis of spotted seal data indicated that several model formulations, including those based on a log-Gaussian Cox process, had a tendency to overestimate abundance. By contrast, a model that included a population closure assumption and a scale prior on total abundance produced estimates that largely conformed to our a priori expectation. Although care must be taken to tailor models to match the study population and survey data available, we argue that hierarchical spatiotemporal statistical models represent a powerful way forward for estimating abundance and explaining variation in the distribution of dynamical populations.
Nemo: an evolutionary and population genetics programming framework.
Guillaume, Frédéric; Rougemont, Jacques
2006-10-15
Nemo is an individual-based, genetically explicit and stochastic population computer program for the simulation of population genetics and life-history trait evolution in a metapopulation context. It comes as both a C++ programming framework and an executable program file. Its object-oriented programming design gives it the flexibility and extensibility needed to implement a large variety of forward-time evolutionary models. It provides developers with abstract models allowing them to implement their own life-history traits and life-cycle events. Nemo offers a large panel of population models, from the Island model to lattice models with demographic or environmental stochasticity and a variety of already implemented traits (deleterious mutations, neutral markers and more), life-cycle events (mating, dispersal, aging, selection, etc.) and output operators for saving data and statistics. It runs on all major computer platforms including parallel computing environments. The source code, binaries and documentation are available under the GNU General Public License at http://nemo2.sourceforge.net.
1/f oscillations in a model of moth populations oriented by diffusive pheromones
NASA Astrophysics Data System (ADS)
Barbosa, L. A.; Martins, M. L.; Lima, E. R.
2005-01-01
An individual-based model for the population dynamics of Spodoptera frugiperda in a homogeneous environment is proposed. The model involves moths feeding plants, mating through an anemotaxis search (i.e., oriented by odor dispersed in a current of air), and dying due to resource competition or at a maximum age. As observed in the laboratory, the females release pheromones at exponentially distributed time intervals, and it is assumed that the ranges of the male flights follow a power-law distribution. Computer simulations of the model reveal the central role of anemotaxis search for the persistence of moth population. Such stationary populations are exponentially distributed in age, exhibit random temporal fluctuations with 1/f spectrum, and self-organize in disordered spatial patterns with long-range correlations. In addition, the model results demonstrate that pest control through pheromone mass trapping is effective only if the amounts of pheromone released by the traps decay much slower than the exponential distribution for calling female.
de los Santos, Carmen B; Neuparth, Teresa; Torres, Tiago; Martins, Irene; Cunha, Isabel; Sheahan, Dave; McGowan, Tom; Santos, Miguel M
2015-06-01
A population agent-based model of marine amphipod Gammarus locusta was designed and implemented as a basis for ecological risk assessment of chemical pollutants impairing life-history traits at the individual level. We further used the model to assess the toxic effects of aniline (a priority hazardous and noxious substance, HNS) on amphipod populations using empirically-built dose-response functions derived from a chronic bioassay that we previously performed with this species. We observed a significant toxicant-induced mortality and adverse effects in reproductive performance (reduction of newborn production) in G. locusta at the individual level. Coupling the population model with the toxicological data from the chronic bioassay allowed the projection of the ecological costs associated with exposure to aniline that might occur in wild populations. Model simulations with different scenarios indicated that even low level prolonged exposure to the HNS aniline can have significant long-term impacts on G. locusta population abundance, until the impacted population returns to undisturbed levels. This approach may be a useful complement in ecotoxicological studies of chemical pollution to transfer individual-collected data to ecological-relevant levels. Copyright © 2015 Elsevier B.V. All rights reserved.
Dispersive models describing mosquitoes’ population dynamics
NASA Astrophysics Data System (ADS)
Yamashita, W. M. S.; Takahashi, L. T.; Chapiro, G.
2016-08-01
The global incidences of dengue and, more recently, zica virus have increased the interest in studying and understanding the mosquito population dynamics. Understanding this dynamics is important for public health in countries where climatic and environmental conditions are favorable for the propagation of these diseases. This work is based on the study of nonlinear mathematical models dealing with the life cycle of the dengue mosquito using partial differential equations. We investigate the existence of traveling wave solutions using semi-analytical method combining dynamical systems techniques and numerical integration. Obtained solutions are validated through numerical simulations using finite difference schemes.
Noise-induced shifts in the population model with a weak Allee effect
NASA Astrophysics Data System (ADS)
Bashkirtseva, Irina; Ryashko, Lev
2018-02-01
We consider the Truscott-Brindley system of interacting phyto- and zooplankton populations with a weak Allee effect. We add a random noise to the parameter of the prey carrying capacity, and study how the noise affects the dynamic behavior of this nonlinear prey-predator model. Phenomena of the stochastic excitement and noise-induced shifts in zones of the Andronov-Hopf bifurcation and Canard explosion are analyzed on the base of the direct numerical simulation and stochastic sensitivity functions technique. A relationship of these phenomena with transitions between order and chaos is discussed.
Hazardous Convective Weather in the Central United States: Present and Future
NASA Astrophysics Data System (ADS)
Liu, C.; Ikeda, K.; Rasmussen, R.
2017-12-01
Two sets of 13-year continental-scale convection-permitting simulations were performed using the 4-km-resolution WRF model. They consist of a retrospective simulation, which downscales the ERA-Interim reanalysis during the period October 2000 - September 2013, and a future climate sensitivity simulation for the same period based on the perturbed reanalysis-derived boundary conditions with the CMIP5 ensemble-mean high-end emission scenario climate change. The evaluation of the retrospective simulation indicates that the model is able to realistically reproduce the main characteristics of deep precipitating convection observed in the current climate such as the spectra of convective population and propagating mesoscale convective systems (MCSs). It is also shown that severe convection and associated MCS will increase in frequency and intensity, implying a potential increase in high impact convective weather in a future warmer climate. In this study, the warm-season hazardous convective weather (i.e., tonadoes, hails and damaging gusty wind) in the central United states is examined using these 4-km downscaling simulations. First, a model-based proxy for hazardous convective weather is derived on the basis of a set of characteristic meteorological variables such as the model composite radar reflectivity, updraft helicity, vertical wind shear, and low-level wind. Second, the developed proxy is applied to the retrospective simulation for estimate of the model hazardous weather events during the historical period. Third, the simulated hazardous weather statistics are evaluated against the NOAA severe weather reports. Lastly, the proxy is applied to the future climate simulation for the projected change of hazardous convective weather in response to global warming. Preliminary results will be reported at the 2017 AGU session "High Resolution Climate Modeling".
gPKPDSim: a SimBiology®-based GUI application for PKPD modeling in drug development.
Hosseini, Iraj; Gajjala, Anita; Bumbaca Yadav, Daniela; Sukumaran, Siddharth; Ramanujan, Saroja; Paxson, Ricardo; Gadkar, Kapil
2018-04-01
Modeling and simulation (M&S) is increasingly used in drug development to characterize pharmacokinetic-pharmacodynamic (PKPD) relationships and support various efforts such as target feasibility assessment, molecule selection, human PK projection, and preclinical and clinical dose and schedule determination. While model development typically require mathematical modeling expertise, model exploration and simulations could in many cases be performed by scientists in various disciplines to support the design, analysis and interpretation of experimental studies. To this end, we have developed a versatile graphical user interface (GUI) application to enable easy use of any model constructed in SimBiology ® to execute various common PKPD analyses. The MATLAB ® -based GUI application, called gPKPDSim, has a single screen interface and provides functionalities including simulation, data fitting (parameter estimation), population simulation (exploring the impact of parameter variability on the outputs of interest), and non-compartmental PK analysis. Further, gPKPDSim is a user-friendly tool with capabilities including interactive visualization, exporting of results and generation of presentation-ready figures. gPKPDSim was designed primarily for use in preclinical and translational drug development, although broader applications exist. gPKPDSim is a MATLAB ® -based open-source application and is publicly available to download from MATLAB ® Central™. We illustrate the use and features of gPKPDSim using multiple PKPD models to demonstrate the wide applications of this tool in pharmaceutical sciences. Overall, gPKPDSim provides an integrated, multi-purpose user-friendly GUI application to enable efficient use of PKPD models by scientists from various disciplines, regardless of their modeling expertise.
An individual-based model for population viability analysis of humpback chub in Grand Canyon
Pine, William Pine; Healy, Brian; Smith, Emily Omana; Trammell, Melissa; Speas, Dave; Valdez, Rich; Yard, Mike; Walters, Carl; Ahrens, Rob; Vanhaverbeke, Randy; Stone, Dennis; Wilson, Wade
2013-01-01
We developed an individual-based population viability analysis model (females only) for evaluating risk to populations from catastrophic events or conservation and research actions. This model tracks attributes (size, weight, viability, etc.) for individual fish through time and then compiles this information to assess the extinction risk of the population across large numbers of simulation trials. Using a case history for the Little Colorado River population of Humpback Chub Gila cypha in Grand Canyon, Arizona, we assessed extinction risk and resiliency to a catastrophic event for this population and then assessed a series of conservation actions related to removing specific numbers of Humpback Chub at different sizes for conservation purposes, such as translocating individuals to establish other spawning populations or hatchery refuge development. Our results suggested that the Little Colorado River population is generally resilient to a single catastrophic event and also to removals of larvae and juveniles for conservation purposes, including translocations to establish new populations. Our results also suggested that translocation success is dependent on similar survival rates in receiving and donor streams and low emigration rates from recipient streams. In addition, translocating either large numbers of larvae or small numbers of large juveniles has generally an equal likelihood of successful population establishment at similar extinction risk levels to the Little Colorado River donor population. Our model created a transparent platform to consider extinction risk to populations from catastrophe or conservation actions and should prove useful to managers assessing these risks for endangered species such as Humpback Chub.
Agent Based Modeling of Air Carrier Behavior for Evaluation of Technology Equipage and Adoption
NASA Technical Reports Server (NTRS)
Horio, Brant M.; DeCicco, Anthony H.; Stouffer, Virginia L.; Hasan, Shahab; Rosenbaum, Rebecca L.; Smith, Jeremy C.
2014-01-01
As part of ongoing research, the National Aeronautics and Space Administration (NASA) and LMI developed a research framework to assist policymakers in identifying impacts on the U.S. air transportation system (ATS) of potential policies and technology related to the implementation of the Next Generation Air Transportation System (NextGen). This framework, called the Air Transportation System Evolutionary Simulation (ATS-EVOS), integrates multiple models into a single process flow to best simulate responses by U.S. commercial airlines and other ATS stakeholders to NextGen-related policies, and in turn, how those responses impact the ATS. Development of this framework required NASA and LMI to create an agent-based model of airline and passenger behavior. This Airline Evolutionary Simulation (AIRLINE-EVOS) models airline decisions about tactical airfare and schedule adjustments, and strategic decisions related to fleet assignments, market prices, and equipage. AIRLINE-EVOS models its own heterogeneous population of passenger agents that interact with airlines; this interaction allows the model to simulate the cycle of action-reaction as airlines compete with each other and engage passengers. We validated a baseline configuration of AIRLINE-EVOS against Airline Origin and Destination Survey (DB1B) data and subject matter expert opinion, and we verified the ATS-EVOS framework and agent behavior logic through scenario-based experiments. These experiments demonstrated AIRLINE-EVOS's capabilities in responding to an input price shock in fuel prices, and to equipage challenges in a series of analyses based on potential incentive policies for best equipped best served, optimal-wind routing, and traffic management initiative exemption concepts..
Integrating neuroinformatics tools in TheVirtualBrain.
Woodman, M Marmaduke; Pezard, Laurent; Domide, Lia; Knock, Stuart A; Sanz-Leon, Paula; Mersmann, Jochen; McIntosh, Anthony R; Jirsa, Viktor
2014-01-01
TheVirtualBrain (TVB) is a neuroinformatics Python package representing the convergence of clinical, systems, and theoretical neuroscience in the analysis, visualization and modeling of neural and neuroimaging dynamics. TVB is composed of a flexible simulator for neural dynamics measured across scales from local populations to large-scale dynamics measured by electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI), and core analytic and visualization functions, all accessible through a web browser user interface. A datatype system modeling neuroscientific data ties together these pieces with persistent data storage, based on a combination of SQL and HDF5. These datatypes combine with adapters allowing TVB to integrate other algorithms or computational systems. TVB provides infrastructure for multiple projects and multiple users, possibly participating under multiple roles. For example, a clinician might import patient data to identify several potential lesion points in the patient's connectome. A modeler, working on the same project, tests these points for viability through whole brain simulation, based on the patient's connectome, and subsequent analysis of dynamical features. TVB also drives research forward: the simulator itself represents the culmination of several simulation frameworks in the modeling literature. The availability of the numerical methods, set of neural mass models and forward solutions allows for the construction of a wide range of brain-scale simulation scenarios. This paper briefly outlines the history and motivation for TVB, describing the framework and simulator, giving usage examples in the web UI and Python scripting.
Integrating neuroinformatics tools in TheVirtualBrain
Woodman, M. Marmaduke; Pezard, Laurent; Domide, Lia; Knock, Stuart A.; Sanz-Leon, Paula; Mersmann, Jochen; McIntosh, Anthony R.; Jirsa, Viktor
2014-01-01
TheVirtualBrain (TVB) is a neuroinformatics Python package representing the convergence of clinical, systems, and theoretical neuroscience in the analysis, visualization and modeling of neural and neuroimaging dynamics. TVB is composed of a flexible simulator for neural dynamics measured across scales from local populations to large-scale dynamics measured by electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI), and core analytic and visualization functions, all accessible through a web browser user interface. A datatype system modeling neuroscientific data ties together these pieces with persistent data storage, based on a combination of SQL and HDF5. These datatypes combine with adapters allowing TVB to integrate other algorithms or computational systems. TVB provides infrastructure for multiple projects and multiple users, possibly participating under multiple roles. For example, a clinician might import patient data to identify several potential lesion points in the patient's connectome. A modeler, working on the same project, tests these points for viability through whole brain simulation, based on the patient's connectome, and subsequent analysis of dynamical features. TVB also drives research forward: the simulator itself represents the culmination of several simulation frameworks in the modeling literature. The availability of the numerical methods, set of neural mass models and forward solutions allows for the construction of a wide range of brain-scale simulation scenarios. This paper briefly outlines the history and motivation for TVB, describing the framework and simulator, giving usage examples in the web UI and Python scripting. PMID:24795617
The opportunistic transmission of wireless worms between mobile devices
NASA Astrophysics Data System (ADS)
Rhodes, C. J.; Nekovee, M.
2008-12-01
The ubiquity of portable wireless-enabled computing and communications devices has stimulated the emergence of malicious codes (wireless worms) that are capable of spreading between spatially proximal devices. The potential exists for worms to be opportunistically transmitted between devices as they move around, so human mobility patterns will have an impact on epidemic spread. The scenario we address in this paper is proximity attacks from fleetingly in-contact wireless devices with short-range communication range, such as Bluetooth-enabled smart phones. An individual-based model of mobile devices is introduced and the effect of population characteristics and device behaviour on the outbreak dynamics is investigated. The model uses straight-line motion to achieve population, though it is recognised that this is a highly simplified representation of human mobility patterns. We show that the contact rate can be derived from the underlying mobility model and, through extensive simulation, that mass-action epidemic models remain applicable to worm spreading in the low density regime studied here. The model gives useful analytical expressions against which more refined simulations of worm spread can be developed and tested.
McKee, Gregory J; Goodhue, Rachael E; Zalom, Frank G; Carter, Colin A; Chalfant, James A
2009-01-01
In agriculture, relatively few efficacious control measures may be available for an invasive pest. In the case of a new insect pest, insecticide use decisions are affected by regulations associated with its registration, insect population dynamics, and seasonal market price cycles. We assess the costs and benefits of environmental regulations designed to regulate insecticide applications on an invasive species. We construct a bioeconomic model, based on detailed scientific data, of management decisions for a specific invasion: greenhouse whiteflies in California-grown strawberries. The empirical model integrates whitefly population dynamics, the effect of whitefly feeding on strawberry yields, and weekly strawberry price. We use the model to assess the optimality of alternative treatment programs on a simulated greenhouse whitefly population. Our results show that regulations may lead growers to "under-spray" when placed in an economic context, and provide some general lessons about the design of optimal invasive species control policies.
Wang, Xiao; Hardcastle, Kiah; Weinberg, Seth H; Smith, Gregory D
2016-03-01
We present a population density and moment-based description of the stochastic dynamics of domain [Formula: see text]-mediated inactivation of L-type [Formula: see text] channels. Our approach accounts for the effect of heterogeneity of local [Formula: see text] signals on whole cell [Formula: see text] currents; however, in contrast with prior work, e.g., Sherman et al. (Biophys J 58(4):985-995, 1990), we do not assume that [Formula: see text] domain formation and collapse are fast compared to channel gating. We demonstrate the population density and moment-based modeling approaches using a 12-state Markov chain model of an L-type [Formula: see text] channel introduced by Greenstein and Winslow (Biophys J 83(6):2918-2945, 2002). Simulated whole cell voltage clamp responses yield an inactivation function for the whole cell [Formula: see text] current that agrees with the traditional approach when domain dynamics are fast. We analyze the voltage-dependence of [Formula: see text] inactivation that may occur via slow heterogeneous domain [[Formula: see text
Harding, R. M.; Boyce, A. J.; Martinson, J. J.; Flint, J.; Clegg, J. B.
1993-01-01
Extensive allelic diversity in variable numbers of tandem repeats (VNTRs) has been discovered in the human genome. For population genetic studies of VNTRs, such as forensic applications, it is important to know whether a neutral mutation-drift balance of VNTR polymorphism can be represented by the infinite alleles model. The assumption of the infinite alleles model that each new mutant is unique is very likely to be violated by unequal sister chromatid exchange (USCE), the primary process believed to generate VNTR mutants. We show that increasing both mutation rates and misalignment constraint for intrachromosomal recombination in a computer simulation model reduces simulated VNTR diversity below the expectations of the infinite alleles model. Maximal constraint, represented as slippage of single repeats, reduces simulated VNTR diversity to levels expected from the stepwise mutation model. Although misalignment rule is the more important variable, mutation rate also has an effect. At moderate rates of USCE, simulated VNTR diversity fluctuates around infinite alleles expectation. However, if rates of USCE are high, as for hypervariable VNTRs, simulated VNTR diversity is consistently lower than predicted by the infinite alleles model. This has been observed for many VNTRs and accounted for by technical problems in distinguishing alleles of neighboring size classes. We use sampling theory to confirm the intrinsically poor fit to the infinite alleles model of both simulated VNTR diversity and observed VNTR polymorphisms sampled from two Papua New Guinean populations. PMID:8293988
Harding, R M; Boyce, A J; Martinson, J J; Flint, J; Clegg, J B
1993-11-01
Extensive allelic diversity in variable numbers of tandem repeats (VNTRs) has been discovered in the human genome. For population genetic studies of VNTRs, such as forensic applications, it is important to know whether a neutral mutation-drift balance of VNTR polymorphism can be represented by the infinite alleles model. The assumption of the infinite alleles model that each new mutant is unique is very likely to be violated by unequal sister chromatid exchange (USCE), the primary process believed to generate VNTR mutants. We show that increasing both mutation rates and misalignment constraint for intrachromosomal recombination in a computer simulation model reduces simulated VNTR diversity below the expectations of the infinite alleles model. Maximal constraint, represented as slippage of single repeats, reduces simulated VNTR diversity to levels expected from the stepwise mutation model. Although misalignment rule is the more important variable, mutation rate also has an effect. At moderate rates of USCE, simulated VNTR diversity fluctuates around infinite alleles expectation. However, if rates of USCE are high, as for hypervariable VNTRs, simulated VNTR diversity is consistently lower than predicted by the infinite alleles model. This has been observed for many VNTRs and accounted for by technical problems in distinguishing alleles of neighboring size classes. We use sampling theory to confirm the intrinsically poor fit to the infinite alleles model of both simulated VNTR diversity and observed VNTR polymorphisms sampled from two Papua New Guinean populations.
Modelling Risk to US Military Populations from Stopping Blanket Mandatory Polio Vaccination.
Burgess, Colleen; Burgess, Andrew; McMullen, Kellie
2017-01-01
Transmission of polio poses a threat to military forces when deploying to regions where such viruses are endemic. US-born soldiers generally enter service with immunity resulting from childhood immunization against polio; moreover, new recruits are routinely vaccinated with inactivated poliovirus vaccine (IPV), supplemented based upon deployment circumstances. Given residual protection from childhood vaccination, risk-based vaccination may sufficiently protect troops from polio transmission. This analysis employed a mathematical system for polio transmission within military populations interacting with locals in a polio-endemic region to evaluate changes in vaccination policy. Removal of blanket immunization had no effect on simulated polio incidence among deployed military populations when risk-based immunization was employed; however, when these individuals reintegrated with their base populations, risk of transmission to nondeployed personnel increased by 19%. In the absence of both blanket- and risk-based immunization, transmission to nondeployed populations increased by 25%. The overall number of new infections among nondeployed populations was negligible for both scenarios due to high childhood immunization rates, partial protection against transmission conferred by IPV, and low global disease incidence levels. Risk-based immunization driven by deployment to polio-endemic regions is sufficient to prevent transmission among both deployed and nondeployed US military populations.
Gething, Peter W; Patil, Anand P; Hay, Simon I
2010-04-01
Risk maps estimating the spatial distribution of infectious diseases are required to guide public health policy from local to global scales. The advent of model-based geostatistics (MBG) has allowed these maps to be generated in a formal statistical framework, providing robust metrics of map uncertainty that enhances their utility for decision-makers. In many settings, decision-makers require spatially aggregated measures over large regions such as the mean prevalence within a country or administrative region, or national populations living under different levels of risk. Existing MBG mapping approaches provide suitable metrics of local uncertainty--the fidelity of predictions at each mapped pixel--but have not been adapted for measuring uncertainty over large areas, due largely to a series of fundamental computational constraints. Here the authors present a new efficient approximating algorithm that can generate for the first time the necessary joint simulation of prevalence values across the very large prediction spaces needed for global scale mapping. This new approach is implemented in conjunction with an established model for P. falciparum allowing robust estimates of mean prevalence at any specified level of spatial aggregation. The model is used to provide estimates of national populations at risk under three policy-relevant prevalence thresholds, along with accompanying model-based measures of uncertainty. By overcoming previously unchallenged computational barriers, this study illustrates how MBG approaches, already at the forefront of infectious disease mapping, can be extended to provide large-scale aggregate measures appropriate for decision-makers.
Sensitivity analyses for simulating pesticide impacts on honey bee colonies
USDA-ARS?s Scientific Manuscript database
We employ Monte Carlo simulation and sensitivity analysis techniques to describe the population dynamics of pesticide exposure to a honey bee colony using the VarroaPop+Pesticide model. Simulations are performed of hive population trajectories with and without pesticide exposure to determine the eff...
Modeling cell adhesion and proliferation: a cellular-automata based approach.
Vivas, J; Garzón-Alvarado, D; Cerrolaza, M
Cell adhesion is a process that involves the interaction between the cell membrane and another surface, either a cell or a substrate. Unlike experimental tests, computer models can simulate processes and study the result of experiments in a shorter time and lower costs. One of the tools used to simulate biological processes is the cellular automata, which is a dynamic system that is discrete both in space and time. This work describes a computer model based on cellular automata for the adhesion process and cell proliferation to predict the behavior of a cell population in suspension and adhered to a substrate. The values of the simulated system were obtained through experimental tests on fibroblast monolayer cultures. The results allow us to estimate the cells settling time in culture as well as the adhesion and proliferation time. The change in the cells morphology as the adhesion over the contact surface progress was also observed. The formation of the initial link between cell and the substrate of the adhesion was observed after 100 min where the cell on the substrate retains its spherical morphology during the simulation. The cellular automata model developed is, however, a simplified representation of the steps in the adhesion process and the subsequent proliferation. A combined framework of experimental and computational simulation based on cellular automata was proposed to represent the fibroblast adhesion on substrates and changes in a macro-scale observed in the cell during the adhesion process. The approach showed to be simple and efficient.
Role of a plausible nuisance contributor in the declining obesity-mortality risks over time.
Mehta, Tapan; Pajewski, Nicholas M; Keith, Scott W; Fontaine, Kevin; Allison, David B
2016-12-15
Recent analyses of epidemiological data including the National Health and Nutrition Examination Survey (NHANES) have suggested that the harmful effects of obesity may have decreased over calendar time. The shifting BMI distribution over time coupled with the application of fixed broad BMI categories in these analyses could be a plausible "nuisance contributor" to this observed change in the obesity-associated mortality over calendar time. To evaluate the extent to which observed temporal changes in the obesity-mortality association may be due to a shifting population distribution for body mass index (BMI), coupled with analyses based on static, broad BMI categories. Simulations were conducted using data from NHANES I and III linked with mortality data. Data from NHANES I were used to fit a "true" model treating BMI as a continuous variable. Coefficients estimated from this model were used to simulate mortality for participants in NHANES III. Hence, the population-level association between BMI and mortality in NHANES III was fixed to be identical to the association estimated in NHANES I. Hazard ratios (HRs) for obesity categories based on BMI for NHANES III with simulated mortality data were compared to the corresponding estimated HRs from NHANES I. Change in hazard ratios for simulated data in NHANES III compared to observed estimates from NHANES I. On average, hazard ratios for NHANES III based on simulated mortality data were 29.3% lower than the estimates from NHANES I using observed mortality follow-up. This reduction accounted for roughly three-fourths of the apparent decrease in the obesity-mortality association observed in a previous analysis of these data. Some of the apparent diminution of the association between obesity and mortality may be an artifact of treating BMI as a categorical variable. Copyright © 2016. Published by Elsevier Inc.
Kirman, C R; Suh, M; Proctor, D M; Hays, S M
2017-06-15
A physiologically based pharmacokinetic (PBPK) model for hexavalent chromium [Cr(VI)] in mice, rats, and humans developed previously (Kirman et al., 2012, 2013), was updated to reflect an improved understanding of the toxicokinetics of the gastrointestinal tract following oral exposures. Improvements were made to: (1) the reduction model, which describes the pH-dependent reduction of Cr(VI) to Cr(III) in the gastrointestinal tract under both fasted and fed states; (2) drinking water pattern simulations, to better describe dosimetry in rodents under the conditions of the NTP cancer bioassay; and (3) parameterize the model to characterize potentially sensitive human populations. Important species differences, sources of non-linear toxicokinetics, and human variation are identified and discussed within the context of human health risk assessment. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Human impact on wildfires varies between regions and with vegetation productivity
NASA Astrophysics Data System (ADS)
Lasslop, Gitta; Kloster, Silvia
2017-11-01
We assess the influence of humans on burned area simulated with a dynamic global vegetation model. The human impact in the model is based on population density and cropland fraction, which were identified as important drivers of burned area in analyses of global datasets, and are commonly used in global models. After an evaluation of the sensitivity to these two variables we extend the model by including an additional effect of the cropland fraction on the fire duration. The general pattern of human influence is similar in both model versions: the strongest human impact is found in regions with intermediate productivity, where fire occurrence is not limited by fuel load or climatic conditions. Human effects in the model increases burned area in the tropics, while in temperate regions burned area is reduced. While the population density is similar on average for the tropical and temperate regions, the cropland fraction is higher in temperate regions, and leads to a strong suppression of fire. The model shows a low human impact in the boreal region, where both population density and cropland fraction is very low and the climatic conditions, as well as the vegetation productivity limit fire. Previous studies attributed a decrease in fire activity found in global charcoal datasets to human activity. This is confirmed by our simulations, which only show a decrease in burned area when the human influence on fire is accounted for, and not with only natural effects on fires. We assess how the vegetation-fire feedback influences the results, by comparing simulations with dynamic vegetation biogeography to simulations with prescribed vegetation. The vegetation-fire feedback increases the human impact on burned area by 10% for present day conditions. These results emphasize that projections of burned area need to account for the interactions between fire, climate, vegetation and humans.
2000-04-01
natural systems (King 1993). Population modelers have used certain difference equations, sometimes called the Lotka - Volterra system of equations...environment 28 Step 5 - Simulate the hydraulic and/or water quality field 29 Step 6 - Generate biota response data for decision support 29 Step 7...Quality and Contaminant Modeling Branch (WQCMB), and Mr. R. Andrew Goodwin, contract student, WQCMB, under the general supervision of Dr. Mark S. Dortch
Predation and fragmentation portrayed in the statistical structure of prey time series
Hendrichsen, Ditte K; Topping, Chris J; Forchhammer, Mads C
2009-01-01
Background Statistical autoregressive analyses of direct and delayed density dependence are widespread in ecological research. The models suggest that changes in ecological factors affecting density dependence, like predation and landscape heterogeneity are directly portrayed in the first and second order autoregressive parameters, and the models are therefore used to decipher complex biological patterns. However, independent tests of model predictions are complicated by the inherent variability of natural populations, where differences in landscape structure, climate or species composition prevent controlled repeated analyses. To circumvent this problem, we applied second-order autoregressive time series analyses to data generated by a realistic agent-based computer model. The model simulated life history decisions of individual field voles under controlled variations in predator pressure and landscape fragmentation. Analyses were made on three levels: comparisons between predated and non-predated populations, between populations exposed to different types of predators and between populations experiencing different degrees of habitat fragmentation. Results The results are unambiguous: Changes in landscape fragmentation and the numerical response of predators are clearly portrayed in the statistical time series structure as predicted by the autoregressive model. Populations without predators displayed significantly stronger negative direct density dependence than did those exposed to predators, where direct density dependence was only moderately negative. The effects of predation versus no predation had an even stronger effect on the delayed density dependence of the simulated prey populations. In non-predated prey populations, the coefficients of delayed density dependence were distinctly positive, whereas they were negative in predated populations. Similarly, increasing the degree of fragmentation of optimal habitat available to the prey was accompanied with a shift in the delayed density dependence, from strongly negative to gradually becoming less negative. Conclusion We conclude that statistical second-order autoregressive time series analyses are capable of deciphering interactions within and across trophic levels and their effect on direct and delayed density dependence. PMID:19419539
Dunham, Kylee; Grand, James B.
2016-01-01
We examined the effects of complexity and priors on the accuracy of models used to estimate ecological and observational processes, and to make predictions regarding population size and structure. State-space models are useful for estimating complex, unobservable population processes and making predictions about future populations based on limited data. To better understand the utility of state space models in evaluating population dynamics, we used them in a Bayesian framework and compared the accuracy of models with differing complexity, with and without informative priors using sequential importance sampling/resampling (SISR). Count data were simulated for 25 years using known parameters and observation process for each model. We used kernel smoothing to reduce the effect of particle depletion, which is common when estimating both states and parameters with SISR. Models using informative priors estimated parameter values and population size with greater accuracy than their non-informative counterparts. While the estimates of population size and trend did not suffer greatly in models using non-informative priors, the algorithm was unable to accurately estimate demographic parameters. This model framework provides reasonable estimates of population size when little to no information is available; however, when information on some vital rates is available, SISR can be used to obtain more precise estimates of population size and process. Incorporating model complexity such as that required by structured populations with stage-specific vital rates affects precision and accuracy when estimating latent population variables and predicting population dynamics. These results are important to consider when designing monitoring programs and conservation efforts requiring management of specific population segments.
Hasselmo, Michael E.
2008-01-01
The spiking activity of hippocampal neurons during REM sleep exhibits temporally structured replay of spiking occurring during previously experienced trajectories (Louie and Wilson, 2001). Here, temporally structured replay of place cell activity during REM sleep is modeled in a large-scale network simulation of grid cells, place cells and head direction cells. During simulated waking behavior, the movement of the simulated rat drives activity of a population of head direction cells that updates the activity of a population of entorhinal grid cells. The population of grid cells drives the activity of place cells coding individual locations. Associations between location and movement direction are encoded by modification of excitatory synaptic connections from place cells to speed modulated head direction cells. During simulated REM sleep, the population of place cells coding an experienced location activates the head direction cells coding the associated movement direction. Spiking of head direction cells then causes frequency shifts within the population of entorhinal grid cells to update a phase representation of location. Spiking grid cells then activate new place cells that drive new head direction activity. In contrast to models that perform temporally compressed sequence retrieval similar to sharp wave activity, this model can simulate data on temporally structured replay of hippocampal place cell activity during REM sleep at time scales similar to those observed during waking. These mechanisms could be important for episodic memory of trajectories. PMID:18973557
Is the whole the sum of its parts? Agent-based modelling of wastewater treatment systems.
Schuler, A J; Majed, N; Bucci, V; Hellweger, F L; Tu, Y; Gu, A Z
2011-01-01
Agent-based models (ABMS) simulate individual units within a system, such as the bacteria in a biological wastewater treatment system. This paper outlines past, current and potential future applications of ABMs to wastewater treatment. ABMs track heterogeneities within microbial populations, and this has been demonstrated to yield different predictions of bulk behaviors than the conventional, "lumped" approaches for enhanced biological phosphorus removal (EBPR) completely mixed reactors systems. Current work included the application of the ABM approach to bacterial adaptation/evolution, using the model system of individual EBPR bacteria that are allowed to evolve a kinetic parameter (maximum glycogen storage) in a competitive environment. The ABM approach was successfully implemented to a simple anaerobic-aerobic system and it was found the differing initial states converged to the same optimal solution under uncertain hydraulic residence times associated with completely mixed hydraulics. In another study, an ABM was developed and applied to simulate the heterogeneity in intracellular polymer storage compounds, including polyphosphate (PP), in functional microbial populations in enhanced biological phosphorus removal (EBPR) process. The simulation results were compared to the experimental measurements of single-cell abundance of PP in polyphosphate accumulating organisms (PAOs), performed using Raman microscopy. The model-predicted heterogeneity was generally consistent with observations, and it was used to investigate the relative contribution of external (different life histories) and internal (biological) mechanisms leading to heterogeneity. In the future, ABMs could be combined with computational fluid dynamics (CFD) models to understand incomplete mixing, more intracellular states and mechanisms can be incorporated, and additional experimental verification is needed.
Xu, Hongmei; Zhou, Wangda; Zhou, Diansong; Li, Jianguo; Al-Huniti, Nidal
2017-03-01
Aztreonam is a monocyclic β-lactam antibiotic often used to treat infections caused by Enterobacteriaceae or Pseudomonas aeruginosa. Despite the long history of clinical use, population pharmacokinetic modeling of aztreonam in renally impaired patients is not yet available. The aims of this study were to assess the impact of renal impairment on aztreonam exposure and to evaluate dosing regimens for patients with renal impairment. A population model describing aztreonam pharmacokinetics following intravenous administration was developed using plasma concentrations from 42 healthy volunteers and renally impaired patients from 2 clinical studies. The final pharmacokinetic model was used to predict aztreonam plasma concentrations and evaluate the probability of pharmacodynamic target attainment (PTA) in patients with different levels of renal function. A 2-compartment model with first-order elimination adequately described aztreonam pharmacokinetics. The population mean estimates of aztreonam clearance, intercompartmental clearance, volume of distribution of the central compartment, and volume of distribution of the peripheral compartment were 4.93 L/h, 9.26 L/h, 7.43 L, and 6.44 L, respectively. Creatinine clearance and body weight were the most significant variables to explain patient variability in aztreonam clearance and volume of distribution, respectively. Simulations using the final pharmacokinetic model resulted in a clinical susceptibility break point of 4 and 8 mg/L, respectively, based on the clinical use of 1- and 2-g loading doses with the same or reduced maintenance dose every 8 hours for various renal deficiency patients. The population pharmacokinetic modeling and PTA estimation support adequate PTAs (>90% PTA) from the aztreonam label for dose adjustment of aztreonam in patients with moderate and severe renal impairment. © 2016, The American College of Clinical Pharmacology.
Dann, Benjamin
2016-01-01
Recent models of movement generation in motor cortex have sought to explain neural activity not as a function of movement parameters, known as representational models, but as a dynamical system acting at the level of the population. Despite evidence supporting this framework, the evaluation of representational models and their integration with dynamical systems is incomplete in the literature. Using a representational velocity-tuning based simulation of center-out reaching, we show that incorporating variable latency offsets between neural activity and kinematics is sufficient to generate rotational dynamics at the level of neural populations, a phenomenon observed in motor cortex. However, we developed a covariance-matched permutation test (CMPT) that reassigns neural data between task conditions independently for each neuron while maintaining overall neuron-to-neuron relationships, revealing that rotations based on the representational model did not uniquely depend on the underlying condition structure. In contrast, rotations based on either a dynamical model or motor cortex data depend on this relationship, providing evidence that the dynamical model more readily explains motor cortex activity. Importantly, implementing a recurrent neural network we demonstrate that both representational tuning properties and rotational dynamics emerge, providing evidence that a dynamical system can reproduce previous findings of representational tuning. Finally, using motor cortex data in combination with the CMPT, we show that results based on small numbers of neurons or conditions should be interpreted cautiously, potentially informing future experimental design. Together, our findings reinforce the view that representational models lack the explanatory power to describe complex aspects of single neuron and population level activity. PMID:27814352
Michaels, Jonathan A; Dann, Benjamin; Scherberger, Hansjörg
2016-11-01
Recent models of movement generation in motor cortex have sought to explain neural activity not as a function of movement parameters, known as representational models, but as a dynamical system acting at the level of the population. Despite evidence supporting this framework, the evaluation of representational models and their integration with dynamical systems is incomplete in the literature. Using a representational velocity-tuning based simulation of center-out reaching, we show that incorporating variable latency offsets between neural activity and kinematics is sufficient to generate rotational dynamics at the level of neural populations, a phenomenon observed in motor cortex. However, we developed a covariance-matched permutation test (CMPT) that reassigns neural data between task conditions independently for each neuron while maintaining overall neuron-to-neuron relationships, revealing that rotations based on the representational model did not uniquely depend on the underlying condition structure. In contrast, rotations based on either a dynamical model or motor cortex data depend on this relationship, providing evidence that the dynamical model more readily explains motor cortex activity. Importantly, implementing a recurrent neural network we demonstrate that both representational tuning properties and rotational dynamics emerge, providing evidence that a dynamical system can reproduce previous findings of representational tuning. Finally, using motor cortex data in combination with the CMPT, we show that results based on small numbers of neurons or conditions should be interpreted cautiously, potentially informing future experimental design. Together, our findings reinforce the view that representational models lack the explanatory power to describe complex aspects of single neuron and population level activity.
Inference and Analysis of Population Structure Using Genetic Data and Network Theory
Greenbaum, Gili; Templeton, Alan R.; Bar-David, Shirli
2016-01-01
Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition’s modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of prior conditions. The method is implemented in the software NetStruct (available at https://giligreenbaum.wordpress.com/software/). PMID:26888080
Inference and Analysis of Population Structure Using Genetic Data and Network Theory.
Greenbaum, Gili; Templeton, Alan R; Bar-David, Shirli
2016-04-01
Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition's modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of prior conditions. The method is implemented in the software NetStruct (available at https://giligreenbaum.wordpress.com/software/). Copyright © 2016 by the Genetics Society of America.
Topping, Christopher John; Kjaer, Lene Jung; Hommen, Udo; Høye, Toke Thomas; Preuss, Thomas G; Sibly, Richard M; van Vliet, Peter
2014-07-01
Current European Union regulatory risk assessment allows application of pesticides provided that recovery of nontarget arthropods in-crop occurs within a year. Despite the long-established theory of source-sink dynamics, risk assessment ignores depletion of surrounding populations and typical field trials are restricted to plot-scale experiments. In the present study, the authors used agent-based modeling of 2 contrasting invertebrates, a spider and a beetle, to assess how the area of pesticide application and environmental half-life affect the assessment of recovery at the plot scale and impact the population at the landscape scale. Small-scale plot experiments were simulated for pesticides with different application rates and environmental half-lives. The same pesticides were then evaluated at the landscape scale (10 km × 10 km) assuming continuous year-on-year usage. The authors' results show that recovery time estimated from plot experiments is a poor indicator of long-term population impact at the landscape level and that the spatial scale of pesticide application strongly determines population-level impact. This raises serious doubts as to the utility of plot-recovery experiments in pesticide regulatory risk assessment for population-level protection. Predictions from the model are supported by empirical evidence from a series of studies carried out in the decade starting in 1988. The issues raised then can now be addressed using simulation. Prediction of impacts at landscape scales should be more widely used in assessing the risks posed by environmental stressors. © 2014 SETAC.
Zhou, Yongquan; Xie, Jian; Li, Liangliang; Ma, Mingzhi
2014-01-01
Bat algorithm (BA) is a novel stochastic global optimization algorithm. Cloud model is an effective tool in transforming between qualitative concepts and their quantitative representation. Based on the bat echolocation mechanism and excellent characteristics of cloud model on uncertainty knowledge representation, a new cloud model bat algorithm (CBA) is proposed. This paper focuses on remodeling echolocation model based on living and preying characteristics of bats, utilizing the transformation theory of cloud model to depict the qualitative concept: “bats approach their prey.” Furthermore, Lévy flight mode and population information communication mechanism of bats are introduced to balance the advantage between exploration and exploitation. The simulation results show that the cloud model bat algorithm has good performance on functions optimization. PMID:24967425