Science.gov

Sample records for populations feedback structures

  1. Climate effects and feedback structure determining weed population dynamics in a long-term experiment.

    PubMed

    Lima, Mauricio; Navarrete, Luis; González-Andujar, José Luis

    2012-01-01

    Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years) on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors). Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements.

  2. Climate Effects and Feedback Structure Determining Weed Population Dynamics in a Long-Term Experiment

    PubMed Central

    Lima, Mauricio; Navarrete, Luis; González-Andujar, José Luis

    2012-01-01

    Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years) on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors). Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements. PMID:22272362

  3. Accreting binary population synthesis and feedback prescriptions

    NASA Astrophysics Data System (ADS)

    Fragos, Tassos

    2016-04-01

    Studies of extagalactic X-ray binary populations have shown that the characteristics of these populations depend strongly on the characteristics of the host galaxy's parent stellar population (e.g. star-formation history and metallicity). These dependencies not only make X-ray binaries promising for aiding in the measurement of galaxy properties themselves, but they also have important astrophysical and cosmological implications. For example, due to the relatively young stellar ages and primordial metallicities in the early Universe (z > 3), it is predicted that X-ray binaries were more luminous than today. The more energetic X-ray photons, because of their long mean-free paths, can escape the galaxies where they are produced, and interact at long distances with the intergalactic medium. This could result in a smoother spatial distribution of ionized regions, and more importantly in an overall warmer intergalactic medium. The energetic X-ray photons emitted from X-ray binaries dominate the X-ray radiation field over active galactic nuclei at z > 6 - 8, and hence Χ-ray binary feedback can be a non-negligible contributor to the heating and reionization of the inter-galactic medium in the early universe. The spectral energy distribution shape of the XRB emission does not change significantly with redshift, suggesting that the same XRB subpopulation, namely black-hole XRBs in the high-soft state, dominates the cumulative emission at all times. On the contrary, the normalization of the spectral energy distribution does evolve with redshift. To zeroth order, this evolution is driven by the cosmic star-formation rate evolution. However, the metallicity evolution of the universe and the mean stellar population age are two important factors that affect the X-ray emission from high-mass and low-mass XRBs, respectively. In this talk, I will review recent studies on the potential feedback from accreting binary populations in galactic and cosmological scales. Furthermore, I

  4. Optical feedback structures and methods of making

    DOEpatents

    Snee, Preston T; Chan, Yin Thai; Nocera, Daniel G; Bawendi, Moungi G

    2014-11-18

    An optical resonator can include an optical feedback structure disposed on a substrate, and a composite including a matrix including a chromophore. The composite disposed on the substrate and in optical communication with the optical feedback structure. The chromophore can be a semiconductor nanocrystal. The resonator can provide laser emission when excited.

  5. Effects of Active galactic nuclei feedback in galaxy population

    NASA Astrophysics Data System (ADS)

    Lagos, C.; Cora, S.; Padilla, N.

    We analyze the effects of feedback from Active Galactic Nuclei (AGN) on the formation and evolution of galaxies, which is assumed to quench cooling flows in massive halos. With this aim we use an hybrid model that combines a cosmological Lambda CDM simulation with a semi-analytic model of galaxy formation. We consider the semi-analytic model described by Cora (2006) (SAMC06) which has been improved by including AGNs, which are associated with the presence of supermassive black holes (BHs). Modellization of BH includes gas accretion during merger-driven starbursts and black hole mergers (Malbon et al., 2006), accretion during starbursts triggered by disk instabilities (Bower et al. 2006), and accretion of cooling gas from quasi-hydrostatically cooling haloes (Croton et al. 2006); Eddington limit is applied in all accretion processes. It is assumed that feedback from AGNs operates in the later case. We show that this new model can simultaneously explain: (i) the bright-end of the galaxy luminosity function (LF); (ii) the observed older population of stars in massive galaxies, thus reproducing the stellar mass function (SMF); (iii) a star formation rate (SFR) seemingly showing an anti-hierarchical galaxy growth. The success of our model is mainly due to the ability of AGN feedback to suppress further cooling and SF in the most massive structures.

  6. Population-dynamics method with a multicanonical feedback control.

    PubMed

    Nemoto, Takahiro; Bouchet, Freddy; Jack, Robert L; Lecomte, Vivien

    2016-06-01

    We discuss the Giardinà-Kurchan-Peliti population dynamics method for evaluating large deviations of time-averaged quantities in Markov processes [Phys. Rev. Lett. 96, 120603 (2006)PRLTAO0031-900710.1103/PhysRevLett.96.120603]. This method exhibits systematic errors which can be large in some circumstances, particularly for systems with weak noise, with many degrees of freedom, or close to dynamical phase transitions. We show how these errors can be mitigated by introducing control forces within the algorithm. These forces are determined by an iteration-and-feedback scheme, inspired by multicanonical methods in equilibrium sampling. We demonstrate substantially improved results in a simple model, and we discuss potential applications to more complex systems. PMID:27415224

  7. Formation of the first galaxies under Population III stellar feedback

    NASA Astrophysics Data System (ADS)

    Jeon, Myoungwon

    2015-01-01

    The first galaxies, which formed a few hundred million years after the big bang, are related to important cosmological questions. Given thatthey are thought to be the basic building blocks of large galaxies seen today, understanding their formation and properties is essentialto studying galaxy formation as a whole. In this dissertation talk, I will present the results of our highly-resolved cosmological ab-initio simulations to understand the assembly process of first galaxies under the feedback from the preceding generations of first stars, the so-called Population III (Pop III). The first stars formed at z≲30 in dark matter (DM) minihalos with M_{vir}=10^5-10^6Msun, predominately via molecular hydrogen (H_2) cooling. Radiation from Pop III stars dramatically altered the gas within their host minihalos, through photoionization, photoheating, and photoevaporation. Once a Pop III star explodes as a supernova (SN), heavy elements are dispersed, enriching the interstellar (ISM) and intergalactic medium (IGM), thus initiating the process of chemical evolution. I will begin by presenting how the SN explosion of the first stars influences early cosmic history, specifically assessing the time delay in further star formation and tracing the evolution of metal-enriched gas until the second episode star formation happens. These results will show the role of Pop III supernovae on the star formation transition from Pop III to Population II. Additionally, the more distant, diffuse IGM was heated by X-rays emitted by accreting black holes (BHs), or high-mass X-ray binaries (HMXBs), both remnants of Pop III stars. I will present results of a series of simulations where we study the impact of X-ray feedback from BHs and HMXBs on the star formation history in the early universe, and discuss the resulting implications on reionization. I will also present the role of X-rays on the early BH growth, providing constraints on models for supermassive black hole formation. Finally, I

  8. Finite Feedback Cycling in Structural Equation Models

    ERIC Educational Resources Information Center

    Hayduk, Leslie A.

    2009-01-01

    In models containing reciprocal effects, or longer causal loops, the usual effect estimates assume that any effect touching a loop initiates an infinite cycling of effects around that loop. The real world, in contrast, might permit only finite feedback cycles. I use a simple hypothetical model to demonstrate that if the world permits only a few…

  9. How Supernova Feedback Affects Observed Galaxy Sizes and Structures

    NASA Astrophysics Data System (ADS)

    Joung, M. K. Ryan; Cen, R.; Bryan, G. L.

    2009-01-01

    Feedback from massive stars is perhaps the least understood aspect of galaxy formation. Based on adaptive mesh refinement (AMR) cosmological simulations and stellar population synthesis models, we compute half-light radii of high redshift galaxies and use them to compare simulated and observed size-mass and size-luminosity relations in the rest-frame UV/optical. The sizes of the simulated galaxies depend on the assumed strength of supernova feedback; we investigate the origin of this relation. We discuss minimum requirements for correct numerical modeling of supernova feedback in starburst galaxies.

  10. HIGHER EDUCATION--A POPULATION FLOW FEEDBACK MODEL.

    ERIC Educational Resources Information Center

    REISMAN, ARNOLD

    A MATHEMATICAL MODEL IS DEVELOPED TO STUDY THE PRODUCTION OF DOCTORAL, MASTER'S, AND BACHELOR'S DEGREES AND THEIR FEEDBACK INTO HIGHER EDUCATION. FEEDBACK IS DETERMINED BY A SET OF "BASIC BALANCE EQUATIONS" WHICH STATE THAT THE TOTAL RATE OF FLOW INTO A CATEGORY LESS THE RATE OF OUTFLOW IS EQUAL TO THE RATE OF ACCUMULATION OR GROWTH IN A GIVEN…

  11. Feedback.

    ERIC Educational Resources Information Center

    Stenstrom, Anna-Brita

    A study of feedback in conversational question-response exchanges focused on the questioner's feedback to the respondent. It examined three types of "followup" moves: the ordinary type revealing the questioner's attitude to the response and closing the exchange; the type signaling the questioner's reaction to the response and inviting further…

  12. Effectiveness of Structural Feedback Provided by Pathfinder Networks

    ERIC Educational Resources Information Center

    Trumpower, David L.; Sarwar, Gul Shahzad

    2010-01-01

    Within the field of education, there has been an increasing recognition of the importance of formative assessment and of structural knowledge. In an effort to fill needs in each of these areas, this article describes an innovative feedback strategy intended to improve students' structural knowledge. Twenty-four high school physics students were…

  13. Conspecific plant-soil feedback scales with population size in Lobelia siphilitica (Lobeliaceae).

    PubMed

    Hovatter, Stephanie; Blackwood, Christopher B; Case, Andrea L

    2013-12-01

    Plant-soil interactions directly affect plant success in terms of establishment, survival, growth and reproduction. Negative plant-soil feedback on such traits may therefore reduce the density and abundance of plants of a given species at a given site. Furthermore, if conspecific feedback varies among population sites, it could help explain geographic variation in plant population size. We tested for among-site variation in conspecific plant-soil feedback in a greenhouse experiment using seeds and soils from 8 natural populations of Lobelia siphilitica hosting 30-330 plants. The first cohort of seeds was grown on soil collected from each native site, while the second cohort was grown on the soil conditioned by the first. Our goal was to distinguish site-specific effects mediated by biotic and/or abiotic soil properties from those inherent in seed sources. Cohort 1 plants grown from seeds produced in small populations performed better in terms of germination, growth, and survival compared to plants produced in large populations. Plant performance decreased substantially between cohorts, indicating strong negative feedback. Most importantly, the strength of negative feedback scaled linearly (i.e., was less negative) with increasing size of the native plant population, particularly for germination and survival, and was better explained by soil- rather than seed-source effects. Even with a small number of sites, our results suggest that the potential for negative plant-soil feedback varies among populations of L. siphilitica, and that small populations were more susceptible to negative feedback. Conspecific plant-soil feedback may contribute to plant population size variation within a species' native range.

  14. Effective population size and population subdivision in demographically structured populations.

    PubMed Central

    Laporte, Valérie; Charlesworth, Brian

    2002-01-01

    A fast-timescale approximation is applied to the coalescent process in a single population, which is demographically structured by sex and/or age. This provides a general expression for the probability that a pair of alleles sampled from the population coalesce in the previous time interval. The effective population size is defined as the reciprocal of twice the product of generation time and the coalescence probability. Biologically explicit formulas for effective population size with discrete generations and separate sexes are derived for a variety of different modes of inheritance. The method is also applied to a nuclear gene in a population of partially self-fertilizing hermaphrodites. The effects of population subdivision on a demographically structured population are analyzed, using a matrix of net rates of movement of genes between different local populations. This involves weighting the migration probabilities of individuals of a given age/sex class by the contribution of this class to the leading left eigenvector of the matrix describing the movements of genes between age/sex classes. The effects of sex-specific migration and nonrandom distributions of offspring number on levels of genetic variability and among-population differentiation are described for different modes of inheritance in an island model. Data on DNA sequence variability in human and plant populations are discussed in the light of the results. PMID:12242257

  15. Population genetic structure and ecotoxicology.

    PubMed Central

    Guttman, S I

    1994-01-01

    Electrophoretic analyses of population genetic structure, both in the laboratory and in the field, have documented significant shifts in allozyme genotype frequencies in a variety of aquatic taxa as a result of environmental impacts. Studies are documented which indicate that contaminants may select for individuals with tolerant allozyme genotypes, causing the potential loss of individuals with sensitive genotypes. This may diminish the genetic variability and fitness of affected populations and make them more susceptible to extinction following a subsequent stress. Future research involving population genetic structure and ecotoxicology should focus on determining the mechanism of sensitivity, documenting multigenerational effects of chronic laboratory exposure on population genetic composition, investigating whether previously stressed and genetically impacted populations are more susceptible to further natural and/or anthropogenic stressors, and establishing the utility of population genetic structure as a sensitive monitor of impacts in aquatic systems and their subsequent remediation. PMID:7713044

  16. Integrated Control with Structural Feedback to Enable Lightweight Aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.

    2011-01-01

    This presentation for the Fundamental Aeronautics Program Technical Conference covers the benefits of active structural control, related research areas, and focuses on the use of optimal control allocation for the prevention of critical loads. Active control of lightweight structures has the potential to reduce aircraft weight and fuel burn. Sensor, control law, materials, control effector, and system level research will be necessary to enable active control of lightweight structures. Optimal control allocation with structural feedback has been shown in simulation to be feasible in preventing critical loads and is one example of a control law to enable future lightweight aircraft.

  17. Feedback Linearized Aircraft Control Using Dynamic Cell Structure

    NASA Technical Reports Server (NTRS)

    Jorgensen, C. C.

    1998-01-01

    A Dynamic Cell Structure (DCS ) Neural Network was developed which learns a topology representing network (TRN) of F-15 aircraft aerodynamic stability and control derivatives. The network is combined with a feedback linearized tracking controller to produce a robust control architecture capable of handling multiple accident and off-nominal flight scenarios. This paper describes network and its performance for accident scenarios including differential stabilator lock, soft sensor failure, control, stability derivative variation, and turbulence.

  18. Robust Feedback Control of Flow Induced Structural Radiation of Sound

    NASA Technical Reports Server (NTRS)

    Heatwole, Craig M.; Bernhard, Robert J.; Franchek, Matthew A.

    1997-01-01

    A significant component of the interior noise of aircraft and automobiles is a result of turbulent boundary layer excitation of the vehicular structure. In this work, active robust feedback control of the noise due to this non-predictable excitation is investigated. Both an analytical model and experimental investigations are used to determine the characteristics of the flow induced structural sound radiation problem. The problem is shown to be broadband in nature with large system uncertainties associated with the various operating conditions. Furthermore the delay associated with sound propagation is shown to restrict the use of microphone feedback. The state of the art control methodologies, IL synthesis and adaptive feedback control, are evaluated and shown to have limited success for solving this problem. A robust frequency domain controller design methodology is developed for the problem of sound radiated from turbulent flow driven plates. The control design methodology uses frequency domain sequential loop shaping techniques. System uncertainty, sound pressure level reduction performance, and actuator constraints are included in the design process. Using this design method, phase lag was added using non-minimum phase zeros such that the beneficial plant dynamics could be used. This general control approach has application to lightly damped vibration and sound radiation problems where there are high bandwidth control objectives requiring a low controller DC gain and controller order.

  19. Endogenous field feedback promotes the detectability for exogenous electric signal in the hybrid coupled population

    SciTech Connect

    Wei, Xile; Zhang, Danhong; Wang, Jiang; Yu, Haitao; Lu, Meili; Che, Yanqiu

    2015-01-15

    This paper presents the endogenous electric field in chemical or electrical synaptic coupled networks, aiming to study the role of endogenous field feedback in the signal propagation in neural systems. It shows that the feedback of endogenous fields to network activities can reduce the required energy of the noise and enhance the transmission of input signals in hybrid coupled populations. As a common and important nonsynaptic interactive method among neurons, particularly, the endogenous filed feedback can not only promote the detectability of exogenous weak signal in hybrid coupled neural population but also enhance the robustness of the detectability against noise. Furthermore, with the increasing of field coupling strengths, the endogenous field feedback is conductive to the stochastic resonance by facilitating the transition of cluster activities from the no spiking to spiking regions. Distinct from synaptic coupling, the endogenous field feedback can play a role as internal driving force to boost the population activities, which is similar to the noise. Thus, it can help to transmit exogenous weak signals within the network in the absence of noise drive via the stochastic-like resonance.

  20. Genealogical histories in structured populations.

    PubMed

    Kumagai, Seiji; Uyenoyama, Marcy K

    2015-06-01

    In genealogies of genes sampled from structured populations, lineages coalesce at rates dependent on the states of the lineages. For migration and coalescence events occurring on comparable time scales, for example, only lineages residing in the same deme of a geographically subdivided population can have descended from a common ancestor in the immediately preceding generation. Here, we explore aspects of genealogical structure in a population comprising two demes, between which migration may occur. We use generating functions to obtain exact densities and moments of coalescence time, number of mutations, total tree length, and age of the most recent common ancestor of the sample. We describe qualitative features of the distribution of gene genealogies, including factors that influence the geographical location of the most recent common ancestor and departures of the distribution of internode lengths from exponential. PMID:25770971

  1. [Population structure and dynamics: the population matrix].

    PubMed

    Wang, C S; Gorter, D

    1990-08-01

    "This article shows an alternative way of presenting population data. The population matrix, constructed as an important part in the process of compiling socio-demographic accounts, demonstrates the close connection between stock and flow data, bringing both types of data consistently together." Official data for the Netherlands are used to illustrate the concept. (SUMMARY IN ENG) PMID:12342861

  2. Cloud structure and feedback effects in the Carina Nebula Complex

    NASA Astrophysics Data System (ADS)

    Roccatagliata, Veronica; Preibisch, Thomas; Gaczkowski, Benjamin; Ratzka, Thorsten

    2013-07-01

    The star formation process in large clusters/associations can be strongly influenced by the feedback from high mass stars. Whether the resulting net effect of the feedback is predominantly negative (cloud dispersal) or positive (triggering of star formation due to cloud compression) is still an open question. The Carina Nebula complex (CNC) represents one of the most massive star-forming regions in our Galaxy. We use our Herschel far-infrared observations to study the properties of the clouds over the entire CNC and LABOCA/APEX telescope on the central part of the CNC.Our Herschel maps resolve, for the first time, the small-scale structure of the dense clouds over the entire spatial extent of the CNC. Several particularly interesting regions, including the prominent pillars south of eta Car, are analyzed in detail. Our maps also reveal a peculiar 'wave'-like pattern in the northern part of the Carina Nebula. The total mass of the clouds seen by Herschel in the central region is about 656 000 Msun. We derive the global spectral energy distribution in the mid-infrared to mm wavelength range and derive a total mass of < 890 000 Msun. We find that the density and temperature structure of the clouds in most parts of the CNC is dominated by the strong feedback from the numerous massive stars, rather than random turbulence. Comparing the cloud mass and the star formation rate derived for the CNC to other Galactic star forming regions suggests that the CNC is forming stars very efficiently. We suggest this to be a consequence of triggered star formation by radiative cloud compression.In our LABOCA sub-mm map, we identify about 600 individual clumps. We analyze and interpret the clump initial mass function (CIMF) as signature of turbulent pre-stellar clouds or star-forming clouds.

  3. Microbial Population and Community Dynamics on Plant Roots and Their Feedbacks on Plant Communities

    PubMed Central

    Bever, James D.; Platt, Thomas G.; Morton, Elise R.

    2012-01-01

    The composition of the soil microbial community can be altered dramatically due to association with individual plant species, and these effects on the microbial community can have important feedbacks on plant ecology. Negative plant-soil feedback plays primary roles in maintaining plant community diversity, whereas positive plant-soil feedback may cause community conversion. Host-specific differentiation of the microbial community results from the trade-offs associated with overcoming plant defense and the specific benefits associated with plant rewards. Accumulation of host-specific pathogens likely generates negative feedback on the plant, while changes in the density of microbial mutualists likely generate positive feedback. However, the competitive dynamics among microbes depends on the multidimensional costs of virulence and mutualism, the fine-scale spatial structure within plant roots, and active plant allocation and localized defense. Because of this, incorporating a full view of microbial dynamics is essential to explaining the dynamics of plant-soil feedbacks and therefore plant community ecology. PMID:22726216

  4. Positive and Negative Feedbacks and Free-Scale Pattern Distribution in Rural-Population Dynamics

    PubMed Central

    Alados, Concepción L.; Errea, Paz; Gartzia, Maite; Saiz, Hugo; Escós, Juan

    2014-01-01

    Depopulation of rural areas is a widespread phenomenon that has occurred in most industrialized countries, and has contributed significantly to a reduction in the productivity of agro-ecological resources. In this study, we identified the main trends in the dynamics of rural populations in the Central Pyrenees in the 20th C and early 21st C, and used density independent and density dependent models and identified the main factors that have influenced the dynamics. In addition, we investigated the change in the power law distribution of population size in those periods. Populations exhibited density-dependent positive feedback between 1960 and 2010, and a long-term positive correlation between agricultural activity and population size, which has resulted in a free-scale population distribution that has been disrupted by the collapse of the traditional agricultural society and by emigration to the industrialized cities. We concluded that complex socio-ecological systems that have strong feedback mechanisms can contribute to disruptive population collapses, which can be identified by changes in the pattern of population distribution. PMID:25474704

  5. Resolving the tragedy of the commons: the feedback between intraspecific conflict and population density.

    PubMed

    Rankin, D J

    2007-01-01

    Competition and conflict among individuals can favour exploitative strategies that undermine the common good. Theory suggests that this can lead to a tragedy of the commons and ultimately population extinction, a phenomenon known as evolutionary suicide. Here, I present a model of the evolutionary tragedy of the commons that explicitly considers the population dynamics where individuals invest in individually costly competitive traits. In the simplest form, this supports the notion that selection for high levels of conflict can cause evolutionary suicide. However, as competition comes with survival and fecundity costs, a feedback between the investment in competition and population density can act to reduce the level of conflict and prevent the population from going extinct. This suggests that the interaction between population ecology and the evolution of competition and conflict among individuals may be an important mechanism in resolving the level of competition and conflict among individuals.

  6. How to control chaotic behaviour and population size with proportional feedback

    NASA Astrophysics Data System (ADS)

    Liz, Eduardo

    2010-01-01

    We study the control of chaos in one-dimensional discrete maps as they often occur in modelling population dynamics. For managing the population, we seek to suppress any possible chaotic behavior, leading the system to a stable equilibrium. In this Letter, we make a rigorous analysis of the proportional feedback method under certain conditions fulfilled by a wide family of maps. We show that it is possible to stabilize the chaotic dynamics towards a globally stable positive equilibrium, that can be chosen among a broad range of possible values. In particular, the size of the population can be enhanced by control in form of population reduction. This paradoxical phenomenon is known as the hydra effect, and it has important implications in the design of strategies in such areas as fishing, pest management, and conservation biology.

  7. Factors shaping e-feedback utilization following electronic Objective Structured Clinical Examinations.

    PubMed

    Ashby, Samantha E; Snodgrass, Suzanne H; Rivett, Darren A; Russell, Trevor

    2016-09-01

    The development of student-practitioners' practical clinical skills is essential in health professional education. Objective Structured Clinical Examinations are central to the assessment of students performing clinical procedures on simulated patients (actors). While feedback is considered core to learning providing timely, individualised student OSCE feedback is difficult. This study explored the perceptions of students about the multiple factors which shape the utility of e-feedback following an electronic Objective Structured Clinical Examinations, which utilized iPad and specialised software. The e-feedback was trialled in four courses within occupational therapy and physiotherapy pre-professional programs with a cohort of 204 students. Evaluation of student perceptions about feedback was collected using two surveys and eight focus groups. This data showed three factors shaped perceptions of the utility of e- Objective Structured Clinical Examinations feedback: 1) timely accessibility within one day of the assessment, 2) feedback demonstrating examiners' academic literacy and 3) feedback orientated to ways of improving future performance of clinical skills. The study found training in the provision of feedback using IPads and software is needed for examiners to ensure e-feedback meets students' needs for specific, future-oriented e-feedback and institutional requirements for justification of grades. PMID:27029015

  8. Direct reciprocity in structured populations.

    PubMed

    van Veelen, Matthijs; García, Julián; Rand, David G; Nowak, Martin A

    2012-06-19

    Reciprocity and repeated games have been at the center of attention when studying the evolution of human cooperation. Direct reciprocity is considered to be a powerful mechanism for the evolution of cooperation, and it is generally assumed that it can lead to high levels of cooperation. Here we explore an open-ended, infinite strategy space, where every strategy that can be encoded by a finite state automaton is a possible mutant. Surprisingly, we find that direct reciprocity alone does not lead to high levels of cooperation. Instead we observe perpetual oscillations between cooperation and defection, with defection being substantially more frequent than cooperation. The reason for this is that "indirect invasions" remove equilibrium strategies: every strategy has neutral mutants, which in turn can be invaded by other strategies. However, reciprocity is not the only way to promote cooperation. Another mechanism for the evolution of cooperation, which has received as much attention, is assortment because of population structure. Here we develop a theory that allows us to study the synergistic interaction between direct reciprocity and assortment. This framework is particularly well suited for understanding human interactions, which are typically repeated and occur in relatively fluid but not unstructured populations. We show that if repeated games are combined with only a small amount of assortment, then natural selection favors the behavior typically observed among humans: high levels of cooperation implemented using conditional strategies.

  9. Predation risk suppresses the positive feedback between size structure and cannibalism.

    PubMed

    Kishida, Osamu; Trussell, Geoffrey C; Ohno, Ayaka; Kuwano, Shinya; Ikawa, Takuya; Nishimura, Kinya

    2011-11-01

    between cannibals and victims was similar in both risk treatments. These results suggest that dragonfly risk cues first suppress cannibalism among hatchlings and then prevent size variation from increasing through time. 5. We suggest that the positive feedback dynamics between size structure and cannibalism and their modification by predation risk may also operate in other systems to shape the population dynamics of cannibalistic prey species as well as overall community dynamics. PMID:21668893

  10. Ordering structured populations in multiplayer cooperation games

    PubMed Central

    Peña, Jorge; Wu, Bin; Traulsen, Arne

    2016-01-01

    Spatial structure greatly affects the evolution of cooperation. While in two-player games the condition for cooperation to evolve depends on a single structure coefficient, in multiplayer games the condition might depend on several structure coefficients, making it difficult to compare different population structures. We propose a solution to this issue by introducing two simple ways of ordering population structures: the containment order and the volume order. If population structure is greater than population structure in the containment or the volume order, then can be considered a stronger promoter of cooperation. We provide conditions for establishing the containment order, give general results on the volume order, and illustrate our theory by comparing different models of spatial games and associated update rules. Our results hold for a large class of population structures and can be easily applied to specific cases once the structure coefficients have been calculated or estimated. PMID:26819335

  11. A cholinergic feedback circuit to regulate striatal population uncertainty and optimize reinforcement learning.

    PubMed

    Franklin, Nicholas T; Frank, Michael J

    2015-01-01

    Convergent evidence suggests that the basal ganglia support reinforcement learning by adjusting action values according to reward prediction errors. However, adaptive behavior in stochastic environments requires the consideration of uncertainty to dynamically adjust the learning rate. We consider how cholinergic tonically active interneurons (TANs) may endow the striatum with such a mechanism in computational models spanning three Marr's levels of analysis. In the neural model, TANs modulate the excitability of spiny neurons, their population response to reinforcement, and hence the effective learning rate. Long TAN pauses facilitated robustness to spurious outcomes by increasing divergence in synaptic weights between neurons coding for alternative action values, whereas short TAN pauses facilitated stochastic behavior but increased responsiveness to change-points in outcome contingencies. A feedback control system allowed TAN pauses to be dynamically modulated by uncertainty across the spiny neuron population, allowing the system to self-tune and optimize performance across stochastic environments. PMID:26705698

  12. Evolution in Stage-Structured Populations

    PubMed Central

    Barfield, Michael; Holt, Robert D.; Gomulkiewicz, Richard

    2016-01-01

    For many organisms, stage is a better predictor of demographic rates than age. Yet no general theoretical framework exists for understanding or predicting evolution in stage-structured populations. Here, we provide a general modeling approach that can be used to predict evolution and demography of stage-structured populations. This advances our ability to understand evolution in stage-structured populations to a level previously available only for populations structured by age. We use this framework to provide the first rigorous proof that Lande’s theorem, which relates adaptive evolution to population growth, applies to stage-classified populations, assuming only normality and that evolution is slow relative to population dynamics. We extend this theorem to allow for different means or variances among stages. Our next major result is the formulation of Price’s theorem, a fundamental law of evolution, for stage-structured populations. In addition, we use data from Trillium grandiflorum to demonstrate how our models can be applied to a real-world population and thereby show their practical potential to generate accurate projections of evolutionary and population dynamics. Finally, we use our framework to compare rates of evolution in age- versus stage-structured populations, which shows how our methods can yield biological insights about evolution in stage-structured populations. PMID:21460563

  13. Structuring feedback and debriefing to achieve mastery learning goals.

    PubMed

    Eppich, Walter J; Hunt, Elizabeth A; Duval-Arnould, Jordan M; Siddall, Viva Jo; Cheng, Adam

    2015-11-01

    Mastery learning is a powerful educational strategy in which learners gain knowledge and skills that are rigorously measured against predetermined mastery standards with different learners needing variable time to reach uniform outcomes. Central to mastery learning are repetitive deliberate practice and robust feedback that promote performance improvement. Traditional health care simulation involves a simulation exercise followed by a facilitated postevent debriefing in which learners discuss what went well and what they should do differently next time, usually without additional opportunities to apply the specific new knowledge. Mastery learning approaches enable learners to "try again" until they master the skill in question. Despite the growing body of health care simulation literature documenting the efficacy of mastery learning models, to date insufficient details have been reported on how to design and implement the feedback and debriefing components of deliberate-practice-based educational interventions. Using simulation-based training for adult and pediatric advanced life support as case studies, this article focuses on how to prepare learners for feedback and debriefing by establishing a supportive yet challenging learning environment; how to implement educational interventions that maximize opportunities for deliberate practice with feedback and reflection during debriefing; describing the role of within-event debriefing or "microdebriefing" (i.e., during a pause in the simulation scenario or during ongoing case management without interruption), as a strategy to promote performance improvement; and highlighting directions for future research in feedback and debriefing for mastery learning.

  14. Structural dynamics and ecology of flatfish populations

    NASA Astrophysics Data System (ADS)

    Bailey, Kevin M.

    1997-11-01

    The concept of structure in populations of marine fishes is fundamental to how we manage and conduct research on these resources. The degree of population structure ranges widely among flatfishes. Although we know that large populations tend to be subdivided into local populations, based on morphological, meristic and reproductive characteristics, these data often conflict with evidence on genetic stock structure, due to the scale and organization of movement within the metapopulation. Movement of individuals between local subpopulations and colonization events on a macroecological scale are probably important to some flatfish populations. Dispersal of larvae is known to be a major factor affecting population mixing. Some flatfishes have planktonic stages of long duration and for these species there is often, but not always, little population structure; gene flow sometimes may be limited by oceanographic features, such as eddies and fronts. At the juvenile stage dispersal can result in colonization of under-utilized habitats; however, for flatfishes with strong habitat requirements, this type of event may be less likely when suitable habitats are fragmented. Complex population structure has major implications for management, e.g. lumping harvested populations with little gene flow can have detrimental local effects. Moreover, the issue of population structure and movement influences the interpretation of research data, where populations are generally treated as closed systems. There is currently a strong need for a multidisciplinary approach to study fish population dynamics and the structure of their populations. This research should involve molecular geneticists, population geneticists, animal behaviourists and ecologists. Migration mechanisms, colonization and extinction events, gene flow and density-dependent movements are subject areas of great importance to managing large harvested populations, but our understanding of them at ecological scales, at least for

  15. The ethics of feedback of HIV test results in population-based surveys of HIV infection.

    PubMed

    Maher, Dermot

    2013-12-01

    Population-based disease prevalence surveys raise ethical questions, including whether participants should be routinely told their test results. Ethical guidelines call for informing survey participants of any clinically relevant finding to enable appropriate management. However, in anonymous surveys of human immunodeficiency virus (HIV) infection, participants can "opt out" of being given their test results or are offered the chance to undergo voluntary HIV testing in local counselling and testing services. This is aimed at minimizing survey participation bias. Those who opt out of being given their HIV test results and who do not seek their results miss the opportunity to receive life-saving antiretroviral therapy. The justification for HIV surveys without routine feedback of results to participants is based on a public health utility argument: that the benefits of more rigorous survey methods - reduced participation bias - outweigh the benefits to individuals of knowing their HIV status. However, people with HIV infection have a strong immediate interest in knowing their HIV status. In consideration of the ethical value of showing respect for people and thereby alleviating suffering, an argument based on public health utility is not an appropriate justification. In anonymous HIV surveys as well as other prevalence surveys of treatable conditions in any setting, participation should be on the basis of routine individual feedback of results as an integral part of fully informed participation. Ensuring that surveys are ethically sound may stimulate participation, increase a broader uptake of HIV testing and reduce stigmatization of people who are HIV-positive.

  16. Formation of massive Population III galaxies through photoionization feedback: a possible explanation for CR 7

    NASA Astrophysics Data System (ADS)

    Visbal, Eli; Haiman, Zoltán; Bryan, Greg L.

    2016-07-01

    We explore the formation of massive high-redshift Population III (Pop III) galaxies through photoionization feedback. We consider dark matter haloes formed from progenitors that have undergone no star formation as a result of early reionization and photoevaporation caused by a nearby galaxy. Once such a halo reaches ≈109 M⊙, corresponding to the Jeans mass of the photoheated intergalactic medium at z ≈ 7, pristine gas is able to collapse into the halo, potentially producing a massive Pop III starburst. We suggest that this scenario may explain the recent observation of strong He II 1640 Å line emission in CR 7, which is consistent with ˜107 M⊙ of young Pop III stars. Such a large mass of Pop III stars is unlikely without the photoionization feedback scenario, because star formation is expected to inject metals into haloes above the atomic cooling threshold (˜108 M⊙ at z ≈ 7). We use merger trees to analytically estimate the abundance of observable Pop III galaxies formed through this channel, and find a number density of ≈10-7 Mpc-3 at z = 6.6 (the redshift of CR 7). This is approximately a factor of 10 lower than the density of Ly α emitters as bright as CR 7.

  17. Experimental test of an eco-evolutionary dynamic feedback loop between evolution and population density in the green peach aphid.

    PubMed

    Turcotte, Martin M; Reznick, David N; Daniel Hare, J

    2013-05-01

    An eco-evolutionary feedback loop is defined as the reciprocal impacts of ecology on evolutionary dynamics and evolution on ecological dynamics on contemporary timescales. We experimentally tested for an eco-evolutionary feedback loop in the green peach aphid, Myzus persicae, by manipulating initial densities and evolution. We found strong evidence that initial aphid density alters the rate and direction of evolution, as measured by changes in genotype frequencies through time. We also found that evolution of aphids within only 16 days, or approximately three generations, alters the rate of population growth and predicts density compared to nonevolving controls. The impact of evolution on population dynamics also depended on density. In one evolution treatment, evolution accelerated population growth by up to 10.3% at high initial density or reduced it by up to 6.4% at low initial density. The impact of evolution on population growth was as strong as or stronger than that caused by a threefold change in intraspecific density. We found that, taken together, ecological condition, here intraspecific density, alters evolutionary dynamics, which in turn alter concurrent population growth rate (ecological dynamics) in an eco-evolutionary feedback loop. Our results suggest that ignoring evolution in studies predicting population dynamics might lead us to over- or underestimate population density and that we cannot predict the evolutionary outcome within aphid populations without considering population size.

  18. Population Structure and Quantitative Characters

    PubMed Central

    Rogers, Alan R.; Harpending, Henry C.

    1983-01-01

    A migration matrix model is used to investigate the behavior of neutral polygenic characters in subdivided populations. It is shown that gametic disequilibrium has a large effect on the variance among groups but none at all on its expectation. The variance of among-group variance is substantial and does not depend on the number of loci contributing to variance in the character. It is just as large for polygenic characters as for single loci with the same additive variance. This implies that one polygenic character contains exactly as much information about population relationships as one single-locus marker. The theory is compared with observed differentiation of dermatoglyphic and anthropometric characters among Bougainville islanders. PMID:17246186

  19. On the Apportionment of Population Structure

    PubMed Central

    Granot, Yaron; Tal, Omri; Rosset, Saharon; Skorecki, Karl

    2016-01-01

    Measures of population differentiation, such as FST, are traditionally derived from the partition of diversity within and between populations. However, the emergence of population clusters from multilocus analysis is a function of genetic structure (departures from panmixia) rather than of diversity. If the populations are close to panmixia, slight differences between the mean pairwise distance within and between populations (low FST) can manifest as strong separation between the populations, thus population clusters are often evident even when the vast majority of diversity is partitioned within populations rather than between them. For any given FST value, clusters can be tighter (more panmictic) or looser (more stratified), and in this respect higher FST does not always imply stronger differentiation. In this study we propose a measure for the partition of structure, denoted EST, which is more consistent with results from clustering schemes. Crucially, our measure is based on a statistic of the data that is a good measure of internal structure, mimicking the information extracted by unsupervised clustering or dimensionality reduction schemes. To assess the utility of our metric, we ranked various human (HGDP) population pairs based on FST and EST and found substantial differences in ranking order. EST ranking seems more consistent with population clustering and classification and possibly with geographic distance between populations. Thus, EST may at times outperform FST in identifying evolutionary significant differentiation. PMID:27505172

  20. A cholinergic feedback circuit to regulate striatal population uncertainty and optimize reinforcement learning

    PubMed Central

    Franklin, Nicholas T; Frank, Michael J

    2015-01-01

    Convergent evidence suggests that the basal ganglia support reinforcement learning by adjusting action values according to reward prediction errors. However, adaptive behavior in stochastic environments requires the consideration of uncertainty to dynamically adjust the learning rate. We consider how cholinergic tonically active interneurons (TANs) may endow the striatum with such a mechanism in computational models spanning three Marr's levels of analysis. In the neural model, TANs modulate the excitability of spiny neurons, their population response to reinforcement, and hence the effective learning rate. Long TAN pauses facilitated robustness to spurious outcomes by increasing divergence in synaptic weights between neurons coding for alternative action values, whereas short TAN pauses facilitated stochastic behavior but increased responsiveness to change-points in outcome contingencies. A feedback control system allowed TAN pauses to be dynamically modulated by uncertainty across the spiny neuron population, allowing the system to self-tune and optimize performance across stochastic environments. DOI: http://dx.doi.org/10.7554/eLife.12029.001 PMID:26705698

  1. (Genetic structure of natural populations)

    SciTech Connect

    Not Available

    1988-01-01

    Our efforts in the first eight months were concentrated in obtaining a genomic clone of the copper-zinc superoxide dismutase (SOD) in Drosophila melanogaster and other Drosophila species. This we have now successfully accomplished. We seek to understand the role of SOD in radioresistance; how genetic variation in this enzyme is maintained in populations; and relevant aspects of its evolution that may contribute to these goals as well as to an understanding of molecular evolution in general. To accomplish these goals we are undertaking the following experiments: cloning and sequencing of (at least) one F allele, one S allele, and the null allele for SOD; cloning and sequencing SOD from species related to D. melanogaster; and cloning and sequencing the SOD gene from several independently sampled S and F alleles in D. melanogaster. We are also preparing to test the radioprotective effects of SOD. 67 refs.

  2. Population size-structure-dependent fitness and ecosystem consequences in Trinidadian guppies.

    PubMed

    Bassar, Ronald D; Heatherly, Thomas; Marshall, Michael C; Thomas, Steven A; Flecker, Alexander S; Reznick, David N

    2015-07-01

    Decades of theory and recent empirical results have shown that evolutionary, population, community and ecosystem properties are the result of feedbacks between ecological and evolutionary processes. The vast majority of theory and empirical research on these eco-evolutionary feedbacks has focused on interactions among population size and mean traits of populations. However, numbers and mean traits represent only a fraction of the possible feedback dimensions. Populations of many organisms consist of different size classes that differ in their impact on the environment and each other. Moreover, rarely do we know the map of ecological pathways through which changes in numbers or size structure cause evolutionary change. The goal of this study was to test the role of size structure in eco-evolutionary feedbacks of Trinidadian guppies and to begin to build an eco-evolutionary map along this unexplored dimension. We used a factorial experiment in mesocosms wherein we crossed high- and low-predation guppy phenotypes with population size structure. We tested the ability of changes in size structure to generate selection on the demographic rates of guppies using an integral projection model (IPM). To understand how fitness differences among high- and low-predation phenotypes may be generated, we measured the response of the biomass of lower trophic levels and nutrient cycling to the different phenotype and size structure treatments. We found a significant interaction between guppy phenotype and the size structure treatments for absolute fitness. Size structure had a very large effect on invertebrate biomass in the mesocosms, but there was little or no effect of the phenotype. The effect of size structure on algal biomass depended on guppy phenotype, with no difference in algal biomass in populations with more, smaller guppies, but a large decrease in algal biomass in mesocosms with phenotypes adapted to low-predation risk. These results indicate an important role for size

  3. Population size-structure-dependent fitness and ecosystem consequences in Trinidadian guppies.

    PubMed

    Bassar, Ronald D; Heatherly, Thomas; Marshall, Michael C; Thomas, Steven A; Flecker, Alexander S; Reznick, David N

    2015-07-01

    Decades of theory and recent empirical results have shown that evolutionary, population, community and ecosystem properties are the result of feedbacks between ecological and evolutionary processes. The vast majority of theory and empirical research on these eco-evolutionary feedbacks has focused on interactions among population size and mean traits of populations. However, numbers and mean traits represent only a fraction of the possible feedback dimensions. Populations of many organisms consist of different size classes that differ in their impact on the environment and each other. Moreover, rarely do we know the map of ecological pathways through which changes in numbers or size structure cause evolutionary change. The goal of this study was to test the role of size structure in eco-evolutionary feedbacks of Trinidadian guppies and to begin to build an eco-evolutionary map along this unexplored dimension. We used a factorial experiment in mesocosms wherein we crossed high- and low-predation guppy phenotypes with population size structure. We tested the ability of changes in size structure to generate selection on the demographic rates of guppies using an integral projection model (IPM). To understand how fitness differences among high- and low-predation phenotypes may be generated, we measured the response of the biomass of lower trophic levels and nutrient cycling to the different phenotype and size structure treatments. We found a significant interaction between guppy phenotype and the size structure treatments for absolute fitness. Size structure had a very large effect on invertebrate biomass in the mesocosms, but there was little or no effect of the phenotype. The effect of size structure on algal biomass depended on guppy phenotype, with no difference in algal biomass in populations with more, smaller guppies, but a large decrease in algal biomass in mesocosms with phenotypes adapted to low-predation risk. These results indicate an important role for size

  4. Effects of Written Feedback and Revision on Learners' Accuracy in Using Two English Grammatical Structures

    ERIC Educational Resources Information Center

    Shintani, Natsuko; Ellis, Rod; Suzuki, Wataru

    2014-01-01

    The study compared the effects of two types of form-focused written feedback--direct corrective feedback (DCF) and metalinguistic explanation (ME) given to the whole class--on Japanese university students' accuracy of use of two grammatical structures: indefinite article and the hypothetical conditional. Both types of feedback were given with…

  5. Understanding positive feedback between PNA and synoptic eddies by eddy structure decomposition method

    NASA Astrophysics Data System (ADS)

    Zhou, Fang; Ren, Hong-Li; Xu, Xiao-Feng; Zhou, You

    2016-08-01

    In the upper troposphere during winter, positive synoptic eddy (SE) feedback plays an indispensible role in maintaining the Pacific-North American (PNA) pattern that dominates climate variability on inter-annual timescales over the North Pacific and downstream regions. This study shows that the eddy forcing, induced by eddy-vorticity (EV) fluxes, is not only in-phase with, but also downstream to the PNA pattern in terms of its northeast Pacific lobe. We employ the eddy structure decomposition method to understand such an observed PNA-SEs feedback, and propose a kinematic mechanism that can depict dynamical processes associated with the eddy structure change and its induced positive eddy feedback relative to the PNA flow pattern. With this method, the winter-mean PNA-related SE structures are separated into climatological (basic) and anomalous SE structures, and these two parts can be used to represent the changes in SE structure in a statistical sense and then to calculate the EV fluxes in order to further elucidate the feedback mechanism. It is demonstrated that, on one hand, the winter-mean PNA flow tends to systematically deform the structures of SEs and induce anomalous EV fluxes, and these winter-mean EV fluxes primarily converge into the PNA cyclonic center, which, in return enhances the PNA flow. On the other hand, the PNA-related northeast Pacific flow is featured by a stronger zonal wind shear in the east than the west, which can induce larger zonal-slanting eddy structure change and then stronger meridional EV fluxes that converge to form downstream feedback. This kinematic mechanism may help to deeply understand the dynamical eddy feedback between the low-frequency PNA flow and high-frequency SEs.

  6. Genetic structure among Fijian island populations.

    PubMed

    Shipley, Gerhard P; Taylor, Diana A; Tyagi, Anand; Tiwari, Geetanjali; Redd, Alan J

    2015-02-01

    We examined nine Y chromosome short tandem repeats (Y-STRs) and the mitochondrial DNA (mtDNA) hypervariable segment 1 region in the Fijian island populations of Viti Levu, Vanua Levu, Kadavu, the Lau islands and Rotuma. We found significant genetic structure among these populations for the Y-STRs, both with and without the Rotumans, but not for the mtDNA. We also found that all five populations exhibited the sex-biased admixture associated with areas settled by Austronesian-speaking people, with paternal lineages more strongly associated with Melanesian populations and maternal lineages more strongly associated with Polynesian populations. We also found that the Rotumans in the north and the Lau Islanders in the east were genetically more similar to Polynesian populations than were the other Fijians, but only for the mtDNA. For the Y-STRs, the Rotumans and the Lau Islanders were genetically as similar to Melanesian populations as were the other three populations. Of the five populations, the Rotumans were the most different in almost every regard. Although past genetic studies treated the Fijians as being genetically homogenous despite known geographic, phenotypic, cultural and linguistic variation, our findings show significant genetic variation and a need for a closer examination of individual island populations within Fiji, particularly the Rotumans, in order to better understand the process of the peopling of Fiji and of the surrounding regions.

  7. Active vibration suppression through positive acceleration feedback on a building-like structure: An experimental study

    NASA Astrophysics Data System (ADS)

    Enríquez-Zárate, J.; Silva-Navarro, G.; Abundis-Fong, H. F.

    2016-05-01

    This work deals with the structural and dynamic analysis of a building-like structure consisting of a three-story building with one active vibration absorber. The base of the structure is perturbed using an electromagnetic shaker, which provides forces with a wide range of excitation frequencies, including some resonance frequencies of the structure. One beam-column of the structure is coupled with a PZT stack actuator to reduce the vibrations. The overall mechanical structure is modeled using Euler-Lagrange methodology and validated using experimental modal analysis and Fine Element Method (FEM) techniques. The active control laws are synthesized to actively attenuate the vibration system response via the PZT stack actuator, caused by excitation forces acting on the base of the structure. The control scheme is obtained using Positive Acceleration Feedback (PAF) and Multiple Positive Acceleration Feedback (MPAF) to improve the closed-loop system response. Some experimental results are included to illustrate the overall system performance.

  8. Population structure of ice-breeding seals.

    PubMed

    Davis, Corey S; Stirling, Ian; Strobeck, Curtis; Coltman, David W

    2008-07-01

    The development of population genetic structure in ice-breeding seal species is likely to be shaped by a combination of breeding habitat and life-history characteristics. Species that return to breed on predictable fast-ice locations are more likely to exhibit natal fidelity than pack-ice-breeding species, which in turn facilitates the development of genetic differentiation between subpopulations. Other aspects of life history such as geographically distinct vocalizations, female gregariousness, and the potential for polygynous breeding may also facilitate population structure. Based on these factors, we predicted that fast-ice-breeding seal species (the Weddell and ringed seal) would show elevated genetic differentiation compared to pack-ice-breeding species (the leopard, Ross, crabeater and bearded seals). We tested this prediction using microsatellite analysis to examine population structure of these six ice-breeding species. Our results did not support this prediction. While none of the Antarctic pack-ice species showed statistically significant population structure, the bearded seal of the Arctic pack ice showed strong differentiation between subpopulations. Again in contrast, the fast-ice-breeding Weddell seal of the Antarctic showed clear evidence for genetic differentiation while the ringed seal, breeding in similar habitat in the Arctic, did not. These results suggest that the development of population structure in ice-breeding phocid seals is a more complex outcome of the interplay of phylogenetic and ecological factors than can be predicted on the basis of breeding substrate and life-history characteristics.

  9. Breathing FIRE: How Stellar Feedback Drives Radial Migration, Rapid Size Fluctuations, and Population Gradients in Low-mass Galaxies

    NASA Astrophysics Data System (ADS)

    El-Badry, Kareem; Wetzel, Andrew; Geha, Marla; Hopkins, Philip F.; Kereš, Dusan; Chan, T. K.; Faucher-Giguère, Claude-André

    2016-04-01

    We examine the effects of stellar feedback and bursty star formation on low-mass galaxies (Mstar = 2 × 106 - 5 × 1010 M⊙) using the Feedback in Realistic Environments (FIRE) simulations. While previous studies emphasized the impact of feedback on dark matter profiles, we investigate the impact on the stellar component: kinematics, radial migration, size evolution, and population gradients. Feedback-driven outflows/inflows drive significant radial stellar migration over both short and long timescales via two processes: (1) outflowing/infalling gas can remain star-forming, producing young stars that migrate ˜1 kpc within their first 100 Myr, and (2) gas outflows/inflows drive strong fluctuations in the global potential, transferring energy to all stars. These processes produce several dramatic effects. First, galaxies’ effective radii can fluctuate by factors of >2 over ˜200 Myr, and these rapid size fluctuations can account for much of the observed scatter in the radius at fixed Mstar. Second, the cumulative effects of many outflow/infall episodes steadily heat stellar orbits, causing old stars to migrate outward most strongly. This age-dependent radial migration mixes—and even inverts—intrinsic age and metallicity gradients. Thus, the galactic-archaeology approach of calculating radial star formation histories from stellar populations at z = 0 can be severely biased. These effects are strongest at Mstar ≈ 107-9.6 M⊙, the same regime where feedback most efficiently cores galaxies. Thus, detailed measurements of stellar kinematics in low-mass galaxies can strongly constrain feedback models and test baryonic solutions to small-scale problems in ΛCDM.

  10. Gunn oscillators using distributed-feedback fin-line structures

    NASA Astrophysics Data System (ADS)

    Adelseck, B.; Sicking, F.; Hofmann, H.

    Approaches for the manufacture of planar structures can possibly provide inexpensive millimeter-wave components with good or even excellent characteristics. This is also true for oscillators. It has recently been found that these devices can be designed conveniently by making use of periodic fin-line structures. The considered investigation is concerned with a simple method for the design of such oscillators on the basis of fin-line technology. For the design of integrated millimeter-wave circuits, such oscillators can be easily integrated with other components which utilize the same technology. The layout of a Gunn oscillator is discussed. The design consists essentially of an asymmetric fin-line with a Gunn diode at one end, a grating structure, and a taper to provide a transition to the waveguide. Attention is given to the calculation of the grating structure, the design of the oscillator, and experimental results.

  11. The population genetics of structural variation

    PubMed Central

    Conrad, Donald F; Hurles, Matthew E

    2009-01-01

    Population genetics is central to our understanding of human variation, and by linking medical and evolutionary themes, it enables us to understand the origins and impacts of our genomic differences. Despite current limitations in our knowledge of the locations, sizes and mutational origins of structural variants, our characterization of their population genetics is developing apace, bringing new insights into recent human adaptation, genome biology and disease. We summarize recent dramatic advances, describe the diverse mutational origins of chromosomal rearrangements and argue that their complexity necessitates a re-evaluation of existing population genetic methods. PMID:17597779

  12. Vibration suppression for large scale adaptive truss structures using direct output feedback control

    NASA Technical Reports Server (NTRS)

    Lu, Lyan-Ywan; Utku, Senol; Wada, Ben K.

    1993-01-01

    In this article, the vibration control of adaptive truss structures, where the control actuation is provided by length adjustable active members, is formulated as a direct output feedback control problem. A control method named Model Truncated Output Feedback (MTOF) is presented. The method allows the control feedback gain to be determined in a decoupled and truncated modal space in which only the critical vibration modes are retained. The on-board computation required by MTOF is minimal; thus, the method is favorable for the applications of vibration control of large scale structures. The truncation of the modal space inevitably introduces spillover effect during the control process. In this article, the effect is quantified in terms of active member locations, and it is shown that the optimal placement of active members, which minimizes the spillover effect (and thus, maximizes the control performance) can be sought. The problem of optimally selecting the locations of active members is also treated.

  13. The Effects of the Timing of Corrective Feedback on the Acquisition of a New Linguistic Structure

    ERIC Educational Resources Information Center

    Li, Shaofeng; Zhu, Yan; Ellis, Rod

    2016-01-01

    The article reports on a study investigating the comparative effects of immediate and delayed corrective feedback in learning the English past passive construction, a linguistic structure of which the learners had little prior knowledge. A total of 120 learners of English as a foreign language (EFL) from 4 intact classes at a Chinese middle school…

  14. Admixture, Population Structure, and F-Statistics.

    PubMed

    Peter, Benjamin M

    2016-04-01

    Many questions about human genetic history can be addressed by examining the patterns of shared genetic variation between sets of populations. A useful methodological framework for this purpose isF-statistics that measure shared genetic drift between sets of two, three, and four populations and can be used to test simple and complex hypotheses about admixture between populations. This article provides context from phylogenetic and population genetic theory. I review how F-statistics can be interpreted as branch lengths or paths and derive new interpretations, using coalescent theory. I further show that the admixture tests can be interpreted as testing general properties of phylogenies, allowing extension of some ideas applications to arbitrary phylogenetic trees. The new results are used to investigate the behavior of the statistics under different models of population structure and show how population substructure complicates inference. The results lead to simplified estimators in many cases, and I recommend to replace F3 with the average number of pairwise differences for estimating population divergence.

  15. Active control of a flexible structure using a modal positive position feedback controller

    NASA Technical Reports Server (NTRS)

    Poh, S.; Baz, A.

    1990-01-01

    The feasibility of a new Modal Positive Position Feedback (MPPF) strategy in controlling the vibration of a complex flexible structure using a single piezo-electric active structural member is demonstrated. The control strategy generates its control forces by manipulating only the modal position signals of the structure to provide a damping action to undamped modes. This is in contrast to conventional modal controllers that rely in their operation on negative feedback of both the modal position and velocity. The proposed strategy is very simple to design and implement as it designs the controller at the uncoupled modal level and utilizes simple first order filters to achieve the Positive Position Feedback effect. The performance of the new strategy is enhanced by augmenting it with a time sharing strategy to share a small number of actuators between larger number of modes. The effectiveness of the new strategy is validated experimentally on a flexible box-type structure that has four bays and its first two bending modes are 2.015 and 6.535 Hz, respectively. A single piezo-electric actuator is utilized as an active structural member to control several transverse bending modes of the structure. The performance of the active control system is determined in the time and the frequency domains. The results are compared with those obtained when using the Independent Modal Space Control (IMSC) of Meirovitch. The experimental results suggest the potential of the proposed strategy as a viable means for controlling the vibration of large flexible structures in real time.

  16. Active control of a flexible structure using a modal positive position feedback controller

    NASA Technical Reports Server (NTRS)

    Poh, S.; Baz, A.

    1990-01-01

    The feasibility of a new Modal Positive Position Feedback (MPPF) strategy in controlling the vibration of a complex flexible structure using a single piezo-electric active structural member is demonstrated. The control strategy generates its control forces by manipulating only the modal position signals of the structure to provide a damping action to undamped modes. This is in contrast to conventional modal controllers that rely in their operation on negative feedback of both the modal position and velocity. The proposed strategy is very simple to design and implement as it designs the controller at the uncoupled modal level and utilizes simple first order filters to achieve the Positive Position Feedback effect. The performance of the new strategy is enhanced by augmenting it with a time sharing strategy to share a small number of actuators between larger number of modes. The effectiveness of the new strategy is validated experimentally on a flexible box-type structure that has four bays and its first two bending modes are 2.015 and 6.535 Hz respectively. A single piezo-electric actuator is utilized as an active structural member to control several transverse bending modes of the structure. The performance of the active control system is determined in the time and the frequency domains. The results are compared with those obtained when using the Independent Modal Space Control (IMSC) of Meirovitch. The experimental results suggest the potential of the proposed strategy as a viable means for controlling the vibration of large flexible structures in real time.

  17. Auditory feedback in music performance: the role of melodic structure and musical skill.

    PubMed

    Pfordresher, Peter Q

    2005-12-01

    Five experiments explored whether fluency in musical sequence production relies on matches between the contents of auditory feedback and the planned outcomes of actions. Participants performed short melodies from memory on a keyboard while musical pitches that sounded in synchrony with each keypress (feedback contents) were altered. Results indicated that altering pitch contents can disrupt production, but only when altered pitches form a sequence that is structurally similar to the planned sequence. These experiments also addressed the role of musical skill: Experiments 1 and 3 included trained pianists; other experiments included participants with little or no musical training. Results were similar across both groups with respect to the disruptive effects of auditory feedback manipulations. These results support the idea that a common hierarchical representation guides sequences of actions and the perception of event sequences and that this coordination is not acquired from learned associations formed by musical skill acquisition. PMID:16366793

  18. Vibration absorption in a building like structure by means of piezoelectric patches and positive acceleration feedback

    NASA Astrophysics Data System (ADS)

    Rios-Gutierrez, Max A.; Silva-Navarro, Gerardo

    2010-04-01

    This paper is about mechanical vibration suppression in a three story building like structure. The experimental platform is a laboratory prototype made of aluminum alloy with bolted joints and an elctromagnetic shaker used as a disturbance source. This prototype can be used as a representation of a civil structure as well as an industrial machinery element. This structure is modeled and validated by the application of finite element methods and experimental modal analysis. The system response is controlled by a piezoelectric actuator, properly located on the structure, and with the synthesis of a feedback control law based on the well-known positive acceleration feedback control scheme. Some numerical simulations and experiments results are performed to illustrate the overall system performance in presence of several types of excitation.

  19. On the interaction structure of linear multi-input feedback control systems. M.S. Thesis; [problem solving, lattices (mathematics)

    NASA Technical Reports Server (NTRS)

    Wong, P. K.

    1975-01-01

    The closely-related problems of designing reliable feedback stabilization strategy and coordinating decentralized feedbacks are considered. Two approaches are taken. A geometric characterization of the structure of control interaction (and its dual) was first attempted and a concept of structural homomorphism developed based on the idea of 'similarity' of interaction pattern. The idea of finding classes of individual feedback maps that do not 'interfere' with the stabilizing action of each other was developed by identifying the structural properties of nondestabilizing and LQ-optimal feedback maps. Some known stability properties of LQ-feedback were generalized and some partial solutions were provided to the reliable stabilization and decentralized feedback coordination problems. A concept of coordination parametrization was introduced, and a scheme for classifying different modes of decentralization (information, control law computation, on-line control implementation) in control systems was developed.

  20. Neuro-fuzzy control of structures using acceleration feedback

    NASA Astrophysics Data System (ADS)

    Schurter, Kyle C.; Roschke, Paul N.

    2001-08-01

    This paper described a new approach for the reduction of environmentally induced vibration in constructed facilities by way of a neuro-fuzzy technique. The new control technique is presented and tested in a numerical study that involves two types of building models. The energy of each building is dissipated through magnetorheological (MR) dampers whose damping properties are continuously updated by a fuzzy controller. This semi-active control scheme relies on the development of a correlation between the accelerations of the building (controller input) and the voltage applied to the MR damper (controller output). This correlation forms the basis for the development of an intelligent neuro-fuzzy control strategy. To establish a context for assessing the effectiveness of the semi-active control scheme, responses to earthquake excitation are compared with passive strategies that have similar authority for control. According to numerical simulation, MR dampers are less effective control mechanisms than passive dampers with respect to a single degree of freedom (DOF) building model. On the other hand, MR dampers are predicted to be superior when used with multiple DOF structures for reduction of lateral acceleration.

  1. Familial Identification: Population Structure and Relationship Distinguishability

    PubMed Central

    Rohlfs, Rori V.; Fullerton, Stephanie Malia; Weir, Bruce S.

    2012-01-01

    With the expansion of offender/arrestee DNA profile databases, genetic forensic identification has become commonplace in the United States criminal justice system. Implementation of familial searching has been proposed to extend forensic identification to family members of individuals with profiles in offender/arrestee DNA databases. In familial searching, a partial genetic profile match between a database entrant and a crime scene sample is used to implicate genetic relatives of the database entrant as potential sources of the crime scene sample. In addition to concerns regarding civil liberties, familial searching poses unanswered statistical questions. In this study, we define confidence intervals on estimated likelihood ratios for familial identification. Using these confidence intervals, we consider familial searching in a structured population. We show that relatives and unrelated individuals from population samples with lower gene diversity over the loci considered are less distinguishable. We also consider cases where the most appropriate population sample for individuals considered is unknown. We find that as a less appropriate population sample, and thus allele frequency distribution, is assumed, relatives and unrelated individuals become more difficult to distinguish. In addition, we show that relationship distinguishability increases with the number of markers considered, but decreases for more distant genetic familial relationships. All of these results indicate that caution is warranted in the application of familial searching in structured populations, such as in the United States. PMID:22346758

  2. Spatial population structure of Yellowstone bison

    USGS Publications Warehouse

    Olexa, E.M.; Gogan, P.J.P.

    2007-01-01

    Increases in Yellowstone National Park, USA, bison (Bison bison) numbers and shifts in seasonal distribution have resulted in more frequent movements of bison beyond park boundaries and development of an interagency management plan for the Yellowstone bison population. Implementation of the plan under the adaptive management paradigm requires an understanding of the spatial and temporal structure of the population. We used polythetic agglomerative hierarchical cluster analysis of radiolocations obtained from free-ranging bison to investigate seasonal movements and aggregations. We classified radiolocations into 4 periods: annual, peak rut (15 Jul-15 Sep), extended rut (1 Jun-31 Oct), and winter (1 Nov-31 May). We documented spatial separation of Yellowstone bison into 2 segments, the northern and central herds, during all periods. The estimated year-round exchange rate (4.85-5.83%) of instrumented bison varied with the fusion strategy employed. We did not observe exchange between the 2 segments during the peak rut and it varied during the extended rut (2.15-3.23%). We estimated a winter exchange of 4.85-7.77%. The outcome and effectiveness of management actions directed at Yellowstone bison may be affected by spatial segregation and herd affinity within the population. Reductions based on total population size, but not applied to the entire population, may adversely affect one herd while having little effect on the other. Similarly, management actions targeting a segment of the population may benefit from the spatial segregation exhibited.

  3. Impact of structured verbal feedback module in medical education: A questionnaire- and test score-based analysis

    PubMed Central

    Aggarwal, Meenakshi; Singh, Sonia; Sharma, Anu; Singh, Poonam; Bansal, Priya

    2016-01-01

    Introduction: Feedback is a divalent bond between the supplier (teacher) and the recipient (student). The strength of the bond depends on the instructional design of the feedback. Feedback is central to medical education in promoting self-directed learning in students. In the present study, a structured verbal feedback module was prepared, implemented, and evaluated. Methods: The study was done on 280 students from four consecutive batches (2011 to 2014) of the 1st year MBBS students exposed to different types and modes of feedback. Analysis was done using student feedback questionnaire for the perception of students to verbal feedback. Quantitative analysis using post hoc test and ANOVA for the impact of type of feedback (verbal or written) and effect of modes (individual or group) of verbal feedback on test score performance were done. Result: In this study, ≥95% of the students preferred verbal feedback of both positive and negative attributes in student questionnaires. It was observed that verbal feedback sessions made a difference of up to 2–2.4 grade points in the mean score of batch when compared to the written feedback. The initial mean test score (T1) of 2011 + 2012 and 2013 + 2014 was not statistically significant (P = 0.113). But, in all subsequent tests (T2, T3, and T4), there was a statistically significant difference in the mean test scores (P = 0.000). Conclusion: (1) Students prefer verbal one-to-one feedback over written feedback. (2) Verbal feedback changes learning process and causes sustained improvement in learning strategies. PMID:27563592

  4. Positive feedback fishery: Population consequences of `crab-tiling' on the green crab Carcinus maenas

    NASA Astrophysics Data System (ADS)

    Sheehan, E. V.; Thompson, R. C.; Coleman, R. A.; Attrill, M. J.

    2008-11-01

    Collection of marine invertebrates for use as fishing bait is a substantial activity in many parts of the world, often with unknown ecological consequences. As new fisheries develop, it is critical for environmental managers to have high quality ecological information regarding the potential impacts, in order to develop sound management strategies. Crab-tiling is a largely unregulated and un-researched fishery, which operates commercially in the south-west UK. The target species is the green crab Carcinus maenas. Those crabs which are pre-ecdysis and have a carapace width greater than 40 mm are collected to be sold to recreational anglers as bait. Collection involves laying artificial structures on intertidal sandflats and mudflats in estuaries. Crabs use these structures as refugia and are collected during low tide. However, the effect that this fishery has on populations of C. maenas is not known. The impact of crab-tiling on C. maenas population structure was determined by sampling crabs from tiled estuaries and non-tiled estuaries using baited drop-nets. A spatially and temporarily replicated, balanced design was used to compare crab abundance, sizes and sex ratios between estuaries. Typically, fisheries are associated with a reduction in the abundance of the target species. Crab-tiling, however, significantly increased C. maenas abundance. This was thought to be a result of the extra habitat in tiled estuaries, which probably provides protection from natural predators, such as birds and fish. Although crabs were more abundant in tiled estuaries than non-tiled estuaries, the overall percentage of reproductively active crabs in non-tiled estuaries was greater than in tiled estuaries. As with most exploited fisheries stocks, crabs in exploited (tiled) estuaries tended to be smaller, with a modal carapace width of 20-29 mm rather than 30-39 mm in non-tiled estuaries. The sex ratio of crabs however; was not significantly different between tiled and non

  5. Efficient eigenvalue assignment by state and output feedback with applications for large space structures

    NASA Technical Reports Server (NTRS)

    Vannell, Eric C.; Kenny, Sean P.; Maghami, Peiman G.

    1995-01-01

    The erection and deployment of large flexible structures having thousands of degrees of freedom requires controllers based on new techniques of eigenvalue assignment that are computationally stable and more efficient. Scientists at NASA Langley Research Center have developed a novel and efficient algorithm for the eigenvalue assignment of large, time-invariant systems using full-state and output feedback. The objectives of this research were to improve upon the output feedback version of this algorithm, to produce a toolbox of MATLAB functions based on the efficient eigenvalue assignment algorithm, and to experimentally verify the algorithm and software by implementing controllers designed using the MATLAB toolbox on the phase 2 configuration of NASA Langley's controls-structures interaction evolutionary model, a laboratory model used to study space structures. Results from laboratory tests and computer simulations show that effective controllers can be designed using software based on the efficient eigenvalue assignment algorithm.

  6. Structural Basis for l-Lysine Feedback Inhibition of Homocitrate Synthase

    SciTech Connect

    Bulfer, Stacie L.; Scott, Erin M.; Pillus, Lorraine; Trievel, Raymond C.

    2010-09-02

    The {alpha}-aminoadipate pathway of lysine biosynthesis is modulated at the transcriptional and biochemical levels by feedback inhibition. The first enzyme in the {alpha}-aminoadipate pathway, homocitrate synthase (HCS), is the target of the feedback regulation and is strongly inhibited by L-lysine. Here we report the structure of Schizosaccharomyces pombe HCS (SpHCS) in complex with L-lysine. The structure illustrates that the amino acid directly competes with the substrate 2-oxoglutarate for binding within the active site of HCS. Differential recognition of the substrate and inhibitor is achieved via a switch position within the ({alpha}/{beta}){sub 8} TIM barrel of the enzyme that can distinguish between the C5-carboxylate group of 2-oxoglutarate and the {epsilon}-ammonium group of L-lysine. In vitro and in vivo assays demonstrate that mutations of the switch residues, which interact with the L-lysine {epsilon}-ammonium group, abrogate feedback inhibition, as do substitutions of residues within the C-terminal domain that were identified in a previous study of L-lysine-insensitive HCS mutants in Saccharomyces cerevisiae. Together, these results yield new insights into the mechanism of feedback regulation of an enzyme central to lysine biosynthesis.

  7. The importance of stellar feedback for high-redshift galaxy populations in hierarchical formation models

    NASA Astrophysics Data System (ADS)

    Hirschmann, Michaela; De Lucia, Gabriella

    2015-08-01

    One major deficiency of most state-of-the-art galaxy formation models consists in their inability of capturing the observed galaxy downsizing trend as they significantly over-estimate the number density of low-mass galaxies at high redshifts. This points towards fundamental modifications in modeling the interplay between star formation and stellar feedback. Employing an enhanced galaxy formation model with a full chemical enrichment scheme, we present an improved model for stellar feedback (based on parametrizations extracted from cosmological zoom simulations), in which strong gas outflows happen due to bursty star formation at high redshift, while star formation is mainly "quiescent" not causing any significant outflows anymore at low redshift. Due to the stronger gas outflows at high z, early star formation is strongly delayed towards later times in good agreement with abundance matching predictions. As a consequence, also metal enrichment gets significantly delayed, resulting in a much more realistic redshift evolution of the gaseous metallicity. Overall, with our new stellar feedback model, we can successfully reproduce many observational constraints, such as the redshift evolution of the stellar mass function and of the SFR function, the gaseous and stellar metallicity content, the cold gas fractions and the fraction of quiescent/red galaxies at both low and high redshifts. The resulting new-generation galaxy catalogues based on that model are expected to significantly contribute to the interpretation of current and up-coming large-scale surveys (HST, JWST, Euclid) which in turn may also help to further constrain feedback models.

  8. The Genetic Structure of the Swedish Population

    PubMed Central

    Humphreys, Keith; Grankvist, Alexander; Leu, Monica; Hall, Per; Liu, Jianjun; Ripatti, Samuli; Rehnström, Karola; Groop, Leif; Klareskog, Lars; Ding, Bo; Grönberg, Henrik; Xu, Jianfeng; Pedersen, Nancy L.; Lichtenstein, Paul; Mattingsdal, Morten; Andreassen, Ole A.; O'Dushlaine, Colm; Purcell, Shaun M.; Sklar, Pamela; Sullivan, Patrick F.; Hultman, Christina M.; Palmgren, Juni; Magnusson, Patrik K. E.

    2011-01-01

    Patterns of genetic diversity have previously been shown to mirror geography on a global scale and within continents and individual countries. Using genome-wide SNP data on 5174 Swedes with extensive geographical coverage, we analyzed the genetic structure of the Swedish population. We observed strong differences between the far northern counties and the remaining counties. The population of Dalarna county, in north middle Sweden, which borders southern Norway, also appears to differ markedly from other counties, possibly due to this county having more individuals with remote Finnish or Norwegian ancestry than other counties. An analysis of genetic differentiation (based on pairwise Fst) indicated that the population of Sweden's southernmost counties are genetically closer to the HapMap CEU samples of Northern European ancestry than to the populations of Sweden's northernmost counties. In a comparison of extended homozygous segments, we detected a clear divide between southern and northern Sweden with small differences between the southern counties and considerably more segments in northern Sweden. Both the increased degree of homozygosity in the north and the large genetic differences between the south and the north may have arisen due to a small population in the north and the vast geographical distances between towns and villages in the north, in contrast to the more densely settled southern parts of Sweden. Our findings have implications for future genome-wide association studies (GWAS) with respect to the matching of cases and controls and the need for within-county matching. We have shown that genetic differences within a single country may be substantial, even when viewed on a European scale. Thus, population stratification needs to be accounted for, even within a country like Sweden, which is often perceived to be relatively homogenous and a favourable resource for genetic mapping, otherwise inferences based on genetic data may lead to false conclusions

  9. Origin and population structure of the Icelanders.

    PubMed

    Williams, J T

    1993-04-01

    The Norse and Celtic contributions to the founding population of Iceland have been estimated previously on a pan-Icelandic basis using gene frequency data for the entire island. Accounts of the settlement of Iceland, however, suggest that different regions received different proportions of Norse and Celtic settlers, indicating the need to incorporate geographic variation into Icelandic admixture studies. A formal likelihood ratio test rejects the null hypothesis of regional homogeneity in admixture proportions. Here, regional admixture estimates for Iceland are reported; they are in agreement with the settlement pattern inferred from historical accounts. The western, northern, and southern regions of Iceland exhibit a moderate Celtic component, consistent with historical indications that these regions were settled by Norse Vikings from the British Isles, accompanied by Celtic wives and slaves. Eastern Iceland, believed to have been settled chiefly by Vikings from Scandinavia, is characterized by a large Norse component of admixture. The northwestern peninsula is also found to be predominantly Norse. Regional genetic data are used to elucidate the contemporary population structure of Iceland. The observed structure correlates well with patterns of Icelandic geography, history, economy, marriage, urbanization, and internal migration. The northeastern region is strongly isolated, the urbanized areas of the north and southwest are representative of the overall population, and the remaining regions exhibit small-scale variation about the genetic central tendency. A high level of genetic homogeneity is indicated (RST = 0.0005), consistent with the high internal migration rate of the Icelanders. A regression of mean per-locus heterozygosity on distance from the gene frequency centroid reveals a greater than average external gene flow into the eastern region, whereas the northwestern peninsula has received less than average external gene flow. Iceland is compared with

  10. An L-Band Superconducting Traveling Wave Accelerating Structure With Feedback

    SciTech Connect

    Kanareykin, A.; Avrakhov, P.; Yakovlev, V. P.; Solyak, N.; Kazakov, S.

    2009-01-22

    The most severe problem of the International Linear Collider is its high cost, resulting in part from the enormous length of the collider. This length is determined mainly by the achievable accelerating gradient in the RF system of the ILC. In the ILC project the required accelerating gradient is higher than 30 MeV/m. Further improvement of the coupling to the beam may be achieved by using a Traveling Wave SC structure [1]. We have demonstrated that an additional gradient increase of up to 46% may be possible if a {pi}/2 TW SC structure is employed. However, a TW SC structure requires a SC feedback waveguide to return the few GW of circulating RF power from the structure output back to the structure input. The test cavity with feedback is designed to demonstrate the possibility of achieving a significantly higher gradient than existing SC structures. The double-coupler powering excitation and tuning have been studied numerically and the corresponding model results are presented. The proposed double-coupler powering scheme significantly reduces the tuning requirements as long as any of the partial modes of given magnitude and phase are excited independently, providing a clear traveling wave regime of structure operation.

  11. A PDE-based methodology for modeling, parameter estimation and feedback control in structural and structural acoustic systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Brown, D. E.; Metcalf, Vern L.; Silcox, R. J.; Smith, Ralph C.; Wang, Yun

    1994-01-01

    A problem of continued interest concerns the control of vibrations in a flexible structure and the related problem of reducing structure-borne noise in structural acoustic systems. In both cases, piezoceramic patches bonded to the structures have been successfully used as control actuators. Through the application of a controlling voltage, the patches can be used to reduce structural vibrations which in turn lead to methods for reducing structure-borne noise. A PDE-based methodology for modeling, estimating physical parameters, and implementing a feedback control scheme for problems of this type is discussed. While the illustrating example is a circular plate, the methodology is sufficiently general so as to be applicable in a variety of structural and structural acoustic systems.

  12. Reflecting on reflections: enhancement of medical education curriculum with structured field notes and guided feedback.

    PubMed

    Wald, Hedy S; Davis, Stephen W; Reis, Shmuel P; Monroe, Alicia D; Borkan, Jeffrey M

    2009-07-01

    The promotion of reflective capacity within the teaching of clinical skills and professionalism is posited as fostering the development of competent health practitioners. An innovative approach combines structured reflective writing by medical students and individualized faculty feedback to those students to augment instruction on reflective practice. A course for preclinical students at the Warren Alpert Medical School of Brown University, entitled "Doctoring," combined reflective writing assignments (field notes) with instruction in clinical skills and professionalism and early clinical exposure in a small-group format. Students generated multiple e-mail field notes in response to structured questions on course topics. Individualized feedback from a physician-behavioral scientist dyad supported the students' reflective process by fostering critical-thinking skills, highlighting appreciation of the affective domain, and providing concrete recommendations. The development and implementation of this innovation are presented, as is an analysis of the written evaluative comments of students taking the Doctoring course. Theoretical and clinical rationales for features of the innovation and supporting evidence of their effectiveness are presented. Qualitative analyses of students' evaluations yielded four themes of beneficial contributions to their learning experience: promoting deeper and more purposeful reflection, the value of (interdisciplinary) feedback, the enhancement of group process, and personal and professional development. Evaluation of the innovation was the fifth theme; some limitations are described, and suggestions for improvement are provided. Issues of the quality of the educational paradigm, generalizability, and sustainability are addressed.

  13. Inner structure detection by optical tomography technology based on feedback of microchip Nd:YAG lasers.

    PubMed

    Xu, Chunxin; Zhang, Shulian; Tan, Yidong; Zhao, Shijie

    2013-05-20

    We describe a new optical tomography technology based on feedback of microchip Nd:YAG lasers. In the case of feedback light frequency-shifted, light can be magnified by a fact of 10(6) in the Nd:YAG microchip lasers, which makes it possible to realize optical tomography with a greater depth than current optical tomography. The results of the measuring and imaging of kinds of samples are presented, which demonstrate the feasibility and potential of this approach in the inner structure detection. The system has a lateral resolution of ~1 μm, a vertical resolution of 15 μm and a longitudinal scanning range of over 10mm.

  14. An open-structure electrowetting-based reflective display with a feedback system

    NASA Astrophysics Data System (ADS)

    Choi, Seungyul; Lee, Junghoon

    2015-11-01

    Electrowetting-based reflective displays have long been considered a promising display choice for electronic paper applications due to their fast operating speeds and high color contrasts. However, they still require several improvements in terms of their packaging process, color contrast, and reliability. This study investigates such enhancements via an open-structure design and a capacitive feedback system. It has a femto-farad level resolution and demonstrates a high operating speed (approximately 10 ms), effective ink dosing, and large color area change (approximately 92%). The feedback system for the precise control of the color area is verified by testing under a wide range of interfacial tension. The system reduces the deviation of color contrast by 85%. Working with high fidelity with large disturbances, which are represented by interfacial variations, the system shows robust performance against other disturbances, such as temperature variation and contact angle hysteresis.

  15. Ecological feedbacks can reduce population-level efficacy of wildlife fertility control

    PubMed Central

    Ransom, Jason I; Powers, Jenny G; Thompson Hobbs, N; Baker, Dan L

    2014-01-01

    Anthropogenic stress on natural systems, particularly the fragmentation of landscapes and the extirpation of predators from food webs, has intensified the need to regulate abundance of wildlife populations with management. Controlling population growth using fertility control has been considered for almost four decades, but nearly all research has focused on understanding effects of fertility control agents on individual animals. Questions about the efficacy of fertility control as a way to control populations remain largely unanswered. Collateral consequences of contraception can produce unexpected changes in birth rates, survival, immigration and emigration that may reduce the effectiveness of regulating animal abundance. The magnitude and frequency of such effects vary with species-specific social and reproductive systems, as well as connectivity of populations. Developing models that incorporate static demographic parameters from populations not controlled by contraception may bias predictions of fertility control efficacy. Many population-level studies demonstrate that changes in survival and immigration induced by fertility control can compensate for the reduction in births caused by contraception. The most successful cases of regulating populations using fertility control come from applications of contraceptives to small, closed populations of gregarious and easily accessed species. Fertility control can result in artificial selection pressures on the population and may lead to long-term unintentional genetic consequences. The magnitude of such selection is dependent on individual heritability and behavioural traits, as well as environmental variation. Synthesis and applications. Understanding species' life-history strategies, biology, behavioural ecology and ecological context is critical to developing realistic expectations of regulating populations using fertility control. Before time, effort and funding are invested in wildlife contraception, managers

  16. Ecological feedbacks can reduce population-level efficacy of wildlife fertility control

    USGS Publications Warehouse

    Ransom, Jason I.; Powers, Jenny G.; Hobbs, N. Thompson; Baker, Dan L.

    2014-01-01

    1. Anthropogenic stress on natural systems, particularly the fragmentation of landscapes and the extirpation of predators from food webs, has intensified the need to regulate abundance of wildlife populations with management. Controlling population growth using fertility control has been considered for almost four decades, but nearly all research has focused on understanding effects of fertility control agents on individual animals. Questions about the efficacy of fertility control as a way to control populations remain largely unanswered. 2. Collateral consequences of contraception can produce unexpected changes in birth rates, survival, immigration and emigration that may reduce the effectiveness of regulating animal abundance. The magnitude and frequency of such effects vary with species-specific social and reproductive systems, as well as connectivity of populations. Developing models that incorporate static demographic parameters from populations not controlled by contraception may bias predictions of fertility control efficacy. 3. Many population-level studies demonstrate that changes in survival and immigration induced by fertility control can compensate for the reduction in births caused by contraception. The most successful cases of regulating populations using fertility control come from applications of contraceptives to small, closed populations of gregarious and easily accessed species. 4. Fertility control can result in artificial selection pressures on the population and may lead to long-term unintentional genetic consequences. The magnitude of such selection is dependent on individual heritability and behavioural traits, as well as environmental variation. 5. Synthesis and applications. Understanding species' life-history strategies, biology, behavioural ecology and ecological context is critical to developing realistic expectations of regulating populations using fertility control. Before time, effort and funding are invested in wildlife

  17. Coarse-grained analysis of stochastically simulated cell populations with a positive feedback genetic network architecture.

    PubMed

    Aviziotis, I G; Kavousanakis, M E; Bitsanis, I A; Boudouvis, A G

    2015-06-01

    Among the different computational approaches modelling the dynamics of isogenic cell populations, discrete stochastic models can describe with sufficient accuracy the evolution of small size populations. However, for a systematic and efficient study of their long-time behaviour over a wide range of parameter values, the performance of solely direct temporal simulations requires significantly high computational time. In addition, when the dynamics of the cell populations exhibit non-trivial bistable behaviour, such an analysis becomes a prohibitive task, since a large ensemble of initial states need to be tested for the quest of possibly co-existing steady state solutions. In this work, we study cell populations which carry the lac operon network exhibiting solution multiplicity over a wide range of extracellular conditions (inducer concentration). By adopting ideas from the so-called "equation-free" methodology, we perform systems-level analysis, which includes numerical tasks such as the computation of coarse steady state solutions, coarse bifurcation analysis, as well as coarse stability analysis. Dynamically stable and unstable macroscopic (population level) steady state solutions are computed by means of bifurcation analysis utilising short bursts of fine-scale simulations, and the range of bistability is determined for different sizes of cell populations. The results are compared with the deterministic cell population balance model, which is valid for large populations, and we demonstrate the increased effect of stochasticity in small size populations with asymmetric partitioning mechanisms.

  18. The impact of stellar feedback on high-z galaxy populations

    NASA Astrophysics Data System (ADS)

    Hirschmann, Michaela; De Lucia, Gabriella

    One major deficiency of state-of-the-art galaxy formation models consists in their inability of capturing the observed galaxy downsizing trend significantly over-estimating the number density of low-mass galaxies, in particular at high redshifts. Employing an enhanced galaxy formation model with a full chemical enrichment scheme (DeLucia et al., 2014), we present an improved model for stellar feedback (based on parametrizations from cosmological zoom simulations), in which strong gas outflows occur due to bursty star formation at high z, while star formation is mainly ``quiescent'' not causing any significant outflows anymore at low z. Due to the stronger gas outflows at high z, early star formation is strongly delayed towards later times. This helps to sufficiently detach the evolution of galaxy growth from the hiearchical dark matter assembly resulting in a fairly good agreement with the evolution of the observed stellar mass function (SMF, see Fig. 1). With our new feedback scheme, we can also successfully reproduce many other observational constraints, such as the metallicity content, the cold gas fractions or the quiescent galaxy fractions at both low and high redshifts. The resulting new-generation galaxy catalogues (Hirschmann et al., in prep) based on that model are expected to significantly contribute to the interpretation of current and up-coming large-scale surveys (HST, JWST, Euclid). This will, in turn, provide a rapid verification and refinement of our modeling.

  19. Population inertia and its sensitivity to changes in vital rates and population structure

    USGS Publications Warehouse

    Koons, D.N.; Holmes, R.R.; Grand, J.B.

    2007-01-01

    Because the (st)age structure of a population may rarely be stable, studies of transient population dynamics and population momentum are becoming ever more popular. Yet, studies of "population momentum" are restricted in the sense that they describe the inertia of population size resulting from a demographic transition to the stationary population growth rate. Although rarely mentioned, inertia in population size is a general phenomenon and can be produced by any demographic transition or perturbation. Because population size is of central importance in demography, conservation, and management, formulas relating the sensitivity of population inertia to changes in underlying vital rates and population structure could provide much-needed insight into the dynamics of populations with unstable (st)age structure. Here, we derive such formulas, which are readily computable, and provide examples of their potential use in studies of life history and applied arenas of population study. ?? 2007 by the Ecological Society of America.

  20. Rapid adaptation of herbivore consumers to nutrient limitation: eco-evolutionary feedbacks to population demography and resource control.

    PubMed

    Declerck, Steven A J; Malo, Andrea R; Diehl, Sebastian; Waasdorp, Dennis; Lemmen, Kimberley D; Proios, Konstantinos; Papakostas, Spiros

    2015-06-01

    Humans alter biogeochemical cycles of essential elements such as phosphorus (P). Prediction of ecosystem consequences of altered elemental cycles requires integration of ecology, evolutionary biology and the framework of ecological stoichiometry. We studied micro-evolutionary responses of a herbivorous rotifer to P-limited food and the potential consequences for its population demography and for ecosystem properties. We subjected field-derived, replicate rotifer populations to P-deficient and P-replete algal food, and studied adaptation in common garden transplant experiments after 103 and 209 days of selection. When fed P-limited food, populations with a P-limitation selection history suffered 37% lower mortality, reached twice the steady state biomass, and reduced algae by 40% compared to populations with a P-replete selection history. Adaptation involved no change in rotifer elemental composition but reduced investment in sex. This study demonstrates potentially strong eco-evolutionary feedbacks from shifting elemental balances to ecosystem properties, including grazing pressure and the ratio of grazer:producer biomass.

  1. A stage structure pest management model with impulsive state feedback control

    NASA Astrophysics Data System (ADS)

    Pang, Guoping; Chen, Lansun; Xu, Weijian; Fu, Gang

    2015-06-01

    A stage structure pest management model with impulsive state feedback control is investigated. We get the sufficient condition for the existence of the order-1 periodic solution by differential equation geometry theory and successor function. Further, we obtain a new judgement method for the stability of the order-1 periodic solution of the semi-continuous systems by referencing the stability analysis for limit cycles of continuous systems, which is different from the previous method of analog of Poincarè criterion. Finally, we analyze numerically the theoretical results obtained.

  2. Hybrid modal nodal method for multibody smart structure model reduction: application to modal feedback control

    NASA Astrophysics Data System (ADS)

    Matichard, Fabrice; Gaudiller, Luc

    2006-12-01

    The hybrid modal nodal (HMN) method, designed for multibody smart structure model reduction and feedback control development, is based on the independent modeling of structural and electromechanical behavior. Firstly, this approach permits reducing the model of substructures independently of the electromechanical behavior. This allows choosing the most adapted component mode synthesis (CMS) method and corresponding code for any application, something that is not permitted by classical multi-physics projection-based methods. Thus, the substructuring process used in this paper is based on super-elements directly adapted for multibody dynamics modeling. Secondly, the electromechanical behavior of distributed components is introduced into the structural modal model via a nodal formulation. Its independence of any projection guarantees accuracy and its formulation is valid whatever the multibody assembly and its modal shapes. The proposed application is composed of successive developments and experiments designed to validate the model reduction method, its implementation and its use for modal feedback control, i.e. a smart beam, actively controlled by piezoelectric ceramics. It is successively clamped to illustrate the electromechanical coupling reduction, articulated to introduce the rigid-body/flexible mode coupling reduction and, finally, bi-articulated in order to deal with the nonlinear problem.

  3. Size-dependent mortality induces life-history changes mediated through population dynamical feedbacks.

    PubMed

    van Kooten, Tobias; Persson, Lennart; de Roos, André M

    2007-08-01

    The majority of taxa grow significantly during life history, which often leads to individuals of the same species having different ecological roles, depending on their size or life stage. One aspect of life history that changes during ontogeny is mortality. When individual growth and development are resource dependent, changes in mortality can affect the outcome of size-dependent intraspecific resource competition, in turn affecting both life history and population dynamics. We study the outcome of varying size-dependent mortality on two life-history types, one that feeds on the same resource throughout life history and another that can alternatively cannibalize smaller conspecifics. Compensatory responses in the life history dampen the effect of certain types of size-dependent mortality, while other types of mortality lead to dramatic changes in life history and population dynamics, including population (de-)stabilization, and the growth of cannibalistic giants. These responses differ strongly among the two life-history types. Our analysis provides a mechanistic understanding of the population-level effects that come about through the interaction between individual growth and size-dependent mortality, mediated by resource dependence in individual vital rates. PMID:17874376

  4. Self-organizing biochemical cycle in dynamic feedback with soil structure

    NASA Astrophysics Data System (ADS)

    Vasilyeva, Nadezda; Vladimirov, Artem; Smirnov, Alexander; Matveev, Sergey; Tyrtyshnikov, Evgeniy; Yudina, Anna; Milanovskiy, Evgeniy; Shein, Evgeniy

    2016-04-01

    In the present study we perform bifurcation analysis of a physically-based mathematical model of self-organized structures in soil (Vasilyeva et al., 2015). The state variables in this model included microbial biomass, two organic matter types, oxygen, carbon dioxide, water content and capillary pore size. According to our previous experimental studies, organic matter affinity to water is an important property affecting soil structure. Therefore, organic matter wettability was taken as principle distinction between organic matter types in this model. It considers general known biological feedbacks with soil physical properties formulated as a system of parabolic type non-linear partial differential equations with elements of discrete modeling for water and pore formation. The model shows complex behavior, involving emergence of temporal and spatial irregular auto-oscillations from initially homogeneous distributions. The energy of external impact on a system was defined by a constant oxygen level on the boundary. Non-linear as opposed to linear oxygen diffusion gives possibility of modeling anaerobic micro-zones formation (organic matter conservation mechanism). For the current study we also introduced population competition of three different types of microorganisms according to their mobility/feeding (diffusive, moving and fungal growth). The strongly non-linear system was solved and parameterized by time-optimized algorithm combining explicit and implicit (matrix form of Thomas algorithm) methods considering the time for execution of the evaluated time-step according to accuracy control. The integral flux of the CO2 state variable was used as a macroscopic parameter to describe system as a whole and validation was carried out on temperature series of moisture dependence for soil heterotrophic respiration data. Thus, soil heterotrophic respiration can be naturally modeled as an integral result of complex dynamics on microscale, arising from biological processes

  5. Auroral Current and Electrodynamics Structure (ACES) Observations of Ionospheric Feedback in the Alfven Resonator

    NASA Technical Reports Server (NTRS)

    Cohen, Ian J.; Lessard, Marc; Lund, Eric J.; Bounds, Scott R.; Kletzing, Craig; Kaeppler, Stephen R.; Sigsbee, Kristine M.; Streltsov, Anatoly V.; Labelle, James W.; Dombrowski, Micah P.; Pfaff, Robert F.; Rowland, Doug; Jones, Sarah; Anderson, Brian Jay; Heinselman, Craig J.; Gjerloev, Jesper W.; Dudok de Wit, Thierry

    2011-01-01

    In 2009, the Auroral Current and Electrodynamics Structure (ACES) High and Low sounding rockets were launched from the Poker Flat Rocket Range (PFRR) in Alaska, with the science objective of gathering in-situ data to quantify current closure in a discrete auroral arc. As ACES High crossed through the return current of an arc (that was monitored using an all sky camera from the ground at Fort Yukon), its instruments recorded clear Alfv nic signatures both poleward and equatorward of the return current region, but not within the main region of the return current itself. These data provide an excellent opportunity to study ionospheric feedback and how it interacts with the Alfv n resonator. We compare the observations with predictions and new results from a model of ionospheric feedback in the ionospheric Alfv n resonator (IAR) and report the significance and impact of these new data for the Magnetosphere-Ionosphere Coupling in the Alfv n Resonator (MICA) rocket mission to launch from PFRR this winter. MICA s primary science objectives specifically focus on better understanding the small-scale structure that the model predicts should exist within the return current region.

  6. Feedbacks between structures and processes during initial ecosystem development in an artificial catchment

    NASA Astrophysics Data System (ADS)

    Schaaf, Wolfgang; Elemer, Michael; Gerwin, Werner; Fischer, Anton; Zaplata, Markus; Neneov, Rossen

    2013-04-01

    We studied the role of strutures and processes and their feedbacks during initial ecosystem development in the artificial catchment Chicken Creek. During the first seven years, considerable changes within the catchment were observed. Both internal and external factors could be identified as driving forces for the formation of structures and patterns in the artificial catchment. Initial structures formed by the construction process and initial substrate characteristics were decisive for the distribution and flow of water. External factors like episodic events triggered erosion and dissection during this initial phase, promoted by the low vegetation cover and the unconsolidated sandy substrate. The transformation of the initial geo-system into areas with evolving terrestrial or aquatic characteristics and from a very episodic to a more permanent stream network and discharge, together with the observed vegetation dynamics increased site diversity and heterogeneity with respect to water and nutrient availability and transformation processes compared to the more homogenous conditions at point zero. The processes and feedback mechanisms in the initial development of a new landscape may deviate in rates, intensity and dominance from those known from mature ecosystems. It is therefore crucial to understand these early phases of ecosystem development and to disentangle the increasingly complex interactions between the evolving terrestrial and aquatic, biotic and abiotic compartments of the system. Artificially created catchments could be a suitable tool to study these initial developments at the landscape scale under known, designed and defined boundary conditions.

  7. Use of Population Genetics to Assess the Ecology, Evolution, and Population Structure of Coccidioides

    PubMed Central

    Teixeira, Marcus M.

    2016-01-01

    During the past 20 years, a general picture of the genetic diversity and population structure of Coccidioides, the causal agent of coccidioidomycosis (Valley fever), has emerged. The genus consists of 2 genetically diverse species, C. immitis and C. posadasii, each of which contains 1 or more distinct populations with limited gene flow. Genotypic data indicate that C. immitis is divided into 2 subpopulations (central and southern California populations) and C. posadasii is divided into 3 subpopulations (Arizona, Mexico, and Texas/South America populations). However, admixture within and among these populations and the current paucity of environmental isolates limit our understanding of the population genetics of Coccidioides. We assessed population structure of Coccidioides in Arizona by analyzing 495 clinical and environmental isolates. Our findings confirm the population structure as previously described and indicate a finer scale population structure in Arizona. Environmental isolates appear to have higher genetic diversity than isolates from human patients. PMID:27191589

  8. Developing STR databases on structured populations: the native South Siberian population versus the Russian population.

    PubMed

    Zhivotovsky, Lev A; Malyarchuk, Boris A; Derenko, Miroslava V; Wozniak, Marcin; Grzybowski, Tomasz

    2009-09-01

    Developing a forensic DNA database on a population that consists of local ethnic groups separated by physical and cultural barriers is questionable as it can be genetically subdivided. On the other side, small sizes of ethnic groups, especially in alpine regions where they are sub-structured further into small villages, prevent collecting a large sample from each ethnic group. For such situations, we suggest to obtain both a total population database on allele frequencies across ethnic groups and a list of theta-values between the groups and the total data. We have genotyped 558 individuals from the native population of South Siberia, consisting of nine ethnic groups, at 17 autosomal STR loci of the kit packages AmpFlSTR SGM Plus i, Cyrillic AmpFlSTR Profiler Plus. The groups differentiate from each other with average theta-values of around 1.1%, and some reach up to three to four percent at certain loci. There exists between-village differentiation as well. Therefore, a database for the population of South Siberia is composed of data on allele frequencies in the pool of ethnic groups and data on theta-values that indicate variation in allele frequencies across the groups. Comparison to additional data on northeastern Asia (the Chukchi and Koryak) shows that differentiation in allele frequencies among small groups that are separated by large geographic distance can be even greater. In contrast, populations of Russians that live in large cities of the European part of Russia are homogeneous in allele frequencies, despite large geographic distance between them, and thus can be described by a database on allele frequencies alone, without any specific information on theta-values.

  9. Understanding cooperative behavior in structurally disordered populations

    NASA Astrophysics Data System (ADS)

    Xu, C.; Zhang, W.; Du, P.; Choi, C. W.; Hui, P. M.

    2016-06-01

    The effects of an inhomogeneous competing environment on the extent of cooperation are studied within the context of a site-diluted evolutionary snowdrift game on a square lattice, with the occupied sites representing the players, both numerically and analytically. The frequency of cooperation ℱ C generally shows a non-monotonic dependence on the fraction of occupied sites ρ, for different values of the payoff parameter r. Slightly diluting a lattice leads to a lower cooperation for small and high values of r. For a range of r, however, dilution leads to an enhanced cooperation. An analytic treatment is developed for ℱC I + ℱC II, with ℱC I emphasizing the importance of the small clusters of players especially for ℱC II from the other players is shown to be inadequate. A local configuration approximation (LCA) that treats the local competing configurations as the variables and amounts to include spatial correlation up to the neighborhood of a player's neighbors is developed. Results of ℱ C ( ρ) and the number of different local configurations from LCA are in good agreement with simulation results. A transparent physical picture of the dynamics stemming from LCA is also presented. The theoretical approach provides a framework that can be readily applied to competing agent-based models in structurally ordered and disordered populations.

  10. Structural vibration control of micro/macro-manipulator using feedforward and feedback approaches

    SciTech Connect

    Lew, J.Y.; Cannon, D.W.; Magee, D.P.; Book, W.J.

    1995-09-01

    Pacific Northwest Laboratory (PDL) researchers investigated the combined use of two control approaches to minimize micro/macro-manipulator structural vibration: (1) modified input shaping and (2) inertial force active damping control. Modified input shaping (MIS) is used as a feedforward controller to modify reference input by canceling the vibratory motion. Inertial force active damping (IFAD) is applied as a feedback controller to increase the system damping and robustness to unexpected disturbances. Researchers implemented both control schemes in the PNL micro/macro flexible-link manipulator testbed collaborating with Georgia Institute of Technology. The experiments successfully demonstrated the effectiveness of two control approaches in reducing structural vibration. Based on the results of the experiments, the combined use of two controllers is recommended for a micro/macro manipulator to achieve the fastest response to commands while canceling disturbances from unexpected forces.

  11. Removal of visual feedback lowers structural variability of inter-digit force coordination during sustained precision pinch.

    PubMed

    Li, Ke; Marquardt, Tamara L; Li, Zong-Ming

    2013-06-17

    This study examined the effects of visual feedback on inter-digit force coordination during a precision pinch. Sixteen healthy, right-handed subjects were instructed to pinch an instrumented apparatus for 1 min with a stable force output. Visual feedback was provided for the first 30s and withdrawn for the second 30s. Detrended fluctuation analysis (DFA) and detrended cross-correlation analysis (DCCA) methods were used to quantify the time-dependent structures of each digit's force and of the force correlation between the digits. After removing visual feedback, the DFA scaling exponent, αDFA, increased from 1.10±0.12 to 1.29±0.13 for the thumb and from 0.95±0.08 to 1.33±0.13 for the index finger (F1,95=372.47, p<0.001); the DCCA scaling exponent, αDCCA, increased from 1.00±0.08 to 1.33±0.13 (t95=20.33, p<0.001). Structural changes were observed beginning with the first 5s epoch after the removal of visual feedback. The results provide evidence that removing visual feedback lowers the structural variability of inter-digit force coordination. This change is reflected in the high-level control strategy, resulting in the two digits being more tightly coupled under somatosensory feedback without visual inputs.

  12. Modeling 3D soil and sediment distributions for assessing catchment structure and hydrological feedbacks

    NASA Astrophysics Data System (ADS)

    Maurer, Thomas; Brück, Yasemine; Hinz, Christoph; Gerke, Horst H.

    2015-04-01

    . The established initial sediment distributions provide a basis for the consecutive modelling of feedbacks between surface and subsurface water flow and changes in soil properties, e.g. by using a landscape evolution model. The results should allow conclusions about the effect of different initial structural setups on the further dynamic landscape development at catchment scale.

  13. Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures

    NASA Astrophysics Data System (ADS)

    Huang, Wenbin; Shen, Su; Pu, Donglin; Wei, Guojun; Ye, Yan; Peng, Changsi; Chen, Linsen

    2015-12-01

    We report the fabrication and characterization of second-order external distributed feedback (DFB) lasers based on blue-emitting polymer poly (9, 9-dioctyl-fluorene) (PFO). The relief grating prepared in the photo-resist layer on top of the gain medium was directly employed as the resonator. The effect of various structural parameters including the thickness of the active film, the thickness of the residue layer, and the depth of the relief grating on performance of these polymer lasers was investigated. An analytical approach based on the slab waveguiding theory and the Bragg condition was developed to accurately determine the lasing wavelength. We found that laser threshold increases monotonously as the thickness of the residue layer increases. The presence of the residue layer between the relief grating and the organic semiconductor layer weakens the strength of light coupling between the two layers, leading to a decreased gain for the specific lasing mode. The lowest laser threshold level of 80 μJ cm-2 was obtained when the thickness of the gain medium was around 250 nm, indicating an optimum balance between light feedback provided by the grating and optical amplification in the organic semiconductor. Our results not only provide insights into working mechanisms of external DFB polymer lasers, but also design rules for fabricating them.

  14. Structural Basis for Feedback and Pharmacological Inhibition of Saccharomyces cerevisiae Glutamate Cysteine Ligase

    SciTech Connect

    Biterova, Ekaterina I.; Barycki, Joseph J.

    2010-04-30

    Structural characterization of glutamate cysteine ligase (GCL), the enzyme that catalyzes the initial, rate-limiting step in glutathione biosynthesis, has revealed many of the molecular details of substrate recognition. To further delineate the mechanistic details of this critical enzyme, we have determined the structures of two inhibited forms of Saccharomyces cerevisiae GCL (ScGCL), which shares significant sequence identity with the human enzyme. In vivo, GCL activity is feedback regulated by glutathione. Examination of the structure of ScGCL-glutathione complex (2.5 A; R = 19.9%, R(free) = 25.1%) indicates that the inhibitor occupies both the glutamate- and the presumed cysteine-binding site and disrupts the previously observed Mg(2+) coordination in the ATP-binding site. l-Buthionine-S-sulfoximine (BSO) is a mechanism-based inhibitor of GCL and has been used extensively to deplete glutathione in cell culture and in vivo model systems. Inspection of the ScGCL-BSO structure (2.2 A; R = 18.1%, R(free) = 23.9%) confirms that BSO is phosphorylated on the sulfoximine nitrogen to generate the inhibitory species and reveals contacts that likely contribute to transition state stabilization. Overall, these structures advance our understanding of the molecular regulation of this critical enzyme and provide additional details of the catalytic mechanism of the enzyme.

  15. Inferring population structure and demographic history using Y-STR data from worldwide populations.

    PubMed

    Xu, Hongyang; Wang, Chuan-Chao; Shrestha, Rukesh; Wang, Ling-Xiang; Zhang, Manfei; He, Yungang; Kidd, Judith R; Kidd, Kenneth K; Jin, Li; Li, Hui

    2015-02-01

    The Y chromosome is one of the best genetic materials to explore the evolutionary history of human populations. Global analyses of Y chromosomal short tandem repeats (STRs) data can reveal very interesting world population structures and histories. However, previous Y-STR works tended to focus on small geographical ranges or only included limited sample sizes. In this study, we have investigated population structure and demographic history using 17 Y chromosomal STRs data of 979 males from 44 worldwide populations. The largest genetic distances have been observed between pairs of African and non-African populations. American populations with the lowest genetic diversities also showed large genetic distances and coancestry coefficients with other populations, whereas Eurasian populations displayed close genetic affinities. African populations tend to have the oldest time to the most recent common ancestors (TMRCAs), the largest effective population sizes and the earliest expansion times, whereas the American, Siberian, Melanesian, and isolated Atayal populations have the most recent TMRCAs and expansion times, and the smallest effective population sizes. This clear geographic pattern is well consistent with serial founder model for the origin of populations outside Africa. The Y-STR dataset presented here provides the most detailed view of worldwide population structure and human male demographic history, and additionally will be of great benefit to future forensic applications and population genetic studies.

  16. Inferring population structure and demographic history using Y-STR data from worldwide populations.

    PubMed

    Xu, Hongyang; Wang, Chuan-Chao; Shrestha, Rukesh; Wang, Ling-Xiang; Zhang, Manfei; He, Yungang; Kidd, Judith R; Kidd, Kenneth K; Jin, Li; Li, Hui

    2015-02-01

    The Y chromosome is one of the best genetic materials to explore the evolutionary history of human populations. Global analyses of Y chromosomal short tandem repeats (STRs) data can reveal very interesting world population structures and histories. However, previous Y-STR works tended to focus on small geographical ranges or only included limited sample sizes. In this study, we have investigated population structure and demographic history using 17 Y chromosomal STRs data of 979 males from 44 worldwide populations. The largest genetic distances have been observed between pairs of African and non-African populations. American populations with the lowest genetic diversities also showed large genetic distances and coancestry coefficients with other populations, whereas Eurasian populations displayed close genetic affinities. African populations tend to have the oldest time to the most recent common ancestors (TMRCAs), the largest effective population sizes and the earliest expansion times, whereas the American, Siberian, Melanesian, and isolated Atayal populations have the most recent TMRCAs and expansion times, and the smallest effective population sizes. This clear geographic pattern is well consistent with serial founder model for the origin of populations outside Africa. The Y-STR dataset presented here provides the most detailed view of worldwide population structure and human male demographic history, and additionally will be of great benefit to future forensic applications and population genetic studies. PMID:25159112

  17. Comparison of Active Noise Control Structures in the Presence of Acoustical Feedback by Using THEH∞SYNTHESIS Technique

    NASA Astrophysics Data System (ADS)

    Bai, M. R.; Lin, H. H.

    1997-10-01

    This study compares three control structures of active noise cancellation for ducts: feedback control, feedforward control, and hybrid control. These structures are compared in terms of performance, stability, and robustness by using a general framework of theH∞robust control theory. In addition, theH∞synthesis procedure automatically incorporates the acoustic feedback path that is usually a plaguing problem to feedforward control design. The controllers are implemented by using a digital signal processor and tested on a finite-length duct. In an experimental verification, the proposed controllers are also compared with the well-known filtered-uleast mean square (FULMS) controller. The advantages and disadvantages of each ANC structure as well as the adverse effects due to acoustic feedback are addressed.

  18. A feedback mechanism converts individual cell features into a supracellular ECM structure in Drosophila trachea.

    PubMed

    Öztürk-Çolak, Arzu; Moussian, Bernard; Araújo, Sofia J; Casanova, Jordi

    2016-02-02

    The extracellular matrix (ECM), a structure contributed to and commonly shared by many cells in an organism, plays an active role during morphogenesis. Here, we used the Drosophila tracheal system to study the complex relationship between the ECM and epithelial cells during development. We show that there is an active feedback mechanism between the apical ECM (aECM) and the apical F-actin in tracheal cells. Furthermore, we reveal that cell-cell junctions are key players in this aECM patterning and organisation and that individual cells contribute autonomously to their aECM. Strikingly, changes in the aECM influence the levels of phosphorylated Src42A (pSrc) at cell junctions. Therefore, we propose that Src42A phosphorylation levels provide a link for the ECM environment to ensure proper cytoskeletal organisation.

  19. A feedback mechanism converts individual cell features into a supracellular ECM structure in Drosophila trachea

    PubMed Central

    Öztürk-Çolak, Arzu; Moussian, Bernard; Araújo, Sofia J; Casanova, Jordi

    2016-01-01

    The extracellular matrix (ECM), a structure contributed to and commonly shared by many cells in an organism, plays an active role during morphogenesis. Here, we used the Drosophila tracheal system to study the complex relationship between the ECM and epithelial cells during development. We show that there is an active feedback mechanism between the apical ECM (aECM) and the apical F-actin in tracheal cells. Furthermore, we reveal that cell-cell junctions are key players in this aECM patterning and organisation and that individual cells contribute autonomously to their aECM. Strikingly, changes in the aECM influence the levels of phosphorylated Src42A (pSrc) at cell junctions. Therefore, we propose that Src42A phosphorylation levels provide a link for the ECM environment to ensure proper cytoskeletal organisation. DOI: http://dx.doi.org/10.7554/eLife.09373.001 PMID:26836303

  20. Consensus positive position feedback control for vibration attenuation of smart structures

    NASA Astrophysics Data System (ADS)

    Omidi, Ehsan; Nima Mahmoodi, S.

    2015-04-01

    This paper presents a new network-based approach for active vibration control in smart structures. In this approach, a network with known topology connects collocated actuator/sensor elements of the smart structure to one another. Each of these actuators/sensors, i.e., agent or node, is enhanced by a separate multi-mode positive position feedback (PPF) controller. The decentralized PPF controlled agents collaborate with each other in the designed network, under a certain consensus dynamics. The consensus constraint forces neighboring agents to cooperate with each other such that the disagreement between the time-domain actuation of the agents is driven to zero. The controller output of each agent is calculated using state-space variables; hence, optimal state estimators are designed first for the proposed observer-based consensus PPF control. The consensus controller is numerically investigated for a flexible smart structure, i.e., a thin aluminum beam that is clamped at its both ends. Results demonstrate that the consensus law successfully imposes synchronization between the independently controlled agents, as the disagreements between the decentralized PPF controller variables converge to zero in a short time. The new consensus PPF controller brings extra robustness to vibration suppression in smart structures, where malfunctions of an agent can be compensated for by referencing the neighboring agents’ performance. This is demonstrated in the results by comparing the new controller with former centralized PPF approach.

  1. Physical properties of simulated galaxy populations at z = 2 - I. Effect of metal-line cooling and feedback from star formation and AGN

    NASA Astrophysics Data System (ADS)

    Haas, Marcel R.; Schaye, Joop; Booth, C. M.; Dalla Vecchia, Claudio; Springel, Volker; Theuns, Tom; Wiersma, Robert P. C.

    2013-11-01

    We use hydrodynamical simulations from the OverWhelmingly Large Simulations (OWLS) project to investigate the dependence of the physical properties of galaxy populations at redshift 2 on metal-line cooling and feedback from star formation and active galactic nuclei (AGN). We find that if the sub-grid feedback from star formation is implemented kinetically, the feedback is only efficient if the initial wind velocity exceeds a critical value. This critical velocity increases with galaxy mass and also if metal-line cooling is included. This suggests that radiative losses quench the winds if their initial velocity is too low. If the feedback is efficient, then the star formation rate is inversely proportional to the amount of energy injected per unit stellar mass formed (which is proportional to the initial mass loading for a fixed wind velocity). This can be understood if the star formation is self-regulating, i.e. if the star formation rate (and thus the gas fraction) increases until the outflow rate balances the inflow rate. Feedback from AGN is efficient at high masses, while increasing the initial wind velocity with gas pressure or halo mass allows one to generate galaxy-wide outflows at all masses. Matching the observed galaxy mass function requires efficient feedback. In particular, the predicted faint-end slope is too steep unless we resort to highly mass loaded winds for low-mass objects. Such efficient feedback from low-mass galaxies (M* ≪ 1010 M⊙) also reduces the discrepancy with the observed specific star formation rates, which are higher than predicted unless the feedback transitions from highly efficient to inefficient just below M* ˜ 5 × 109 M⊙.

  2. Genetic structure of Tribolium castaneum (Coleptera: Tenebrionidae) populations in mills

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The red flour beetle, Tribolium castaneum, is primarily found associated with human structures such as wheat and rice mills, which are spatially isolated resource patches with apparently limited immigration that could produce genetically structured populations. We investigated genetic diversity and...

  3. Population Structure and Genetic Diversity of Native and Invasive Populations of Solanum rostratum (Solanaceae)

    PubMed Central

    Zhao, Jiali; Solís-Montero, Lislie; Lou, Anru; Vallejo-Marín, Mario

    2013-01-01

    Aims We investigate native and introduced populations of Solanum rostratum, an annual, self-compatible plant that has been introduced around the globe. This study is the first to compare the genetic diversity of Solanum rostratum between native and introduced populations. We aim to (1) determine the level of genetic diversity across the studied regions; (2) explore the likely origins of invasive populations in China; and (3) investigate whether there is the evidence of multiple introductions into China. Methods We genotyped 329 individuals at 10 microsatellite loci to determine the levels of genetic diversity and to investigate population structure of native and introduced populations of S. rostratum. We studied five populations in each of three regions across two continents: Mexico, the U.S.A. and China. Important Findings We found the highest genetic diversity among Mexican populations of S. rostratum. Genetic diversity was significantly lower in Chinese and U.S.A. populations, but we found no regional difference in inbreeding coefficients (FIS) or population differentiation (FST). Population structure analyses indicate that Chinese and U.S.A. populations are more closely related to each other than to sampled Mexican populations, revealing that introduced populations in China share an origin with the sampled U.S.A. populations. The distinctiveness between some introduced populations indicates multiple introductions of S. rostratum into China. PMID:24224008

  4. Population structure of a parasitic plant and its perennial host.

    PubMed

    Mutikainen, P; Koskela, T

    2002-10-01

    Characterization of host and parasite population genetic structure and estimation of gene flow among populations are essential for the understanding of parasite local adaptation and coevolutionary interactions between hosts and parasites. We examined two aspects of population structure in a parasitic plant, the greater dodder (Cuscuta europaea) and its host plant, the stinging nettle (Urtica dioica), using allozyme data from 12 host and eight parasite populations. First, we examined whether hosts exposed to parasitism in the past contain higher levels of genetic variation. Second, we examined whether host and parasite populations differ in terms of population structure and if their population structures are correlated. There was no evidence that host populations differed in terms of gene diversity or heterozygosity according to their history of parasitism. Host populations were genetically more differentiated (F(ST) = 0.032) than parasite populations (F(ST) = 0.009). Based on these F(ST) values, gene flow was high for both host and parasite. Such high levels of gene flow could counteract selection for local adaptation of the parasite. We found no significant correlation between geographic and genetic distance (estimated as pairwise F(ST)), either for the host or for the parasite. Furthermore, host and parasite genetic distance matrices were uncorrelated, suggesting that sites with genetically similar host populations are unlikely to have genetically similar parasite populations. PMID:12242649

  5. Population structure and genetic diversity of moose in Alaska.

    PubMed

    Schmidt, Jennifer I; Hundertmark, Kris J; Bowyer, R Terry; McCracken, Kevin G

    2009-01-01

    Moose (Alces alces) are highly mobile mammals that occur across arboreal regions of North America, Europe, and Asia. Alaskan moose (Alces alces gigas) range across much of Alaska and are primary herbivore consumers, exerting a prominent influence on ecosystem structure and functioning. Increased knowledge gained from population genetics provides insights into their population dynamics, history, and dispersal of these unique large herbivores and can aid in conservation efforts. We examined the genetic diversity and population structure of moose (n = 141) with 8 polymorphic microsatellites from 6 regions spanning much of Alaska. Expected heterozygosity was moderate (H(E) = 0.483-0.612), and private alleles ranged from 0 to 6. Both F(ST) and R(ST) indicated significant population structure (P < 0.001) with F(ST) < 0.109 and R(ST) < 0.125. Results of analyses from STRUCTURE indicated 2 prominent population groups, a mix of moose from the Yakutat and Tetlin regions versus all other moose, with slight substructure observed among the second population. Estimates of dispersal differed between analytical approaches, indicating a high level of historical or current gene flow. Mantel tests indicated that isolation-by-distance partially explained observed structure among moose populations (R(2) = 0.45, P < 0.01). Finally, there was no evidence of bottlenecks either at the population level or overall. We conclude that weak population structure occurs among moose in Alaska with population expansion from interior Alaska westward toward the coast.

  6. Extensive population genetic structure in the giraffe

    PubMed Central

    Brown, David M; Brenneman, Rick A; Koepfli, Klaus-Peter; Pollinger, John P; Milá, Borja; Georgiadis, Nicholas J; Louis, Edward E; Grether, Gregory F; Jacobs, David K; Wayne, Robert K

    2007-01-01

    Background A central question in the evolutionary diversification of large, widespread, mobile mammals is how substantial differentiation can arise, particularly in the absence of topographic or habitat barriers to dispersal. All extant giraffes (Giraffa camelopardalis) are currently considered to represent a single species classified into multiple subspecies. However, geographic variation in traits such as pelage pattern is clearly evident across the range in sub-Saharan Africa and abrupt transition zones between different pelage types are typically not associated with extrinsic barriers to gene flow, suggesting reproductive isolation. Results By analyzing mitochondrial DNA sequences and nuclear microsatellite loci, we show that there are at least six genealogically distinct lineages of giraffe in Africa, with little evidence of interbreeding between them. Some of these lineages appear to be maintained in the absence of contemporary barriers to gene flow, possibly by differences in reproductive timing or pelage-based assortative mating, suggesting that populations usually recognized as subspecies have a long history of reproductive isolation. Further, five of the six putative lineages also contain genetically discrete populations, yielding at least 11 genetically distinct populations. Conclusion Such extreme genetic subdivision within a large vertebrate with high dispersal capabilities is unprecedented and exceeds that of any other large African mammal. Our results have significant implications for giraffe conservation, and imply separate in situ and ex situ management, not only of pelage morphs, but also of local populations. PMID:18154651

  7. Evolutionary dynamics of general group interactions in structured populations

    NASA Astrophysics Data System (ADS)

    Li, Aming; Broom, Mark; Du, Jinming; Wang, Long

    2016-02-01

    The evolution of populations is influenced by many factors, and the simple classical models have been developed in a number of important ways. Both population structure and multiplayer interactions have been shown to significantly affect the evolution of important properties, such as the level of cooperation or of aggressive behavior. Here we combine these two key factors and develop the evolutionary dynamics of general group interactions in structured populations represented by regular graphs. The traditional linear and threshold public goods games are adopted as models to address the dynamics. We show that for linear group interactions, population structure can favor the evolution of cooperation compared to the well-mixed case, and we see that the more neighbors there are, the harder it is for cooperators to persist in structured populations. We further show that threshold group interactions could lead to the emergence of cooperation even in well-mixed populations. Here population structure sometimes inhibits cooperation for the threshold public goods game, where depending on the benefit to cost ratio, the outcomes are bistability or a monomorphic population of defectors or cooperators. Our results suggest, counterintuitively, that structured populations are not always beneficial for the evolution of cooperation for nonlinear group interactions.

  8. Evolutionary dynamics of general group interactions in structured populations.

    PubMed

    Li, Aming; Broom, Mark; Du, Jinming; Wang, Long

    2016-02-01

    The evolution of populations is influenced by many factors, and the simple classical models have been developed in a number of important ways. Both population structure and multiplayer interactions have been shown to significantly affect the evolution of important properties, such as the level of cooperation or of aggressive behavior. Here we combine these two key factors and develop the evolutionary dynamics of general group interactions in structured populations represented by regular graphs. The traditional linear and threshold public goods games are adopted as models to address the dynamics. We show that for linear group interactions, population structure can favor the evolution of cooperation compared to the well-mixed case, and we see that the more neighbors there are, the harder it is for cooperators to persist in structured populations. We further show that threshold group interactions could lead to the emergence of cooperation even in well-mixed populations. Here population structure sometimes inhibits cooperation for the threshold public goods game, where depending on the benefit to cost ratio, the outcomes are bistability or a monomorphic population of defectors or cooperators. Our results suggest, counterintuitively, that structured populations are not always beneficial for the evolution of cooperation for nonlinear group interactions. PMID:26986362

  9. Disentangling the effects of feedback structure and climate on Poaceae annual airborne pollen fluctuations and the possible consequences of climate change.

    PubMed

    García de León, David; García-Mozo, Herminia; Galán, Carmen; Alcázar, Purificación; Lima, Mauricio; González-Andújar, José L

    2015-10-15

    Pollen allergies are the most common form of respiratory allergic disease in Europe. Most studies have emphasized the role of environmental processes, as the drivers of airborne pollen fluctuations, implicitly considering pollen production as a random walk. This work shows that internal self-regulating processes of the plants (negative feedback) should be included in pollen dynamic systems in order to give a better explanation of the observed pollen temporal patterns. This article proposes a novel methodological approach based on dynamic systems to investigate the interaction between feedback structure of plant populations and climate in shaping long-term airborne Poaceae pollen fluctuations and to quantify the effects of climate change on future airborne pollen concentrations. Long-term historical airborne Poaceae pollen data (30 years) from Cordoba city (Southern Spain) were analyzed. A set of models, combining feedback structure, temperature and actual evapotranspiration effects on airborne Poaceae pollen were built and compared, using a model selection approach. Our results highlight the importance of first-order negative feedback and mean annual maximum temperature in driving airborne Poaceae pollen dynamics. The best model was used to predict the effects of climate change under two standardized scenarios representing contrasting temporal patterns of economic development and CO2 emissions. Our results predict an increase in pollen levels in southern Spain by 2070 ranging from 28.5% to 44.3%. The findings from this study provide a greater understanding of airborne pollen dynamics and how climate change might impact the future evolution of airborne Poaceae pollen concentrations and thus the future evolution of related pollen allergies.

  10. Disentangling the effects of feedback structure and climate on Poaceae annual airborne pollen fluctuations and the possible consequences of climate change.

    PubMed

    García de León, David; García-Mozo, Herminia; Galán, Carmen; Alcázar, Purificación; Lima, Mauricio; González-Andújar, José L

    2015-10-15

    Pollen allergies are the most common form of respiratory allergic disease in Europe. Most studies have emphasized the role of environmental processes, as the drivers of airborne pollen fluctuations, implicitly considering pollen production as a random walk. This work shows that internal self-regulating processes of the plants (negative feedback) should be included in pollen dynamic systems in order to give a better explanation of the observed pollen temporal patterns. This article proposes a novel methodological approach based on dynamic systems to investigate the interaction between feedback structure of plant populations and climate in shaping long-term airborne Poaceae pollen fluctuations and to quantify the effects of climate change on future airborne pollen concentrations. Long-term historical airborne Poaceae pollen data (30 years) from Cordoba city (Southern Spain) were analyzed. A set of models, combining feedback structure, temperature and actual evapotranspiration effects on airborne Poaceae pollen were built and compared, using a model selection approach. Our results highlight the importance of first-order negative feedback and mean annual maximum temperature in driving airborne Poaceae pollen dynamics. The best model was used to predict the effects of climate change under two standardized scenarios representing contrasting temporal patterns of economic development and CO2 emissions. Our results predict an increase in pollen levels in southern Spain by 2070 ranging from 28.5% to 44.3%. The findings from this study provide a greater understanding of airborne pollen dynamics and how climate change might impact the future evolution of airborne Poaceae pollen concentrations and thus the future evolution of related pollen allergies. PMID:26026414

  11. A Multi-Mode Blade Damping Control using Shunted Piezoelectric Transducers with Active Feedback Structure

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Morrison, Carlos; Min, James

    2009-01-01

    The Structural Dynamics and. Mechanics branch (RXS) is developing smart adaptive structures to improve fan blade damping at resonances using piezoelectric (PE) transducers. In this presentation, only one shunted PE transducer was used to demonstrate active control of multi-mode blade resonance damping on a titanium alloy (Ti-6A1-4V) flat plate model, regardless of bending, torsion, and 2-stripe modes. This work would have a significant impact on the conventional passive shunt damping world because the standard feedback control design tools can now be used to design and implement electric shunt for vibration control. In other words, the passive shunt circuit components using massive inductors and. resistors for multi-mode resonance control can be replaced with digital codes. Furthermore, this active approach with multi patches can simultaneously control several modes in the engine operating range. Dr. Benjamin Choi presented the analytical and experimental results from this work at the Propulsion-Safety and. Affordable Readiness (P-SAR) Conference in March, 2009.

  12. Selection of Cooperation in Spatially Structured Populations

    NASA Astrophysics Data System (ADS)

    Yang, Hyunmo; Ghim, Cheol-Min

    The social dilemma games give rise to an emergence of cooperation in which altruistic individuals survive the natural selection at higher rate than random chance. We try to extend our understanding of this spatial reciprocity by including the impact of degree-degree correlation on the propensity toward prosocial behaviour in an otherwise well-mixed population. In a stochastic death-birth process with weak selection, we find that the disassortative degree mixing, or negative correlation between the degrees of neighbouring nodes significantly promotes the fixation of cooperators whereas the assortative mixing acts to suppress it. This is consistent with the fact that the spatial heterogeneity weakens the average tendency of a population to cooperate, which we describe in a unified scheme of the effective isothermality in coarse-grained networks. We also discuss the individual-level incentives that indirectly foster restructuring the social networks toward the more cooperative topologies.

  13. [Marriage structure of Yakut populations: migrations].

    PubMed

    Kucher, A I; Danilova, A L; Koneva, L A; Nogovitsina, A N

    2010-05-01

    Rural and urban settlements of the Republic of Sakha (Yakutia) are characterized by intense marriage migrations: both indigenous residents of different uluses (districts) of the republic (7-30%) and migrants from outside Yakutia (7-29%) contract marriages in five administrative centers analyzed in this respect. All the populations studied are characterized by a wide geographic range of the birthplaces of persons contracted marriages there (from 14 to 24 uluses of Yakutia), without any predominant migration flow from one district to another. The proportion of homolocal marriages among indigenous ethnic groups (Evenks, Evens, and Yukagirs) is as high as 75-100%; this proportion among Yakuts varies from 26 to 68%; heterolocal marriages are more characteristic of Russian immigrants (41-95%). Positive assortative marriages among persons with the same birthplaces have been found in all populations except for Momsky ulus. PMID:20583606

  14. Auditory Feedback in Music Performance: The Role of Melodic Structure and Musical Skill

    ERIC Educational Resources Information Center

    Pfordresher, Peter Q.

    2005-01-01

    Five experiments explored whether fluency in musical sequence production relies on matches between the contents of auditory feedback and the planned outcomes of actions. Participants performed short melodies from memory on a keyboard while musical pitches that sounded in synchrony with each keypress (feedback contents) were altered. Results…

  15. Audio Feedback -- Better Feedback?

    ERIC Educational Resources Information Center

    Voelkel, Susanne; Mello, Luciane V.

    2014-01-01

    National Student Survey (NSS) results show that many students are dissatisfied with the amount and quality of feedback they get for their work. This study reports on two case studies in which we tried to address these issues by introducing audio feedback to one undergraduate (UG) and one postgraduate (PG) class, respectively. In case study one…

  16. Microsatellite analysis of genetic diversity and population structure of Arabian horse populations.

    PubMed

    Khanshour, Anas; Conant, Eleanore; Juras, Rytis; Cothran, Ernest Gus

    2013-01-01

    The Arabian horse ignites imagination throughout the world. Populations of this breed exist in many countries, and recent genetic work has examined the diversity and ancestry of a few of these populations in isolation. Here, we explore 7 different populations of Arabians represented by 682 horses. Three of these are Middle Eastern populations from near the historical origin of the breed, including Syrian, Persian, and Saudi Arabian. The remaining Western populations are found in Europe (the Shagya Arabian and Polish Arabian) and in America (American Arabian). Analysis of genetic structure was carried out using 15 microsatellite loci. Genetic distances, analysis of molecular variance, factorial correspondence analysis, and a Bayesian method were applied. The results consistently show higher level of diversity within the Middle Eastern populations than the Western populations. The Western Arabian populations were the main source among population variation. Genetic differentiation was not strong among all Middle Eastern populations, but all American Arabians showed differentiation from Middle Eastern populations and were somewhat uniform among themselves. Here, we explore the diversities of many different populations of Arabian horses and find that populations not from the Middle East have noticeably lower levels of diversity, which may adversely affect the health of these populations.

  17. Microsatellite analysis of genetic diversity and population structure of Arabian horse populations.

    PubMed

    Khanshour, Anas; Conant, Eleanore; Juras, Rytis; Cothran, Ernest Gus

    2013-01-01

    The Arabian horse ignites imagination throughout the world. Populations of this breed exist in many countries, and recent genetic work has examined the diversity and ancestry of a few of these populations in isolation. Here, we explore 7 different populations of Arabians represented by 682 horses. Three of these are Middle Eastern populations from near the historical origin of the breed, including Syrian, Persian, and Saudi Arabian. The remaining Western populations are found in Europe (the Shagya Arabian and Polish Arabian) and in America (American Arabian). Analysis of genetic structure was carried out using 15 microsatellite loci. Genetic distances, analysis of molecular variance, factorial correspondence analysis, and a Bayesian method were applied. The results consistently show higher level of diversity within the Middle Eastern populations than the Western populations. The Western Arabian populations were the main source among population variation. Genetic differentiation was not strong among all Middle Eastern populations, but all American Arabians showed differentiation from Middle Eastern populations and were somewhat uniform among themselves. Here, we explore the diversities of many different populations of Arabian horses and find that populations not from the Middle East have noticeably lower levels of diversity, which may adversely affect the health of these populations. PMID:23450090

  18. The population genomics of begomoviruses: global scale population structure and gene flow

    PubMed Central

    2010-01-01

    Background The rapidly growing availability of diverse full genome sequences from across the world is increasing the feasibility of studying the large-scale population processes that underly observable pattern of virus diversity. In particular, characterizing the genetic structure of virus populations could potentially reveal much about how factors such as geographical distributions, host ranges and gene flow between populations combine to produce the discontinuous patterns of genetic diversity that we perceive as distinct virus species. Among the richest and most diverse full genome datasets that are available is that for the dicotyledonous plant infecting genus, Begomovirus, in the Family Geminiviridae. The begomoviruses all share the same whitefly vector, are highly recombinogenic and are distributed throughout tropical and subtropical regions where they seriously threaten the food security of the world's poorest people. Results We focus here on using a model-based population genetic approach to identify the genetically distinct sub-populations within the global begomovirus meta-population. We demonstrate the existence of at least seven major sub-populations that can further be sub-divided into as many as thirty four significantly differentiated and genetically cohesive minor sub-populations. Using the population structure framework revealed in the present study, we further explored the extent of gene flow and recombination between genetic populations. Conclusions Although geographical barriers are apparently the most significant underlying cause of the seven major population sub-divisions, within the framework of these sub-divisions, we explore patterns of gene flow to reveal that both host range differences and genetic barriers to recombination have probably been major contributors to the minor population sub-divisions that we have identified. We believe that the global Begomovirus population structure revealed here could facilitate population genetics studies

  19. How population structure shapes neighborhood segregation.

    PubMed

    Bruch, Elizabeth E

    2014-03-01

    This study provides a framework for understanding how population composition conditions the relationship between individuals' choices about group affiliation and aggregate patterns of social separation or integration. The substantive focus is the role of income inequality in racial residential segregation. The author identifies three population parameters--between-group inequality, within-group inequality, and relative group size--that determine how income inequality between race groups affects racial segregation. She uses data from the Panel Study of Income Dynamics to estimate models of individual-level residential mobility and incorporates these estimates into agent-based models. She then simulates segregation dynamics under alternative assumptions about (1) the relative size of minority groups and (2) the degree of correlation between race and income among individuals. The author finds that income inequality can have offsetting effects at the high and low ends of the income distribution. She demonstrates the empirical relevance of the simulation results using fixed-effects, metro-level regressions applied to 1980-2000 U.S. census data.

  20. Population genetic structure of traditional populations in the Peruvian Central Andes and implications for South American population history.

    PubMed

    Cabana, Graciela S; Lewis, Cecil M; Tito, Raúl Y; Covey, R Alan; Cáceres, Angela M; Cruz, Augusto F De La; Durand, Diana; Housman, Genevieve; Hulsey, Brannon I; Iannacone, Gian Carlo; López, Paul W; Martínez, Rolando; Medina, Ángel; Dávila, Olimpio Ortega; Pinto, Karla Paloma Osorio; Santillán, Susan I Polo; Domínguez, Percy Rojas; Rubel, Meagan; Smith, Heather F; Smith, Silvia E; Massa, Verónica Rubín de Celis; Lizárraga, Beatriz; Stone, Anne C

    2014-01-01

    Molecular-based characterizations of Andean peoples are traditionally conducted in the service of elucidating continent-level evolutionary processes in South America. Consequently, genetic variation among "western" Andean populations is often represented in relation to variation among "eastern" Amazon and Orinoco River Basin populations. This west-east contrast in patterns of population genetic variation is typically attributed to large-scale phenomena, such as dual founder colonization events or differing long-term microevolutionary histories. However, alternative explanations that consider the nature and causes of population genetic diversity within the Andean region remain underexplored. Here we examine population genetic diversity in the Peruvian Central Andes using data from the mtDNA first hypervariable region and Y-chromosome short tandem repeats among 17 newly sampled populations and 15 published samples. Using this geographically comprehensive data set, we first reassessed the currently accepted pattern of western versus eastern population genetic structure, which our results ultimately reject: mtDNA population diversities were lower, rather than higher, within Andean versus eastern populations, and only highland Y-chromosomes exhibited significantly higher within-population diversities compared with eastern groups. Multiple populations, including several highland samples, exhibited low genetic diversities for both genetic systems. Second, we explored whether the implementation of Inca state and Spanish colonial policies starting at about ad 1400 could have substantially restructured population genetic variation and consequently constitute a primary explanation for the extant pattern of population diversity in the Peruvian Central Andes. Our results suggest that Peruvian Central Andean population structure cannot be parsimoniously explained as the sole outcome of combined Inca and Spanish policies on the region's population demography: highland populations

  1. Comparative population genetic structures and local adaptation of two mutualists.

    PubMed

    Anderson, Bruce; Olivieri, Isabelle; Lourmas, Mathieu; Stewart, Barbara A

    2004-08-01

    Similar patterns of dispersal and gene flow between closely associated organisms may promote local adaptation and coevolutionary processes. We compare the genetic structures of the two species of a plant genus (Roridula gorgonias and R. dentata) and their respective obligately associated hemipteran mutualists (Pameridea roridulae and P. marlothi) using allozymes. In addition, we determine whether genetic structure is related to differences in host choice by Pameridea. Allozyme variation was found to be very structured among plant populations but less so among hemipteran populations. Strong genetic structuring among hemipteran populations was only evident when large distances isolated the plant populations on which they live. Although genetic distances among plant populations were correlated with genetic distances among hemipteran populations, genetic distances of both plants and hemipterans were better correlated with geographic distance. Because Roridula and Pameridea have different scales of gene flow, adaptation at the local population level is unlikely. However, the restricted gene flow of both plants and hemipterans could enable adaptation to occur at a regional level. In choice experiments, the hemipteran (Pameridea) has a strong preference for its carnivorous host plant (Roridula) above unrelated host plants. Pameridea also prefers its host species to its closely related sister species. Specialization at the specific level is likely to reinforce cospeciation processes in this mutualism. However, Pameridea does not exhibit intraspecific preferences toward plants from their natal populations above plants from isolated, non-natal populations. PMID:15446426

  2. Population Genetic Structure of Aedes fluviatilis (Diptera: Culicidae)

    PubMed Central

    Multini, Laura Cristina; Suesdek, Lincoln; Marrelli, Mauro Toledo

    2016-01-01

    Although Aedes fluviatilis is an anthropophilic mosquito found abundantly in urban environments, its biology, epidemiological potential and genetic characteristics are poorly understood. Climate change and urbanization processes that result in environmental modifications benefit certain anthropophilic mosquito species such as Ae. fluviatilis, greatly increasing their abundance in urban areas. To gain a better understanding of whether urbanization processes modulate the genetic structure of this species in the city of São Paulo, we used eight microsatellite loci to genetically characterize Ae. fluviatilis populations collected in nine urban parks in the city of São Paulo. Our results show that there is high gene flow among the populations of this species, heterozygosity deficiency and low genetic structure and that the species may have undergone a recent population expansion. There are two main hypotheses to explain these findings: (i) Ae. fluviatilis populations have undergone a population expansion as a result of urbanization; and (ii) as urbanization of the city of São Paulo occurred recently and was quite intense, the structuring of these populations cannot be observed yet, apart from in the populations of Ibirapuera and Piqueri parks, where the first signs of structuring have appeared. We believe that the expansion found in Ae. fluviatilis populations is probably correlated with the unplanned urbanization of the city of São Paulo, which transformed green areas into urbanized areas, as well as the increasing population density in the city. PMID:27598889

  3. Population Genetic Structure of Aedes fluviatilis (Diptera: Culicidae).

    PubMed

    Multini, Laura Cristina; Wilke, André Barretto Bruno; Suesdek, Lincoln; Marrelli, Mauro Toledo

    2016-01-01

    Although Aedes fluviatilis is an anthropophilic mosquito found abundantly in urban environments, its biology, epidemiological potential and genetic characteristics are poorly understood. Climate change and urbanization processes that result in environmental modifications benefit certain anthropophilic mosquito species such as Ae. fluviatilis, greatly increasing their abundance in urban areas. To gain a better understanding of whether urbanization processes modulate the genetic structure of this species in the city of São Paulo, we used eight microsatellite loci to genetically characterize Ae. fluviatilis populations collected in nine urban parks in the city of São Paulo. Our results show that there is high gene flow among the populations of this species, heterozygosity deficiency and low genetic structure and that the species may have undergone a recent population expansion. There are two main hypotheses to explain these findings: (i) Ae. fluviatilis populations have undergone a population expansion as a result of urbanization; and (ii) as urbanization of the city of São Paulo occurred recently and was quite intense, the structuring of these populations cannot be observed yet, apart from in the populations of Ibirapuera and Piqueri parks, where the first signs of structuring have appeared. We believe that the expansion found in Ae. fluviatilis populations is probably correlated with the unplanned urbanization of the city of São Paulo, which transformed green areas into urbanized areas, as well as the increasing population density in the city. PMID:27598889

  4. Host genetics and population structure effects on parasitic disease.

    PubMed

    Williams-Blangero, Sarah; Criscione, Charles D; VandeBerg, John L; Correa-Oliveira, Rodrigo; Williams, Kimberly D; Subedi, Janardan; Kent, Jack W; Williams, Jeff; Kumar, Satish; Blangero, John

    2012-03-19

    Host genetic factors exert significant influences on differential susceptibility to many infectious diseases. In addition, population structure of both host and parasite may influence disease distribution patterns. In this study, we assess the effects of population structure on infectious disease in two populations in which host genetic factors influencing susceptibility to parasitic disease have been extensively studied. The first population is the Jirel population of eastern Nepal that has been the subject of research on the determinants of differential susceptibility to soil-transmitted helminth infections. The second group is a Brazilian population residing in an area endemic for Trypanosoma cruzi infection that has been assessed for genetic influences on differential disease progression in Chagas disease. For measures of Ascaris worm burden, within-population host genetic effects are generally more important than host population structure factors in determining patterns of infectious disease. No significant influences of population structure on measures associated with progression of cardiac disease in individuals who were seropositive for T. cruzi infection were found.

  5. Comparative population genetic structures and local adaptation of two mutualists.

    PubMed

    Anderson, Bruce; Olivieri, Isabelle; Lourmas, Mathieu; Stewart, Barbara A

    2004-08-01

    Similar patterns of dispersal and gene flow between closely associated organisms may promote local adaptation and coevolutionary processes. We compare the genetic structures of the two species of a plant genus (Roridula gorgonias and R. dentata) and their respective obligately associated hemipteran mutualists (Pameridea roridulae and P. marlothi) using allozymes. In addition, we determine whether genetic structure is related to differences in host choice by Pameridea. Allozyme variation was found to be very structured among plant populations but less so among hemipteran populations. Strong genetic structuring among hemipteran populations was only evident when large distances isolated the plant populations on which they live. Although genetic distances among plant populations were correlated with genetic distances among hemipteran populations, genetic distances of both plants and hemipterans were better correlated with geographic distance. Because Roridula and Pameridea have different scales of gene flow, adaptation at the local population level is unlikely. However, the restricted gene flow of both plants and hemipterans could enable adaptation to occur at a regional level. In choice experiments, the hemipteran (Pameridea) has a strong preference for its carnivorous host plant (Roridula) above unrelated host plants. Pameridea also prefers its host species to its closely related sister species. Specialization at the specific level is likely to reinforce cospeciation processes in this mutualism. However, Pameridea does not exhibit intraspecific preferences toward plants from their natal populations above plants from isolated, non-natal populations.

  6. Isonymy and the genetic structure of Albanian populations.

    PubMed

    Mikerezi, Ilia; Pizzetti, Paola; Lucchetti, Enzo; Ekonomi, Milva

    2003-12-01

    It is well known that in systems of surname transmission through the paternal line, surnames simulate neutral gene alleles belonging to the Y chromosome. This property of surnames was used to analyze the genetic structure of Albanian populations. Two large samples of surnames belonging to two different periods of time were analyzed. The analysis of indicators of population structure showed that geographical distance has an important effect on surname distribution. It seems that isolation by distance and genetic drift have been still important factors in the determination of the genetic structure of the Albanian population. PMID:14746137

  7. Determining population structure and hybridization for two iris species

    PubMed Central

    Hamlin, Jennafer A P; Arnold, Michael L

    2014-01-01

    Identifying processes that promote or limit gene flow can help define the ecological and evolutionary history of a species. Furthermore, defining those factors that make up “species boundaries” can provide a definition of the independent evolutionary trajectories of related taxa. For many species, the historic processes that account for their distribution of genetic variation remain unresolved. In this study, we examine the geographic distribution of genetic diversity for two species of Louisiana Irises, Iris brevicaulis and Iris fulva. Specifically, we asked how populations are structured and if population structure coincides with potential barriers to gene flow. We also asked whether there is evidence of hybridization between these two species outside Louisiana hybrid zones. We used a genotyping-by-sequencing approach and sampled a large number of single nucleotide polymorphisms across these species' genomes. Two different population assignment methods were used to resolve population structure in I. brevicaulis; however, there was considerably less population structure in I. fulva. We used a species tree approach to infer phylogenies both within and between populations and species. For I. brevicaulis, the geography of the collection locality was reflected in the phylogeny. The I. fulva phylogeny reflected much less structure than detected for I. brevicaulis. Lastly, combining both species into a phylogenetic analysis resolved two of six populations of I. brevicaulis that shared alleles with I. fulva. Taken together, our results suggest major differences in the level and pattern of connectivity among populations of these two Louisiana Iris species. PMID:24683457

  8. Evolution of extortion in structured populations.

    PubMed

    Szolnoki, Attila; Perc, Matjaž

    2014-02-01

    Extortion strategies can dominate any opponent in an iterated prisoner's dilemma game. But if players are able to adopt the strategies performing better, extortion becomes widespread and evolutionary unstable. It may sometimes act as a catalyst for the evolution of cooperation, and it can also emerge in interactions between two populations, yet it is not the evolutionarily stable outcome. Here we revisit these results in the realm of spatial games. We find that pairwise imitation and birth-death dynamics return known evolutionary outcomes. Myopic best response strategy updating, on the other hand, reveals counterintuitive solutions. Defectors and extortioners coarsen spontaneously, which allows cooperators to prevail even at prohibitively high temptations to defect. Here extortion strategies play the role of a Trojan horse. They may emerge among defectors by chance, and once they do, cooperators become viable as well. These results are independent of the interaction topology, and they highlight the importance of coarsening, checkerboard ordering, and best response updating in evolutionary games.

  9. Evolution of extortion in structured populations

    NASA Astrophysics Data System (ADS)

    Szolnoki, Attila; Perc, Matjaž

    2014-02-01

    Extortion strategies can dominate any opponent in an iterated prisoner's dilemma game. But if players are able to adopt the strategies performing better, extortion becomes widespread and evolutionary unstable. It may sometimes act as a catalyst for the evolution of cooperation, and it can also emerge in interactions between two populations, yet it is not the evolutionarily stable outcome. Here we revisit these results in the realm of spatial games. We find that pairwise imitation and birth-death dynamics return known evolutionary outcomes. Myopic best response strategy updating, on the other hand, reveals counterintuitive solutions. Defectors and extortioners coarsen spontaneously, which allows cooperators to prevail even at prohibitively high temptations to defect. Here extortion strategies play the role of a Trojan horse. They may emerge among defectors by chance, and once they do, cooperators become viable as well. These results are independent of the interaction topology, and they highlight the importance of coarsening, checkerboard ordering, and best response updating in evolutionary games.

  10. Online screening and feedback to increase help-seeking for mental health problems: population-based randomised controlled trial

    PubMed Central

    Calear, Alison L.; Sunderland, Matthew; Carragher, Natacha; Brewer, Jacqueline L.

    2016-01-01

    Background Community-based screening for mental health problems may increase service use through feedback to individuals about their severity of symptoms and provision of contacts for appropriate services. Aims The effect of symptom feedback on service use was assessed. Secondary outcomes included symptom change and study attrition. Method Using online recruitment, 2773 participants completed a comprehensive survey including screening for depression (n=1366) or social anxiety (n=1407). Across these two versions, approximately half (n=1342) of the participants were then randomly allocated to receive tailored feedback. Participants were reassessed after 3 months (Australian New Zealand Clinical Trials Registry ANZCTR12614000324617). Results A negative effect of providing social anxiety feedback to individuals was observed, with significant reductions in professional service use. Greater attrition and lower intentions to seek help were also observed after feedback. Conclusions Online mental health screening with feedback is not effective for promoting professional service use. Alternative models of online screening require further investigation. Declaration of interest None. Copyright and usage © The Royal College of Psychiatrists 2016. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) licence. PMID:27703756

  11. Predicting meningococcal disease outbreaks in structured populations.

    PubMed

    Ranta, J; Mäkelä, P H; Arjas, E

    2004-03-30

    Rational decision making on whether some form of intervention would be necessary to control the spread of a meningococcal epidemic is based on predictions concerning its potential natural progression. Unfortunately, reliable predictions are difficult to make during the early stages of an outbreak. A stochastic discrete time epidemic model was applied to adaptively predict the development of outbreaks of meningococcal disease in 'closed' populations such as military garrisons or boarding schools, which are further divided into subgroups called 'units'. The performance of the adaptive method was assessed by using 3 simulated epidemics representing substantially different realizations in a 'garrison' of 20 units, with 68 men in each. Predictions of the weekly number of disease cases, of the number of carriers, and of the number of new infections were computed. Simulations suggest that predictions based only on the observed numbers of disease cases are generally inaccurate. These predictions can be improved if temporal observations on asymptomatic carriers in different units are utilized together with observed time series of the disease. A sample of 15 per cent from all units can be sufficient for a major improvement if the alternative is to obtain a full sample of only some units. Exploiting fully such information requires computer intensive Markov chain Monte Carlo methods. PMID:15027081

  12. HOW POPULATION STRUCTURE SHAPES NEIGHBORHOOD SEGREGATION*

    PubMed Central

    Bruch, Elizabeth E.

    2014-01-01

    This study investigates how choices about social affiliation based on one attribute can exacerbate or attenuate segregation on another correlated attribute. The specific application is the role of racial and economic factors in generating patterns of racial residential segregation. I identify three population parameters—between-group inequality, within-group inequality, and relative group size—that determine how income inequality between race groups affects racial segregation. I use data from the Panel Study of Income Dynamics to estimate models of individual-level residential mobility, and incorporate these estimates into agent-based models. I then simulate segregation dynamics under alternative assumptions about: (1) the relative size of minority groups; and (2) the degree of correlation between race and income among individuals. I find that income inequality can have offsetting effects at the high and low ends of the income distribution. I demonstrate the empirical relevance of the simulation results using fixed-effects, metro-level regressions applied to 1980-2000 U.S. Census data. PMID:25009360

  13. Evolution of extortion in structured populations.

    PubMed

    Szolnoki, Attila; Perc, Matjaž

    2014-02-01

    Extortion strategies can dominate any opponent in an iterated prisoner's dilemma game. But if players are able to adopt the strategies performing better, extortion becomes widespread and evolutionary unstable. It may sometimes act as a catalyst for the evolution of cooperation, and it can also emerge in interactions between two populations, yet it is not the evolutionarily stable outcome. Here we revisit these results in the realm of spatial games. We find that pairwise imitation and birth-death dynamics return known evolutionary outcomes. Myopic best response strategy updating, on the other hand, reveals counterintuitive solutions. Defectors and extortioners coarsen spontaneously, which allows cooperators to prevail even at prohibitively high temptations to defect. Here extortion strategies play the role of a Trojan horse. They may emerge among defectors by chance, and once they do, cooperators become viable as well. These results are independent of the interaction topology, and they highlight the importance of coarsening, checkerboard ordering, and best response updating in evolutionary games. PMID:25353531

  14. Four perspectives on climate feedbacks

    NASA Astrophysics Data System (ADS)

    Feldl, N.; Roe, G. H.

    2013-08-01

    The spatial pattern of climate feedbacks depends on how the feedbacks are defined. We employ an idealized aquaplanet simulation with radiative kernels diagnosed for the precise model setup and characterize the meridional structure of feedbacks under four different definitions: local feedbacks, global feedbacks, nondimensional feedback factors, and relative humidity feedbacks. First, the spatial pattern of the reference response (i.e., the Planck feedback) is found to vary with definition, largely as a consequence of polar-amplified warming, which affects other high-latitude feedbacks as well. Second, locally defined feedbacks allow for decomposition of the surface temperature response as a function of feedbacks, forcing, and heat transport. Third, different insights into the dynamical and thermodynamical underpinnings of the subtropical moisture response are gained by comparing different versions of humidity feedbacks. Thus, alternative approaches to the conventional, global definition of feedbacks offer several advantages for understanding patterns of warming and, ultimately, regional climate predictability.

  15. Social and population structure in the ant Cataglyphis emmae.

    PubMed

    Jowers, Michael J; Leniaud, Laurianne; Cerdá, Xim; Alasaad, Samer; Caut, Stephane; Amor, Fernando; Aron, Serge; Boulay, Raphaël R

    2013-01-01

    Dispersal has consequences not only for individual fitness, but also for population dynamics, population genetics and species distribution. Social Hymenoptera show two contrasting colony reproductive strategies, dependent and independent colony foundation modes, and these are often associated to the population structures derived from inter and intra-population gene flow processes conditioned by alternative dispersal strategies. Here we employ microsatellite and mitochondrial markers to investigate the population and social genetic structure and dispersal patterns in the ant Cataglyphis emmae at both, local and regional scales. We find that C. emmae is monogynous and polyandrous. Lack of detection of any population viscosity and population structure with nuclear markers at the local scale suggests efficient dispersal, in agreement with a lack of inbreeding. Contrasting demographic differences before and during the mating seasons suggest that C. emmae workers raise sexuals in peripheric nest chambers to reduce intracolonial conflicts. The high genetic differentiation recovered from the mtDNA haplotypes, together with the significant correlation of such to geographic distance, and presence of new nuclear alleles between areas (valleys) suggest long-term historical isolation between these regions, indicative of limited dispersal at the regional scale. Our findings on the ecological, social and population structure of this species increases our understanding of the patterns and processes involved under independent colony foundation. PMID:24039827

  16. Social and Population Structure in the Ant Cataglyphis emmae

    PubMed Central

    Jowers, Michael J.; Leniaud, Laurianne; Cerdá, Xim; Alasaad, Samer; Caut, Stephane; Amor, Fernando; Aron, Serge; Boulay, Raphaël R.

    2013-01-01

    Dispersal has consequences not only for individual fitness, but also for population dynamics, population genetics and species distribution. Social Hymenoptera show two contrasting colony reproductive strategies, dependent and independent colony foundation modes, and these are often associated to the population structures derived from inter and intra-population gene flow processes conditioned by alternative dispersal strategies. Here we employ microsatellite and mitochondrial markers to investigate the population and social genetic structure and dispersal patterns in the ant Cataglyphis emmae at both, local and regional scales. We find that C. emmae is monogynous and polyandrous. Lack of detection of any population viscosity and population structure with nuclear markers at the local scale suggests efficient dispersal, in agreement with a lack of inbreeding. Contrasting demographic differences before and during the mating seasons suggest that C. emmae workers raise sexuals in peripheric nest chambers to reduce intracolonial conflicts. The high genetic differentiation recovered from the mtDNA haplotypes, together with the significant correlation of such to geographic distance, and presence of new nuclear alleles between areas (valleys) suggest long-term historical isolation between these regions, indicative of limited dispersal at the regional scale. Our findings on the ecological, social and population structure of this species increases our understanding of the patterns and processes involved under independent colony foundation. PMID:24039827

  17. Earthworm ecology affects the population structure of their Verminephrobacter symbionts.

    PubMed

    Viana, Flávia; Jensen, Christopher Erik; Macey, Michael; Schramm, Andreas; Lund, Marie Braad

    2016-05-01

    Earthworms carry species-specific Verminephrobacter symbionts in their nephridia (excretory organs). The symbionts are vertically transmitted via the cocoon, can only colonize the host during early embryonic development, and have co-speciated with their host for about 100 million years. Although several studies have addressed Verminephrobacter diversity between worm species, the intra-species diversity of the symbiont population has never been investigated. In this study, symbiont population structure was examined by using a multi-locus sequence typing (MLST) approach on Verminephrobacter isolated from two contrasting ecological types of earthworm hosts: the high population density, fast reproducing compost worms, Eisenia andrei and Eisenia fetida, and the low-density, slow reproducing Aporrectodea tuberculata, commonly found in garden soils. Three distinct populations were investigated for both types and, according to MLST analysis of 193 Verminephrobacter isolates, the symbiont community in each worm individual was very homogeneous. The more solitary A. tuberculata carried unique symbiont populations in 9 out of 10 host individuals, whereas the symbiont populations in the social compost worms were homogeneous across host individuals from the same population. These data suggested that host ecology shaped the population structure of Verminephrobacter symbionts. The homogeneous symbiont populations in the compost worms led to the hypothesis that Verminephrobacter could be transferred bi-parentally or via leaky horizontal transmission in high-density, frequently mating worm populations. PMID:27040820

  18. Genetic Variation and Population Structure in Native Americans

    PubMed Central

    Ramachandran, Sohini; Ray, Nicolas; Bedoya, Gabriel; Rojas, Winston; Parra, Maria V; Molina, Julio A; Gallo, Carla; Mazzotti, Guido; Poletti, Giovanni; Hill, Kim; Hurtado, Ana M; Labuda, Damian; Klitz, William; Barrantes, Ramiro; Bortolini, Maria Cátira; Salzano, Francisco M; Petzl-Erler, Maria Luiza; Tsuneto, Luiza T; Llop, Elena; Rothhammer, Francisco; Excoffier, Laurent; Feldman, Marcus W; Rosenberg, Noah A; Ruiz-Linares, Andrés

    2007-01-01

    We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians—signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1) a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2) a relative lack of differentiation between Mesoamerican and Andean populations, (3) a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4) a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas. PMID:18039031

  19. Genetic variation and population structure in native Americans.

    PubMed

    Wang, Sijia; Lewis, Cecil M; Jakobsson, Mattias; Ramachandran, Sohini; Ray, Nicolas; Bedoya, Gabriel; Rojas, Winston; Parra, Maria V; Molina, Julio A; Gallo, Carla; Mazzotti, Guido; Poletti, Giovanni; Hill, Kim; Hurtado, Ana M; Labuda, Damian; Klitz, William; Barrantes, Ramiro; Bortolini, Maria Cátira; Salzano, Francisco M; Petzl-Erler, Maria Luiza; Tsuneto, Luiza T; Llop, Elena; Rothhammer, Francisco; Excoffier, Laurent; Feldman, Marcus W; Rosenberg, Noah A; Ruiz-Linares, Andrés

    2007-11-01

    We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians--signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1) a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2) a relative lack of differentiation between Mesoamerican and Andean populations, (3) a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4) a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas. PMID:18039031

  20. Plasmodium vivax Diversity and Population Structure across Four Continents

    PubMed Central

    Koepfli, Cristian; Rodrigues, Priscila T.; Antao, Tiago; Orjuela-Sánchez, Pamela; Van den Eede, Peter; Gamboa, Dionicia; van Hong, Nguyen; Bendezu, Jorge; Erhart, Annette; Barnadas, Céline; Ratsimbasoa, Arsène; Menard, Didier; Severini, Carlo; Menegon, Michela; Nour, Bakri Y. M.; Karunaweera, Nadira; Mueller, Ivo; Ferreira, Marcelo U.; Felger, Ingrid

    2015-01-01

    Plasmodium vivax is the geographically most widespread human malaria parasite. To analyze patterns of microsatellite diversity and population structure across countries of different transmission intensity, genotyping data from 11 microsatellite markers was either generated or compiled from 841 isolates from four continents collected in 1999–2008. Diversity was highest in South-East Asia (mean allelic richness 10.0–12.8), intermediate in the South Pacific (8.1–9.9) Madagascar and Sudan (7.9–8.4), and lowest in South America and Central Asia (5.5–7.2). A reduced panel of only 3 markers was sufficient to identify approx. 90% of all haplotypes in South Pacific, African and SE-Asian populations, but only 60–80% in Latin American populations, suggesting that typing of 2–6 markers, depending on the level of endemicity, is sufficient for epidemiological studies. Clustering analysis showed distinct clusters in Peru and Brazil, but little sub-structuring was observed within Africa, SE-Asia or the South Pacific. Isolates from Uzbekistan were exceptional, as a near-clonal parasite population was observed that was clearly separated from all other populations (FST>0.2). Outside Central Asia FST values were highest (0.11–0.16) between South American and all other populations, and lowest (0.04–0.07) between populations from South-East Asia and the South Pacific. These comparisons between P. vivax populations from four continents indicated that not only transmission intensity, but also geographical isolation affect diversity and population structure. However, the high effective population size results in slow changes of these parameters. This persistency must be taken into account when assessing the impact of control programs on the genetic structure of parasite populations. PMID:26125189

  1. Plasmodium vivax Diversity and Population Structure across Four Continents.

    PubMed

    Koepfli, Cristian; Rodrigues, Priscila T; Antao, Tiago; Orjuela-Sánchez, Pamela; Van den Eede, Peter; Gamboa, Dionicia; van Hong, Nguyen; Bendezu, Jorge; Erhart, Annette; Barnadas, Céline; Ratsimbasoa, Arsène; Menard, Didier; Severini, Carlo; Menegon, Michela; Nour, Bakri Y M; Karunaweera, Nadira; Mueller, Ivo; Ferreira, Marcelo U; Felger, Ingrid

    2015-01-01

    Plasmodium vivax is the geographically most widespread human malaria parasite. To analyze patterns of microsatellite diversity and population structure across countries of different transmission intensity, genotyping data from 11 microsatellite markers was either generated or compiled from 841 isolates from four continents collected in 1999-2008. Diversity was highest in South-East Asia (mean allelic richness 10.0-12.8), intermediate in the South Pacific (8.1-9.9) Madagascar and Sudan (7.9-8.4), and lowest in South America and Central Asia (5.5-7.2). A reduced panel of only 3 markers was sufficient to identify approx. 90% of all haplotypes in South Pacific, African and SE-Asian populations, but only 60-80% in Latin American populations, suggesting that typing of 2-6 markers, depending on the level of endemicity, is sufficient for epidemiological studies. Clustering analysis showed distinct clusters in Peru and Brazil, but little sub-structuring was observed within Africa, SE-Asia or the South Pacific. Isolates from Uzbekistan were exceptional, as a near-clonal parasite population was observed that was clearly separated from all other populations (FST>0.2). Outside Central Asia FST values were highest (0.11-0.16) between South American and all other populations, and lowest (0.04-0.07) between populations from South-East Asia and the South Pacific. These comparisons between P. vivax populations from four continents indicated that not only transmission intensity, but also geographical isolation affect diversity and population structure. However, the high effective population size results in slow changes of these parameters. This persistency must be taken into account when assessing the impact of control programs on the genetic structure of parasite populations.

  2. Statistical validation of structured population models for Daphnia magna

    PubMed Central

    Adoteye, Kaska; Banks, H.T.; Cross, Karissa; Eytcheson, Stephanie; Flores, Kevin B.; LeBlanc, Gerald A.; Nguyen, Timothy; Ross, Chelsea; Smith, Emmaline; Stemkovski, Michael; Stokely, Sarah

    2016-01-01

    In this study we use statistical validation techniques to verify density-dependent mechanisms hypothesized for populations of Daphnia magna. We develop structured population models that exemplify specific mechanisms, and use multi-scale experimental data in order to test their importance. We show that fecundity and survival rates are affected by both time-varying density-independent factors, such as age, and density-dependent factors, such as competition. We perform uncertainty analysis and show that our parameters are estimated with a high degree of confidence. Further, we perform a sensitivity analysis to understand how changes in fecundity and survival rates affect population size and age-structure. PMID:26092608

  3. Landscape structure and the genetic effects of a population collapse.

    PubMed

    Caplins, Serena A; Gilbert, Kimberly J; Ciotir, Claudia; Roland, Jens; Matter, Stephen F; Keyghobadi, Nusha

    2014-12-01

    Both landscape structure and population size fluctuations influence population genetics. While independent effects of these factors on genetic patterns and processes are well studied, a key challenge is to understand their interaction, as populations are simultaneously exposed to habitat fragmentation and climatic changes that increase variability in population size. In a population network of an alpine butterfly, abundance declined 60-100% in 2003 because of low over-winter survival. Across the network, mean microsatellite genetic diversity did not change. However, patch connectivity and local severity of the collapse interacted to determine allelic richness change within populations, indicating that patch connectivity can mediate genetic response to a demographic collapse. The collapse strongly affected spatial genetic structure, leading to a breakdown of isolation-by-distance and loss of landscape genetic pattern. Our study reveals important interactions between landscape structure and temporal demographic variability on the genetic diversity and genetic differentiation of populations. Projected future changes to both landscape and climate may lead to loss of genetic variability from the studied populations, and selection acting on adaptive variation will likely occur within the context of an increasing influence of genetic drift.

  4. Landscape structure and the genetic effects of a population collapse

    PubMed Central

    Caplins, Serena A.; Gilbert, Kimberly J.; Ciotir, Claudia; Roland, Jens; Matter, Stephen F.; Keyghobadi, Nusha

    2014-01-01

    Both landscape structure and population size fluctuations influence population genetics. While independent effects of these factors on genetic patterns and processes are well studied, a key challenge is to understand their interaction, as populations are simultaneously exposed to habitat fragmentation and climatic changes that increase variability in population size. In a population network of an alpine butterfly, abundance declined 60–100% in 2003 because of low over-winter survival. Across the network, mean microsatellite genetic diversity did not change. However, patch connectivity and local severity of the collapse interacted to determine allelic richness change within populations, indicating that patch connectivity can mediate genetic response to a demographic collapse. The collapse strongly affected spatial genetic structure, leading to a breakdown of isolation-by-distance and loss of landscape genetic pattern. Our study reveals important interactions between landscape structure and temporal demographic variability on the genetic diversity and genetic differentiation of populations. Projected future changes to both landscape and climate may lead to loss of genetic variability from the studied populations, and selection acting on adaptive variation will likely occur within the context of an increasing influence of genetic drift. PMID:25320176

  5. Spatial structuring within a reservoir fish population: implications for management

    USGS Publications Warehouse

    Stewart, David R.; Long, James M.; Shoup, Daniel E.

    2014-01-01

    Spatial structuring in reservoir fish populations can exist because of environmental gradients, species-specific behaviour, or even localised fishing effort. The present study investigated whether white crappie exhibited evidence of improved population structure where the northern more productive half of a lake is closed to fishing to provide waterfowl hunting opportunities. Population response to angling was modelled for each substock of white crappie (north (protected) and south (unprotected) areas), the entire lake (single-stock model) and by combining simulations of the two independent substock models (additive model). White crappie in the protected area were more abundant, consisting of larger, older individuals, and exhibited a lower total annual mortality rate than in the unprotected area. Population modelling found that fishing mortality rates between 0.1 and 0.3 resulted in sustainable populations (spawning potential ratios (SPR) >0.30). The population in the unprotected area appeared to be more resilient (SPR > 0.30) at the higher fishing intensities (0.35–0.55). Considered additively, the whole-lake fishery appeared more resilient than when modelled as a single-panmictic stock. These results provided evidence of spatial structuring in reservoir fish populations, and we recommend model assessments used to guide management decisions should consider those spatial differences in other populations where they exist.

  6. Genetic diversity and population structure in contemporary house sparrow populations along an urbanization gradient

    PubMed Central

    Vangestel, C; Mergeay, J; Dawson, D A; Callens, T; Vandomme, V; Lens, L

    2012-01-01

    House sparrow (Passer domesticus) populations have suffered major declines in urban as well as rural areas, while remaining relatively stable in suburban ones. Yet, to date no exhaustive attempt has been made to examine how, and to what extent, spatial variation in population demography is reflected in genetic population structuring along contemporary urbanization gradients. Here we use putatively neutral microsatellite loci to study if and how genetic variation can be partitioned in a hierarchical way among different urbanization classes. Principal coordinate analyses did not support the hypothesis that urban/suburban and rural populations comprise two distinct genetic clusters. Comparison of FST values at different hierarchical scales revealed drift as an important force of population differentiation. Redundancy analyses revealed that genetic structure was strongly affected by both spatial variation and level of urbanization. The results shown here can be used as baseline information for future genetic monitoring programmes and provide additional insights into contemporary house sparrow dynamics along urbanization gradients. PMID:22588131

  7. Spatially explicit feedbacks between seagrass meadow structure, sediment and light: Habitat suitability for seagrass growth

    NASA Astrophysics Data System (ADS)

    Carr, Joel A.; D'Odorico, Paolo; McGlathery, Karen J.; Wiberg, Patricia L.

    2016-07-01

    In shallow coastal bays where nutrient loading and riverine inputs are low, turbidity, and the consequent light environment are controlled by resuspension of bed sediments due to wind-waves and tidal currents. High sediment resuspension and low light environments can limit benthic primary productivity; however, both currents and waves are affected by the presence of benthic plants such as seagrass. This feedback between the presence of benthic primary producers such as seagrass and the consequent light environment has been predicted to induce bistable dynamics locally. However, these vegetated areas influence a larger area than they footprint, including a barren adjacent downstream area which exhibits reduced shear stresses. Here we explore through modeling how the patchy structure of seagrass meadows on a landscape may affect sediment resuspension and the consequent light environment due to the presence of this sheltered region. Heterogeneous vegetation covers comprising a mosaic of randomly distributed patches were generated to investigate the effect of patch modified hydrodynamics. Actual cover of vegetation on the landscape was used to facilitate comparisons across landscape realizations. Hourly wave and current shear stresses on the landscape along with suspended sediment concentration and light attenuation characteristics were then calculated and spatially averaged to examine how actual cover and mean water depth affect the bulk sediment and light environment. The results indicate that an effective cover, which incorporates the sheltering area, has important controls on the distributions of shear stress, suspended sediment, light environment, and consequent seagrass habitat suitability. Interestingly, an optimal habitat occurs within a depth range where, if actual cover is reduced past some threshold, the bulk light environment would no longer favor seagrass growth.

  8. Spatially explicit feedbacks between seagrass meadow structure, sediment and light: Habitat suitability for seagrass growth

    USGS Publications Warehouse

    Carr, Joel; D'Odorico, Paul; McGlathery, Karen; Wiberg, Patricia L.

    2016-01-01

    In shallow coastal bays where nutrient loading and riverine inputs are low, turbidity, and the consequent light environment are controlled by resuspension of bed sediments due to wind-waves and tidal currents. High sediment resuspension and low light environments can limit benthic primary productivity; however, both currents and waves are affected by the presence of benthic plants such as seagrass. This feedback between the presence of benthic primary producers such as seagrass and the consequent light environment has been predicted to induce bistable dynamics locally. However, these vegetated areas influence a larger area than they footprint, including a barren adjacent downstream area which exhibits reduced shear stresses. Here we explore through modeling how the patchy structure of seagrass meadows on a landscape may affect sediment resuspension and the consequent light environment due to the presence of this sheltered region. Heterogeneous vegetation covers comprising a mosaic of randomly distributed patches were generated to investigate the effect of patch modified hydrodynamics. Actual cover of vegetation on the landscape was used to facilitate comparisons across landscape realizations. Hourly wave and current shear stresses on the landscape along with suspended sediment concentration and light attenuation characteristics were then calculated and spatially averaged to examine how actual cover and mean water depth affect the bulk sediment and light environment. The results indicate that an effective cover, which incorporates the sheltering area, has important controls on the distributions of shear stress, suspended sediment, light environment, and consequent seagrass habitat suitability. Interestingly, an optimal habitat occurs within a depth range where, if actual cover is reduced past some threshold, the bulk light environment would no longer favor seagrass growth.

  9. Population genetic structure of Aedes albopictus in Penang, Malaysia.

    PubMed

    Zawani, M K N; Abu, H A; Sazaly, A B; Zary, S Y; Darlina, M N

    2014-10-07

    The mosquito Aedes albopictus is indigenous to Southeast Asian and is a vector for arbovirus diseases. Studies examining the population genetics structure of A. albopictus have been conducted worldwide; however, there are no documented reports on the population genetic structure of A. albopictus in Malaysia, particularly in Penang. We examined the population genetics of A. albopictus based on a 445-base pair segment of the mitochondrial DNA cytochrome oxidase 1 gene among 77 individuals from 9 localities representing 4 regions (Seberang Perai Utara, Seberang Perai Tengah, Northeast, and Southwest) of Penang. A total of 37 haplotypes were detected, including 28 unique haplotypes. The other 9 haplotypes were shared among various populations. These shared haplotypes reflect the weak population genetic structure of A. albopictus. The phylogenetic tree showed a low bootstrap value with no genetic structure, which was supported by minimum spanning network analysis. Analysis of mismatch distribution showed poor fit of equilibrium distribution. The genetic distance showed low genetic variation, while pairwise FST values showed no significant difference between all regions in Penang except for some localities. High haplotype diversity and low nucleotide diversity was observed for cytochrome oxidase 1 mtDNA. We conclude that there is no population genetic structure of A. albopictus mosquitoes in the Penang area.

  10. Population genetic structure of Theileria parva field isolates from indigenous cattle populations of Uganda.

    PubMed

    Muwanika, Vincent; Kabi, Fredrick; Masembe, Charles

    2016-03-01

    Theileria parva causes East Coast Fever (ECF) a protozoan infection which manifests as a non-symptomatic syndrome among endemically stable indigenous cattle populations. Knowledge of the current genetic diversity and population structure of T. parva is critical for predicting pathogen evolutionary trends to inform development of effective control strategies. In this study the population genetic structure of 78 field isolates of T. parva from indigenous cattle (Ankole, n=41 and East African shorthorn Zebu (EASZ), n=37) sampled from the different agro ecological zones (AEZs) of Uganda was investigated. A total of eight mini- and micro-satellite markers encompassing the four chromosomes of T. parva were used to genotype the study field isolates. The genetic diversity of the surveyed T. parva populations was observed to range from 0.643±0.55 to 0.663±0.41 among the Central and Western AEZs respectively. The overall Wright's F index showed significant genetic variation between the surveyed T. parva populations based on the different AEZs and indigenous cattle breeds (FST=0.133, p<0.01) and (FST=0.101, p<0.01) respectively. Significant pairwise population genetic differentiations (p<0.05) were observed with FST values ranging from 0.048 to 0.173 between the eastern and northern, eastern and western populations respectively. The principal component analysis (PCA) showed a high level of genetic and geographic sub-structuring among populations. Linkage disequilibrium was observed when populations from all the study AEZs were treated as a single population and when analysed separately. On the overall, the significant genetic diversity and geographic sub-structuring exhibited among the study T. parva isolates has critical implications for ECF control. PMID:26613662

  11. Effects of structured written feedback by cards on medical students’ performance at Mini Clinical Evaluation Exercise (Mini-CEX) in an outpatient clinic

    PubMed Central

    HAGHANI, FARIBA; HATEF KHORAMI, MOHAMMAD; FAKHARI, MOHAMMAD

    2016-01-01

    Introduction Feedback cards are recommended as a feasible tool for structured written feedback delivery in clinical education while effectiveness of this tool on the medical students’ performance is still questionable.  The purpose of this study was to compare the effects of structured written feedback by cards as well as verbal feedback versus verbal feedback alone on the clinical performance of medical students at the Mini Clinical Evaluation Exercise (Mini-CEX) test in an outpatient clinic. Methods This is a quasi-experimental study with pre- and post-test comprising four groups in two terms of medical students’ externship. The students’ performance was assessed through the Mini-Clinical Evaluation Exercise (Mini-CEX) as a clinical performance evaluation tool. Structured written feedbacks were given to two experimental groups by designed feedback cards as well as verbal feedback, while in the two control groups feedback was delivered verbally as a routine approach in clinical education. Results By consecutive sampling method, 62 externship students were enrolled in this study and seven students were excluded from the final analysis due to their absence for three days. According to the ANOVA analysis and Post Hoc Tukey test,  no statistically significant difference was observed among the four groups at the pre-test, whereas a statistically significant difference was observed between the experimental and control groups at the post-test  (F = 4.023, p =0.012). The effect size of the structured written feedbacks on clinical performance was 0.19. Conclusion Structured written feedback by cards could improve the performance of medical students in a statistical sense. Further studies must be conducted in other clinical courses with longer durations. PMID:27382581

  12. Detecting Heterogeneity in Population Structure Across the Genome in Admixed Populations.

    PubMed

    McHugh, Caitlin; Brown, Lisa; Thornton, Timothy A

    2016-09-01

    The genetic structure of human populations is often characterized by aggregating measures of ancestry across the autosomal chromosomes. While it may be reasonable to assume that population structure patterns are similar genome-wide in relatively homogeneous populations, this assumption may not be appropriate for admixed populations, such as Hispanics and African-Americans, with recent ancestry from two or more continents. Recent studies have suggested that systematic ancestry differences can arise at genomic locations in admixed populations as a result of selection and nonrandom mating. Here, we propose a method, which we refer to as the chromosomal ancestry differences (CAnD) test, for detecting heterogeneity in population structure across the genome. CAnD can incorporate either local or chromosome-wide ancestry inferred from SNP genotype data to identify chromosomes harboring genomic regions with ancestry contributions that are significantly different than expected. In simulation studies with real genotype data from phase III of the HapMap Project, we demonstrate the validity and power of CAnD. We apply CAnD to the HapMap Mexican-American (MXL) and African-American (ASW) population samples; in this analysis the software RFMix is used to infer local ancestry at genomic regions, assuming admixing from Europeans, West Africans, and Native Americans. The CAnD test provides strong evidence of heterogeneity in population structure across the genome in the MXL sample ([Formula: see text]), which is largely driven by elevated Native American ancestry and deficit of European ancestry on the X chromosomes. Among the ASW, all chromosomes are largely African derived and no heterogeneity in population structure is detected in this sample. PMID:27440868

  13. Stage-Structured Population Dynamics of AEDES AEGYPTI

    NASA Astrophysics Data System (ADS)

    Yusoff, Nuraini; Budin, Harun; Ismail, Salemah

    Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.

  14. Inference of population structure using dense haplotype data.

    PubMed

    Lawson, Daniel John; Hellenthal, Garrett; Myers, Simon; Falush, Daniel

    2012-01-01

    The advent of genome-wide dense variation data provides an opportunity to investigate ancestry in unprecedented detail, but presents new statistical challenges. We propose a novel inference framework that aims to efficiently capture information on population structure provided by patterns of haplotype similarity. Each individual in a sample is considered in turn as a recipient, whose chromosomes are reconstructed using chunks of DNA donated by the other individuals. Results of this "chromosome painting" can be summarized as a "coancestry matrix," which directly reveals key information about ancestral relationships among individuals. If markers are viewed as independent, we show that this matrix almost completely captures the information used by both standard Principal Components Analysis (PCA) and model-based approaches such as STRUCTURE in a unified manner. Furthermore, when markers are in linkage disequilibrium, the matrix combines information across successive markers to increase the ability to discern fine-scale population structure using PCA. In parallel, we have developed an efficient model-based approach to identify discrete populations using this matrix, which offers advantages over PCA in terms of interpretability and over existing clustering algorithms in terms of speed, number of separable populations, and sensitivity to subtle population structure. We analyse Human Genome Diversity Panel data for 938 individuals and 641,000 markers, and we identify 226 populations reflecting differences on continental, regional, local, and family scales. We present multiple lines of evidence that, while many methods capture similar information among strongly differentiated groups, more subtle population structure in human populations is consistently present at a much finer level than currently available geographic labels and is only captured by the haplotype-based approach. The software used for this article, ChromoPainter and fineSTRUCTURE, is available from http://www.paintmychromosomes.com/.

  15. Integrated Flight/Structural Mode Control for Very Flexible Aircraft Using L1 Adaptive Output Feedback Controller

    NASA Technical Reports Server (NTRS)

    Che, Jiaxing; Cao, Chengyu; Gregory, Irene M.

    2012-01-01

    This paper explores application of adaptive control architecture to a light, high-aspect ratio, flexible aircraft configuration that exhibits strong rigid body/flexible mode coupling. Specifically, an L(sub 1) adaptive output feedback controller is developed for a semi-span wind tunnel model capable of motion. The wind tunnel mount allows the semi-span model to translate vertically and pitch at the wing root, resulting in better simulation of an aircraft s rigid body motion. The control objective is to design a pitch control with altitude hold while suppressing body freedom flutter. The controller is an output feedback nominal controller (LQG) augmented by an L(sub 1) adaptive loop. A modification to the L(sub 1) output feedback is proposed to make it more suitable for flexible structures. The new control law relaxes the required bounds on the unmatched uncertainty and allows dependence on the state as well as time, i.e. a more general unmatched nonlinearity. The paper presents controller development and simulated performance responses. Simulation is conducted by using full state flexible wing models derived from test data at 10 different dynamic pressure conditions. An L(sub 1) adaptive output feedback controller is designed for a single test point and is then applied to all the test cases. The simulation results show that the L(sub 1) augmented controller can stabilize and meet the performance requirements for all 10 test conditions ranging from 30 psf to 130 psf dynamic pressure.

  16. Mini-max feedback control as a computational theory of sensorimotor control in the presence of structural uncertainty.

    PubMed

    Ueyama, Yuki

    2014-01-01

    We propose a mini-max feedback control (MMFC) model as a robust approach to human motor control under conditions of uncertain dynamics, such as structural uncertainty. The MMFC model is an expansion of the optimal feedback control (OFC) model. According to this scheme, motor commands are generated to minimize the maximal cost, based on an assumption of worst-case uncertainty, characterized by familiarity with novel dynamics. We simulated linear dynamic systems with different types of force fields-stable and unstable dynamics-and compared the performance of MMFC to that of OFC. MMFC delivered better performance than OFC in terms of stability and the achievement of tasks. Moreover, the gain in positional feedback with the MMFC model in the unstable dynamics was tuned to the direction of instability. It is assumed that the shape modulations of the gain in positional feedback in unstable dynamics played the same role as that played by end-point stiffness observed in human studies. Accordingly, we suggest that MMFC is a plausible model that predicts motor behavior under conditions of uncertain dynamics.

  17. Mini-max feedback control as a computational theory of sensorimotor control in the presence of structural uncertainty

    PubMed Central

    Ueyama, Yuki

    2014-01-01

    We propose a mini-max feedback control (MMFC) model as a robust approach to human motor control under conditions of uncertain dynamics, such as structural uncertainty. The MMFC model is an expansion of the optimal feedback control (OFC) model. According to this scheme, motor commands are generated to minimize the maximal cost, based on an assumption of worst-case uncertainty, characterized by familiarity with novel dynamics. We simulated linear dynamic systems with different types of force fields–stable and unstable dynamics–and compared the performance of MMFC to that of OFC. MMFC delivered better performance than OFC in terms of stability and the achievement of tasks. Moreover, the gain in positional feedback with the MMFC model in the unstable dynamics was tuned to the direction of instability. It is assumed that the shape modulations of the gain in positional feedback in unstable dynamics played the same role as that played by end-point stiffness observed in human studies. Accordingly, we suggest that MMFC is a plausible model that predicts motor behavior under conditions of uncertain dynamics. PMID:25309415

  18. Evaluating Effectiveness of Modeling Motion System Feedback in the Enhanced Hess Structural Model of the Human Operator

    NASA Technical Reports Server (NTRS)

    Zaychik, Kirill; Cardullo, Frank; George, Gary; Kelly, Lon C.

    2009-01-01

    In order to use the Hess Structural Model to predict the need for certain cueing systems, George and Cardullo significantly expanded it by adding motion feedback to the model and incorporating models of the motion system dynamics, motion cueing algorithm and a vestibular system. This paper proposes a methodology to evaluate effectiveness of these innovations by performing a comparison analysis of the model performance with and without the expanded motion feedback. The proposed methodology is composed of two stages. The first stage involves fine-tuning parameters of the original Hess structural model in order to match the actual control behavior recorded during the experiments at NASA Visual Motion Simulator (VMS) facility. The parameter tuning procedure utilizes a new automated parameter identification technique, which was developed at the Man-Machine Systems Lab at SUNY Binghamton. In the second stage of the proposed methodology, an expanded motion feedback is added to the structural model. The resulting performance of the model is then compared to that of the original one. As proposed by Hess, metrics to evaluate the performance of the models include comparison against the crossover models standards imposed on the crossover frequency and phase margin of the overall man-machine system. Preliminary results indicate the advantage of having the model of the motion system and motion cueing incorporated into the model of the human operator. It is also demonstrated that the crossover frequency and the phase margin of the expanded model are well within the limits imposed by the crossover model.

  19. Population genetic structure of mussels from the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Bulnheim, H.-P.; Gosling, E.

    1988-03-01

    In a macrogeographic survey, the population genetic structure of mussels from various regions of the Baltic Sea, a large semi-enclosed brackish-water basin, was examined with reference to Mytilus edulis and M. galloprovincialis samples from the North Sea, Irish coast and southern Portugal. Electrophoretically detectable variation was analysed at 6 polymorphic enzyme loci ( Ap, Est-D, Lap-2, Odh, Pgi and Pgm). Evidence was provided of a remarkably large amount of biochemical genetic differentiation among ecologically and morphologically divergent mussel populations in the Baltic. Patterns of allele frequencies in low-salinity populations from the area of the Baltic Proper were demonstrated to be widely homogeneous but contrast strongly with those of the western Baltic, the latter resembling populations from marine habitats of the North Sea. Associated with a pronounced salinity gradient, the spatial heterogeneity in gene-pool structure is indicated by steep clines of allele frequency changes in the area of the eastern Danish isles. The adaptive significance of the observed allozymic variation is suggested. From genetic distance estimates, the subdivision of population structure is discussed in relation to the significant amount of differentiation detected within Mytilus populations to date and to the evolutionary time required for the divergence of Baltic mussel populations. The allozymic data provide evidence for the genetic distinctiveness of mussels from the low-salinity areas of the Baltic. Their position at the specific or subspecific level of classification requires further consideration.

  20. Comparative population structure of cavity-nesting sea ducks

    USGS Publications Warehouse

    Pearce, John M.; Eadie, John M.; Savard, Jean-Pierre L.; Christensen, Thomas K.; Berdeen, James; Taylor, Eric J.; Boyd, Sean; Einarsson, Árni

    2014-01-01

    A growing collection of mtDNA genetic information from waterfowl species across North America suggests that larger-bodied cavity-nesting species exhibit greater levels of population differentiation than smaller-bodied congeners. Although little is known about nest-cavity availability for these species, one hypothesis to explain differences in population structure is reduced dispersal tendency of larger-bodied cavity-nesting species due to limited abundance of large cavities. To investigate this hypothesis, we examined population structure of three cavity-nesting waterfowl species distributed across much of North America: Barrow's Goldeneye (Bucephala islandica), Common Goldeneye (B. clangula), and Bufflehead (B. albeola). We compared patterns of population structure using both variation in mtDNA control-region sequences and band-recovery data for the same species and geographic regions. Results were highly congruent between data types, showing structured population patterns for Barrow's and Common Goldeneye but not for Bufflehead. Consistent with our prediction, the smallest cavity-nesting species, the Bufflehead, exhibited the lowest level of population differentiation due to increased dispersal and gene flow. Results provide evidence for discrete Old and New World populations of Common Goldeneye and for differentiation of regional groups of both goldeneye species in Alaska, the Pacific Northwest, and the eastern coast of North America. Results presented here will aid management objectives that require an understanding of population delineation and migratory connectivity between breeding and wintering areas. Comparative studies such as this one highlight factors that may drive patterns of genetic diversity and population trends.

  1. River mainstem thermal regimes influence population structuring within an Appalachian brook trout population

    USGS Publications Warehouse

    Aunins, Aaron W.; Petty, J. Todd; King, Timothy L.; Schilz, Mariya; Mazik, Patricia M.

    2015-01-01

    Brook trout (Salvelinus fontinalis) often exist as highly differentiated populations, even at small spatial scales, due either to natural or anthropogenic sources of isolation and low rates of dispersal. In this study, we used molecular approaches to describe the unique population structure of brook trout inhabiting the Shavers Fork watershed, located in eastern West Virginia, and contrast it to nearby populations in tributaries of the upper Greenbrier River and North Fork South Branch Potomac Rivers. Bayesian and maximum likelihood clustering methods identified minimal population structuring among 14 collections of brook trout from throughout the mainstem and tributaries of Shavers Fork, highlighting the role of the cold-water mainstem for connectivity and high rates of effective migration among tributaries. In contrast, the Potomac and Greenbrier River collections displayed distinct levels of population differentiation among tributaries, presumably resulting from tributary isolation by warm-water mainstems. Our results highlight the importance of protecting and restoring cold-water mainstem habitats as part of region-wide brook trout conservation efforts. In addition, our results from Shavers Fork provide a contrast to previous genetic studies that characterize Appalachian brook trout as fragmented isolates rather than well-mixed populations. Additional study is needed to determine whether the existence of brook trout as genetically similar populations among tributaries is truly unique and whether connectivity among brook trout populations can potentially be restored within other central Appalachian watersheds.

  2. Population dynamics of a South American rodent: seasonal structure interacting with climate, density dependence and predator effects.

    PubMed Central

    Lima, Mauricio; Stenseth, Nils Chr; Jaksic, Fabian M

    2002-01-01

    Understanding the role of interactions between intrinsic feedback loops and external climatic forces is one of the central challenges within the field of population ecology. For rodent dynamics, the seasonal structure of the environment necessitates changes between two stages: reproductive and non-reproductive. Nevertheless, the interactions between seasonality, climate, density dependence and predators have been generally ignored. We demonstrate that direct climate effects, the nonlinear effect of predators and the nonlinear first-order feedback embedded in a seasonal structure are key elements underlying the large and irregular fluctuations in population numbers exhibited by a small rodent in a semi-arid region of central Chile. We found that factors influencing population growth rates clearly differ between breeding and non-breeding seasons. In addition, we detected nonlinear density dependencies as well as nonlinear and differential effects of generalist and specialist predators. Recent climatic changes may account for dramatic perturbations of the rodent's population dynamics. Changes in the predator guild induced by climate are likely to result, through the food web, in a large impact on small rodent demography and population dynamics. Assuming such interactions to be typical of ecological systems, we conclude that appropriate predictions of the ecological consequences of climate change will depend on having an in-depth understanding of the community-weather system. PMID:12573073

  3. Genetic structure of Aedes aegypti populations determined using pairwise comparisons.

    PubMed

    Patarro, T de F; Guirado, M M; Ravazzi, L M; Bicudo, H E M de C

    2013-01-01

    The biological characteristics of Aedes aegypti (Diptera, Culicidae), which is a vector of dengue and yellow fever, make this organism a good model for studying population structure and the events that may influence it under the effect of human activity. We assessed the genetic variability of five A. aegypti populations using RAPD-PCR technique and six primers. Four populations were from Brazil and one was from the USA. A total of 165 polymorphic DNA loci were generated. Considering the six primers and the five populations, the mean value of inter-population genetic diversity (Gst) was 0.277, which is considered high according to the Wright classification. However, pairwise comparisons of the populations gave variable Gst values ranging from 0.044 to 0.289. This variation followed the population's geographic distance to some extent but was also influenced by human activity. The lowest Gst values were obtained in the comparison of populations from cities with intensive commercial and medical contacts. These mosquito populations were previously classified as insecticide resistant, susceptible, or with decreased susceptibility; this parameter apparently had an effect on the Gst values obtained in the pairwise comparisons.

  4. Population connectivity and genetic structure of burbot (Lota lota) populations in the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Underwood, Zachary E.; Mandeville, Elizabeth G.; Walters, Annika W.

    2016-01-01

    Burbot (Lota lota) occur in the Wind River Basin in central Wyoming, USA, at the southwestern extreme of the species’ native range in North America. The most stable and successful of these populations occur in six glacially carved mountain lakes on three different tributary streams and one large main stem impoundment (Boysen Reservoir) downstream from the tributary populations. Burbot are rarely found in connecting streams and rivers, which are relatively small and high gradient, with a variety of potential barriers to upstream movement of fish. We used high-throughput genomic sequence data for 11,197 SNPs to characterize the genetic diversity, population structure, and connectivity among burbot populations on the Wind River system. Fish from Boysen Reservoir and lower basin tributary populations were genetically differentiated from those in the upper basin tributary populations. In addition, fish within the same tributary streams fell within the same genetic clusters, suggesting there is movement of fish between lakes on the same tributaries but that populations within each tributary system are isolated and genetically distinct from other populations. Observed genetic differentiation corresponded to natural and anthropogenic barriers, highlighting the importance of barriers to fish population connectivity and gene flow in human-altered linked lake-stream habitats.

  5. Impaired and preserved aspects of feedback learning in aMCI: contributions of structural connectivity.

    PubMed

    Wessa, Michèle; King, Andrea V; Meyer, Patric; Frölich, Lutz; Flor, Herta; Poupon, Cyril; Hoppstädter, Michael; Linke, Julia

    2016-06-01

    Distinct lines of research demonstrated that patients with amnestic mild cognitive impairment (aMCI), a potential precursor of Alzheimer disease (AD), are particularly impaired in remembering relations between items and that the use of emotional targets can facilitate memory in patients with AD. We link these findings by examining learning through positive and negative feedback in patients with aMCI, and explore its anatomic underpinnings with diffusion tensor imaging and tractography. Compared to healthy controls, patients with single-domain aMCI were impaired in learning from positive feedback, while learning from negative outcomes was preserved. Among pathways within the brain circuit involved in feedback learning, abnormal white matter microstructure was observed in tracts, which connect left-hemispheric amygdala with hippocampus and entorhinal cortex. In all participants, reduced white matter integrity in this left fiber tract was specifically associated with learning from positive outcomes. Microstructure of right-hemispheric tracts between amygdala and entorhinal cortex was related to learning from negative feedback, and was not compromised in aMCI patients. Our results provide new insight into how anatomical connections might contribute to impaired and preserved aspects of learning behaviors in the early AD process and indicate potential compensatory mechanisms. PMID:26084875

  6. Computer Simulation of Sexual Selection on Age-Structured Populations

    NASA Astrophysics Data System (ADS)

    Martins, S. G. F.; Penna, T. J. P.

    Using computer simulations of a bit-string model for age-structured populations, we found that sexual selection of older males is advantageous, from an evolutionary point of view. These results are in opposition to a recent proposal of females choosing younger males. Our simulations are based on findings from recent studies of polygynous bird species. Since secondary sex characters are found mostly in males, we could make use of asexual populations that can be implemented in a fast and efficient way.

  7. Correlations in the population structure of music, genes and language.

    PubMed

    Brown, Steven; Savage, Patrick E; Ko, Albert Min-Shan; Stoneking, Mark; Ko, Ying-Chin; Loo, Jun-Hun; Trejaut, Jean A

    2014-01-01

    We present, to our knowledge, the first quantitative evidence that music and genes may have coevolved by demonstrating significant correlations between traditional group-level folk songs and mitochondrial DNA variation among nine indigenous populations of Taiwan. These correlations were of comparable magnitude to those between language and genes for the same populations, although music and language were not significantly correlated with one another. An examination of population structure for genetics showed stronger parallels to music than to language. Overall, the results suggest that music might have a sufficient time-depth to retrace ancient population movements and, additionally, that it might be capturing different aspects of population history than language. Music may therefore have the potential to serve as a novel marker of human migrations to complement genes, language and other markers.

  8. From inclusive fitness to fixation probability in homogeneous structured populations.

    PubMed

    Taylor, Peter D; Day, Troy; Wild, Geoff

    2007-11-01

    The methods of inclusive fitness provide a powerful analysis of the action of selection on social behaviour. The key component of this analysis is the concept of relatedness R. In infinite populations, a standard method of calculating relatedness coefficients is through coefficients of consanguinity using the notion of genetic identity by descent. In this paper, we show that this approach can also be made to work in finite populations and we assume here that the population has a homogeneous structure, such as an island model. We demonstrate that, under the assumption that genetic effects are small and additive, the resulting formulation of inclusive fitness is equivalent to other significant measures of selection in finite populations, including the change in average allele frequency and fixation probability. The results are illustrated for a model of the evolution of cooperation in a finite island population.

  9. Correlations in the population structure of music, genes and language

    PubMed Central

    Brown, Steven; Savage, Patrick E.; Ko, Albert Min-Shan; Stoneking, Mark; Ko, Ying-Chin; Loo, Jun-Hun; Trejaut, Jean A.

    2014-01-01

    We present, to our knowledge, the first quantitative evidence that music and genes may have coevolved by demonstrating significant correlations between traditional group-level folk songs and mitochondrial DNA variation among nine indigenous populations of Taiwan. These correlations were of comparable magnitude to those between language and genes for the same populations, although music and language were not significantly correlated with one another. An examination of population structure for genetics showed stronger parallels to music than to language. Overall, the results suggest that music might have a sufficient time-depth to retrace ancient population movements and, additionally, that it might be capturing different aspects of population history than language. Music may therefore have the potential to serve as a novel marker of human migrations to complement genes, language and other markers. PMID:24225453

  10. [Age structure and growth characteristic of Castanopsis fargesii population].

    PubMed

    Song, Kun; Da, Liang-jun; Yang, Tong-hui; Yang, Xu-feng

    2007-02-01

    In this paper, the age structure and growth characteristics of Castanopsis fargesii population in a shade-tolerant broadleaved evergreen forest were studied, aimed to understand more about the regeneration patterns and dynamics of this population. The results showed that the age structure of C. fargesii population was of sporadic type, with two death peaks of a 30-year gap. This population had a good plasticity in growth to light condition. Because there were no significant differences in light condition under the canopy in vertical, the saplings came into their first suppression period when they were 5-8 years old, with a height growth rate less than 0. 1 m x a(-1) lasting for 10 years. The beginning time of the first growth suppression period was by the end of the first death peak of the population, and the ending time of the first growth suppression period was at the beginning of the second death peak of the population, demonstrating that growth characteristic was the key factor affecting the age structure of C. fargesii.

  11. Modeling structured population dynamics using data from unmarked individuals

    USGS Publications Warehouse

    Grant, Evan H. Campbell; Zipkin, Elise; Thorson, James T.; See, Kevin; Lynch, Heather J.; Kanno, Yoichiro; Chandler, Richard; Letcher, Benjamin H.; Royle, J. Andrew

    2014-01-01

    The study of population dynamics requires unbiased, precise estimates of abundance and vital rates that account for the demographic structure inherent in all wildlife and plant populations. Traditionally, these estimates have only been available through approaches that rely on intensive mark–recapture data. We extended recently developed N-mixture models to demonstrate how demographic parameters and abundance can be estimated for structured populations using only stage-structured count data. Our modeling framework can be used to make reliable inferences on abundance as well as recruitment, immigration, stage-specific survival, and detection rates during sampling. We present a range of simulations to illustrate the data requirements, including the number of years and locations necessary for accurate and precise parameter estimates. We apply our modeling framework to a population of northern dusky salamanders (Desmognathus fuscus) in the mid-Atlantic region (USA) and find that the population is unexpectedly declining. Our approach represents a valuable advance in the estimation of population dynamics using multistate data from unmarked individuals and should additionally be useful in the development of integrated models that combine data from intensive (e.g., mark–recapture) and extensive (e.g., counts) data sources.

  12. Genotypic structure of a Drosophila population for adult locomotor activity

    SciTech Connect

    Grechanyi, G.V.; Korzun, V.M.

    1995-01-01

    Analysis of the variation of adult locomotor activity in four samples taken at different times from a natural population of Drosophila melanogaster showed that the total variation of this trait is relatively stable in time and has a substantial genetic component. Genotypic structure of the population for locomotor activity is characterized by the presence of large groups of genotypes with high and low values of this trait. A possible explanation for the presence of such groups in a population is cyclic density-dependent selection.

  13. Age-structured optimal control in population economics.

    PubMed

    Feichtinger, Gustav; Prskawetz, Alexia; Veliov, Vladimir M

    2004-06-01

    This paper brings both intertemporal and age-dependent features to a theory of population policy at the macro-level. A Lotka-type renewal model of population dynamics is combined with a Solow/Ramsey economy. We consider a social planner who maximizes an aggregate intertemporal utility function which depends on per capita consumption. As control policies we consider migration and saving rate (both age-dependent). By using a new maximum principle for age-structured control systems we derive meaningful results for the optimal migration and saving rate in an aging population. The model used in the numerical calculations is calibrated for Austria.

  14. Error, population structure and the origin of diverse sign systems.

    PubMed

    Grassly, N C; Von Haeseler, A; Krakauer, D C

    2000-10-01

    Evolutionary models of communication are used to shed some light on the selective pressures involved in the evolution of simple referential signals, and the constraints hindering the emergence of signs. Error-prone communication results from errors in transmission (in which individuals learn the wrong associations) and communication (in which signs are mistaken for one another). We demonstrate how both classes of errors are required to generate diversity and subsequently impose limits on the sign repertoire within a population. We then explore the influence of geographic structuring of a population on the evolution of a shared sign system and the importance of such structure for the maintenance of sign diversity. Deceit tends to erode conventional signs systems thereby reducing signal diversity, we demonstrate that population structure can act as a hedge against deceit, thereby ensuring the persistence of sign systems. PMID:10988022

  15. Genetic Population Structure of Tectura paleacea: Implications for the Mechanisms Regulating Population Structure in Patchy Coastal Habitats

    PubMed Central

    Begovic, Emina; Lindberg, David R.

    2011-01-01

    The seagrass limpet Tectura paleacea (Gastropoda; Patellogastropoda) belongs to a seagrass obligate lineage that has shifted from the Caribbean in the late Miocene, across the Isthmus of Panama prior to the closing of the Panamanian seaway, and then northward to its modern Baja California – Oregon distribution. To address whether larval entrainment by seagrass beds contributes to population structuring, populations were sampled at six California/Oregon localities approximately 2 degrees latitude apart during two post-settlement periods in July 2002 and June 2003. Partial cytochrome oxidase b (Cytb) sequences were obtained from 20 individuals (10 per year) from each population in order to determine the levels of population subdivision/connectivity. From the 120 individuals sequenced, there were eighty-one unique haplotypes, with the greatest haplotype diversity occurring in southern populations. The only significant genetic break detected was consistent with a peri-Point Conception (PPC) biogeographic boundary while populations north and south of Point Conception were each panmictic. The data further indicate that populations found south of the PPC biogeographic boundary originated from northern populations. This pattern of population structure suggests that seagrass patches are not entraining the larvae of T. paleacea by altering flow regimes within their environment; a process hypothesized to produce extensive genetic subdivision on fine geographic scales. In contrast to the haplotype data, morphological patterns vary significantly over very fine geographic scales that are inconsistent with the observed patterns of genetic population structure, indicating that morphological variation in T. paleacea might be attributed to differential ecophenotypic expression in response to local habitat variability throughout its distribution. These results suggest that highly localized conservation efforts may not be as effective as large-scale conservation efforts in near

  16. Frequency domain control based on quantitative feedback theory for vibration suppression in structures equipped with magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    Zapateiro, Mauricio; Karimi, Hamid Reza; Luo, Ningsu; Spencer, Billie F., Jr.

    2009-09-01

    This paper addresses the problem of designing quantitative feedback theory (QFT) based controllers for the vibration reduction in a structure equipped with an MR damper. In this way, the controller is designed in the frequency domain and the natural frequencies of the structure can be directly accounted for in the process. Though the QFT methodology was originally conceived of for linear time invariant systems, it can be extended to nonlinear systems. A new methodology is proposed for characterizing the nonlinear hysteretic behavior of the MR damper through the uncertainty template in the Nichols chart. The resulting controller performance is evaluated in a real-time hybrid testing experiment.

  17. Spatial population structure of a specialist leaf-mining moth.

    PubMed

    Gripenberg, Sofia; Ovaskainen, Otso; Morriën, Elly; Roslin, Tomas

    2008-07-01

    1. The spatial structure of natural populations may profoundly influence their dynamics. Depending on the frequency of movements among local populations and the consequent balance between local and regional population processes, earlier work has attempted to classify metapopulations into clear-cut categories, ranging from patchy populations to sets of remnant populations. In an alternative, dichotomous scheme, local populations have been classified as self-sustaining populations generating a surplus of individuals (sources) and those depending on immigration for persistence (sinks). 2. In this paper, we describe the spatial population structure of the leaf-mining moth Tischeria ekebladella, a specialist herbivore of the pedunculate oak Quercus robur. We relate moth dispersal to the distribution of oaks on Wattkast, a small island (5 km(2)) off the south-western coast of Finland. 3. We build a spatially realistic metapopulation model derived from assumptions concerning the behaviour of individual moths, and show that the model is able to explain part of the variation in observed patterns of occurrence and colonization. 4. While the species was always present on large trees, a considerable proportion of the local populations associated with small oaks showed extinction-recolonization dynamics. The vast majority of moth individuals occur on large trees. 5. According to model predictions, the dominance of local vs. regional processes in tree-specific moth dynamics varies drastically across the landscape. Most local populations may be defined broadly as 'sinks', as model simulations suggest that in the absence of immigration, only the largest oaks will sustain viable moth populations. Large trees in areas of high oak density will contribute most to the overall persistence of the metapopulation by acting as sources of moths colonizing other trees. 6. No single 'metapopulation type' will suffice to describe the oak-moth system. Instead, our study supports the notion that

  18. Population models for passerine birds: structure, parameterization, and analysis

    USGS Publications Warehouse

    Noon, B.R.; Sauer, J.R.; McCullough, D.R.; Barrett, R.H.

    1992-01-01

    Population models have great potential as management tools, as they use infonnation about the life history of a species to summarize estimates of fecundity and survival into a description of population change. Models provide a framework for projecting future populations, determining the effects of management decisions on future population dynamics, evaluating extinction probabilities, and addressing a variety of questions of ecological and evolutionary interest. Even when insufficient information exists to allow complete identification of the model, the modelling procedure is useful because it forces the investigator to consider the life history of the species when determining what parameters should be estimated from field studies and provides a context for evaluating the relative importance of demographic parameters. Models have been little used in the study of the population dynamics of passerine birds because of: (1) widespread misunderstandings of the model structures and parameterizations, (2) a lack of knowledge of life histories of many species, (3) difficulties in obtaining statistically reliable estimates of demographic parameters for most passerine species, and (4) confusion about functional relationships among demographic parameters. As a result, studies of passerine demography are often designed inappropriately and fail to provide essential data. We review appropriate models for passerine bird populations and illustrate their possible uses in evaluating the effects of management or other environmental influences on population dynamics. We identify environmental influences on population dynamics. We identify parameters that must be estimated from field data, briefly review existing statistical methods for obtaining valid estimates, and evaluate the present status of knowledge of these parameters.

  19. Temporal changes in population structure of a marine planktonic diatom.

    PubMed

    Tesson, Sylvie V M; Montresor, Marina; Procaccini, Gabriele; Kooistra, Wiebe H C F

    2014-01-01

    A prevailing question in phytoplankton research addresses changes of genetic diversity in the face of huge population sizes and apparently unlimited dispersal capabilities. We investigated population genetic structure of the pennate planktonic marine diatom Pseudo-nitzschia multistriata at the LTER station MareChiara in the Gulf of Naples (Italy) over four consecutive years and explored possible changes over seasons and from year to year. A total of 525 strains were genotyped using seven microsatellite markers, for a genotypic diversity of 75.05%, comparable to that found in other Pseudo-nitzschia species. Evidence from Bayesian clustering analysis (BA) identified two genetically distinct clusters, here interpreted as populations, and several strains that could not be assigned with ≥ 90% probability to either population, here interpreted as putative hybrids. Principal Component Analysis (PCA) recovered these two clusters in distinct clouds with most of the putative hybrids located in-between. Relative proportions of the two populations and the putative hybrids remained similar within years, but changed radically between 2008 and 2009 and between 2010 and 2011, when the 2008-population apparently became the dominant one again. Strains from the two populations are inter-fertile, and so is their offspring. Inclusion of genotypes of parental strains and their offspring shows that the majority of the latter could not be assigned to any of the two parental populations. Therefore, field strains classified by BA as the putative hybrids could be biological hybrids. We hypothesize that P. multistriata population dynamics in the Gulf of Naples follows a meta-population-like model, including establishment of populations by cell inocula at the beginning of each growth season and remixing and dispersal governed by moving and mildly turbulent water masses.

  20. Temporal Changes in Population Structure of a Marine Planktonic Diatom

    PubMed Central

    Tesson, Sylvie V. M.; Montresor, Marina; Procaccini, Gabriele; Kooistra, Wiebe H. C. F.

    2014-01-01

    A prevailing question in phytoplankton research addresses changes of genetic diversity in the face of huge population sizes and apparently unlimited dispersal capabilities. We investigated population genetic structure of the pennate planktonic marine diatom Pseudo-nitzschia multistriata at the LTER station MareChiara in the Gulf of Naples (Italy) over four consecutive years and explored possible changes over seasons and from year to year. A total of 525 strains were genotyped using seven microsatellite markers, for a genotypic diversity of 75.05%, comparable to that found in other Pseudo-nitzschia species. Evidence from Bayesian clustering analysis (BA) identified two genetically distinct clusters, here interpreted as populations, and several strains that could not be assigned with ≥90% probability to either population, here interpreted as putative hybrids. Principal Component Analysis (PCA) recovered these two clusters in distinct clouds with most of the putative hybrids located in-between. Relative proportions of the two populations and the putative hybrids remained similar within years, but changed radically between 2008 and 2009 and between 2010 and 2011, when the 2008-population apparently became the dominant one again. Strains from the two populations are inter-fertile, and so is their offspring. Inclusion of genotypes of parental strains and their offspring shows that the majority of the latter could not be assigned to any of the two parental populations. Therefore, field strains classified by BA as the putative hybrids could be biological hybrids. We hypothesize that P. multistriata population dynamics in the Gulf of Naples follows a meta-population-like model, including establishment of populations by cell inocula at the beginning of each growth season and remixing and dispersal governed by moving and mildly turbulent water masses. PMID:25506926

  1. Ethnicity and population structure in personal naming networks.

    PubMed

    Mateos, Pablo; Longley, Paul A; O'Sullivan, David

    2011-01-01

    Personal naming practices exist in all human groups and are far from random. Rather, they continue to reflect social norms and ethno-cultural customs that have developed over generations. As a consequence, contemporary name frequency distributions retain distinct geographic, social and ethno-cultural patterning that can be exploited to understand population structure in human biology, public health and social science. Previous attempts to detect and delineate such structure in large populations have entailed extensive empirical analysis of naming conventions in different parts of the world without seeking any general or automated methods of population classification by ethno-cultural origin. Here we show how 'naming networks', constructed from forename-surname pairs of a large sample of the contemporary human population in 17 countries, provide a valuable representation of cultural, ethnic and linguistic population structure around the world. This innovative approach enriches and adds value to automated population classification through conventional national data sources such as telephone directories and electoral registers. The method identifies clear social and ethno-cultural clusters in such naming networks that extend far beyond the geographic areas in which particular names originated, and that are preserved even after international migration. Moreover, one of the most striking findings of this approach is that these clusters simply 'emerge' from the aggregation of millions of individual decisions on parental naming practices for their children, without any prior knowledge introduced by the researcher. Our probabilistic approach to community assignment, both at city level as well as at a global scale, helps to reveal the degree of isolation, integration or overlap between human populations in our rapidly globalising world. As such, this work has important implications for research in population genetics, public health, and social science adding new

  2. Ethnicity and population structure in personal naming networks.

    PubMed

    Mateos, Pablo; Longley, Paul A; O'Sullivan, David

    2011-01-01

    Personal naming practices exist in all human groups and are far from random. Rather, they continue to reflect social norms and ethno-cultural customs that have developed over generations. As a consequence, contemporary name frequency distributions retain distinct geographic, social and ethno-cultural patterning that can be exploited to understand population structure in human biology, public health and social science. Previous attempts to detect and delineate such structure in large populations have entailed extensive empirical analysis of naming conventions in different parts of the world without seeking any general or automated methods of population classification by ethno-cultural origin. Here we show how 'naming networks', constructed from forename-surname pairs of a large sample of the contemporary human population in 17 countries, provide a valuable representation of cultural, ethnic and linguistic population structure around the world. This innovative approach enriches and adds value to automated population classification through conventional national data sources such as telephone directories and electoral registers. The method identifies clear social and ethno-cultural clusters in such naming networks that extend far beyond the geographic areas in which particular names originated, and that are preserved even after international migration. Moreover, one of the most striking findings of this approach is that these clusters simply 'emerge' from the aggregation of millions of individual decisions on parental naming practices for their children, without any prior knowledge introduced by the researcher. Our probabilistic approach to community assignment, both at city level as well as at a global scale, helps to reveal the degree of isolation, integration or overlap between human populations in our rapidly globalising world. As such, this work has important implications for research in population genetics, public health, and social science adding new

  3. Structure of the New England herring gull population

    USGS Publications Warehouse

    Kadlec, J.A.; Drury, W.H.

    1968-01-01

    Measurements of the rates of population increase, reproduction, and mortality together with an observed age ratio, were used to analyze the population of the Herring Gull in New England. Data from sporadic censuses prior to this study, aerial censuses by the authors, and National Audubon Society Christmas Bird Count indicated that the New England breeding population has been doubling every 12 to 15 years since the early 1900's. This increase has involved founding new colonies and expanding the breeding range There is evidence that 15 to 30% of the adults do not breed in any given year. Sixty-one productivity measurements on 43 islands from 1963 through 1966, involving almost 13,000 nests, showed that from 0.8 to 1.4 young/breeding pair/year is the usual range of rate of production. The age distribution in the population was determined by classifying Herring Gulls by plumage category on an aerial census of the coast from Tampico, Mexico, to Cape Sable, Nova Scotia. Of the 622,000 gulls observed, 68% were adults, 17% were second- and third-year birds, and 15% were first-year birds. Mortality rates derived from band recovery data were too high to be consistent with the observed rate of population growth, productivity, and age structure. Loss of bands increasing to the rate of about 20%/year 5 years after banding eliminates most of the discrepancy. The age structure and rate of population increase indicate a mortality rate of 4 to 9% for gulls 2 years old or older, compared with the 25 to 30% indicated by band recoveries. The population structure we have developed fits everything we have observed about Herring Gull population dynamics, except mortality based on band recoveries.

  4. Population genetic structure and long-distance dispersal among seabird populations: implications for colony persistence.

    PubMed

    Bicknell, A W J; Knight, M E; Bilton, D; Reid, J B; Burke, T; Votier, S C

    2012-06-01

    Dramatic local population decline brought about by anthropogenic-driven change is an increasingly common threat to biodiversity. Seabird life history traits make them particularly vulnerable to such change; therefore, understanding population connectivity and dispersal dynamics is vital for successful management. Our study used a 357-base pair mitochondrial control region locus sequenced for 103 individuals and 18 nuclear microsatellite loci genotyped for 245 individuals to investigate population structure in the Atlantic and Pacific populations of the pelagic seabird, Leach's storm-petrel Oceanodroma leucorhoa leucorhoa. This species is under intense predation pressure at one regionally important colony on St Kilda, Scotland, where a disparity between population decline and predation rates hints at immigration from other large colonies. AMOVA, F(ST), Φ(ST) and Bayesian cluster analyses revealed no genetic structure among Atlantic colonies (Global Φ(ST) = -0.02 P > 0.05, Global F(ST) = 0.003, P > 0.05, STRUCTURE K = 1), consistent with either contemporary gene flow or strong historical association within the ocean basin. The Pacific and Atlantic populations are genetically distinct (Global Φ(ST) = 0.32 P < 0.0001, Global F(ST) = 0.04, P < 0.0001, STRUCTURE K = 2), but evidence for interocean exchange was found with individual exclusion/assignment and population coalescent analyses. These findings highlight the importance of conserving multiple colonies at a number of different sites and suggest that management of this seabird may be best viewed at an oceanic scale. Moreover, our study provides an illustration of how long-distance movement may ameliorate the potentially deleterious impacts of localized environmental change, although direct measures of dispersal are still required to better understand this process. PMID:22548276

  5. Fundamental population-productivity relationships can be modified through density-dependent feedbacks of life-history evolution.

    PubMed

    Kuparinen, Anna; Stenseth, Nils Christian; Hutchings, Jeffrey A

    2014-12-01

    The evolution of life histories over contemporary time scales will almost certainly affect population demography. One important pathway for such eco-evolutionary interactions is the density-dependent regulation of population dynamics. Here, we investigate how fisheries-induced evolution (FIE) might alter density-dependent population-productivity relationships. To this end, we simulate the eco-evolutionary dynamics of an Atlantic cod (Gadus morhua) population under fishing, followed by a period of recovery in the absence of fishing. FIE is associated with increases in juvenile production, the ratio of juveniles to mature population biomass, and the ratio of the mature population biomass relative to the total population biomass. In contrast, net reproductive rate (R 0 ) and per capita population growth rate (r) decline concomitantly with evolution. Our findings suggest that FIE can substantially modify the fundamental population-productivity relationships that underlie density-dependent population regulation and that form the primary population-dynamical basis for fisheries stock-assessment projections. From a conservation and fisheries-rebuilding perspective, we find that FIE reduces R 0 and r, the two fundamental correlates of population recovery ability and inversely extinction probability. PMID:25558282

  6. Fundamental population-productivity relationships can be modified through density-dependent feedbacks of life-history evolution.

    PubMed

    Kuparinen, Anna; Stenseth, Nils Christian; Hutchings, Jeffrey A

    2014-12-01

    The evolution of life histories over contemporary time scales will almost certainly affect population demography. One important pathway for such eco-evolutionary interactions is the density-dependent regulation of population dynamics. Here, we investigate how fisheries-induced evolution (FIE) might alter density-dependent population-productivity relationships. To this end, we simulate the eco-evolutionary dynamics of an Atlantic cod (Gadus morhua) population under fishing, followed by a period of recovery in the absence of fishing. FIE is associated with increases in juvenile production, the ratio of juveniles to mature population biomass, and the ratio of the mature population biomass relative to the total population biomass. In contrast, net reproductive rate (R 0 ) and per capita population growth rate (r) decline concomitantly with evolution. Our findings suggest that FIE can substantially modify the fundamental population-productivity relationships that underlie density-dependent population regulation and that form the primary population-dynamical basis for fisheries stock-assessment projections. From a conservation and fisheries-rebuilding perspective, we find that FIE reduces R 0 and r, the two fundamental correlates of population recovery ability and inversely extinction probability.

  7. Population Structure and Inbreeding From Pedigree Analysis of Purebred Dogs

    PubMed Central

    Calboli, Federico C. F.; Sampson, Jeff; Fretwell, Neale; Balding, David J.

    2008-01-01

    Dogs are of increasing interest as models for human diseases, and many canine population-association studies are beginning to emerge. The choice of breeds for such studies should be informed by a knowledge of factors such as inbreeding, genetic diversity, and population structure, which are likely to depend on breed-specific selective breeding patterns. To address the lack of such studies we have exploited one of the world's most extensive resources for canine population-genetics studies: the United Kingdom (UK) Kennel Club registration database. We chose 10 representative breeds and analyzed their pedigrees since electronic records were established around 1970, corresponding to about eight generations before present. We find extremely inbred dogs in each breed except the greyhound and estimate an inbreeding effective population size between 40 and 80 for all but 2 breeds. For all but 3 breeds, >90% of unique genetic variants are lost over six generations, indicating a dramatic effect of breeding patterns on genetic diversity. We introduce a novel index Ψ for measuring population structure directly from the pedigree and use it to identify subpopulations in several breeds. As well as informing the design of canine population genetics studies, our results have implications for breeding practices to enhance canine welfare. PMID:18493074

  8. Population and colony structure of the carpenter ant Camponotus floridanus.

    PubMed

    Gadau, J; Heinze, J; Hölldobler, B; Schmid, M

    1996-12-01

    The colony and population structure of the carpenter ant, Camponotus floridanus, were investigated by multilocus DNA fingerprinting using simple repeat motifs as probes [e.g. (GATA)4]. The mating frequency of 15 queens was determined by comparing the fingerprint patterns of the queen and 17-33 of her progeny workers. C. floridanus queens are most probably singly mated, i.e. this species is monandrous and monogynous (one queen per colony). C. floridanus occurs in all counties of mainland Florida and also inhabits most of the Key islands in the southern part of Florida. We tested whether the two mainland populations and the island populations are genetically isolated. Wright's FST and Nei's D-value of genetic distance were calculated from intercolonial bandsharing-coefficients. The population of C. floridanus is substructured (FST = 0.19 +/- 0.09) and the highest degree of genetic distance was found between one of the mainland populations and the island populations (D = 0.35). Our fingerprinting technique could successfully be transferred to 12 other Camponotus species and here also revealed sufficient variability to analyse the genetic structure. In three of these species (C. ligniperdus, C. herculeanus and C. gigas) we could determine the mating frequency of the queen in one or two colonies, respectively.

  9. Genetic structure of the world's polar bear populations

    USGS Publications Warehouse

    Paetkau, David; Amstrup, Steven C.; Born, E.W.; Calvert, W.; Derocher, A.E.; Garner, G.W.; Messier, F.; Stirling, I.; Taylor, M.K.; Wiig, O.; Strobeck, C.

    1999-01-01

    We studied genetic structure in polar bear (Ursus maritimus) populations by typing a sample of 473 individuals spanning the species distribution at 16 highly variable microsatellite loci. No genetic discontinuities were found that would be consistent with evolutionarily significant periods of isolation between groups. Direct comparison of movement data and genetic data from the Canadian Arctic revealed a highly significant correlation. Genetic data generally supported existing population (management unit) designations, although there were two cases where genetic data failed to differentiate between pairs of populations previously resolved by movement data. A sharp contrast was found between the minimal genetic structure observed among populations surrounding the polar basin and the presence of several marked genetic discontinuities in the Canadian Arctic. The discontinuities in the Canadian Arctic caused the appearance of four genetic clusters of polar bear populations. These clusters vary in total estimated population size from 100 to over 10 000, and the smallest may merit a relatively conservative management strategy in consideration of its apparent isolation. We suggest that the observed pattern of genetic discontinuities has developed in response to differences in the seasonal distribution and pattern of sea ice habitat and the effects of these differences on the distribution and abundance of seals.

  10. The genetic structure of a relict population of wood frogs

    USGS Publications Warehouse

    Scherer, Rick; Muths, Erin; Noon, Barry; Oyler-McCance, Sara

    2012-01-01

    Habitat fragmentation and the associated reduction in connectivity between habitat patches are commonly cited causes of genetic differentiation and reduced genetic variation in animal populations. We used eight microsatellite markers to investigate genetic structure and levels of genetic diversity in a relict population of wood frogs (Lithobates sylvatica) in Rocky Mountain National Park, Colorado, where recent disturbances have altered hydrologic processes and fragmented amphibian habitat. We also estimated migration rates among subpopulations, tested for a pattern of isolation-by-distance, and looked for evidence of a recent population bottleneck. The results from the clustering algorithm in Program STRUCTURE indicated the population is partitioned into two genetic clusters (subpopulations), and this result was further supported by factorial component analysis. In addition, an estimate of FST (FST = 0.0675, P value \\0.0001) supported the genetic differentiation of the two clusters. Estimates of migration rates among the two subpopulations were low, as were estimates of genetic variability. Conservation of the population of wood frogs may be improved by increasing the spatial distribution of the population and improving gene flow between the subpopulations. Construction or restoration of wetlands in the landscape between the clusters has the potential to address each of these objectives.

  11. Population and colony structure of the carpenter ant Camponotus floridanus.

    PubMed

    Gadau, J; Heinze, J; Hölldobler, B; Schmid, M

    1996-12-01

    The colony and population structure of the carpenter ant, Camponotus floridanus, were investigated by multilocus DNA fingerprinting using simple repeat motifs as probes [e.g. (GATA)4]. The mating frequency of 15 queens was determined by comparing the fingerprint patterns of the queen and 17-33 of her progeny workers. C. floridanus queens are most probably singly mated, i.e. this species is monandrous and monogynous (one queen per colony). C. floridanus occurs in all counties of mainland Florida and also inhabits most of the Key islands in the southern part of Florida. We tested whether the two mainland populations and the island populations are genetically isolated. Wright's FST and Nei's D-value of genetic distance were calculated from intercolonial bandsharing-coefficients. The population of C. floridanus is substructured (FST = 0.19 +/- 0.09) and the highest degree of genetic distance was found between one of the mainland populations and the island populations (D = 0.35). Our fingerprinting technique could successfully be transferred to 12 other Camponotus species and here also revealed sufficient variability to analyse the genetic structure. In three of these species (C. ligniperdus, C. herculeanus and C. gigas) we could determine the mating frequency of the queen in one or two colonies, respectively. PMID:8981768

  12. Globalization and the population structure of Toxoplasma gondii.

    PubMed

    Lehmann, Tovi; Marcet, Paula L; Graham, Doug H; Dahl, Erica R; Dubey, J P

    2006-07-25

    Toxoplasma gondii is a protozoan parasite that infects nearly all mammal and bird species worldwide. Usually asymptomatic, toxoplasmosis can be severe and even fatal to many hosts, including people. Elucidating the contribution of genetic variation among parasites to patterns of disease transmission and manifestations has been the goal of many studies. Focusing on the geographic component of this variation, we show that most genotypes are locale-specific, but some are found across continents and are closely related to each other, indicating a recent radiation of a pandemic genotype. Furthermore, we show that the geographic structure of T. gondii is extraordinary in having one population that is found in all continents except South America, whereas other populations are generally confined to South America, and yet another population is found worldwide. Our evidence suggests that South American and Eurasian populations have evolved separately until recently, when ships populated by rats, mice, and cats provided T. gondii with unprecedented migration opportunities, probably during the transatlantic slave trade. Our results explain several enigmatic features of the population structure of T. gondii and demonstrate how pervasive, prompt, and elusive the impact of human globalization is on nature.

  13. Origin, genetic diversity, and population structure of Chinese domestic sheep.

    PubMed

    Chen, Shan-Yuan; Duan, Zi-Yuan; Sha, Tao; Xiangyu, Jinggong; Wu, Shi-Fang; Zhang, Ya-Ping

    2006-07-19

    To characterize the origin, genetic diversity, and phylogeographic structure of Chinese domestic sheep, we here analyzed a 531-bp fragment of mtDNA control region of 449 Chinese autochthonous sheep from 19 breeds/populations from 13 geographic regions, together with previously reported 44 sequences from Chinese indigenous sheep. Phylogenetic analysis showed that all three previously defined lineages A, B, and C were found in all sampled Chinese sheep populations, except for the absence of lineage C in four populations. Network profiles revealed that the lineages B and C displayed a star-like phylogeny with the founder haplotype in the centre, and that two star-like subclades with two founder haplotypes were identified in lineage A. The pattern of genetic variation in lineage A, together with the divergence time between the two central founder haplotypes suggested that two independent domestication events have occurred in sheep lineage A. Considerable mitochondrial diversity was observed in Chinese sheep. Weak structuring was observed either among Chinese indigenous sheep populations or between Asian and European sheep and this can be attributable to long-term strong gene flow induced by historical human movements. The high levels of intra-population diversity in Chinese sheep and the weak phylogeographic structuring indicated three geographically independent domestication events have occurred and the domestication place was not only confined to the Near East, but also occurred in other regions.

  14. Supervisor Feedback.

    ERIC Educational Resources Information Center

    Hayman, Marilyn J.

    1981-01-01

    Investigated the effectiveness of supervisor feedback in contributing to learning counseling skills. Counselor trainees (N=64) were assigned to supervisor feedback, no supervisor feedback, or control groups for three training sessions. Results indicated counseling skills were learned best by students with no supervisor feedback but self and peer…

  15. Evolutionary snowdrift game incorporating costly punishment in structured populations

    NASA Astrophysics Data System (ADS)

    Chan, Nat W. H.; Xu, C.; Tey, Siew Kian; Yap, Yee Jiun; Hui, P. M.

    2013-01-01

    The role of punishment and the effects of a structured population in promoting cooperation are important issues. Within a recent model of snowdrift game (SG) incorporating a costly punishing strategy (P), we study the effects of a population connected through a square lattice. The punishers, who carry basically a cooperative (C) character, are willing to pay a cost α so as to punish a non-cooperative (D) opponent by β. Depending on α, β, the cost-to-benefit ratio r in SG, and the initial conditions, the system evolves into different phases that could be homogeneous or inhomogeneous. The spatial structure imposes geometrical constraint on how one agent is affected by neighboring agents. Results of extensive numerical simulations, both for the steady state and the dynamics, are presented. Possible phases are identified and discussed, and isolated phases in the r-β space are identified as special local structures of strategies that are stable due to the lattice structure. In contrast to a well-mixed population where punishers are suppressed due to the cost of punishment, the altruistic punishing strategy can flourish and prevail for appropriate values of the parameters, implying an enhancement in cooperation by imposing punishments in a structured population. The system could evolve to a phase corresponding to the coexistence of C, D, and P strategies at some particular payoff parameters, and such a phase is absent in a well-mixed population. The pair approximation, a commonly used analytic approach, is extended from a two-strategy system to a three-strategy system. We show that the pair approximation can, at best, capture the numerical results only qualitatively. Due to the improper way of including spatial correlation imposed by the lattice structure, the approximation does not give the frequencies of C, D, and P accurately and fails to give the homogeneous AllD and AllP phases.

  16. Microsatellite and Wolbachia analysis in Rhagoletis cerasi natural populations: population structuring and multiple infections.

    PubMed

    Augustinos, Antonios A; Asimakopoulou, Anastasia K; Moraiti, Cleopatra A; Mavragani-Tsipidou, Penelope; Papadopoulos, Nikolaos T; Bourtzis, Kostas

    2014-05-01

    Rhagoletis cerasi (Diptera: Tephritidae) is a major pest of sweet and sour cherries in Europe and parts of Asia. Despite its economic significance, there is a lack of studies on the genetic structure of R. cerasi populations. Elucidating the genetic structure of insects of economic importance is crucial for developing phenological-predictive models and environmental friendly control methods. All natural populations of R. cerasi have been found to harbor the endosymbiont Wolbachia pipientis, which widely affects multiple biological traits contributing to the evolution of its hosts, and has been suggested as a tool for the biological control of insect pests and disease vectors. In the current study, the analysis of 18 R. cerasi populations collected in Greece, Germany, and Russia using 13 microsatellite markers revealed structuring of R. cerasi natural populations, even at close geographic range. We also analyzed the Wolbachia infection status of these populations using 16S rRNA-, MLST- and wsp-based approaches. All 244 individuals screened were positive for Wolbachia. Our results suggest the fixation of the wCer1 strain in Greece while wCer2, wCer4, wCer5, and probably other uncharacterized strains were also detected in multiply infected individuals. The role of Wolbachia and its potential extended phenotypes needs a thorough investigation in R. cerasi. Our data suggest an involvement of this symbiont in the observed restriction in the gene flow in addition to a number of different ecological factors. PMID:24963388

  17. Microsatellite and Wolbachia analysis in Rhagoletis cerasi natural populations: population structuring and multiple infections

    PubMed Central

    Augustinos, Antonios A; Asimakopoulou, Anastasia K; Moraiti, Cleopatra A; Mavragani-Tsipidou, Penelope; Papadopoulos, Nikolaos T; Bourtzis, Kostas

    2014-01-01

    Rhagoletis cerasi (Diptera: Tephritidae) is a major pest of sweet and sour cherries in Europe and parts of Asia. Despite its economic significance, there is a lack of studies on the genetic structure of R. cerasi populations. Elucidating the genetic structure of insects of economic importance is crucial for developing phenological-predictive models and environmental friendly control methods. All natural populations of R. cerasi have been found to harbor the endosymbiont Wolbachia pipientis, which widely affects multiple biological traits contributing to the evolution of its hosts, and has been suggested as a tool for the biological control of insect pests and disease vectors. In the current study, the analysis of 18 R. cerasi populations collected in Greece, Germany, and Russia using 13 microsatellite markers revealed structuring of R. cerasi natural populations, even at close geographic range. We also analyzed the Wolbachia infection status of these populations using 16S rRNA-, MLST- and wsp-based approaches. All 244 individuals screened were positive for Wolbachia. Our results suggest the fixation of the wCer1 strain in Greece while wCer2, wCer4, wCer5, and probably other uncharacterized strains were also detected in multiply infected individuals. The role of Wolbachia and its potential extended phenotypes needs a thorough investigation in R. cerasi. Our data suggest an involvement of this symbiont in the observed restriction in the gene flow in addition to a number of different ecological factors. PMID:24963388

  18. Population Structure of Barley Landrace Populations and Gene-Flow with Modern Varieties

    PubMed Central

    Bellucci, Elisa; Bitocchi, Elena; Rau, Domenico; Nanni, Laura; Ferradini, Nicoletta; Giardini, Alessandro; Rodriguez, Monica; Attene, Giovanna; Papa, Roberto

    2013-01-01

    Landraces are heterogeneous plant varieties that are reproduced by farmers as populations that are subject to both artificial and natural selection. Landraces are distinguished by farmers due to their specific traits, and different farmers often grow different populations of the same landrace. We used simple sequence repeats (SSRs) to analyse 12 barley landrace populations from Sardinia from two collections spanning 10 years. We analysed the population structure, and compared the population diversity of the landraces that were collected at field level (population). We used a representative pool of barley varieties for diversity comparisons and to analyse the effects of gene flow from modern varieties. We found that the Sardinian landraces are a distinct gene pool from those of both two-row and six-row barley varieties. There is also a low, but significant, mean level and population-dependent level of introgression from the modern varieties into the Sardinian landraces. Moreover, we show that the Sardinian landraces have the same level of gene diversity as the representative sample of modern commercial varieties grown in Italy in the last decades, even within population level. Thus, these populations represent crucial sources of germplasm that will be useful for crop improvement and for population genomics studies and association mapping, to identify genes, loci and genome regions responsible for adaptive variations. Our data also suggest that landraces are a source of valuable germplasm for sustainable agriculture in the context of future climate change, and that in-situ conservation strategies based on farmer use can preserve the genetic identity of landraces while allowing adaptation to local environments. PMID:24386303

  19. Genetic Structure of Daphnia galeata Populations in Eastern China

    PubMed Central

    Wolinska, Justyna; Ma, Xiaolin; Yang, Zhong; Hu, Wei; Yin, Mingbo

    2015-01-01

    This study presents the first examination of the genetic structure of Daphnia longispina complex populations in Eastern China. Only one species, D. galeata, was present across the eight investigated lakes; as identified by taxon assignment using allelic variation at 15 microsatellite loci. Three genetically differentiated D. galeata subgroups emerged independent of the type of statistical analysis applied. Thus, Bayesian clustering, discriminant analysis based on results from factorial correspondence analysis, and UPGMA clustering consistently showed that populations from two neighbouring lakes were genetically separated from a mixture of genotypes found in other lakes, which formed another two subgroups. Clonal diversity was high in all D. galeata populations, and most samples showed no deviation from Hardy-Weinberg equilibrium, indicating that clonal selection had little effect on the genetic diversity. Overall, populations did not cluster by geographical origin. Further studies will show if the observed pattern can be explained by natural colonization processes or by recent anthropogenic impact on predominantly artificial lakes. PMID:25768727

  20. [New view on the population genetic structure of marine fish].

    PubMed

    Salmenkova, E A

    2011-11-01

    The view on homogeneous population genetic structure in many marine fish with high mobility has changed significantly during the last ten years. Molecular genetic population studies over the whole ranges of such species as Atlantic herring and Atlantic cod showed a complex picture of spatial differentiation both on the macrogeographic and, in many areas, on the microgeographic scale, although the differentiation for neutral molecular markers was low. It was established that the migration activity of such fish is constrained in many areas of the species range by hydrological and physicochemical transition zones (environmental gradients), as well as gyres in the spawning regions. Natal homing was recorded in a number of marine fish species. Existing in marine fish constraints of gene migration and a very high variance of reproductive success determine a significantly smaller proportion of effective reproductive size of their populations in the total population size, which generates more complex abundance dynamics than assumed earlier. The various constraints on gene migration and natal homing in marine fish promote the formation of local adaptations at ecologically important phenotypic traits. Effects of selection underlying adaptations are actively investigated in marine fish on the genomic level, using approaches of population genomics. The knowledge of adaptive intraspecific structure enables understanding the ecological and evolutionary processes, that influence biodiversity and providing spatial frames for conservation of genetic resources under commercial exploitation. Contemporary views on the population genetic and adaptive structures or biocomplexity in marine fish support and develop the main principles of the conception of systemic organization of the species and its regional populations, which were advanced by Yu.P. Altukhov and Yu.G. Rychkov.

  1. The Decay of Genetic Variability in Geographically Structured Populations*

    PubMed Central

    Nagylaki, Thomas

    1974-01-01

    The geographical structure of a population distributed continuously and homogeneously along an infinite linear habitat is explored. The analysis is restricted to a single locus in the absence of selection, and every mutant is assumed to be new to the population. An explicit formula is derived for the probability that two homologous genes separated by a given distance at any time t are the same allele. The ultimate rate of approach to equilibrium is shown to be t-3/2e-2ut, where u is the mutation rate. An approximation is given for the stationary probability of allelism in an infinite two-dimensional population, which, unlike previous expressions, is finite everywhere. For a finite habitat of arbitrary shape and any number of dimensions, it is proved that if the population density is very high, then asymptotically the transient part of the probability of allelism is spatially uniform and decays at the rate e-[2u+1/(2N)]t, where N is the total population size. Thus, in this respect the population behaves as if it were panmictic. The dependence of the amount of local gene frequency differentiation on population density and habitat size and dimensionality is discussed. PMID:4528770

  2. Population structure and cultural geography of a folktale in Europe

    PubMed Central

    Ross, Robert M.; Greenhill, Simon J.; Atkinson, Quentin D.

    2013-01-01

    Despite a burgeoning science of cultural evolution, relatively little work has focused on the population structure of human cultural variation. By contrast, studies in human population genetics use a suite of tools to quantify and analyse spatial and temporal patterns of genetic variation within and between populations. Human genetic diversity can be explained largely as a result of migration and drift giving rise to gradual genetic clines, together with some discontinuities arising from geographical and cultural barriers to gene flow. Here, we adapt theory and methods from population genetics to quantify the influence of geography and ethnolinguistic boundaries on the distribution of 700 variants of a folktale in 31 European ethnolinguistic populations. We find that geographical distance and ethnolinguistic affiliation exert significant independent effects on folktale diversity and that variation between populations supports a clustering concordant with European geography. This pattern of geographical clines and clusters parallels the pattern of human genetic diversity in Europe, although the effects of geographical distance and ethnolinguistic boundaries are stronger for folktales than genes. Our findings highlight the importance of geography and population boundaries in models of human cultural variation and point to key similarities and differences between evolutionary processes operating on human genes and culture. PMID:23390109

  3. Reproducibility of Vibrionaceae population structure in coastal bacterioplankton

    PubMed Central

    Szabo, Gitta; Preheim, Sarah P; Kauffman, Kathryn M; David, Lawrence A; Shapiro, Jesse; Alm, Eric J; Polz, Martin F

    2013-01-01

    How reproducibly microbial populations assemble in the wild remains poorly understood. Here, we assess evidence for ecological specialization and predictability of fine-scale population structure and habitat association in coastal ocean Vibrionaceae across years. We compare Vibrionaceae lifestyles in the bacterioplankton (combinations of free-living, particle, or zooplankton associations) measured using the same sampling scheme in 2006 and 2009 to assess whether the same groups show the same environmental association year after year. This reveals complex dynamics with populations falling primarily into two categories: (i) nearly equally represented in each of the two samplings and (ii) highly skewed, often to an extent that they appear exclusive to one or the other sampling times. Importantly, populations recovered at the same abundance in both samplings occupied highly similar habitats suggesting predictable and robust environmental association while skewed abundances of some populations may be triggered by shifts in ecological conditions. The latter is supported by difference in the composition of large eukaryotic plankton between years, with samples in 2006 being dominated by copepods, and those in 2009 by diatoms. Overall, the comparison supports highly predictable population-habitat linkage but highlights the fact that complex, and often unmeasured, environmental dynamics in habitat occurrence may have strong effects on population dynamics. PMID:23178668

  4. Population structure and cultural geography of a folktale in Europe.

    PubMed

    Ross, Robert M; Greenhill, Simon J; Atkinson, Quentin D

    2013-04-01

    Despite a burgeoning science of cultural evolution, relatively little work has focused on the population structure of human cultural variation. By contrast, studies in human population genetics use a suite of tools to quantify and analyse spatial and temporal patterns of genetic variation within and between populations. Human genetic diversity can be explained largely as a result of migration and drift giving rise to gradual genetic clines, together with some discontinuities arising from geographical and cultural barriers to gene flow. Here, we adapt theory and methods from population genetics to quantify the influence of geography and ethnolinguistic boundaries on the distribution of 700 variants of a folktale in 31 European ethnolinguistic populations. We find that geographical distance and ethnolinguistic affiliation exert significant independent effects on folktale diversity and that variation between populations supports a clustering concordant with European geography. This pattern of geographical clines and clusters parallels the pattern of human genetic diversity in Europe, although the effects of geographical distance and ethnolinguistic boundaries are stronger for folktales than genes. Our findings highlight the importance of geography and population boundaries in models of human cultural variation and point to key similarities and differences between evolutionary processes operating on human genes and culture.

  5. Population genetic structure of the people of Qatar.

    PubMed

    Hunter-Zinck, Haley; Musharoff, Shaila; Salit, Jacqueline; Al-Ali, Khalid A; Chouchane, Lotfi; Gohar, Abeer; Matthews, Rebecca; Butler, Marcus W; Fuller, Jennifer; Hackett, Neil R; Crystal, Ronald G; Clark, Andrew G

    2010-07-01

    People of the Qatar peninsula represent a relatively recent founding by a small number of families from three tribes of the Arabian Peninsula, Persia, and Oman, with indications of African admixture. To assess the roles of both this founding effect and the customary first-cousin marriages among the ancestral Islamic populations in Qatar's population genetic structure, we obtained and genotyped with Affymetrix 500k SNP arrays DNA samples from 168 self-reported Qatari nationals sampled from Doha, Qatar. Principal components analysis was performed along with samples from the Human Genetic Diversity Project data set, revealing three clear clusters of genotypes whose proximity to other human population samples is consistent with Arabian origin, a more eastern or Persian origin, and individuals with African admixture. The extent of linkage disequilibrium (LD) is greater than that of African populations, and runs of homozygosity in some individuals reflect substantial consanguinity. However, the variance in runs of homozygosity is exceptionally high, and the degree of identity-by-descent sharing generally appears to be lower than expected for a population in which nearly half of marriages are between first cousins. Despite the fact that the SNPs of the Affymetrix 500k chip were ascertained with a bias toward SNPs common in Europeans, the data strongly support the notion that the Qatari population could provide a valuable resource for the mapping of genes associated with complex disorders and that tests of pairwise interactions are particularly empowered by populations with elevated LD like the Qatari.

  6. Evolutionary dynamics for persistent cooperation in structured populations

    NASA Astrophysics Data System (ADS)

    Li, Yan; Liu, Xinsheng; Claussen, Jens Christian; Guo, Wanlin

    2015-06-01

    The emergence and maintenance of cooperative behavior is a fascinating topic in evolutionary biology and social science. The public goods game (PGG) is a paradigm for exploring cooperative behavior. In PGG, the total resulting payoff is divided equally among all participants. This feature still leads to the dominance of defection without substantially magnifying the public good by a multiplying factor. Much effort has been made to explain the evolution of cooperative strategies, including a recent model in which only a portion of the total benefit is shared by all the players through introducing a new strategy named persistent cooperation. A persistent cooperator is a contributor who is willing to pay a second cost to retrieve the remaining portion of the payoff contributed by themselves. In a previous study, this model was analyzed in the framework of well-mixed populations. This paper focuses on discussing the persistent cooperation in lattice-structured populations. The evolutionary dynamics of the structured populations consisting of three types of competing players (pure cooperators, defectors, and persistent cooperators) are revealed by theoretical analysis and numerical simulations. In particular, the approximate expressions of fixation probabilities for strategies are derived on one-dimensional lattices. The phase diagrams of stationary states, and the evolution of frequencies and spatial patterns for strategies are illustrated on both one-dimensional and square lattices by simulations. Our results are consistent with the general observation that, at least in most situations, a structured population facilitates the evolution of cooperation. Specifically, here we find that the existence of persistent cooperators greatly suppresses the spreading of defectors under more relaxed conditions in structured populations compared to that obtained in well-mixed populations.

  7. Population Structure Shapes Copy Number Variation in Malaria Parasites

    PubMed Central

    Cheeseman, Ian H.; Miller, Becky; Tan, John C.; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C.; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H.; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J.; Nosten, François; Ferdig, Michael T.; Anderson, Tim J. C.

    2016-01-01

    If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen. PMID:26613787

  8. Population Structure Shapes Copy Number Variation in Malaria Parasites.

    PubMed

    Cheeseman, Ian H; Miller, Becky; Tan, John C; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J; Nosten, François; Ferdig, Michael T; Anderson, Tim J C

    2016-03-01

    If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen.

  9. Population Structure, Genetic Variation, and Linkage Disequilibrium in Perennial Ryegrass Populations Divergently Selected for Freezing Tolerance.

    PubMed

    Kovi, Mallikarjuna Rao; Fjellheim, Siri; Sandve, Simen R; Larsen, Arild; Rudi, Heidi; Asp, Torben; Kent, Matthew Peter; Rognli, Odd Arne

    2015-01-01

    Low temperature is one of the abiotic stresses seriously affecting the growth of perennial ryegrass (Lolium perenne L.), and freezing tolerance is a complex trait of major agronomical importance in northern and central Europe. Understanding the genetic control of freezing tolerance would aid in the development of cultivars of perennial ryegrass with improved adaptation to frost. The plant material investigated in this study was an experimental synthetic population derived from pair-crosses among five European perennial ryegrass genotypes, representing adaptations to a range of climatic conditions across Europe. A total number of 80 individuals (24 of High frost [HF]; 29 of Low frost [LF], and 27 of Unselected [US]) from the second generation of the two divergently selected populations and an unselected (US) control population were genotyped using 278 genome-wide SNPs derived from perennial ryegrass transcriptome sequences. Our studies investigated the genetic diversity among the three experimental populations by analysis of molecular variance and population structure, and determined that the HF and LF populations are very divergent after selection for freezing tolerance, whereas the HF and US populations are more similar. Linkage disequilibrium (LD) decay varied across the seven chromosomes and the conspicuous pattern of LD between the HF and LF population confirmed their divergence in freezing tolerance. Furthermore, two F st outlier methods; finite island model (fdist) by LOSITAN and hierarchical structure model using ARLEQUIN, both detected six loci under directional selection. These outlier loci are most probably linked to genes involved in freezing tolerance, cold adaptation, and abiotic stress. These six candidate loci under directional selection for freezing tolerance might be potential marker resources for breeding perennial ryegrass cultivars with improved freezing tolerance.

  10. Does Structured Quizzing with Process Specific Feedback Lead to Learning Gains in an Active Learning Geoscience Classroom?

    NASA Astrophysics Data System (ADS)

    Palsole, S.; Serpa, L. F.

    2013-12-01

    There is a great realization that efficient teaching in the geosciences has the potential to have far reaching effects in outreach to decision and policy makers (Herbert, 2006; Manduca & Mogk, 2006). This research in turn informs educators that the geosciences by the virtue of their highly integrative nature play an important role in serving as an entry point into STEM disciplines and helping developing a new cadre of geoscientists, scientists and a general population with an understanding of science. Keeping these goals in mind we set to design introductory geoscience courses for non-majors and majors that move away from the traditional lecture models which don't necessarily contribute well to knowledge building and retention ((Handelsman et al., 2007; Hake, 1997) to a blended active learning classroom where basic concepts and didactic information is acquired online via webquests, lecturettes and virtual field trips and the face to face portions of the class are focused on problem solving exercises. The traditional way to ensure that students are prepared for the in-class activity is to have the students take a quiz online to demonstrate basic competency. In the process of redesign, we decided to leverage the technology to build quizzes that are highly structured and map to a process (formation of divergent boundaries for example) or sets of earth processes that we needed the students to know before in-class activities. The quizzes can be taken multiple times and provide process specific feedback, thus serving as a heuristic to the students to ensure they have acquired the necessary competency. The heuristic quizzes were developed and deployed over a year with the student data driving the redesign process to ensure synchronicity. Preliminary data analysis indicates a positive correlation between higher student scores on in-class application exercises and time spent on the process quizzes. An assessment of learning gains also indicate a higher degree of self

  11. Population genetic structure, linkage disequilibrium and effective population size of conserved and extensively raised village chicken populations of Southern Africa.

    PubMed

    Khanyile, Khulekani S; Dzomba, Edgar F; Muchadeyi, Farai C

    2015-01-01

    Extensively raised village chickens are considered a valuable source of biodiversity, with genetic variability developed over thousands of years that ought to be characterized and utilized. Surveys that can reveal a population's genetic structure and provide an insight into its demographic history will give valuable information that can be used to manage and conserve important indigenous animal genetic resources. This study reports population diversity and structure, linkage disequilibrium and effective population sizes of Southern African village chickens and conservation flocks from South Africa. DNA samples from 312 chickens from South African village and conservation flocks (n = 146), Malawi (n = 30) and Zimbabwe (n = 136) were genotyped using the Illumina iSelect chicken SNP60K BeadChip. Population genetic structure analysis distinguished the four conservation flocks from the village chicken populations. Of the four flocks, the Ovambo clustered closer to the village chickens particularly those sampled from South Africa. Clustering of the village chickens followed a geographic gradient whereby South African chickens were closer to those from Zimbabwe than to chickens from Malawi. Different conservation flocks seemed to have maintained different components of the ancestral genomes with a higher proportion of village chicken diversity found in the Ovambo population. Overall population LD averaged over chromosomes ranged from 0.03 ± 0.07 to 0.58 ± 0.41 and averaged 0.15 ± 0.16. Higher LD, ranging from 0.29 to 0.36, was observed between SNP markers that were less than 10 kb apart in the conservation flocks. LD in the conservation flocks steadily decreased to 0.15 (PK) and 0.24 (VD) at SNP marker interval of 500 kb. Genomewide LD decay in the village chickens from Malawi, Zimbabwe and South Africa followed a similar trend as the conservation flocks although the mean LD values for the investigated SNP intervals were lower. The results suggest low effective

  12. Population genetic structure, linkage disequilibrium and effective population size of conserved and extensively raised village chicken populations of Southern Africa

    PubMed Central

    Khanyile, Khulekani S.; Dzomba, Edgar F.; Muchadeyi, Farai C.

    2015-01-01

    Extensively raised village chickens are considered a valuable source of biodiversity, with genetic variability developed over thousands of years that ought to be characterized and utilized. Surveys that can reveal a population's genetic structure and provide an insight into its demographic history will give valuable information that can be used to manage and conserve important indigenous animal genetic resources. This study reports population diversity and structure, linkage disequilibrium and effective population sizes of Southern African village chickens and conservation flocks from South Africa. DNA samples from 312 chickens from South African village and conservation flocks (n = 146), Malawi (n = 30) and Zimbabwe (n = 136) were genotyped using the Illumina iSelect chicken SNP60K BeadChip. Population genetic structure analysis distinguished the four conservation flocks from the village chicken populations. Of the four flocks, the Ovambo clustered closer to the village chickens particularly those sampled from South Africa. Clustering of the village chickens followed a geographic gradient whereby South African chickens were closer to those from Zimbabwe than to chickens from Malawi. Different conservation flocks seemed to have maintained different components of the ancestral genomes with a higher proportion of village chicken diversity found in the Ovambo population. Overall population LD averaged over chromosomes ranged from 0.03 ± 0.07 to 0.58 ± 0.41 and averaged 0.15 ± 0.16. Higher LD, ranging from 0.29 to 0.36, was observed between SNP markers that were less than 10 kb apart in the conservation flocks. LD in the conservation flocks steadily decreased to 0.15 (PK) and 0.24 (VD) at SNP marker interval of 500 kb. Genomewide LD decay in the village chickens from Malawi, Zimbabwe and South Africa followed a similar trend as the conservation flocks although the mean LD values for the investigated SNP intervals were lower. The results suggest low effective

  13. Feedbacks Between Wave Energy And Declining Coral Reef Structure: Implications For Coastal Morphodynamics

    NASA Astrophysics Data System (ADS)

    Grady, A. E.; Jenkins, C. J.; Moore, L. J.; Potts, D. C.; Burgess, P. M.; Storlazzi, C. D.; Elias, E.; Reidenbach, M. A.

    2013-12-01

    The incident wave energy dissipated by the structural complexity and bottom roughness of coral reef ecosystems, and the carbonate sediment produced by framework-building corals, provide natural shoreline protection and nourishment, respectively. Globally, coral reef ecosystems are in decline as a result of ocean warming and acidification, which is exacerbated by chronic regional stressors such as pollution and disease. As a consequence of declining reef health, many reef ecosystems are experiencing reduced coral cover and shifts to dominance by macroalgae, resulting in a loss of rugosity and thus hydrodynamic roughness. As coral reef architecture is compromised and carbonate skeletons are eroded, wave energy dissipation and sediment transport patterns--along with the carbonate sediment budget of the coastal environment--may be altered. Using a Delft3D numerical model of the south-central Molokai, Hawaii, fringing reef, we simulate the effects of changing reef states on wave energy and sediment transport. To determine the temporally-varying effects of biotic and abiotic stressors such as storms and bleaching on the reef structure and carbonate production, we couple Delft3D with CarboLOT, a model that simulates growth and competition of carbonate-producing organisms. CarboLOT is driven by the Lotka-Volterra population ecology equations and niche suitability principles, and accesses the CarboKB database for region-specific, carbonate-producing species information on growth rates, reproduction patterns, habitat suitability, as well as organism geometries. Simulations assess how changing reef states--which alter carbonate sediment production and reef morphology and thus hydrodynamic roughness--impact wave attenuation and sediment transport gradients along reef-fronted beaches. Initial results suggest that along fringing reefs having characteristics similar to the Molokai fringing reef, projected sea level rise will likely outpace coral reef accretion, and the increased

  14. Genetic structure of a lotic population of Burkholderia (Pseudomonas) cepacia

    SciTech Connect

    Wise, M.G.; Shimkets, L.J.; McArthur, J.V.

    1995-05-01

    The genetic structure of a population of Burkholderia (Pseudomonas) cepacia isolated from a southeastern blackwater stream was investigated by using multilocus enzyme electrophoresis to examine the allelic variation in eight structural gene loci. Overall, 213 isolates were collected at transect points along the stream continuum, from both the sediments along the bank and the water column. Multilocus enzyme electrophoresis analysis revealed 164 distinct electrophoretic types, and the mean genetic diversity of the entire population was 0.574. Genetic diversity values did not vary spatially along the stream continuum. From a canonical discriminant analysis, Mahalonobis distances (measurements of genetic similarity between populations) revealed significant differences among the subpopulations at the sediment sampling points, suggesting bacterial adaptation to a heterogeneous (or patchy) microgeographical environment. Multilocus linkage disequilibrium analysis of the isolates revealed only limited association between alleles, suggesting frequent recombination, relative to binary fission, in this population. Furthermore, the dendrogram created from the data of this study and the allele mismatch distribution are typical of a population characterized by extensive genetic mixing. We suggest that B. cepacia be added to the growing list of bacteria that are not obligatorily clonal. 41 refs., 5 figs., 3 tabs.

  15. Population structure and genetic analysis of narrow-clawed crayfish (Astacus leptodactylus) populations in Turkey.

    PubMed

    Akhan, Suleyman; Bektas, Yusuf; Berber, Selcuk; Kalayci, Gokhan

    2014-10-01

    The genetic differentiation among Turkish populations of the narrow-clawed crayfish was investigated using a partial sequence of cytochrome oxidase subunit I gene (585 bp) of 183 specimens from 17 different crayfish populations. Median joining network and all phylogenetic analyses disclosed a strong haplotype structure with three prominent clades diverged by a range between 20 and 50 mutations and substantial inter-group pairwise sequence divergence (5.19-6.95 %), suggesting the presence of three distinct clades within the Anatolian populations of Astacus leptodactylus. The divergence times among the three clades of Turkish A. leptodactylus are estimated to be 4.96-3.70 Mya using a molecular clock of 1.4 % sequence divergence per million years, pointing to a lower Pliocene separation. The high level of genetic variability (H d = 95.8 %, π = 4.17 %) and numerous private haplotypes suggest the presence of refugial populations in Anatolia unaffected by Pleistocene habitat restrictions. The pattern of genetic variation among Turkish A. leptodactylus populations, therefore, suggests that the unrevealed intraspecific genetic structure is independent of geographic tendency and congruent with the previously reported geographic distribution and number of subspecies (A. l. leptodactylus and A. l. salinus) of A. leptodactylus.

  16. Sexual networks: measuring sexual selection in structured, polyandrous populations.

    PubMed

    McDonald, Grant C; James, Richard; Krause, Jens; Pizzari, Tommaso

    2013-03-01

    Sexual selection is traditionally measured at the population level, assuming that populations lack structure. However, increasing evidence undermines this approach, indicating that intrasexual competition in natural populations often displays complex patterns of spatial and temporal structure. This complexity is due in part to the degree and mechanisms of polyandry within a population, which can influence the intensity and scale of both pre- and post-copulatory sexual competition. Attempts to measure selection at the local and global scale have been made through multi-level selection approaches. However, definitions of local scale are often based on physical proximity, providing a rather coarse measure of local competition, particularly in polyandrous populations where the local scale of pre- and post-copulatory competition may differ drastically from each other. These limitations can be solved by social network analysis, which allows us to define a unique sexual environment for each member of a population: 'local scale' competition, therefore, becomes an emergent property of a sexual network. Here, we first propose a novel quantitative approach to measure pre- and post-copulatory sexual selection, which integrates multi-level selection with information on local scale competition derived as an emergent property of networks of sexual interactions. We then use simple simulations to illustrate the ways in which polyandry can impact estimates of sexual selection. We show that for intermediate levels of polyandry, the proposed network-based approach provides substantially more accurate measures of sexual selection than the more traditional population-level approach. We argue that the increasing availability of fine-grained behavioural datasets provides exciting new opportunities to develop network approaches to study sexual selection in complex societies.

  17. Molecular Population Genetic Structure in the Piping Plover

    USGS Publications Warehouse

    Miller, Mark P.; Haig, Susan M.; Gratto-Trevor, Cheri L.; Mullins, Thomas D.

    2009-01-01

    The Piping Plover (Charadrius melodus) is a migratory shorebird currently listed as Endangered in Canada and the U.S. Great Lakes, and threatened throughout the remainder of its U.S. breeding and winter range. In this study, we undertook the first comprehensive molecular genetic-based investigation of Piping Plovers. Our primary goals were to (1) address higher level subspecific taxonomic issues, (2) characterize population genetic structure, and (3) make inferences regarding past bottlenecks or population expansions that have occurred within this species. Our analyses included samples of individuals from 23 U.S. States and Canadian Provinces, and were based on mitochondrial DNA sequences (580 bp, n = 245 individuals) and eight nuclear microsatellite loci (n = 229 individuals). Our findings illustrate strong support for separate Atlantic and Interior Piping Plover subspecies (C. m. melodus and C. m. circumcinctus, respectively). Birds from the Great Lakes region were allied with the Interior subspecies group and should be taxonomically referred to as C. m. circumcinctus. Population genetic analyses suggested that genetic structure was stronger among Atlantic birds relative to the Interior group. This pattern indicates that natal and breeding site fidelity may be reduced among Interior birds. Furthermore, analyses suggested that Interior birds have previously experienced genetic bottlenecks, whereas no evidence for such patterns existed among the Atlantic subspecies. Likewise, genetic analyses indicated that the Great Lakes region has experienced a population expansion. This finding may be interpreted as population growth following a previous bottleneck event. No genetic evidence for population expansions was found for Atlantic, Prairie Canada, or U.S. Northern Great Plains individuals. We interpret our population history insights in light of 25 years of Piping Plover census data. Overall, differences observed between Interior and Atlantic birds may reflect

  18. Sexual networks: measuring sexual selection in structured, polyandrous populations

    PubMed Central

    McDonald, Grant C.; James, Richard; Krause, Jens; Pizzari, Tommaso

    2013-01-01

    Sexual selection is traditionally measured at the population level, assuming that populations lack structure. However, increasing evidence undermines this approach, indicating that intrasexual competition in natural populations often displays complex patterns of spatial and temporal structure. This complexity is due in part to the degree and mechanisms of polyandry within a population, which can influence the intensity and scale of both pre- and post-copulatory sexual competition. Attempts to measure selection at the local and global scale have been made through multi-level selection approaches. However, definitions of local scale are often based on physical proximity, providing a rather coarse measure of local competition, particularly in polyandrous populations where the local scale of pre- and post-copulatory competition may differ drastically from each other. These limitations can be solved by social network analysis, which allows us to define a unique sexual environment for each member of a population: ‘local scale’ competition, therefore, becomes an emergent property of a sexual network. Here, we first propose a novel quantitative approach to measure pre- and post-copulatory sexual selection, which integrates multi-level selection with information on local scale competition derived as an emergent property of networks of sexual interactions. We then use simple simulations to illustrate the ways in which polyandry can impact estimates of sexual selection. We show that for intermediate levels of polyandry, the proposed network-based approach provides substantially more accurate measures of sexual selection than the more traditional population-level approach. We argue that the increasing availability of fine-grained behavioural datasets provides exciting new opportunities to develop network approaches to study sexual selection in complex societies. PMID:23339246

  19. A Spatial Framework for Understanding Population Structure and Admixture.

    PubMed

    Bradburd, Gideon S; Ralph, Peter L; Coop, Graham M

    2016-01-01

    Geographic patterns of genetic variation within modern populations, produced by complex histories of migration, can be difficult to infer and visually summarize. A general consequence of geographically limited dispersal is that samples from nearby locations tend to be more closely related than samples from distant locations, and so genetic covariance often recapitulates geographic proximity. We use genome-wide polymorphism data to build "geogenetic maps," which, when applied to stationary populations, produces a map of the geographic positions of the populations, but with distances distorted to reflect historical rates of gene flow. In the underlying model, allele frequency covariance is a decreasing function of geogenetic distance, and nonlocal gene flow such as admixture can be identified as anomalously strong covariance over long distances. This admixture is explicitly co-estimated and depicted as arrows, from the source of admixture to the recipient, on the geogenetic map. We demonstrate the utility of this method on a circum-Tibetan sampling of the greenish warbler (Phylloscopus trochiloides), in which we find evidence for gene flow between the adjacent, terminal populations of the ring species. We also analyze a global sampling of human populations, for which we largely recover the geography of the sampling, with support for significant histories of admixture in many samples. This new tool for understanding and visualizing patterns of population structure is implemented in a Bayesian framework in the program SpaceMix. PMID:26771578

  20. Population structure of the giant garter snake, Thamnophis gigas

    USGS Publications Warehouse

    Paquin, M.M.; Wylie, G.D.; Routman, E.J.

    2006-01-01

    The giant garter snake, Thamnophis gigas, is a threatened species endemic to California's Central Valley. We tested the hypothesis that current watershed boundaries have caused genetic differentiation among populations of T. gigas. We sampled 14 populations throughout the current geographic range of T. gigas and amplified 859 bp from the mitochondrial gene ND4 and one nuclear microsatellite locus. DNA sequence variation from the mitochondrial gene indicates there is some genetic structuring of the populations, with high F ST values and unique haplotypes occurring at high frequency in several populations. We found that clustering populations by watershed boundary results in significant between-region genetic variance for mtDNA. However, analysis of allele frequencies at the microsatellite locus NSU3 reveals very low F ST values and little between-region variation in allele frequencies. The discordance found between mitochondrial and microsatellite data may be explained by aspects of molecular evolution and/or T. gigas life history characteristics. Differences in effective population size between mitochondrial and nuclear DNA, or male-biased gene flow, result in a lower migration rate of mitochondrial haplotypes relative to nuclear alleles. However, we cannot exclude homoplasy as one explanation for homogeneity found for the single microsatellite locus. The mitochondrial nucleotide sequence data supports conservation practices that identify separate management units for T. gigas. ?? Springer 2006.

  1. Population structure of loggerhead shrikes in the California Channel Islands.

    PubMed

    Eggert, Lori S; Mundy, Nicholas I; Woodruff, David S

    2004-08-01

    The loggerhead shrike (Lanius ludovicianus), a songbird that hunts like a small raptor, maintains breeding populations on seven of the eight California Channel Islands. One of the two subspecies, L. l. anthonyi, was described as having breeding populations on six of the islands while a second subspecies, L. l. mearnsi, was described as being endemic to San Clemente Island. Previous genetic studies have demonstrated that the San Clemente Island loggerhead shrike is well differentiated genetically from both L. l. anthonyi and mainland populations, despite the fact that birds from outside the population are regular visitors to the island. Those studies, however, did not include a comparison between San Clemente Island shrikes and the breeding population on Santa Catalina Island, the closest island to San Clemente. Here we use mitochondrial control region sequences and nuclear microsatellites to investigate the population structure of loggerhead shrikes in the Channel Islands. We confirm the genetic distinctiveness of the San Clemente Island loggerhead shrike and, using Bayesian clustering analysis, demonstrate the presence and infer the source of the nonbreeding visitors. Our results indicate that Channel Island loggerhead shrikes comprise three distinct genetic clusters that inhabit: (i) San Clemente Island, (ii) Santa Catalina Island and (iii) the Northern Channel Islands and nearby mainland; they do not support a recent suggestion that all Channel Island loggerhead shrikes should be managed as a single entity.

  2. Types of marriages, population structure and genetic disease.

    PubMed

    Machado, T M B; Bomfim, T F; Souza, L V; Soares, N; Santos, F L; Acosta, A X; Abe-Sandes, K

    2013-07-01

    A high occurrence rate of consanguineous marriages may favour the onset and increased frequency of autosomal recessive diseases in a population. The population of Monte Santo, Bahia, Brazil, has a high frequency of rare genetic diseases such as mucopolysaccharidosis type VI, whose observed frequency in this population is 1:5000, while the incidence of this disease recorded in other regions of the world varies from 1:43,261 in Turkey to 1:1,505,160 in Switzerland. To verify the influence of consanguineous marriage on the increased frequency of observed genetic diseases in this population, the population structure and frequency of different types of marriage during different time periods were evaluated. A total of 9765 marriages were found in an analysis of parish marriage records from the city. Over three periods, 1860-1895, 1950-1961 and 1975-2010, the inbreeding rates were 37.1%, 13.2% and 4.2% respectively. Although there was a high rate of inbreeding, endogamic marriages were the dominant marriage type in all three periods. In the most recent period, there was an increase in the number of exogamous marriages and those among immigrants, but most of these occurred among individuals from cities that neighbour Monte Santo. The low rate of migration and high frequency of endogamic and consanguineous marriages show that growth of this population is predominantly internal and could explain the occurrence, and increase in frequency, of recessive genetic diseases in the city.

  3. A Spatial Framework for Understanding Population Structure and Admixture

    PubMed Central

    Bradburd, Gideon S.; Ralph, Peter L.; Coop, Graham M.

    2016-01-01

    Geographic patterns of genetic variation within modern populations, produced by complex histories of migration, can be difficult to infer and visually summarize. A general consequence of geographically limited dispersal is that samples from nearby locations tend to be more closely related than samples from distant locations, and so genetic covariance often recapitulates geographic proximity. We use genome-wide polymorphism data to build “geogenetic maps,” which, when applied to stationary populations, produces a map of the geographic positions of the populations, but with distances distorted to reflect historical rates of gene flow. In the underlying model, allele frequency covariance is a decreasing function of geogenetic distance, and nonlocal gene flow such as admixture can be identified as anomalously strong covariance over long distances. This admixture is explicitly co-estimated and depicted as arrows, from the source of admixture to the recipient, on the geogenetic map. We demonstrate the utility of this method on a circum-Tibetan sampling of the greenish warbler (Phylloscopus trochiloides), in which we find evidence for gene flow between the adjacent, terminal populations of the ring species. We also analyze a global sampling of human populations, for which we largely recover the geography of the sampling, with support for significant histories of admixture in many samples. This new tool for understanding and visualizing patterns of population structure is implemented in a Bayesian framework in the program SpaceMix. PMID:26771578

  4. Genetic diversity and population structure of Yucca filamentosa (Agavaceae).

    PubMed

    Massey, L; Hamrick, J

    1998-03-01

    Using 19 allozyme loci we studied genetic diversity in 18 populations of Yucca filamentosa (Agavaceae) from the southeastern United States. Of the 19 loci surveyed, 17 (89.5%) were polymorphic in at least one of the populations sampled. There was considerable variation among populations in the percentage of polymorphic loci (range = 31.6-84.2%, mean = 67.6%). Similar heterogeneity among populations was observed for mean number of alleles per polymorphic locus (range = 2.0-3.0; mean = 2.48) and mean expected heterozygosity (range = 0.113-0.288; mean = 0.213). On average, 83% of the total genetic diversity was found within populations. Duplications of three allozyme loci were detected in several populations. The life-history characteristics of Y. filamentosa (a long-lived, semiwoody, predominantly outcrossing monocot with a large geographical range) may contribute to the maintenance of such high levels of genetic diversity. These results contradict expectations of the genetic structure of Y. filamentosa based on observations of the dispersal and pollination behavior of its sole pollinator, Tegeticula yuccasella, the yucca moth. PMID:21684917

  5. Genetic diversity and population structure of Yucca filamentosa (Agavaceae).

    PubMed

    Massey, L; Hamrick, J

    1998-03-01

    Using 19 allozyme loci we studied genetic diversity in 18 populations of Yucca filamentosa (Agavaceae) from the southeastern United States. Of the 19 loci surveyed, 17 (89.5%) were polymorphic in at least one of the populations sampled. There was considerable variation among populations in the percentage of polymorphic loci (range = 31.6-84.2%, mean = 67.6%). Similar heterogeneity among populations was observed for mean number of alleles per polymorphic locus (range = 2.0-3.0; mean = 2.48) and mean expected heterozygosity (range = 0.113-0.288; mean = 0.213). On average, 83% of the total genetic diversity was found within populations. Duplications of three allozyme loci were detected in several populations. The life-history characteristics of Y. filamentosa (a long-lived, semiwoody, predominantly outcrossing monocot with a large geographical range) may contribute to the maintenance of such high levels of genetic diversity. These results contradict expectations of the genetic structure of Y. filamentosa based on observations of the dispersal and pollination behavior of its sole pollinator, Tegeticula yuccasella, the yucca moth.

  6. Dimensions of global population projections: what do we know about future population trends and structures?

    PubMed

    Lutz, Wolfgang; K C, Samir

    2010-09-27

    The total size of the world population is likely to increase from its current 7 billion to 8-10 billion by 2050. This uncertainty is because of unknown future fertility and mortality trends in different parts of the world. But the young age structure of the population and the fact that in much of Africa and Western Asia, fertility is still very high makes an increase by at least one more billion almost certain. Virtually, all the increase will happen in the developing world. For the second half of the century, population stabilization and the onset of a decline are likely. In addition to the future size of the population, its distribution by age, sex, level of educational attainment and place of residence are of specific importance for studying future food security. The paper provides a detailed discussion of different relevant dimensions in population projections and an evaluation of the methods and assumptions used in current global population projections and in particular those produced by the United Nations and by IIASA. PMID:20713384

  7. fastSTRUCTURE: variational inference of population structure in large SNP data sets.

    PubMed

    Raj, Anil; Stephens, Matthew; Pritchard, Jonathan K

    2014-06-01

    Tools for estimating population structure from genetic data are now used in a wide variety of applications in population genetics. However, inferring population structure in large modern data sets imposes severe computational challenges. Here, we develop efficient algorithms for approximate inference of the model underlying the STRUCTURE program using a variational Bayesian framework. Variational methods pose the problem of computing relevant posterior distributions as an optimization problem, allowing us to build on recent advances in optimization theory to develop fast inference tools. In addition, we propose useful heuristic scores to identify the number of populations represented in a data set and a new hierarchical prior to detect weak population structure in the data. We test the variational algorithms on simulated data and illustrate using genotype data from the CEPH-Human Genome Diversity Panel. The variational algorithms are almost two orders of magnitude faster than STRUCTURE and achieve accuracies comparable to those of ADMIXTURE. Furthermore, our results show that the heuristic scores for choosing model complexity provide a reasonable range of values for the number of populations represented in the data, with minimal bias toward detecting structure when it is very weak. Our algorithm, fastSTRUCTURE, is freely available online at http://pritchardlab.stanford.edu/structure.html.

  8. Demographic analysis from summaries of an age-structured population

    USGS Publications Warehouse

    Link, W.A.; Royle, J. Andrew; Hatfield, J.S.

    2003-01-01

    Demographic analyses of age-structured populations typically rely on life history data for individuals, or when individual animals are not identified, on information about the numbers of individuals in each age class through time. While it is usually difficult to determine the age class of a randomly encountered individual, it is often the case that the individual can be readily and reliably assigned to one of a set of age classes. For example, it is often possible to distinguish first-year from older birds. In such cases, the population age structure can be regarded as a latent variable governed by a process prior, and the data as summaries of this latent structure. In this article, we consider the problem of uncovering the latent structure and estimating process parameters from summaries of age class information. We present a demographic analysis for the critically endangered migratory population of whooping cranes (Grus americana), based only on counts of first-year birds and of older birds. We estimate age and year-specific survival rates. We address the controversial issue of whether management action on the breeding grounds has influenced recruitment, relating recruitment rates to the number of seventh-year and older birds, and examining the pattern of variation through time in this rate.

  9. Microphysical Contributions to the Latent Heating Structures of Midlatitude and Tropical Storms and Feedbacks to Storm Organization

    NASA Astrophysics Data System (ADS)

    van den Heever, S. C.; Saleeby, S. M.; Herbener, S.; Storer, R. L.; Seigel, R. B.; Igel, A. L.; Sheffield, A. M.; McGee, C. J.; Igel, M. R.; Grant, L. D.; Clavner, M.; L'Ecuyer, T.; Berg, W. K.

    2012-12-01

    Latent heating associated with phase changes is a fundamental cloud process, and is influenced by both the microphysical and dynamical characteristics of the cloud system. As such, the structure of latent heating tends to be a function of the vertical profile, as well as of cloud type. Furthermore, changes to the latent heating can induce significant changes to the intensity of the cloud system, which in turn can have feedbacks on the microphysical processes and precipitation production of such storms. In spite of the importance of latent heating across a broad range of cloud systems, few direct measurements of this field are made routinely on a global basis. Nearly all current large-scale retrieval schemes depend heavily on some form of cloud resolving model simulations. With the development and design of future satellite and radar systems, it is hoped that more direct measurements of latent heat may become possible. However, in the meantime, it appears that one of our most appropriate tools to examine latent heating is cloud resolving models with sophisticated cloud microphysical schemes. The goal of the research to be presented is to examine the variations in the magnitude and distribution of latent heating across a range of different storm types, the role of different microphysical processes in explaining such variations, and the feedbacks between latent heating and dynamics in the organization of such systems. In particular, these characteristics will be examined for extratropical cyclones, squall lines and deep tropical convection. The goal will be achieved by examining a suite of numerical simulations of these storm systems conducted using the Regional Atmospheric Modeling System (RAMS). Recent developments to the model code allow for the evaluation of the contributions made by each microphysical process to the latent heating throughout the model domain. Insights into the importance of different microphysical processes in explaining the vertical and

  10. Polyvinylidene fluoride film sensors in collocated feedback structural control: application for suppressing impact-induced disturbances.

    PubMed

    Ma, Chien-Ching; Chuang, Kuo-Chih; Pan, Shan-Ying

    2011-12-01

    Polyvinylidene fluoride (PVDF) films are light, flexible, and have high piezoelectricity. Because of these advantages, they have been widely used as sensors in applications such as underwater investigation, nondestructive damage detection, robotics, and active vibration suppression. PVDF sensors are especially preferred over conventional strain gauges in active vibration control because the PVDF sensors are easy to cut into different sizes or shapes as piezoelectric actuators and they can then be placed as collocated pairs. In this work, to focus on demonstrating the dynamic sensing performance of the PVDF film sensor, we revisit the active vibration control problem of a cantilever beam using a collocated lead zirconate titanate (PZT) actuator/PVDF film sensor pair. Before applying active vibration control, the measurement characteristics of the PVDF film sensor are studied by simultaneous comparison with a strain gauge. The loading effect of the piezoelectric actuator on the cantilever beam is also investigated in this paper. Finally, four simple, robust active vibration controllers are employed with the collocated PZT/PVDF pair to suppress vibration of the cantilever beam subjected to impact loadings. The four controllers are the velocity feedback controller, the integral resonant controller (IRC), the resonant controller, and the positive position feedback (PPF) controller. Suppression of impact disturbances is especially suitable for the purpose of demonstrating the dynamic sensing performance of the PVDF sensor. The experimental results also provide suggestions for choosing between the previously mentioned controllers, which have been proven to be effective in suppressing impact-induced vibrations.

  11. Polyvinylidene fluoride film sensors in collocated feedback structural control: application for suppressing impact-induced disturbances.

    PubMed

    Ma, Chien-Ching; Chuang, Kuo-Chih; Pan, Shan-Ying

    2011-12-01

    Polyvinylidene fluoride (PVDF) films are light, flexible, and have high piezoelectricity. Because of these advantages, they have been widely used as sensors in applications such as underwater investigation, nondestructive damage detection, robotics, and active vibration suppression. PVDF sensors are especially preferred over conventional strain gauges in active vibration control because the PVDF sensors are easy to cut into different sizes or shapes as piezoelectric actuators and they can then be placed as collocated pairs. In this work, to focus on demonstrating the dynamic sensing performance of the PVDF film sensor, we revisit the active vibration control problem of a cantilever beam using a collocated lead zirconate titanate (PZT) actuator/PVDF film sensor pair. Before applying active vibration control, the measurement characteristics of the PVDF film sensor are studied by simultaneous comparison with a strain gauge. The loading effect of the piezoelectric actuator on the cantilever beam is also investigated in this paper. Finally, four simple, robust active vibration controllers are employed with the collocated PZT/PVDF pair to suppress vibration of the cantilever beam subjected to impact loadings. The four controllers are the velocity feedback controller, the integral resonant controller (IRC), the resonant controller, and the positive position feedback (PPF) controller. Suppression of impact disturbances is especially suitable for the purpose of demonstrating the dynamic sensing performance of the PVDF sensor. The experimental results also provide suggestions for choosing between the previously mentioned controllers, which have been proven to be effective in suppressing impact-induced vibrations. PMID:23443690

  12. Visualizing spatial population structure with estimated effective migration surfaces.

    PubMed

    Petkova, Desislava; Novembre, John; Stephens, Matthew

    2016-01-01

    Genetic data often exhibit patterns broadly consistent with 'isolation by distance'-a phenomenon where genetic similarity decays with geographic distance. In a heterogeneous habitat, this may occur more quickly in some regions than in others: for example, barriers to gene flow can accelerate differentiation between neighboring groups. We use the concept of 'effective migration' to model the relationship between genetics and geography. In this paradigm, effective migration is low in regions where genetic similarity decays quickly. We present a method to visualize variation in effective migration across a habitat from geographically indexed genetic data. Our approach uses a population genetic model to relate effective migration rates to expected genetic dissimilarities. We illustrate its potential and limitations using simulations and data from elephant, human and Arabidopsis thaliana populations. The resulting visualizations highlight important spatial features of population structure that are difficult to discern using existing methods for summarizing genetic variation.

  13. Visualizing spatial population structure with estimated effective migration surfaces

    PubMed Central

    Petkova, Desislava; Novembre, John; Stephens, Matthew

    2015-01-01

    Genetic data often exhibit patterns broadly consistent with “isolation by distance” – a phenomenon where genetic similarity decays with geographic distance. In a heterogeneous habitat this may occur more quickly in some regions than others: for example, barriers to gene flow can accelerate differentiation between neighboring groups. We use the concept of “effective migration” to model the relationship between genetics and geography: in this paradigm, effective migration is low in regions where genetic similarity decays quickly. We present a method to visualize variation in effective migration across the habitat from geographically indexed genetic data. Our approach uses a population genetic model to relate effective migration rates to expected genetic dissimilarities. We illustrate its potential and limitations using simulations and data from elephant, human and A. thaliana populations. The resulting visualizations highlight important spatial features of population structure that are difficult to discern using existing methods for summarizing genetic variation. PMID:26642242

  14. Rivers influence the population genetic structure of bonobos (Pan paniscus).

    PubMed

    Eriksson, J; Hohmann, G; Boesch, C; Vigilant, L

    2004-11-01

    Bonobos are large, highly mobile primates living in the relatively undisturbed, contiguous forest south of the Congo River. Accordingly, gene flow among populations is assumed to be extensive, but may be impeded by large, impassable rivers. We examined mitochondrial DNA control region sequence variation in individuals from five distinct localities separated by rivers in order to estimate relative levels of genetic diversity and assess the extent and pattern of population genetic structure in the bonobo. Diversity estimates for the bonobo exceed those for humans, but are less than those found for the chimpanzee. All regions sampled are significantly differentiated from one another, according to genetic distances estimated as pairwise FSTs, with the greatest differentiation existing between region East and each of the two Northern populations (N and NE) and the least differentiation between regions Central and South. The distribution of nucleotide diversity shows a clear signal of population structure, with some 30% of the variance occurring among geographical regions. However, a geographical patterning of the population structure is not obvious. Namely, mitochondrial haplotypes were shared among all regions excepting the most eastern locality and the phylogenetic analysis revealed a tree in which haplotypes were intermixed with little regard to geographical origin, with the notable exception of the close relationships among the haplotypes found in the east. Nonetheless, genetic distances correlated with geographical distances when the intervening distances were measured around rivers presenting effective current-day barriers, but not when straight-line distances were used, suggesting that rivers are indeed a hindrance to gene flow in this species.

  15. Demographic History, Population Structure, and Local Adaptation in Alpine Populations of Cardamine impatiens and Cardamine resedifolia

    PubMed Central

    Ometto, Lino; Li, Mingai; Bresadola, Luisa; Barbaro, Enrico; Neteler, Markus; Varotto, Claudio

    2015-01-01

    Species evolution depends on numerous and distinct forces, including demography and natural selection. For example, local adaptation and population structure affect the evolutionary history of species living along environmental clines. This is particularly relevant in plants, which are often characterized by limited dispersal ability and the need to respond to abiotic and biotic stress factors specific to the local environment. Here we study the demographic history and the possible existence of local adaptation in two related species of Brassicaceae, Cardamine impatiens and Cardamine resedifolia, which occupy separate habitats along the elevation gradient. Previous genome-wide analyses revealed the occurrence of distinct selective pressures in the two species, with genes involved in cold response evolving particularly fast in C. resedifolia. In this study we surveyed patterns of molecular evolution and genetic variability in a set of 19 genes, including neutral and candidate genes involved in cold response, across 10 populations each of C. resedifolia and C. impatiens from the Italian Alps (Trentino). We inferred the population structure and demographic history of the two species, and tested the occurrence of signatures of local adaptation in these genes. The results indicate that, despite a slightly higher population differentiation in C. resedifolia than in C. impatiens, both species are only weakly structured and that populations sampled at high altitude experience less gene flow than low-altitude ones. None of the genes showed signatures of positive selection, suggesting that they do not seem to play relevant roles in the current evolutionary processes of adaptation to alpine environments of these species. PMID:25933225

  16. Auroral Current and Electrodynamics Structure (ACES) observations of ionospheric feedback in the Alfvén resonator

    NASA Astrophysics Data System (ADS)

    Cohen, I. J.; Lessard, M.; Lund, E. J.; Bounds, S. R.; Kletzing, C.; Kaeppler, S. R.; Sigsbee, K. M.; Streltsov, A. V.; Labelle, J. W.; Dombrowski, M. P.; Pfaff, R. F.; Rowland, D.; Jones, S.; Anderson, B. J.; Heinselman, C. J.; Gjerloev, J. W.; Dudok de Wit, T.

    2011-12-01

    In 2009, the Auroral Current and Electrodynamics Structure (ACES) High and Low sounding rockets were launched from the Poker Flat Rocket Range (PFRR) in Alaska, with the science objective of gathering in-situ data to quantify current closure in a discrete auroral arc. As ACES High crossed through the return current of an arc (that was monitored using an allsky camera from the ground at Fort Yukon), its instruments recorded clear Alfvénic signatures both poleward and equatorward of the return current region, but not within the main region of the return current itself. These data provide an excellent opportunity to study ionospheric feedback and how it interacts with the Alfvén resonator. We compare the observations with predictions and new results from a model of ionospheric feedback in the ionospheric Alfvén resonator (IAR) and report the significance and impact of these new data for the Magnetosphere-Ionosphere Coupling in the Alfvén Resonator (MICA) rocket mission to launch from PFRR this winter. MICA's primary science objectives specifically focus on better understanding the small-scale structure that the model predicts should exist within the return current region.

  17. Argentine Population Genetic Structure: Large Variance in Amerindian Contribution

    PubMed Central

    Seldin, Michael F.; Tian, Chao; Shigeta, Russell; Scherbarth, Hugo R.; Silva, Gabriel; Belmont, John W.; Kittles, Rick; Gamron, Susana; Allevi, Alberto; Palatnik, Simon A.; Alvarellos, Alejandro; Paira, Sergio; Caprarulo, Cesar; Guillerón, Carolina; Catoggio, Luis J.; Prigione, Cristina; Berbotto, Guillermo A.; García, Mercedes A.; Perandones, Carlos E.; Pons-Estel, Bernardo A.; Alarcon-Riquelme, Marta E.

    2011-01-01

    Argentine population genetic structure was examined using a set of 78 ancestry informative markers (AIMs) to assess the contributions of European, Amerindian, and African ancestry in 94 individuals members of this population. Using the Bayesian clustering algorithm STRUCTURE, the mean European contribution was 78%, the Amerindian contribution was 19.4%, and the African contribution was 2.5%. Similar results were found using weighted least mean square method: European, 80.2%; Amerindian, 18.1%; and African, 1.7%. Consistent with previous studies the current results showed very few individuals (four of 94) with greater than 10% African admixture. Notably, when individual admixture was examined, the Amerindian and European admixture showed a very large variance and individual Amerindian contribution ranged from 1.5 to 84.5% in the 94 individual Argentine subjects. These results indicate that admixture must be considered when clinical epidemiology or case control genetic analyses are studied in this population. Moreover, the current study provides a set of informative SNPs that can be used to ascertain or control for this potentially hidden stratification. In addition, the large variance in admixture proportions in individual Argentine subjects shown by this study suggests that this population is appropriate for future admixture mapping studies. PMID:17177183

  18. Transport and mixing of microbial population by atmospheric coherent structures

    NASA Astrophysics Data System (ADS)

    Bozorg Magham, A.; Ross, S. D.

    2012-12-01

    Lagrangian coherent structures (LCSs) provide a new means for discussion of spatiotemporal characteristics of the passive transport and mixing of atmospheric pathogen populations, paving the way for new management strategies regarding the spread of infectious diseases affecting plants, domestic animals, and humans, including identification of probable source regions and forecasts of regions at high risk. We report on the relationship of coherent structures to the patchiness of pathogen populations, and the effects of imperfect forecast wind data on the resultant LCSs. Regarding forecasting LCSs, our main contributions are to quantify the accuracy and sensitivity of such predictions with respect to the forecasting parameters. To obtain more reliable atmospheric LCS features, we have incorporated two more concepts. First is the effect of unresolved turbulent motion; this consideration leads to the stochastic finite-time Lyapunov exponent (SFTLE) field and the resultant stochastic LCS. The second concept is ensemble FTLE/LCS forecasting using individual members of the ensemble wind field forecasts.

  19. Newly rare or newly common: evolutionary feedbacks through changes in population density and relative species abundance, and their management implications

    PubMed Central

    Lankau, Richard A; Strauss, Sharon Y

    2011-01-01

    Environmental management typically seeks to increase or maintain the population sizes of desirable species and to decrease population sizes of undesirable pests, pathogens, or invaders. With changes in population size come long-recognized changes in ecological processes that act in a density-dependent fashion. While the ecological effects of density dependence have been well studied, the evolutionary effects of changes in population size, via changes in ecological interactions with community members, are underappreciated. Here, we provide examples of changing selective pressures on, or evolution in, species as a result of changes in either density of conspecifics or changes in the frequency of heterospecific versus conspecific interactions. We also discuss the management implications of such evolutionary responses in species that have experienced rapid increases or decreases in density caused by human actions. PMID:25567977

  20. Testing for genetic structure in different urban Argentinian populations.

    PubMed

    Toscanini, Ulises; Gusmão, Leonor; Berardi, Gabriela; Amorim, António; Carracedo, Angel; Salas, Antonio; Raimondi, Eduardo

    2007-01-01

    Fifteen autosomal short tandem repeat (STR) markers (D3S1358, HUMTH01, D21S11, D18S51, PENTA E, D5S818, D13S317, D7S820, D16S539, CSF1PO, PENTA D, HUMvWA, D8S1179, HUMTPOX, FGA) were analyzed in 1734 individuals living in urban areas of cities from six different Argentinian provinces (Buenos Aires, Neuquén, Tucumán, La Pampa, San Luis, Santa Cruz) in order to determine if a common urban database could be used in Argentina for forensic purposes. Frequencies estimates, Hardy-Weinberg equilibrium (HWE), and other parameters of forensic interest were computed. Comparisons between the six populations, and with published data from one Native American population from Argentina and other urban populations from Argentina and Europe were also performed. Our results reveal evidences for population structure, both when testing for genetic differentiation and when comparing frequencies distributions between different pairs of populations. Therefore, caution should be taken when using a common pooled database with general forensic purposes in Argentina.

  1. Algebraic moment closure for population dynamics on discrete structures.

    PubMed

    House, Thomas

    2015-04-01

    Moment closure on general discrete structures often requires one of the following: (i) an absence of short-closed loops (zero clustering); (ii) existence of a spatial scale; (iii) ad hoc assumptions. Algebraic methods are presented to avoid the use of such assumptions for populations based on clumps and are applied to both SIR and macroparasite disease dynamics. One approach involves a series of approximations that can be derived systematically, and another is exact and based on Lie algebraic methods.

  2. Development of paradigms for the dynamics of structured populations

    SciTech Connect

    Not Available

    1994-10-01

    This is a technical progress report on the dynamics of predator-prey systems in a patchy environment. A new phenomenon that might contribute to outbreaks in systems of discrete patches has been determined using a discrete time model with both spatial and age structure. A model for a single species in a patchy environment with migration, local population growth and disasters with in patches has been formulated and a brief description is included.

  3. Spreading speeds for stage structured plant populations in fragmented landscapes.

    PubMed

    Gilbert, Mark A; White, Steven M; Bullock, James M; Gaffney, Eamonn A

    2014-05-21

    Landscape fragmentation has huge ecological and economic implications and affects the spatial dynamics of many plant species. Determining the speed of population spread in fragmented/heterogeneous landscapes is therefore of utmost importance to ecologists. Stage-structured integrodifference equations (IDEs) are deterministic models which accurately reflect the life cycles and dispersal patterns for numerous species. Existing approximations to wave-speeds consider only particular kernels, or landscapes in which the scale of variation is much smaller than the dispersal scale. We propose an analytical approximation to the wave-speeds of IDE solutions with periodic landscapes of alternating good and bad patches, where the dispersal scale is greater than the extent of each good patch and where the ratio of the demographic rates in the good and bad patches is given by a small parameter, denoted as ε. We formulate this approximation for the Gaussian and Laplace dispersal kernels and for stage structured and non-stage structured populations, and compare the results against numerical simulations. We find that the approximation is accurate for the landscapes considered, and that the type of dispersal kernel affects the relationship between landscape structure, as classified by landscape period and good patch size, and the spreading speed. This indicates that accurately fitting a kernel to data is important in determining the relationship between landscape structure and spreading speed.

  4. Population structure and minimum core genome typing of Legionella pneumophila

    PubMed Central

    Qin, Tian; Zhang, Wen; Liu, Wenbin; Zhou, Haijian; Ren, Hongyu; Shao, Zhujun; Lan, Ruiting; Xu, Jianguo

    2016-01-01

    Legionella pneumophila is an important human pathogen causing Legionnaires’ disease. In this study, whole genome sequencing (WGS) was used to study the characteristics and population structure of L. pneumophila strains. We sequenced and compared 53 isolates of L. pneumophila covering different serogroups and sequence-based typing (SBT) types (STs). We found that 1,896 single-copy orthologous genes were shared by all isolates and were defined as the minimum core genome (MCG) of L. pneumophila. A total of 323,224 single-nucleotide polymorphisms (SNPs) were identified among the 53 strains. After excluding 314,059 SNPs which were likely to be results of recombination, the remaining 9,165 SNPs were referred to as MCG SNPs. Population Structure analysis based on MCG divided the 53 L. pneumophila into nine MCG groups. The within-group distances were much smaller than the between-group distances, indicating considerable divergence between MCG groups. MCG groups were also supplied by phylogenetic analysis and may be considered as robust taxonomic units within L. pneumophila. Among the nine MCG groups, eight showed high intracellular growth ability while one showed low intracellular growth ability. Furthermore, MCG typing also showed high resolution in subtyping ST1 strains. The results obtained in this study provided significant insights into the evolution, population structure and pathogenicity of L. pneumophila. PMID:26888563

  5. Social structuring of mammalian populations and rate of chromosomal evolution.

    PubMed

    Wilson, A C; Bush, G L; Case, S M; King, M C

    1975-12-01

    To test the hypothesis that the evolution of organisms is dependent to a large degree on gene rearrangement, we devised a way of estimating rates of evolutionary change in karyotype. This non-biochemical method is based on consideration of chromosomal variability within taxonomic groups having a fossil record. The results show that chromosomal evolution has been faster in placental mammals than in other vertebrates or molluscs. This finding is consistent with published evidence that placentals have also been evolving unusually fast in anatomy and way of life. However, the structural genes of placentals seem not to have experienced accelerated evolution. Possibly, therefore, anatomical evolution may be facilitated by gene rearrangement. To explain how placentals achieved this rate of chromosomal evolution, we consider the process by which a new gene arrangement becomes fixed and spreads. The structure and dynamics of placental populations may be especially favorable for this process. The key factor involved seems to be the type of social behavior which produces small effective population sizes and inbreeding. As Bush points out elsewhere, such social structuring of populations may promote rapid fixation of gene rearrangements and rapid speciation.

  6. A Mechanism for Land-Atmosphere Feedback Involving Planetary Wave Structures

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Chang, Yehui; Schubert, Siegfried D.

    2014-01-01

    While the ability of land surface conditions to influence the atmosphere has been demonstrated in various modeling and observational studies, the precise mechanisms by which land-atmosphere feedback occurs are still largely unknown particularly the mechanisms that allow land moisture state in one region to affect atmospheric conditions in another. Such remote impacts are examined here in the context of atmospheric general circulation model (AGCM) simulations, leading to the identification of one potential mechanism: the phase-locking and amplification of a planetary wave through the imposition of a spatial pattern of soil moisture at the land surface. This mechanism, shown here to be relevant in the AGCM, apparently also operates in nature, as suggested by supporting evidence found in reanalysis data.

  7. A field experiment demonstrating plant life-history evolution and its eco-evolutionary feedback to seed predator populations.

    PubMed

    Agrawal, Anurag A; Johnson, Marc T J; Hastings, Amy P; Maron, John L

    2013-05-01

    The extent to which evolutionary change occurs in a predictable manner under field conditions and how evolutionary changes feed back to influence ecological dynamics are fundamental, yet unresolved, questions. To address these issues, we established eight replicate populations of native common evening primrose (Oenothera biennis). Each population was planted with 18 genotypes in identical frequency. By tracking genotype frequencies with microsatellite DNA markers over the subsequent three years (up to three generations, ≈5,000 genotyped plants), we show rapid and consistent evolution of two heritable plant life-history traits (shorter life span and later flowering time). This rapid evolution was only partially the result of differential seed production; genotypic variation in seed germination also contributed to the observed evolutionary response. Since evening primrose genotypes exhibited heritable variation for resistance to insect herbivores, which was related to flowering time, we predicted that evolutionary changes in genotype frequencies would feed back to influence populations of a seed predator moth that specializes on O. biennis. By the conclusion of the experiment, variation in the genotypic composition among our eight replicate field populations was highly predictive of moth abundance. These results demonstrate how rapid evolution in field populations of a native plant can influence ecological interactions. PMID:23598358

  8. Punishment can promote defection in group-structured populations.

    PubMed

    Powers, Simon T; Taylor, Daniel J; Bryson, Joanna J

    2012-10-21

    Pro-social punishment, whereby cooperators punish defectors, is often suggested as a mechanism that maintains cooperation in large human groups. Importantly, models that support this idea have to date only allowed defectors to be the target of punishment. However, recent empirical work has demonstrated the existence of anti-social punishment in public goods games. That is, individuals that defect have been found to also punish cooperators. Some recent theoretical studies have found that such anti-social punishment can prevent the evolution of pro-social punishment and cooperation. However, the evolution of anti-social punishment in group-structured populations has not been formally addressed. Previous work has informally argued that group-structure must favour pro-social punishment. Here we formally investigate how two demographic factors, group size and dispersal frequency, affect selection pressures on pro- and anti-social punishment. Contrary to the suggestions of previous work, we find that anti-social punishment can prevent the evolution of pro-social punishment and cooperation under a range of group structures. Given that anti-social punishment has now been found in all studied extant human cultures, the claims of previous models showing the co-evolution of pro-social punishment and cooperation in group-structured populations should be re-evaluated.

  9. Evolutionary dynamics of collective action in spatially structured populations.

    PubMed

    Peña, Jorge; Nöldeke, Georg; Lehmann, Laurent

    2015-10-01

    Many models proposed to study the evolution of collective action rely on a formalism that represents social interactions as n-player games between individuals adopting discrete actions such as cooperate and defect. Despite the importance of spatial structure in biological collective action, the analysis of n-player games games in spatially structured populations has so far proved elusive. We address this problem by considering mixed strategies and by integrating discrete-action n-player games into the direct fitness approach of social evolution theory. This allows to conveniently identify convergence stable strategies and to capture the effect of population structure by a single structure coefficient, namely, the pairwise (scaled) relatedness among interacting individuals. As an application, we use our mathematical framework to investigate collective action problems associated with the provision of three different kinds of collective goods, paradigmatic of a vast array of helping traits in nature: "public goods" (both providers and shirkers can use the good, e.g., alarm calls), "club goods" (only providers can use the good, e.g., participation in collective hunting), and "charity goods" (only shirkers can use the good, e.g., altruistic sacrifice). We show that relatedness promotes the evolution of collective action in different ways depending on the kind of collective good and its economies of scale. Our findings highlight the importance of explicitly accounting for relatedness, the kind of collective good, and the economies of scale in theoretical and empirical studies of the evolution of collective action. PMID:26151588

  10. Evolutionary dynamics of collective action in spatially structured populations.

    PubMed

    Peña, Jorge; Nöldeke, Georg; Lehmann, Laurent

    2015-10-01

    Many models proposed to study the evolution of collective action rely on a formalism that represents social interactions as n-player games between individuals adopting discrete actions such as cooperate and defect. Despite the importance of spatial structure in biological collective action, the analysis of n-player games games in spatially structured populations has so far proved elusive. We address this problem by considering mixed strategies and by integrating discrete-action n-player games into the direct fitness approach of social evolution theory. This allows to conveniently identify convergence stable strategies and to capture the effect of population structure by a single structure coefficient, namely, the pairwise (scaled) relatedness among interacting individuals. As an application, we use our mathematical framework to investigate collective action problems associated with the provision of three different kinds of collective goods, paradigmatic of a vast array of helping traits in nature: "public goods" (both providers and shirkers can use the good, e.g., alarm calls), "club goods" (only providers can use the good, e.g., participation in collective hunting), and "charity goods" (only shirkers can use the good, e.g., altruistic sacrifice). We show that relatedness promotes the evolution of collective action in different ways depending on the kind of collective good and its economies of scale. Our findings highlight the importance of explicitly accounting for relatedness, the kind of collective good, and the economies of scale in theoretical and empirical studies of the evolution of collective action.

  11. Adult hippocampal neurogenesis and pattern separation in DG: a role for feedback inhibition in modulating sparseness to govern population-based coding

    PubMed Central

    McAvoy, Kathleen; Besnard, Antoine; Sahay, Amar

    2015-01-01

    The dentate gyrus (DG) of mammals harbors neural stem cells that generate new dentate granule cells (DGCs) throughout life. Behavioral studies using the contextual fear discrimination paradigm have found that selectively augmenting or blocking adult hippocampal neurogenesis enhances or impairs discrimination under conditions of high, but not low, interference suggestive of a role in pattern separation. Although contextual discrimination engages population-based coding mechanisms underlying pattern separation such as global remapping in the DG and CA3, how adult hippocampal neurogenesis modulates pattern separation in the DG is poorly understood. Here, we propose a role for adult-born DGCs in re-activation coupled modulation of sparseness through feed-back inhibition to govern global remapping in the DG. PMID:26347621

  12. Opinion Dynamics in Populations with Implicit Community Structure

    NASA Astrophysics Data System (ADS)

    Si, Xiameng; Liu, Yun; Zhang, Zhenjiang

    Web encounter facilitate contacts between people from different communities outside space and time. Implicit Community Structure is exhibited because of highly connected links within community and sparse encounters between communities. Considering the imperceptible influence of encounter on opinions, Sznajd updating rules are used to mimic people's behaviors after encountering a stranger in another community. We introduce a model for opinion evolution, in which the interconnectivity between different communities is represented as encounter frequency, and leadership is introduced to control the strength of community's opinion guide. In this scenario, the effects of Implicit Community Structure of contact network on opinion evolution, for asymmetric and random initial distribution but with heterogeneous opinion guide, are investigated respectively. It is shown that large encounter frequency favors consensus of the whole populations and successful opinion spreading, which is qualitatively agree with the results observed in Majority model defined on substrates with predefined community structure.

  13. Characterization of the dominant structural vibration of hearing aid receivers: Towards the moderation of mechanical feedback in hearing aids

    NASA Astrophysics Data System (ADS)

    Varanda, Brenno R.

    Presented are the results from the experimental, analytical, and computational analyses accomplished to characterize the mechanical vibration of hearing aid receivers, a key electro-acoustic component of hearing aids. The function of a receiver in a hearing aid is to provide an amplified sound signal into the ear canal. Unfortunately, as the receiver produces sound, it also undergoes vibration which can be transmitted through the hearing aid package to the microphones, resulting in undesirable feedback oscillations. To gain more knowledge and control on the source of these feedback oscillations, a dynamic rigid body model of the receiver is proposed. The rigid body model captures the essential dynamic features of the receiver. The model is represented by two hinged rigid bodies, under an equal and opposite dynamic moment load, and connected to each other by a torsional spring and damper. The mechanical coupling ratio between the two rigid bodies is proved to be acoustically independent. A method is introduced to estimate the parameters for the proposed model using experimental data. An equivalent finite element analysis model is established and tested against a known and characterized mechanical attachment. The simulated model successfully predicts the structural dynamic response showing excellent agreement between the finite element analysis and measured results.

  14. An analysis of the basic population structure of Shanghai Municipality.

    PubMed

    Shen, A

    1984-01-01

    This paper analyzes the changes in Shanghai's population structure over the last 30 years in the 4 aspects of age structure, sex composition, urban and rural composition, and labor and employment structure. In 1953 those of the 0 to 6 age group accounted for 21.2% of the total population; in 1957 the group represented a proportion of 24.6%. Since the 1960s, especially after the 1970s, the family planning program gradually took effect, and the birthrate of the entire municipality fell drastically. The number of school-age children in 1979 was 1 1/2 times more than the same age group in 1953; there should be no worry that population control may result in a shortage of manpower to meet the needs of the work force and the armed forces either toward the end of this century or at the beginning of the next. The economy in China is underdeveloped, production and technology remain at a low level, average wages for employees are low, and for a long time the low living standard of the people has shown little sign of improvement. The problem is mainly manifest in the following areas: 1) distribution of the work force in heavy and light industries is not sufficiently rational, 2) the distribution of the work force between captial construction and transport and communications on the 1 hand and the national economy on the other is out of proportion, 3) the distribution of the work force between commerce, service trades, and public utilities on the 1 hand and the national economy on the other is disproportionated, and 4) the distribution of the work force between undertakings of culture, education, scientific research, health, and medical care on the 1 hand and economic construction on the other is improper. How to control population growth and adjust parts of the population structure to suit the national economic development poses a problem that calls for further in-depth study and analysis to resolve it step by step.

  15. Population genetic structure in the Holstein breed in Brazil.

    PubMed

    Magalhães Araújo da Silva, Mário Henrique; Malhado, Carlos Henrique Mendes; Costa, José Lauro; Cobuci, Jaime Araujo; Costa, Claudio Napolis; Carneiro, Paulo Luiz Souza

    2016-02-01

    We evaluated the population genetic structure of the Holstein breed in Brazil through pedigree analysis with the aim of supporting genetic management of extant herds. We used data from genealogical records of 204,511 animals in farms from south and southeast Brazil. Pedigree records between 1943 and 2005 were divided into seven periods of 8 years to estimate the effective population size (N e ). N e varied during the study periods, ranging from 0.19 to 3016.25. There was an increase in the percentage of inbred animals over time, from 0.18 to 5.0 %. However, this figure may be an underestimate due to the low completeness of pedigree, primarily related to paternal pedigree. The effective number of founders (fe) was 473 animals and ancestors (fa) was 471. The genetic contribution of 260 ancestors (founders or not) accounted for 50 % of the genetic variability in the population. The average relatedness coefficient (AR) and inbreeding coefficient indicate that the Holstein breed in Brazil is being effectively managed, despite a moderate founder effect and the low number of animals that are responsible for the population variance.

  16. Genetic structure of Balearic honeybee populations based on microsatellite polymorphism

    PubMed Central

    De la Rúa, Pilar; Galián, José; Serrano, José; Moritz, Robin FA

    2003-01-01

    The genetic variation of honeybee colonies collected in 22 localities on the Balearic Islands (Spain) was analysed using eight polymorphic microsatellite loci. Previous studies have demonstrated that these colonies belong either to the African or west European evolutionary lineages. These populations display low variability estimated from both the number of alleles and heterozygosity values, as expected for the honeybee island populations. Although genetic differentiation within the islands is low, significant heterozygote deficiency is present, indicating a subpopulation genetic structure. According to the genetic differentiation test, the honeybee populations of the Balearic Islands cluster into two groups: Gimnesias (Mallorca and Menorca) and Pitiusas (Ibiza and Formentera), which agrees with the biogeography postulated for this archipelago. The phylogenetic analysis suggests an Iberian origin of the Balearic honeybees, thus confirming the postulated evolutionary scenario for Apis mellifera in the Mediterranean basin. The microsatellite data from Formentera, Ibiza and Menorca show that ancestral populations are threatened by queen importations, indicating that adequate conservation measures should be developed for protecting Balearic bees. PMID:12729553

  17. Multi-layered population structure in Island Southeast Asians

    PubMed Central

    Ricaut, Francois-Xavier; Yngvadottir, Bryndis; Harney, Eadaoin; Castillo, Cristina; Hoogervorst, Tom; Antao, Tiago; Kusuma, Pradiptajati; Razafindrazaka, Harilanto; Cardona, Alexia; Pierron, Denis; Letellier, Thierry; Wee, Joseph; Abdullah, Syafiq; Metspalu, Mait; Kivisild, Toomas

    2016-01-01

    The history of human settlement in Southeast Asia has been complex and involved several distinct dispersal events. Here we report the analyses of 1825 individuals from Southeast Asia including new genome-wide genotype data for 146 individuals from three Mainland Southeast Asian (Burmese, Malay and Vietnamese) and four Island Southeast Asian (Dusun, Filipino, Kankanaey and Murut) populations. While confirming the presence of previously recognized major ancestry components in the Southeast Asian population structure, we highlight the Kankanaey Igorots from the highlands of the Philippine Mountain Province as likely the closest living representatives of the source population that may have given rise to the Austronesian expansion. This conclusion rests on independent evidence from various analyses of autosomal data and uniparental markers. Given the extensive presence of trade goods, cultural and linguistic evidence of Indian influence in Southeast Asia starting from 2.5kya we also detect traces of a South Asian signature in different populations in the region dating to the last couple of thousand years. PMID:27302840

  18. A population-based model of the nonlinear dynamics of the thalamocortical feedback network displays intrinsic oscillations in the spindling (7-14 Hz) range.

    PubMed

    Yousif, Nada A B; Denham, Michael

    2005-12-01

    The thalamocortical network is modelled using the Wilson-Cowan equations for neuronal population activity. We show that this population model with biologically derived parameters possesses intrinsic nonlinear oscillatory dynamics, and that the frequency of oscillation lies within the spindle range. Spindle oscillations are an early sleep oscillation characterized by high-frequency bursts of action potentials followed by a period of quiescence, at a frequency of 7-14 Hz. Spindles are generally regarded as being generated by intrathalamic circuitry, as decorticated thalamic slices and the isolated thalamic reticular nucleus exhibit spindles. However, the role of cortical feedback has been shown to regulate and synchronize the oscillation. Previous modelling studies have mainly used conductance-based models and hence the mechanism relied upon the inclusion of ionic currents, particularly the T-type calcium current. Here we demonstrate that spindle-frequency oscillatory activity can also arise from the nonlinear dynamics of the thalamocortical circuit, and we use bifurcation analysis to examine the robustness of this oscillation in terms of the functional range of the parameters used in the model. The results suggest that the thalamocortical circuit has intrinsic nonlinear population dynamics which are capable of providing robust support for oscillatory activity within the frequency range of spindle oscillations.

  19. Multilocus models in the infinite island model of population structure.

    PubMed

    Roze, Denis; Rousset, François

    2008-06-01

    Different methods have been developed to consider the effects of statistical associations among genes that arise in population genetics models: kin selection models deal with associations among genes present in different interacting individuals, while multilocus models deal with associations among genes at different loci. It was pointed out recently that these two types of models are very similar in essence. In this paper, we present a method to construct multilocus models in the infinite island model of population structure (where deme size may be arbitrarily small). This method allows one to compute recursions on allele frequencies, and different types of genetic associations (including associations between different individuals from the same deme), and incorporates selection. Recursions can be simplified using quasi-equilibrium approximations; however, we show that quasi-equilibrium calculations for associations that are different from zero under neutrality must include a term that has not been previously considered. The method is illustrated using simple examples.

  20. Evolutionary dynamics of group interactions on structured populations: a review

    PubMed Central

    Perc, Matjaž; Gómez-Gardeñes, Jesús; Szolnoki, Attila; Floría, Luis M.; Moreno, Yamir

    2013-01-01

    Interactions among living organisms, from bacteria colonies to human societies, are inherently more complex than interactions among particles and non-living matter. Group interactions are a particularly important and widespread class, representative of which is the public goods game. In addition, methods of statistical physics have proved valuable for studying pattern formation, equilibrium selection and self-organization in evolutionary games. Here, we review recent advances in the study of evolutionary dynamics of group interactions on top of structured populations, including lattices, complex networks and coevolutionary models. We also compare these results with those obtained on well-mixed populations. The review particularly highlights that the study of the dynamics of group interactions, like several other important equilibrium and non-equilibrium dynamical processes in biological, economical and social sciences, benefits from the synergy between statistical physics, network science and evolutionary game theory. PMID:23303223

  1. Adaptation of cardiac structure by mechanical feedback in the environment of the cell: a model study.

    PubMed Central

    Arts, T; Prinzen, F W; Snoeckx, L H; Rijcken, J M; Reneman, R S

    1994-01-01

    In the cardiac left ventricle during systole mechanical load of the myocardial fibers is distributed uniformly. A mechanism is proposed by which control of mechanical load is distributed over many individual control units acting in the environment of the cell. The mechanics of the equatorial region of the left ventricle was modeled by a thick-walled cylinder composed of 6-1500 shells of myocardial fiber material. In each shell a separate control unit was simulated. The direction of the cells was varied so that systolic fiber shortening approached a given optimum of 15%. End-diastolic sarcomere length was maintained at 2.1 microns. Regional early-systolic stretch and global contractility stimulated growth of cellular mass. If systolic shortening was more than normal the passive extracellular matrix stretched. The design of the load-controlling mechanism was derived from biological experiments showing that cellular processes are sensitive to mechanical deformation. After simulating a few hundred adaptation cycles, the macroscopic anatomical arrangement of helical pathways of the myocardial fibers formed automatically. If pump load of the ventricle was changed, wall thickness and cavity volume adapted physiologically. We propose that the cardiac anatomy may be defined and maintained by a multitude of control units for mechanical load, each acting in the cellular environment. Interestingly, feedback through fiber stress is not a compelling condition for such control. PMID:8038399

  2. Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures

    NASA Astrophysics Data System (ADS)

    Brenner, Philipp; Stulz, Mareike; Kapp, Dorothee; Abzieher, Tobias; Paetzold, Ulrich W.; Quintilla, Aina; Howard, Ian A.; Kalt, Heinz; Lemmer, Uli

    2016-10-01

    We report on the performance and stability of distributed feedback lasers based on the solution-processed methylammonium lead iodide perovskite (CH3NH3PbI3). The CH3NH3PbI3 layers are processed via solution-casting in ambient atmosphere onto nanoimprinted second order Bragg gratings. This way, we achieve highly polarized surface-emitted lasing at room temperature with a linewidth of less than 0.2 nm and a laser threshold of 120 kW/cm2. The lasing is stable; no change in the laser emission within 15 h of pulsed excitation with a repetition rate of 1 kHz (corresponding to >5 × 107 pulses) is observed, exceeding the stability achieved for solution processed organic semiconductor lasers. Furthermore, adjustment of the grating period allowed the lasing wavelength to be varied over the entire bandwidth of the amplified spontaneous emission (between 781 and 794 nm). The fabrication process of nanoimprinting followed by solution-casting of the gain material demonstrates that stable CH3NH3PbI3 lasers are compatible with scalable production technologies and offers a route towards electrically pumped diode architectures.

  3. Evolutionary dynamics of rhizopine within spatially structured rhizobium populations

    PubMed Central

    Simms, E. L.; Bever, J. D.

    1998-01-01

    Symbiosis between legumes and nitrogen-fixing bacteria is thought to bring mutual benefit to each participant. However, it is not known how rhizobia benefit from nodulating legume hosts because they fix nitrogen only after becoming bacteroids, which are terminally differentiated cells that cannot reproduce. Because undifferentiated rhizobia in and around the nodule can reproduce, evolution of symbiotic nitrogen fixation may depend upon kin selection. In some hosts, these kin may persist in the nodule as viable, undifferentiated bacteria. In other hosts, no viable rhizobia survive to reproduce after nodule senescence. Bacteroids in these hosts may benefit their free-living kin by enhancing production of plant root exudates. However, unrelated non-mutualists may also benefit from increased plant exudates. Rhizopines, compounds produced by bacteroids in nodules and catabolized only by related free-living rhizobia, may provide a mechanism by which bacteroids can preferentially benefit kin. Despite this apparent advantage, rhizopine genotypes are relatively rare. We constructed a mathematical model to examine how mixing within rhizobium populations influences the evolution of rhizopine genotypes. Our model predicts that the success of rhizopine genotypes is strongly dependent upon the spatial genetic structure of the bacterial population; rhizopine is more likely to dominate well-mixed populations. Further, for a given level of mixing, we find that rhizopine evolves under a positive frequency-dependent process in which stochastic accumulation of rhizopine alleles is necessary for rhizopine establishment. This process leads to increased spatial structure in rhizobium populations, and suggests that rhizopine may expand the conditions under which nitrogen fixation can evolve via kin selection.

  4. Diversification and Population Structure in Common Beans (Phaseolus vulgaris L.)

    PubMed Central

    Blair, Matthew W.; Soler, Alvaro; Cortés, Andrés J.

    2012-01-01

    Wild accessions of crops and landraces are valuable genetic resources for plant breeding and for conserving alleles and gene combinations in planta. The primary genepool of cultivated common beans includes wild accessions of Phaseolus vulgaris. These are of the same species as the domesticates and therefore are easily crossable with cultivated accessions. Molecular marker assessment of wild beans and landraces is important for the proper utilization and conservation of these important genetic resources. The goal of this research was to evaluate a collection of wild beans with fluorescent microsatellite or simple sequence repeat markers and to determine the population structure in combination with cultivated beans of all known races. Marker diversity in terms of average number of alleles per marker was high (13) for the combination of 36 markers and 104 wild genotypes that was similar to the average of 14 alleles per marker found for the 606 cultivated genotypes. Diversity in wild beans appears to be somewhat higher than in cultivated beans on a per genotype basis. Five populations or genepools were identified in structure analysis of the wild beans corresponding to segments of the geographical range, including Mesoamerican (Mexican), Guatemalan, Colombian, Ecuadorian-northern Peruvian and Andean (Argentina, Bolivia and Southern Peru). The combined analysis of wild and cultivated accessions showed that the first and last of these genepools were related to the cultivated genepools of the same names and the penultimate was found to be distinct but not ancestral to the others. The Guatemalan genepool was very novel and perhaps related to cultivars of race Guatemala, while the Colombian population was also distinct. Results suggest geographic isolation, founder effects or natural selection could have created the different semi-discrete populations of wild beans and that multiple domestications and introgression were involved in creating the diversity of cultivated beans

  5. Diversification and population structure in common beans (Phaseolus vulgaris L.).

    PubMed

    Blair, Matthew W; Soler, Alvaro; Cortés, Andrés J

    2012-01-01

    Wild accessions of crops and landraces are valuable genetic resources for plant breeding and for conserving alleles and gene combinations in planta. The primary genepool of cultivated common beans includes wild accessions of Phaseolus vulgaris. These are of the same species as the domesticates and therefore are easily crossable with cultivated accessions. Molecular marker assessment of wild beans and landraces is important for the proper utilization and conservation of these important genetic resources. The goal of this research was to evaluate a collection of wild beans with fluorescent microsatellite or simple sequence repeat markers and to determine the population structure in combination with cultivated beans of all known races. Marker diversity in terms of average number of alleles per marker was high (13) for the combination of 36 markers and 104 wild genotypes that was similar to the average of 14 alleles per marker found for the 606 cultivated genotypes. Diversity in wild beans appears to be somewhat higher than in cultivated beans on a per genotype basis. Five populations or genepools were identified in structure analysis of the wild beans corresponding to segments of the geographical range, including Mesoamerican (Mexican), Guatemalan, Colombian, Ecuadorian-northern Peruvian and Andean (Argentina, Bolivia and Southern Peru). The combined analysis of wild and cultivated accessions showed that the first and last of these genepools were related to the cultivated genepools of the same names and the penultimate was found to be distinct but not ancestral to the others. The Guatemalan genepool was very novel and perhaps related to cultivars of race Guatemala, while the Colombian population was also distinct. Results suggest geographic isolation, founder effects or natural selection could have created the different semi-discrete populations of wild beans and that multiple domestications and introgression were involved in creating the diversity of cultivated beans.

  6. Complex transition to cooperative behavior in a structured population model.

    PubMed

    Miranda, Luciano; de Souza, Adauto J F; Ferreira, Fernando F; Campos, Paulo R A

    2012-01-01

    Cooperation plays an important role in the evolution of species and human societies. The understanding of the emergence and persistence of cooperation in those systems is a fascinating and fundamental question. Many mechanisms were extensively studied and proposed as supporting cooperation. The current work addresses the role of migration for the maintenance of cooperation in structured populations. This problem is investigated in an evolutionary perspective through the prisoner's dilemma game paradigm. It is found that migration and structure play an essential role in the evolution of the cooperative behavior. The possible outcomes of the model are extinction of the entire population, dominance of the cooperative strategy and coexistence between cooperators and defectors. The coexistence phase is obtained in the range of large migration rates. It is also verified the existence of a critical level of structuring beyond that cooperation is always likely. In resume, we conclude that the increase in the number of demes as well as in the migration rate favor the fixation of the cooperative behavior.

  7. Complex Transition to Cooperative Behavior in a Structured Population Model

    PubMed Central

    Miranda, Luciano; de Souza, Adauto J. F.; Ferreira, Fernando F.; Campos, Paulo R. A.

    2012-01-01

    Cooperation plays an important role in the evolution of species and human societies. The understanding of the emergence and persistence of cooperation in those systems is a fascinating and fundamental question. Many mechanisms were extensively studied and proposed as supporting cooperation. The current work addresses the role of migration for the maintenance of cooperation in structured populations. This problem is investigated in an evolutionary perspective through the prisoner's dilemma game paradigm. It is found that migration and structure play an essential role in the evolution of the cooperative behavior. The possible outcomes of the model are extinction of the entire population, dominance of the cooperative strategy and coexistence between cooperators and defectors. The coexistence phase is obtained in the range of large migration rates. It is also verified the existence of a critical level of structuring beyond that cooperation is always likely. In resume, we conclude that the increase in the number of demes as well as in the migration rate favor the fixation of the cooperative behavior. PMID:22761736

  8. Population structure of humpback whales in the western and central South Pacific Ocean as determined by vocal exchange among populations.

    PubMed

    Garland, Ellen C; Goldizen, Anne W; Lilley, Matthew S; Rekdahl, Melinda L; Garrigue, Claire; Constantine, Rochelle; Hauser, Nan Daeschler; Poole, M Michael; Robbins, Jooke; Noad, Michael J

    2015-08-01

    For cetaceans, population structure is traditionally determined by molecular genetics or photographically identified individuals. Acoustic data, however, has provided information on movement and population structure with less effort and cost than traditional methods in an array of taxa. Male humpback whales (Megaptera novaeangliae) produce a continually evolving vocal sexual display, or song, that is similar among all males in a population. The rapid cultural transmission (the transfer of information or behavior between conspecifics through social learning) of different versions of this display between distinct but interconnected populations in the western and central South Pacific region presents a unique way to investigate population structure based on the movement dynamics of a song (acoustic) display. Using 11 years of data, we investigated an acoustically based population structure for the region by comparing stereotyped song sequences among populations and years. We used the Levenshtein distance technique to group previously defined populations into (vocally based) clusters based on the overall similarity of their song display in space and time. We identified the following distinct vocal clusters: western cluster, 1 population off eastern Australia; central cluster, populations around New Caledonia, Tonga, and American Samoa; and eastern region, either a single cluster or 2 clusters, one around the Cook Islands and the other off French Polynesia. These results are consistent with the hypothesis that each breeding aggregation represents a distinct population (each occupied a single, terminal node) in a metapopulation, similar to the current understanding of population structure based on genetic and photo-identification studies. However, the central vocal cluster had higher levels of song-sharing among populations than the other clusters, indicating that levels of vocal connectivity varied within the region. Our results demonstrate the utility and value of

  9. Population structure of humpback whales in the western and central South Pacific Ocean as determined by vocal exchange among populations.

    PubMed

    Garland, Ellen C; Goldizen, Anne W; Lilley, Matthew S; Rekdahl, Melinda L; Garrigue, Claire; Constantine, Rochelle; Hauser, Nan Daeschler; Poole, M Michael; Robbins, Jooke; Noad, Michael J

    2015-08-01

    For cetaceans, population structure is traditionally determined by molecular genetics or photographically identified individuals. Acoustic data, however, has provided information on movement and population structure with less effort and cost than traditional methods in an array of taxa. Male humpback whales (Megaptera novaeangliae) produce a continually evolving vocal sexual display, or song, that is similar among all males in a population. The rapid cultural transmission (the transfer of information or behavior between conspecifics through social learning) of different versions of this display between distinct but interconnected populations in the western and central South Pacific region presents a unique way to investigate population structure based on the movement dynamics of a song (acoustic) display. Using 11 years of data, we investigated an acoustically based population structure for the region by comparing stereotyped song sequences among populations and years. We used the Levenshtein distance technique to group previously defined populations into (vocally based) clusters based on the overall similarity of their song display in space and time. We identified the following distinct vocal clusters: western cluster, 1 population off eastern Australia; central cluster, populations around New Caledonia, Tonga, and American Samoa; and eastern region, either a single cluster or 2 clusters, one around the Cook Islands and the other off French Polynesia. These results are consistent with the hypothesis that each breeding aggregation represents a distinct population (each occupied a single, terminal node) in a metapopulation, similar to the current understanding of population structure based on genetic and photo-identification studies. However, the central vocal cluster had higher levels of song-sharing among populations than the other clusters, indicating that levels of vocal connectivity varied within the region. Our results demonstrate the utility and value of

  10. Genetic Diversity and Population Structure of Theileria annulata in Oman

    PubMed Central

    Al-Hamidhi, Salama; H. Tageldin, Mohammed.; Weir, William; Al-Fahdi, Amira; Johnson, Eugene H.; Bobade, Patrick; Alqamashoui, Badar; Beja-Pereira, Albano; Thompson, Joanne; Kinnaird, Jane; Shiels, Brian; Tait, Andy; Babiker, Hamza

    2015-01-01

    Background Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle. Methods Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites) representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman. Results We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia). A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST

  11. A Feedback Model of Attention Explains the Diverse Effects of Attention on Neural Firing Rates and Receptive Field Structure.

    PubMed

    Miconi, Thomas; VanRullen, Rufin

    2016-02-01

    Visual attention has many effects on neural responses, producing complex changes in firing rates, as well as modifying the structure and size of receptive fields, both in topological and feature space. Several existing models of attention suggest that these effects arise from selective modulation of neural inputs. However, anatomical and physiological observations suggest that attentional modulation targets higher levels of the visual system (such as V4 or MT) rather than input areas (such as V1). Here we propose a simple mechanism that explains how a top-down attentional modulation, falling on higher visual areas, can produce the observed effects of attention on neural responses. Our model requires only the existence of modulatory feedback connections between areas, and short-range lateral inhibition within each area. Feedback connections redistribute the top-down modulation to lower areas, which in turn alters the inputs of other higher-area cells, including those that did not receive the initial modulation. This produces firing rate modulations and receptive field shifts. Simultaneously, short-range lateral inhibition between neighboring cells produce competitive effects that are automatically scaled to receptive field size in any given area. Our model reproduces the observed attentional effects on response rates (response gain, input gain, biased competition automatically scaled to receptive field size) and receptive field structure (shifts and resizing of receptive fields both spatially and in complex feature space), without modifying model parameters. Our model also makes the novel prediction that attentional effects on response curves should shift from response gain to contrast gain as the spatial focus of attention drifts away from the studied cell. PMID:26890584

  12. Variable structure control of globally feedback-decoupled deformable vehicle maneuvers

    NASA Technical Reports Server (NTRS)

    Dwyer, T. A. W., III; Sira-Ramirez, H.; Monaco, S.; Stornelli, S.

    1987-01-01

    The use of Cayley-Rodrigues attitude parameters as kinematic variables is shown to yield a globally linearized and decoupled model of the equations of motion of a deformable body, where the structural deformation state appears only in the coefficients of the inverse transformation. It is shown how commanded multiaxial attitude maneuvers can be encoded as switching surfaces for a variable-structure control implementation of the corresponding computed slew torques, automatically modulated in respnse only to detected angular rate error signs, for accurate tracking in the presence of separately damped or even uncontrolled (but stable) structural deformations.

  13. Molecular advances in understanding social insect population structure.

    PubMed

    Crozier, R H; Oldroyd, B P; Tay, W T; Kaufmann, B E; Johnson, R N; Carew, M E; Jennings, K M

    1997-08-01

    Social insects present many phenomena seen in all organisms but in more extreme forms and with larger sample sizes than those observable in most natural populations of vertebrates. Microsatellites are proving very much more informative than allozymes for the analysis of population biological problems, and prolifically polymorphic markers are fairly readily developed. In addition, the male-haploid genetic system of many social insects facilitates genetic analysis. The ability to amplify DNA from sperm stored in a female's sperm storage device enables the determination of mating types long after the death of the short-lived males, in addition to information on the degree of mixing of sperm from different males. Mitochondrial (mt) DNA sequences are also proving important, not only in phylogenetic studies but also in molecular population genetics, as a tracer of female movements. Mitochondrial markers have definitively shown the movement of females between colonies, challenging models giving exclusive primacy to kin selection as the explanation for multiqueen colonies, in Australian meat ants, Iridomyrmex purpureus, and the aridzone queenless ant Rhytidoponera sp. 12. Microsatellite and mtDNA variation are being studied in Camponotus consobrinus sugar ants, showing an unexpected diversity of complexity in colony structure, and microsatellites have shown that transfer of ants between nests of the weaver ant Polyrhachis doddi must be slight, despite an apparent lack of hostility.

  14. Competitive intransitivity, population interaction structure, and strategy coexistence.

    PubMed

    Laird, Robert A; Schamp, Brandon S

    2015-01-21

    Intransitive competition occurs when competing strategies cannot be listed in a hierarchy, but rather form loops-as in the game rock-paper-scissors. Due to its cyclic competitive replacement, competitive intransitivity promotes strategy coexistence, both in rock-paper-scissors and in higher-richness communities. Previous work has shown that this intransitivity-mediated coexistence is strongly influenced by spatially explicit interactions, compared to when populations are well mixed. Here, we extend and broaden this line of research and examine the impact on coexistence of intransitive competition taking place on a continuum of small-world networks linking spatial lattices and regular random graphs. We use simulations to show that the positive effect of competitive intransitivity on strategy coexistence holds when competition occurs on networks toward the spatial end of the continuum. However, in networks that are sufficiently disordered, increasingly violent fluctuations in strategy frequencies can lead to extinctions and the prevalence of monocultures. We further show that the degree of disorder that leads to the transition between these two regimes is positively dependent on population size; indeed for very large populations, intransitivity-mediated strategy coexistence may even be possible in regular graphs with completely random connections. Our results emphasize the importance of interaction structure in determining strategy dynamics and diversity.

  15. Spatial structure of the spider crab, Maja brachydactyla population: Evidence of metapopulation structure

    NASA Astrophysics Data System (ADS)

    Corgos, Antonio; Bernárdez, Cristina; Sampedro, Paz; Verísimo, Patricia; Freire, Juan

    2011-08-01

    Distribution and spatial population structure of the spider crab, Maja brachydactyla, in the Ría de A Coruña (NW Spain) and adjacent coastal area was analysed. Sampling was done with experimental traps placed in three shallow bottom sampling stations and the central channel of the Ría, from December 1997 to November 1999. Crabs were tagged to study their movements on a small scale (1-10 km). Mean catches were substantially higher in the inner Ría station (Bastiagueiro) and were significantly higher in sandy substrates. Crabs inhabiting rocky bottoms moved to sandy bottoms from summer to autumn. Two local populations comprising mainly juveniles were identified —one located in Bastiagueiro and the other in Canide. There was no evidence of any major exchange between the juveniles of the two populations nor were juveniles observed to move towards deeper zones. Most of these juveniles reached maturity in summer and migrated to deeper waters. Adult catches and the recaptured specimens from both the experimental sampling and the commercial fishery indicate that the local Bastiagueiro population contributes a much greater number of individuals to the adult crab population in deep waters than does the Canide population. The spatial structure of the population of M. brachydactyla in the Ría de A Coruña may be defined as a part of a postlarval metapopulation made up of two shallow water local juvenile crab populations that migrate to deeper waters after attaining maturity. A pool of adults (and indirectly of larvae) from several local populations is formed in deeper waters. There is strong evidence that local populations are linked by larval dispersal.

  16. Estimating the Number of Subpopulations (K) in Structured Populations.

    PubMed

    Verity, Robert; Nichols, Richard A

    2016-08-01

    A key quantity in the analysis of structured populations is the parameter K, which describes the number of subpopulations that make up the total population. Inference of K ideally proceeds via the model evidence, which is equivalent to the likelihood of the model. However, the evidence in favor of a particular value of K cannot usually be computed exactly, and instead programs such as Structure make use of heuristic estimators to approximate this quantity. We show-using simulated data sets small enough that the true evidence can be computed exactly-that these heuristics often fail to estimate the true evidence and that this can lead to incorrect conclusions about K Our proposed solution is to use thermodynamic integration (TI) to estimate the model evidence. After outlining the TI methodology we demonstrate the effectiveness of this approach, using a range of simulated data sets. We find that TI can be used to obtain estimates of the model evidence that are more accurate and precise than those based on heuristics. Furthermore, estimates of K based on these values are found to be more reliable than those based on a suite of model comparison statistics. Finally, we test our solution in a reanalysis of a white-footed mouse data set. The TI methodology is implemented for models both with and without admixture in the software MavericK1.0. PMID:27317680

  17. Leveraging hierarchical population structure in discrete association studies.

    PubMed

    Carlson, Jonathan; Kadie, Carl; Mallal, Simon; Heckerman, David

    2007-01-01

    Population structure can confound the identification of correlations in biological data. Such confounding has been recognized in multiple biological disciplines, resulting in a disparate collection of proposed solutions. We examine several methods that correct for confounding on discrete data with hierarchical population structure and identify two distinct confounding processes, which we call coevolution and conditional influence. We describe these processes in terms of generative models and show that these generative models can be used to correct for the confounding effects. Finally, we apply the models to three applications: identification of escape mutations in HIV-1 in response to specific HLA-mediated immune pressure, prediction of coevolving residues in an HIV-1 peptide, and a search for genotypes that are associated with bacterial resistance traits in Arabidopsis thaliana. We show that coevolution is a better description of confounding in some applications and conditional influence is better in others. That is, we show that no single method is best for addressing all forms of confounding. Analysis tools based on these models are available on the internet as both web based applications and downloadable source code at http://atom.research.microsoft.com/bio/phylod.aspx.

  18. Campylobacter jejuni colonization and population structure in urban populations of ducks and starlings in New Zealand.

    PubMed

    Mohan, Vathsala; Stevenson, Mark; Marshall, Jonathan; Fearnhead, Paul; Holland, Barbara R; Hotter, Grant; French, Nigel P

    2013-08-01

    A repeated cross-sectional study was conducted to determine the prevalence of Campylobacter spp. and the population structure of C. jejuni in European starlings and ducks cohabiting multiple public access sites in an urban area of New Zealand. The country's geographical isolation and relatively recent history of introduction of wild bird species, including the European starling and mallard duck, create an ideal setting to explore the impact of geographical separation on the population biology of C. jejuni, as well as potential public health implications. A total of 716 starling and 720 duck fecal samples were collected and screened for C. jejuni over a 12 month period. This study combined molecular genotyping, population genetics and epidemiological modeling and revealed: (i) higher Campylobacter spp. isolation in starlings (46%) compared with ducks (30%), but similar isolation of C. jejuni in ducks (23%) and starlings (21%), (ii) significant associations between the isolation of Campylobacter spp. and host species, sampling location and time of year using logistic regression, (iii) evidence of population differentiation, as indicated by FST , and host-genotype association with clonal complexes CC ST-177 and CC ST-682 associated with starlings, and clonal complexes CC ST-1034, CC ST-692, and CC ST-1332 associated with ducks, and (iv) greater genetic diversity and genotype richness in ducks compared with starlings. These findings provide evidence that host-associated genotypes, such as the starling-associated ST-177 and ST-682, represent lineages that were introduced with the host species in the 19th century. The isolation of sequence types associated with human disease in New Zealand indicate that wild ducks and starlings need to be considered as a potential public health risk, particularly in urban areas.

  19. Population structure of a vector-borne plant parasite.

    PubMed

    Yule, Kelsey M; Koop, Jennifer A H; Alexandre, Nicolas M; Johnston, Lauren R; Whiteman, Noah K

    2016-07-01

    Parasites are among the most diverse groups of life on Earth, yet complex natural histories often preclude studies of their speciation processes. The biology of parasitic plants facilitates in situ collection of data on both genetic structure and the mechanisms responsible for that structure. Here, we studied the role of mating, dispersal and establishment in host race formation of a parasitic plant. We investigated the population genetics of a vector-borne desert mistletoe (Phoradendron californicum) across two legume host tree species (Senegalia greggii and Prosopis velutina) in the Sonoran desert using microsatellites. Consistent with host race formation, we found strong host-associated genetic structure in sympatry, little genetic variation due to geographic site and weak isolation by distance. We hypothesize that genetic differentiation results from differences in the timing of mistletoe flowering by host species, as we found initial flowering date of individual mistletoes correlated with genetic ancestry. Hybrids with intermediate ancestry were detected genetically. Individuals likely resulting from recent, successful establishment events following dispersal between the host species were detected at frequencies similar to hybrids between host races. Therefore, barriers to gene flow between the host races may have been stronger at mating than at dispersal. We also found higher inbreeding and within-host individual relatedness values for mistletoes on the more rare and isolated host species (S. greggii). Our study spanned spatial scales to address how interactions with both vectors and hosts influence parasitic plant structure with implications for parasite virulence evolution and speciation.

  20. Networks and Models with Heterogeneous Population Structure in Epidemiology

    NASA Astrophysics Data System (ADS)

    Kao, R. R.

    Heterogeneous population structure can have a profound effect on infectious disease dynamics, and is particularly important when investigating “tactical” disease control questions. At times, the nature of the network involved in the transmission of the pathogen (bacteria, virus, macro-parasite, etc.) appears to be clear; however, the nature of the network involved is dependent on the scale (e.g. within-host, between-host, or between-population), the nature of the contact, which ranges from the highly specific (e.g. sexual acts or needle sharing at the person-to-person level) to almost completely non-specific (e.g. aerosol transmission, often over long distances as can occur with the highly infectious livestock pathogen foot-and-mouth disease virus—FMDv—at the farm-to-farm level, e.g. Schley et al. in J. R. Soc. Interface 6:455-462, 2008), and the timescale of interest (e.g. at the scale of the individual, the typical infectious period of the host). Theoretical approaches to examining the implications of particular network structures on disease transmission have provided critical insight; however, a greater challenge is the integration of network approaches with data on real population structures. In this chapter, some concepts in disease modelling will be introduced, the relevance of selected network phenomena discussed, and then results from real data and their relationship to network analyses summarised. These include examinations of the patterns of air traffic and its relation to the spread of SARS in 2003 (Colizza et al. in BMC Med., 2007; Hufnagel et al. in Proc. Natl. Acad. Sci. USA 101:15124-15129, 2004), the use of the extensively documented Great Britain livestock movements network (Green et al. in J. Theor. Biol. 239:289-297, 2008; Robinson et al. in J. R. Soc. Interface 4:669-674, 2007; Vernon and Keeling in Proc. R. Soc. Lond. B, Biol. Sci. 276:469-476, 2009) and the growing interest in combining contact structure data with phylogenetics to

  1. Feedback regulation of ribosomal protein gene expression in Escherichia coli: structural homology of ribosomal RNA and ribosomal protein MRNA.

    PubMed Central

    Nomura, M; Yates, J L; Dean, D; Post, L E

    1980-01-01

    Certain ribosomal proteins (r proteins) in Escherichia coli, such as S4 and S7, function as feedback repressors in the regulation of r-protein synthesis. These proteins inhibit the translation of their own mRNA. The repressor r proteins so far identified are also known to bind specifically to rRNA at an initial stage in ribosome assembly. We have found structural homology between the S7 binding region on 16S rRNA and a region of the mRNA where S7 acts as a translational repressor. Similarly, there is structural homology between one of the reported S4 binding regions on 16S rRNA and the mRNA target site for S4. The observed homology supports the concept that regulation by repressor r proteins is based on competition between rRNA and mRNA for these proteins and that the same structural features and of the r proteins are used in their interactions with both rRNA and mRNA. PMID:7012833

  2. Feedback regulation of ribosomal protein gene expression in Escherichia coli: structural homology of ribosomal RNA and ribosomal protein MRNA.

    PubMed

    Nomura, M; Yates, J L; Dean, D; Post, L E

    1980-12-01

    Certain ribosomal proteins (r proteins) in Escherichia coli, such as S4 and S7, function as feedback repressors in the regulation of r-protein synthesis. These proteins inhibit the translation of their own mRNA. The repressor r proteins so far identified are also known to bind specifically to rRNA at an initial stage in ribosome assembly. We have found structural homology between the S7 binding region on 16S rRNA and a region of the mRNA where S7 acts as a translational repressor. Similarly, there is structural homology between one of the reported S4 binding regions on 16S rRNA and the mRNA target site for S4. The observed homology supports the concept that regulation by repressor r proteins is based on competition between rRNA and mRNA for these proteins and that the same structural features and of the r proteins are used in their interactions with both rRNA and mRNA.

  3. The Genetic Structure of Wild Orobanche cumana Wallr. (Orobanchaceae) Populations in Eastern Bulgaria Reflects Introgressions from Weedy Populations

    PubMed Central

    Pineda-Martos, Rocío; Pujadas-Salvà, Antonio J.; Fernández-Martínez, José M.; Stoyanov, Kiril; Pérez-Vich, Begoña

    2014-01-01

    Orobanche cumana is a holoparasitic plant naturally distributed from central Asia to south-eastern Europe, where it parasitizes wild Asteraceae species. It is also an important parasitic weed of sunflower crops. The objective of this research was to investigate genetic diversity, population structure, and virulence on sunflower of O. cumana populations parasitizing wild plants in eastern Bulgaria. Fresh tissue of eight O. cumana populations and mature seeds of four of them were collected in situ on wild hosts. Genetic diversity and population structure were studied with SSR markers and compared to weedy populations. Two main gene pools were identified in Bulgarian populations, with most of the populations having intermediate characteristics. Cross-inoculation experiments revealed that O. cumana populations collected on wild species possessed similar ability to parasitize sunflower to those collected on sunflower. The results were explained on the basis of an effective genetic exchange between populations parasitizing sunflower crops and those parasitizing wild species. The occurrence of bidirectional gene flow may have an impact on wild populations, as new physiological races continuously emerge in weedy populations. Also, genetic variability of wild populations may favour the ability of weedy populations to overcome sunflower resistance mechanisms. PMID:25143963

  4. Comparison of various decentralised structural and cavity feedback control strategies for transmitted noise reduction through a double panel structure

    NASA Astrophysics Data System (ADS)

    Ho, Jen-Hsuan; Berkhoff, Arthur

    2014-03-01

    This paper compares various decentralised control strategies, including structural and acoustic actuator-sensor configuration designs, to reduce noise transmission through a double panel structure. The comparison is based on identical control stability indexes. The double panel structure consists of two panels with air in between and offers the advantages of low sound transmission at high frequencies, low heat transmission, and low weight. The double panel structure is widely used, such as in the aerospace and automotive industries. Nevertheless, the resonance of the cavity and the poor sound transmission loss at low frequencies limit the double panel's noise control performance. Applying active structural acoustic control to the panels or active noise control to the cavity has been discussed in many papers. In this paper, the resonances of the panels and the cavity are considered simultaneously to further reduce the transmitted noise through an existing double panel structure. A structural-acoustic coupled model is developed to investigate and compare various structural control and cavity control methods. Numerical analysis and real-time control results show that structural control should be applied to both panels. Three types of cavity control sources are presented and compared. The results indicate that the largest noise reduction is obtained with cavity control by loudspeakers modified to operate as incident pressure sources.

  5. The Stellar Population Structure of the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Bovy, Jo; Rix, Hans-Walter; Schlafly, Edward F.; Nidever, David L.; Holtzman, Jon A.; Shetrone, Matthew; Beers, Timothy C.

    2016-05-01

    The spatial structure of stellar populations with different chemical abundances in the Milky Way (MW) contains a wealth of information on Galactic evolution over cosmic time. We use data on 14,699 red-clump stars from the APOGEE survey, covering 4 {kpc}≲ R≲ 15 {kpc}, to determine the structure of mono-abundance populations (MAPs)—stars in narrow bins in [α /{Fe}] and [{Fe}/{{H}}]—accounting for the complex effects of the APOGEE selection function and the spatially variable dust obscuration. We determine that all MAPs with enhanced [α /{Fe}] are centrally concentrated and are well-described as exponentials with a scale length of 2.2+/- 0.2 {kpc} over the whole radial range of the disk. We discover that the surface-density profiles of low-[α /{Fe}] MAPs are complex: they do not monotonically decrease outwards, but rather display a peak radius ranging from ≈ 5 to ≈ 13 {kpc} at low [{Fe}/{{H}}]. The extensive radial coverage of the data allows us to measure radial trends in the thickness of each MAP. While high-[α /{Fe}] MAPs have constant scale heights, low-[α /{Fe}] MAPs flare. We confirm, now with high-precision abundances, previous results that each MAP contains only a single vertical scale height and that low-[{Fe}/{{H}}], low-[α /{Fe}] and high-[{Fe}/{{H}}], high-[α /{Fe}] MAPs have intermediate ({h}Z≈ 300{--}600 {pc}) scale heights that smoothly bridge the traditional thin- and thick-disk divide. That the high-[α /{Fe}], thick disk components do not flare is strong evidence against their thickness being caused by radial migration. The correspondence between the radial structure and chemical-enrichment age of stellar populations is clear confirmation of the inside-out growth of galactic disks. The details of these relations will constrain the variety of physical conditions under which stars form throughout the MW disk.

  6. Diverse plasma populations and structures in Jupiter's magnetotail.

    PubMed

    McComas, D J; Allegrini, F; Bagenal, F; Crary, F; Ebert, R W; Elliott, H; Stern, A; Valek, P

    2007-10-12

    Jupiter's magnetotail is the largest cohesive structure in the solar system and marks the loss of vast numbers of heavy ions from the Jupiter system. The New Horizons spacecraft traversed the magnetotail to distances exceeding 2500 jovian radii (R(J)) and revealed a remarkable diversity of plasma populations and structures throughout its length. Ions evolve from a hot plasma disk distribution at approximately 100 R(J) to slower, persistent flows down the tail that become increasingly variable in flux and mean energy. The plasma is highly structured-exhibiting sharp breaks, smooth variations, and apparent plasmoids-and contains ions from both Io and Jupiter's ionosphere with intense bursts of H(+) and H(+)(3). Quasi-periodic changes were seen in flux at approximately 450 and approximately 1500 R(J) with a 10-hour period. Other variations in flow speed at approximately 600 to 1000 R(J) with a 3- to 4-day period may be attributable to plasmoids moving down the tail. PMID:17932282

  7. Diverse plasma populations and structures in Jupiter's magnetotail.

    PubMed

    McComas, D J; Allegrini, F; Bagenal, F; Crary, F; Ebert, R W; Elliott, H; Stern, A; Valek, P

    2007-10-12

    Jupiter's magnetotail is the largest cohesive structure in the solar system and marks the loss of vast numbers of heavy ions from the Jupiter system. The New Horizons spacecraft traversed the magnetotail to distances exceeding 2500 jovian radii (R(J)) and revealed a remarkable diversity of plasma populations and structures throughout its length. Ions evolve from a hot plasma disk distribution at approximately 100 R(J) to slower, persistent flows down the tail that become increasingly variable in flux and mean energy. The plasma is highly structured-exhibiting sharp breaks, smooth variations, and apparent plasmoids-and contains ions from both Io and Jupiter's ionosphere with intense bursts of H(+) and H(+)(3). Quasi-periodic changes were seen in flux at approximately 450 and approximately 1500 R(J) with a 10-hour period. Other variations in flow speed at approximately 600 to 1000 R(J) with a 3- to 4-day period may be attributable to plasmoids moving down the tail.

  8. Fine structures in the broadened line of distributed feedback lasers under high-speed direct modulation

    SciTech Connect

    Yoshikuni, Y.; Matsuoka, T.; Motosugi, G.; Yamanaka, N.

    1984-10-15

    Precise observation of the single longitudinal mode spectrum for distributed feeedback lasers revealed fine structures when the spectrum was broadened by high-speed modulation. A dynamic simulation can explain reasonably the above behavior if the model takes into account the carrier density modulation enhanced by the relaxation oscillation. In this letter, experimental results where both modulation depth and speed were varied are described along with a calculated result.

  9. Kiloparsec-scale outflows are prevalent among luminous AGN: outflows and feedback in the context of the overall AGN population

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Swinbank, A. M.

    2014-07-01

    We present integral field unit observations covering the [O III]λλ4959, 5007 and Hβ emission lines of 16 z < 0.2 type 2 active galactic nuclei (AGN). Our targets are selected from a well-constrained parent sample of ≈24 000 AGN so that we can place our observations into the context of the overall AGN population. Our targets are radio quiet with star formation rates (SFRs; ≲[10-100] M⊙ yr-1) that are consistent with normal star-forming galaxies. We decouple the kinematics of galaxy dynamics and mergers from outflows. We find high-velocity ionized gas (velocity widths ≈600-1500 km s-1; maximum velocities ≤1700 km s-1) with observed spatial extents of ≳(6-16) kpc in all targets and observe signatures of spherical outflows and bi-polar superbubbles. We show that our targets are representative of z < 0.2, luminous (i.e. L[O III] > 1041.7 erg s-1) type 2 AGN and that ionized outflows are not only common but also in ≥70 per cent (3σ confidence) of cases, they are extended over kiloparsec scales. Our study demonstrates that galaxy-wide energetic outflows are not confined to the most extreme star-forming galaxies or radio-luminous AGN; however, there may be a higher incidence of the most extreme outflow velocities in quasars hosted in ultraluminous infrared galaxies. Both star formation and AGN activity appear to be energetically viable to drive the outflows and we find no definitive evidence that favours one process over the other. Although highly uncertain, we derive mass outflow rates (typically ≈10 times the SFRs), kinetic energies (≈0.5-10 per cent of LAGN) and momentum rates (typically ≳10-20 × LAGN/c) consistent with theoretical models that predict AGN-driven outflows play a significant role in shaping the evolution of galaxies.

  10. Effects of spatial structure of population size on the population dynamics of barnacles across their elevational range.

    PubMed

    Fukaya, Keiichi; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi

    2014-11-01

    Explanations for why population dynamics vary across the range of a species reflect two contrasting hypotheses: (i) temporal variability of populations is larger in the centre of the range compared to the margins because overcompensatory density dependence destabilizes population dynamics and (ii) population variability is larger near the margins, where populations are more susceptible to environmental fluctuations. In both of these hypotheses, positions within the range are assumed to affect population variability. In contrast, the fact that population variability is often related to mean population size implies that the spatial structure of the population size within the range of a species may also be a useful predictor of the spatial variation in temporal variability of population size over the range of the species. To explore how population temporal variability varies spatially and the underlying processes responsible for the spatial variation, we focused on the intertidal barnacle Chthamalus dalli and examined differences in its population dynamics along the tidal levels it inhabits. Changes in coverage of barnacle populations were monitored for 10.5 years at 25 plots spanning the elevational range of this species. Data were analysed by fitting a population dynamics model to estimate the effects of density-dependent and density-independent processes on population growth. We also examined the temporal mean-variance relationship of population size with parameters estimated from the population dynamics model. We found that the relative variability of populations tended to increase from the centre of the elevational range towards the margins because of an increase in the magnitude of stochastic fluctuations of growth rates. Thus, our results supported hypothesis (2). We also found that spatial variations in temporal population variability were well characterized by Taylor's power law, the relative population variability being inversely related to the mean

  11. Stable isotopes indicate population structuring in the southwest Atlantic population of right whales (Eubalaena australis).

    PubMed

    Vighi, Morgana; Borrell, Asunción; Crespo, Enrique A; Oliveira, Larissa R; Simões-Lopes, Paulo C; Flores, Paulo A C; García, Néstor A; Aguilar, Alex; Aguilar, Alejandro

    2014-01-01

    From the early 17th century to the 1970s southern right whales, Eubalaena australis, were subject to intense exploitation along the Atlantic coast of South America. Catches along this coast recorded by whalers originally formed a continuum from Brazil to Tierra del Fuego. Nevertheless, the recovery of the population has apparently occurred fragmentarily, and with two main areas of concentration, one off southern Brazil (Santa Catarina) and another off central Argentina (Peninsula Valdés). This pattern suggests some level of heterogeneity amongst the population, which is apparently contradicted by records that traced individuals moving throughout the whole geographical extension covered by the species in the Southwest Atlantic. To test the hypothesis of the potential occurrence of discrete subpopulations exploiting specific habitats, we investigated N, C and O isotopic values in 125 bone samples obtained from whaling factories operating in the early 1970s in southern Brazil (n=72) and from contemporary and more recent strandings occurring in central Argentina (n=53). Results indicated significant differences between the two sampling areas, being δ13C and δ18O values significantly higher in samples from southern Brazil than in those from central Argentina. This variation was consistent with isotopic baselines from the two areas, indicating the occurrence of some level of structure in the Southwest Atlantic right whale population and equally that whales more likely feed in areas commonly thought to exclusively serve as nursing grounds. Results aim at reconsidering of the units currently used in the management of the southern right whale in the Southwest Atlantic Ocean. In the context of the current die-off affecting the species in Peninsula Valdés, these results also highlight the necessity to better understand movements of individuals and precisely identify their feeding areas.

  12. Stable Isotopes Indicate Population Structuring in the Southwest Atlantic Population of Right Whales (Eubalaena australis)

    PubMed Central

    Vighi, Morgana; Borrell, Asunción; Crespo, Enrique A.; Oliveira, Larissa R.; Simões-Lopes, Paulo C.; Flores, Paulo A. C.; García, Néstor A.; Aguilar, Alejandro

    2014-01-01

    From the early 17th century to the 1970s southern right whales, Eubalaena australis, were subject to intense exploitation along the Atlantic coast of South America. Catches along this coast recorded by whalers originally formed a continuum from Brazil to Tierra del Fuego. Nevertheless, the recovery of the population has apparently occurred fragmentarily, and with two main areas of concentration, one off southern Brazil (Santa Catarina) and another off central Argentina (Peninsula Valdés). This pattern suggests some level of heterogeneity amongst the population, which is apparently contradicted by records that traced individuals moving throughout the whole geographical extension covered by the species in the Southwest Atlantic. To test the hypothesis of the potential occurrence of discrete subpopulations exploiting specific habitats, we investigated N, C and O isotopic values in 125 bone samples obtained from whaling factories operating in the early 1970s in southern Brazil (n = 72) and from contemporary and more recent strandings occurring in central Argentina (n = 53). Results indicated significant differences between the two sampling areas, being δ13C and δ18O values significantly higher in samples from southern Brazil than in those from central Argentina. This variation was consistent with isotopic baselines from the two areas, indicating the occurrence of some level of structure in the Southwest Atlantic right whale population and equally that whales more likely feed in areas commonly thought to exclusively serve as nursing grounds. Results aim at reconsidering of the units currently used in the management of the southern right whale in the Southwest Atlantic Ocean. In the context of the current die-off affecting the species in Peninsula Valdés, these results also highlight the necessity to better understand movements of individuals and precisely identify their feeding areas. PMID:24598539

  13. Local genetic structure in a white-bearded manakin population.

    PubMed

    Höglund, Jacob; Shorey, Lisa

    2003-09-01

    Local genetic structure was studied in lekking white-bearded manakins in a study area on northern Trinidad, West Indies. The study population consisted of nine leks, at which a total of 238 birds were caught. By genotyping the individuals at eight polymorphic microsatellite loci we inferred some males on leks to be related (r = 0.25) as we found an average number of 14.8 half-sib relationships and two full-sib relationships per lek. We found that the sampled birds belonged to one genetic population that was slightly inbred (FIS and FIT = 0.02). Kinship coefficients decreased with increasing geographical distance, indicating that related birds displayed at the same or nearby leks. However, leks did not consist of only one family group because the average genetic distance (aij) between males within leks was higher than when comparing males on leks within close proximity. These patterns suggest limited male dispersal, that some type of kin recognition process between individuals may exist in this species and that males on leks may be more likely to establish themselves as territory-holding birds if a relative is already present. PMID:12919483

  14. Latitudinal variation in population structure of wintering Pacific Black Brant

    USGS Publications Warehouse

    Schamber, J.L.; Sedinger, J.S.; Ward, D.H.; Hagmeier, K.R.

    2007-01-01

    Latitudinal variation in population structure during the winter has been reported in many migratory birds, but has been documented in few species of waterfowl. Variation in environmental and social conditions at wintering sites can potentially influence the population dynamics of differential migrants. We examined latitudinal variation in sex and age classes of wintering Pacific Black Brant (Branta bernicla nigricans). Brant are distributed along a wide latitudinal gradient from Alaska to Mexico during the winter. Accordingly, migration distances for brant using different wintering locations are highly variable and winter settlement patterns are likely associated with a spatially variable food resource. We used resightings of brant banded in southwestern Alaska to examine sex and age ratios of birds wintering at Boundary Bay in British Columbia, and at San Quintin Bay, Ojo de Liebre Lagoon, and San Ignacio Lagoon in Baja California from 1998 to 2000. Sex ratios were similar among wintering locations for adults and were consistent with the mating strategy of geese. The distribution of juveniles varied among wintering areas, with greater proportions of juveniles observed at northern (San Quintin Bay and Ojo de Liebre Lagoon) than at southern (San Ignacio Lagoon) locations in Baja California. We suggest that age-related variation in the winter distribution of Pacific Black Brant is mediated by variation in productivity among individuals at different wintering locations and by social interactions among wintering family groups.

  15. Population Genetic Structure of a Microalgal Species under Expansion

    PubMed Central

    Lebret, Karen; Kritzberg, Emma S.; Rengefors, Karin

    2013-01-01

    Biological invasions often cause major perturbations in the environment and are well studied among macroorganisms. Less is known about invasion by free-living microbes. Gonyostomum semen (Raphidophyceae) is a freshwater phytoplankton species that has increased in abundance in Northern Europe since the 1980's and has expanded its habitat range. In this study, we aimed to determine the genetic population structure of G. semen in Northern Europe and to what extent it reflects the species' recent expansion. We sampled lakes from 12 locations (11 lakes) in Norway, Sweden and Finland. Multiple strains from each location were genotyped using Amplified Fragment Length Polymorphism (AFLP). We found low differentiation between locations, and low gene diversity within each location. Moreover, there was an absence of genetic isolation with distance (Mantel test, p = 0.50). According to a Bayesian clustering method all the isolates belonged to the same genetic population. Together our data suggest the presence of one metapopulation and an overall low diversity, which is coherent with a recent expansion of G. semen. PMID:24349300

  16. Interactive diversity promotes the evolution of cooperation in structured populations

    NASA Astrophysics Data System (ADS)

    Su, Qi; Li, Aming; Zhou, Lei; Wang, Long

    2016-10-01

    Evolutionary games on networks traditionally assume that each individual adopts an identical strategy to interact with all its neighbors in each generation. Considering the prevalent diversity of individual interactions in the real society, here we propose the concept of interactive diversity, which allows individuals to adopt different strategies against different neighbors in each generation. We investigate the evolution of cooperation based on the edge dynamics rather than the traditional nodal dynamics in networked systems. The results show that, without invoking any other mechanisms, interactive diversity drives the frequency of cooperation to a high level for a wide range of parameters in both well-mixed and structured populations. Even in highly connected populations, cooperation still thrives. When interactive diversity and large topological heterogeneity are combined together, however, in the relaxed social dilemma, cooperation level is lower than that with just one of them, implying that the combination of many promotive factors may make a worse outcome. By an analytical approximation, we get the condition under which interactive diversity provides more advantages for cooperation than traditional evolutionary dynamics does. Numerical simulations validating the approximation are also presented. Our work provides a new line to explore the latent relation between the ubiquitous cooperation and individuals’ distinct responses in different interactions. The presented results suggest that interactive diversity should receive more attention in pursuing mechanisms fostering cooperation.

  17. Genetic population structure of muskellunge in the Great Lakes

    USGS Publications Warehouse

    Kapuscinski, Kevin L.; Sloss, Brian L.; Farrell, John M.

    2013-01-01

    We quantified genetic relationships among Muskellunge Esox masquinongy from 15 locations in the Great Lakes to determine the extent and distribution of measurable population structure and to identify appropriate spatial scales for fishery management and genetic conservation. We hypothesized that Muskellunge from each area represented genetically distinct populations, which would be evident from analyses of genotype data. A total of 691 Muskellunge were sampled (n = 10–127/site) and genetic data were collected at 13 microsatellite loci. Results from a suite of analyses (including pairwise genetic differentiation, Bayesian admixture prediction, analysis of molecular variance, and tests of isolation by distance) indicated the presence of nine distinct genetic groups, including two that were approximately 50 km apart. Geographic proximity and low habitat complexity seemed to facilitate genetic similarity among areas, whereas Muskellunge from areas of greater habitat heterogeneity exhibited high differentiation. Muskellunge from most areas contained private alleles, and mean within-area genetic variation was similar to that reported for other freshwater fishes. Management programs aimed at conserving the broader diversity and long-term sustainability of Muskellunge could benefit by considering the genetically distinct groups as independent fisheries, and individual spawning and nursery habitats could subsequently be protected to conserve the evolutionary potential of Muskellunge.

  18. Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: evolutionary and geobiological feedbacks.

    PubMed

    Mángano, M Gabriela; Buatois, Luis A

    2014-04-01

    The rapid appearance of bilaterian clades at the beginning of the Phanerozoic is one of the most intriguing topics in macroevolution. However, the complex feedbacks between diversification and ecological interactions are still poorly understood. Here, we show that a systematic and comprehensive analysis of the trace-fossil record of the Ediacaran-Cambrian transition indicates that body-plan diversification and ecological structuring were decoupled. The appearance of a wide repertoire of behavioural strategies and body plans occurred by the Fortunian. However, a major shift in benthic ecological structure, recording the establishment of a suspension-feeder infauna, increased complexity of the trophic web, and coupling of benthos and plankton took place during Cambrian Stage 2. Both phases were accompanied by different styles of ecosystem engineering, but only the second one resulted in the establishment of the Phanerozoic-style ecology. In turn, the suspension-feeding infauna may have been the ecological drivers of a further diversification of deposit-feeding strategies by Cambrian Stage 3, favouring an ecological spillover scenario. Trace-fossil information strongly supports the Cambrian explosion, but allows for a short time of phylogenetic fuse during the terminal Ediacaran-Fortunian. PMID:24523279

  19. Decoupling of body-plan diversification and ecological structuring during the Ediacaran–Cambrian transition: evolutionary and geobiological feedbacks

    PubMed Central

    Mángano, M. Gabriela; Buatois, Luis A.

    2014-01-01

    The rapid appearance of bilaterian clades at the beginning of the Phanerozoic is one of the most intriguing topics in macroevolution. However, the complex feedbacks between diversification and ecological interactions are still poorly understood. Here, we show that a systematic and comprehensive analysis of the trace-fossil record of the Ediacaran–Cambrian transition indicates that body-plan diversification and ecological structuring were decoupled. The appearance of a wide repertoire of behavioural strategies and body plans occurred by the Fortunian. However, a major shift in benthic ecological structure, recording the establishment of a suspension-feeder infauna, increased complexity of the trophic web, and coupling of benthos and plankton took place during Cambrian Stage 2. Both phases were accompanied by different styles of ecosystem engineering, but only the second one resulted in the establishment of the Phanerozoic-style ecology. In turn, the suspension-feeding infauna may have been the ecological drivers of a further diversification of deposit-feeding strategies by Cambrian Stage 3, favouring an ecological spillover scenario. Trace-fossil information strongly supports the Cambrian explosion, but allows for a short time of phylogenetic fuse during the terminal Ediacaran–Fortunian. PMID:24523279

  20. Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: evolutionary and geobiological feedbacks.

    PubMed

    Mángano, M Gabriela; Buatois, Luis A

    2014-04-01

    The rapid appearance of bilaterian clades at the beginning of the Phanerozoic is one of the most intriguing topics in macroevolution. However, the complex feedbacks between diversification and ecological interactions are still poorly understood. Here, we show that a systematic and comprehensive analysis of the trace-fossil record of the Ediacaran-Cambrian transition indicates that body-plan diversification and ecological structuring were decoupled. The appearance of a wide repertoire of behavioural strategies and body plans occurred by the Fortunian. However, a major shift in benthic ecological structure, recording the establishment of a suspension-feeder infauna, increased complexity of the trophic web, and coupling of benthos and plankton took place during Cambrian Stage 2. Both phases were accompanied by different styles of ecosystem engineering, but only the second one resulted in the establishment of the Phanerozoic-style ecology. In turn, the suspension-feeding infauna may have been the ecological drivers of a further diversification of deposit-feeding strategies by Cambrian Stage 3, favouring an ecological spillover scenario. Trace-fossil information strongly supports the Cambrian explosion, but allows for a short time of phylogenetic fuse during the terminal Ediacaran-Fortunian.

  1. Population genetic structure and conservation of marbled murrelets (Brachyramphus marmoratus)

    USGS Publications Warehouse

    Friesen, V.L.; Birt, T.P.; Piatt, J.F.; Golightly, R.T.; Newman, S.H.; Hebert, P.N.; Congdon, B.C.; Gissing, G.

    2005-01-01

    Marbled murrelets (Brachyramphus marmoratus) are coastal seabirds that nest from California to the Aleutian Islands. They are declining and considered threatened in several regions. We compared variation in the mitochondrial control region, four nuclear introns and three microsatellite loci among 194 murrelets from throughout their range except Washington and Oregon. Significant population genetic structure was found: nine private control region haplotypes and three private intron alleles occurred at high frequency in the Aleutians and California; global estimates of FST or ??ST and most pairwise estimates involving the Aleutians and/or California were significant; and marked isolation-by-distance was found. Given the available samples, murrelets appear to comprise five genetic management units: (1) western Aleutian Islands, (2) central Aleutian Islands, (3) mainland Alaska and British Columbia, (4) northern California, and (5) central California. ?? Springer 2005.

  2. Genetic Diversity and Population Structure of Haemonchus contortus.

    PubMed

    Gilleard, J S; Redman, E

    2016-01-01

    Haemonchus contortus is one of the most successful and problematic livestock parasites worldwide. From its apparent evolutionary origins in sub-Saharan Africa, it is now found in small ruminants in almost all regions of the globe, and can infect a range of different domestic and wildlife artiodactyl hosts. It has a remarkably high propensity to develop resistance to anthelmintic drugs, making control increasingly difficult. The success of this parasite is, at least in part, due to its extremely high levels of genetic diversity that, in turn, provide a high adaptive capacity. Understanding this genetic diversity is important for many areas of research including anthelmintic resistance, epidemiology, control, drug/vaccine development and molecular diagnostics. In this article, we review the current knowledge of H. contortus genetic diversity and population structure for both field isolates and laboratory strains. We highlight the practical relevance of this knowledge with a particular emphasis on anthelmintic resistance research. PMID:27238002

  3. Decorrelation of Neural-Network Activity by Inhibitory Feedback

    PubMed Central

    Einevoll, Gaute T.; Diesmann, Markus

    2012-01-01

    Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between

  4. Herschel far-infrared observations of the Carina Nebula complex. III. Detailed cloud structure and feedback effects

    NASA Astrophysics Data System (ADS)

    Roccatagliata, V.; Preibisch, T.; Ratzka, T.; Gaczkowski, B.

    2013-06-01

    Context. The star formation process in large clusters/associations can be strongly influenced by the feedback from high-mass stars. Whether the resulting net effect of the feedback is predominantly negative (cloud dispersal) or positive (triggering of star formation due to cloud compression) is still an open question. Aims: The Carina Nebula complex (CNC) represents one of the most massive star-forming regions in our Galaxy. We use our Herschel far-infrared observations to study the properties of the clouds over the entire area of the CNC (with a diameter of ≈3.2°, which corresponds to ≈125 pc at a distance of 2.3 kpc). The good angular resolution (10''-36'') of the Herschel maps corresponds to physical scales of 0.1-0.4 pc, and allows us to analyze the small-scale (i.e., clump-size) structures of the clouds. Methods: The full extent of the CNC was mapped with PACS and SPIRE in the 70, 160, 250, 350, and 500 μm bands. We determined temperatures and column densities at each point in these maps by modeling the observed far-infrared spectral energy distributions. We also derived a map showing the strength of the UV radiation field. We investigated the relation between the cloud properties and the spatial distribution of the high-mass stars and computed total cloud masses for different density thresholds. Results: Our Herschel maps resolve for the first time the small-scale structure of the dense clouds over the entire spatial extent of the CNC. Several particularly interesting regions, including the prominent pillars south of η Car, are analyzed in detail. We compare the cloud masses derived from the Herschel data with previous mass estimates based on sub-mm and molecular line data. Our maps also reveal a peculiar wave-like pattern in the northern part of the Carina Nebula. Finally, we characterize two prominent cloud complexes at the periphery of our Herschel maps, which are probably molecular clouds in the Galactic background. Conclusions: We find that the

  5. Structuring the Peer Assessment Process: A Multilevel Approach for the Impact on Product Improvement and Peer Feedback Quality

    ERIC Educational Resources Information Center

    Gielen, M.; De Wever, B.

    2015-01-01

    In order to optimize students' peer feedback processes, this study investigates how an instructional intervention in the peer assessment process can have a beneficial effect on students' performance in a wiki environment in first-year higher education. The main aim was to study the effect of integrating a peer feedback template with a varying…

  6. Self-optimising control for a class of continuous bioreactor via variable-structure feedback

    NASA Astrophysics Data System (ADS)

    Lara-Cisneros, Gerardo; Alvarez-Ramírez, José; Femat, Ricardo

    2016-04-01

    A self-optimising controller is designed for stabilisation of a class of bioreactor exploiting sliding-mode techniques. The stability analysis for the class of bioreactor, in open-loop configuration, suggests that the optimal behaviour, respect to maximal biomass production, occurs in an unstable region (structurally unstable). In this contribution, a variable-structure controller is designed, exploiting the inhibitory effect of substrate concentration under the biomass growth rate, such that the closed-loop system reaches the optimal manifold where the effect induced by the growth rate gradient is compensated (favouring the maximum growth rate). The self-optimising comprises an uncertainty estimator which computes the unknown terms for increasing the robustness issues of the sliding-mode scheme. Numerical experiments illustrate the performance and execution of the control strategy considering different parameter values for biomass growth rate. The robustness and fragility of the proposed controller are also discussed with respect to the modelling uncertainty and small changes in the controller gains, respectively.

  7. Formation of structures around HII regions: ionization feedback from massive stars

    NASA Astrophysics Data System (ADS)

    Tremblin, P.; Audit, E.; Minier, V.; Schmidt, W.; Schneider, N.

    2015-03-01

    We present a new model for the formation of dense clumps and pillars around HII regions based on shocks curvature at the interface between a HII region and a molecular cloud. UV radiation leads to the formation of an ionization front and of a shock ahead. The gas is compressed between them forming a dense shell at the interface. This shell may be curved due to initial interface or density modulation caused by the turbulence of the molecular cloud. Low curvature leads to instabilities in the shell that form dense clumps while sufficiently curved shells collapse on itself to form pillars. When turbulence is high compared to the ionized-gas pressure, bubbles of cold gas have sufficient kinetic energy to penetrate into the HII region and detach themselves from the parent cloud, forming cometary globules. Using computational simulations, we show that these new models are extremely efficient to form dense clumps and stable and growing elongated structures, pillars, in which star formation might occur (see Tremblin et al. 2012a). The inclusion of turbulence in the model shows its importance in the formation of cometary globules (see Tremblin et al. 2012b). Globally, the density enhancement in the simulations is of one or two orders of magnitude higher than the density enhancement of the classical ``collect and collapse`` scenario. The code used for the simulation is the HERACLES code, that comprises hydrodynamics with various equation of state, radiative transfer, gravity, cooling and heating. Our recent observations with Herschel (see Schneider et al. 2012a) and SOFIA (see Schneider et al. 2012b) and additional Spitzer data archives revealed many more of these structures in regions where OB stars have already formed such as the Rosette Nebula, Cygnus X, M16 and Vela, suggesting that the UV radiation from massive stars plays an important role in their formation. We present a first comparison between the simulations described above and recent observations of these regions.

  8. Gene-drive in age-structured insect populations.

    PubMed

    Huang, Yunxin; Lloyd, Alun L; Legros, Mathieu; Gould, Fred

    2009-05-01

    To date, models of gene-drive mechanisms proposed for replacing wild-type mosquitoes with transgenic strains that cannot transmit diseases have assumed no age or mating structure. We developed a more detailed model to analyze the effects of age and mating-related factors on the number of engineered insects that must be introduced into a wild population to achieve successful gene-drive based on the Medea and engineered underdominance mechanisms. We found that models without age-structure and mating details can substantially overestimate or underestimate the numbers of engineered insects that must be introduced. In general, introduction thresholds are lowest when young adults are introduced. When both males and females are introduced, assortative mating by age has little impact on the introduction threshold unless the introduced females have diminished reproductive ability because of their age. However, when only males are introduced, assortative mating by age is generally predicted to increase introduction thresholds. In most cases, introduction thresholds are much higher for male-only introductions than for both-sex introductions, but when mating is nearly random and the introduced insects are adults with Medea constructs, male-only introductions can have somewhat lower thresholds than both-sex introductions. Results from this model suggest specific parameters that should be measured in field experiments.

  9. Coexistence of structured populations with size-based prey selection.

    PubMed

    Hartvig, Martin; Andersen, Ken Haste

    2013-11-01

    Species with a large adult-offspring size ratio and a preferred predator-prey mass ratio undergo ontogenetic trophic niche shift(s) throughout life. Trophic interactions between such species vary throughout life, resulting in different species-level interaction motifs depending on the maximum adult sizes and population size distributions. We explore the assembly and potential for coexistence of small communities where all species experience ontogenetic trophic niche shifts. The life-history of each species is described by a physiologically structured model and species identity is characterised by the trait: size at maturation. We show that a single species can exist in two different states: a 'resource driven state' and a 'cannibalistic state' with a large scope for emergent Allee effects and bistable states. Two species can coexist in two different configurations: in a 'competitive coexistence' state when the ratio between sizes at maturation of the two species is less than a predator-prey mass ratio and the resource level is low to intermediate, or in a 'trophic ladder' state if the ratio of sizes at maturation is larger than the predator-prey mass ratio at all resource levels. While there is a large scope for coexistence of two species, the scope for coexistence of three species is limited and we conclude that further trait differentiation is required for coexistence of more species-rich size-structured communities. PMID:23927897

  10. Numerical simulation of a novel all-optical flip-flop based on a chirped nonlinear distributed feedback semiconductor laser structure using GPGPU computing

    NASA Astrophysics Data System (ADS)

    Zoweil, H.

    2015-05-01

    A novel all-optical flip-flop based on a chirped nonlinear distributed feedback laser structure is proposed. The flip-flop does not require a holding beam. The optical gain is provided by a current injection into an active layer. The nonlinear wave-guiding layer consists of a chirped phase shifted grating accompanied with a negative nonlinear refractive index coefficient that increases in magnitude along the wave-guide. In the 'OFF' state, the chirped grating does not provide the required optical feedback to start lasing. An optical pulse switches the device 'ON' by reducing the chirp due to the negative nonlinear refractive index coefficient. The reduced chirp grating provides enough feedback to sustain a laser mode. The device is switched 'OFF' by cross gain modulation. GPGPU computing allows for long simulation time of multiple SET-RESET operations. The 'ON/OFF' transitions delays are in nanoseconds time scale.

  11. Respiratory sinus arrhythmia feedback in a stressed population exposed to a brief stressor demonstrated by quantitative EEG and sLORETA.

    PubMed

    Sherlin, Leslie; Muench, Fred; Wyckoff, Sarah

    2010-09-01

    Previous investigations of electroencephalograms during relaxation have identified increases in slow wave band power, correlations between increased levels of alpha activity with lower levels of anxiety, and autonomic changes characterized by otherwise documented decreased sympathetic activity. This study was carried out to determine the overall changes in quantitative electroencephalographic activity and the current source as a result of an acute session of respiratory sinus arrhythmia (RSA) biofeedback in a population of subjects experiencing stress. This study's findings provide physiological evidence of RSA feedback effect and suggest that RSA training may decrease arousal by promoting an increase of alpha band frequencies and decrease in beta frequencies overall and in areas critical to the regulation of stress. It was of interest that novices could achieve these objective alterations in EEG activity after minimal training and intervention periods considering that the previous literature on EEG and meditative states involve experienced meditators or participants who had been given extensive training. Additionally, these effects were present immediately following the training suggesting that the intervention may have effects beyond the actual practice.

  12. Respiratory sinus arrhythmia feedback in a stressed population exposed to a brief stressor demonstrated by quantitative EEG and sLORETA.

    PubMed

    Sherlin, Leslie; Muench, Fred; Wyckoff, Sarah

    2010-09-01

    Previous investigations of electroencephalograms during relaxation have identified increases in slow wave band power, correlations between increased levels of alpha activity with lower levels of anxiety, and autonomic changes characterized by otherwise documented decreased sympathetic activity. This study was carried out to determine the overall changes in quantitative electroencephalographic activity and the current source as a result of an acute session of respiratory sinus arrhythmia (RSA) biofeedback in a population of subjects experiencing stress. This study's findings provide physiological evidence of RSA feedback effect and suggest that RSA training may decrease arousal by promoting an increase of alpha band frequencies and decrease in beta frequencies overall and in areas critical to the regulation of stress. It was of interest that novices could achieve these objective alterations in EEG activity after minimal training and intervention periods considering that the previous literature on EEG and meditative states involve experienced meditators or participants who had been given extensive training. Additionally, these effects were present immediately following the training suggesting that the intervention may have effects beyond the actual practice. PMID:20414803

  13. Feedbacks of Composition and Neutral Density Changes on the Structure of the Cusp Density Anomaly

    NASA Astrophysics Data System (ADS)

    Brinkman, D. G.; Walterscheid, R. L.; Clemmons, J. H.

    2015-12-01

    The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs cause large wind and temperature changes in the cusp region. Measurements by the CHAMP satellite (460-390- km altitude) have shown strongly enhanced density in the cusp region. The Streak mission (325-123 km), on the other hand, showed a relative depletion. The atmospheric response in the cusp can be sensitive to composition and neutral density changes. In response to heating in the cusp, air of heavier mean molecular weight is brought up from lower altitudes significantly affecting pressure gradients. This opposes the effects of temperature change due to heating and in-turn affects the density and winds produced in the cusp. Also changes in neutral density change the interaction between precipitating particles and the atmosphere and thus change heating rates and ionization in the region affected by cusp precipitation. In this study we assess the sensitivity of the wind and neutral density structure in the cusp region to changes in the mean molecular weight induced by neutral dynamics, and the changes in particle heating rates and ionization which result from changes in neutral density. We use a high resolution two-dimensional time-dependent nonhydrostatic nonlinear dynamical model where inputs can be systematically altered. The resolution of the model allows us to examine the complete range of cusp widths. We compare the current simulations to observations by CHAMP and Streak. Acknowledgements: This research was supported by The Aerospace Corporation's Technical Investment program

  14. Population Structure in Naegleria fowleri as Revealed by Microsatellite Markers.

    PubMed

    Coupat-Goutaland, Bénédicte; Régoudis, Estelle; Besseyrias, Matthieu; Mularoni, Angélique; Binet, Marie; Herbelin, Pascaline; Pélandakis, Michel

    2016-01-01

    Naegleria sp. is a free living amoeba belonging to the Heterolobosea class. Over 40 species of Naegleria were identified and recovered worldwide in different habitats such as swimming pools, freshwater lakes, soil or dust. Among them, N. fowleri, is a human pathogen responsible for primary amoeboic meningoencephalitis (PAM). Around 300 cases were reported in 40 years worldwide but PAM is a fatal disease of the central nervous system with only 5% survival of infected patients. Since both pathogenic and non pathogenic species were encountered in the environment, detection and dispersal mode are crucial points in the fight against this pathogenic agent. Previous studies on identification and genotyping of N. fowleri strains were focused on RAPD analysis and on ITS sequencing and identified 5 variants: euro-american, south pacific, widespread, cattenom and chooz. Microsatellites are powerful markers in population genetics with broad spectrum of applications (such as paternity test, fingerprinting, genetic mapping or genetic structure analysis). They are characterized by a high degree of length polymorphism. The aim of this study was to genotype N. fowleri strains using microsatellites markers in order to track this population and to better understand its evolution. Six microsatellite loci and 47 strains from different geographical origins were used for this analysis. The microsatellite markers revealed a level of discrimination higher than any other marker used until now, enabling the identification of seven genetic groups, included in the five main genetic groups based on the previous RAPD and ITS analyses. This analysis also allowed us to go further in identifying private alleles highlighting intra-group variability. A better identification of the N. fowleri isolates could be done with this type of analysis and could allow a better tracking of the clinical and environmental N. fowleri strains. PMID:27035434

  15. Population Structure in Naegleria fowleri as Revealed by Microsatellite Markers.

    PubMed

    Coupat-Goutaland, Bénédicte; Régoudis, Estelle; Besseyrias, Matthieu; Mularoni, Angélique; Binet, Marie; Herbelin, Pascaline; Pélandakis, Michel

    2016-01-01

    Naegleria sp. is a free living amoeba belonging to the Heterolobosea class. Over 40 species of Naegleria were identified and recovered worldwide in different habitats such as swimming pools, freshwater lakes, soil or dust. Among them, N. fowleri, is a human pathogen responsible for primary amoeboic meningoencephalitis (PAM). Around 300 cases were reported in 40 years worldwide but PAM is a fatal disease of the central nervous system with only 5% survival of infected patients. Since both pathogenic and non pathogenic species were encountered in the environment, detection and dispersal mode are crucial points in the fight against this pathogenic agent. Previous studies on identification and genotyping of N. fowleri strains were focused on RAPD analysis and on ITS sequencing and identified 5 variants: euro-american, south pacific, widespread, cattenom and chooz. Microsatellites are powerful markers in population genetics with broad spectrum of applications (such as paternity test, fingerprinting, genetic mapping or genetic structure analysis). They are characterized by a high degree of length polymorphism. The aim of this study was to genotype N. fowleri strains using microsatellites markers in order to track this population and to better understand its evolution. Six microsatellite loci and 47 strains from different geographical origins were used for this analysis. The microsatellite markers revealed a level of discrimination higher than any other marker used until now, enabling the identification of seven genetic groups, included in the five main genetic groups based on the previous RAPD and ITS analyses. This analysis also allowed us to go further in identifying private alleles highlighting intra-group variability. A better identification of the N. fowleri isolates could be done with this type of analysis and could allow a better tracking of the clinical and environmental N. fowleri strains.

  16. Population Structure in Naegleria fowleri as Revealed by Microsatellite Markers

    PubMed Central

    Coupat-Goutaland, Bénédicte; Régoudis, Estelle; Besseyrias, Matthieu; Mularoni, Angélique; Binet, Marie; Herbelin, Pascaline; Pélandakis, Michel

    2016-01-01

    Naegleria sp. is a free living amoeba belonging to the Heterolobosea class. Over 40 species of Naegleria were identified and recovered worldwide in different habitats such as swimming pools, freshwater lakes, soil or dust. Among them, N. fowleri, is a human pathogen responsible for primary amoeboic meningoencephalitis (PAM). Around 300 cases were reported in 40 years worldwide but PAM is a fatal disease of the central nervous system with only 5% survival of infected patients. Since both pathogenic and non pathogenic species were encountered in the environment, detection and dispersal mode are crucial points in the fight against this pathogenic agent. Previous studies on identification and genotyping of N. fowleri strains were focused on RAPD analysis and on ITS sequencing and identified 5 variants: euro-american, south pacific, widespread, cattenom and chooz. Microsatellites are powerful markers in population genetics with broad spectrum of applications (such as paternity test, fingerprinting, genetic mapping or genetic structure analysis). They are characterized by a high degree of length polymorphism. The aim of this study was to genotype N. fowleri strains using microsatellites markers in order to track this population and to better understand its evolution. Six microsatellite loci and 47 strains from different geographical origins were used for this analysis. The microsatellite markers revealed a level of discrimination higher than any other marker used until now, enabling the identification of seven genetic groups, included in the five main genetic groups based on the previous RAPD and ITS analyses. This analysis also allowed us to go further in identifying private alleles highlighting intra-group variability. A better identification of the N. fowleri isolates could be done with this type of analysis and could allow a better tracking of the clinical and environmental N. fowleri strains. PMID:27035434

  17. Active vibration mitigation of distributed parameter, smart-type structures using Pseudo-Feedback Optimal Control (PFOC)

    NASA Technical Reports Server (NTRS)

    Patten, W. N.; Robertshaw, H. H.; Pierpont, D.; Wynn, R. H.

    1989-01-01

    A new, near-optimal feedback control technique is introduced that is shown to provide excellent vibration attenuation for those distributed parameter systems that are often encountered in the areas of aeroservoelasticity and large space systems. The technique relies on a novel solution methodology for the classical optimal control problem. Specifically, the quadratic regulator control problem for a flexible vibrating structure is first cast in a weak functional form that admits an approximate solution. The necessary conditions (first-order) are then solved via a time finite-element method. The procedure produces a low dimensional, algebraic parameterization of the optimal control problem that provides a rigorous basis for a discrete controller with a first-order like hold output. Simulation has shown that the algorithm can successfully control a wide variety of plant forms including multi-input/multi-output systems and systems exhibiting significant nonlinearities. In order to firmly establish the efficacy of the algorithm, a laboratory control experiment was implemented to provide planar (bending) vibration attenuation of a highly flexible beam (with a first clamped-free mode of approximately 0.5 Hz).

  18. Backward bifurcations and strong Allee effects in matrix models for the dynamics of structured populations

    PubMed Central

    Cushing, J.M.

    2014-01-01

    In nonlinear matrix models, strong Allee effects typically arise when the fundamental bifurcation of positive equilibria from the extinction equilibrium at r=1 (or R 0=1) is backward. This occurs when positive feedback (component Allee) effects are dominant at low densities and negative feedback effects are dominant at high densities. This scenario allows population survival when r (or equivalently R 0) is less than 1, provided population densities are sufficiently high. For r>1 (or equivalently R 0>1) the extinction equilibrium is unstable and a strong Allee effect cannot occur. We give criteria sufficient for a strong Allee effect to occur in a general nonlinear matrix model. A juvenile–adult example model illustrates the criteria as well as some other possible phenomena concerning strong Allee effects (such as positive cycles instead of equilibria). PMID:24963977

  19. Plasmodium vivax population structure and transmission dynamics in Sabah Malaysia.

    PubMed

    Abdullah, Noor Rain; Barber, Bridget E; William, Timothy; Norahmad, Nor Azrina; Satsu, Umi Rubiah; Muniandy, Prem Kumar; Ismail, Zakiah; Grigg, Matthew J; Jelip, Jenarun; Piera, Kim; von Seidlein, Lorenz; Yeo, Tsin W; Anstey, Nicholas M; Price, Ric N; Auburn, Sarah

    2013-01-01

    Despite significant progress in the control of malaria in Malaysia, the complex transmission dynamics of P. vivax continue to challenge national efforts to achieve elimination. To assess the impact of ongoing interventions on P. vivax transmission dynamics in Sabah, we genotyped 9 short tandem repeat markers in a total of 97 isolates (8 recurrences) from across Sabah, with a focus on two districts, Kota Marudu (KM, n = 24) and Kota Kinabalu (KK, n = 21), over a 2 year period. STRUCTURE analysis on the Sabah-wide dataset demonstrated multiple sub-populations. Significant differentiation (F ST  = 0.243) was observed between KM and KK, located just 130 Km apart. Consistent with low endemic transmission, infection complexity was modest in both KM (mean MOI  = 1.38) and KK (mean MOI  = 1.19). However, population diversity remained moderate (H E  = 0.583 in KM and H E  = 0.667 in KK). Temporal trends revealed clonal expansions reflecting epidemic transmission dynamics. The haplotypes of these isolates declined in frequency over time, but persisted at low frequency throughout the study duration. A diverse array of low frequency isolates were detected in both KM and KK, some likely reflecting remnants of previous expansions. In accordance with clonal expansions, high levels of Linkage Disequilibrium (I A (S) >0.5 [P<0.0001] in KK and KM) declined sharply when identical haplotypes were represented once (I A (S)  = 0.07 [P = 0.0076] in KM, and I A (S) = -0.003 [P = 0.606] in KK). All 8 recurrences, likely to be relapses, were homologous to the prior infection. These recurrences may promote the persistence of parasite lineages, sustaining local diversity. In summary, Sabah's shrinking P. vivax population appears to have rendered this low endemic setting vulnerable to epidemic expansions. Migration may play an important role in the introduction of new parasite strains leading to epidemic expansions, with important implications for

  20. Genetic diversity and genetic structure of different types of natural populations in Osmanthus fragrans Lour. and the relationships with sex ratio, population structure, and geographic isolation.

    PubMed

    Hu, Shaoqing; Wu, Shuai; Wang, Yiguang; Zhao, Hongbo; Zhang, Yuanyan

    2014-01-01

    Osmanthus fragrans Lour., an evergreen small tree, has the rare sexual system of androdioecy (coexistence of males and hermaphrodites), once with wide-spread natural distribution in the areas of the South Yangzi river basin. However, due to excessive human utilization, natural distribution became fragmented and the number and size of natural populations reduced sharply. With four different types of natural populations from the same region as research object, we aim to provide a comparative analysis on the relationships among genetic diversity, sexual system, population structure and size, and geographic isolation by ISSR. In genetic parameters of N e , H e , and I, the LQGC population had the highest value and the LQZGQ population had the lowest value. These indicated that LQGC population showed the highest genetic diversity, followed by QDH and JN population, and LQZGQ population exhibited the lowest genetic diversity. Genetic diversity in populations is closely related to population structure, reproduction mode, and sex ratio. However, there seems to be no obvious correlation between genetic diversity and population size. The results of AMOVA showed that genetic variations mostly occurred within populations. It indicates that no significant genetic differentiation among populations occurs, and geographic isolation has no significant effect on genetic diversity. PMID:25436228

  1. Feedback in distance education.

    PubMed

    Hudspeth, D

    1988-01-01

    Some tips, strategies, and techniques are presented for incorporating learner feedback into distance education courses. The most common form of learner feedback is immediate Knowledge of Response (KR). This general term can be delineated further as either Knowledge of Correct Response (KCR) or Knowledge of Incorrect Response (KIR). KCR is most useful for learning tasks that require a high level of automatic response such as vocabulary development and naming chemical structures. It also can be used for higher levels of learning. KIR occurs when the learner makes a response and knows only whether the response was correct or incorrect. If the learner was incorrect, the correct answer is not provided. Distant learners, as well as learners in a typical classroom, benefit from positive feedback, e.g., a few words written on the side of an assignment or a short note of encouragement. Personalized feedback tells students if they are performing satisfactorily and, if provided early in a course, can help reduce student attrition. If immediate feedback after an examination cannot be provided, every effort should be made to score and return the test as soon as possible before the student is expected to begin study on subsequent lessons. If this is not possible, a test review sheet could be mailed back upon receipt of the examination. Microcomputers are devices that can provide rapid and useful feedback, yet many methods that do not rely on computers can provide feedback. These include practice tests, small group exercises, and checklist response sheets. In addition to formally providing feedback after an assignment or examination, it is possible to use the principles of feedback by embedding questions and answers in text, audio, or video materials.

  2. Feedbacks between earlywood anatomy and non-structural carbohydrates affect spring phenology and wood production in ring-porous oaks

    NASA Astrophysics Data System (ADS)

    Pérez-de-Lis, Gonzalo; García-González, Ignacio; Rozas, Vicente; Olano, José Miguel

    2016-10-01

    Non-structural carbohydrates (NSC) play a central role in the construction and maintenance of a tree's vascular system, but feedbacks between the NSC status of trees and wood formation are not fully understood. We aimed to evaluate multiple dependencies among wood anatomy, winter NSC, and phenology for coexisting temperate (Quercus robur) and sub-Mediterranean (Q. pyrenaica) oaks along a water-availability gradient in the NW Iberian Peninsula. Sapwood NSC concentrations were quantified at three sites in December 2012 (N = 240). Leaf phenology and wood anatomy were surveyed in 2013. Structural equation modelling was used to analyse the interplay among hydraulic diameter (Dh), winter NSC, budburst date, and earlywood vessel production (EVP), while the effect of Dh and EVP on latewood width was assessed by using a mixed-effects model. NSC and wood production increased under drier conditions for both species. Q. robur showed a narrower Dh and lower soluble sugar (SS) concentration (3.88-5.08 % dry matter) than Q. pyrenaica (4.06-5.57 % dry matter), but Q. robur exhibited larger EVP and wider latewood (1403 µm) than Q. pyrenaica (667 µm). Stem diameter and Dh had a positive effect on SS concentrations, which were related to an earlier leaf flushing in both species. Sapwood sugar content appeared to limit EVP exclusively in Q. pyrenaica. In turn, Dh and EVP were found to be key predictors of latewood growth. Our results confirm that sapwood SS concentrations are involved in modulating growth resumption and xylem production in spring. Q. pyrenaica exhibited a tighter control of carbohydrate allocation to wood formation than Q. robur, which would play a role in protecting against environmental stress in the sub-Mediterranean area.

  3. EVOLUTION OF BRIGHTEST CLUSTER GALAXY STRUCTURAL PARAMETERS IN THE LAST {approx}6 Gyr: FEEDBACK PROCESSES VERSUS MERGER EVENTS

    SciTech Connect

    Ascaso, B.; Aguerri, J. A. L.; Varela, J.; Cava, A.; Moles, M.

    2011-01-10

    We present results on the evolution of the structural parameters of two samples of brightest cluster galaxies (BCGs) in the last 6 Gyr. The nearby sample of BCGs consists of 69 galaxies from the WINGS survey spanning a redshift range of 0.04 < z < 0.07. The intermediate-redshift (0.3 < z < 0.6) sample is formed by 20 BCGs extracted from the Hubble Space Telescope archive. Both samples have similar spatial resolution and their host clusters have similar X-ray luminosities. We report an increase in the size of the BCGs from intermediate to local redshift. However, we do not detect any variation in the Sersic shape parameter in both samples. These results prove to be robust since the observed tendencies are model independent. We also obtain significant correlations between some of the BCG parameters and the main properties of the host clusters. More luminous, larger, and centrally located BCGs are located in more massive and dominant galaxy clusters. These facts indicate that the host galaxy cluster has played an important role in the formation of their BCGs. We discuss the possible mechanisms that can explain the observed evolution of the structural parameters of the BCGs. We conclude that the main mechanisms that can explain the increase in size and the non-evolution in the Sersic shape parameter of the BCGs in the last 6 Gyr are feedback processes. This result disagrees with semi-analytical simulation results supporting the idea that merging processes are the main mechanism responsible for the evolution of the BCGs up until the present epoch.

  4. 15 CFR 50.10 - Fee structure for special population censuses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Fee structure for special population... § 50.10 Fee structure for special population censuses. The Bureau of the Census is authorized to conduct special population censuses at the request of and at the expense of the community concerned....

  5. 15 CFR 50.10 - Fee structure for special population censuses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Fee structure for special population... § 50.10 Fee structure for special population censuses. The Bureau of the Census is authorized to conduct special population censuses at the request of and at the expense of the community concerned....

  6. 15 CFR 50.10 - Fee structure for special population censuses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Fee structure for special population... § 50.10 Fee structure for special population censuses. The Bureau of the Census is authorized to conduct special population censuses at the request of and at the expense of the community concerned....

  7. 15 CFR 50.10 - Fee structure for special population censuses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Fee structure for special population... § 50.10 Fee structure for special population censuses. The Bureau of the Census is authorized to conduct special population censuses at the request of and at the expense of the community concerned....

  8. 15 CFR 50.10 - Fee structure for special population censuses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Fee structure for special population... § 50.10 Fee structure for special population censuses. The Bureau of the Census is authorized to conduct special population censuses at the request of and at the expense of the community concerned....

  9. Rotation and internal structure of Population III protostars

    NASA Astrophysics Data System (ADS)

    Stacy, Athena; Greif, Thomas H.; Klessen, Ralf S.; Bromm, Volker; Loeb, Abraham

    2013-05-01

    We analyse the cosmological simulations performed in the recent work of Greif et al., which followed the early growth and merger history of Population III (Pop III) stars while resolving scales as small as 0.05 R⊙. This is the first set of cosmological simulations to self-consistently resolve the rotation and internal structure of Pop III protostars. We find that Pop III stars form under significant rotational support which is maintained for the duration of the simulations. The protostellar surfaces spin from ˜50 per cent to nearly 100 per cent of Keplerian rotational velocity. These rotation rates persist after experiencing multiple stellar merger events. In the brief time period simulated (˜10 yr), the protostars show little indication of convective instability, and their properties furthermore show little correlation with the properties of their host minihaloes. If Pop III protostars within this range of environments generally form with high degrees of rotational support, and if this rotational support is maintained for a sufficient amount of time, this has a number of crucial implications for Pop III evolution and nucleosynthesis, as well as the possibility for Pop III pair-instability supernovae, and the question of whether the first stars produced gamma-ray bursts.

  10. Structure and evolution of low-mass Population II stars

    NASA Astrophysics Data System (ADS)

    Montalbán, J.; D'Antona, F.; Mazzitelli, I.

    2000-08-01

    The focus of the present paper is on the detailed description of the internal structures of low mass, population II stars, to clarify some issues about these stellar models and, mainly, their present reliability for observational comparisons. We then explore 1) the role of the local convective model; 2) the differences between "grey" and "non grey" models, and between models in which the photospheric boundary conditions are set at different optical depths (τph = 3 or 100); 3) the role of the equation of state (EoS), both in the atmospheric models and in the interior. One of the major conclusions of the paper is a cautionary note about the usage of the additive volume law in EoS calculations. The dependence of the HR diagram locations and mass luminosity relations on metal and helium content are also discussed. A few comparisons with globular cluster stars show that: 1) general consistency of distance scales and morphologies in the HR diagram is found, when comparing ground based measurements in the Johnson B and V bands and observations in the HST bands; 2) a discrepancy between models and observations may exist for more metal rich clusters; 3) the plausible hypothesis that the mass function in the globular cluster NGC 6397 behaves smoothly until the lower limit of the main sequence poses constraints on the mass-luminosity relation at the lowest end of the main sequence. The evolutionary tracks are available at the WEB location http://www.mporzio.astro.it.

  11. Recombination shapes the structure of an environmental Vibrio cholerae population.

    PubMed

    Keymer, Daniel P; Boehm, Alexandria B

    2011-01-01

    Vibrio cholerae consists of pathogenic strains that cause sporadic gastrointestinal illness or epidemic cholera disease and nonpathogenic strains that grow and persist in coastal aquatic ecosystems. Previous studies of disease-causing strains have shown V. cholerae to be a primarily clonal bacterial species, but isolates analyzed have been strongly biased toward pathogenic genotypes, while representing only a small sample of the vast diversity in environmental strains. In this study, we characterized homologous recombination and structure among 152 environmental V. cholerae isolates and 13 other putative Vibrio isolates from coastal waters and sediments in central California, as well as four clinical V. cholerae isolates, using multilocus sequence analysis of seven housekeeping genes. Recombinant regions were identified by at least three detection methods in 72% of our V. cholerae isolates. Despite frequent recombination, significant linkage disequilibrium was still detected among the V. cholerae sequence types. Incongruent but nonrandom associations were observed for maximum likelihood topologies from the individual loci. Overall, our estimated recombination rate in V. cholerae of 6.5 times the mutation rate is similar to those of other sexual bacteria and appears frequently enough to restrict selection from purging much of the neutral intraspecies diversity. These data suggest that frequent recombination among V. cholerae may hinder the identification of ecotypes in this bacterioplankton population. PMID:21075874

  12. Facilitation as Attenuating of Environmental Stress among Structured Microbial Populations.

    PubMed

    Martins, Suzana Cláudia Silveira; Santaella, Sandra Tédde; Martins, Claudia Miranda; Martins, Rogério Parentoni

    2016-01-01

    There is currently an intense debate in microbial societies on whether evolution in complex communities is driven by competition or cooperation. Since Darwin, competition for scarce food resources has been considered the main ecological interaction shaping population dynamics and community structure both in vivo and in vitro. However, facilitation may be widespread across several animal and plant species. This could also be true in microbial strains growing under environmental stress. Pure and mixed strains of Serratia marcescens and Candida rugosa were grown in mineral culture media containing phenol. Growth rates were estimated as the angular coefficients computed from linearized growth curves. Fitness index was estimated as the quotient between growth rates computed for lineages grown in isolation and in mixed cultures. The growth rates were significantly higher in associated cultures than in pure cultures and fitness index was greater than 1 for both microbial species showing that the interaction between Serratia marcescens and Candida rugosa yielded more efficient phenol utilization by both lineages. This result corroborates the hypothesis that facilitation between microbial strains can increase their fitness and performance in environmental bioremediation.

  13. Facilitation as Attenuating of Environmental Stress among Structured Microbial Populations

    PubMed Central

    Santaella, Sandra Tédde; Martins, Claudia Miranda; Martins, Rogério Parentoni

    2016-01-01

    There is currently an intense debate in microbial societies on whether evolution in complex communities is driven by competition or cooperation. Since Darwin, competition for scarce food resources has been considered the main ecological interaction shaping population dynamics and community structure both in vivo and in vitro. However, facilitation may be widespread across several animal and plant species. This could also be true in microbial strains growing under environmental stress. Pure and mixed strains of Serratia marcescens and Candida rugosa were grown in mineral culture media containing phenol. Growth rates were estimated as the angular coefficients computed from linearized growth curves. Fitness index was estimated as the quotient between growth rates computed for lineages grown in isolation and in mixed cultures. The growth rates were significantly higher in associated cultures than in pure cultures and fitness index was greater than 1 for both microbial species showing that the interaction between Serratia marcescens and Candida rugosa yielded more efficient phenol utilization by both lineages. This result corroborates the hypothesis that facilitation between microbial strains can increase their fitness and performance in environmental bioremediation. PMID:26904719

  14. Geographic population structure analysis of worldwide human populations infers their biogeographical origins

    PubMed Central

    Elhaik, Eran; Tatarinova, Tatiana; Chebotarev, Dmitri; Piras, Ignazio S.; Maria Calò, Carla; De Montis, Antonella; Atzori, Manuela; Marini, Monica; Tofanelli, Sergio; Francalacci, Paolo; Pagani, Luca; Tyler-Smith, Chris; Xue, Yali; Cucca, Francesco; Schurr, Theodore G.; Gaieski, Jill B.; Melendez, Carlalynne; Vilar, Miguel G.; Owings, Amanda C.; Gómez, Rocío; Fujita, Ricardo; Santos, Fabrício R.; Comas, David; Balanovsky, Oleg; Balanovska, Elena; Zalloua, Pierre; Soodyall, Himla; Pitchappan, Ramasamy; GaneshPrasad, ArunKumar; Hammer, Michael; Matisoo-Smith, Lisa; Wells, R. Spencer; Acosta, Oscar; Adhikarla, Syama; Adler, Christina J.; Bertranpetit, Jaume; Clarke, Andrew C.; Cooper, Alan; Der Sarkissian, Clio S. I.; Haak, Wolfgang; Haber, Marc; Jin, Li; Kaplan, Matthew E.; Li, Hui; Li, Shilin; Martínez-Cruz, Begoña; Merchant, Nirav C.; Mitchell, John R.; Parida, Laxmi; Platt, Daniel E.; Quintana-Murci, Lluis; Renfrew, Colin; Lacerda, Daniela R.; Royyuru, Ajay K.; Sandoval, Jose Raul; Santhakumari, Arun Varatharajan; Soria Hernanz, David F.; Swamikrishnan, Pandikumar; Ziegle, Janet S.

    2014-01-01

    The search for a method that utilizes biological information to predict humans’ place of origin has occupied scientists for millennia. Over the past four decades, scientists have employed genetic data in an effort to achieve this goal but with limited success. While biogeographical algorithms using next-generation sequencing data have achieved an accuracy of 700 km in Europe, they were inaccurate elsewhere. Here we describe the Geographic Population Structure (GPS) algorithm and demonstrate its accuracy with three data sets using 40,000–130,000 SNPs. GPS placed 83% of worldwide individuals in their country of origin. Applied to over 200 Sardinians villagers, GPS placed a quarter of them in their villages and most of the rest within 50 km of their villages. GPS’s accuracy and power to infer the biogeography of worldwide individuals down to their country or, in some cases, village, of origin, underscores the promise of admixture-based methods for biogeography and has ramifications for genetic ancestry testing. PMID:24781250

  15. Extensive population structure in San, Khoe, and mixed ancestry populations from southern Africa revealed by 44 short 5-SNP haplotypes.

    PubMed

    Schlebusch, Carina M; Soodyall, Himlya

    2012-12-01

    The San and Khoe people currently represent remnant groups of a much larger and widely distributed population of hunter-gatherers and pastoralists who had exclusive occupation of southern Africa before the arrival of Bantu-speaking groups in the past 1,200 years and sea-borne immigrants within the last 350 years. Genetic studies [mitochondrial deoxyribonucleic acid (DNA) and Y-chromosome] conducted on San and Khoe groups revealed that they harbor some of the most divergent lineages found in living peoples throughout the world. Recently, high-density, autosomal, single-nucleotide polymorphism (SNP)-array studies confirmed the early divergence of Khoe-San population groups from all other human populations. The present study made use of 220 autosomal SNP markers (in the format of both haplotypes and genotypes) to examine the population structure of various San and Khoe groups and their relationship to other neighboring groups. Whereas analyses based on the genotypic SNP data only supported the division of the included populations into three main groups-Khoe-San, Bantu-speakers, and non-African populations-haplotype analyses revealed finer structure within Khoe-San populations. By the use of only 44 short SNP haplotypes (compiled from a total of 220 SNPs), most of the Khoe-San groups could be resolved as separate groups by applying STRUCTURE analyses. Therefore, by carefully selecting a few SNPs and combining them into haplotypes, we were able to achieve the same level of population distinction that was achieved previously in high-density SNP studies on the same population groups. Using haplotypes proved to be a very efficient and cost-effective way to study population structure.

  16. Geometrical Structures of Chemically Decomposed Thick and Thin Disk Populations

    NASA Astrophysics Data System (ADS)

    Kawata, D.; Brook, C. B.; Rahimi, A.; Gibson, B. K.

    2016-10-01

    We summarize the thick and thin disk formation commonly seen in cosmological N-body simulations. As suggested in Brook et al. (2004), a hierarchical clustering scenario causes multiple minor gas-rich mergers, and leads to the formation of a kinematically hot disk, thick disk population, at a high redshift. Once the mergers become less significant at a later epoch, the thin disk population starts building up. Because in this scenario the thick disk population forms intensively at high redshift through multiple gas-rich mergers, the thick disk population is compact and has systematically higher [α/Fe] abundance than the thin disk population. We discuss that the thick disk population would be affected by the formation of the thin disk and suffer from the radial migration, which helps the thick disk population to be observed in the solar neighborhood. In addition, we show that the current cosmological simulations also naturally predict that the thin disk population is flaring at the outer region. As shown in Rahimi et al. (2014), at high vertical height from the disk plane, the compact thick disk population (low metallicity and high [α/Fe]) is dominant in the inner region and the flaring thin disk population (high metallicity and low [α/Fe]) contributes more in the outer region. This helps to explain the positive radial metallicity gradient and negative radial [α/Fe] gradient observed at high vertical height in the Milky Way stellar disk.

  17. A New Population of High-z, Dusty Lyman-alpha Emitters and Blobs Discovered by WISE: Feedback Caught in the Act?

    NASA Technical Reports Server (NTRS)

    Bridge, Carrie R.; Blain, Andrew; Borys, Colin J. K.; Petty, Sara; Benford, Dominic; Eisenhardt, Peter; Farrah, Duncan; Griffith, Roger, L.; Jarrett, Tom; Lonsdale, Carol; Stanford. Spencer A.; Stern, Daniel; Tsai, Chao-Wei; Wright, Edward L.; Wu, Jingwen

    2013-01-01

    By combining data from the NASA Wide-field Infrared Survey Explorer (WISE) mission with optical spectroscopy from the W. M. Keck telescope, we discover a mid-IR color criterion that yields a 78% success rate in identifying rare, typically radio-quiet, 1.6 approx. < z approx. < 4.6 dusty Ly-alpha emitters (LAEs). Of these, at least 37% have emission extended on scales of 30-100 kpc and are considered Ly-alpha "blobs" (LABs). The objects have a surface density of only approx.. 0.1 deg(exp -2), making them rare enough that they have been largely missed in deep, small area surveys. We measured spectroscopic redshifts for 92 of these galaxies, and find that the LAEs (LABs) have a median redshift of 2.3 (2.5). The WISE photometry coupled with data from Herschel (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) reveals that these galaxies are in the Hyper Luminous IR galaxy regime (L(sub IR) approx. > 10(exp 13)-10(exp 14) Solar L) and have warm colors. They are typically more luminous and warmer than other dusty, z approx.. 2 populations such as submillimeter-selected galaxies and dust-obscured galaxies. These traits are commonly associated with the dust being illuminated by intense active galactic nucleus activity. We hypothesize that the combination of spatially extended Ly-alpha, large amounts of warm IR-luminous dust, and rarity (implying a short-lived phase) can be explained if the galaxies are undergoing brief, intense "feedback" transforming them from an extreme dusty starburst/QSO into a mature galaxy.

  18. A NEW POPULATION OF HIGH-z, DUSTY Ly{alpha} EMITTERS AND BLOBS DISCOVERED BY WISE: FEEDBACK CAUGHT IN THE ACT?

    SciTech Connect

    Bridge, Carrie R.; Blain, Andrew; Borys, Colin J. K.; Griffith, Roger L.; Tsai, Chao-Wei; Petty, Sara; Farrah, Duncan; Benford, Dominic; Eisenhardt, Peter; Stern, Daniel; Wu Jingwen; Jarrett, Tom; Lonsdale, Carol; Stanford, Spencer A.; Wright, Edward L.

    2013-06-01

    By combining data from the NASA Wide-field Infrared Survey Explorer (WISE) mission with optical spectroscopy from the W. M. Keck telescope, we discover a mid-IR color criterion that yields a 78% success rate in identifying rare, typically radio-quiet, 1.6 {approx}< z {approx}< 4.6 dusty Ly{alpha} emitters (LAEs). Of these, at least 37% have emission extended on scales of 30-100 kpc and are considered Ly{alpha} ''blobs'' (LABs). The objects have a surface density of only {approx}0.1 deg{sup -2}, making them rare enough that they have been largely missed in deep, small area surveys. We measured spectroscopic redshifts for 92 of these galaxies, and find that the LAEs (LABs) have a median redshift of 2.3 (2.5). The WISE photometry coupled with data from Herschel (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) reveals that these galaxies are in the Hyper Luminous IR galaxy regime (L{sub IR} {approx}> 10{sup 13}-10{sup 14} L{sub Sun }) and have warm colors. They are typically more luminous and warmer than other dusty, z {approx} 2 populations such as submillimeter-selected galaxies and dust-obscured galaxies. These traits are commonly associated with the dust being illuminated by intense active galactic nucleus activity. We hypothesize that the combination of spatially extended Ly{alpha}, large amounts of warm IR-luminous dust, and rarity (implying a short-lived phase) can be explained if the galaxies are undergoing brief, intense ''feedback'' transforming them from an extreme dusty starburst/QSO into a mature galaxy.

  19. Genetic Population Structure of Local Populations of the Endangered Saltmarsh Sesarmid Crab Clistocoeloma sinense in Japan

    PubMed Central

    Yuhara, Takeshi; Kawane, Masako; Furota, Toshio

    2014-01-01

    During recent decades, over 40% of Japanese estuarine tidal flats have been lost due to coastal developments. Local populations of the saltmarsh sesarmid crab Clistocoeloma sinense, designated as an endangered species due to the limited suitable saltmarsh habitat available, have decreased accordingly, being now represented as small remnant populations. Several such populations in Tokyo Bay, have been recognised as representing distributional limits of the species. To clarify the genetic diversity and connectivity among local coastal populations of Japanese Clistocoeloma sinense, including those in Tokyo Bay, mitochondrial DNA analyses were conducted in the hope of providing fundamental information for future conservation studies and an understanding of metapopulation dynamics through larval dispersal among local populations. All of the populations sampled indicated low levels of genetic diversity, which may have resulted from recent population bottlenecks or founder events. However, the results also revealed clear genetic differentiation between two enclosed-water populations in Tokyo Bay and Ise-Mikawa Bay, suggesting the existence of a barrier to larval transport between these two water bodies. Since the maintenance of genetic connectivity is a requirement of local population stability, the preservation of extant habitats and restoration of saltmarshes along the coast of Japan may be the most effective measures for conservation of this endangered species. PMID:24400112

  20. AGN feedback and star formation in ETGs: negative and positive feedback

    NASA Astrophysics Data System (ADS)

    Ciotti, Luca; Ostriker, Jeremiah P.; Novak, Greg; Negri, Andrea; Pellegrini, Silvia; Posacki, Silvia

    2015-08-01

    AGN feedback from supermassive black holes at the center of Early Type Galaxies is commonly invoked as the explanation for the quenching of star formation in these systems, that after this phase are considered “red and dead”. The situation is by far more complicated, due to the significant amount of mass injected in the galaxy by the evolving stellar population over cosmological times. In absence of feedback, this mass would lead to unobserved galactic cooling flows, and to central black holes two orders of magnitude more massive than observed. I will present the results of state-of-the-art hydrodynamical simulations with radiative transport and star formation of the “passive” evolution of ETGs, focusing in particular on highly structured spatial and temporal nature of the intermittent AGN feedback, that is not only negative (shutting down the cooling episodes of the ISM), but also positive, inducing star formation in the inner regions of the host galaxy.

  1. [A study on structural responses of Korea population transition].

    PubMed

    Kong, S K; Cho, A J; Kim, E J

    1988-12-01

    The Korean population experienced a drastic demographic transition in this century. The family planning program has dramatically decreased the fertility rate. The total fertility rate, which was 6 in 1960, decreased to 4.3 in 1970, 2.8 in 1980, 2.1 in 1985, and 1.7 in 1988. The government now predicts a stationary population of 52 million in 2020. Population policy must recognize the relationship between population growth and socioeconomic factors. Urban population has increased very rapidly due to socio-political change and industrialization. The urban population comprised 1/5 of the total population in 1960, forms 2/3 of the present population, and will form 4/5 of the population in 2020. Modernization brings the problems associated with education, employment, marriage, housing, family, and ultimately the aging of the population. The 1st step in meeting problems from the demographic transition is organizing the family planning program in an effective way. The very concept family planning should be transferred to family life planning, which includes the family formation period, the family growing period with child education and couple life, and the family reduction period with the older family. The family planning program could retrain its grass roots workers for family health and welfare. The use of effective contraception would preclude the need for induced abortion. The family health program could include diet, nutrition, home environment and sanitation, geriatric diseases, and health services for the aged. Family welfare planning and services are more necessary than ever with the proliferation of the nuclear family and increasing female employment. Population policy must be established on the country level and coordinated with development policy.

  2. Population Structure and Evolution of Pathogenicity of Yersinia pseudotuberculosis▿ †

    PubMed Central

    Ch'ng, Shear Lane; Octavia, Sophie; Xia, Qiuyu; Duong, An; Tanaka, Mark M.; Fukushima, Hiroshi; Lan, Ruiting

    2011-01-01

    Yersinia pseudotuberculosis is an enteric human pathogen but is widespread in the environment. Pathogenicity is determined by a number of virulence factors, including the virulence plasmid pYV, the high-pathogenicity island (HPI), and the Y. pseudotuberculosis-derived mitogen (YPM), a superantigen. The presence of the 3 virulence factors varies among Y. pseudotuberculosis isolates. We developed a multilocus sequence typing (MLST) scheme to address the population structure of Y. pseudotuberculosis and the evolution of its pathogenicity. The seven housekeeping genes selected for MLST were mdh, recA, sucA, fumC, aroC, pgi, and gyrB. An MLST analysis of 83 isolates of Y. pseudotuberculosis, representing 19 different serotypes and six different genetic groups, identified 61 sequence types (STs) and 12 clonal complexes. Out of 26 allelic changes that occurred in the 12 clonal complexes, 13 were mutational events while 13 were recombinational events, indicating that recombination and mutation contributed equally to the diversification of the clonal complexes. The isolates were separated into 2 distinctive clusters, A and B. Cluster A is the major cluster, with 53 STs (including Y. pestis strains), and is distributed worldwide, while cluster B is restricted to the Far East. The YPM gene is widely distributed on the phylogenetic tree, with ypmA in cluster A and ypmB in cluster B. pYV is present in cluster A only but is sporadically absent in some cluster A isolates. In contrast, an HPI is present only in a limited number of lineages and must be gained by lateral transfer. Three STs carry all 3 virulence factors and can be regarded as high-pathogenicity clones. Isolates from the same ST may not carry all 3 virulence factors, indicating frequent gain or loss of these factors. The differences in pathogenicity among Y. pseudotuberculosis strains are likely due to the variable presence and instability of the virulence factors. PMID:21131531

  3. Population structure in Indian sheep ascertained using microsatellite information.

    PubMed

    Arora, R; Bhatia, S; Mishra, B P; Joshi, B K

    2011-06-01

    This study attempts to provide a comprehensive insight into the prevailing genetic status of Indian sheep breeds using microsatellite markers. Seventeen Indian sheep breeds from 3 agroecological zones were analysed using a panel of 25 microsatellite markers. All of the sheep breeds investigated were genetically diverse, as evident from the high allele (>6) and gene (>0.6) diversity values. The gene diversity values for all breeds ranged from 0.621 to 0.780. The within-population heterozygote deficit (F(IS)) varied from -0.098 to 0.234, reflecting significant levels for 12 of the 17 breeds investigated. The average genetic differentiation between all breeds (F(ST)) was 11.1%, revealing moderate discrimination between the indigenous sheep breeds. The genetic distance and principal component analysis revealed a separation of sheep breeds based on geographical propinquity. The Bayesian clustering approach suggested poor breed differentiation in the north-western arid and semi-arid region when compared to the breeds from the eastern and southern peninsular regions. The observed results mirror the divergent management strategies in the different agroecological regions, lack of specific selection policies, and intermixing of breeds in close proximity. Immediate steps to curb the intermixing and erosion of breed purity for some of these breeds need to be implemented, for example, by introducing measures like making proven rams available and ensuring their frequent exchange between flocks. The data generated here provides valuable information about the genetic structure of the 17 Indian sheep breeds and this can be used for designating priorities for their conservation.

  4. Coress feedback

    PubMed Central

    2012-01-01

    This issue of CORESS feedback highlights yet again the importance of checking medications before administration and of adequate handover. Documentation of important medical data including drug allergies, as failed to happen in the case described below, is vital. We are grateful to the clinicians who have provided the material for these reports. The online reporting form is on our website (www.coress.org.uk), which also includes all previous feedback reports. Published contributions will be acknowledged by a ‘Certificate of Contribution’, which may be included in the contributor’s record of continuing professional development.

  5. Population structure of Vitis rupestris, an important resource for viticulture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wild North American grapevine Vitis rupestris Scheele is an important genetic resource for viticulture, but its natural population has been severely depleted. We collected samples from seven V. rupestris populations from the Ozark Plateau in Missouri and Ouachita Mountains in Oklahoma and genoty...

  6. Genetic variability and population structure of endangered Panax ginseng in the Russian Primorye

    PubMed Central

    2010-01-01

    Background The natural habitat of wild P. ginseng is currently found only in the Russian Primorye and the populations are extremely exhausted and require restoration. Analysis of the genetic diversity and population structure of an endangered species is a prerequisite for conservation. The present study aims to investigate the patterns and levels of genetic polymorphism and population structures of wild P. ginseng with the AFLP method to (1) estimate the level of genetic diversity in the P. ginseng populations in the Russian Primorsky Krai, (2) calculate the distribution of variability within a population and among populations and (3) examine the genetic relationship between the populations. Methods Genetic variability and population structure of ten P. ginseng populations were investigated with Amplified Fragment Length Polymorphism (AFLP) markers. The genetic relationships among P. ginseng plants and populations were delineated. Results The mean genetic variability within populations was high. The mean level of polymorphisms was 55.68% at the population level and 99.65% at the species level. The Shannon's index ranged between 0.1602 and 0.3222 with an average of 0.2626 at the population level and 0.3967 at the species level. The analysis of molecular variances (AMOVA) showed a significant population structure in P. ginseng. The partition of genetic diversity with AMOVA suggested that the majority of the genetic variation (64.5%) was within populations of P. ginseng. The inter-population variability was approximately 36% of the total variability. The genetic relationships among P. ginseng plants and populations were reconstructed by Minimum Spanning tree (MS-tree) on the basis of Euclidean distances with ARLEQUIN and NTSYS, respectively. The MS-trees suggest that the southern Uss, Part and Nad populations may have promoted P. ginseng distribution throughout the Russian Primorye. Conclusion The P. ginseng populations in the Russian Primorye are significant in

  7. Population Growth and Demographic Structure. Proceedings of the United Nations Expert Group Meeting on Population Growth and Demographic Structure (Paris, France, November 16-20, 1992).

    ERIC Educational Resources Information Center

    United Nations, New York, NY. Dept. of Economic and Social Affairs.

    This volume contains the report and recommendations of the United Nations-sponsored meeting on population growth and demographic structure which was held in Paris, November 1992. Materials in the volume can serve as useful tools for future research on the relations between population, environment, and development and further the work of the United…

  8. Population Structure and Evolution after Speciation of the Hokkaido Salamander (Hynobius retardatus)

    PubMed Central

    Matsunami, Masatoshi; Igawa, Takeshi; Michimae, Hirofumi; Miura, Toru; Nishimura, Kinya

    2016-01-01

    The Hokkaido salamander (Hynobius retardatus) is endemic to Hokkaido Island, Japan, and shows intriguing flexible phenotypic plasticity and regional morphological diversity. However, to date, allozymes and partial mitochondria DNA sequences have provided only an outline of its demographic histories and the pattern of its genetic diversification. To understand the finer details of the population structure of this species and its evolution since speciation, we genotyped five regional populations by using 12 recently developed microsatellite polymorphic markers. We found a clear population structure with low gene flow among the five populations, but a close genetic relationship between the Teshio and Kitami populations. Our demographic analysis suggested that Teshio and Erimo had the largest effective population sizes among the five populations. These findings regarding the population structure and demography of H. retardatus improve our understanding of the faunal phylogeography on Hokkaido Island and also provide fundamental genetic information that will be useful for future studies. PMID:27257807

  9. Population Structure and Evolution after Speciation of the Hokkaido Salamander (Hynobius retardatus).

    PubMed

    Matsunami, Masatoshi; Igawa, Takeshi; Michimae, Hirofumi; Miura, Toru; Nishimura, Kinya

    2016-01-01

    The Hokkaido salamander (Hynobius retardatus) is endemic to Hokkaido Island, Japan, and shows intriguing flexible phenotypic plasticity and regional morphological diversity. However, to date, allozymes and partial mitochondria DNA sequences have provided only an outline of its demographic histories and the pattern of its genetic diversification. To understand the finer details of the population structure of this species and its evolution since speciation, we genotyped five regional populations by using 12 recently developed microsatellite polymorphic markers. We found a clear population structure with low gene flow among the five populations, but a close genetic relationship between the Teshio and Kitami populations. Our demographic analysis suggested that Teshio and Erimo had the largest effective population sizes among the five populations. These findings regarding the population structure and demography of H. retardatus improve our understanding of the faunal phylogeography on Hokkaido Island and also provide fundamental genetic information that will be useful for future studies. PMID:27257807

  10. Hydrography and population genetic structure in brook charr (Salvelinus fontinalis, Mitchill) from eastern Canada.

    PubMed

    Hébert, C; Danzman, R G; Jones, M W; Bernatchez, L

    2000-07-01

    Despite the abundance of studies of genetic diversity in freshwater fishes, few have specifically addressed the role of habitat structure in partitioning genetic variance within and among populations. In this study, we analysed the variability of six microsatellite loci among 24 brook charr population samples in order to correlate hydrographic structure with genetic organization. These populations originated from three Canadian National parks (Kouchibouguac, Fundy and Forillon) that showed distinct hydrographic structure. Considering the general characteristics of these habitats, we formulated specific hypotheses in regard to genetic structure, which were principally based on the potential for gene flow and population size associated with each habitat. The hierarchical analysis of molecular variance and the genetic distances computed among populations revealed that habitat structure analyses constitute an important, but insufficient, predictor of genetic structure. We discuss the importance of habitat complexity on genetic structure in the context of management and conservation.

  11. Population structure, effective population size and adverse effects of stocking in the endangered Australian eastern freshwater cod Maccullochella ikei.

    PubMed

    Nock, C J; Ovenden, J R; Butler, G L; Wooden, I; Moore, A; Baverstock, P R

    2011-01-01

    Microsatellite markers were used to examine spatio-temporal genetic variation in the endangered eastern freshwater cod Maccullochella ikei in the Clarence River system, eastern Australia. High levels of population structure were detected. A model-based clustering analysis of multilocus genotypes identified four populations that were highly differentiated by F-statistics (F(ST) = 0·09 - 0·49; P < 0·05), suggesting fragmentation and restricted dispersal particularly among upstream sites. Hatchery breeding programmes were used to re-establish locally extirpated populations and to supplement remnant populations. Bayesian and frequency-based analyses of hatchery fingerling samples provided evidence for population admixture in the hatchery, with the majority of parental stock sourced from distinct upstream sites. Comparison between historical and contemporary wild-caught samples showed a significant loss of heterozygosity (21%) and allelic richness (24%) in the Mann and Nymboida Rivers since the commencement of stocking. Fragmentation may have been a causative factor; however, temporal shifts in allele frequencies suggest swamping with hatchery-produced M. ikei has contributed to the genetic decline in the largest wild population. This study demonstrates the importance of using information on genetic variation and population structure in the management of breeding and stocking programmes, particularly for threatened species. PMID:21235562

  12. Effects of Pleistocene glaciations on population structure of North American chestnut-backed chickadees.

    PubMed

    Burg, Theresa M; Gaston, Anthony J; Winker, Kevin; Friesen, Vicki L

    2006-08-01

    The postglacial recolonization of northern North America was heavily influenced by the Pleistocene glaciation. In the Pacific Northwest, there are two disjunct regions of mesic temperate forest, one coastal and the other interior. The chestnut-backed chickadee is one of the species associated with this distinctive ecosystem. Using seven microsatellite markers we found evidence of population structure among nine populations of chestnut-backed chickadees. High levels of allelic variation were found in each of the populations. Northern British Columbia and central Alaska populations contained a large number of private alleles compared to other populations, including those from unglaciated regions. The disjunct population in the interior was genetically distinct from the coastal population. Genetic and historical records indicate that the interior population originated from postglacial inland dispersal. Population structuring was found within the continuous coastal population, among which the peripheral populations, specifically those on the Queen Charlotte Islands and the central Alaska mainland, were genetically distinct. The pattern of population structure among contemporary chickadee populations is consistent with a pioneer model of recolonization. The persistence of genetic structure in western North American chestnut-backed chickadees may be aided by their sedentary behaviour, linear distribution, and dependence on cedar-hemlock forests.

  13. DEMOGRAPHY AND SPATIAL POPULATION STRUCTURE IN CALIFORNIA TIGER SALAMANDER

    EPA Science Inventory

    Although the causes of many amphibian declines remain mysterious, there is general agreement that human habitat alteration represents the greatest threat to amphibian populations. In January 2000 the US Fish and Wildlife Service proposed listing Santa Barbara County California Ti...

  14. Spatially structured population dynamics in feral oilseed rape.

    PubMed Central

    Crawley, Michael J.; Brown, Susan L.

    2004-01-01

    We studied the population dynamics of feral oilseed rape (Brassica napus) for 10 years (1993-2002) in 3658 adjacent permanent 100 m quadrats in the verges of the M25 motorway around London, UK. The aim was to determine the relative importance of different factors affecting the observed temporal patterns of population dynamics and their spatial correlations. A wide range of population dynamics was observed (downward or upward trends, cycles, local extinctions and recolonizations), but overall the populations were not self-replacing (lambda < 1). Many quadrats remained unoccupied throughout the study period, but a few were occupied at high densities for all 10 years. Most quadrats showed transient oilseed rape populations, lasting 1-4 years. There were strong spatial patterns in mean population density, associated with soil conditions and the successional age of the plant community dominating the verge, and these large-scale spatial patterns were highly consistent from year to year. The importance of seed spilled from trucks in transit to the processing plant at Erith in Kent was confirmed: rape populations were significantly higher on the 'to Erith' verge than the 'from Erith' verge (overall mean 2.83-fold greater stem density). Quadrats in which lambda > 1 were much more frequent in the 'to Erith' verge, indicating that seed immigration can give the spurious impression of self-replacing population dynamics in time-series analysis. There was little evidence of a pervasive Moran effect, and climatic forcing did not produce widespread large-scale synchrony in population dynamics for the motorway as a whole; just 23% of quadrats had significant rank correlations with the mean time-series. There was, however, significant local spatial synchrony of population dynamics, apparently associated with soil disturbance and seed input. This study draws attention to the possibility that different processes may impose population synchrony at different scales. We hypothesize that

  15. Optimal lineage principle for age-structured populations

    NASA Astrophysics Data System (ADS)

    Kussell, Edo

    2012-02-01

    Populations whose individuals exhibit age-dependent growth have often been studied using temporal dynamics of age distributions. In this talk, I examine the dynamics of age along lineages. We will see that the lineage point-of-view provides fundamental insights into evolutionary pressures on individuals' aging profiles. I will describe a variational principle that enables exact results for lineage statistics, in a variety of models. I will also discuss measurements on continuously dividing bacterial populations growing in microfluidics devices.

  16. Global Population Genetic Structure of Caenorhabditis remanei Reveals Incipient Speciation

    PubMed Central

    Dey, Alivia; Jeon, Yong; Wang, Guo-Xiu; Cutter, Asher D.

    2012-01-01

    Mating system transitions dramatically alter the evolutionary trajectories of genomes that can be revealed by contrasts of species with disparate modes of reproduction. For such transitions in Caenorhabditis nematodes, some major causes of genome variation in selfing species have been discerned. And yet, we have only limited understanding of species-wide population genetic processes for their outcrossing relatives, which represent the reproductive state of the progenitors of selfing species. Multilocus–multipopulation sequence polymorphism data provide a powerful means to uncover the historical demography and evolutionary processes that shape genomes. Here we survey nucleotide polymorphism across the X chromosome for three populations of the outcrossing nematode Caenorhabditis remanei and demonstrate its divergence from a fourth population describing a closely related new species from China, C. sp. 23. We find high genetic variation globally and within each local population sample. Despite geographic barriers and moderate genetic differentiation between Europe and North America, considerable gene flow connects C. remanei populations. We discovered C. sp. 23 while investigating C. remanei, observing strong genetic differentiation characteristic of reproductive isolation that was confirmed by substantial F2 hybrid breakdown in interspecific crosses. That C. sp. 23 represents a distinct biological species provides a cautionary example of how standard practice can fail for mating tests of species identity in this group. This species pair permits full application of divergence population genetic methods to obligately outcrossing species of Caenorhabditis and also presents a new focus for interrogation of the genetics and evolution of speciation with the Caenorhabditis model system. PMID:22649079

  17. Genetic population structure of the blister beetle, Gnathium minimum: core and peripheral populations.

    PubMed

    Marschalek, Daniel A; Berres, Mark E

    2014-01-01

    Populations on the periphery of a species' range tend to contain lower genetic variation and increased genetic differentiation compared to populations at the core of a species range, although some exceptions to this generalization occur. The blister beetle Gnathium minimum (Say) exhibits a wide-ranging distribution in the western United States but has peripheral or disjunct populations in Mexico, Florida, and Wisconsin. We used amplified fragment length polymorphism (AFLP) to compare the genetic variation and magnitude of genetic differentiation of the Wisconsin peripheral population to western core populations (Colorado, Kansas, New Mexico, and Texas). The proportion of polymorphic loci was 53.6 and 54.3, and expected heterozygosity 0.1864 and 0.1933 for the Kansas/Colorado (n = 87) and New Mexico/Texas (n = 35) regions, respectively. Specimens from Wisconsin (n = 121) had a lower proportion of polymorphic loci (38.4) and expected heterozygosity (0.1475). Genetic cluster estimation with GENELAND and F ST values showed greater genetic differentiation among the sampling locations within Wisconsin compared to core regions. Significant isolation-by-distance (IBD) was also observed in Wisconsin but not within the core regions. Lower genetic variation and increased isolation may reduce the Wisconsin population's ability to respond to change, thereby increasing their susceptibility to extinction.

  18. Genetic population structure of the blister beetle, Gnathium minimum: core and peripheral populations.

    PubMed

    Marschalek, Daniel A; Berres, Mark E

    2014-01-01

    Populations on the periphery of a species' range tend to contain lower genetic variation and increased genetic differentiation compared to populations at the core of a species range, although some exceptions to this generalization occur. The blister beetle Gnathium minimum (Say) exhibits a wide-ranging distribution in the western United States but has peripheral or disjunct populations in Mexico, Florida, and Wisconsin. We used amplified fragment length polymorphism (AFLP) to compare the genetic variation and magnitude of genetic differentiation of the Wisconsin peripheral population to western core populations (Colorado, Kansas, New Mexico, and Texas). The proportion of polymorphic loci was 53.6 and 54.3, and expected heterozygosity 0.1864 and 0.1933 for the Kansas/Colorado (n = 87) and New Mexico/Texas (n = 35) regions, respectively. Specimens from Wisconsin (n = 121) had a lower proportion of polymorphic loci (38.4) and expected heterozygosity (0.1475). Genetic cluster estimation with GENELAND and F ST values showed greater genetic differentiation among the sampling locations within Wisconsin compared to core regions. Significant isolation-by-distance (IBD) was also observed in Wisconsin but not within the core regions. Lower genetic variation and increased isolation may reduce the Wisconsin population's ability to respond to change, thereby increasing their susceptibility to extinction. PMID:25160848

  19. Genetic Population Structure of Macridiscus multifarius (Mollusca: Bivalvia) on the Basis of Mitochondrial Markers: Strong Population Structure in a Species with a Short Planktonic Larval Stage.

    PubMed

    Ye, Ying Ying; Wu, Chang Wen; Li, Ji Ji

    2015-01-01

    The clam Macridiscus multifarius with a planktonic larval stage of about 10 days is an ecologically and economically important species in the coastal regions of China. In this study, 3 mt-DNA markers (COI, 12S rRNA, and ND1) were used to investigate the population structure and demography of wild M. multifarius populations in 3 coastal localities of the East China Sea (ZS and ZP populations) and Beibu Gulf in the South China Sea (BH population). Sequences of 685 bp in COI, 350 bp in 12S rRNA, and 496 bp in ND1 were determined. High level and significant FST values were obtained among the different localities on the basis of either COI (FST = 0.100-0.444, p < 0.05) or 12S rRNA (FST = 0.199-0.742, p < 0.05) gene, indicating a high degree of genetic differentiation among the populations. FST values were significant but weak for the ND1 gene because it is highly conservative. The median-joining network suggested an obvious genetic differentiation between ZS and BH populations, and the finding is consistent with the results of our demographic analyses using the unweighted pair group method with arithmetic mean. Our study unraveled the extant population genetic structure of M. multifarius and explained the strong population structure of a species with a short planktonic larval stage species; this information could be useful for fishery management measures, including artificial breeding and conservation. PMID:26720602

  20. Genetic Population Structure of Macridiscus multifarius (Mollusca: Bivalvia) on the Basis of Mitochondrial Markers: Strong Population Structure in a Species with a Short Planktonic Larval Stage.

    PubMed

    Ye, Ying Ying; Wu, Chang Wen; Li, Ji Ji

    2015-01-01

    The clam Macridiscus multifarius with a planktonic larval stage of about 10 days is an ecologically and economically important species in the coastal regions of China. In this study, 3 mt-DNA markers (COI, 12S rRNA, and ND1) were used to investigate the population structure and demography of wild M. multifarius populations in 3 coastal localities of the East China Sea (ZS and ZP populations) and Beibu Gulf in the South China Sea (BH population). Sequences of 685 bp in COI, 350 bp in 12S rRNA, and 496 bp in ND1 were determined. High level and significant FST values were obtained among the different localities on the basis of either COI (FST = 0.100-0.444, p < 0.05) or 12S rRNA (FST = 0.199-0.742, p < 0.05) gene, indicating a high degree of genetic differentiation among the populations. FST values were significant but weak for the ND1 gene because it is highly conservative. The median-joining network suggested an obvious genetic differentiation between ZS and BH populations, and the finding is consistent with the results of our demographic analyses using the unweighted pair group method with arithmetic mean. Our study unraveled the extant population genetic structure of M. multifarius and explained the strong population structure of a species with a short planktonic larval stage species; this information could be useful for fishery management measures, including artificial breeding and conservation.

  1. Juxtaposition between host population structures: implications for disease transmission in a sympatric cervid community

    PubMed Central

    Vander Wal, Eric; Edye, Iain; Paquet, Paul C; Coltman, David W; Bayne, Erin; Brook, Ryan K; Andrés, José A

    2013-01-01

    Sympatric populations of phylogenetically related species are often vulnerable to similar communicable diseases. Although some host populations may exhibit spatial structure, other hosts within the community may have unstructured populations. Thus, individuals from unstructured host populations may act as interspecific vectors among discrete subpopulations of sympatric alternate hosts. We used a cervid-bovine tuberculosis (Mycobacterium bovis) system to investigate the landscape-scale potential for bovine tuberculosis transmission within a nonmigratory white-tailed deer (Odocoileus virginianus) and elk (Cervus canadensis) community. Using landscape population genetics, we tested for genetic and spatial structure in white-tailed deer. We then compared these findings with the sympatric elk population that is structured and which has structure that correlates spatially and genetically to physiognomic landscape features. Despite genetic structure that indicates the white-tailed deer population forms three sympatric clusters, the absence of spatial structure suggested that intraspecific pathogen transmission is not likely to be limited by physiognomic landscape features. The potential for intraspecific transmission among subpopulations of elk is low due to spatial population structure. Given that white-tailed deer are abundant, widely distributed, and exhibit a distinct lack of spatial population structure, white-tailed deer likely pose a greater threat as bovine tuberculosis vectors among elk subpopulations than elk. PMID:24187583

  2. Population genetic structure of Bombus terrestris in Europe: Isolation and genetic differentiation of Irish and British populations.

    PubMed

    Moreira, António S; Horgan, Finbarr G; Murray, Tomás E; Kakouli-Duarte, Thomais

    2015-07-01

    The genetic structure of the earth bumblebee (Bombus terrestris L.) was examined across 22 wild populations and two commercially reared populations using eight microsatellite loci and two mitochondrial genes. Our study included wild bumblebee samples from six populations in Ireland, one from the Isle of Man, four from Britain and 11 from mainland Europe. A further sample was acquired from New Zealand. Observed levels of genetic variability and heterozygosity were low in Ireland and the Isle of Man, but relatively high in continental Europe and among commercial populations. Estimates of Fst revealed significant genetic differentiation among populations. Bayesian cluster analysis indicated that Irish populations were highly differentiated from British and continental populations, the latter two showing higher levels of admixture. The data suggest that the Irish Sea and prevailing south westerly winds act as a considerable geographical barrier to gene flow between populations in Ireland and Britain; however, some immigration from the Isle of Man to Ireland was detected. The results are discussed in the context of the recent commercialization of bumblebees for the European horticultural industry.

  3. School Formative Feedback Systems

    ERIC Educational Resources Information Center

    Halverson, Richard

    2010-01-01

    Data-driven instructional improvement relies on developing coherent systems that allow school staff to generate, interpret, and act upon quality formative information on students and school programs. This article offers a formative feedback system model that captures how school leaders and teachers structure artifacts and practices to create…

  4. Genetic variability and population structure of Plasmodium falciparum parasite populations from different malaria ecological regions of Kenya.

    PubMed

    Ingasia, Luicer A; Cheruiyot, Jelagat; Okoth, Sheila Akinyi; Andagalu, Ben; Kamau, Edwin

    2016-04-01

    Transmission intensity, movement of human and vector hosts, biogeographical features, and malaria control measures are some of the important factors that determine Plasmodium falciparum parasite genetic variability and population structure. Kenya has different malaria ecologies which might require different disease intervention methods. Refined parasite population genetic studies are critical for informing malaria control and elimination strategies. This study describes the genetic diversity and population structure of P. falciparum parasites from the different malaria ecological zones in Kenya. Twelve multi-locus microsatellite (MS) loci previously described were genotyped in 225 P. falciparum isolates collected between 2012 and 2013 from five sites; three in lowland endemic regions (Kisumu, Kombewa, and Malindi) and two in highland, epidemic regions (Kisii and Kericho). Parasites from the lowland endemic and highland epidemic regions of western Kenya had high genetic diversity compared to coastal lowland endemic region of Kenya [Malindi]. The Kenyan parasites had a mean genetic differentiation index (FST) of 0.072 (p=0.011). The multi-locus genetic analysis of the 12 MS revealed all the parasites had unique haplotypes. Significant linkage disequilibrium (LD) was observed in all the five parasite populations. Kisumu had the most significant index of association values (0.16; p<0.0001) whereas Kisii had the least significant index of association values (0.03; p<0.0001). Our data suggest high genetic diversity in Kenyan parasite population with the exception of parasite from Malindi where malaria has been on the decline. The presence of significant LD suggests that there is occurrence of inbreeding in the parasite population. Parasite populations from Kisii showed the strongest evidence for epidemic population structure whereas the rest of the regions showed panmixia. Defining the genetic diversity of the parasites in different ecological regions of Kenya after

  5. The concurrent evolution of cooperation and the population structures that support it.

    PubMed

    Powers, Simon T; Penn, Alexandra S; Watson, Richard A

    2011-06-01

    The evolution of cooperation often depends upon population structure, yet nearly all models of cooperation implicitly assume that this structure remains static. This is a simplifying assumption, because most organisms possess genetic traits that affect their population structure to some degree. These traits, such as a group size preference, affect the relatedness of interacting individuals and hence the opportunity for kin or group selection. We argue that models that do not explicitly consider their evolution cannot provide a satisfactory account of the origin of cooperation, because they cannot explain how the prerequisite population structures arise. Here, we consider the concurrent evolution of genetic traits that affect population structure, with those that affect social behavior. We show that not only does population structure drive social evolution, as in previous models, but that the opportunity for cooperation can in turn drive the creation of population structures that support it. This occurs through the generation of linkage disequilibrium between socio-behavioral and population-structuring traits, such that direct kin selection on social behavior creates indirect selection pressure on population structure. We illustrate our argument with a model of the concurrent evolution of group size preference and social behavior.

  6. Structures of the Bacillus subtilis glutamine synthetase dodecamer reveal large intersubunit catalytic conformational changes linked to a unique feedback inhibition mechanism.

    PubMed

    Murray, David S; Chinnam, Nagababu; Tonthat, Nam Ky; Whitfill, Travis; Wray, Lewis V; Fisher, Susan H; Schumacher, Maria A

    2013-12-13

    Glutamine synthetase (GS), which catalyzes the production of glutamine, plays essential roles in nitrogen metabolism. There are two main bacterial GS isoenzymes, GSI-α and GSI-β. GSI-α enzymes, which have not been structurally characterized, are uniquely feedback-inhibited by Gln. To gain insight into GSI-α function, we performed biochemical and cellular studies and obtained structures for all GSI-α catalytic and regulatory states. GSI-α forms a massive 600-kDa dodecameric machine. Unlike other characterized GS, the Bacillus subtilis enzyme undergoes dramatic intersubunit conformational alterations during formation of the transition state. Remarkably, these changes are required for active site construction. Feedback inhibition arises from a hydrogen bond network between Gln, the catalytic glutamate, and the GSI-α-specific residue, Arg(62), from an adjacent subunit. Notably, Arg(62) must be ejected for proper active site reorganization. Consistent with these findings, an R62A mutation abrogates Gln feedback inhibition but does not affect catalysis. Thus, these data reveal a heretofore unseen restructuring of an enzyme active site that is coupled with an isoenzyme-specific regulatory mechanism. This GSI-α-specific regulatory network could be exploited for inhibitor design against Gram-positive pathogens.

  7. Into the depth of population genetics: pattern of structuring in mesophotic red coral populations

    NASA Astrophysics Data System (ADS)

    Costantini, Federica; Abbiati, Marco

    2016-03-01

    Deep-sea reef-building corals are among the most conspicuous invertebrates inhabiting the hard-bottom habitats worldwide and are particularly susceptible to human threats. The precious red coral ( Corallium rubrum, L. 1758) has a wide bathymetric distribution, from shallow up to 800 m depth, and represents a key species in the Mediterranean mesophotic reefs. Several studies have investigated genetic variability in shallow-water red coral populations, while geographic patterns in mesophotic habitats are largely unknown. This study investigated genetic variability of C. rubrum populations dwelling between 55 and 120 m depth, from the Ligurian to the Ionian Sea along about 1500 km of coastline. A total of 18 deep rocky banks were sampled. Colonies were analyzed by means of a set of microsatellite loci and the putative control region of the mitochondrial DNA. Collected data were compared with previous studies. Both types of molecular markers showed high genetic similarity between populations within the northern (Ligurian Sea and Tuscan Archipelago) and the southern (Tyrrhenian and Ionian seas) study areas. Variability in habitat features between the sampling sites did not affect the genetic variability of the populations. Conversely, the patchy distribution of suitable habitats affected populations' connectivity within and among deep coral banks. Based on these results and due to the emphasis on red coral protection in the Mediterranean Sea by international institutions, red coral could be promoted as a `focal species' to develop management plans for the conservation of deep coralligenous reefs, a reservoir of marine biodiversity.

  8. Population structure and effective/census population size ratio in threatened three-spined stickleback populations from an isolated river basin in northwest Spain.

    PubMed

    Pérez-Figueroa, A; Fernández, C; Amaro, R; Hermida, M; San Miguel, E

    2015-08-01

    Variability at 20 microsatellite loci was examined to assess the population genetic structure, gene flow, and effective population size (N(e)) in three populations of three-spined stickleback (Gasterosteus aculeatus) from the upper basin of the Miño River in Galicia, NW Spain, where this species is threatened. The three populations showed similar levels of genetic diversity. There is a significant genetic differentiation between the three populations, but also significant gene flow. N(e) estimates based on linkage disequilibrium yielded values of 355 for the Miño River population and 241 and 311 for the Rato and Guisande Rivers, respectively, although we expect that these are overestimates. N(e) estimates based on temporal methods, considering gene flow or not, for the tributaries yielded values of 30-56 and 47-56 for the Rato and Guisande Rivers, respectively. Estimated census size (N(c)) for the Rato River was 880 individuals. This yielded a N(e)/N(c) estimate of 3-6 % for temporal estimation of N(e), which is within the empirical range observed in freshwater fishes. We suggest that the three populations analyzed have a sufficient level of genetic diversity with some genetic structure. Additionally, the absence of physical barriers suggests that conservation efforts and monitoring should focus in the whole basin as a unit.

  9. Inbreeding rate and genetic structure of cat populations in Poland.

    PubMed

    Mucha, S; Wolc, A; Gradowska, A; Szwaczkowski, T

    2011-02-01

    The objective of the study was to analyze effective population size and inbreeding level in populations of cat breeds registered in the Polish Studbook. The Association of Purebred Cat Breeders in Poland provided access to pedigrees of 26725 cats from seven breeds. The most frequent breed was Persian, however increasing tendency in numbers of registered animals from other breeds was recorded in later years. Although the percentage of inbred individuals was increasing over time, mating of close relatives was avoided by most of the breeders, and the average inbreeding coefficient exceeded 5% only for Siberian and Russian breeds. Current analysis suggests that the Polish pedigree cat populations are not threatened by negative effects of inbreeding.

  10. Evolutionary dynamics of social dilemmas in structured heterogeneous populations

    PubMed Central

    Santos, F. C.; Pacheco, J. M.; Lenaerts, Tom

    2006-01-01

    Real populations have been shown to be heterogeneous, in which some individuals have many more contacts than others. This fact contrasts with the traditional homogeneous setting used in studies of evolutionary game dynamics. We incorporate heterogeneity in the population by studying games on graphs, in which the variability in connectivity ranges from single-scale graphs, for which heterogeneity is small and associated degree distributions exhibit a Gaussian tale, to scale-free graphs, for which heterogeneity is large with degree distributions exhibiting a power-law behavior. We study the evolution of cooperation, modeled in terms of the most popular dilemmas of cooperation. We show that, for all dilemmas, increasing heterogeneity favors the emergence of cooperation, such that long-term cooperative behavior easily resists short-term noncooperative behavior. Moreover, we show how cooperation depends on the intricate ties between individuals in scale-free populations. PMID:16484371

  11. Evolutionary dynamics of social dilemmas in structured heterogeneous populations.

    PubMed

    Santos, F C; Pacheco, J M; Lenaerts, Tom

    2006-02-28

    Real populations have been shown to be heterogeneous, in which some individuals have many more contacts than others. This fact contrasts with the traditional homogeneous setting used in studies of evolutionary game dynamics. We incorporate heterogeneity in the population by studying games on graphs, in which the variability in connectivity ranges from single-scale graphs, for which heterogeneity is small and associated degree distributions exhibit a Gaussian tale, to scale-free graphs, for which heterogeneity is large with degree distributions exhibiting a power-law behavior. We study the evolution of cooperation, modeled in terms of the most popular dilemmas of cooperation. We show that, for all dilemmas, increasing heterogeneity favors the emergence of cooperation, such that long-term cooperative behavior easily resists short-term noncooperative behavior. Moreover, we show how cooperation depends on the intricate ties between individuals in scale-free populations. PMID:16484371

  12. Population structure among octocoral adults and recruits identifies scale dependent patterns of population isolation in The Bahamas.

    PubMed

    Lasker, Howard R; Porto-Hannes, Isabel

    2015-01-01

    Patterns of dispersal and connectivity of the Caribbean gorgonian Antillogorgia elisabethae in The Bahamas were assessed in both adults and recently settled recruits from 13 sites using microsatellite loci. Adult populations along the Little Bahama Bank (LBB) exhibited a clear pattern of isolation by distance (IBD) which described 86% of the variance in pairwise genetic distances. Estimates of dispersal based on the IBD model suggested dispersal distances along the LBB on the order of 100 m. Increasing the spatial scale to include sites separated by open ocean generated an apparent IBD signal but the relationship had a greater slope and explained less of the variance. This relationship with distance reflected both stepping stone based IBD and regional differentiation probably created by ocean currents and barriers to dispersal that are correlated with geographic distance. Analysis of recruits from 4 sites on the LBB from up to 6 years did not detect differences between years nor differences with adult populations. The result suggests that neither selection on recruits nor inter-annual variation in dispersal affected adult population structure. Assignment tests of recruits indicated the most likely sources of the recruits were the local or adjacent populations. Most of the patterning in population structure in the northern Bahamas can be explained by geographic distance and oceanographic connectivity. Recognition of these complex patterns is important in developing management plans for A. elisabethae and in understanding the effects of disturbance to adult populations of A. elisabethae and similar species with limited dispersal. PMID:26157606

  13. Population structure among octocoral adults and recruits identifies scale dependent patterns of population isolation in The Bahamas

    PubMed Central

    Porto-Hannes, Isabel

    2015-01-01

    Patterns of dispersal and connectivity of the Caribbean gorgonian Antillogorgia elisabethae in The Bahamas were assessed in both adults and recently settled recruits from 13 sites using microsatellite loci. Adult populations along the Little Bahama Bank (LBB) exhibited a clear pattern of isolation by distance (IBD) which described 86% of the variance in pairwise genetic distances. Estimates of dispersal based on the IBD model suggested dispersal distances along the LBB on the order of 100 m. Increasing the spatial scale to include sites separated by open ocean generated an apparent IBD signal but the relationship had a greater slope and explained less of the variance. This relationship with distance reflected both stepping stone based IBD and regional differentiation probably created by ocean currents and barriers to dispersal that are correlated with geographic distance. Analysis of recruits from 4 sites on the LBB from up to 6 years did not detect differences between years nor differences with adult populations. The result suggests that neither selection on recruits nor inter-annual variation in dispersal affected adult population structure. Assignment tests of recruits indicated the most likely sources of the recruits were the local or adjacent populations. Most of the patterning in population structure in the northern Bahamas can be explained by geographic distance and oceanographic connectivity. Recognition of these complex patterns is important in developing management plans for A. elisabethae and in understanding the effects of disturbance to adult populations of A. elisabethae and similar species with limited dispersal. PMID:26157606

  14. Should I stay or should I go? Dispersal and population structure in small, isolated desert populations of West African crocodiles.

    PubMed

    Velo-Antón, Guillermo; Godinho, Raquel; Campos, João Carlos; Brito, José Carlos

    2014-01-01

    The maintenance of both spatial and genetic connectivity is paramount to the long-term persistence of small, isolated populations living in environments with extreme climates. We aim to identify the distribution of genetic diversity and assess population sub-structuring and dispersal across dwarfed desert populations of Crocodylus suchus, which occur in isolated groups, usually less than five individuals, along the mountains of Mauritania (West Africa). We used both invasive and non-invasive sampling methods and a combination of mitochondrial DNA (12 S and ND4) and microsatellite markers (32 loci and a subset of 12 loci). Our results showed high genetic differentiation and geographic structure in Mauritanian populations of C. suchus. We identified a metapopulation system acting within four river sub-basins (high gene flow and absence of genetic structure) and considerable genetic differentiation between sub-basins (FST range: 0.12-0.24) with rare dispersal events. Effective population sizes tend to be low within sub-basins while genetic diversity is maintained. Our study suggests that hydrographic networks (temporal connections along seasonal rivers during rainy periods) allow C. suchus to disperse and maintain metapopulation dynamics within sub-basins, which attenuate the loss of genetic diversity and the risk of extinction. We highlight the need of hydrographic conservation to protect vulnerable crocodiles isolated in small water bodies. We propose C. suchus as an umbrella species in Mauritania based on ecological affinities shared with other water-dependent species in desert environments. PMID:24740183

  15. Should I stay or should I go? Dispersal and population structure in small, isolated desert populations of West African crocodiles.

    PubMed

    Velo-Antón, Guillermo; Godinho, Raquel; Campos, João Carlos; Brito, José Carlos

    2014-01-01

    The maintenance of both spatial and genetic connectivity is paramount to the long-term persistence of small, isolated populations living in environments with extreme climates. We aim to identify the distribution of genetic diversity and assess population sub-structuring and dispersal across dwarfed desert populations of Crocodylus suchus, which occur in isolated groups, usually less than five individuals, along the mountains of Mauritania (West Africa). We used both invasive and non-invasive sampling methods and a combination of mitochondrial DNA (12 S and ND4) and microsatellite markers (32 loci and a subset of 12 loci). Our results showed high genetic differentiation and geographic structure in Mauritanian populations of C. suchus. We identified a metapopulation system acting within four river sub-basins (high gene flow and absence of genetic structure) and considerable genetic differentiation between sub-basins (FST range: 0.12-0.24) with rare dispersal events. Effective population sizes tend to be low within sub-basins while genetic diversity is maintained. Our study suggests that hydrographic networks (temporal connections along seasonal rivers during rainy periods) allow C. suchus to disperse and maintain metapopulation dynamics within sub-basins, which attenuate the loss of genetic diversity and the risk of extinction. We highlight the need of hydrographic conservation to protect vulnerable crocodiles isolated in small water bodies. We propose C. suchus as an umbrella species in Mauritania based on ecological affinities shared with other water-dependent species in desert environments.

  16. Effect of ancient population structure on the degree of polymorphism shared between modern human populations and ancient hominins.

    PubMed

    Eriksson, Anders; Manica, Andrea

    2012-08-28

    Recent comparisons between anatomically modern humans and ancient genomes of other hominins have raised the tantalizing, and hotly debated, possibility of hybridization. Although several tests of hybridization have been devised, they all rely on the degree to which different modern populations share genetic polymorphisms with the ancient genomes of other hominins. However, spatial population structure is expected to generate genetic patterns similar to those that might be attributed to hybridization. To investigate this problem, we take Neanderthals as a case study, and build a spatially explicit model of the shared history of anatomically modern humans and this hominin. We show that the excess polymorphism shared between Eurasians and Neanderthals is compatible with scenarios in which no hybridization occurred, and is strongly linked to the strength of population structure in ancient populations. Thus, we recommend caution in inferring admixture from geographic patterns of shared polymorphisms, and argue that future attempts to investigate ancient hybridization between humans and other hominins should explicitly account for population structure.

  17. How Obstacles Perturb Population Fronts and Alter Their Genetic Structure.

    PubMed

    Möbius, Wolfram; Murray, Andrew W; Nelson, David R

    2015-12-01

    As populations spread into new territory, environmental heterogeneities can shape the population front and genetic composition. We focus here on the effects of an important building block of heterogeneous environments, isolated obstacles. With a combination of experiments, theory, and simulation, we show how isolated obstacles both create long-lived distortions of the front shape and amplify the effect of genetic drift. A system of bacteriophage T7 spreading on a spatially heterogeneous Escherichia coli lawn serves as an experimental model system to study population expansions. Using an inkjet printer, we create well-defined replicates of the lawn and quantitatively study the population expansion of phage T7. The transient perturbations of the population front found in the experiments are well described by a model in which the front moves with constant speed. Independent of the precise details of the expansion, we show that obstacles create a kink in the front that persists over large distances and is insensitive to the details of the obstacle's shape. The small deviations between experimental findings and the predictions of the constant speed model can be understood with a more general reaction-diffusion model, which reduces to the constant speed model when the obstacle size is large compared to the front width. Using this framework, we demonstrate that frontier genotypes just grazing the side of an isolated obstacle increase in abundance, a phenomenon we call 'geometry-enhanced genetic drift', complementary to the founder effect associated with spatial bottlenecks. Bacterial range expansions around nutrient-poor barriers and stochastic simulations confirm this prediction. The effect of the obstacle on the genealogy of individuals at the front is characterized by simulations and rationalized using the constant speed model. Lastly, we consider the effect of two obstacles on front shape and genetic composition of the population illuminating the effects expected from

  18. How Obstacles Perturb Population Fronts and Alter Their Genetic Structure

    PubMed Central

    Möbius, Wolfram; Murray, Andrew W.; Nelson, David R.

    2015-01-01

    As populations spread into new territory, environmental heterogeneities can shape the population front and genetic composition. We focus here on the effects of an important building block of heterogeneous environments, isolated obstacles. With a combination of experiments, theory, and simulation, we show how isolated obstacles both create long-lived distortions of the front shape and amplify the effect of genetic drift. A system of bacteriophage T7 spreading on a spatially heterogeneous Escherichia coli lawn serves as an experimental model system to study population expansions. Using an inkjet printer, we create well-defined replicates of the lawn and quantitatively study the population expansion of phage T7. The transient perturbations of the population front found in the experiments are well described by a model in which the front moves with constant speed. Independent of the precise details of the expansion, we show that obstacles create a kink in the front that persists over large distances and is insensitive to the details of the obstacle’s shape. The small deviations between experimental findings and the predictions of the constant speed model can be understood with a more general reaction-diffusion model, which reduces to the constant speed model when the obstacle size is large compared to the front width. Using this framework, we demonstrate that frontier genotypes just grazing the side of an isolated obstacle increase in abundance, a phenomenon we call ‘geometry-enhanced genetic drift’, complementary to the founder effect associated with spatial bottlenecks. Bacterial range expansions around nutrient-poor barriers and stochastic simulations confirm this prediction. The effect of the obstacle on the genealogy of individuals at the front is characterized by simulations and rationalized using the constant speed model. Lastly, we consider the effect of two obstacles on front shape and genetic composition of the population illuminating the effects

  19. Ultrafast Population Switching of Quantum Dots in a Structured Vacuum

    SciTech Connect

    Ma Xun; John, Sajeev

    2009-12-04

    We demonstrate picosecond, high-contrast population flipping of two-level atoms interacting with femtojoule optical pulses in a 3D photonic band gap waveguide. This is the result of giant Mollow splitting caused by strong light localization and a remarkable field-dependent relaxation of the atomic Bloch vector as it evolves near an abrupt jump in the electromagnetic density of states. Unlike steady-state switching, population inversion can remain nearly complete after the pulse subsides. This may be used for multiwavelength channel, all-optical, on-chip information processing.

  20. [Population].

    PubMed

    1979-01-01

    Data on the population of Venezuela between 1975 and 1977 are presented in descriptive tables and graphs. Information is included on the employed population according to category, sex, and type of economic activity, and by sex, age, and area on the employment rate and the total, the economically active, and the unemployed population.

  1. Genetic structure among and within peripheral and central populations of three endangered floodplain violets.

    PubMed

    Eckstein, R L; O'neill, R A; Danihelka, J; Otte, A; Köhler, W

    2006-08-01

    Understanding the partitioning of genetic variance in peripheral and central populations may shed more light on the effects of genetic drift and gene flow on population genetic structure and, thereby, improve attempts to conserve genetic diversity. We analysed genetic structure of peripheral and central populations of three insect-pollinated violets (Viola elatior, Viola pumila, Viola stagnina) to evaluate to what extent these patterns can be explained by gene flow and genetic drift. Amplified fragment length polymorphism was used to analyse 930 individuals of 50 populations. Consistent with theoretical predictions, peripheral populations were smaller and more isolated, differentiation was stronger, and genetic diversity and gene flow lower in peripheral populations of V. pumila and V. stagnina. In V. elatior, probably historic fragmentation effects linked to its specific habitat type were superimposed on the plant geographic (peripheral-central) patterns, resulting in lower relative importance of gene flow in central populations. Genetic variation between regions (3-6%), among (30-37%) and within populations (60-64%) was significant. Peripheral populations lacked markers that were rare and localized in central populations. Loss of widespread markers in peripheral V. stagnina populations indicated genetic erosion. Autocorrelation within populations was statistically significant up to a distance of 10-20 m. Higher average genetic similarity in peripheral populations than in central ones indicated higher local gene flow, probably owing to management practices. Peripheral populations contributed significantly to genetic variation and contained unique markers, which made them valuable for the conservation of genetic diversity.

  2. [Genetic structure of wild Macrobrachium nipponense populations in Taihu Lake based on microsatellite analysis].

    PubMed

    Feng, Jian-Bin; Wu, Chun-Lin; Ma, Ke-Yi; Ding, Huai-Yu; Hua, Xue-Ming; Li, Jia-Le

    2011-06-01

    By using eight highly polymorphic microsatellite DNA loci, this paper analyzed the genetic structure of wild Macrobrachium nipponense populations in Taihu Lake. For the 15 M. nipponense populations in the Lake, there were at least three of the loci presenting heterozygosity deficiency and obvious deviation from Hardy-Weinberg equilibrium after Bonferroni correction. The observed heterozygosity values of the 15 populations were all above 0. 683, displaying a high genetic diversity, but the diversity varied obviously with site. For example, the genetic diversity of the eastern and southern populations at Dukou and Luxiang was higher than that of the western and northern populations at Huazhuang and Yangzhu. For the 15 populations, parts of the loci showed heterozygote excess and departure from mutation-drift equilibrium, suggesting that the population structure had experienced bottleneck effect and the population amount had declined. The AMOVA analysis across all the populations and loci showed that the genetic divergence among the 15 populations was at a lower level (F(ST) = 0.011 ). 98.9% of the genetic variation came from intra-population, and 1.1% came from inter-population, suggesting that all the M. nipponense populations in the Lake could be protected and managed as a single unit in genetic resource. However, the genetic distance between Huazhuang and Wutangmen populations reached 0.206, being close to the delimitation of species identification. Further studies would be needed for the sustainable utilization of the genetic resource of M. nipponense in Taihu Lake.

  3. Population structure of red-cockaded woodpeckers (Picoides borealis) in south Florida: RAPDs revisited

    USGS Publications Warehouse

    Haig, Susan M.; Bowman, R.; Mullins, Thomas D.

    1996-01-01

    Six south Florida populations of the endangered red-cockaded woodpecker (Picoides borealis) were sampled to examine genetic diversity and population structure in the southernmost portion of the species' range relative to 14 previously sampled populations from throughout the species range. Random amplified polymorphic DNA (RAPD) analyses were used to evaluate the populations (n= 161 individuals, 13 primers, one band/primer). Results suggested that south Florida populations have significant among-population genetic differentiation (FST= 0.17, P < 0.000), although gene flow may be adequate to offset drift (Nm= 1.26). Comparison of Florida populations with others sampled indicated differentiation was less in Florida (FST for all populations = 0.21). Cluster analyses of all 20 populations did not reflect complete geographical predictions, although clustering of distant populations resulted in a significant correlation between genetic distance and geographical distance. Overall, results suggest populations in south Florida, similar to the remainder of the species, have low genetic diversity and high population fragmentation. Exact clustering of distant populations supports the ability of RAPDs to differentiate populations accurately. Our results further support past management recommendations that translocations of birds among geographically proximate populations is preferable to movement of birds between distant populations.

  4. Global climate feedbacks

    SciTech Connect

    Manowitz, B.

    1990-10-01

    The important physical, chemical, and biological events that affect global climate change occur on a mesoscale -- requiring high spatial resolution for their analysis. The Department of Energy has formulated two major initiatives under the US Global Change Program: ARM (Atmospheric Radiation Measurements), and CHAMMP (Computer Hardware Advanced Mathematics and Model Physics). ARM is designed to use ground and air-craft based observations to document profiles of atmospheric composition, clouds, and radiative fluxes. With research and models of important physical processes, ARM will delineate the relationships between trace gases, aerosol and cloud structure, and radiative transfer in the atmosphere, and will improve the parameterization of global circulation models. The present GCMs do not model important feedbacks, including those from clouds, oceans, and land processes. The purpose of this workshop is to identify such potential feedbacks, to evaluate the uncertainties in the feedback processes (and, if possible, to parameterize the feedback processes so that they can be treated in a GCM), and to recommend research programs that will reduce the uncertainties in important feedback processes. Individual reports are processed separately for the data bases.

  5. Genetic structure of introduced populations: 120-year-old DNA footprint of historic introduction in an insular small mammal population

    PubMed Central

    Simpson, Siobhan; Blampied, Nick; Peniche, Gabriela; Dozières, Anne; Blackett, Tiffany; Coleman, Stephen; Cornish, Nina; Groombridge, Jim J

    2013-01-01

    Wildlife populations have been introduced to new areas by people for centuries, but this human-mediated movement can disrupt natural patterns of genetic structure by altering patterns of gene flow. Insular populations are particularly prone to these influences due to limited opportunities for natural dispersal onto islands. Consequently, understanding how genetic patterns develop in island populations is important, particularly given that islands are frequently havens for protected wildlife. We examined the evolutionary origins and extent of genetic structure within the introduced island population of red squirrels (Sciurus vulgaris) on the Channel Island of Jersey using mitochondrial DNA (mtDNA) control region sequence and nuclear microsatellite genotypes. Our findings reveal two different genetic origins and a genetic architecture reflective of the introductions 120 years ago. Genetic structure is marked within the maternally inherited mtDNA, indicating slow dispersal of female squirrels. However, nuclear markers detected only weak genetic structure, indicating substantially greater male dispersal. Data from both mitochondrial and nuclear markers support historic records that squirrels from England were introduced to the west of the island and those from mainland Europe to the east. Although some level of dispersal and introgression across the island between the two introductions is evident, there has not yet been sufficient gene flow to erase this historic genetic “footprint.” We also investigated if inbreeding has contributed to high observed levels of disease, but found no association. Genetic footprints of introductions can persist for considerable periods of time and beyond traditional timeframes of wildlife management. PMID:23532702

  6. Population Structure of the North American Cranberry Fruit Rot Complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cranberry fruit rot is caused by a complex of pathogenic fungi. Variation in the populations within this complex from region to region could delay identification of the causal agents(s) and complicate management strategies. Our objective was to assess genetic variation within the four major fruit ro...

  7. mtDNA variation in Inuit populations of Greenland and Canada: migration history and population structure.

    PubMed

    Helgason, Agnar; Pálsson, Gísli; Pedersen, Henning Sloth; Angulalik, Emily; Gunnarsdóttir, Ellen Dröfn; Yngvadóttir, Bryndís; Stefánsson, Kári

    2006-05-01

    We examined 395 mtDNA control-region sequences from Greenlandic Inuit and Canadian Kitikmeot Inuit with the aim of shedding light on the migration history that underlies the present geographic patterns of genetic variation at this locus in the Arctic. In line with previous studies, we found that Inuit populations carry only sequences belonging to haplotype clusters A2 and D3. However, a comparison of Arctic populations from Siberia, Canada, and Greenland revealed considerable differences in the frequencies of these haplotypes. Moreover, large sample sizes and regional information about birthplaces of maternal grandmothers permitted the detection of notable differences in the distribution of haplotypes among subpopulations within Greenland. Our results cast doubt on the prevailing hypothesis that contemporary Inuit trace their all of their ancestry to so-called Thule groups that expanded from Alaska about 800-1,000 years ago. In particular, discrepancies in mutational divergence between the Inuit populations and their putative source mtDNA pool in Siberia/Alaska for the two predominant haplotype clusters, A2a and A2b, are more consistent with the possibility that expanding Thule groups encountered and interbred with existing Dorset populations in Canada and Greenland.

  8. Demography and genetic structure of a recovering grizzly bear population

    USGS Publications Warehouse

    Kendall, K.C.; Stetz, J.B.; Boulanger, J.; Macleod, A.C.; Paetkau, David; White, Gary C.

    2009-01-01

    Grizzly bears (brown bears; Ursus arctos) are imperiled in the southern extent of their range worldwide. The threatened population in northwestern Montana, USA, has been managed for recovery since 1975; yet, no rigorous data were available to monitor program success. We used data from a large noninvasive genetic sampling effort conducted in 2004 and 33 years of physical captures to assess abundance, distribution, and genetic health of this population. We combined data from our 3 sampling methods (hair trap, bear rub, and physical capture) to construct individual bear encounter histories for use in Huggins-Pledger closed mark-recapture models. Our population estimate, N?? = 765 (95% CI = 715-831) was more than double the existing estimate derived from sightings of females with young. Based on our results, the estimated known, human-caused mortality rate in 2004 was 4.6% (95% CI = 4.2-4.9%), slightly above the 4% considered sustainable; however, the high proportion of female mortalities raises concern. We used location data from telemetry, confirmed sightings, and genetic sampling to estimate occupied habitat. We found that grizzly bears occupied 33,480 km2 in the Northern Continental Divide Ecosystem (NCDE) during 1994-2007, including 10,340 km beyond the Recovery Zone. We used factorial correspondence analysis to identify potential barriers to gene flow within this population. Our results suggested that genetic interchange recently increased in areas with low gene flow in the past; however, we also detected evidence of incipient fragmentation across the major transportation corridor in this ecosystem. Our results suggest that the NCDE population is faring better than previously thought, and they highlight the need for a more rigorous monitoring program.

  9. Evolution of population structure in a highly social top predator, the killer whale.

    PubMed

    Hoelzel, A Rus; Hey, Jody; Dahlheim, Marilyn E; Nicholson, Colin; Burkanov, Vladimir; Black, Nancy

    2007-06-01

    Intraspecific resource partitioning and social affiliations both have the potential to structure populations, though it is rarely possible to directly assess the impact of these mechanisms on genetic diversity and population divergence. Here, we address this for killer whales (Orcinus orca), which specialize on prey species and hunting strategy and have long-term social affiliations involving both males and females. We used genetic markers to assess the structure and demographic history of regional populations and test the hypothesis that known foraging specializations and matrifocal sociality contributed significantly to the evolution of population structure. We find genetic structure in sympatry between populations of foraging specialists (ecotypes) and evidence for isolation by distance within an ecotype. Fitting of an isolation with migration model suggested ongoing, low-level migration between regional populations (within and between ecotypes) and small effective sizes for extant local populations. The founding of local populations by matrifocal social groups was indicated by the pattern of fixed mtDNA haplotypes in regional populations. Simulations indicate that this occurred within the last 20,000 years (after the last glacial maximum). Our data indicate a key role for social and foraging behavior in the evolution of genetic structure among conspecific populations of the killer whale. PMID:17400573

  10. Reconciling nuclear microsatellite and mitochondrial marker estimates of population structure: breeding population structure of Chesapeake Bay striped bass (Morone saxatilis).

    PubMed

    Brown, K M; Baltazar, G A; Hamilton, M B

    2005-06-01

    Comparative analyses of nuclear and organelle genetic markers may help delineate evolutionarily significant units or management units, although population differentiation estimates from multiple genomes can also conflict. Striped bass (Morone saxatilis) are long-lived, highly migratory anadromous fish recently recovered from a severe decline in population size. Previous studies with protein, nuclear DNA and mitochondrial DNA (mtDNA) markers produced discordant results, and it remains uncertain if the multiple tributaries within Chesapeake Bay constitute distinct management units. Here, 196 young-of-the-year (YOY) striped bass were sampled from Maryland's Choptank, Potomac and Nanticoke Rivers and the north end of Chesapeake Bay in 1999 and from Virginia's Mataponi and Rappahannock Rivers in 2001. A total of 10 microsatellite loci exhibited between two and 27 alleles per locus with observed heterozygosities between 0.255 and 0.893. The 10-locus estimate of R(ST) among the six tributaries was -0.0065 (95% confidence interval -0.0198 to 0.0018). All R(ST) and all but one theta estimates for pairs of populations were not significantly different from zero. Reanalysis of Chesapeake Bay striped bass mtDNA data from two previous studies estimated population differentiation between theta=-0.002 and 0.160, values generally similar to mtDNA population differentiation predicted from microsatellite R(ST) after adjusting for reduced effective population size and uniparental inheritance in organelle genomes. Based on mtDNA differentiation, breeding sex ratios or gene flow may have been slightly male biased in some years. The results reconcile conflicting past studies based on different types of genetic markers, supporting a single Chesapeake Bay management unit encompassing a panmictic striped bass breeding population.

  11. High genetic diversity and low population structure in Porter's sunflower (Helianthus porteri).

    PubMed

    Gevaert, Scott D; Mandel, Jennifer R; Burke, John M; Donovan, Lisa A

    2013-01-01

    Granite outcrops in the southeastern United States are rare and isolated habitats that support edaphically controlled communities dominated by herbaceous plants. They harbor rare and endemic species that are expected to have low genetic variability and high population structure due to small population sizes and their disjunct habitat. We test this expectation for an annual outcrop endemic, Helianthus porteri (Porter's sunflower). Contrary to expectation, H. porteri has relatively high genetic diversity (H e = 0.681) and relatively low genetic structure among the native populations (F ST = 0.077) when compared to 5 other Helianthus species (N = 288; 18 expressed sequence tag-SSR markers). These findings suggest greater gene flow than expected. The potential for gene flow is supported by the analysis of transplant populations established with propagules from a common source in 1959. One population established close to a native population (1.5 km) at the edge of the natural range is genetically similar to and shares rare alleles with the adjacent native population and is distinct from the central source population. In contrast, a transplant population established north of the native range has remained similar to the source population. The relatively high genetic diversity and low population structure of this species, combined with the long-term success of transplanted populations, bode well for its persistence as long as the habitat persists. PMID:23487323

  12. High genetic diversity and low population structure in Porter's sunflower (Helianthus porteri).

    PubMed

    Gevaert, Scott D; Mandel, Jennifer R; Burke, John M; Donovan, Lisa A

    2013-01-01

    Granite outcrops in the southeastern United States are rare and isolated habitats that support edaphically controlled communities dominated by herbaceous plants. They harbor rare and endemic species that are expected to have low genetic variability and high population structure due to small population sizes and their disjunct habitat. We test this expectation for an annual outcrop endemic, Helianthus porteri (Porter's sunflower). Contrary to expectation, H. porteri has relatively high genetic diversity (H e = 0.681) and relatively low genetic structure among the native populations (F ST = 0.077) when compared to 5 other Helianthus species (N = 288; 18 expressed sequence tag-SSR markers). These findings suggest greater gene flow than expected. The potential for gene flow is supported by the analysis of transplant populations established with propagules from a common source in 1959. One population established close to a native population (1.5 km) at the edge of the natural range is genetically similar to and shares rare alleles with the adjacent native population and is distinct from the central source population. In contrast, a transplant population established north of the native range has remained similar to the source population. The relatively high genetic diversity and low population structure of this species, combined with the long-term success of transplanted populations, bode well for its persistence as long as the habitat persists.

  13. Genetic diversity and population structure of Arabidopsis thaliana along an altitudinal gradient

    PubMed Central

    Tyagi, Antariksh; Singh, Shivani; Mishra, Parneeta; Singh, Akanksha; Tripathi, Abhinandan Mani; Jena, Satya Narayan; Roy, Sribash

    2016-01-01

    The natural genetic variation within a plant species is primarily a consequence of its phylogeography and evolutionary history. This variation largely determines its present-day population structure. Arabidopsis thaliana, as a model plant, has been studied in great detail including its probable origin, local as well as global genetic diversity pattern, population structure, adaptation, etc. However, no such studies have so far been reported from the Indian Himalayan region. Here, we describe a comprehensive study on the genetic diversity and population structure of A. thaliana from an altitudinal range of 700–3400 m above mean sea level the highest altitudinal range reported so far. We also compare these populations with previously reported worldwide populations. A total of 48 accessions representing six populations were analysed using 19 microsatellites and 11 chloroplast markers. Genetic diversity analysis indicated populations to be highly diverse and comparable with worldwide populations. STRUCTURE, principal coordinate and isolation by distance (IBD) analyses showed that genetic variation in different populations is structured at geographical and altitudinal level. Further analyses indicate that these populations are genetically distinct from the rest of the world populations. Different parameters of the demographic expansion model support a rapid expansion. Based on mismatch distribution, the initial time of expansion of west Himalayan populations was found to be about 130 000 years. Bayesian analysis of divergence time indicated that these populations have a long evolutionary history in this region. Based on the results of genetic diversity parameters, demographic expansion and divergence time estimation, it appears that west Himalayan populations may be the source of the west–east expansion model. PMID:26672075

  14. Population genetic structure of Anopheles gambiae mosquitoes on Lake Victoria islands, west Kenya

    PubMed Central

    Chen, Hong; Minakawa, Noboru; Beier, John; Yan, Guiyun

    2004-01-01

    Background Understanding the genetic structure of island Anopheles gambiae populations is important for the current tactics in mosquito control and for the proposed strategy using genetically-modified mosquitoes (GMM). Genetically-isolated mosquito populations on islands are a potential site for testing GMM. The objective of this study was to determine the genetic structure of A. gambiae populations on the islands in Lake Victoria, western Kenya. Methods The genetic diversity and the population genetic structures of 13 A. gambiae populations from five islands on Lake Victoria and six villages from the surrounding mainland area in the Suba District were examined using six microsatellite markers. The distance range of sampling sites varied between 2.5 and 35.1 km. Results A similar level of genetic diversity between island mosquito populations and adjacent mainland populations was found. The average number of alleles per locus was 7.3 for the island populations and 6.8 for the mainland populations. The average observed heterozygosity was 0.32 and 0.28 for the island and mainland populations, respectively. A low but statistically significant genetic structure was detected among the island populations (FST = 0.019) and between the island and mainland populations (FST = 0.003). A total of 12 private alleles were found, and nine of them were from the island populations. Conclusion A level of genetic differentiation between the island and mainland populations was found. Large extent of gene flow between the island and mainland mosquito populations may result from wind- or human-assisted dispersal. Should the islands on Lake Victoria be used as a trial site for the release program of GMM, mosquito dispersal between the islands and between the island and the mainland should be vigorously monitored. PMID:15581429

  15. Correlation analysis of genetic diversity and population structure of Houttuynia cordata Thunb with regard to environment.

    PubMed

    Zhong, J; Wu, F-C; Qiu, P; Dai, L-J

    2016-01-01

    To study the levels of genetic diversity, and population structure, of Houttuynia cordata Thunb, the genetic background and relationships of populations were analyzed in terms of environmental factors. The genetic diversity and population structure of H. cordata were investigated using sequence-related amplified polymorphisms and correlation with environmental factors was analyzed using the SPSS software. Two thousand one hundred sixty-three sites were amplified from 41 pairs of primers, 1825 of which were polymorphic, and the percentage of polymorphic loci was 84.37%; the percentage of polymorphic sites was 72.14 and 67.77% at the species and population level, respectively. The observed number of alleles was 1.52 and 1.30 at species and population level, respectively. The effective number of alleles was 1.38 and 1.24 at species and population level, respectively. The Nei's diversity was 0.26 and 0.15 at species and population level, respectively. The Shannon's information index was 0.87 and 0.63 at species and population level, respectively. The genetic differentiation coefficient of populations was 0.51, and 12 populations were divided into three classes based on D = 0.20; the genetic diversities of different populations are correlated at different significance levels (P < 0.05) with environmental factors. Genetic differentiation existed among populations and the populations exhibited heteroplasmy. PMID:27525953

  16. Correlation analysis of genetic diversity and population structure of Houttuynia cordata Thunb with regard to environment.

    PubMed

    Zhong, J; Wu, F-C; Qiu, P; Dai, L-J

    2016-01-01

    To study the levels of genetic diversity, and population structure, of Houttuynia cordata Thunb, the genetic background and relationships of populations were analyzed in terms of environmental factors. The genetic diversity and population structure of H. cordata were investigated using sequence-related amplified polymorphisms and correlation with environmental factors was analyzed using the SPSS software. Two thousand one hundred sixty-three sites were amplified from 41 pairs of primers, 1825 of which were polymorphic, and the percentage of polymorphic loci was 84.37%; the percentage of polymorphic sites was 72.14 and 67.77% at the species and population level, respectively. The observed number of alleles was 1.52 and 1.30 at species and population level, respectively. The effective number of alleles was 1.38 and 1.24 at species and population level, respectively. The Nei's diversity was 0.26 and 0.15 at species and population level, respectively. The Shannon's information index was 0.87 and 0.63 at species and population level, respectively. The genetic differentiation coefficient of populations was 0.51, and 12 populations were divided into three classes based on D = 0.20; the genetic diversities of different populations are correlated at different significance levels (P < 0.05) with environmental factors. Genetic differentiation existed among populations and the populations exhibited heteroplasmy.

  17. Reproductive isolation with a learned trait in a structured population.

    PubMed

    Yeh, Douhan Justin; Servedio, Maria R

    2015-07-01

    Assortative mating displays and/or preferences can be affected by learning across a wide range of animal taxa, but the specifics of how this learning affects speciation with gene flow are not well understood. We use population genetic models with trait learning to investigate how the identity of the tutor affects the divergence of a self-referent phenotype-matching trait. We find that oblique learning (learning from unrelated individual of the previous generation) and maternal learning mask sexual selection and therefore do not allow the maintenance of divergence. In contrast, by enhancing positive frequency-dependent sexual selection, paternal learning can maintain more divergence than genetic inheritance, but leads to the loss of polymorphism more easily. Furthermore, paternal learning inhibits the invasion of a novel self-referent phenotype-matching trait, especially in a large population.

  18. Populations of weedy crop-wild hybrid beets show contrasting variation in mating system and population genetic structure.

    PubMed

    Arnaud, Jean-François; Fénart, Stéphane; Cordellier, Mathilde; Cuguen, Joël

    2010-05-01

    Reproductive traits are key parameters for the evolution of invasiveness in weedy crop-wild hybrids. In Beta vulgaris, cultivated beets hybridize with their wild relatives in the seed production areas, giving rise to crop-wild hybrid weed beets. We investigated the genetic structure, the variation in first-year flowering and the variation in mating system among weed beet populations occurring within sugar beet production fields. No spatial genetic structure was found for first-year populations composed of F1 crop-wild hybrid beets. In contrast, populations composed of backcrossed weed beets emerging from the seed bank showed a strong isolation-by-distance pattern. Whereas gametophytic self-incompatibility prevents selfing in wild beet populations, all studied weed beet populations had a mixed-mating system, plausibly because of the introgression of the crop-derived Sf gene that disrupts self-incompatibility. No significant relationship between outcrossing rate and local weed beet density was found, suggesting no trends for a shift in the mating system because of environmental effects. We further reveal that increased invasiveness of weed beets may stem from positive selection on first-year flowering induction depending on the B gene inherited from the wild. Finally, we discuss the practical and applied consequences of our findings for crop-weed management.

  19. Populations of weedy crop-wild hybrid beets show contrasting variation in mating system and population genetic structure.

    PubMed

    Arnaud, Jean-François; Fénart, Stéphane; Cordellier, Mathilde; Cuguen, Joël

    2010-05-01

    Reproductive traits are key parameters for the evolution of invasiveness in weedy crop-wild hybrids. In Beta vulgaris, cultivated beets hybridize with their wild relatives in the seed production areas, giving rise to crop-wild hybrid weed beets. We investigated the genetic structure, the variation in first-year flowering and the variation in mating system among weed beet populations occurring within sugar beet production fields. No spatial genetic structure was found for first-year populations composed of F1 crop-wild hybrid beets. In contrast, populations composed of backcrossed weed beets emerging from the seed bank showed a strong isolation-by-distance pattern. Whereas gametophytic self-incompatibility prevents selfing in wild beet populations, all studied weed beet populations had a mixed-mating system, plausibly because of the introgression of the crop-derived Sf gene that disrupts self-incompatibility. No significant relationship between outcrossing rate and local weed beet density was found, suggesting no trends for a shift in the mating system because of environmental effects. We further reveal that increased invasiveness of weed beets may stem from positive selection on first-year flowering induction depending on the B gene inherited from the wild. Finally, we discuss the practical and applied consequences of our findings for crop-weed management. PMID:25567926

  20. Populations of weedy crop–wild hybrid beets show contrasting variation in mating system and population genetic structure

    PubMed Central

    Arnaud, Jean-François; Fénart, Stéphane; Cordellier, Mathilde; Cuguen, Joël

    2010-01-01

    Reproductive traits are key parameters for the evolution of invasiveness in weedy crop–wild hybrids. In Beta vulgaris, cultivated beets hybridize with their wild relatives in the seed production areas, giving rise to crop–wild hybrid weed beets. We investigated the genetic structure, the variation in first-year flowering and the variation in mating system among weed beet populations occurring within sugar beet production fields. No spatial genetic structure was found for first-year populations composed of F1 crop–wild hybrid beets. In contrast, populations composed of backcrossed weed beets emerging from the seed bank showed a strong isolation-by-distance pattern. Whereas gametophytic self-incompatibility prevents selfing in wild beet populations, all studied weed beet populations had a mixed-mating system, plausibly because of the introgression of the crop-derived Sf gene that disrupts self-incompatibility. No significant relationship between outcrossing rate and local weed beet density was found, suggesting no trends for a shift in the mating system because of environmental effects. We further reveal that increased invasiveness of weed beets may stem from positive selection on first-year flowering induction depending on the B gene inherited from the wild. Finally, we discuss the practical and applied consequences of our findings for crop-weed management. PMID:25567926

  1. Size-specific sensitivity: Applying a new structured population model

    SciTech Connect

    Easterling, M.R.; Ellner, S.P.; Dixon, P.M.

    2000-03-01

    Matrix population models require the population to be divided into discrete stage classes. In many cases, especially when classes are defined by a continuous variable, such as length or mass, there are no natural breakpoints, and the division is artificial. The authors introduce the integral projection model, which eliminates the need for division into discrete classes, without requiring any additional biological assumptions. Like a traditional matrix model, the integral projection model provides estimates of the asymptotic growth rate, stable size distribution, reproductive values, and sensitivities of the growth rate to changes in vital rates. However, where the matrix model represents the size distributions, reproductive value, and sensitivities as step functions (constant within a stage class), the integral projection model yields smooth curves for each of these as a function of individual size. The authors describe a method for fitting the model to data, and they apply this method to data on an endangered plant species, northern monkshood (Aconitum noveboracense), with individuals classified by stem diameter. The matrix and integral models yield similar estimates of the asymptotic growth rate, but the reproductive values and sensitivities in the matrix model are sensitive to the choice of stage classes. The integral projection model avoids this problem and yields size-specific sensitivities that are not affected by stage duration. These general properties of the integral projection model will make it advantageous for other populations where there is no natural division of individuals into stage classes.

  2. Blue whale population structure along the eastern South Pacific Ocean: evidence of more than one population.

    PubMed

    Torres-Florez, J P; Hucke-Gaete, R; LeDuc, R; Lang, A; Taylor, B; Pimper, L E; Bedriñana-Romano, L; Rosenbaum, H C; Figueroa, C C

    2014-12-01

    Blue whales (Balaenoptera musculus) were among the most intensively exploited species of whales in the world. As a consequence of this intense exploitation, blue whale sightings off the coast of Chile were uncommon by the end of the 20th century. In 2004, a feeding and nursing ground was reported in southern Chile (SCh). With the aim to investigate the genetic identity and relationship of these Chilean blue whales to those in other Southern Hemisphere areas, 60 biopsy samples were collected from blue whales in SCh between 2003 and 2009. These samples were genotyped at seven microsatellite loci and the mitochondrial control region was sequenced, allowing us to identify 52 individuals. To investigate the genetic identity of this suspected remnant population, we compared these 52 individuals to blue whales from Antarctica (ANT, n = 96), Northern Chile (NCh, n = 19) and the eastern tropical Pacific (ETP, n = 31). No significant differentiation in haplotype frequencies (mtDNA) or among genotypes (nDNA) was found between SCh, NCh and ETP, while significant differences were found between those three areas and Antarctica for both the mitochondrial and microsatellite analyses. Our results suggest at least two breeding population units or subspecies exist, which is also supported by other lines of evidence such as morphometrics and acoustics. The lack of differences detected between SCh/NCh/ETP areas supports the hypothesis that eastern South Pacific blue whales are using the ETP area as a possible breeding area. Considering the small population sizes previously reported for the SCh area, additional conservation measures and monitoring of this population should be developed and prioritized. PMID:25492593

  3. Blue whale population structure along the eastern South Pacific Ocean: evidence of more than one population.

    PubMed

    Torres-Florez, J P; Hucke-Gaete, R; LeDuc, R; Lang, A; Taylor, B; Pimper, L E; Bedriñana-Romano, L; Rosenbaum, H C; Figueroa, C C

    2014-12-01

    Blue whales (Balaenoptera musculus) were among the most intensively exploited species of whales in the world. As a consequence of this intense exploitation, blue whale sightings off the coast of Chile were uncommon by the end of the 20th century. In 2004, a feeding and nursing ground was reported in southern Chile (SCh). With the aim to investigate the genetic identity and relationship of these Chilean blue whales to those in other Southern Hemisphere areas, 60 biopsy samples were collected from blue whales in SCh between 2003 and 2009. These samples were genotyped at seven microsatellite loci and the mitochondrial control region was sequenced, allowing us to identify 52 individuals. To investigate the genetic identity of this suspected remnant population, we compared these 52 individuals to blue whales from Antarctica (ANT, n = 96), Northern Chile (NCh, n = 19) and the eastern tropical Pacific (ETP, n = 31). No significant differentiation in haplotype frequencies (mtDNA) or among genotypes (nDNA) was found between SCh, NCh and ETP, while significant differences were found between those three areas and Antarctica for both the mitochondrial and microsatellite analyses. Our results suggest at least two breeding population units or subspecies exist, which is also supported by other lines of evidence such as morphometrics and acoustics. The lack of differences detected between SCh/NCh/ETP areas supports the hypothesis that eastern South Pacific blue whales are using the ETP area as a possible breeding area. Considering the small population sizes previously reported for the SCh area, additional conservation measures and monitoring of this population should be developed and prioritized.

  4. AGN feedback in the Perseus cluster

    NASA Astrophysics Data System (ADS)

    Gendron-Marsolais, Marie-Lou; Hlavacek-Larrondo, Julie; Clarke, Tracy E.; Intema, Huib; Fabian, Andrew C.; Taylor, Gregory B.; Blundell, Katherine

    2016-04-01

    Deep Chandra images of the Perseus cluster of galaxies have revealed a succession of cavities created by the jets of the central supermassive black hole, pushing away the X-ray emitting gas and leaving bubbles filled with radio emission. Perseus is one of the rare examples showing buoyantly rising lobes from past radio outbursts, characterized by a steep spectral index and known as ghost cavities. All of these structures trace the complete history of mechanical AGN feedback over the past 500 Myrs. I will present results on new, ultra deep 230-470 MHz JVLA data. This low-frequency view of the Perseus cluster will probe the old radio-emitting electron population and will allow us to build the most detailed map of AGN feedback in a cluster thus far.

  5. Identifying the number of population clusters with structure: problems and solutions.

    PubMed

    Gilbert, Kimberly J

    2016-05-01

    The program structure has been used extensively to understand and visualize population genetic structure. It is one of the most commonly used clustering algorithms, cited over 11,500 times in Web of Science since its introduction in 2000. The method estimates ancestry proportions to assign individuals to clusters, and post hoc analyses of results may indicate the most likely number of clusters, or populations, on the landscape. However, as has been shown in this issue of Molecular Ecology Resources by Puechmaille (), when sampling is uneven across populations or across hierarchical levels of population structure, these post hoc analyses can be inaccurate and identify an incorrect number of population clusters. To solve this problem, Puechmaille () presents strategies for subsampling and new analysis methods that are robust to uneven sampling to improve inferences of the number of population clusters. PMID:27062588

  6. Identifying the number of population clusters with structure: problems and solutions.

    PubMed

    Gilbert, Kimberly J

    2016-05-01

    The program structure has been used extensively to understand and visualize population genetic structure. It is one of the most commonly used clustering algorithms, cited over 11,500 times in Web of Science since its introduction in 2000. The method estimates ancestry proportions to assign individuals to clusters, and post hoc analyses of results may indicate the most likely number of clusters, or populations, on the landscape. However, as has been shown in this issue of Molecular Ecology Resources by Puechmaille (), when sampling is uneven across populations or across hierarchical levels of population structure, these post hoc analyses can be inaccurate and identify an incorrect number of population clusters. To solve this problem, Puechmaille () presents strategies for subsampling and new analysis methods that are robust to uneven sampling to improve inferences of the number of population clusters.

  7. Recent physical connections may explain weak genetic structure in western Alaskan chum salmon (Oncorhynchus keta) populations

    PubMed Central

    Garvin, Michael R; Kondzela, Christine M; Martin, Patrick C; Finney, Bruce; Guyon, Jeffrey; Templin, William D; DeCovich, Nick; Gilk-Baumer, Sara; Gharrett, Anthony J

    2013-01-01

    Low genetic divergence at neutral loci among populations is often the result of high levels of contemporary gene flow. Western Alaskan summer-run chum salmon (Oncorhynchus keta) populations demonstrate weak genetic structure, but invoking contemporary gene flow as the basis for the low divergence is problematic because salmon home to their natal streams and some of the populations are thousands of kilometers apart. We used genotypes from microsatellite and single nucleotide polymorphism loci to investigate alternative explanations for the current genetic structure of chum salmon populations from western Alaska. We also estimated current levels of gene flow among Kuskokwim River populations. Our results suggest that weak genetic structure is best explained by physical connections that occurred after the Holocene Thermal Maximum among the Yukon, Kuskokwim, and Nushagak drainages that allowed gene flow to occur among now distant populations. PMID:23919176

  8. Quantifying Spatial Genetic Structuring in Mesophotic Populations of the Precious Coral Corallium rubrum

    PubMed Central

    Costantini, Federica; Carlesi, Lorenzo; Abbiati, Marco

    2013-01-01

    While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58–118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC) were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations. PMID:23646109

  9. Quantifying spatial genetic structuring in mesophotic populations of the precious coral Corallium rubrum.

    PubMed

    Costantini, Federica; Carlesi, Lorenzo; Abbiati, Marco

    2013-01-01

    While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58-118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC) were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations. PMID:23646109

  10. Population structure of Aggarwals of north India as revealed by molecular markers.

    PubMed

    Gupta, Vipin; Khadgawat, Rajesh; Ng, Hon Keung Tony; Kumar, Satish; Rao, Vadlamudi Raghavendra; Sachdeva, Mohinder Pal

    2010-12-01

    Using molecular genetic data on Aggarwals (Vaish/Vysya), an endogamous population group of north India, we provide evidence of its homogeneous unstratified population structure. We found the mean average heterozygosity value of 0.33 for 14 single nucleotide polymorphisms belonging to four genes (TCF7L2-, HHEX-, KCNJ11-, and ADIPOQ-) in the Aggarwal population (sample of 184 individuals) and tried to evaluate the genomic efficiency of endogamy in this population with the help of clan-based stratified analysis. We concluded that the sociocultural identity of the endogamous population groups could act as a robust proxy maker for inferring their homogeneity and population structure in India, which is ideal also for population selection for future genome-wide association studies in the country.

  11. Urban habitat fragmentation and genetic population structure of bobcats in coastal southern California

    USGS Publications Warehouse

    Ruell, E.W.; Riley, S.P.D.; Douglas, M.R.; Antolin, M.F.; Pollinger, J.R.; Tracey, J.A.; Lyren, L.M.; Boydston, E.E.; Fisher, R.N.; Crooks, K.R.

    2012-01-01

    Although habitat fragmentation is recognized as a primary threat to biodiversity, the effects of urban development on genetic population structure vary among species and landscapes and are not yet well understood. Here we use non-invasive genetic sampling to compare the effects of fragmentation by major roads and urban development on levels of dispersal, genetic diversity, and relatedness between paired bobcat populations in replicate landscapes in coastal southern California. We hypothesized that bobcat populations in sites surrounded by urbanization would experience reduced functional connectivity relative to less isolated nearby populations. Our results show that bobcat genetic population structure is affected by roads and development but not always as predicted by the degree that these landscape features surround fragments. Instead, we suggest that urban development may affect functional connectivity between bobcat populations more by limiting the number and genetic diversity of source populations of migrants than by creating impermeable barriers to dispersal.

  12. Genetic Diversity and Population Structure in Polygonum cespitosum: Insights to an Ongoing Plant Invasion

    PubMed Central

    Matesanz, Silvia; Theiss, Kathryn E.; Holsinger, Kent E.; Sultan, Sonia E.

    2014-01-01

    Molecular markers can help elucidate how neutral evolutionary forces and introduction history contribute to genetic variation in invaders. We examined genetic diversity, population structure and colonization patterns in the invasive Polygonum cespitosum, a highly selfing, tetraploid Asian annual introduced to North America. We used nine diploidized polymorphic microsatellite markers to study 16 populations in the introduced range (northeastern North America), via the analyses of 516 individuals, and asked the following questions: 1) Do populations have differing levels of within-population genetic diversity? 2) Do populations form distinct genetic clusters? 3) Does population structure reflect either geographic distances or habitat similarities? We found low heterozygosity in all populations, consistent with the selfing mating system of P. cespitosum. Despite the high selfing levels, we found substantial genetic variation within and among P. cespitosum populations, based on the percentage of polymorphic loci, allelic richness, and expected heterozygosity. Inferences from individual assignment tests (Bayesian clustering) and pairwise FST values indicated high among-population differentiation, which indicates that the effects of gene flow are limited relative to those of genetic drift, probably due to the high selfing rates and the limited seed dispersal ability of P. cespitosum. Population structure did not reflect a pattern of isolation by distance nor was it related to habitat similarities. Rather, population structure appears to be the result of the random movement of propagules across the introduced range, possibly associated with human dispersal. Furthermore, the high population differentiation, genetic diversity, and fine-scale genetic structure (populations founded by individuals from different genetic sources) in the introduced range suggest that multiple introductions to this region may have occurred. High genetic diversity may further contribute to the

  13. Agroecosystems shape population genetic structure of the greenhouse whitefly in Northern and Southern Europe

    PubMed Central

    2014-01-01

    Background To predict further invasions of pests it is important to understand what factors contribute to the genetic structure of their populations. Cosmopolitan pest species are ideal for studying how different agroecosystems affect population genetic structure within a species at different climatic extremes. We undertook the first population genetic study of the greenhouse whitefly (Trialeurodes vaporariorum), a cosmopolitan invasive herbivore, and examined the genetic structure of this species in Northern and Southern Europe. In Finland, cold temperatures limit whiteflies to greenhouses and prevent them from overwintering in nature, and in Greece, milder temperatures allow whiteflies to inhabit both fields and greenhouses year round, providing a greater potential for connectivity among populations. Using nine microsatellite markers, we genotyped 1274 T. vaporariorum females collected from 18 greenhouses in Finland and eight greenhouses as well as eight fields in Greece. Results Populations from Finland were less diverse than those from Greece, suggesting that Greek populations are larger and subjected to fewer bottlenecks. Moreover, there was significant population genetic structure in both countries that was explained by different factors. Habitat (field vs. greenhouse) together with longitude explained genetic structure in Greece, whereas in Finland, genetic structure was explained by host plant species. Furthermore, there was no temporal genetic structure among populations in Finland, suggesting that year-round populations are able to persist in greenhouses. Conclusions Taken together our results show that greenhouse agroecosystems can limit gene flow among populations in both climate zones. Fragmented populations in greenhouses could allow for efficient pest management. However, pest persistence in both climate zones, coupled with increasing opportunities for naturalization in temperate latitudes due to climate change, highlight challenges for the

  14. Native fishes in the Truckee River: Are in-stream structures and patterns of population genetic structure related?

    PubMed

    Peacock, Mary M; Gustin, Mae S; Kirchoff, Veronica S; Robinson, Morgan L; Hekkala, Evon; Pizzarro-Barraza, Claudia; Loux, Tim

    2016-09-01

    In-stream structures are recognized as significant impediments to movement for freshwater fishes. Apex predators such as salmonids have been the focus of much research on the impacts of such barriers to population dynamics and population viability however much less research has focused on native fishes, where in-stream structures may have a greater impact on long term population viability of these smaller, less mobile species. Patterns of genetic structure on a riverscape can provide information on which structures represent real barriers to movement for fish species and under what specific flow conditions. Here we characterize the impact of 41 dam and diversion structures on movement dynamics under varying flow conditions for a suite of six native fishes found in the Truckee River of California and Nevada. Microsatellite loci were used to estimate total allelic diversity, effective population size and assess genetic population structure. Although there is spatial overlap among species within the river there are clear differences in species distributions within the watershed. Observed population genetic structure was associated with in-stream structures, but only under low flow conditions. High total discharge in 2006 allowed fish to move over potential barriers resulting in no observed population genetic structure for any species in 2007. The efficacy of in-stream structures to impede movement and isolate fish emerged only after multiple years of low flow conditions. Our results suggest that restricted movement of fish species, as a result of in-stream barriers, can be mitigated by flow management. However, as flow dynamics are likely to be altered under global climate change, fragmentation due to barriers could isolate stream fishes into small subpopulations susceptible to both demographic losses and losses of genetic variation.

  15. Native fishes in the Truckee River: Are in-stream structures and patterns of population genetic structure related?

    PubMed

    Peacock, Mary M; Gustin, Mae S; Kirchoff, Veronica S; Robinson, Morgan L; Hekkala, Evon; Pizzarro-Barraza, Claudia; Loux, Tim

    2016-09-01

    In-stream structures are recognized as significant impediments to movement for freshwater fishes. Apex predators such as salmonids have been the focus of much research on the impacts of such barriers to population dynamics and population viability however much less research has focused on native fishes, where in-stream structures may have a greater impact on long term population viability of these smaller, less mobile species. Patterns of genetic structure on a riverscape can provide information on which structures represent real barriers to movement for fish species and under what specific flow conditions. Here we characterize the impact of 41 dam and diversion structures on movement dynamics under varying flow conditions for a suite of six native fishes found in the Truckee River of California and Nevada. Microsatellite loci were used to estimate total allelic diversity, effective population size and assess genetic population structure. Although there is spatial overlap among species within the river there are clear differences in species distributions within the watershed. Observed population genetic structure was associated with in-stream structures, but only under low flow conditions. High total discharge in 2006 allowed fish to move over potential barriers resulting in no observed population genetic structure for any species in 2007. The efficacy of in-stream structures to impede movement and isolate fish emerged only after multiple years of low flow conditions. Our results suggest that restricted movement of fish species, as a result of in-stream barriers, can be mitigated by flow management. However, as flow dynamics are likely to be altered under global climate change, fragmentation due to barriers could isolate stream fishes into small subpopulations susceptible to both demographic losses and losses of genetic variation. PMID:27135585

  16. [Population genetic variation and structure analysis on five populations of mirror carp Cyprinus carpio L. using microsatellites].

    PubMed

    Quan, Ying-Chun; Li, Da-Yu; Cao, Ding-Chen; Sun, Xiao-Wen; Liang, Li-Qun

    2006-12-01

    In this paper, population genetic variability and genetic structure of five populations of an important cultivation species, mirror carp (Cyprinus carpio L.) were analyzed using 30 microsatellite loci. The observed (Ho) and expected (He) heterozygosity values, polymorphic information content (PIC) and number of effective alleles (Ae) were all determined. The genetic similarity coefficient and Nei's standard genetic distance were computed based on the allele frequencies. The Hardy-Weinberg equilibrium was checked by chi2 test. Genetic differentiation and hierarchical partition of genetic diversity were evaluated by FST and Nm. A dendrogram was constructed based on UPGMA methods using PHYLIP software package supported by a bootstrap value of 91.0%. Totally 7,083 fragments were procured. Their lengths were from 102 bp to 446 bp. For each locus, 1-16 alleles were amplified, adding up to 356 alleles in all the 5 populations. We found the genetic variability level was relatively high in all five populations, as shown by Ae = 1.07-2.30, He= 0.70-0.78 and PIC=0.69-0.75, respectively. The genetic similarity coefficients were all above 0.52, indicating their close genetic relationships. The UPGMA phylogenetic tree showed mirror carps sampled from Donggang, Fengcheng and Liaozhong were clustered into one group and the other two populations, both collected from Songpu, were grouped together. There were obvious relations between genetic distances and geographical distributions of the five populations. No fragments were amplified from some loci of EST-SSRs, which may suggest the loss of these loci in mirror carp genome or sequence divergence at the primer binding sites. These null alleles may result from selection because functional genes are under more selection pressure than non-encoding loci. Overall, population genetic variation is high for each of the five mirror carp, and the differentiations are also significant among populations. PMID:17138540

  17. Spatial structure and chaos in insect population dynamics

    NASA Astrophysics Data System (ADS)

    Hassell, Michael P.; Comins, Hugh N.; Mayt, Robert M.

    1991-09-01

    MOST environments are spatially subdivided, or patchy, and there has been much interest in the relationship between the dynamics of populations at the local and regional (metapopulation) scales1. Here we study mathematical models for host-parasitoid interactions, where in each generation specified fractions (µN and µp, respectively) of the host and parasitoid subpopulations in each patch move to adjacent patches; in most previous work, the movement is not localized but is to any other patch2. These simple and biologically sensible models with limited diffusive dispersal exhibit a remarkable range of dynamic behaviour: the density of the host and parasitoid subpopulations in a two-dimensional array of patches may exhibit complex patterns of spiral waves or spatially chaotic variation, they may show static 'crystal lattice' patterns, or they may become extinct. This range of behaviour is obtained with the local dynamics being deterministically unstable, with a constant host reproductive rate and no density dependence in the movement patterns. The dynamics depend on the host reproductive rate, and on the values of the parameters µN and µp. The results are relatively insensitive to the details of the interactions; we get essentially the same results from the mathematically-explicit Nicholon-Bailey model of host-parasitoid interactions, and from a very general 'cellular automaton' model in which only qualitative rules are specified. We conclude that local movement in a patchy environment can help otherwise unstable host and parasitoid populations to persist together, but that the deterministically generated spatial patterns in population density can be exceedingly complex (and sometimes indistinguishable from random environmental fluctuations).

  18. In situ population structure and ex situ representation of the endangered Amur tiger.

    PubMed

    Henry, P; Miquelle, D; Sugimoto, T; McCullough, D R; Caccone, A; Russello, M A

    2009-08-01

    The Amur tiger (Panthera tigris altaica) is a critically endangered felid that suffered a severe demographic contraction in the 1940s. In this study, we sampled 95 individuals collected throughout their native range to investigate questions relative to population genetic structure and demographic history. Additionally, we sampled targeted individuals from the North American ex situ population to assess the genetic representation found in captivity. Population genetic and Bayesian structure analyses clearly identified two populations separated by a development corridor in Russia. Despite their well-documented 20th century decline, we failed to find evidence of a recent population bottleneck, although genetic signatures of a historical contraction were detected. This disparity in signal may be due to several reasons, including historical paucity in population genetic variation associated with postglacial colonization and potential gene flow from a now extirpated Chinese population. Despite conflicting signatures of a bottleneck, our estimates of effective population size (N(e) = 27-35) and N(e)/N ratio (0.07-0.054) were substantially lower than the only other values reported for a wild tiger population. Lastly, the extent and distribution of genetic variation in captive and wild populations were similar, yet gene variants persisted ex situ that were lost in situ. Overall, our results indicate the need to secure ecological connectivity between the two Russian populations to minimize loss of genetic diversity and overall susceptibility to stochastic events, and support a previous study suggesting that the captive population may be a reservoir of gene variants lost in situ.

  19. Temporal analysis of genetic structure to assess population dynamics of reintroduced swift foxes.

    PubMed

    Cullingham, Catherine I; Moehrenschlager, Axel

    2013-12-01

    Reintroductions are increasingly used to reestablish species, but a paucity of long-term postrelease monitoring has limited understanding of whether and when viable populations subsequently persist. We conducted temporal genetic analyses of reintroduced populations of swift foxes (Vulpes velox) in Canada (Alberta and Saskatchewan) and the United States (Montana). We used samples collected 4 years apart, 17 years from the initiation of the reintroduction, and 3 years after the conclusion of releases. To assess program success, we genotyped 304 hair samples, subsampled from the known range in 2000 and 2001, and 2005 and 2006, at 7 microsatellite loci. We compared diversity, effective population size, and genetic connectivity over time in each population. Diversity remained stable over time and there was evidence of increasing effective population size. We determined population structure in both periods after correcting for differences in sample sizes. The geographic distribution of these populations roughly corresponded with the original release locations, which suggests the release sites had residual effects on the population structure. However, given that both reintroduction sites had similar source populations, habitat fragmentation, due to cropland, may be associated with the population structure we found. Although our results indicate growing, stable populations, future connectivity analyses are warranted to ensure both populations are not subject to negative small-population effects. Our results demonstrate the importance of multiple sampling years to fully capture population dynamics of reintroduced populations. Análisis Temporal de la Estructura Genética para Evaluar la Dinámica Poblacional de Zorros (Vulpes velox) Reintroducidos.

  20. Population.

    ERIC Educational Resources Information Center

    International Planned Parenthood Federation, London (England).

    In an effort to help meet the growing interest and concern about the problems created by the rapid growth of population, The International Planned Parenthood Federation has prepared this booklet with the aim of assisting the study of the history and future trends of population growth and its impact on individual and family welfare, national,…

  1. The fine-scale genetic structure of the British population.

    PubMed

    Leslie, Stephen; Winney, Bruce; Hellenthal, Garrett; Davison, Dan; Boumertit, Abdelhamid; Day, Tammy; Hutnik, Katarzyna; Royrvik, Ellen C; Cunliffe, Barry; Lawson, Daniel J; Falush, Daniel; Freeman, Colin; Pirinen, Matti; Myers, Simon; Robinson, Mark; Donnelly, Peter; Bodmer, Walter

    2015-03-19

    Fine-scale genetic variation between human populations is interesting as a signature of historical demographic events and because of its potential for confounding disease studies. We use haplotype-based statistical methods to analyse genome-wide single nucleotide polymorphism (SNP) data from a carefully chosen geographically diverse sample of 2,039 individuals from the United Kingdom. This reveals a rich and detailed pattern of genetic differentiation with remarkable concordance between genetic clusters and geography. The regional genetic differentiation and differing patterns of shared ancestry with 6,209 individuals from across Europe carry clear signals of historical demographic events. We estimate the genetic contribution to southeastern England from Anglo-Saxon migrations to be under half, and identify the regions not carrying genetic material from these migrations. We suggest significant pre-Roman but post-Mesolithic movement into southeastern England from continental Europe, and show that in non-Saxon parts of the United Kingdom, there exist genetically differentiated subgroups rather than a general 'Celtic' population.

  2. The fine scale genetic structure of the British population

    PubMed Central

    Davison, Dan; Boumertit, Abdelhamid; Day, Tammy; Hutnik, Katarzyna; Royrvik, Ellen C; Cunliffe, Barry; Lawson, Daniel J; Falush, Daniel; Freeman, Colin; Pirinen, Matti; Myers, Simon; Robinson, Mark; Donnelly, Peter; Bodmer, Walter

    2015-01-01

    Summary Fine-scale genetic variation between human populations is interesting as a signature of historical demographic events and because of its potential for confounding disease studies. We use haplotype-based statistical methods to analyse genome-wide SNP data from a carefully chosen geographically diverse sample of 2,039 individuals from the United Kingdom (UK). This reveals a rich and detailed pattern of genetic differentiation with remarkable concordance between genetic clusters and geography. The regional genetic differentiation and differing patterns of shared ancestry with 6,209 individuals from across Europe carry clear signals of historical demographic events. We estimate the genetic contribution to SE England from Anglo-Saxon migrations to be under half, identify the regions not carrying genetic material from these migrations, suggest significant pre-Roman but post-Mesolithic movement into SE England from the Continent, and show that in non-Saxon parts of the UK there exist genetically differentiated subgroups rather than a general “Celtic” population. PMID:25788095

  3. The fine-scale genetic structure of the British population.

    PubMed

    Leslie, Stephen; Winney, Bruce; Hellenthal, Garrett; Davison, Dan; Boumertit, Abdelhamid; Day, Tammy; Hutnik, Katarzyna; Royrvik, Ellen C; Cunliffe, Barry; Lawson, Daniel J; Falush, Daniel; Freeman, Colin; Pirinen, Matti; Myers, Simon; Robinson, Mark; Donnelly, Peter; Bodmer, Walter

    2015-03-19

    Fine-scale genetic variation between human populations is interesting as a signature of historical demographic events and because of its potential for confounding disease studies. We use haplotype-based statistical methods to analyse genome-wide single nucleotide polymorphism (SNP) data from a carefully chosen geographically diverse sample of 2,039 individuals from the United Kingdom. This reveals a rich and detailed pattern of genetic differentiation with remarkable concordance between genetic clusters and geography. The regional genetic differentiation and differing patterns of shared ancestry with 6,209 individuals from across Europe carry clear signals of historical demographic events. We estimate the genetic contribution to southeastern England from Anglo-Saxon migrations to be under half, and identify the regions not carrying genetic material from these migrations. We suggest significant pre-Roman but post-Mesolithic movement into southeastern England from continental Europe, and show that in non-Saxon parts of the United Kingdom, there exist genetically differentiated subgroups rather than a general 'Celtic' population. PMID:25788095

  4. Genetic drift suppresses bacterial conjugation in spatially structured populations.

    PubMed

    Freese, Peter D; Korolev, Kirill S; Jiménez, José I; Chen, Irene A

    2014-02-18

    Conjugation is the primary mechanism of horizontal gene transfer that spreads antibiotic resistance among bacteria. Although conjugation normally occurs in surface-associated growth (e.g., biofilms), it has been traditionally studied in well-mixed liquid cultures lacking spatial structure, which is known to affect many evolutionary and ecological processes. Here we visualize spatial patterns of gene transfer mediated by F plasmid conjugation in a colony of Escherichia coli growing on solid agar, and we develop a quantitative understanding by spatial extension of traditional mass-action models. We found that spatial structure suppresses conjugation in surface-associated growth because strong genetic drift leads to spatial isolation of donor and recipient cells, restricting conjugation to rare boundaries between donor and recipient strains. These results suggest that ecological strategies, such as enforcement of spatial structure and enhancement of genetic drift, could complement molecular strategies in slowing the spread of antibiotic resistance genes.

  5. Genetic Drift Suppresses Bacterial Conjugation in Spatially Structured Populations

    NASA Astrophysics Data System (ADS)

    Freese, Peter D.; Korolev, Kirill S.; Jiménez, José I.; Chen, Irene A.

    2014-02-01

    Conjugation is the primary mechanism of horizontal gene transfer that spreads antibiotic resistance among bacteria. Although conjugation normally occurs in surface-associated growth (e.g., biofilms), it has been traditionally studied in well-mixed liquid cultures lacking spatial structure, which is known to affect many evolutionary and ecological processes. Here we visualize spatial patterns of gene transfer mediated by F plasmid conjugation in a colony of Escherichia coli growing on solid agar, and we develop a quantitative understanding by spatial extension of traditional mass-action models. We found that spatial structure suppresses conjugation in surface-associated growth because strong genetic drift leads to spatial isolation of donor and recipient cells, restricting conjugation to rare boundaries between donor and recipient strains. These results suggest that ecological strategies, such as enforcement of spatial structure and enhancement of genetic drift, could complement molecular strategies in slowing the spread of antibiotic resistance genes.

  6. Genetic Diversity and Population Structure of Indian Golden Silkmoth (Antheraea assama)

    PubMed Central

    Arunkumar, Kallare P.; Sahu, Anup Kumar; Mohanty, Atish Ranjan; Awasthi, Arvind K.; Pradeep, Appukuttannair R.; Urs, S. Raje; Nagaraju, Javaregowda

    2012-01-01

    Background The Indian golden saturniid silkmoth (Antheraea assama), popularly known as muga silkmoth, is a semi-domesticated silk producing insect confined to a narrow habitat range of the northeastern region of India. Owing to the prevailing socio-political problems, the muga silkworm habitats in the northeastern region have not been accessible hampering the phylogeography studies of this rare silkmoth. Recently, we have been successful in our attempt to collect muga cocoon samples, although to a limited extent, from their natural habitats. Out of 87 microsatellite markers developed previously for A. assama, 13 informative markers were employed to genotype 97 individuals from six populations and analyzed their population structure and genetic variation. Methodology/Principal Findings We observed highly significant genetic diversity in one of the populations (WWS-1, a population derived from West Garo Hills region of Meghalaya state). Further analysis with and without WWS-1 population revealed that dramatic genetic differentiation (global FST = 0.301) was due to high genetic diversity contributed by WWS-1 population. Analysis of the remaining five populations (excluding WWS-1) showed a marked reduction in the number of alleles at all the employed loci. Structure analysis showed the presence of only two clusters: one formed by WWS-1 population and the other included the remaining five populations, inferring that there is no significant genetic diversity within and between these five populations, and suggesting that these five populations are probably derived from a single population. Patterns of recent population bottlenecks were not evident in any of the six populations studied. Conclusions/Significance A. assama inhabiting the WWS-1 region revealed very high genetic diversity, and was genetically divergent from the five populations studied. The efforts should be continued to identify and study such populations from this region as well as other muga silkworm

  7. Gene flow and population structure of a solitary top carnivore in a human-dominated landscape.

    PubMed

    McManus, Jeannine S; Dalton, Desiré L; Kotzé, Antoinette; Smuts, Bool; Dickman, Amy; Marshal, Jason P; Keith, Mark

    2015-01-01

    While African leopard populations are considered to be continuous as demonstrated by their high genetic variation, the southernmost leopard population exists in the Eastern and Western Cape, South Africa, where anthropogenic activities may be affecting this population's structure. Little is known about the elusive, last free-roaming top predator in the region and this study is the first to report on leopard population structuring using nuclear DNA. By analyzing 14 microsatellite markers from 40 leopard tissue samples, we aimed to understand the populations' structure, genetic distance, and gene flow (Nm). Our results, based on spatially explicit analysis with Bayesian methods, indicate that leopards in the region exist in a fragmented population structure with lower than expected genetic diversity. Three population groups were identified, between which low to moderate levels of gene flow were observed (Nm 0.5 to 3.6). One subpopulation exhibited low genetic differentiation, suggesting a continuous population structure, while the remaining two appear to be less connected, with low emigration and immigration between these populations. Therefore, genetic barriers are present between the subpopulations, and while leopards in the study region may function as a metapopulation, anthropogenic activities threaten to decrease habitat and movement further. Our results indicate that the leopard population may become isolated within a few generations and suggest that management actions should aim to increase habitat connectivity and reduce human-carnivore conflict. Understanding genetic diversity and connectivity of populations has important conservation implications that can highlight management of priority populations to reverse the effects of human-caused extinctions.

  8. Gene flow and population structure of a solitary top carnivore in a human-dominated landscape

    PubMed Central

    McManus, Jeannine S; Dalton, Desiré L; Kotzé, Antoinette; Smuts, Bool; Dickman, Amy; Marshal, Jason P; Keith, Mark

    2015-01-01

    While African leopard populations are considered to be continuous as demonstrated by their high genetic variation, the southernmost leopard population exists in the Eastern and Western Cape, South Africa, where anthropogenic activities may be affecting this population's structure. Little is known about the elusive, last free-roaming top predator in the region and this study is the first to report on leopard population structuring using nuclear DNA. By analyzing 14 microsatellite markers from 40 leopard tissue samples, we aimed to understand the populations' structure, genetic distance, and gene flow (Nm). Our results, based on spatially explicit analysis with Bayesian methods, indicate that leopards in the region exist in a fragmented population structure with lower than expected genetic diversity. Three population groups were identified, between which low to moderate levels of gene flow were observed (Nm 0.5 to 3.6). One subpopulation exhibited low genetic differentiation, suggesting a continuous population structure, while the remaining two appear to be less connected, with low emigration and immigration between these populations. Therefore, genetic barriers are present between the subpopulations, and while leopards in the study region may function as a metapopulation, anthropogenic activities threaten to decrease habitat and movement further. Our results indicate that the leopard population may become isolated within a few generations and suggest that management actions should aim to increase habitat connectivity and reduce human–carnivore conflict. Understanding genetic diversity and connectivity of populations has important conservation implications that can highlight management of priority populations to reverse the effects of human-caused extinctions. PMID:25691961

  9. Gene flow and population structure of a solitary top carnivore in a human-dominated landscape.

    PubMed

    McManus, Jeannine S; Dalton, Desiré L; Kotzé, Antoinette; Smuts, Bool; Dickman, Amy; Marshal, Jason P; Keith, Mark

    2015-01-01

    While African leopard populations are considered to be continuous as demonstrated by their high genetic variation, the southernmost leopard population exists in the Eastern and Western Cape, South Africa, where anthropogenic activities may be affecting this population's structure. Little is known about the elusive, last free-roaming top predator in the region and this study is the first to report on leopard population structuring using nuclear DNA. By analyzing 14 microsatellite markers from 40 leopard tissue samples, we aimed to understand the populations' structure, genetic distance, and gene flow (Nm). Our results, based on spatially explicit analysis with Bayesian methods, indicate that leopards in the region exist in a fragmented population structure with lower than expected genetic diversity. Three population groups were identified, between which low to moderate levels of gene flow were observed (Nm 0.5 to 3.6). One subpopulation exhibited low genetic differentiation, suggesting a continuous population structure, while the remaining two appear to be less connected, with low emigration and immigration between these populations. Therefore, genetic barriers are present between the subpopulations, and while leopards in the study region may function as a metapopulation, anthropogenic activities threaten to decrease habitat and movement further. Our results indicate that the leopard population may become isolated within a few generations and suggest that management actions should aim to increase habitat connectivity and reduce human-carnivore conflict. Understanding genetic diversity and connectivity of populations has important conservation implications that can highlight management of priority populations to reverse the effects of human-caused extinctions. PMID:25691961

  10. Population dynamics of bowfin in a south Georgia reservoir: latitudinal comparisons of population structure, growth, and mortality

    USGS Publications Warehouse

    Porter, Nicholas J.; Bonvechio, Timothy F.; McCormick, Joshua L.; Quist, Michael

    2014-01-01

    The objectives of this study were to evaluate the population dynamics of bowfin (Amia calva) in Lake Lindsay Grace, Georgia, and to compare those dynamics to other bowfin populations. Relative abundance of bowfin sampled in 2010 in Lake Lindsay Grace was low and variable (mean±SD; 2.7±4.7 fish per hour of electrofishing). Total length (TL) of bowfin collected in Lake Lindsay Grace varied from 233–683 mm. Age of bowfin in Lake Lindsay Grace varied from 0–5 yr. Total annual mortality (A) was estimated at 68%. Both sexes appeared to be fully mature by age 2 with gonadosomatic index values above 8 for females and close to 1 for males. The majority of females were older, longer, and heavier than males. Bowfin in Lake Lindsay Grace had fast growth up to age 4 and higher total annual mortality than the other populations examined in this study. A chi-square test indicated that size structure of bowfin from Lake Lindsay Grace was different than those of a Louisiana population and two bowfin populations from the upper Mississippi River. To further assess bowfin size structure, we proposed standard length (i.e., TL) categories: stock (200 mm, 8 inches), quality (350 mm, 14 inches), preferred (460 mm, 18 inches), memorable (560 mm, 22, inches), and trophy (710 mm, 28 inches). Because our knowledge of bowfin ecology is limited, additional understanding of bowfin population dynamics provides important insight that can be used in management of bowfin across their distribution.

  11. Evidence for population bottlenecks and subtle genetic structure in the yellow rail

    USGS Publications Warehouse

    Popper, Kenneth J.; Miller, Leonard F.; Green, Michael; Haig, Susan M.; Mullins, Thomas D.

    2012-01-01

    The Yellow Rail (Coturnicops noveboracencis) is among the most enigmatic and least studied North American birds. Nesting exclusively in marshes and wetlands, it breeds largely east of the Rocky Mountains in the northern United States and Canada, but there is an isolated population in southern Oregon once believed extirpated. The degree of connectivity of the Oregon population with the main population is unknown. We used mitochondrial DNA sequences (mtDNA) and six microsatellite loci to characterize the Yellow Rail's genetic structure and diversity patterns in six areas. Our mtDNA-based analyses of genetic structure identified significant population differentiation, but pairwise comparison of regions identified no clear geographic trends. In contrast, microsatellites suggested subtle genetic structure differentiating the Oregon population from those in the five regions sampled in the Yellow Rail's main breeding range. The genetic diversity of the Oregon population was also the lowest of the six regions sampled, and Oregon was one of three regions that demonstrated evidence of recent population bottlenecks. Factors that produced population reductions may include loss of wetlands to development and agricultural conversion, drought, and wildfire. At this time, we are unable to determine if the high percentage (50%) of populations having experienced bottlenecks is representative of the Yellow Rail's entire range. Further genetic data from additional breeding populations will be required for this issue to be addressed.

  12. Genetic structure of lake whitefish, Coregonus clupeaformis, populations in the northern main basin of Lake Huron

    USGS Publications Warehouse

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Schaeffer, Jeff; Roseman, Edward F.; Harford, William J.; Johnson, James E.; Fietsch, Cherie-Lee

    2012-01-01

    Genetic analysis of spawning lake whitefish (Coregonus clupeaformis) from six sites in the main basin of Lake Huron was conducted to determine population structure. Samples from fisheryindependent assessment surveys in the northwest main basin were analyzed to determine the relative contributions of lake whitefish genetic populations. Genetic population structure was identified using data from seven microsatellite DNA loci. One population was identified at Manitoulin Island, one to two were observed in the east-central main basin (Fishing Island and Douglas Point), and one to two populations were found in the northwest (Thunder Bay and Duncan Bay). The genetic identity of collections from Duncan Bay and Thunder Bay was not consistent among methods used to analyze population structure. Low genetic distances suggested that they comprised one population, but genic differences indicated that they may constitute separate populations. Simulated data indicated that the genetic origins of samples from a mixed-fishery could be accurately identified, but accuracy could be improved by incorporating additional microsatellite loci. Mixture analysis and individual assignment tests performed on mixed-stock samples collected from the western main basin suggested that genetic populations from the east-central main basin contributed less than those from the western main basin and that the proportional contribution of each baseline population was similar in each assessment sample. Analysis of additional microsatellite DNA loci may be useful to help improve the precision of the estimates, thus increasing our ability to manage and protect this valuable resource.

  13. Comparison of population structure in Ohio's late archaic and late prehistoric periods.

    PubMed

    Tatarek, N E; Sciulli, P W

    2000-07-01

    Previous studies of population structure among prehistoric groups in the Ohio valley region have shown that hunting-gathering populations exhibited a different structure than horticultural populations. Among both Late Archaic hunter-gatherers and Late Prehistoric horticulturists, covariance structures for cranial metrics were found to be homogenous within the populations, but the Late Archaic subpopulations showed little differentiation while the Late Prehistoric subpopulations exhibited a marked differentiation. Biodistance based on cranial discrete trait frequency showed similar patterns, but in the Late Archaic discrete trait distance was associated significantly with the geographical distance separating populations. The present investigation is an extension of the previous studies increasing the Late Prehistoric sample (n = 8 samples and n = 341 individuals) and using the Harpending-Ward model, modified for use with multivariate quantitative data, to estimate the effects of differential gene flow and the amount of differentiation within populations. Results of the present analyses indicate that differentiation among subpopulations, measured by minimum F(ST), was greater in the Late Prehistoric compared to the Late Archaic period. However, for both periods the minimum F(ST) is comparable to values found for historic native populations of the northeast woodlands. Analysis of differential gene flow in the Late Archaic period indicates that geographically peripheral populations were affected more by external gene flow than more central populations. Late Prehistoric populations exhibit a very complex pattern of differential gene flow. We discuss the latter pattern in terms of proposed culture change in the Late Prehistoric period of Ohio. PMID:10861353

  14. Neural correlates of feedback processing in toddlers.

    PubMed

    Meyer, Marlene; Bekkering, Harold; Janssen, Denise J C; de Bruijn, Ellen R A; Hunnius, Sabine

    2014-07-01

    External feedback provides essential information for successful learning. Feedback is especially important for learning in early childhood, as toddlers strongly rely on external signals to determine the consequences of their actions. In adults, many electrophysiological studies have elucidated feedback processes using a neural marker called the feedback-related negativity (FRN). The neural generator of the FRN is assumed to be the ACC, located in medial frontal cortex. As frontal brain regions are the latest to mature during brain development, it is unclear when in early childhood a functional feedback system develops. Is feedback differentiated on a neural level in toddlers and in how far is neural feedback processing related to children's behavioral adjustment? In an EEG experiment, we addressed these questions by measuring the brain activity and behavioral performance of 2.5-year-old toddlers while they played a feedback-guided game on a touchscreen. Electrophysiological results show differential brain activity for feedback with a more negative deflection for incorrect than correct outcomes, resembling the adult FRN. This provides the first neural evidence for feedback processing in toddlers. Notably, FRN amplitudes were predictive of adaptive behavior: the stronger the differential brain activity for feedback, the better the toddlers' adaptive performance during the game. Thus, already in early childhood toddlers' feedback-guided performance directly relates to the functionality of their neural feedback processing. Implications for early feedback-based learning as well as structural and functional brain development are discussed.

  15. Genetic structure, reproductive biology and ecology of isolated populations of asplenium csikii (Aspleniaceae, pteridophyta)

    PubMed

    Vogel; Rumsey; Russell; Cox; Holmes; Bujnoch; Stark; Barrett; Gibby

    1999-11-01

    The potential for environmental heterogeneity to generate spatial structuring of genotypes in seed-plant populations that occupy patchy habitats has been demonstrated by several studies, but little is known about the population structure of pteridophytes occupying patchy environments. In this study we have examined the genetic structure of isolated populations of the rock fern Asplenium csikii, an ecological specialist, growing almost exclusively on perpendicular walls of natural rock outcrops. All genetic variation observed in this taxon was partitioned between localities; no allozyme variation was found within a site and each site was colonized by a single multilocus phenotype (MLP). In total, five different MLPs were recorded from the nine localities, with two MLPs present at more than one site. Previous examination of population structure and genetic diversity in another rock fern, A. ruta-muraria, showed that the genetic diversity increases through multiple colonization over time. However, we cannot find any such correlation for A. csikii. All populations are genetically uniform, despite the probably considerable age of the populations and sites. Earlier studies concluded that the ample production of wind-borne propagules would lead to multiple colonization of sites and that reproductive features, such as single-spore colonization and subsequent intragametophytic selfing, would lead to very little genetic structuring of fern populations. In contrast to this prediction, it appears that ecological specialization and the scarcity of the narrowly defined niche contribute strongly to the pronounced partitioning of genetic variability observed in populations of A. csikii.

  16. Range-wide population genetic structure of the Caribbean sea fan coral, Gorgonia ventalina.

    PubMed

    Andras, Jason P; Rypien, Krystal L; Harvell, Catherine D

    2013-01-01

    The population structure of benthic marine organisms is of central relevance to the conservation and management of these often threatened species, as well as to the accurate understanding of their ecological and evolutionary dynamics. A growing body of evidence suggests that marine populations can be structured over short distances despite theoretically high dispersal potential. Yet the proposed mechanisms governing this structure vary, and existing empirical population genetic evidence is of insufficient taxonomic and geographic scope to allow for strong general inferences. Here, we describe the range-wide population genetic structure of an ecologically important Caribbean octocoral, Gorgonia ventalina. Genetic differentiation was positively correlated with geographic distance and negatively correlated with oceanographically modelled dispersal probability throughout the range. Although we observed admixture across hundreds of kilometres, estimated dispersal was low, and populations were differentiated across distances <2 km. These results suggest that populations of G. ventalina may be evolutionarily coupled via gene flow but are largely demographically independent. Observed patterns of differentiation corroborate biogeographic breaks found in other taxa (e.g. an east/west divide near Puerto Rico), and also identify population divides not discussed in previous studies (e.g. the Yucatan Channel). High genotypic diversity and absence of clonemates indicate that sex is the primary reproductive mode for G. ventalina. A comparative analysis of the population structure of G. ventalina and its dinoflagellate symbiont, Symbiodinium, indicates that the dispersal of these symbiotic partners is not coupled, and symbiont transmission occurs horizontally.

  17. Population structure of root nodulating Rhizobium leguminosarum in Vicia cracca populations at local to regional geographic scales.

    PubMed

    Van Cauwenberghe, Jannick; Verstraete, Brecht; Lemaire, Benny; Lievens, Bart; Michiels, Jan; Honnay, Olivier

    2014-12-01

    The genetic diversity and population structure of about 350 Rhizobium leguminosarum biovar viciae isolates from Vicia cracca were analysed. A hierarchical sampling design was used covering three regions, one region in Belgium and two in France, in which multiple local V. cracca populations were sampled. Rhizobium isolates were genotyped using RAPD and by sequencing two chromosomal housekeeping genes (glnII and recA) and one plasmid-borne gene (nodC). Twenty-six nodC types and sixty-seven chromosomal types were identified, many of which appeared to be regional or local endemics. We found strong genetic differentiation both among V. cracca populations that are separated by only a few kilometres, and among regions that are 50 to 350km apart. Despite significant plasmid exchange, chromosomal and nod types were similarly structured among host populations and regions. We found two lineages of which one prevailed in the Belgian region while the other dominated the French regions. Although a significant correlation between genetic differentiation and geographic distance was found, it is deemed more likely that the observed biogeographic patterns are rather due to coevolutionary interactions and environmental pressures. Furthermore, the impact of recombination on the chromosomal differentiation was found to be considerable.

  18. Structure of Mycobacterium tuberculosis phosphopantetheine adenylyltransferase in complex with the feedback inhibitor CoA reveals only one active-site conformation

    SciTech Connect

    Wubben, T.; Mesecar, A.D.

    2014-10-02

    Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway, reversibly transferring an adenylyl group from ATP to 4'-phosphopantetheine to form dephosphocoenzyme A (dPCoA). To complement recent biochemical and structural studies on Mycobacterium tuberculosis PPAT (MtPPAT) and to provide further insight into the feedback regulation of MtPPAT by CoA, the X-ray crystal structure of the MtPPAT enzyme in complex with CoA was determined to 2.11 {angstrom} resolution. Unlike previous X-ray crystal structures of PPAT-CoA complexes from other bacteria, which showed two distinct CoA conformations bound to the active site, only one conformation of CoA is observed in the MtPPAT-CoA complex.

  19. Genetic structure in insular and mainland populations of house sparrows (Passer domesticus) and their hemosporidian parasites

    PubMed Central

    Bichet, Coraline; Moodley, Yoshan; Penn, Dustin J; Sorci, Gabriele; Garnier, Stéphane

    2015-01-01

    Small and isolated populations usually exhibit low levels of genetic variability, and thus, they are expected to have a lower capacity to adapt to changes in environmental conditions, such as exposure to pathogens and parasites. Comparing the genetic variability of selectively neutral versus functional loci allows one to assess the evolutionary history of populations and their future evolutionary potential. The genes of the major histocompatibility complex (MHC) control immune recognition of parasites, and their unusually high diversity is genes which is likely driven by parasite-mediated balancing selection. Here, we examined diversity and differentiation of neutral microsatellite loci and functional MHC class I genes in house sparrows (Passer domesticus), living in six insular and six mainland populations, and we aimed to determine whether their diversity or differentiation correlates with the diversity and the prevalence of infection of hemosporidian parasites. We found that island bird populations tended to have lower neutral genetic variability, whereas MHC variability gene was similar between island and mainland populations. Similarly, island populations tended to show greater genetic differentiation than mainland populations, especially at microsatellite markers. The maintenance of MHC genetic diversity and its less marked structure in the island populations could be attributed to balancing-selection. The greater MHC differentiation among populations was negatively correlated with similarity in blood parasites (prevalence and diversity of parasite strains) between populations. Even at low prevalence and small geographical scale, haemosporidian parasites might contribute to structure the variability of immune genes among populations of hosts. PMID:25937907

  20. Genetic population structure of US atlantic coastal striped bass (Morone saxatilis).

    PubMed

    Gauthier, David T; Audemard, Corinne A; Carlsson, Jeanette E L; Darden, Tanya L; Denson, Michael R; Reece, Kimberly S; Carlsson, Jens

    2013-01-01

    Genetic population structure of anadromous striped bass along the US Atlantic coast was analyzed using 14 neutral nuclear DNA microsatellites. Young-of-the-year and adult striped bass (n = 1114) were sampled from Hudson River, Delaware River, Chesapeake Bay, North Carolina, and South Carolina. Analyses indicated clear population structure with significant genetic differentiation between all regions. Global multilocus F ST was estimated at 0.028 (P < 0.001). Population structure followed an isolation-by-distance model and temporal sampling indicated a stable population structure more than 2 years at all locations. Significant structure was absent within Hudson River, whereas weak but significant genetic differences were observed between northern and southern samples in Chesapeake Bay. The largest and smallest effective striped bass population sizes were found in Chesapeake Bay and South Carolina, respectively. Coalescence analysis indicated that the highest historical gene flow has been between Chesapeake Bay and Hudson River populations, and that exchange has not been unidirectional. Bayesian analysis of contemporary migration indicated that Chesapeake Bay serves as a major source of migrants for Atlantic coastal regions from Albemarle Sound northward. In addition to examining population genetic structure, the data acquired during this project were capable of serving as a baseline for assigning fish with unknown origin to source region. PMID:23682125

  1. First regional evaluation of nuclear genetic diversity and population structure in northeastern coyotes ( Canis latrans).

    PubMed

    Monzón, Javier

    2014-01-01

    Previous genetic studies of eastern coyotes ( Canis latrans) are based on one of two strategies: sampling many individuals using one or very few molecular markers, or sampling very few individuals using many genomic markers. Thus, a regional analysis of genetic diversity and population structure in eastern coyotes using many samples and several molecular markers is lacking. I evaluated genetic diversity and population structure in 385 northeastern coyotes using 16 common single nucleotide polymorphisms (SNPs). A region-wide analysis of population structure revealed three primary genetic populations, but these do not correspond to the same three subdivisions inferred in a previous analysis of mitochondrial DNA sequences. More focused geographic analyses of population structure indicated that ample genetic structure occurs in coyotes from an intermediate contact zone where two range expansion fronts meet. These results demonstrate that genotyping several highly heterozygous SNPs in a large, geographically dense sample is an effective way to detect cryptic population genetic structure. The importance of SNPs in studies of population and wildlife genomics is rapidly increasing; this study adds to the growing body of recent literature that demonstrates the utility of SNPs ascertained from a model organism for evolutionary inference in closely related species.

  2. Genetic population structure of US atlantic coastal striped bass (Morone saxatilis).

    PubMed

    Gauthier, David T; Audemard, Corinne A; Carlsson, Jeanette E L; Darden, Tanya L; Denson, Michael R; Reece, Kimberly S; Carlsson, Jens

    2013-01-01

    Genetic population structure of anadromous striped bass along the US Atlantic coast was analyzed using 14 neutral nuclear DNA microsatellites. Young-of-the-year and adult striped bass (n = 1114) were sampled from Hudson River, Delaware River, Chesapeake Bay, North Carolina, and South Carolina. Analyses indicated clear population structure with significant genetic differentiation between all regions. Global multilocus F ST was estimated at 0.028 (P < 0.001). Population structure followed an isolation-by-distance model and temporal sampling indicated a stable population structure more than 2 years at all locations. Significant structure was absent within Hudson River, whereas weak but significant genetic differences were observed between northern and southern samples in Chesapeake Bay. The largest and smallest effective striped bass population sizes were found in Chesapeake Bay and South Carolina, respectively. Coalescence analysis indicated that the highest historical gene flow has been between Chesapeake Bay and Hudson River populations, and that exchange has not been unidirectional. Bayesian analysis of contemporary migration indicated that Chesapeake Bay serves as a major source of migrants for Atlantic coastal regions from Albemarle Sound northward. In addition to examining population genetic structure, the data acquired during this project were capable of serving as a baseline for assigning fish with unknown origin to source region.

  3. First regional evaluation of nuclear genetic diversity and population structure in northeastern coyotes ( Canis latrans)

    PubMed Central

    Monzón, Javier

    2014-01-01

    Previous genetic studies of eastern coyotes ( Canis latrans) are based on one of two strategies: sampling many individuals using one or very few molecular markers, or sampling very few individuals using many genomic markers. Thus, a regional analysis of genetic diversity and population structure in eastern coyotes using many samples and several molecular markers is lacking. I evaluated genetic diversity and population structure in 385 northeastern coyotes using 16 common single nucleotide polymorphisms (SNPs). A region-wide analysis of population structure revealed three primary genetic populations, but these do not correspond to the same three subdivisions inferred in a previous analysis of mitochondrial DNA sequences. More focused geographic analyses of population structure indicated that ample genetic structure occurs in coyotes from an intermediate contact zone where two range expansion fronts meet. These results demonstrate that genotyping several highly heterozygous SNPs in a large, geographically dense sample is an effective way to detect cryptic population genetic structure. The importance of SNPs in studies of population and wildlife genomics is rapidly increasing; this study adds to the growing body of recent literature that demonstrates the utility of SNPs ascertained from a model organism for evolutionary inference in closely related species. PMID:25075291

  4. First regional evaluation of nuclear genetic diversity and population structure in northeastern coyotes ( Canis latrans).

    PubMed

    Monzón, Javier

    2014-01-01

    Previous genetic studies of eastern coyotes ( Canis latrans) are based on one of two strategies: sampling many individuals using one or very few molecular markers, or sampling very few individuals using many genomic markers. Thus, a regional analysis of genetic diversity and population structure in eastern coyotes using many samples and several molecular markers is lacking. I evaluated genetic diversity and population structure in 385 northeastern coyotes using 16 common single nucleotide polymorphisms (SNPs). A region-wide analysis of population structure revealed three primary genetic populations, but these do not correspond to the same three subdivisions inferred in a previous analysis of mitochondrial DNA sequences. More focused geographic analyses of population structure indicated that ample genetic structure occurs in coyotes from an intermediate contact zone where two range expansion fronts meet. These results demonstrate that genotyping several highly heterozygous SNPs in a large, geographically dense sample is an effective way to detect cryptic population genetic structure. The importance of SNPs in studies of population and wildlife genomics is rapidly increasing; this study adds to the growing body of recent literature that demonstrates the utility of SNPs ascertained from a model organism for evolutionary inference in closely related species. PMID:25075291

  5. mStruct: Inference of Population Structure in Light of Both Genetic Admixing and Allele Mutations

    PubMed Central

    Shringarpure, Suyash; Xing, Eric P.

    2009-01-01

    Traditional methods for analyzing population structure, such as the Structure program, ignore the influence of the effect of allele mutations between the ancestral and current alleles of genetic markers, which can dramatically influence the accuracy of the structural estimation of current populations. Studying these effects can also reveal additional information about population evolution such as the divergence time and migration history of admixed populations. We propose mStruct, an admixture of population-specific mixtures of inheritance models that addresses the task of structure inference and mutation estimation jointly through a hierarchical Bayesian framework, and a variational algorithm for inference. We validated our method on synthetic data and used it to analyze the Human Genome Diversity Project–Centre d'Etude du Polymorphisme Humain (HGDP–CEPH) cell line panel of microsatellites and HGDP single-nucleotide polymorphism (SNP) data. A comparison of the structural maps of world populations estimated by mStruct and Structure is presented, and we also report potentially interesting mutation patterns in world populations estimated by mStruct. PMID:19363128

  6. Inference and Analysis of Population Structure Using Genetic Data and Network Theory.

    PubMed

    Greenbaum, Gili; Templeton, Alan R; Bar-David, Shirli

    2016-04-01

    Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition's modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of

  7. Inference and Analysis of Population Structure Using Genetic Data and Network Theory.

    PubMed

    Greenbaum, Gili; Templeton, Alan R; Bar-David, Shirli

    2016-04-01

    Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition's modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of

  8. A life-history perspective on the demographic drivers of structured population dynamics in changing environments.

    PubMed

    Koons, David N; Iles, David T; Schaub, Michael; Caswell, Hal

    2016-09-01

    Current understanding of life-history evolution and how demographic parameters contribute to population dynamics across species is largely based on assumptions of either constant environments or stationary environmental variation. Meanwhile, species are faced with non-stationary environmental conditions (changing mean, variance, or both) created by climate and landscape change. To close the gap between contemporary reality and demographic theory, we develop a set of transient life table response experiments (LTREs) for decomposing realised population growth rates into contributions from specific vital rates and components of population structure. Using transient LTREs in a theoretical framework, we reveal that established concepts in population biology will require revision because of reliance on approaches that do not address the influence of unstable population structure on population growth and mean fitness. Going forward, transient LTREs will enhance understanding of demography and improve the explanatory power of models used to understand ecological and evolutionary dynamics. PMID:27401966

  9. The role of population inertia in predicting the outcome of stage-structured biological invasions.

    PubMed

    Guiver, Chris; Dreiwi, Hanan; Filannino, Donna-Maria; Hodgson, Dave; Lloyd, Stephanie; Townley, Stuart

    2015-07-01

    Deterministic dynamic models for coupled resident and invader populations are considered with the purpose of finding quantities that are effective at predicting when the invasive population will become established asymptotically. A key feature of the models considered is the stage-structure, meaning that the populations are described by vectors of discrete developmental stage- or age-classes. The vector structure permits exotic transient behaviour-phenomena not encountered in scalar models. Analysis using a linear Lyapunov function demonstrates that for the class of population models considered, a large so-called population inertia is indicative of successful invasion. Population inertia is an indicator of transient growth or decline. Furthermore, for the class of models considered, we find that the so-called invasion exponent, an existing index used in models for invasion, is not always a reliable comparative indicator of successful invasion. We highlight these findings through numerical examples and a biological interpretation of why this might be the case is discussed.

  10. Aedes aegypti in Senegal: genetic diversity and genetic structure of domestic and sylvatic populations.

    PubMed

    Huber, Karine; Ba, Yamar; Dia, Ibrahima; Mathiot, Christian; Sall, Amadou A; Diallo, Mawlouth

    2008-08-01

    Aedes aegypti is the main vector of dengue viruses. The epidemiology of dengue fever remains poorly understood in Senegal. A sylvatic transmission seems to predominate. However, despite the sylvatic circulation of the dengue virus and the presence of vectors in urban areas, only sporadic cases have been reported. Ae. aegypti is a polytypic species. In Senegal, a purely sylvatic form is found in the forest gallery areas and a domestic form is found in the villages in savannah and sahelian areas and in urban areas. Using allozymes, we analyzed the genetic diversity and the genetic structure of Ae. aegypti populations differing in their ecological characteristics. Populations from Senegal were significantly structured but with a low level of genetic differentiation. Ae. aegypti from the "domestic" populations show a decreased genetic diversity and a lower genetic differentiation compared with "sylvatic" populations. These findings suggest that environmental conditions, ecological factors, and human activities may impact the genetic structure of Ae. aegypti populations in Senegal.

  11. Understanding the Population Structure of North American Patients with Cystic Fibrosis

    PubMed Central

    Li, Weili; Sun, Lei; Corey, Mary; Zou, Fei; Lee, Seunggeun; Cojocaru, Andreea L; Taylor, Chelsea; Blackman, Scott M; Stephenson, Anne; Sandford, Andrew J; Dorfman, Ruslan; Drumm, Mitchell L; Cutting, Garry R; Knowles, Michael R; Durie, Peter; Wright, Fred A; Strug, Lisa J

    2010-01-01

    Rationale It is generally presumed that the Cystic Fibrosis (CF) population is relatively homogeneous, and predominantly of European origin. The complex ethnic make-up observed in the CF patients collected by the North American CF Modifier Gene Consortium has brought this assumption into question, and suggested the potential for population substructure in the three CF study samples collected from North America. It is well appreciated that population substructure can result in spurious genetic associations. Objectives To understand the ethnic composition of the North American CF population, and to assess the need for population structure adjustment in genetic association studies with North American CF patients. Methods Genome-wide single-nucleotide polymorphisms on 3076 unrelated North American CF patients were used to perform population structure analyses. We compared self-reported ethnicity to genotype-inferred ancestry, and also examined whether geographic distribution and CFTR mutation type could explain the structure observed. Main Results Although largely Caucasian, our analyses identified a considerable number of CF patients with admixed African-Caucasian, Mexican-Caucasian and Indian-Caucasian ancestries. Population substructure was present and comparable across the three studies of the consortium. Neither geographic distribution nor mutation type explained the population structure. Conclusion Given the ethnic diversity of the North American CF population, it is essential to carefully detect, estimate and adjust for population substructure to guard against potential spurious findings in CF genetic association studies. Other Mendelian diseases that are presumed to predominantly affect single ethnic groups may also benefit from careful analysis of population structure. PMID:20681990

  12. Assessment of Genetic Diversity and Population Genetic Structure of Corylus mandshurica in China Using SSR Markers.

    PubMed

    Zong, Jian-Wei; Zhao, Tian-Tian; Ma, Qing-Hua; Liang, Li-Song; Wang, Gui-Xi

    2015-01-01

    Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR) markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777). According to the coefficient of genetic differentiation (Fst = 0.1215), genetic variation within the populations (87.85%) were remarkably higher than among populations (12.15%). The average gene flow (Nm = 1.8080) significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080) among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages) dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei's genetic distance and geographic distance (km) among populations (r = 0.419, P = 0.005), suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic distance. These

  13. Assessment of Genetic Diversity and Population Genetic Structure of Corylus mandshurica in China Using SSR Markers

    PubMed Central

    Zong, Jian-Wei; Zhao, Tian-Tian; Ma, Qing-Hua; Liang, Li-Song; Wang, Gui-Xi

    2015-01-01

    Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR) markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777). According to the coefficient of genetic differentiation (Fst = 0.1215), genetic variatio