A study of the dynamics of multi-player games on small networks using territorial interactions.
Broom, Mark; Lafaye, Charlotte; Pattni, Karan; Rychtář, Jan
2015-12-01
Recently, the study of structured populations using models of evolutionary processes on graphs has begun to incorporate a more general type of interaction between individuals, allowing multi-player games to be played among the population. In this paper, we develop a birth-death dynamics for use in such models and consider the evolution of populations for special cases of very small graphs where we can easily identify all of the population states and carry out exact analyses. To do so, we study two multi-player games, a Hawk-Dove game and a public goods game. Our focus is on finding the fixation probability of an individual from one type, cooperator or defector in the case of the public goods game, within a population of the other type. We compare this value for both games on several graphs under different parameter values and assumptions, and identify some interesting general features of our model. In particular there is a very close relationship between the fixation probability and the mean temperature, with high temperatures helping fitter individuals and punishing unfit ones and so enhancing selection, whereas low temperatures give a levelling effect which suppresses selection.
NASA Astrophysics Data System (ADS)
Terzopoulos, Demetri; Qureshi, Faisal Z.
Computer vision and sensor networks researchers are increasingly motivated to investigate complex multi-camera sensing and control issues that arise in the automatic visual surveillance of extensive, highly populated public spaces such as airports and train stations. However, they often encounter serious impediments to deploying and experimenting with large-scale physical camera networks in such real-world environments. We propose an alternative approach called "Virtual Vision", which facilitates this type of research through the virtual reality simulation of populated urban spaces, camera sensor networks, and computer vision on commodity computers. We demonstrate the usefulness of our approach by developing two highly automated surveillance systems comprising passive and active pan/tilt/zoom cameras that are deployed in a virtual train station environment populated by autonomous, lifelike virtual pedestrians. The easily reconfigurable virtual cameras distributed in this environment generate synthetic video feeds that emulate those acquired by real surveillance cameras monitoring public spaces. The novel multi-camera control strategies that we describe enable the cameras to collaborate in persistently observing pedestrians of interest and in acquiring close-up videos of pedestrians in designated areas.
Multi-Hazard Interactions in Guatemala
NASA Astrophysics Data System (ADS)
Gill, Joel; Malamud, Bruce D.
2017-04-01
In this paper, we combine physical and social science approaches to develop a multi-scale regional framework for natural hazard interactions in Guatemala. The identification and characterisation of natural hazard interactions is an important input for comprehensive multi-hazard approaches to disaster risk reduction at a regional level. We use five transdisciplinary evidence sources to organise and populate our framework: (i) internationally-accessible literature; (ii) civil protection bulletins; (iii) field observations; (iv) stakeholder interviews (hazard and civil protection professionals); and (v) stakeholder workshop results. These five evidence sources are synthesised to determine an appropriate natural hazard classification scheme for Guatemala (6 hazard groups, 19 hazard types, and 37 hazard sub-types). For a national spatial extent (Guatemala), we construct and populate a "21×21" hazard interaction matrix, identifying 49 possible interactions between 21 hazard types. For a sub-national spatial extent (Southern Highlands, Guatemala), we construct and populate a "33×33" hazard interaction matrix, identifying 112 possible interactions between 33 hazard sub-types. Evidence sources are also used to constrain anthropogenic processes that could trigger natural hazards in Guatemala, and characterise possible networks of natural hazard interactions (cascades). The outcomes of this approach are among the most comprehensive interaction frameworks for national and sub-national spatial scales in the published literature. These can be used to support disaster risk reduction and civil protection professionals in better understanding natural hazards and potential disasters at a regional scale.
Effects of Dimers on Cooperation in the Spatial Prisoner's Dilemma Game
NASA Astrophysics Data System (ADS)
Li, Hai-Hong; Cheng, Hong-Yan; Dai, Qiong-Lin; Ju, Ping; Zhang, Mei; Yang, Jun-Zhong
2011-11-01
We investigate the evolutionary prisoner's dilemma game in structured populations by introducing dimers, which are defined as that two players in each dimer always hold a same strategy. We find that influences of dimers on cooperation depend on the type of dimers and the population structure. For those dimers in which players interact with each other, the cooperation level increases with the number of dimers though the cooperation improvement level depends on the type of network structures. On the other hand, the dimers, in which there are not mutual interactions, will not do any good to the cooperation level in a single community, but interestingly, will improve the cooperation level in a population with two communities. We explore the relationship between dimers and self-interactions and find that the effects of dimers are similar to that of self-interactions. Also, we find that the dimers, which are established over two communities in a multi-community network, act as one type of interaction through which information between communities is communicated by the requirement that two players in a dimer hold a same strategy.
NASA Astrophysics Data System (ADS)
Wang, Shengling; Cui, Yong; Koodli, Rajeev; Hou, Yibin; Huang, Zhangqin
Due to the dynamics of topology and resources, Call Admission Control (CAC) plays a significant role for increasing resource utilization ratio and guaranteeing users' QoS requirements in wireless/mobile networks. In this paper, a dynamic multi-threshold CAC scheme is proposed to serve multi-class service in a wireless/mobile network. The thresholds are renewed at the beginning of each time interval to react to the changing mobility rate and network load. To find suitable thresholds, a reward-penalty model is designed, which provides different priorities between different service classes and call types through different reward/penalty policies according to network load and average call arrival rate. To speed up the running time of CAC, an Optimized Genetic Algorithm (OGA) is presented, whose components such as encoding, population initialization, fitness function and mutation etc., are all optimized in terms of the traits of the CAC problem. The simulation demonstrates that the proposed CAC scheme outperforms the similar schemes, which means the optimization is realized. Finally, the simulation shows the efficiency of OGA.
Electronic Cigarette Marketing Online: a Multi-Site, Multi-Product Comparison.
Chu, Kar-Hai; Sidhu, Anupreet K; Valente, Thomas W
2015-01-01
Electronic cigarette awareness and use has been increasing rapidly. E-cigarette brands have utilized social networking sites to promote their products, as the growth of the e-cigarette industry has paralleled that of Web 2.0. These online platforms are cost-effective and have unique technological features and user demographics that can be attractive for selective marketing. The popularity of multiple sites also poses a risk of exposure to social networks where e-cigarette brands might not have a presence. To examine the marketing strategies of leading e-cigarette brands on multiple social networking sites, and to identify how affordances of the digital media are used to their advantage. Secondary analyses include determining if any brands are benefitting from site demographics, and exploring cross-site diffusion of marketing content through multi-site users. We collected data from two e-cigarette brands from four social networking sites over approximately 2.5 years. Content analysis is used to search for themes, population targeting, marketing strategies, and cross-site spread of messages. Twitter appeared to be the most frequently used social networking site for interacting directly with product users. Facebook supported informational broadcasts, such as announcements regarding political legislation. E-cigarette brands also differed in their approaches to their users, from informal conversations to direct product marketing. E-cigarette makers use different strategies to market their product and engage their users. There was no evidence of direct targeting of vulnerable populations, but the affordances of the different sites are exploited to best broadcast context-specific messages. We developed a viable method to study cross-site diffusion, although additional refinement is needed to account for how different types of digital media are used.
Electronic Cigarette Marketing Online: a Multi-Site, Multi-Product Comparison
Sidhu, Anupreet K; Valente, Thomas W
2015-01-01
Background Electronic cigarette awareness and use has been increasing rapidly. E-cigarette brands have utilized social networking sites to promote their products, as the growth of the e-cigarette industry has paralleled that of Web 2.0. These online platforms are cost-effective and have unique technological features and user demographics that can be attractive for selective marketing. The popularity of multiple sites also poses a risk of exposure to social networks where e-cigarette brands might not have a presence. Objective To examine the marketing strategies of leading e-cigarette brands on multiple social networking sites, and to identify how affordances of the digital media are used to their advantage. Secondary analyses include determining if any brands are benefitting from site demographics, and exploring cross-site diffusion of marketing content through multi-site users. Methods We collected data from two e-cigarette brands from four social networking sites over approximately 2.5 years. Content analysis is used to search for themes, population targeting, marketing strategies, and cross-site spread of messages. Results Twitter appeared to be the most frequently used social networking site for interacting directly with product users. Facebook supported informational broadcasts, such as announcements regarding political legislation. E-cigarette brands also differed in their approaches to their users, from informal conversations to direct product marketing. Conclusions E-cigarette makers use different strategies to market their product and engage their users. There was no evidence of direct targeting of vulnerable populations, but the affordances of the different sites are exploited to best broadcast context-specific messages. We developed a viable method to study cross-site diffusion, although additional refinement is needed to account for how different types of digital media are used. PMID:27227129
Adaptive multi-resolution Modularity for detecting communities in networks
NASA Astrophysics Data System (ADS)
Chen, Shi; Wang, Zhi-Zhong; Bao, Mei-Hua; Tang, Liang; Zhou, Ji; Xiang, Ju; Li, Jian-Ming; Yi, Chen-He
2018-02-01
Community structure is a common topological property of complex networks, which attracted much attention from various fields. Optimizing quality functions for community structures is a kind of popular strategy for community detection, such as Modularity optimization. Here, we introduce a general definition of Modularity, by which several classical (multi-resolution) Modularity can be derived, and then propose a kind of adaptive (multi-resolution) Modularity that can combine the advantages of different Modularity. By applying the Modularity to various synthetic and real-world networks, we study the behaviors of the methods, showing the validity and advantages of the multi-resolution Modularity in community detection. The adaptive Modularity, as a kind of multi-resolution method, can naturally solve the first-type limit of Modularity and detect communities at different scales; it can quicken the disconnecting of communities and delay the breakup of communities in heterogeneous networks; and thus it is expected to generate the stable community structures in networks more effectively and have stronger tolerance against the second-type limit of Modularity.
Multi-Agent Inference in Social Networks: A Finite Population Learning Approach.
Fan, Jianqing; Tong, Xin; Zeng, Yao
When people in a society want to make inference about some parameter, each person may want to use data collected by other people. Information (data) exchange in social networks is usually costly, so to make reliable statistical decisions, people need to trade off the benefits and costs of information acquisition. Conflicts of interests and coordination problems will arise in the process. Classical statistics does not consider people's incentives and interactions in the data collection process. To address this imperfection, this work explores multi-agent Bayesian inference problems with a game theoretic social network model. Motivated by our interest in aggregate inference at the societal level, we propose a new concept, finite population learning , to address whether with high probability, a large fraction of people in a given finite population network can make "good" inference. Serving as a foundation, this concept enables us to study the long run trend of aggregate inference quality as population grows.
Wireless Sensor Network Optimization: Multi-Objective Paradigm.
Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad
2015-07-20
Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.
Construction of multi-scale consistent brain networks: methods and applications.
Ge, Bao; Tian, Yin; Hu, Xintao; Chen, Hanbo; Zhu, Dajiang; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming
2015-01-01
Mapping human brain networks provides a basis for studying brain function and dysfunction, and thus has gained significant interest in recent years. However, modeling human brain networks still faces several challenges including constructing networks at multiple spatial scales and finding common corresponding networks across individuals. As a consequence, many previous methods were designed for a single resolution or scale of brain network, though the brain networks are multi-scale in nature. To address this problem, this paper presents a novel approach to constructing multi-scale common structural brain networks from DTI data via an improved multi-scale spectral clustering applied on our recently developed and validated DICCCOLs (Dense Individualized and Common Connectivity-based Cortical Landmarks). Since the DICCCOL landmarks possess intrinsic structural correspondences across individuals and populations, we employed the multi-scale spectral clustering algorithm to group the DICCCOL landmarks and their connections into sub-networks, meanwhile preserving the intrinsically-established correspondences across multiple scales. Experimental results demonstrated that the proposed method can generate multi-scale consistent and common structural brain networks across subjects, and its reproducibility has been verified by multiple independent datasets. As an application, these multi-scale networks were used to guide the clustering of multi-scale fiber bundles and to compare the fiber integrity in schizophrenia and healthy controls. In general, our methods offer a novel and effective framework for brain network modeling and tract-based analysis of DTI data.
Wireless Sensor Network Optimization: Multi-Objective Paradigm
Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad
2015-01-01
Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271
NASA Technical Reports Server (NTRS)
Baskaran, Subbiah; Ramachandran, Narayanan; Noever, David
1998-01-01
The use of probabilistic (PNN) and multilayer feed forward (MLFNN) neural networks are investigated for calibration of multi-hole pressure probes and the prediction of associated flow angularity patterns in test flow fields. Both types of networks are studied in detail for their calibration and prediction characteristics. The current formalism can be applied to any multi-hole probe, however the test results for the most commonly used five-hole Cone and Prism probe types alone are reported in this article.
Multi-Agent Inference in Social Networks: A Finite Population Learning Approach
Tong, Xin; Zeng, Yao
2016-01-01
When people in a society want to make inference about some parameter, each person may want to use data collected by other people. Information (data) exchange in social networks is usually costly, so to make reliable statistical decisions, people need to trade off the benefits and costs of information acquisition. Conflicts of interests and coordination problems will arise in the process. Classical statistics does not consider people’s incentives and interactions in the data collection process. To address this imperfection, this work explores multi-agent Bayesian inference problems with a game theoretic social network model. Motivated by our interest in aggregate inference at the societal level, we propose a new concept, finite population learning, to address whether with high probability, a large fraction of people in a given finite population network can make “good” inference. Serving as a foundation, this concept enables us to study the long run trend of aggregate inference quality as population grows. PMID:27076691
Tactical Network Load Balancing in Multi-Gateway Wireless Sensor Networks
2013-12-01
writeup scrsz = get( 0 ,’ScreenSize’); %Creation of the random Sensor Network fig = figure(1); set(fig, ’Position’,[1 scrsz( 4 )*.25 scrsz(3)*.7...thesis writeup scrsz = get( 0 ,’ScreenSize’); %Creation of the random Sensor Network fig = figure(1); set(fig, ’Position’,[1 scrsz( 4 )*.25 scrsz(3)*.7...TYPE AND DATES COVERED Master’s Thesis 4 . TITLE AND SUBTITLE TACTICAL NETWORK LOAD BALANCING IN MULTI-GATEWAY WIRELESS SENSOR NETWORKS 5
Integration of multi-omics data for integrative gene regulatory network inference.
Zarayeneh, Neda; Ko, Euiseong; Oh, Jung Hun; Suh, Sang; Liu, Chunyu; Gao, Jean; Kim, Donghyun; Kang, Mingon
2017-01-01
Gene regulatory networks provide comprehensive insights and indepth understanding of complex biological processes. The molecular interactions of gene regulatory networks are inferred from a single type of genomic data, e.g., gene expression data in most research. However, gene expression is a product of sequential interactions of multiple biological processes, such as DNA sequence variations, copy number variations, histone modifications, transcription factors, and DNA methylations. The recent rapid advances of high-throughput omics technologies enable one to measure multiple types of omics data, called 'multi-omics data', that represent the various biological processes. In this paper, we propose an Integrative Gene Regulatory Network inference method (iGRN) that incorporates multi-omics data and their interactions in gene regulatory networks. In addition to gene expressions, copy number variations and DNA methylations were considered for multi-omics data in this paper. The intensive experiments were carried out with simulation data, where iGRN's capability that infers the integrative gene regulatory network is assessed. Through the experiments, iGRN shows its better performance on model representation and interpretation than other integrative methods in gene regulatory network inference. iGRN was also applied to a human brain dataset of psychiatric disorders, and the biological network of psychiatric disorders was analysed.
Integration of multi-omics data for integrative gene regulatory network inference
Zarayeneh, Neda; Ko, Euiseong; Oh, Jung Hun; Suh, Sang; Liu, Chunyu; Gao, Jean; Kim, Donghyun
2017-01-01
Gene regulatory networks provide comprehensive insights and indepth understanding of complex biological processes. The molecular interactions of gene regulatory networks are inferred from a single type of genomic data, e.g., gene expression data in most research. However, gene expression is a product of sequential interactions of multiple biological processes, such as DNA sequence variations, copy number variations, histone modifications, transcription factors, and DNA methylations. The recent rapid advances of high-throughput omics technologies enable one to measure multiple types of omics data, called ‘multi-omics data’, that represent the various biological processes. In this paper, we propose an Integrative Gene Regulatory Network inference method (iGRN) that incorporates multi-omics data and their interactions in gene regulatory networks. In addition to gene expressions, copy number variations and DNA methylations were considered for multi-omics data in this paper. The intensive experiments were carried out with simulation data, where iGRN’s capability that infers the integrative gene regulatory network is assessed. Through the experiments, iGRN shows its better performance on model representation and interpretation than other integrative methods in gene regulatory network inference. iGRN was also applied to a human brain dataset of psychiatric disorders, and the biological network of psychiatric disorders was analysed. PMID:29354189
NASA Astrophysics Data System (ADS)
Belgardt, Bengt-Frederik; Jarasch, Alexander; Lammert, Eckhard
2018-03-01
Improvements and breakthroughs in computational sciences in the last 20 years have paralleled the rapid gain of influence of social networks on our daily life. As timely reviewed by Perc and colleagues [1], understanding and treating complex human diseases, such as type 2 diabetes (T2D), from which already more than 5% of the global population suffer, will necessitate analyzing and understanding the multi-layered and interconnected networks that usually keep physiological functions intact, but are disturbed in disease states. These networks range from intra- and intercellular networks influencing cell behavior (e.g., secretion of insulin in response to food intake and anabolic response to insulin) to social networks influencing human behavior (e.g., food intake and physical activity). This commentary first expands on the background of pancreatic beta cell networks in human health and T2D, briefly introduces exosomes as novel signals exchanged between distant cellular networks, and finally discusses potential pitfalls and chances in network analyses with regards to experimental data acquisition and processing.
Extraordinary variability and sharp transitions in a maximally frustrated dynamic network
NASA Astrophysics Data System (ADS)
Liu, Wenjia; Schmittmann, Beate; Zia, R. K. P.
2013-03-01
Most previous studies of complex networks have focused on single, static networks. However, in the real world, networks are dynamic and interconnected. Inspired by the presence of extroverts and introverts in the general population, we investigate a highly simplified model of a social network, involving two types of nodes: one preferring the highest degree possible, and one preferring no connections whatsoever. There are only two control parameters in the model: the number of ``introvert'' and ``extrovert'' nodes, NI and NE. Our key findings are as follows: As a function of NI and NE, the system exhibits a highly unusual transition, displaying extraordinary fluctuations (as in 2nd order transitions) and discontinuous jumps (characteristic of 1st order transitions). Most remarkably, the system can be described by an Ising-like Hamiltonian with long-range multi-spin interactions and some of its properties can be obtained analytically. This is in stark contrast with other dynamic network models which rely almost exclusively on simulations. NSF-DMR-1005417/1244666 and and ICTAS Virginia Tech
Jiang, Peng; Scarpa, Joseph R.; Fitzpatrick, Karrie; Losic, Bojan; Gao, Vance D.; Hao, Ke; Summa, Keith C.; Yang, He S.; Zhang, Bin; Allada, Ravi; Vitaterna, Martha H.; Turek, Fred W.; Kasarskis, Andrew
2016-01-01
SUMMARY Sleep dysfunction and stress susceptibility are co-morbid complex traits, which often precede and predispose patients to a variety of neuropsychiatric diseases. Here, we demonstrate multi-level organizations of genetic landscape, candidate genes, and molecular networks associated with 328 stress and sleep traits in a chronically stressed population of 338 (C57BL/6J×A/J) F2 mice. We constructed striatal gene co-expression networks, revealing functionally and cell-type specific gene co-regulations important for stress and sleep. Using a composite ranking system, we identified network modules most relevant for 15 independent phenotypic categories, highlighting a mitochondria/synaptic module that links sleep and stress. The key network regulators of this module are overrepresented with genes implicated in neuropsychiatric diseases. Our work suggests the interplay between sleep, stress, and neuropathology emerge from genetic influences on gene expression and their collective organization through complex molecular networks, providing a framework to interrogate the mechanisms underlying sleep, stress susceptibility, and related neuropsychiatric disorders. PMID:25921536
Sexual networks: measuring sexual selection in structured, polyandrous populations.
McDonald, Grant C; James, Richard; Krause, Jens; Pizzari, Tommaso
2013-03-05
Sexual selection is traditionally measured at the population level, assuming that populations lack structure. However, increasing evidence undermines this approach, indicating that intrasexual competition in natural populations often displays complex patterns of spatial and temporal structure. This complexity is due in part to the degree and mechanisms of polyandry within a population, which can influence the intensity and scale of both pre- and post-copulatory sexual competition. Attempts to measure selection at the local and global scale have been made through multi-level selection approaches. However, definitions of local scale are often based on physical proximity, providing a rather coarse measure of local competition, particularly in polyandrous populations where the local scale of pre- and post-copulatory competition may differ drastically from each other. These limitations can be solved by social network analysis, which allows us to define a unique sexual environment for each member of a population: 'local scale' competition, therefore, becomes an emergent property of a sexual network. Here, we first propose a novel quantitative approach to measure pre- and post-copulatory sexual selection, which integrates multi-level selection with information on local scale competition derived as an emergent property of networks of sexual interactions. We then use simple simulations to illustrate the ways in which polyandry can impact estimates of sexual selection. We show that for intermediate levels of polyandry, the proposed network-based approach provides substantially more accurate measures of sexual selection than the more traditional population-level approach. We argue that the increasing availability of fine-grained behavioural datasets provides exciting new opportunities to develop network approaches to study sexual selection in complex societies.
Network-centric decision architecture for financial or 1/f data models
NASA Astrophysics Data System (ADS)
Jaenisch, Holger M.; Handley, James W.; Massey, Stoney; Case, Carl T.; Songy, Claude G.
2002-12-01
This paper presents a decision architecture algorithm for training neural equation based networks to make autonomous multi-goal oriented, multi-class decisions. These architectures make decisions based on their individual goals and draw from the same network centric feature set. Traditionally, these architectures are comprised of neural networks that offer marginal performance due to lack of convergence of the training set. We present an approach for autonomously extracting sample points as I/O exemplars for generation of multi-branch, multi-node decision architectures populated by adaptively derived neural equations. To test the robustness of this architecture, open source data sets in the form of financial time series were used, requiring a three-class decision space analogous to the lethal, non-lethal, and clutter discrimination problem. This algorithm and the results of its application are presented here.
Liu, Hongjie
2017-12-01
The epidemic of HIV/AIDS continues to spread among older adults and mid-age female sex workers (FSWs) over 35 years old. We used egocentric network data collected from three study sites in China to examine the applicability of Burt's Theory of Social Holes to study social support among mid-age FSWs. Using respondent-driven sampling, 1245 eligible mid-age FSWs were interviewed. Network structural holes were measured by network constraint and effective size. Three types of social networks were identified: family networks, workplace networks, and non-FSW networks. A larger effective size was significantly associated with a higher level of social support [regression coefficient (β) 5.43-10.59] across the three study samples. In contrast, a greater constraint was significantly associated with a lower level of social support (β -9.33 to -66.76). This study documents the applicability of the Theory of Structural Holes in studying network support among marginalized populations, such as FSWs.
NASA Astrophysics Data System (ADS)
Simonis, Ingo
2015-04-01
Transport infrastructure monitoring and analysis is one of the focus areas in the context of smart cities. With the growing number of people moving into densely populated urban metro areas, precise tracking of moving people and goods is the basis for profound decision-making and future planning. With the goal of defining optimal extensions and modifications to existing transport infrastructures, multi-modal transport has to be monitored and analysed. This process is performed on the basis of sensor networks that combine a variety of sensor models, types, and deployments within the area of interest. Multi-generation networks, consisting of a number of sensor types and versions, are causing further challenges for the integration and processing of sensor observations. These challenges are not getting any smaller with the development of the Internet of Things, which brings promising opportunities, but is currently stuck in a type of protocol war between big industry players from both the hardware and network infrastructure domain. In this paper, we will highlight how the OGC suite of standards, with the Sensor Web standards developed by the Sensor Web Enablement Initiative together with the latest developments by the Sensor Web for Internet of Things community can be applied to the monitoring and improvement of transport infrastructures. Sensor Web standards have been applied in the past to pure technical domains, but need to be broadened now in order to meet new challenges. Only cross domain approaches will allow to develop satisfying transport infrastructure approaches that take into account requirements coming form a variety of sectors such as tourism, administration, transport industry, emergency services, or private people. The goal is the development of interoperable components that can be easily integrated within data infrastructures and follow well defined information models to allow robust processing.
A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology
2011-01-01
Background Genome-scale metabolic reconstructions provide a biologically meaningful mechanistic basis for the genotype-phenotype relationship. The global human metabolic network, termed Recon 1, has recently been reconstructed allowing the systems analysis of human metabolic physiology and pathology. Utilizing high-throughput data, Recon 1 has recently been tailored to different cells and tissues, including the liver, kidney, brain, and alveolar macrophage. These models have shown utility in the study of systems medicine. However, no integrated analysis between human tissues has been done. Results To describe tissue-specific functions, Recon 1 was tailored to describe metabolism in three human cells: adipocytes, hepatocytes, and myocytes. These cell-specific networks were manually curated and validated based on known cellular metabolic functions. To study intercellular interactions, a novel multi-tissue type modeling approach was developed to integrate the metabolic functions for the three cell types, and subsequently used to simulate known integrated metabolic cycles. In addition, the multi-tissue model was used to study diabetes: a pathology with systemic properties. High-throughput data was integrated with the network to determine differential metabolic activity between obese and type II obese gastric bypass patients in a whole-body context. Conclusion The multi-tissue type modeling approach presented provides a platform to study integrated metabolic states. As more cell and tissue-specific models are released, it is critical to develop a framework in which to study their interdependencies. PMID:22041191
From cognitive networks to seizures: Stimulus evoked dynamics in a coupled cortical network
NASA Astrophysics Data System (ADS)
Lee, Jaejin; Ermentrout, Bard; Bodner, Mark
2013-12-01
Epilepsy is one of the most common neuropathologies worldwide. Seizures arising in epilepsy or in seizure disorders are characterized generally by uncontrolled spread of excitation and electrical activity to a limited region or even over the entire cortex. While it is generally accepted that abnormal excessive firing and synchronization of neuron populations lead to seizures, little is known about the precise mechanisms underlying human epileptic seizures, the mechanisms of transitions from normal to paroxysmal activity, or about how seizures spread. Further complication arises in that seizures do not occur with a single type of dynamics but as many different phenotypes and genotypes with a range of patterns, synchronous oscillations, and time courses. The concept of preventing, terminating, or modulating seizures and/or paroxysmal activity through stimulation of brain has also received considerable attention. The ability of such stimulation to prevent or modulate such pathological activity may depend on identifiable parameters. In this work, firing rate networks with inhibitory and excitatory populations were modeled. Network parameters were chosen to model normal working memory behaviors. Two different models of cognitive activity were developed. The first model consists of a single network corresponding to a local area of the brain. The second incorporates two networks connected through sparser recurrent excitatory connectivity with transmission delays ranging from approximately 3 ms within local populations to 15 ms between populations residing in different cortical areas. The effect of excitatory stimulation to activate working memory behavior through selective persistent activation of populations is examined in the models, and the conditions and transition mechanisms through which that selective activation breaks down producing spreading paroxysmal activity and seizure states are characterized. Specifically, we determine critical parameters and architectural changes that produce the different seizure dynamics in the networks. This provides possible mechanisms for seizure generation. Because seizures arise as attractors in a multi-state system, the system may possibly be returned to its baseline state through some particular stimulation. The ability of stimulation to terminate seizure dynamics in the local and distributed models is studied. We systematically examine when this may occur and the form of the stimulation necessary for the range of seizure dynamics. In both the local and distributed network models, termination is possible for all seizure types observed by stimulation possessing some particular configuration of spatial and temporal characteristics.
Competitive dynamics of lexical innovations in multi-layer networks
NASA Astrophysics Data System (ADS)
Javarone, Marco Alberto
2014-04-01
We study the introduction of lexical innovations into a community of language users. Lexical innovations, i.e. new term added to people's vocabulary, plays an important role in the process of language evolution. Nowadays, information is spread through a variety of networks, including, among others, online and offline social networks and the World Wide Web. The entire system, comprising networks of different nature, can be represented as a multi-layer network. In this context, lexical innovations diffusion occurs in a peculiar fashion. In particular, a lexical innovation can undergo three different processes: its original meaning is accepted; its meaning can be changed or misunderstood (e.g. when not properly explained), hence more than one meaning can emerge in the population. Lastly, in the case of a loan word, it can be translated into the population language (i.e. defining a new lexical innovation or using a synonym) or into a dialect spoken by part of the population. Therefore, lexical innovations cannot be considered simply as information. We develop a model for analyzing this scenario using a multi-layer network comprising a social network and a media network. The latter represents the set of all information systems of a society, e.g. television, the World Wide Web and radio. Furthermore, we identify temporal directed edges between the nodes of these two networks. In particular, at each time-step, nodes of the media network can be connected to randomly chosen nodes of the social network and vice versa. In doing so, information spreads through the whole system and people can share a lexical innovation with their neighbors or, in the event they work as reporters, by using media nodes. Lastly, we use the concept of "linguistic sign" to model lexical innovations, showing its fundamental role in the study of these dynamics. Many numerical simulations have been performed to analyze the proposed model and its outcomes.
Multi-Objective Community Detection Based on Memetic Algorithm
2015-01-01
Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels. PMID:25932646
Multi-objective community detection based on memetic algorithm.
Wu, Peng; Pan, Li
2015-01-01
Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels.
Facebook Advertising Across an Engagement Spectrum: A Case Example for Public Health Communication.
Platt, Tevah; Platt, Jodyn; Thiel, Daniel B; Kardia, Sharon L R
2016-05-30
The interpersonal, dialogic features of social networking sites have untapped potential for public health communication. We ran a Facebook advertising campaign to raise statewide awareness of Michigan's newborn screening and biobanking programs. We ran a Facebook advertising campaign to stimulate public engagement on the complex and sensitive issue of Michigan's newborn screening and biobank programs. We ran an 11-week, US $15,000 Facebook advertising campaign engaging Michigan Facebook users aged 18-64 years about the state's newborn screening and population biobank programs, and we used a novel "engagement spectrum" framework to contextualize and evaluate engagement outcomes ranging from observation to multi-way conversation. The campaign reached 1.88 million Facebook users, yielding a range of engagement outcomes across ad sets that varied by objective, content, budget, duration, and bid type. Ad sets yielded 9009 page likes (US $4125), 15,958 website clicks (US $5578), and 12,909 complete video views to 100% (US $3750). "Boosted posts" yielded 528 comments and 35,966 page post engagements (US $1500). Overall, the campaign led to 452 shares and 642 comments, including 176 discussing newborn screening and biobanking. Facebook advertising campaigns can efficiently reach large populations and achieve a range of engagement outcomes by diversifying ad types, bid types, and content. This campaign provided a population-based approach to communication that also increased transparency on a sensitive and complex topic by creating a forum for multi-way interaction.
Facebook Advertising Across an Engagement Spectrum: A Case Example for Public Health Communication
Platt, Jodyn; Thiel, Daniel B; Kardia, Sharon L. R
2016-01-01
Background The interpersonal, dialogic features of social networking sites have untapped potential for public health communication. We ran a Facebook advertising campaign to raise statewide awareness of Michigan’s newborn screening and biobanking programs. Objective We ran a Facebook advertising campaign to stimulate public engagement on the complex and sensitive issue of Michigan’s newborn screening and biobank programs. Methods We ran an 11-week, US $15,000 Facebook advertising campaign engaging Michigan Facebook users aged 18-64 years about the state’s newborn screening and population biobank programs, and we used a novel “engagement spectrum” framework to contextualize and evaluate engagement outcomes ranging from observation to multi-way conversation. Results The campaign reached 1.88 million Facebook users, yielding a range of engagement outcomes across ad sets that varied by objective, content, budget, duration, and bid type. Ad sets yielded 9009 page likes (US $4125), 15,958 website clicks (US $5578), and 12,909 complete video views to 100% (US $3750). “Boosted posts” yielded 528 comments and 35,966 page post engagements (US $1500). Overall, the campaign led to 452 shares and 642 comments, including 176 discussing newborn screening and biobanking. Conclusions Facebook advertising campaigns can efficiently reach large populations and achieve a range of engagement outcomes by diversifying ad types, bid types, and content. This campaign provided a population-based approach to communication that also increased transparency on a sensitive and complex topic by creating a forum for multi-way interaction. PMID:27244774
Parasuram, Harilal; Nair, Bipin; D'Angelo, Egidio; Hines, Michael; Naldi, Giovanni; Diwakar, Shyam
2016-01-01
Local Field Potentials (LFPs) are population signals generated by complex spatiotemporal interaction of current sources and dipoles. Mathematical computations of LFPs allow the study of circuit functions and dysfunctions via simulations. This paper introduces LFPsim, a NEURON-based tool for computing population LFP activity and single neuron extracellular potentials. LFPsim was developed to be used on existing cable compartmental neuron and network models. Point source, line source, and RC based filter approximations can be used to compute extracellular activity. As a demonstration of efficient implementation, we showcase LFPs from mathematical models of electrotonically compact cerebellum granule neurons and morphologically complex neurons of the neocortical column. LFPsim reproduced neocortical LFP at 8, 32, and 56 Hz via current injection, in vitro post-synaptic N2a, N2b waves and in vivo T-C waves in cerebellum granular layer. LFPsim also includes a simulation of multi-electrode array of LFPs in network populations to aid computational inference between biophysical activity in neural networks and corresponding multi-unit activity resulting in extracellular and evoked LFP signals.
Towards Optimal Connectivity on Multi-layered Networks.
Chen, Chen; He, Jingrui; Bliss, Nadya; Tong, Hanghang
2017-10-01
Networks are prevalent in many high impact domains. Moreover, cross-domain interactions are frequently observed in many applications, which naturally form the dependencies between different networks. Such kind of highly coupled network systems are referred to as multi-layered networks , and have been used to characterize various complex systems, including critical infrastructure networks, cyber-physical systems, collaboration platforms, biological systems and many more. Different from single-layered networks where the functionality of their nodes is mainly affected by within-layer connections, multi-layered networks are more vulnerable to disturbance as the impact can be amplified through cross-layer dependencies, leading to the cascade failure to the entire system. To manipulate the connectivity in multi-layered networks, some recent methods have been proposed based on two-layered networks with specific types of connectivity measures. In this paper, we address the above challenges in multiple dimensions. First, we propose a family of connectivity measures (SUBLINE) that unifies a wide range of classic network connectivity measures. Third, we reveal that the connectivity measures in SUBLINE family enjoy diminishing returns property , which guarantees a near-optimal solution with linear complexity for the connectivity optimization problem. Finally, we evaluate our proposed algorithm on real data sets to demonstrate its effectiveness and efficiency.
Measuring Large-Scale Social Networks with High Resolution
Stopczynski, Arkadiusz; Sekara, Vedran; Sapiezynski, Piotr; Cuttone, Andrea; Madsen, Mette My; Larsen, Jakob Eg; Lehmann, Sune
2014-01-01
This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of communication channels, with high temporal resolution and spanning multiple years—the Copenhagen Networks Study. Specifically, we collect data on face-to-face interactions, telecommunication, social networks, location, and background information (personality, demographics, health, politics) for a densely connected population of 1 000 individuals, using state-of-the-art smartphones as social sensors. Here we provide an overview of the related work and describe the motivation and research agenda driving the study. Additionally, the paper details the data-types measured, and the technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures. We document the participant privacy procedures and their underlying principles. The paper is concluded with early results from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection. PMID:24770359
Collective Dynamics for Heterogeneous Networks of Theta Neurons
NASA Astrophysics Data System (ADS)
Luke, Tanushree
Collective behavior in neural networks has often been used as an indicator of communication between different brain areas. These collective synchronization and desynchronization patterns are also considered an important feature in understanding normal and abnormal brain function. To understand the emergence of these collective patterns, I create an analytic model that identifies all such macroscopic steady-states attainable by a network of Type-I neurons. This network, whose basic unit is the model "theta'' neuron, contains a mixture of excitable and spiking neurons coupled via a smooth pulse-like synapse. Applying the Ott-Antonsen reduction method in the thermodynamic limit, I obtain a low-dimensional evolution equation that describes the asymptotic dynamics of the macroscopic mean field of the network. This model can be used as the basis in understanding more complicated neuronal networks when additional dynamical features are included. From this reduced dynamical equation for the mean field, I show that the network exhibits three collective attracting steady-states. The first two are equilibrium states that both reflect partial synchronization in the network, whereas the third is a limit cycle in which the degree of network synchronization oscillates in time. In addition to a comprehensive identification of all possible attracting macro-states, this analytic model permits a complete bifurcation analysis of the collective behavior of the network with respect to three key network features: the degree of excitability of the neurons, the heterogeneity of the population, and the overall coupling strength. The network typically tends towards the two macroscopic equilibrium states when the neuron's intrinsic dynamics and the network interactions reinforce each other. In contrast, the limit cycle state, bifurcations, and multistability tend to occur when there is competition between these network features. I also outline here an extension of the above model where the neurons' excitability now varies in time sinuosoidally, thus simulating a parabolic bursting network. This time-varying excitability can lead to the emergence of macroscopic chaos and multistability in the collective behavior of the network. Finally, I expand the single population model described above to examine a two-population neuronal network where each population has its own unique mixture of excitable and spiking neurons, as well as its own coupling strength (either excitatory or inhibitory in nature). Specifically, I consider the situation where the first population is only allowed to influence the second population without any feedback, thus effectively creating a feed-forward "driver-response" system. In this special arrangement, the driver's asymptotic macroscopic dynamics are fully explored in the comprehensive analysis of the single population. Then, in the presence of an influence from the driver, the modified dynamics of the second population, which now acts as a response population, can also be fully analyzed. As in the time-varying model, these modifications give rise to richer dynamics to the response population than those found from the single population formalism, including multi-periodicity and chaos.
Derks, E M; Zwinderman, A H; Gamazon, E R
2017-05-01
Population divergence impacts the degree of population stratification in Genome Wide Association Studies. We aim to: (i) investigate type-I error rate as a function of population divergence (F ST ) in multi-ethnic (admixed) populations; (ii) evaluate the statistical power and effect size estimates; and (iii) investigate the impact of population stratification on the results of gene-based analyses. Quantitative phenotypes were simulated. Type-I error rate was investigated for Single Nucleotide Polymorphisms (SNPs) with varying levels of F ST between the ancestral European and African populations. Type-II error rate was investigated for a SNP characterized by a high value of F ST . In all tests, genomic MDS components were included to correct for population stratification. Type-I and type-II error rate was adequately controlled in a population that included two distinct ethnic populations but not in admixed samples. Statistical power was reduced in the admixed samples. Gene-based tests showed no residual inflation in type-I error rate.
A heuristic method for consumable resource allocation in multi-class dynamic PERT networks
NASA Astrophysics Data System (ADS)
Yaghoubi, Saeed; Noori, Siamak; Mazdeh, Mohammad Mahdavi
2013-06-01
This investigation presents a heuristic method for consumable resource allocation problem in multi-class dynamic Project Evaluation and Review Technique (PERT) networks, where new projects from different classes (types) arrive to system according to independent Poisson processes with different arrival rates. Each activity of any project is operated at a devoted service station located in a node of the network with exponential distribution according to its class. Indeed, each project arrives to the first service station and continues its routing according to precedence network of its class. Such system can be represented as a queuing network, while the discipline of queues is first come, first served. On the basis of presented method, a multi-class system is decomposed into several single-class dynamic PERT networks, whereas each class is considered separately as a minisystem. In modeling of single-class dynamic PERT network, we use Markov process and a multi-objective model investigated by Azaron and Tavakkoli-Moghaddam in 2007. Then, after obtaining the resources allocated to service stations in every minisystem, the final resources allocated to activities are calculated by the proposed method.
Multi-equilibrium property of metabolic networks: SSI module.
Lei, Hong-Bo; Zhang, Ji-Feng; Chen, Luonan
2011-06-20
Revealing the multi-equilibrium property of a metabolic network is a fundamental and important topic in systems biology. Due to the complexity of the metabolic network, it is generally a difficult task to study the problem as a whole from both analytical and numerical viewpoint. On the other hand, the structure-oriented modularization idea is a good choice to overcome such a difficulty, i.e. decomposing the network into several basic building blocks and then studying the whole network through investigating the dynamical characteristics of the basic building blocks and their interactions. Single substrate and single product with inhibition (SSI) metabolic module is one type of the basic building blocks of metabolic networks, and its multi-equilibrium property has important influence on that of the whole metabolic networks. In this paper, we describe what the SSI metabolic module is, characterize the rates of the metabolic reactions by Hill kinetics and give a unified model for SSI modules by using a set of nonlinear ordinary differential equations with multi-variables. Specifically, a sufficient and necessary condition is first given to describe the injectivity of a class of nonlinear systems, and then, the sufficient condition is used to study the multi-equilibrium property of SSI modules. As a main theoretical result, for the SSI modules in which each reaction has no more than one inhibitor, a sufficient condition is derived to rule out multiple equilibria, i.e. the Jacobian matrix of its rate function is nonsingular everywhere. In summary, we describe SSI modules and give a general modeling framework based on Hill kinetics, and provide a sufficient condition for ruling out multiple equilibria of a key type of SSI module.
Multi-equilibrium property of metabolic networks: SSI module
2011-01-01
Background Revealing the multi-equilibrium property of a metabolic network is a fundamental and important topic in systems biology. Due to the complexity of the metabolic network, it is generally a difficult task to study the problem as a whole from both analytical and numerical viewpoint. On the other hand, the structure-oriented modularization idea is a good choice to overcome such a difficulty, i.e. decomposing the network into several basic building blocks and then studying the whole network through investigating the dynamical characteristics of the basic building blocks and their interactions. Single substrate and single product with inhibition (SSI) metabolic module is one type of the basic building blocks of metabolic networks, and its multi-equilibrium property has important influence on that of the whole metabolic networks. Results In this paper, we describe what the SSI metabolic module is, characterize the rates of the metabolic reactions by Hill kinetics and give a unified model for SSI modules by using a set of nonlinear ordinary differential equations with multi-variables. Specifically, a sufficient and necessary condition is first given to describe the injectivity of a class of nonlinear systems, and then, the sufficient condition is used to study the multi-equilibrium property of SSI modules. As a main theoretical result, for the SSI modules in which each reaction has no more than one inhibitor, a sufficient condition is derived to rule out multiple equilibria, i.e. the Jacobian matrix of its rate function is nonsingular everywhere. Conclusions In summary, we describe SSI modules and give a general modeling framework based on Hill kinetics, and provide a sufficient condition for ruling out multiple equilibria of a key type of SSI module. PMID:21689474
Xiao, WenBo; Nazario, Gina; Wu, HuaMing; Zhang, HuaMing; Cheng, Feng
2017-01-01
In this article, we introduced an artificial neural network (ANN) based computational model to predict the output power of three types of photovoltaic cells, mono-crystalline (mono-), multi-crystalline (multi-), and amorphous (amor-) crystalline. The prediction results are very close to the experimental data, and were also influenced by numbers of hidden neurons. The order of the solar generation power output influenced by the external conditions from smallest to biggest is: multi-, mono-, and amor- crystalline silicon cells. In addition, the dependences of power prediction on the number of hidden neurons were studied. For multi- and amorphous crystalline cell, three or four hidden layer units resulted in the high correlation coefficient and low MSEs. For mono-crystalline cell, the best results were achieved at the hidden layer unit of 8.
Inferring multi-scale neural mechanisms with brain network modelling
Schirner, Michael; McIntosh, Anthony Randal; Jirsa, Viktor; Deco, Gustavo
2018-01-01
The neurophysiological processes underlying non-invasive brain activity measurements are incompletely understood. Here, we developed a connectome-based brain network model that integrates individual structural and functional data with neural population dynamics to support multi-scale neurophysiological inference. Simulated populations were linked by structural connectivity and, as a novelty, driven by electroencephalography (EEG) source activity. Simulations not only predicted subjects' individual resting-state functional magnetic resonance imaging (fMRI) time series and spatial network topologies over 20 minutes of activity, but more importantly, they also revealed precise neurophysiological mechanisms that underlie and link six empirical observations from different scales and modalities: (1) resting-state fMRI oscillations, (2) functional connectivity networks, (3) excitation-inhibition balance, (4, 5) inverse relationships between α-rhythms, spike-firing and fMRI on short and long time scales, and (6) fMRI power-law scaling. These findings underscore the potential of this new modelling framework for general inference and integration of neurophysiological knowledge to complement empirical studies. PMID:29308767
A Belief-Space Approach to Integrated Intelligence - Research Area 10.3: Intelligent Networks
2017-12-05
A Belief-Space Approach to Integrated Intelligence- Research Area 10.3: Intelligent Networks The views , opinions and/or findings contained in this...high dimensionality and multi -modality of their hybrid configuration spaces. Planners that perform a purely geometric search are prohibitively slow...Hamburg, January Paper Title: Hierarchical planning for multi -contact non-prehensile manipulation Publication Type: Conference Paper or Presentation
An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network
Brennan, Robert W.
2017-01-01
With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network. PMID:28906452
An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.
Taboun, Mohammed S; Brennan, Robert W
2017-09-14
With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.
Hazard Interactions and Interaction Networks (Cascades) within Multi-Hazard Methodologies
NASA Astrophysics Data System (ADS)
Gill, Joel; Malamud, Bruce D.
2016-04-01
Here we combine research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between 'multi-layer single hazard' approaches and 'multi-hazard' approaches that integrate such interactions. This synthesis suggests that ignoring interactions could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. We proceed to present an enhanced multi-hazard framework, through the following steps: (i) describe and define three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment; (ii) outline three types of interaction relationship (triggering, increased probability, and catalysis/impedance); and (iii) assess the importance of networks of interactions (cascades) through case-study examples (based on literature, field observations and semi-structured interviews). We further propose visualisation frameworks to represent these networks of interactions. Our approach reinforces the importance of integrating interactions between natural hazards, anthropogenic processes and technological hazards/disasters into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential, and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability between successive hazards, and (iii) prioritise resource allocation for mitigation and disaster risk reduction.
Durski, Kara N; Jancloes, Michel; Chowdhary, Tej; Bertherat, Eric
2014-06-05
Leptospirosis has emerged as a major public health problem in both animals and humans. The true burden of this epidemic and endemic disease is likely to be grossly under-estimated due to the non-specific clinical presentations of the disease and the difficulty of laboratory confirmation. The complexity that surrounds the transmission dynamics, particularly in epidemic situations, requires a coordinated, multi-disciplinary effort. Therefore, the Global Leptospirosis Environmental Action Network (GLEAN) was developed to improve global and local strategies of how to predict, prevent, detect, and intervene in leptospirosis outbreaks in order to prevent and control leptospirosis in high-risk populations.
Durski, Kara N.; Jancloes, Michel; Chowdhary, Tej; Bertherat, Eric
2014-01-01
Leptospirosis has emerged as a major public health problem in both animals and humans. The true burden of this epidemic and endemic disease is likely to be grossly under-estimated due to the non-specific clinical presentations of the disease and the difficulty of laboratory confirmation. The complexity that surrounds the transmission dynamics, particularly in epidemic situations, requires a coordinated, multi-disciplinary effort. Therefore, the Global Leptospirosis Environmental Action Network (GLEAN) was developed to improve global and local strategies of how to predict, prevent, detect, and intervene in leptospirosis outbreaks in order to prevent and control leptospirosis in high-risk populations. PMID:24905245
Fixation times in differentiation and evolution in the presence of bottlenecks, deserts, and oases.
Chou, Tom; Wang, Yu
2015-05-07
Cellular differentiation and evolution are stochastic processes that can involve multiple types (or states) of particles moving on a complex, high-dimensional state-space or "fitness" landscape. Cells of each specific type can thus be quantified by their population at a corresponding node within a network of states. Their dynamics across the state-space network involve genotypic or phenotypic transitions that can occur upon cell division, such as during symmetric or asymmetric cell differentiation, or upon spontaneous mutation. Here, we use a general multi-type branching processes to study first passage time statistics for a single cell to appear in a specific state. Our approach readily allows for nonexponentially distributed waiting times between transitions, reflecting, e.g., the cell cycle. For simplicity, we restrict most of our detailed analysis to exponentially distributed waiting times (Poisson processes). We present results for a sequential evolutionary process in which L successive transitions propel a population from a "wild-type" state to a given "terminally differentiated," "resistant," or "cancerous" state. Analytic and numeric results are also found for first passage times across an evolutionary chain containing a node with increased death or proliferation rate, representing a desert/bottleneck or an oasis. Processes involving cell proliferation are shown to be "nonlinear" (even though mean-field equations for the expected particle numbers are linear) resulting in first passage time statistics that depend on the position of the bottleneck or oasis. Our results highlight the sensitivity of stochastic measures to cell division fate and quantify the limitations of using certain approximations (such as the fixed-population and mean-field assumptions) in evaluating fixation times. Published by Elsevier Ltd.
A Typology to Explain Changing Social Networks Post Stroke.
Northcott, Sarah; Hirani, Shashivadan P; Hilari, Katerina
2018-05-08
Social network typologies have been used to classify the general population but have not previously been applied to the stroke population. This study investigated whether social network types remain stable following a stroke, and if not, why some people shift network type. We used a mixed methods design. Participants were recruited from two acute stroke units. They completed the Stroke Social Network Scale (SSNS) two weeks and six months post stroke and in-depth interviews 8-15 months following the stroke. Qualitative data was analysed using Framework Analysis; k-means cluster analysis was applied to the six-month data set. Eighty-seven participants were recruited, 71 were followed up at six months, and 29 completed in-depth interviews. It was possible to classify all 29 participants into one of the following network types both prestroke and post stroke: diverse; friends-based; family-based; restricted-supported; restricted-unsupported. The main shift that took place post stroke was participants moving out of a diverse network into a family-based one. The friends-based network type was relatively stable. Two network types became more populated post stroke: restricted-unsupported and family-based. Triangulatory evidence was provided by k-means cluster analysis, which produced a cluster solution (for n = 71) with comparable characteristics to the network types derived from qualitative analysis. Following a stroke, a person's social network is vulnerable to change. Explanatory factors for shifting network type included the physical and also psychological impact of having a stroke, as well as the tendency to lose contact with friends rather than family.
Stubbe, Beate; Schipf, Sabine; Schäper, Christoph; Felix, Stephan B; Steveling, Antje; Nauck, Matthias; Völzke, Henry; Wallaschofski, Henri; Friedrich, Nele; Ewert, Ralf; Ittermann, Till; Gläser, Sven
2017-01-01
Background: Diabetes mellitus Type 1 (T1DM) is associated with metabolic and microvascular diseases as part of a multi-organ and multi-systemic disorder. The dense network of capillary vessels in the lungs may change during the course of the development of microangiopathy. The connective tissue as well as alveoli may be subjected to non-enzymatic glycosylation of proteins which may in turn affect pulmonary function. Previous studies investigating lung function in patients with type 1 diabetes have only been performed on small numbers of patients. Our study is based on population data of the Study of Health in Pomerania (SHIP). Objective: To investigate the influence of metabolic control on pulmonary system function and to establish a decreased pulmonary system function as a late complication of T1DM in a population based setting. Methods: The study is a case matched study with multiple controls based on participants with T1DM (SHIP-DM-1, n=73) and non-diabetics (SHIP-1, n=292) from the population based study of Pomerania. Data on lung function and exercise performance stratified by age, sex, body mass index and smoking habits in participants with T1DM and without diabetes were matched. Results: Participants with T1DM showed a significantly lower total lung capacity, residual volume and forced vital capacity. The transfer factor for carbon monoxide, the maximum power output and oxygen uptake during exercise were significantly decreased in comparison to the general population without diabetes. Conclusion: The pattern of abnormal pulmonary function as observed in the present study with a reduction in lung volume parameters and reduced oxygen uptake in participants with T1DM suggests a restrictive type of lung disease caused by an intrinsic lung tissue derangement as well as pulmonary microangiopathy. © Georg Thieme Verlag KG Stuttgart · New York.
On characterizing population commonalities and subject variations in brain networks.
Ghanbari, Yasser; Bloy, Luke; Tunc, Birkan; Shankar, Varsha; Roberts, Timothy P L; Edgar, J Christopher; Schultz, Robert T; Verma, Ragini
2017-05-01
Brain networks based on resting state connectivity as well as inter-regional anatomical pathways obtained using diffusion imaging have provided insight into pathology and development. Such work has underscored the need for methods that can extract sub-networks that can accurately capture the connectivity patterns of the underlying population while simultaneously describing the variation of sub-networks at the subject level. We have designed a multi-layer graph clustering method that extracts clusters of nodes, called 'network hubs', which display higher levels of connectivity within the cluster than to the rest of the brain. The method determines an atlas of network hubs that describes the population, as well as weights that characterize subject-wise variation in terms of within- and between-hub connectivity. This lowers the dimensionality of brain networks, thereby providing a representation amenable to statistical analyses. The applicability of the proposed technique is demonstrated by extracting an atlas of network hubs for a population of typically developing controls (TDCs) as well as children with autism spectrum disorder (ASD), and using the structural and functional networks of a population to determine the subject-level variation of these hubs and their inter-connectivity. These hubs are then used to compare ASD and TDCs. Our method is generalizable to any population whose connectivity (structural or functional) can be captured via non-negative network graphs. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahmadi, Bahman; Nariman-zadeh, Nader; Jamali, Ali
2017-06-01
In this article, a novel approach based on game theory is presented for multi-objective optimal synthesis of four-bar mechanisms. The multi-objective optimization problem is modelled as a Stackelberg game. The more important objective function, tracking error, is considered as the leader, and the other objective function, deviation of the transmission angle from 90° (TA), is considered as the follower. In a new approach, a group method of data handling (GMDH)-type neural network is also utilized to construct an approximate model for the rational reaction set (RRS) of the follower. Using the proposed game-theoretic approach, the multi-objective optimal synthesis of a four-bar mechanism is then cast into a single-objective optimal synthesis using the leader variables and the obtained RRS of the follower. The superiority of using the synergy game-theoretic method of Stackelberg with a GMDH-type neural network is demonstrated for two case studies on the synthesis of four-bar mechanisms.
NASA Astrophysics Data System (ADS)
Lapotre, Vianney; Gogniat, Guy; Baghdadi, Amer; Diguet, Jean-Philippe
2017-12-01
The multiplication of connected devices goes along with a large variety of applications and traffic types needing diverse requirements. Accompanying this connectivity evolution, the last years have seen considerable evolutions of wireless communication standards in the domain of mobile telephone networks, local/wide wireless area networks, and Digital Video Broadcasting (DVB). In this context, intensive research has been conducted to provide flexible turbo decoder targeting high throughput, multi-mode, multi-standard, and power consumption efficiency. However, flexible turbo decoder implementations have not often considered dynamic reconfiguration issues in this context that requires high speed configuration switching. Starting from this assessment, this paper proposes the first solution that allows frame-by-frame run-time configuration management of a multi-processor turbo decoder without compromising the decoding performances.
NASA Astrophysics Data System (ADS)
Bauer, Johannes; Dávila-Chacón, Jorge; Wermter, Stefan
2015-10-01
Humans and other animals have been shown to perform near-optimally in multi-sensory integration tasks. Probabilistic population codes (PPCs) have been proposed as a mechanism by which optimal integration can be accomplished. Previous approaches have focussed on how neural networks might produce PPCs from sensory input or perform calculations using them, like combining multiple PPCs. Less attention has been given to the question of how the necessary organisation of neurons can arise and how the required knowledge about the input statistics can be learned. In this paper, we propose a model of learning multi-sensory integration based on an unsupervised learning algorithm in which an artificial neural network learns the noise characteristics of each of its sources of input. Our algorithm borrows from the self-organising map the ability to learn latent-variable models of the input and extends it to learning to produce a PPC approximating a probability density function over the latent variable behind its (noisy) input. The neurons in our network are only required to perform simple calculations and we make few assumptions about input noise properties and tuning functions. We report on a neurorobotic experiment in which we apply our algorithm to multi-sensory integration in a humanoid robot to demonstrate its effectiveness and compare it to human multi-sensory integration on the behavioural level. We also show in simulations that our algorithm performs near-optimally under certain plausible conditions, and that it reproduces important aspects of natural multi-sensory integration on the neural level.
Rentz, Michael F; Ruffner, Andrew H; Ancona, Rachel M; Hart, Kimberly W; Kues, John R; Barczak, Christopher M; Lindsell, Christopher J; Fichtenbaum, Carl J; Lyons, Michael S
2017-11-23
Healthcare settings screen broadly for HIV. Public health settings use social network and partner testing ("Transmission Network Targeting (TNT)") to select high-risk individuals based on their contacts. HIV screening and TNT systems are not integrated, and healthcare settings have not implemented TNT. The study aimed to evaluate pilot implementation of multi-component, multi-venue TNT in conjunction with HIV screening by a healthcare setting. Our urban, academic health center implemented a TNT program in collaboration with the local health department for five months during 2011. High-risk or HIV positive patients of the infectious diseases clinic and emergency department HIV screening program were recruited to access social and partner networks via compensated peer-referral, testing of companions present with them, and partner notification services. Contacts became the next-generation index cases in a snowball recruitment strategy. The pilot TNT program yielded 485 HIV tests for 482 individuals through eight generations of recruitment with five (1.0%; 95% CI = 0.4%, 2.3%) new diagnoses. Of these, 246 (51.0%; 95% CI = 46.6%, 55.5%) reported that they had not been tested for HIV within the last 12 months and 383 (79.5%; 95% CI = 75.7%, 82.9%) had not been tested by the existing ED screening program within the last five years. TNT complements population screening by more directly targeting high-risk individuals and by expanding the population receiving testing. Information from existing healthcare services could be used to seed TNT programs, or TNT could be implemented within healthcare settings. Research evaluating multi-component, multi-venue HIV detection is necessary to maximize complementary approaches while minimizing redundancy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis.
Frey, Olivier; Misun, Patrick M; Fluri, David A; Hengstler, Jan G; Hierlemann, Andreas
2014-06-30
Integration of multiple three-dimensional microtissues into microfluidic networks enables new insights in how different organs or tissues of an organism interact. Here, we present a platform that extends the hanging-drop technology, used for multi-cellular spheroid formation, to multifunctional complex microfluidic networks. Engineered as completely open, 'hanging' microfluidic system at the bottom of a substrate, the platform features high flexibility in microtissue arrangements and interconnections, while fabrication is simple and operation robust. Multiple spheroids of different cell types are formed in parallel on the same platform; the different tissues are then connected in physiological order for multi-tissue experiments through reconfiguration of the fluidic network. Liquid flow is precisely controlled through the hanging drops, which enable nutrient supply, substance dosage and inter-organ metabolic communication. The possibility to perform parallelized microtissue formation on the same chip that is subsequently used for complex multi-tissue experiments renders the developed platform a promising technology for 'body-on-a-chip'-related research.
Rödiger, Stefan; Kramer, Toni; Frömmel, Ulrike; Weinreich, Jörg; Roggenbuck, Dirk; Guenther, Sebastian; Schaufler, Katharina; Schröder, Christian; Schierack, Peter
2015-09-01
We report the population structure and dynamics of one Escherichia coli population of wild mallard ducks in their natural environment over four winter seasons, following the characterization of 100 isolates each consecutive season. Macro-restriction analysis was used to define isolates variously as multi- or 1-year pulsed-field gel electrophoresis (PFGE) types. Isolates were characterized genotypically based on virulence-associated genes (VAGs), phylogenetic markers, and phenotypically based on haemolytic activity, antimicrobial resistance, adhesion to epithelial cells, microcin production, motility and carbohydrate metabolism. Only 12 out of 220 PFGE types were detectable over more than one winter, and classified as multi-year PFGE types. There was a dramatic change of PFGE types within two winter seasons. Nevertheless, the genetic pool (VAGs) and antimicrobial resistance pattern remained remarkably stable. The high diversity and dynamics of this E. coli population were also demonstrated by the occurrence of PFGE subtypes and differences between isolates of one PFGE type (based on VAGs, antimicrobial resistance and adhesion rates). Multi- and 1-year PFGE types differed in antimicrobial resistance, VAGs and adhesion. Other parameters were not prominent colonization factors. In conclusion, the high diversity, dynamics and stable genetic pool of an E. coli population seem to enable their successful colonization of host animal population over time. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Evolutionary transitions in controls reconcile adaptation with continuity of evolution.
Badyaev, Alexander V
2018-05-19
Evolution proceeds by accumulating functional solutions, necessarily forming an uninterrupted lineage from past solutions of ancestors to the current design of extant forms. At the population level, this process requires an organismal architecture in which the maintenance of local adaptation does not preclude the ability to innovate in the same traits and their continuous evolution. Representing complex traits as networks enables us to visualize a fundamental principle that resolves tension between adaptation and continuous evolution: phenotypic states encompassing adaptations traverse the continuous multi-layered landscape of past physical, developmental and functional associations among traits. The key concept that captures such traversing is network controllability - the ability to move a network from one state into another while maintaining its functionality (reflecting evolvability) and to efficiently propagate information or products through the network within a phenotypic state (maintaining its robustness). Here I suggest that transitions in network controllability - specifically in the topology of controls - help to explain how robustness and evolvability are balanced during evolution. I will focus on evolutionary transitions in degeneracy of metabolic networks - a ubiquitous property of phenotypic robustness where distinct pathways achieve the same end product - to suggest that associated changes in network controls is a common rule underlying phenomena as distinct as phenotypic plasticity, organismal accommodation of novelties, genetic assimilation, and macroevolutionary diversification. Capitalizing on well understood principles by which network structure translates into function of control nodes, I show that accumulating redundancy in one type of network controls inevitably leads to the emergence of another type of controls, forming evolutionary cycles of network controllability that, ultimately, reconcile local adaptation with continuity of evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Margitus, Michael R.; Tagliaferri, William A., Jr.; Sudit, Moises; LaMonica, Peter M.
2012-06-01
Understanding the structure and dynamics of networks are of vital importance to winning the global war on terror. To fully comprehend the network environment, analysts must be able to investigate interconnected relationships of many diverse network types simultaneously as they evolve both spatially and temporally. To remove the burden from the analyst of making mental correlations of observations and conclusions from multiple domains, we introduce the Dynamic Graph Analytic Framework (DYGRAF). DYGRAF provides the infrastructure which facilitates a layered multi-modal network analysis (LMMNA) approach that enables analysts to assemble previously disconnected, yet related, networks in a common battle space picture. In doing so, DYGRAF provides the analyst with timely situation awareness, understanding and anticipation of threats, and support for effective decision-making in diverse environments.
[Application of network biology on study of traditional Chinese medicine].
Tian, Sai-Sai; Yang, Jian; Zhao, Jing; Zhang, Wei-Dong
2018-01-01
With the completion of the human genome project, people have gradually recognized that the functions of the biological system are fulfilled through network-type interaction between genes, proteins and small molecules, while complex diseases are caused by the imbalance of biological processes due to a number of gene expression disorders. These have contributed to the rise of the concept of the "multi-target" drug discovery. Treatment and diagnosis of traditional Chinese medicine are based on holism and syndrome differentiation. At the molecular level, traditional Chinese medicine is characterized by multi-component and multi-target prescriptions, which is expected to provide a reference for the development of multi-target drugs. This paper reviews the application of network biology in traditional Chinese medicine in six aspects, in expectation to provide a reference to the modernized study of traditional Chinese medicine. Copyright© by the Chinese Pharmaceutical Association.
A multi-objective model for sustainable recycling of municipal solid waste.
Mirdar Harijani, Ali; Mansour, Saeed; Karimi, Behrooz
2017-04-01
The efficient management of municipal solid waste is a major problem for large and populated cities. In many countries, the majority of municipal solid waste is landfilled or dumped owing to an inefficient waste management system. Therefore, an optimal and sustainable waste management strategy is needed. This study introduces a recycling and disposal network for sustainable utilisation of municipal solid waste. In order to optimise the network, we develop a multi-objective mixed integer linear programming model in which the economic, environmental and social dimensions of sustainability are concurrently balanced. The model is able to: select the best combination of waste treatment facilities; specify the type, location and capacity of waste treatment facilities; determine the allocation of waste to facilities; consider the transportation of waste and distribution of processed products; maximise the profit of the system; minimise the environmental footprint; maximise the social impacts of the system; and eventually generate an optimal and sustainable configuration for municipal solid waste management. The proposed methodology could be applied to any region around the world. Here, the city of Tehran, Iran, is presented as a real case study to show the applicability of the methodology.
Hyper-Spectral Networking Concept of Operations and Future Air Traffic Management Simulations
NASA Technical Reports Server (NTRS)
Davis, Paul; Boisvert, Benjamin
2017-01-01
The NASA sponsored Hyper-Spectral Communications and Networking for Air Traffic Management (ATM) (HSCNA) project is conducting research to improve the operational efficiency of the future National Airspace System (NAS) through diverse and secure multi-band, multi-mode, and millimeter-wave (mmWave) wireless links. Worldwide growth of air transportation and the coming of unmanned aircraft systems (UAS) will increase air traffic density and complexity. Safe coordination of aircraft will require more capable technologies for communications, navigation, and surveillance (CNS). The HSCNA project will provide a foundation for technology and operational concepts to accommodate a significantly greater number of networked aircraft. This paper describes two of the HSCNA projects technical challenges. The first technical challenge is to develop a multi-band networking concept of operations (ConOps) for use in multiple phases of flight and all communication link types. This ConOps will integrate the advanced technologies explored by the HSCNA project and future operational concepts into a harmonized vision of future NAS communications and networking. The second technical challenge discussed is to conduct simulations of future ATM operations using multi-bandmulti-mode networking and technologies. Large-scale simulations will assess the impact, compared to todays system, of the new and integrated networks and technologies under future air traffic demand.
NASA Astrophysics Data System (ADS)
Parfenov, D. I.; Bolodurina, I. P.
2018-05-01
The article presents the results of developing an approach to detecting and protecting against network attacks on the corporate infrastructure deployed on the multi-cloud platform. The proposed approach is based on the combination of two technologies: a softwareconfigurable network and virtualization of network functions. The approach for searching for anomalous traffic is to use a hybrid neural network consisting of a self-organizing Kohonen network and a multilayer perceptron. The study of the work of the prototype of the system for detecting attacks, the method of forming a learning sample, and the course of experiments are described. The study showed that using the proposed approach makes it possible to increase the effectiveness of the obfuscation of various types of attacks and at the same time does not reduce the performance of the network
Hazard interactions and interaction networks (cascades) within multi-hazard methodologies
NASA Astrophysics Data System (ADS)
Gill, Joel C.; Malamud, Bruce D.
2016-08-01
This paper combines research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between multi-layer single-hazard approaches and multi-hazard approaches that integrate such interactions. This synthesis suggests that ignoring interactions between important environmental and anthropogenic processes could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. In this paper we proceed to present an enhanced multi-hazard framework through the following steps: (i) description and definition of three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment, (ii) outlining of three types of interaction relationship (triggering, increased probability, and catalysis/impedance), and (iii) assessment of the importance of networks of interactions (cascades) through case study examples (based on the literature, field observations and semi-structured interviews). We further propose two visualisation frameworks to represent these networks of interactions: hazard interaction matrices and hazard/process flow diagrams. Our approach reinforces the importance of integrating interactions between different aspects of the Earth system, together with human activity, into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability between successive hazards, and (iii) prioritise resource allocation for mitigation and disaster risk reduction.
Dáttilo, Wesley; Lara-Rodríguez, Nubia; Jordano, Pedro; Guimarães, Paulo R; Thompson, John N; Marquis, Robert J; Medeiros, Lucas P; Ortiz-Pulido, Raul; Marcos-García, Maria A; Rico-Gray, Victor
2016-11-30
Trying to unravel Darwin's entangled bank further, we describe the architecture of a network involving multiple forms of mutualism (pollination by animals, seed dispersal by birds and plant protection by ants) and evaluate whether this multi-network shows evidence of a structure that promotes robustness. We found that species differed strongly in their contributions to the organization of the multi-interaction network, and that only a few species contributed to the structuring of these patterns. Moreover, we observed that the multi-interaction networks did not enhance community robustness compared with each of the three independent mutualistic networks when analysed across a range of simulated scenarios of species extinction. By simulating the removal of highly interacting species, we observed that, overall, these species enhance network nestedness and robustness, but decrease modularity. We discuss how the organization of interlinked mutualistic networks may be essential for the maintenance of ecological communities, and therefore the long-term ecological and evolutionary dynamics of interactive, species-rich communities. We suggest that conserving these keystone mutualists and their interactions is crucial to the persistence of species-rich mutualistic assemblages, mainly because they support other species and shape the network organization. © 2016 The Author(s).
Walsh, Stephen J; Malanson, George P; Entwisle, Barbara; Rindfuss, Ronald R; Mucha, Peter J; Heumann, Benjamin W; McDaniel, Philip M; Frizzelle, Brian G; Verdery, Ashton M; Williams, Nathalie; Xiaozheng, Yao; Ding, Deng
2013-05-01
The design of an Agent-Based Model (ABM) is described that integrates Social and Land Use Modules to examine population-environment interactions in a former agricultural frontier in Northeastern Thailand. The ABM is used to assess household income and wealth derived from agricultural production of lowland, rain-fed paddy rice and upland field crops in Nang Rong District as well as remittances returned to the household from family migrants who are engaged in off-farm employment in urban destinations. The ABM is supported by a longitudinal social survey of nearly 10,000 households, a deep satellite image time-series of land use change trajectories, multi-thematic social and ecological data organized within a GIS, and a suite of software modules that integrate data derived from an agricultural cropping system model (DSSAT - Decision Support for Agrotechnology Transfer) and a land suitability model (MAXENT - Maximum Entropy), in addition to multi-dimensional demographic survey data of individuals and households. The primary modules of the ABM are the Initialization Module, Migration Module, Assets Module, Land Suitability Module, Crop Yield Module, Fertilizer Module, and the Land Use Change Decision Module. The architecture of the ABM is described relative to module function and connectivity through uni-directional or bi-directional links. In general, the Social Modules simulate changes in human population and social networks, as well as changes in population migration and household assets, whereas the Land Use Modules simulate changes in land use types, land suitability, and crop yields. We emphasize the description of the Land Use Modules - the algorithms and interactions between the modules are described relative to the project goals of assessing household income and wealth relative to shifts in land use patterns, household demographics, population migration, social networks, and agricultural activities that collectively occur within a marginalized environment that is subjected to a suite of endogenous and exogenous dynamics.
Walsh, Stephen J.; Malanson, George P.; Entwisle, Barbara; Rindfuss, Ronald R.; Mucha, Peter J.; Heumann, Benjamin W.; McDaniel, Philip M.; Frizzelle, Brian G.; Verdery, Ashton M.; Williams, Nathalie; Xiaozheng, Yao; Ding, Deng
2013-01-01
The design of an Agent-Based Model (ABM) is described that integrates Social and Land Use Modules to examine population-environment interactions in a former agricultural frontier in Northeastern Thailand. The ABM is used to assess household income and wealth derived from agricultural production of lowland, rain-fed paddy rice and upland field crops in Nang Rong District as well as remittances returned to the household from family migrants who are engaged in off-farm employment in urban destinations. The ABM is supported by a longitudinal social survey of nearly 10,000 households, a deep satellite image time-series of land use change trajectories, multi-thematic social and ecological data organized within a GIS, and a suite of software modules that integrate data derived from an agricultural cropping system model (DSSAT – Decision Support for Agrotechnology Transfer) and a land suitability model (MAXENT – Maximum Entropy), in addition to multi-dimensional demographic survey data of individuals and households. The primary modules of the ABM are the Initialization Module, Migration Module, Assets Module, Land Suitability Module, Crop Yield Module, Fertilizer Module, and the Land Use Change Decision Module. The architecture of the ABM is described relative to module function and connectivity through uni-directional or bi-directional links. In general, the Social Modules simulate changes in human population and social networks, as well as changes in population migration and household assets, whereas the Land Use Modules simulate changes in land use types, land suitability, and crop yields. We emphasize the description of the Land Use Modules – the algorithms and interactions between the modules are described relative to the project goals of assessing household income and wealth relative to shifts in land use patterns, household demographics, population migration, social networks, and agricultural activities that collectively occur within a marginalized environment that is subjected to a suite of endogenous and exogenous dynamics. PMID:24277975
Hayek, Samah; Tessler, Riki; Bord, Shiran; Endevelt, Ronit; Satran, Carmit; Livne, Irit; Khatib, Mohammed; Harel-Fisch, Yosi; Baron-Epel, Orna
2017-10-04
The Israeli Health Promoting School Network (HPSN) is actively committed to enhancing a healthy lifestyle for the entire school population. This study aimed to explore the contribution of school participation in the HPSN and students' individual characteristics to healthy eating and physical activity habits among Israeli school children aged 10-12 years. A cross-sectional survey was conducted among 4166 students in grades 4-6 from 28 schools. The schools were selected from a sample of HPSN affiliated and non-HPSN schools. The contribution of individual characteristics (grade, gender and subjective self-reported health education activities at school) and school characteristics (school type, population group, deprivation score) to healthy eating and physical activity habits was analyzed using multi-level hierarchical models. Multi-level analysis indicated that student's individual characteristic was significantly associated with healthy eating and physical activity habits. The subjective self-reported health education received at school was statistically significant factor associated with students' health behaviors. The school's affiliation with the HPSN was not associated with higher healthy eating and physical activity scores after adjusting for individual factors. These findings suggest that Israeli HPSN schools do not contribute to children's health behaviors more than other schools. Therefore, health promoting activities in HPSN schools need to be improved to justify their recognition as members of the HPS network and to fulfill their mission. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Using the OCLC union listing component for a statewide health sciences union list of serials.
Sutton, L S; Wolfgram, P A
1986-01-01
Union lists of serials are critical to the effective operation of interlibrary loan networks. The Michigan Health Sciences Libraries Association used the OCLC union list component to produce the Michigan Statewide Health Sciences Union List of Serials (MISHULS). MISHULS, which includes the serials holdings of ninety-three hospital health sciences libraries, is a subset of a statewide multi-type union list maintained on OCLC. The rationale for a statewide list and the criteria for choosing vendors are discussed. Typical costs are provided. Funding sources are identified and a unique approach to decentralized input is described. The benefits of resource sharing in a larger, multi-type library network are also explored. PMID:3708192
Using the OCLC union listing component for a statewide health sciences union list of serials.
Sutton, L S; Wolfgram, P A
1986-04-01
Union lists of serials are critical to the effective operation of interlibrary loan networks. The Michigan Health Sciences Libraries Association used the OCLC union list component to produce the Michigan Statewide Health Sciences Union List of Serials (MISHULS). MISHULS, which includes the serials holdings of ninety-three hospital health sciences libraries, is a subset of a statewide multi-type union list maintained on OCLC. The rationale for a statewide list and the criteria for choosing vendors are discussed. Typical costs are provided. Funding sources are identified and a unique approach to decentralized input is described. The benefits of resource sharing in a larger, multi-type library network are also explored.
A Type of Low-Latency Data Gathering Method with Multi-Sink for Sensor Networks
Sha, Chao; Qiu, Jian-mei; Li, Shu-yan; Qiang, Meng-ye; Wang, Ru-chuan
2016-01-01
To balance energy consumption and reduce latency on data transmission in Wireless Sensor Networks (WSNs), a type of low-latency data gathering method with multi-Sink (LDGM for short) is proposed in this paper. The network is divided into several virtual regions consisting of three or less data gathering units and the leader of each region is selected according to its residual energy as well as distance to all of the other nodes. Only the leaders in each region need to communicate with the mobile Sinks which have effectively reduced energy consumption and the end-to-end delay. Moreover, with the help of the sleep scheduling and the sensing radius adjustment strategies, redundancy in network coverage could also be effectively reduced. Simulation results show that LDGM is energy efficient in comparison with MST as well as MWST and its time efficiency on data collection is higher than one Sink based data gathering methods. PMID:27338401
Social Network Type and Subjective Well-Being in a National Sample of Older Americans
ERIC Educational Resources Information Center
Litwin, Howard; Shiovitz-Ezra, Sharon
2011-01-01
Purpose: The study considers the social networks of older Americans, a population for whom there have been few studies of social network type. It also examines associations between network types and well-being indicators: loneliness, anxiety, and happiness. Design and Methods: A subsample of persons aged 65 years and older from the first wave of…
Multi-phenomenology Observation Network Evaluation Tool'' (MONET)
NASA Astrophysics Data System (ADS)
Oltrogge, D.; North, P.; Vallado, D.
2014-09-01
Evaluating overall performance of an SSA "system-of-systems" observational network collecting against thousands of Resident Space Objects (RSO) is very difficult for typical tasking or scheduling-based analysis tools. This is further complicated by networks that have a wide variety of sensor types and phenomena, to include optical, radar and passive RF types, each having unique resource, ops tempo, competing customer and detectability constraints. We present details of the Multi-phenomenology Observation Network Evaluation Tool (MONET), which circumvents these difficulties by assessing the ideal performance of such a network via a digitized supply-vs-demand approach. Cells of each sensors supply time are distributed among RSO targets of interest to determine the average performance of the network against that set of RSO targets. Orbit Determination heuristics are invoked to represent observation quantity and geometry notionally required to obtain the desired orbit estimation quality. To feed this approach, we derive the detectability and collection rate performance of optical, radar and passive RF sensor physical and performance characteristics. We then prioritize the selected RSO targets according to object size, active/inactive status, orbit regime, and/or other considerations. Finally, the OD-derived tracking demands of each RSO of interest are levied against remaining sensor supply until either (a) all sensor time is exhausted; or (b) the list of RSO targets is exhausted. The outputs from MONET include overall network performance metrics delineated by sensor type, objects and orbits tracked, along with likely orbit accuracies which might result from the conglomerate network tracking.
Differences in social relations between persons with type 2 diabetes and the general population.
Hempler, Nana Folmann; Ekholm, Ola; Willaing, Ingrid
2013-06-01
Poor social support and lack of social network are well-established risk factors for morbidity and mortality in general populations. Good social relations, such as social support and network contacts, are associated with better self-management and fewer psychosocial problems in persons with type 2 diabetes. The aim of this study was to investigate whether persons with type 2 diabetes have poorer social relations than the general population. We conducted a cross-sectional survey in three settings: a specialist diabetes clinic (SDC) (n = 1084), a web panel (WP) consisting of persons with type 2 diabetes (n = 1491) and a sample from the 2010 Danish Health and Morbidity Survey, representative of the general population (n = 15,165). We compared social relations using multivariate logistic regression. Compared to the general population, persons with type 2 diabetes more often lived without a partner (SDC, OR 1.75, 95% CI 1.49-2.06; WP, OR 1.64, 95% CI 1.43-1.87), met with family less than once a month (SDC, OR 1.78, 95% CI 1.40-2.27; WP, OR 2.35, 95% CI 1.94-2.84) and were less certain they could count on help from others in case of illness (WP, OR 1.23, 95% CI 1.08-1.41). Our findings suggest that persons with type 2 diabetes have poorer social relations than the general population. From a public health point of view, special attention is needed with regards to strengthening existing networks and establishing alternative networks among persons with type 2 diabetes.
DOT National Transportation Integrated Search
2016-02-01
Transportation Cost Index is a performance measure for transportation and land use systems originally proposed and piloted by Reiff and Gregor (2005). It fills important niches of existing similar measures in term of policy areas covered and type of ...
Integration of multi-interface conversion channel using FPGA for modular photonic network
NASA Astrophysics Data System (ADS)
Janicki, Tomasz; Pozniak, Krzysztof T.; Romaniuk, Ryszard S.
2010-09-01
The article discusses the integration of different types of interfaces with FPGA circuits using a reconfigurable communication platform. The solution has been implemented in practice in a single node of a distributed measurement system. Construction of communication platform has been presented with its selected hardware modules, described in VHDL and implemented in FPGA circuits. The graphical user interface (GUI) has been described that allows a user to control the operation of the system. In the final part of the article selected practical solutions have been introduced. The whole measurement system resides on multi-gigabit optical network. The optical network construction is highly modular, reconfigurable and scalable.
Town, Katy; Bolt, Hikaru; Croxford, Sara; Cole, Michelle; Harris, Simon; Field, Nigel; Hughes, Gwenda
2018-06-01
Neisseria gonorrhoeae (NG) is a significant global public health concern due to rising diagnoses rates and antimicrobial resistance. Molecular combined with epidemiological data have been used to understand the distribution and spread of NG, as well as relationships between cases in sexual networks, but the public health value gained from these studies is unclear. We conducted a systematic review to examine how molecular epidemiological studies have informed understanding of sexual networks and NG transmission, and subsequent public health interventions. Five research databases were systematically searched up to 31st March 2017 for studies that used sequence-based DNA typing methods, including whole genome sequencing, and linked molecular data to patient-level epidemiological data. Data were extracted and summarised to identify common themes. Of the 49 studies included, 82% used NG Multi-antigen Sequence Typing. Gender and sexual orientation were commonly used to characterise sexual networks that were inferred using molecular clusters; clusters predominantly of one patient group often contained a small number of isolates from other patient groups. Suggested public health applications included using these data to target interventions at specific populations, confirm outbreaks, and inform partner management, but these were mainly untested. Combining molecular and epidemiological data has provided insight into sexual mixing patterns, and dissemination of NG, but few studies have applied these findings to design or evaluate public health interventions. Future studies should focus on the application of molecular epidemiology in public health practice to provide evidence for how to prevent and control NG. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Bin; An, Jubai; Brown, Carl E.; Chen, Weiwei
2003-05-01
In this paper an artificial neural network (ANN) approach, which is based on flexible nonlinear models for a very broad class of transfer functions, is applied for multi-spectral data analysis and modeling of airborne laser fluorosensor in order to differentiate between classes of oil on water surface. We use three types of algorithm: Perceptron Network, Back-Propagation (B-P) Network and Self-Organizing feature Maps (SOM) Network. Using the data in form of 64-channel spectra as inputs, the ANN presents the analysis and estimation results of the oil type on the basis of the type of background materials as outputs. The ANN is trained and tested using sample data set to the network. The results of the above 3 types of network are compared in this paper. It is proved that the training has developed a network that not only fits the training data, but also fits real-world data that the network will process operationally. The ANN model would play a significant role in the ocean oil-spill identification in the future.
Social network type and morale in old age.
Litwin, H
2001-08-01
The aim of this research was to derive network types among an elderly population and to examine the relationship of network type to morale. Secondary analysis of data compiled by the Israeli Central Bureau of Statistics (n = 2,079) was employed, and network types were derived through K-means cluster analysis. Respondents' morale scores were regressed on network types, controlling for background and health variables. Five network types were derived. Respondents in diverse or friends networks reported the highest morale; those in exclusively family or restricted networks had the lowest. Multivariate regression analysis underscored that certain network types were second among the study variables in predicting respondents' morale, preceded only by disability level (Adjusted R(2) =.41). Classification of network types allows consideration of the interpersonal environments of older people in relation to outcomes of interest. The relative effects on morale of elective versus obligated social ties, evident in the current analysis, is a case in point.
Confidant Network Types and Well-Being Among Older Europeans
Litwin, Howard; Stoeckel, Kimberly J.
2014-01-01
Purpose of the Study: To derive a typology of confidant networks among older adults in Europe and to examine them in relation to country differences and well-being (CASP-12). Design and Methods: The study population was composed of persons aged 65 and older in 16 countries from the 4th wave of the Survey of Health, Ageing and Retirement in Europe (N = 28,697). K-means cluster analysis was applied to data from a newly implemented name-generating network inventory. CASP-12 scores were regressed on network type controlling for country and potential sociodemographic and health confounders. Results: Six prototypical confidant network types were discerned, including proximal and distal family-based networks of varying configurations, as well as friend-based and other-based network types. Regional country differences in network type constellations were observed. Better well-being was found to be associated with network types with greater social capital. Respondents with no named confidants had the lowest CASP-12 scores, and those embedded in “other” network types also exhibited a negative association with well-being. Implications: The study demonstrates the utility of name-generating network inventories in understanding the social capital of older persons. It also shows that accessible family ties are strong correlates of well-being in this population. Finally, it documents the importance of improving the means to detect the small but significant subgroup of isolated older people—those who have no confidants on whom they may rely. PMID:23749390
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gastelum, Zoe N.; White, Amanda M.; Whitney, Paul D.
2013-06-04
The Multi-Source Signatures for Nuclear Programs project, part of Pacific Northwest National Laboratory’s (PNNL) Signature Discovery Initiative, seeks to computationally capture expert assessment of multi-type information such as text, sensor output, imagery, or audio/video files, to assess nuclear activities through a series of Bayesian network (BN) models. These models incorporate knowledge from a diverse range of information sources in order to help assess a country’s nuclear activities. The models span engineering topic areas, state-level indicators, and facility-specific characteristics. To illustrate the development, calibration, and use of BN models for multi-source assessment, we present a model that predicts a country’s likelihoodmore » to participate in the international nuclear nonproliferation regime. We validate this model by examining the extent to which the model assists non-experts arrive at conclusions similar to those provided by nuclear proliferation experts. We also describe the PNNL-developed software used throughout the lifecycle of the Bayesian network model development.« less
Balance of Interactions Determines Optimal Survival in Multi-Species Communities.
Choudhary, Anshul; Sinha, Sudeshna
2015-01-01
We consider a multi-species community modelled as a complex network of populations, where the links are given by a random asymmetric connectivity matrix J, with fraction 1 - C of zero entries, where C reflects the over-all connectivity of the system. The non-zero elements of J are drawn from a Gaussian distribution with mean μ and standard deviation σ. The signs of the elements Jij reflect the nature of density-dependent interactions, such as predatory-prey, mutualism or competition, and their magnitudes reflect the strength of the interaction. In this study we try to uncover the broad features of the inter-species interactions that determine the global robustness of this network, as indicated by the average number of active nodes (i.e. non-extinct species) in the network, and the total population, reflecting the biomass yield. We find that the network transitions from a completely extinct system to one where all nodes are active, as the mean interaction strength goes from negative to positive, with the transition getting sharper for increasing C and decreasing σ. We also find that the total population, displays distinct non-monotonic scaling behaviour with respect to the product μC, implying that survival is dependent not merely on the number of links, but rather on the combination of the sparseness of the connectivity matrix and the net interaction strength. Interestingly, in an intermediate window of positive μC, the total population is maximal, indicating that too little or too much positive interactions is detrimental to survival. Rather, the total population levels are optimal when the network has intermediate net positive connection strengths. At the local level we observe marked qualitative changes in dynamical patterns, ranging from anti-phase clusters of period 2 cycles and chaotic bands, to fixed points, under the variation of mean μ of the interaction strengths. We also study the correlation between synchronization and survival, and find that synchronization does not necessarily lead to extinction. Lastly, we propose an effective low dimensional map to capture the behavior of the entire network, and this provides a broad understanding of the interplay of the local dynamical patterns and the global robustness trends in the network.
A network model of knowledge accumulation through diffusion and upgrade
NASA Astrophysics Data System (ADS)
Zhuang, Enyu; Chen, Guanrong; Feng, Gang
2011-07-01
In this paper, we introduce a model to describe knowledge accumulation through knowledge diffusion and knowledge upgrade in a multi-agent network. Here, knowledge diffusion refers to the distribution of existing knowledge in the network, while knowledge upgrade means the discovery of new knowledge. It is found that the population of the network and the number of each agent’s neighbors affect the speed of knowledge accumulation. Four different policies for updating the neighboring agents are thus proposed, and their influence on the speed of knowledge accumulation and the topology evolution of the network are also studied.
Scale-invariance underlying the logistic equation and its social applications
NASA Astrophysics Data System (ADS)
Hernando, A.; Plastino, A.
2013-01-01
On the basis of dynamical principles we i) advance a derivation of the Logistic Equation (LE), widely employed (among multiple applications) in the simulation of population growth, and ii) demonstrate that scale-invariance and a mean-value constraint are sufficient and necessary conditions for obtaining it. We also generalize the LE to multi-component systems and show that the above dynamical mechanisms underlie a large number of scale-free processes. Examples are presented regarding city-populations, diffusion in complex networks, and popularity of technological products, all of them obeying the multi-component logistic equation in an either stochastic or deterministic way.
Bohnert, Amy S B; German, Danielle; Knowlton, Amy R; Latkin, Carl A
2010-03-01
Social support is a multi-dimensional construct that is important to drug use cessation. The present study identified types of supportive friends among the social network members in a community-based sample and examined the relationship of supporter-type classes with supporter, recipient, and supporter-recipient relationship characteristics. We hypothesized that the most supportive network members and their support recipients would be less likely to be current heroin/cocaine users. Participants (n=1453) were recruited from low-income neighborhoods with a high prevalence of drug use. Participants identified their friends via a network inventory, and all nominated friends were included in a latent class analysis and grouped based on their probability of providing seven types of support. These latent classes were included as the dependent variable in a multi-level regression of supporter drug use, recipient drug use, and other characteristics. The best-fitting latent class model identified five support patterns: friends who provided Little/No Support, Low/Moderate Support, High Support, Socialization Support, and Financial Support. In bivariate models, friends in the High, Low/Moderate, and Financial Support were less likely to use heroin or cocaine and had less conflict with and were more trusted by the support recipient than friends in the Low/No Support class. Individuals with supporters in those same support classes compared to the Low/No Support class were less likely to use heroin or cocaine, or to be homeless or female. Multivariable models suggested similar trends. Those with current heroin/cocaine use were less likely to provide or receive comprehensive support from friends. Published by Elsevier Ireland Ltd.
Generating global network structures by triad types
Ferligoj, Anuška; Žiberna, Aleš
2018-01-01
This paper addresses the question of whether one can generate networks with a given global structure (defined by selected blockmodels, i.e., cohesive, core-periphery, hierarchical, and transitivity), considering only different types of triads. Two methods are used to generate networks: (i) the newly proposed method of relocating links; and (ii) the Monte Carlo Multi Chain algorithm implemented in the ergm package in R. Most of the selected blockmodel types can be generated by considering all types of triads. The selection of only a subset of triads can improve the generated networks’ blockmodel structure. Yet, in the case of a hierarchical blockmodel without complete blocks on the diagonal, additional local structures are needed to achieve the desired global structure of generated networks. This shows that blockmodels can emerge based only on local processes that do not take attributes into account. PMID:29847563
Burholt, Vanessa; Dobbs, Christine
2014-08-01
This paper considers the support networks of older people in populations with a preponderance of multigenerational households and examines the most vulnerable network types in terms of loneliness and isolation. Current common typologies of support networks may not be sensitive to differences within and between different cultures. This paper uses cross-sectional data drawn from 590 elders (Gujaratis, Punjabis and Sylhetis) living in the United Kingdom and South Asia. Six variables were used in K-means cluster analysis to establish a new network typology. Two logistic regression models using loneliness and isolation as dependent variables assessed the contribution of the new network type to wellbeing. Four support networks were identified: 'Multigenerational Households: Older Integrated Networks', 'Multigenerational Households: Younger Family Networks', 'Family and Friends Integrated Networks' and 'Non-kin Restricted Networks'. Older South Asians with 'Non-kin Restricted Networks' were more likely to be lonely and isolated compared to others. Using network typologies developed with individualistically oriented cultures, distributions are skewed towards more robust network types and could underestimate the support needs of older people from familistic cultures, who may be isolated and lonely and with limited informal sources of help. The new typology identifies different network types within multigenerational households, identifies a greater proportion of older people with vulnerable networks and could positively contribute to service planning.
Population equations for degree-heterogenous neural networks
NASA Astrophysics Data System (ADS)
Kähne, M.; Sokolov, I. M.; Rüdiger, S.
2017-11-01
We develop a statistical framework for studying recurrent networks with broad distributions of the number of synaptic links per neuron. We treat each group of neurons with equal input degree as one population and derive a system of equations determining the population-averaged firing rates. The derivation rests on an assumption of a large number of neurons and, additionally, an assumption of a large number of synapses per neuron. For the case of binary neurons, analytical solutions can be constructed, which correspond to steps in the activity versus degree space. We apply this theory to networks with degree-correlated topology and show that complex, multi-stable regimes can result for increasing correlations. Our work is motivated by the recent finding of subnetworks of highly active neurons and the fact that these neurons tend to be connected to each other with higher probability.
Cavanagh, Jorunn Pauline; Klingenberg, Claus; Hanssen, Anne-Merethe; Fredheim, Elizabeth Aarag; Francois, Patrice; Schrenzel, Jacques; Flægstad, Trond; Sollid, Johanna Ericson
2012-06-01
The notoriously multi-resistant Staphylococcus haemolyticus is an emerging pathogen causing serious infections in immunocompromised patients. Defining the population structure is important to detect outbreaks and spread of antimicrobial resistant clones. Currently, the standard typing technique is pulsed-field gel electrophoresis (PFGE). In this study we describe novel molecular typing schemes for S. haemolyticus using multi locus sequence typing (MLST) and multi locus variable number of tandem repeats (VNTR) analysis. Seven housekeeping genes (MLST) and five VNTR loci (MLVF) were selected for the novel typing schemes. A panel of 45 human and veterinary S. haemolyticus isolates was investigated. The collection had diverse PFGE patterns (38 PFGE types) and was sampled over a 20 year-period from eight countries. MLST resolved 17 sequence types (Simpsons index of diversity [SID]=0.877) and MLVF resolved 14 repeat types (SID=0.831). We found a low sequence diversity. Phylogenetic analysis clustered the isolates in three (MLST) and one (MLVF) clonal complexes, respectively. Taken together, neither the MLST nor the MLVF scheme was suitable to resolve the population structure of this S. haemolyticus collection. Future MLVF and MLST schemes will benefit from addition of more variable core genome sequences identified by comparing different fully sequenced S. haemolyticus genomes. Copyright © 2012 Elsevier B.V. All rights reserved.
Social network types among older Korean adults: Associations with subjective health.
Sohn, Sung Yun; Joo, Won-Tak; Kim, Woo Jung; Kim, Se Joo; Youm, Yoosik; Kim, Hyeon Chang; Park, Yeong-Ran; Lee, Eun
2017-01-01
With population aging now a global phenomenon, the health of older adults is becoming an increasingly important issue. Because the Korean population is aging at an unprecedented rate, preparing for public health problems associated with old age is particularly salient in this country. As the physical and mental health of older adults is related to their social relationships, investigating the social networks of older adults and their relationship to health status is important for establishing public health policies. The aims of this study were to identify social network types among older adults in South Korea and to examine the relationship of these social network types with self-rated health and depression. Data from the Korean Social Life, Health, and Aging Project were analyzed. Model-based clustering using finite normal mixture modeling was conducted to identify the social network types based on ten criterion variables of social relationships and activities: marital status, number of children, number of close relatives, number of friends, frequency of attendance at religious services, attendance at organized group meetings, in-degree centrality, out-degree centrality, closeness centrality, and betweenness centrality. Multivariate regression analysis was conducted to examine associations between the identified social network types and self-rated health and depression. The model-based clustering analysis revealed that social networks clustered into five types: diverse, family, congregant, congregant-restricted, and restricted. Diverse or family social network types were significantly associated with more favorable subjective mental health, whereas the restricted network type was significantly associated with poorer ratings of mental and physical health. In addition, our analysis identified unique social network types related to religious activities. In summary, we developed a comprehensive social network typology for older Korean adults. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Wenyuan; Dai, Chao; Liu, Chun-Chi
2012-01-01
Abstract Current network analysis methods all focus on one or multiple networks of the same type. However, cells are organized by multi-layer networks (e.g., transcriptional regulatory networks, splicing regulatory networks, protein-protein interaction networks), which interact and influence each other. Elucidating the coupling mechanisms among those different types of networks is essential in understanding the functions and mechanisms of cellular activities. In this article, we developed the first computational method for pattern mining across many two-layered graphs, with the two layers representing different types yet coupled biological networks. We formulated the problem of identifying frequent coupled clusters between the two layers of networks into a tensor-based computation problem, and proposed an efficient solution to solve the problem. We applied the method to 38 two-layered co-transcription and co-splicing networks, derived from 38 RNA-seq datasets. With the identified atlas of coupled transcription-splicing modules, we explored to what extent, for which cellular functions, and by what mechanisms transcription-splicing coupling takes place. PMID:22697243
Functional modules by relating protein interaction networks and gene expression.
Tornow, Sabine; Mewes, H W
2003-11-01
Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships.
Functional modules by relating protein interaction networks and gene expression
Tornow, Sabine; Mewes, H. W.
2003-01-01
Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships. PMID:14576317
A scoring mechanism for the rank aggregation of network robustness
NASA Astrophysics Data System (ADS)
Yazdani, Alireza; Dueñas-Osorio, Leonardo; Li, Qilin
2013-10-01
To date, a number of metrics have been proposed to quantify inherent robustness of network topology against failures. However, each single metric usually only offers a limited view of network vulnerability to different types of random failures and targeted attacks. When applied to certain network configurations, different metrics rank network topology robustness in different orders which is rather inconsistent, and no single metric fully characterizes network robustness against different modes of failure. To overcome such inconsistency, this work proposes a multi-metric approach as the basis of evaluating aggregate ranking of network topology robustness. This is based on simultaneous utilization of a minimal set of distinct robustness metrics that are standardized so to give way to a direct comparison of vulnerability across networks with different sizes and configurations, hence leading to an initial scoring of inherent topology robustness. Subsequently, based on the inputs of initial scoring a rank aggregation method is employed to allocate an overall ranking of robustness to each network topology. A discussion is presented in support of the presented multi-metric approach and its applications to more realistically assess and rank network topology robustness.
NASA Astrophysics Data System (ADS)
Azimi, S.; Delavar, M. R.; Rajabifard, A.
2017-09-01
In response to natural disasters, efficient planning for optimum allocation of the medical assistance to wounded as fast as possible and wayfinding of first responders immediately to minimize the risk of natural disasters are of prime importance. This paper aims to propose a multi-agent based modeling for optimum allocation of space to emergency centers according to the population, street network and number of ambulances in emergency centers by constraint network Voronoi diagrams, wayfinding of ambulances from emergency centers to the wounded locations and return based on the minimum ambulances travel time and path length implemented by NSGA and the use of smart city facilities to accelerate the rescue operation. Simulated annealing algorithm has been used for minimizing the difference between demands and supplies of the constrained network Voronoi diagrams. In the proposed multi-agent system, after delivering the location of the wounded and their symptoms, the constraint network Voronoi diagram for each emergency center is determined. This process was performed simultaneously for the multi-injuries in different Voronoi diagrams. In the proposed multi-agent system, the priority of the injuries for receiving medical assistance and facilities of the smart city for reporting the blocked streets was considered. Tehran Municipality District 5 was considered as the study area and during 3 minutes intervals, the volunteers reported the blocked street. The difference between the supply and the demand divided to the supply in each Voronoi diagram decreased to 0.1601. In the proposed multi-agent system, the response time of the ambulances is decreased about 36.7%.
Association of Problem Gambling with Type of Gambling Among Italian General Population.
Scalese, Marco; Bastiani, Luca; Salvadori, Stefano; Gori, Mercedes; Lewis, Isabella; Jarre, Paolo; Molinaro, Sabrina
2016-09-01
The origin of gambling disorders is uncertain; however, research has shown a tendency to focus on specific types of games as a potential important risk factor. The principal aim of this study is to examine the relationships between types of gambling practices and gambling disorder. The data were extracted from IPSAD-Italia(®) 2010-2011 (Italian Population Survey on Alcohol and other Drugs), a survey among the Italian general population which collects socio-cultural information, information about the use of drugs, legal substances and gambling habits. In order to identify the "problem gambler" we used the Problem Gambling Severity Index. Three groups are considered in this analysis: no-risk gamblers, low-risk gamblers, moderate-risk/problem gamblers. Type of gambling practice was considered among two types of gambler: one-game players and multi-games players. 1.9 % of multi-game players were considered problem gamblers, only 0.6 % of one-game players were problem gamblers (p < 0.001). The percentage of players who were low and moderate-risk gamblers was approximately double among multi-game players, with 14.4 % low-risk and 5.8 % moderate-risk; compared with 7.7 % low-risk and 2.5 % moderate risk among one-game players. Results of ordinal logistic regression analysis confirmed that higher level of gambling severity was associated with multi-game players (OR = 2.23, p < 0.0001). Video-poker/slot-machines show the highest association with gambling severity among both one-game players and multi-game players, with scores of OR equal to 4.3 and 4.5 respectively. These findings suggest a popular perception of risk associated with this type of gambling for the development of gambling problems.
Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks.
Hagen, Espen; Dahmen, David; Stavrinou, Maria L; Lindén, Henrik; Tetzlaff, Tom; van Albada, Sacha J; Grün, Sonja; Diesmann, Markus; Einevoll, Gaute T
2016-12-01
With rapidly advancing multi-electrode recording technology, the local field potential (LFP) has again become a popular measure of neuronal activity in both research and clinical applications. Proper understanding of the LFP requires detailed mathematical modeling incorporating the anatomical and electrophysiological features of neurons near the recording electrode, as well as synaptic inputs from the entire network. Here we propose a hybrid modeling scheme combining efficient point-neuron network models with biophysical principles underlying LFP generation by real neurons. The LFP predictions rely on populations of network-equivalent multicompartment neuron models with layer-specific synaptic connectivity, can be used with an arbitrary number of point-neuron network populations, and allows for a full separation of simulated network dynamics and LFPs. We apply the scheme to a full-scale cortical network model for a ∼1 mm 2 patch of primary visual cortex, predict laminar LFPs for different network states, assess the relative LFP contribution from different laminar populations, and investigate effects of input correlations and neuron density on the LFP. The generic nature of the hybrid scheme and its public implementation in hybridLFPy form the basis for LFP predictions from other and larger point-neuron network models, as well as extensions of the current application with additional biological detail. © The Author 2016. Published by Oxford University Press.
Population activity structure of excitatory and inhibitory neurons
Doiron, Brent
2017-01-01
Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure. PMID:28817581
Zhang, Guanglin; Codoni, Veronica; Yang, Jun; Wilson, James G.; Levy, Daniel; Lusis, Aldons J.; Liu, Simin; Yang, Xia
2017-01-01
Cardiovascular diseases (CVD) and type 2 diabetes (T2D) are closely interrelated complex diseases likely sharing overlapping pathogenesis driven by aberrant activities in gene networks. However, the molecular circuitries underlying the pathogenic commonalities remain poorly understood. We sought to identify the shared gene networks and their key intervening drivers for both CVD and T2D by conducting a comprehensive integrative analysis driven by five multi-ethnic genome-wide association studies (GWAS) for CVD and T2D, expression quantitative trait loci (eQTLs), ENCODE, and tissue-specific gene network models (both co-expression and graphical models) from CVD and T2D relevant tissues. We identified pathways regulating the metabolism of lipids, glucose, and branched-chain amino acids, along with those governing oxidation, extracellular matrix, immune response, and neuronal system as shared pathogenic processes for both diseases. Further, we uncovered 15 key drivers including HMGCR, CAV1, IGF1 and PCOLCE, whose network neighbors collectively account for approximately 35% of known GWAS hits for CVD and 22% for T2D. Finally, we cross-validated the regulatory role of the top key drivers using in vitro siRNA knockdown, in vivo gene knockout, and two Hybrid Mouse Diversity Panels each comprised of >100 strains. Findings from this in-depth assessment of genetic and functional data from multiple human cohorts provide strong support that common sets of tissue-specific molecular networks drive the pathogenesis of both CVD and T2D across ethnicities and help prioritize new therapeutic avenues for both CVD and T2D. PMID:28957322
Dynamics of a network of phase oscillators with plastic couplings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nekorkin, V. I.; Kasatkin, D. V.; Moscow Institute of Physics and Technology
The processes of synchronization and phase cluster formation are investigated in a complex network of dynamically coupled phase oscillators. Coupling weights evolve dynamically depending on the phase relations between the oscillators. It is shown that the network exhibits several types of behavior: the globally synchronized state, two-cluster and multi-cluster states, different synchronous states with a fixed phase relationship between the oscillators and chaotic desynchronized state.
Neuro-classification of multi-type Landsat Thematic Mapper data
NASA Technical Reports Server (NTRS)
Zhuang, Xin; Engel, Bernard A.; Fernandez, R. N.; Johannsen, Chris J.
1991-01-01
Neural networks have been successful in image classification and have shown potential for classifying remotely sensed data. This paper presents classifications of multitype Landsat Thematic Mapper (TM) data using neural networks. The Landsat TM Image for March 23, 1987 with accompanying ground observation data for a study area In Miami County, Indiana, U.S.A. was utilized to assess recognition of crop residues. Principal components and spectral ratio transformations were performed on the TM data. In addition, a layer of the geographic information system (GIS) for the study site was incorporated to generate GIS-enhanced TM data. This paper discusses (1) the performance of neuro-classification on each type of data, (2) how neural networks recognized each type of data as a new image and (3) comparisons of the results for each type of data obtained using neural networks, maximum likelihood, and minimum distance classifiers.
Bailey, Howard; Agger, William; Baumgardner, Dennis; Burmester, James K; Cisler, Ron A; Evertsen, Jennifer; Glurich, Ingrid; Hartman, David; Yale, Steven H; DeMets, David
2009-12-01
In response to the goals of the Wisconsin Partnership Program and the National Institutes of Health (NIH) Initiatives to Improve Healthcare, the Wisconsin Network for Health Research (WiNHR) was formed. As a collaborative, multi-disciplinary statewide research network, WiNHR encourages and fosters the discovery and application of scientific knowledge for researchers and practitioners throughout Wisconsin. The 4 founding institutions--Aurora Health Care/Center for Urban Population Health (CUPH), Gundersen Lutheran Medical Foundation, Marshfield Clinic Research Foundation, and the University of Wisconsin-Madison--representing geographically diverse areas of the state, are optimistic and committed to WiNHR's success. This optimism is based on the relevance of its goals to public health, the quality of statewide health care research, and, most importantly, the residents of Wisconsin who recognize the value of health research.
Bailey, Howard; Agger, William; Baumgardner, Dennis; Burmester, James K.; Cisler, Ron A.; Evertsen, Jennifer; Glurich, Ingrid; Hartman, David; Yale, Steven H.; DeMets, David
2010-01-01
In response to the goals of the Wisconsin Partnership Program and the National Institutes of Health (NIH) Initiatives to Improve Healthcare, the Wisconsin Network for Health Research (WiNHR) was formed. As a collaborative, multi-disciplinary statewide research network, WiNHR encourages and fosters the discovery and application of scientific knowledge for researchers and practitioners throughout Wisconsin. The 4 founding institutions—Aurora Health Care/Center for Urban Population Health (CUPH), Gundersen Lutheran Medical Foundation, Marshfield Clinic Research Foundation, and the University of Wisconsin-Madison—representing geographically diverse areas of the state, are optimistic and committed to WiNHR’s success. This optimism is based on the relevance of its goals to public health, the quality of statewide health care research, and, most importantly, the residents of Wisconsin who recognize the value of health research. PMID:20131687
Grid Transmission Expansion Planning Model Based on Grid Vulnerability
NASA Astrophysics Data System (ADS)
Tang, Quan; Wang, Xi; Li, Ting; Zhang, Quanming; Zhang, Hongli; Li, Huaqiang
2018-03-01
Based on grid vulnerability and uniformity theory, proposed global network structure and state vulnerability factor model used to measure different grid models. established a multi-objective power grid planning model which considering the global power network vulnerability, economy and grid security constraint. Using improved chaos crossover and mutation genetic algorithm to optimize the optimal plan. For the problem of multi-objective optimization, dimension is not uniform, the weight is not easy given. Using principal component analysis (PCA) method to comprehensive assessment of the population every generation, make the results more objective and credible assessment. the feasibility and effectiveness of the proposed model are validated by simulation results of Garver-6 bus system and Garver-18 bus.
An, Ruopeng; Khan, Naiman; Loehmer, Emily; McCaffrey, Jennifer
2017-03-01
We assessed the network of agencies in local communities that promote healthy eating and lifestyles among populations with limited resources. Network surveys were administered among 159 Illinois agencies identified as serving limited-resource audiences categorized into 8 types: K-12 schools, early childhood centers, emergency food providers, health-related agencies, social resource centers, low-income/subsidized housing complexes, continuing education organizations, and others. Network analysis was conducted to examine 4 network structures - communications, funding, cooperation, and collaboration networks between agencies within each county/county cluster. Agencies in a network were found to be loosely connected, indicated by low network density. Reporting accuracy might be of concern, indicated by low reciprocity. Agencies in a network are decentralized rather than centralized around a few influential agencies, indicated by low betweenness centrality. There is suggestive evidence regarding homophily in a network, indicated by some significant correlations within agencies of the same type. Agencies connected in one network are significantly more likely to be connected in all the other networks as well. Promoting healthy eating and lifestyles among populations with limited resources warrants strong partnership across agencies in communities. Network analysis serves as a useful tool to evaluate community partnerships and facilitate coalition building..
Butun, Ismail; Ra, In-Ho; Sankar, Ravi
2015-01-01
In this work, an intrusion detection system (IDS) framework based on multi-level clustering for hierarchical wireless sensor networks is proposed. The framework employs two types of intrusion detection approaches: (1) “downward-IDS (D-IDS)” to detect the abnormal behavior (intrusion) of the subordinate (member) nodes; and (2) “upward-IDS (U-IDS)” to detect the abnormal behavior of the cluster heads. By using analytical calculations, the optimum parameters for the D-IDS (number of maximum hops) and U-IDS (monitoring group size) of the framework are evaluated and presented. PMID:26593915
Dynamic modeling and parameter estimation of a radial and loop type distribution system network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun Qui; Heng Chen; Girgis, A.A.
1993-05-01
This paper presents a new identification approach to three-phase power system modeling and model reduction taking power system network as multi-input, multi-output (MIMO) processes. The model estimate can be obtained in discrete-time input-output form, discrete- or continuous-time state-space variable form, or frequency-domain impedance transfer function matrix form. An algorithm for determining the model structure of this MIMO process is described. The effect of measurement noise on the approach is also discussed. This approach has been applied on a sample system and simulation results are also presented in this paper.
Comodulation of dopamine and serotonin on prefrontal cortical rhythms: a theoretical study
Wang, Da-Hui; Wong-Lin, KongFatt
2013-01-01
The prefrontal cortex (PFC) is implicated to play an important role in cognitive control. Abnormal PFC activities and rhythms have been observed in some neurological and neuropsychiatric disorders, and evidences suggest influences from the neuromodulators dopamine (DA) and serotonin (5-HT). Despite the high level of interest in these brain systems, the combined effects of DA and 5-HT modulation on PFC dynamics remain unknown. In this work, we build a mathematical model that incorporates available experimental findings to systematically study the comodulation of DA and 5-HT on the network behavior, focusing on beta and gamma band oscillations. Single neuronal model shows pyramidal cells with 5-HT1A and 2A receptors can be non-monotonically modulated by 5-HT. Two-population excitatory-inhibitory type network consisting of pyramidal cells with D1 receptors can provide rich repertoires of oscillatory behavior. In particular, 5-HT and DA can modulate the amplitude and frequency of the oscillations, which can emerge or cease, depending on receptor types. Certain receptor combinations are conducive for the robustness of the oscillatory regime, or the existence of multiple discrete oscillatory regimes. In a multi-population heterogeneous model that takes into account possible combination of receptors, we demonstrate that robust network oscillations require high DA concentration. We also show that selective D1 receptor antagonists (agonists) tend to suppress (enhance) network oscillations, increase the frequency from beta toward gamma band, while selective 5-HT1A antagonists (agonists) act in opposite ways. Selective D2 or 5-HT2A receptor antagonists (agonists) can lead to decrease (increase) in oscillation amplitude, but only 5-HT2A antagonists (agonists) can increase (decrease) the frequency. These results are comparable to some pharmacological effects. Our work illustrates the complex mechanisms of DA and 5-HT when operating simultaneously through multiple receptors. PMID:23935568
NASA Astrophysics Data System (ADS)
Niakan, F.; Vahdani, B.; Mohammadi, M.
2015-12-01
This article proposes a multi-objective mixed-integer model to optimize the location of hubs within a hub network design problem under uncertainty. The considered objectives include minimizing the maximum accumulated travel time, minimizing the total costs including transportation, fuel consumption and greenhouse emissions costs, and finally maximizing the minimum service reliability. In the proposed model, it is assumed that for connecting two nodes, there are several types of arc in which their capacity, transportation mode, travel time, and transportation and construction costs are different. Moreover, in this model, determining the capacity of the hubs is part of the decision-making procedure and balancing requirements are imposed on the network. To solve the model, a hybrid solution approach is utilized based on inexact programming, interval-valued fuzzy programming and rough interval programming. Furthermore, a hybrid multi-objective metaheuristic algorithm, namely multi-objective invasive weed optimization (MOIWO), is developed for the given problem. Finally, various computational experiments are carried out to assess the proposed model and solution approaches.
Clinical Trials in Your Community
The NCI Community Oncology Research Program (NCORP) is a national network of investigators, cancer care providers, academic institutions, and other organizations. NCORP conducts multi-site cancer clinical trials and studies in diverse populations in community-based healthcare systems across the United States and Puerto Rico.
Inter-allotropic transformations in the heterogeneous carbon nanotube networks.
Jung, Hyun Young; Jung, Sung Mi; Kim, Dong Won; Jung, Yung Joon
2017-01-19
The allotropic transformations of carbon provide an immense technological interest for tailoring the desired molecular structures in the scalable nanoelectronic devices. Herein, we explore the effects of morphology and geometric alignment of the nanotubes for the re-engineering of carbon bonds in the heterogeneous carbon nanotube (CNT) networks. By applying alternating voltage pulses and electrical forces, the single-walled CNTs in networks were predominantly transformed into other predetermined sp 2 carbon structures (multi-walled CNTs and multi-layered graphitic nanoribbons), showing a larger intensity in a coalescence-induced mode of Raman spectra with the increasing channel width. Moreover, the transformed networks have a newly discovered sp 2 -sp 3 hybrid nanostructures in accordance with the alignment. The sp 3 carbon structures at the small channel are controlled, such that they contain up to about 29.4% networks. This study provides a controllable method for specific types of inter-allotropic transformations/hybridizations, which opens up the further possibility for the engineering of nanocarbon allotropes in the robust large-scale network-based devices.
Quantum Prisoner’s Dilemma game on hypergraph networks
NASA Astrophysics Data System (ADS)
Pawela, Łukasz; Sładkowski, Jan
2013-02-01
We study the possible advantages of adopting quantum strategies in multi-player evolutionary games. We base our study on the three-player Prisoner’s Dilemma (PD) game. In order to model the simultaneous interaction between three agents we use hypergraphs and hypergraph networks. In particular, we study two types of networks: a random network and a SF-like network. The obtained results show that in the case of a three-player game on a hypergraph network, quantum strategies are not necessarily stochastically stable strategies. In some cases, the defection strategy can be as good as a quantum one.
Adding the 'heart' to hanging drop networks for microphysiological multi-tissue experiments.
Rismani Yazdi, Saeed; Shadmani, Amir; Bürgel, Sebastian C; Misun, Patrick M; Hierlemann, Andreas; Frey, Olivier
2015-11-07
Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid-air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip.
Analysis of electrical tomography sensitive field based on multi-terminal network and electric field
NASA Astrophysics Data System (ADS)
He, Yongbo; Su, Xingguo; Xu, Meng; Wang, Huaxiang
2010-08-01
Electrical tomography (ET) aims at the study of the conductivity/permittivity distribution of the interested field non-intrusively via the boundary voltage/current. The sensor is usually regarded as an electric field, and finite element method (FEM) is commonly used to calculate the sensitivity matrix and to optimize the sensor architecture. However, only the lumped circuit parameters can be measured by the data acquisition electronics, it's very meaningful to treat the sensor as a multi terminal network. Two types of multi terminal network with common node and common loop topologies are introduced. Getting more independent measurements and making more uniform current distribution are the two main ways to minimize the inherent ill-posed effect. By exploring the relationships of network matrixes, a general formula is proposed for the first time to calculate the number of the independent measurements. Additionally, the sensitivity distribution is analyzed with FEM. As a result, quasi opposite mode, an optimal single source excitation mode, that has the advantages of more uniform sensitivity distribution and more independent measurements, is proposed.
Cooperation among cancer cells as public goods games on Voronoi networks.
Archetti, Marco
2016-05-07
Cancer cells produce growth factors that diffuse and sustain tumour proliferation, a form of cooperation that can be studied using mathematical models of public goods in the framework of evolutionary game theory. Cell populations, however, form heterogeneous networks that cannot be described by regular lattices or scale-free networks, the types of graphs generally used in the study of cooperation. To describe the dynamics of growth factor production in populations of cancer cells, I study public goods games on Voronoi networks, using a range of non-linear benefits that account for the known properties of growth factors, and different types of diffusion gradients. The results are surprisingly similar to those obtained on regular graphs and different from results on scale-free networks, revealing that network heterogeneity per se does not promote cooperation when public goods diffuse beyond one-step neighbours. The exact shape of the diffusion gradient is not crucial, however, whereas the type of non-linear benefit is an essential determinant of the dynamics. Public goods games on Voronoi networks can shed light on intra-tumour heterogeneity, the evolution of resistance to therapies that target growth factors, and new types of cell therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Design of shared unit-dose drug distribution network using multi-level particle swarm optimization.
Chen, Linjie; Monteiro, Thibaud; Wang, Tao; Marcon, Eric
2018-03-01
Unit-dose drug distribution systems provide optimal choices in terms of medication security and efficiency for organizing the drug-use process in large hospitals. As small hospitals have to share such automatic systems for economic reasons, the structure of their logistic organization becomes a very sensitive issue. In the research reported here, we develop a generalized multi-level optimization method - multi-level particle swarm optimization (MLPSO) - to design a shared unit-dose drug distribution network. Structurally, the problem studied can be considered as a type of capacitated location-routing problem (CLRP) with new constraints related to specific production planning. This kind of problem implies that a multi-level optimization should be performed in order to minimize logistic operating costs. Our results show that with the proposed algorithm, a more suitable modeling framework, as well as computational time savings and better optimization performance are obtained than that reported in the literature on this subject.
Traffic placement policies for a multi-band network
NASA Technical Reports Server (NTRS)
Maly, Kurt J.; Foudriat, E. C.; Game, David; Mukkamala, R.; Overstreet, C. Michael
1990-01-01
Recently protocols were introduced that enable the integration of synchronous traffic (voice or video) and asynchronous traffic (data) and extend the size of local area networks without loss in speed or capacity. One of these is DRAMA, a multiband protocol based on broadband technology. It provides dynamic allocation of bandwidth among clusters of nodes in the total network. A number of traffic placement policies for such networks are proposed and evaluated. Metrics used for performance evaluation include average network access delay, degree of fairness of access among the nodes, and network throughput. The feasibility of the DRAMA protocol is established through simulation studies. DRAMA provides effective integration of synchronous and asychronous traffic due to its ability to separate traffic types. Under the suggested traffic placement policies, the DRAMA protocol is shown to handle diverse loads, mixes of traffic types, and numbers of nodes, as well as modifications to the network structure and momentary traffic overloads.
Neighbor Discovery Algorithm in Wireless Local Area Networks Using Multi-beam Directional Antennas
NASA Astrophysics Data System (ADS)
Wang, Jin; Peng, Wei; Liu, Song
2017-10-01
Neighbor discovery is an important step for Wireless Local Area Networks (WLAN) and the use of multi-beam directional antennas can greatly improve the network performance. However, most neighbor discovery algorithms in WLAN, based on multi-beam directional antennas, can only work effectively in synchronous system but not in asynchro-nous system. And collisions at AP remain a bottleneck for neighbor discovery. In this paper, we propose two asynchrono-us neighbor discovery algorithms: asynchronous hierarchical scanning (AHS) and asynchronous directional scanning (ADS) algorithm. Both of them are based on three-way handshaking mechanism. AHS and ADS reduce collisions at AP to have a good performance in a hierarchical way and directional way respectively. In the end, the performance of the AHS and ADS are tested on OMNeT++. Moreover, it is analyzed that different application scenarios and the factors how to affect the performance of these algorithms. The simulation results show that AHS is suitable for the densely populated scenes around AP while ADS is suitable for that most of the neighborhood nodes are far from AP.
Network Models: An Underutilized Tool in Wildlife Epidemiology?
Craft, Meggan E.; Caillaud, Damien
2011-01-01
Although the approach of contact network epidemiology has been increasing in popularity for studying transmission of infectious diseases in human populations, it has generally been an underutilized approach for investigating disease outbreaks in wildlife populations. In this paper we explore the differences between the type of data that can be collected on human and wildlife populations, provide an update on recent advances that have been made in wildlife epidemiology by using a network approach, and discuss why networks might have been underutilized and why networks could and should be used more in the future. We conclude with ideas for future directions and a call for field biologists and network modelers to engage in more cross-disciplinary collaboration. PMID:21527981
Schwalger, Tilo; Deger, Moritz; Gerstner, Wulfram
2017-04-01
Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50-2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.
Henry, Chantal; Etain, Bruno; Mathieu, Flavie; Raust, Aurélie; Vibert, Jean-Francois; Scott, Jan; Leboyer, Marion
2011-06-01
Bipolar disorders are a major public health concern. Efforts to provide optimal care by general practitioners and psychiatrists are undermined by the complexity of the disorder and difficulties in applying clinical practice guidelines and new research findings to the spectrum of cases seen in day to day practice. A national network of bipolar expert centres was established. Each centre has established strong links to local health services and provides support to clinicians in delivering personalized care plans derived from systematic case assessments undertaken at the centre. A common set of diagnostic and clinical assessment tools has been adopted at eight centres. Evaluations are undertaken by trained assessors and cross-centre reliability is monitored. A web application, e-bipolar© is used to record data in a common computerized medical file. Anonymized data is entered into a shared national database for use in multi-centre audit and research. Instead of offering treatment advice based on clinical practice guidelines recommendations for selected sub-populations of patients (a 'top-down' approach), the French bipolar network offers systematic, comprehensive, longitudinal, and multi-dimensional assessments of cases representative of general bipolar populations. This 'bottom-up' strategy may offer a more efficient and effective way to transfer knowledge and share expertise as the referrer can appreciate the rationale underpinning suggested treatment protocols and more readily apply such principles and approaches to other cases. The network also builds an infrastructure for clinical cohort and comparative-effectiveness research on more representative patient populations. Copyright © 2010 Elsevier B.V. All rights reserved.
Page, Rachel A.; Sukala, William R.; Giri, Mamta; Ghimbovschi, Svetlana D.; Hayat, Irum; Cheema, Birinder S.; Lys, Isabelle; Leikis, Murray; Sheard, Phillip W.; Wakefield, St. John; Breier, Bernhard; Hathout, Yetrib; Brown, Kristy; Marathi, Ramya; Orkunoglu-Suer, Funda E.; Devaney, Joseph M.; Leiken, Benjamin; Many, Gina; Krebs, Jeremy; Hopkins, Will G.; Hoffman, Eric P.
2014-01-01
Epigenomic regulation of the transcriptome by DNA methylation and posttranscriptional gene silencing by miRNAs are potential environmental modulators of skeletal muscle plasticity to chronic exercise in healthy and diseased populations. We utilized transcriptome networks to connect exercise-induced differential methylation and miRNA with functional skeletal muscle plasticity. Biopsies of the vastus lateralis were collected from middle-aged Polynesian men and women with morbid obesity (44 kg/m2 ± 10) and Type 2 diabetes before and following 16 wk of resistance (n = 9) or endurance training (n = 8). Longitudinal transcriptome, methylome, and microRNA (miRNA) responses were obtained via microarray, filtered by novel effect-size based false discovery rate probe selection preceding bioinformatic interrogation. Metabolic and microvascular transcriptome topology dominated the network landscape following endurance exercise. Lipid and glucose metabolism modules were connected to: microRNA (miR)-29a; promoter region hypomethylation of nuclear receptor factor (NRF1) and fatty acid transporter (SLC27A4), and hypermethylation of fatty acid synthase, and to exon hypomethylation of 6-phosphofructo-2-kinase and Ser/Thr protein kinase. Directional change in the endurance networks was validated by lower intramyocellular lipid, increased capillarity, GLUT4, hexokinase, and mitochondrial enzyme activity and proteome. Resistance training also lowered lipid and increased enzyme activity and caused GLUT4 promoter hypomethylation; however, training was inconsequential to GLUT4, capillarity, and metabolic transcriptome. miR-195 connected to negative regulation of vascular development. To conclude, integrated molecular network modelling revealed differential DNA methylation and miRNA expression changes occur in skeletal muscle in response to chronic exercise training that are most pronounced with endurance training and topographically associated with functional metabolic and microvascular plasticity relevant to diabetes rehabilitation. PMID:25138607
Identifying PHM market and network opportunities.
Grube, Mark E; Krishnaswamy, Anand; Poziemski, John; York, Robert W
2015-11-01
Two key processes for healthcare organizations seeking to assume a financially sustainable role in population health management (PHM), after laying the groundwork for the effort, are to identify potential PHM market opportunities and determine the scope of the PHM network. Key variables organizations should consider with respect to market opportunities include the patient population, the overall insurance/employer market, and available types of insurance products. Regarding the network's scope, organizations should consider both traditional strategic criteria for a viable network and at least five additional criteria: network essentiality and PHM care continuum, network adequacy, service distribution right-sizing, network growth strategy, and organizational agility.
Managing personal health information in distributed research network environments.
Bredfeldt, Christine E; Butani, Amy L; Pardee, Roy; Hitz, Paul; Padmanabhan, Sandy; Saylor, Gwyn
2013-10-08
Studying rare outcomes, new interventions and diverse populations often requires collaborations across multiple health research partners. However, transferring healthcare research data from one institution to another can increase the risk of data privacy and security breaches. A working group of multi-site research programmers evaluated the need for tools to support data security and data privacy. The group determined that data privacy support tools should: 1) allow for a range of allowable Protected Health Information (PHI); 2) clearly identify what type of data should be protected under the Health Insurance Portability and Accountability Act (HIPAA); and 3) help analysts identify which protected health information data elements are allowable in a given project and how they should be protected during data transfer. Based on these requirements we developed two performance support tools to support data programmers and site analysts in exchanging research data. The first tool, a workplan template, guides the lead programmer through effectively communicating the details of multi-site programming, including how to run the program, what output the program will create, and whether the output is expected to contain protected health information. The second performance support tool is a checklist that site analysts can use to ensure that multi-site program output conforms to expectations and does not contain protected health information beyond what is allowed under the multi-site research agreements. Together the two tools create a formal multi-site programming workflow designed to reduce the chance of accidental PHI disclosure.
ROADMs for reconfigurable metro networks
NASA Astrophysics Data System (ADS)
Homa, Jonathan; Bala, Krishna
2009-01-01
Reconfigurable Optical Add-Drop Multiplexers (ROADMs) are the key nodal sub-systems that are used to implement modern DWDM networks. They provide network flexibility by switching wavelengths among fibers under software control without expensive conversion to the electronic domain. They speed up provisioning time, reduce operational costs and eliminate human errors. Two general types of ROADMs are used in Metro optical networks, two-degree and multi-degree, where the degree refers to the numbers of DWDM fibers entering and exiting the ROADM node. A twodegree ROADM is like a location on a highway with off and on ramps to drop off and accept local traffic while a multidegree ROADM is like an interchange where highways meet and is used for interconnecting DWDM rings or for mesh networking. The paper describes two-degree and multi-degree ROADM architectures and how these relate to the technology alternatives used to implement the ROADMs themselves. Focus is provided on the role and expected evolution of the wavelength selective switch (WSS) which is the primary engine used to power ROADMs.
Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management.
Cruz-Piris, Luis; Rivera, Diego; Fernandez, Susel; Marsa-Maestre, Ivan
2018-02-02
One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network.
Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management
2018-01-01
One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network. PMID:29393884
A stochastic agent-based model of pathogen propagation in dynamic multi-relational social networks
Khan, Bilal; Dombrowski, Kirk; Saad, Mohamed
2015-01-01
We describe a general framework for modeling and stochastic simulation of epidemics in realistic dynamic social networks, which incorporates heterogeneity in the types of individuals, types of interconnecting risk-bearing relationships, and types of pathogens transmitted across them. Dynamism is supported through arrival and departure processes, continuous restructuring of risk relationships, and changes to pathogen infectiousness, as mandated by natural history; dynamism is regulated through constraints on the local agency of individual nodes and their risk behaviors, while simulation trajectories are validated using system-wide metrics. To illustrate its utility, we present a case study that applies the proposed framework towards a simulation of HIV in artificial networks of intravenous drug users (IDUs) modeled using data collected in the Social Factors for HIV Risk survey. PMID:25859056
Ryan, Janice
2017-10-01
This exploratory, evidence-based practice research study focuses on presenting a plausible mesoscopic brain dynamics hypothesis for the benefits of treating clients with psychosocial and cognitive challenges using a mindful therapeutic approach and multi-sensory environments. After an extensive neuroscientific review of the therapeutic benefits of mindfulness, a multi-sensory environment is presented as a window of therapeutic opportunity to more quickly and efficiently facilitate the neurobiological experience of becoming more mindful or conscious of self and environment. The complementary relationship between the default mode network and the executive attention network is offered as a neurobiological hypothesis that could explain positive occupational engagement pattern shifts in a case study video of a hospice client with advanced dementia during multi-sensory environment treatment. Orbital Decomposition is used for a video analysis that shows a significant behavioral pattern shift consistent with dampening of the perceptual system attractors that contribute to negative emotional circular causalities in a variety of client populations. This treatment approach may also prove to be valuable for any person who has developed circular causalities due to feelings of isolation, victimization, or abuse. A case is made for broader applications of this intervention that may positively influence perception during the information transfer and processing of hippocampal learning. Future research is called for to determine if positive affective, interpersonal, and occupational engagement pattern shifts during treatment are related to the improved default mode network-executive attention network synchrony characteristic of increased mindfulness.
Large-scale Heterogeneous Network Data Analysis
2012-07-31
Mining (KDD’09), 527-535, 2009. [20] B. Long, Z. M. Zhang, X. Wu, and P. S. Yu . Spectral Clustering for Multi-type Relational Data. In Proceedings of...and Data Mining (KDD’06), 374-383, 2006. [33] Y. Sun, Y. Yu , and J. Han. Ranking-Based Clustering of Heterogeneous Information Networks with Star...publications in 2012 so far: Yi-Kuang Ko, Jing- Kai Lou, Cheng-Te Li, Shou-de Lin, and Shyh-Kang Jeng. “A Social Network Evolution Model Based on
Networks as a type of social entrepreneurship to advance population health.
Wei-Skillern, Jane
2010-11-01
A detailed case study from the field of social entrepreneurship is used to illustrate the network approach, which does not require more resources but rather makes better use of existing resources. Leaders in public health can use networks to overcome some of the barriers that inhibit the widespread adoption of a population health approach to community health. Public health leaders who embrace social entrepreneurship may be better able to accomplish their missions by building their networks rather than just their organizations.
Performance Evaluation Modeling of Network Sensors
NASA Technical Reports Server (NTRS)
Clare, Loren P.; Jennings, Esther H.; Gao, Jay L.
2003-01-01
Substantial benefits are promised by operating many spatially separated sensors collectively. Such systems are envisioned to consist of sensor nodes that are connected by a communications network. A simulation tool is being developed to evaluate the performance of networked sensor systems, incorporating such metrics as target detection probabilities, false alarms rates, and classification confusion probabilities. The tool will be used to determine configuration impacts associated with such aspects as spatial laydown, and mixture of different types of sensors (acoustic, seismic, imaging, magnetic, RF, etc.), and fusion architecture. The QualNet discrete-event simulation environment serves as the underlying basis for model development and execution. This platform is recognized for its capabilities in efficiently simulating networking among mobile entities that communicate via wireless media. We are extending QualNet's communications modeling constructs to capture the sensing aspects of multi-target sensing (analogous to multiple access communications), unimodal multi-sensing (broadcast), and multi-modal sensing (multiple channels and correlated transmissions). Methods are also being developed for modeling the sensor signal sources (transmitters), signal propagation through the media, and sensors (receivers) that are consistent with the discrete event paradigm needed for performance determination of sensor network systems. This work is supported under the Microsensors Technical Area of the Army Research Laboratory (ARL) Advanced Sensors Collaborative Technology Alliance.
Financial time series prediction using spiking neural networks.
Reid, David; Hussain, Abir Jaafar; Tawfik, Hissam
2014-01-01
In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two "traditional", rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments.
Hermans, Frans; Sartas, Murat; van Schagen, Boudy; van Asten, Piet; Schut, Marc
2017-01-01
Multi-stakeholder platforms (MSPs) are seen as a promising vehicle to achieve agricultural development impacts. By increasing collaboration, exchange of knowledge and influence mediation among farmers, researchers and other stakeholders, MSPs supposedly enhance their 'capacity to innovate' and contribute to the 'scaling of innovations'. The objective of this paper is to explore the capacity to innovate and scaling potential of three MSPs in Burundi, Rwanda and the South Kivu province located in the eastern part of Democratic Republic of Congo (DRC). In order to do this, we apply Social Network Analysis and Exponential Random Graph Modelling (ERGM) to investigate the structural properties of the collaborative, knowledge exchange and influence networks of these MSPs and compared them against value propositions derived from the innovation network literature. Results demonstrate a number of mismatches between collaboration, knowledge exchange and influence networks for effective innovation and scaling processes in all three countries: NGOs and private sector are respectively over- and under-represented in the MSP networks. Linkages between local and higher levels are weak, and influential organisations (e.g., high-level government actors) are often not part of the MSP or are not actively linked to by other organisations. Organisations with a central position in the knowledge network are more sought out for collaboration. The scaling of innovations is primarily between the same type of organisations across different administrative levels, but not between different types of organisations. The results illustrate the potential of Social Network Analysis and ERGMs to identify the strengths and limitations of MSPs in terms of achieving development impacts.
The application of the multi-alternative approach in active neural network models
NASA Astrophysics Data System (ADS)
Podvalny, S.; Vasiljev, E.
2017-02-01
The article refers to the construction of intelligent systems based artificial neuron networks are used. We discuss the basic properties of the non-compliance of artificial neuron networks and their biological prototypes. It is shown here that the main reason for these discrepancies is the structural immutability of the neuron network models in the learning process, that is, their passivity. Based on the modern understanding of the biological nervous system as a structured ensemble of nerve cells, it is proposed to abandon the attempts to simulate its work at the level of the elementary neurons functioning processes and proceed to the reproduction of the information structure of data storage and processing on the basis of the general enough evolutionary principles of multialternativity, i.e. the multi-level structural model, diversity and modularity. The implementation method of these principles is offered, using the faceted memory organization in the neuron network with the rearranging active structure. An example of the implementation of the active facet-type neuron network in the intellectual decision-making system in the conditions of critical events development in the electrical distribution system.
Surveillance and reconnaissance ground system architecture
NASA Astrophysics Data System (ADS)
Devambez, Francois
2001-12-01
Modern conflicts induces various modes of deployment, due to the type of conflict, the type of mission, and phase of conflict. It is then impossible to define fixed architecture systems for surveillance ground segments. Thales has developed a structure for a ground segment based on the operational functions required, and on the definition of modules and networks. Theses modules are software and hardware modules, including communications and networks. This ground segment is called MGS (Modular Ground Segment), and is intended for use in airborne reconnaissance systems, surveillance systems, and U.A.V. systems. Main parameters for the definition of a modular ground image exploitation system are : Compliance with various operational configurations, Easy adaptation to the evolution of theses configurations, Interoperability with NATO and multinational forces, Security, Multi-sensors, multi-platforms capabilities, Technical modularity, Evolutivity Reduction of life cycle cost The general performances of the MGS are presented : type of sensors, acquisition process, exploitation of images, report generation, data base management, dissemination, interface with C4I. The MGS is then described as a set of hardware and software modules, and their organization to build numerous operational configurations. Architectures are from minimal configuration intended for a mono-sensor image exploitation system, to a full image intelligence center, for a multilevel exploitation of multi-sensor.
Towards automatic pulmonary nodule management in lung cancer screening with deep learning
NASA Astrophysics Data System (ADS)
Ciompi, Francesco; Chung, Kaman; van Riel, Sarah J.; Setio, Arnaud Arindra Adiyoso; Gerke, Paul K.; Jacobs, Colin; Th. Scholten, Ernst; Schaefer-Prokop, Cornelia; Wille, Mathilde M. W.; Marchianò, Alfonso; Pastorino, Ugo; Prokop, Mathias; van Ginneken, Bram
2017-04-01
The introduction of lung cancer screening programs will produce an unprecedented amount of chest CT scans in the near future, which radiologists will have to read in order to decide on a patient follow-up strategy. According to the current guidelines, the workup of screen-detected nodules strongly relies on nodule size and nodule type. In this paper, we present a deep learning system based on multi-stream multi-scale convolutional networks, which automatically classifies all nodule types relevant for nodule workup. The system processes raw CT data containing a nodule without the need for any additional information such as nodule segmentation or nodule size and learns a representation of 3D data by analyzing an arbitrary number of 2D views of a given nodule. The deep learning system was trained with data from the Italian MILD screening trial and validated on an independent set of data from the Danish DLCST screening trial. We analyze the advantage of processing nodules at multiple scales with a multi-stream convolutional network architecture, and we show that the proposed deep learning system achieves performance at classifying nodule type that surpasses the one of classical machine learning approaches and is within the inter-observer variability among four experienced human observers.
Towards automatic pulmonary nodule management in lung cancer screening with deep learning.
Ciompi, Francesco; Chung, Kaman; van Riel, Sarah J; Setio, Arnaud Arindra Adiyoso; Gerke, Paul K; Jacobs, Colin; Scholten, Ernst Th; Schaefer-Prokop, Cornelia; Wille, Mathilde M W; Marchianò, Alfonso; Pastorino, Ugo; Prokop, Mathias; van Ginneken, Bram
2017-04-19
The introduction of lung cancer screening programs will produce an unprecedented amount of chest CT scans in the near future, which radiologists will have to read in order to decide on a patient follow-up strategy. According to the current guidelines, the workup of screen-detected nodules strongly relies on nodule size and nodule type. In this paper, we present a deep learning system based on multi-stream multi-scale convolutional networks, which automatically classifies all nodule types relevant for nodule workup. The system processes raw CT data containing a nodule without the need for any additional information such as nodule segmentation or nodule size and learns a representation of 3D data by analyzing an arbitrary number of 2D views of a given nodule. The deep learning system was trained with data from the Italian MILD screening trial and validated on an independent set of data from the Danish DLCST screening trial. We analyze the advantage of processing nodules at multiple scales with a multi-stream convolutional network architecture, and we show that the proposed deep learning system achieves performance at classifying nodule type that surpasses the one of classical machine learning approaches and is within the inter-observer variability among four experienced human observers.
Towards automatic pulmonary nodule management in lung cancer screening with deep learning
Ciompi, Francesco; Chung, Kaman; van Riel, Sarah J.; Setio, Arnaud Arindra Adiyoso; Gerke, Paul K.; Jacobs, Colin; Th. Scholten, Ernst; Schaefer-Prokop, Cornelia; Wille, Mathilde M. W.; Marchianò, Alfonso; Pastorino, Ugo; Prokop, Mathias; van Ginneken, Bram
2017-01-01
The introduction of lung cancer screening programs will produce an unprecedented amount of chest CT scans in the near future, which radiologists will have to read in order to decide on a patient follow-up strategy. According to the current guidelines, the workup of screen-detected nodules strongly relies on nodule size and nodule type. In this paper, we present a deep learning system based on multi-stream multi-scale convolutional networks, which automatically classifies all nodule types relevant for nodule workup. The system processes raw CT data containing a nodule without the need for any additional information such as nodule segmentation or nodule size and learns a representation of 3D data by analyzing an arbitrary number of 2D views of a given nodule. The deep learning system was trained with data from the Italian MILD screening trial and validated on an independent set of data from the Danish DLCST screening trial. We analyze the advantage of processing nodules at multiple scales with a multi-stream convolutional network architecture, and we show that the proposed deep learning system achieves performance at classifying nodule type that surpasses the one of classical machine learning approaches and is within the inter-observer variability among four experienced human observers. PMID:28422152
A novel communication mechanism based on node potential multi-path routing
NASA Astrophysics Data System (ADS)
Bu, Youjun; Zhang, Chuanhao; Jiang, YiMing; Zhang, Zhen
2016-10-01
With the network scales rapidly and new network applications emerge frequently, bandwidth supply for today's Internet could not catch up with the rapid increasing requirements. Unfortunately, irrational using of network sources makes things worse. Actual network deploys single-next-hop optimization paths for data transmission, but such "best effort" model leads to the imbalance use of network resources and usually leads to local congestion. On the other hand Multi-path routing can use the aggregation bandwidth of multi paths efficiently and improve the robustness of network, security, load balancing and quality of service. As a result, multi-path has attracted much attention in the routing and switching research fields and many important ideas and solutions have been proposed. This paper focuses on implementing the parallel transmission of multi next-hop data, balancing the network traffic and reducing the congestion. It aimed at exploring the key technologies of the multi-path communication network, which could provide a feasible academic support for subsequent applications of multi-path communication networking. It proposed a novel multi-path algorithm based on node potential in the network. And the algorithm can fully use of the network link resource and effectively balance network link resource utilization.
Gerstner, Wulfram
2017-01-01
Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50–2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations. PMID:28422957
Smyth, Natasha; Siriwardhana, Chesmal; Hotopf, Matthew; Hatch, Stephani L
2015-07-01
Little is known about how social networks and social support are distributed within diverse communities and how different types of each are associated with a range of psychiatric symptoms. This study aims to address such shortcomings by: (1) describing the demographic and socioeconomic characteristics of social networks and social support in a multicultural population and (2) examining how each is associated with multiple mental health outcomes. Data is drawn from the South East London Community Health Study; a cross-sectional study of 1,698 adults conducted between 2008 and 2010. The findings demonstrate variation in social networks and social support by socio-demographic factors. Ethnic minority groups reported larger family networks but less perceived instrumental support. Older individuals and migrant groups reported lower levels of particular network and support types. Individuals from lower socioeconomic groups tended to report less social networks and support across the indicators measured. Perceived emotional and instrumental support, family and friend network size emerged as protective factors for common mental disorder, personality dysfunction and psychotic experiences. In contrast, both social networks and social support appear less relevant for hazardous alcohol use. The findings both confirm established knowledge that social networks and social support exert differential effects on mental health and furthermore suggest that the particular type of social support may be important. In contrast, different types of social network appear to impact upon poor mental health in a more uniform way. Future psychosocial strategies promoting mental health should consider which social groups are vulnerable to reduced social networks and poor social support and which diagnostic groups may benefit most.
Adding the ‘heart’ to hanging drop networks for microphysiological multi-tissue experiments†
Yazdi, Saeed Rismani; Shadmani, Amir; Bürgel, Sebastian C.; Misun, Patrick M.; Hierlemann, Andreas; Frey, Olivier
2017-01-01
Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid–air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip. PMID:26401602
Favé, Marie-Julie; Johnson, Robert A; Cover, Stefan; Handschuh, Stephan; Metscher, Brian D; Müller, Gerd B; Gopalan, Shyamalika; Abouheif, Ehab
2015-09-04
A fundamental and enduring problem in evolutionary biology is to understand how populations differentiate in the wild, yet little is known about what role organismal development plays in this process. Organismal development integrates environmental inputs with the action of gene regulatory networks to generate the phenotype. Core developmental gene networks have been highly conserved for millions of years across all animals, and therefore, organismal development may bias variation available for selection to work on. Biased variation may facilitate repeatable phenotypic responses when exposed to similar environmental inputs and ecological changes. To gain a more complete understanding of population differentiation in the wild, we integrated evolutionary developmental biology with population genetics, morphology, paleoecology and ecology. This integration was made possible by studying how populations of the ant species Monomorium emersoni respond to climatic and ecological changes across five 'Sky Islands' in Arizona, which are mountain ranges separated by vast 'seas' of desert. Sky Islands represent a replicated natural experiment allowing us to determine how repeatable is the response of M. emersoni populations to climate and ecological changes at the phenotypic, developmental, and gene network levels. We show that a core developmental gene network and its phenotype has kept pace with ecological and climate change on each Sky Island over the last ~90,000 years before present (BP). This response has produced two types of evolutionary change within an ant species: one type is unpredictable and contingent on the pattern of isolation of Sky lsland populations by climate warming, resulting in slight changes in gene expression, organ growth, and morphology. The other type is predictable and deterministic, resulting in the repeated evolution of a novel wingless queen phenotype and its underlying gene network in response to habitat changes induced by climate warming. Our findings reveal dynamics of developmental gene network evolution in wild populations. This holds important implications: (1) for understanding how phenotypic novelty is generated in the wild; (2) for providing a possible bridge between micro- and macroevolution; and (3) for understanding how development mediates the response of organisms to past, and potentially, future climate change.
NASA Astrophysics Data System (ADS)
Ghosh, Amal K.; Basuray, Amitabha
2008-11-01
The memory devices in multi-valued logic are of most significance in modern research. This paper deals with the implementation of basic memory devices in multi-valued logic using Savart plate and spatial light modulator (SLM) based optoelectronic circuits. Photons are used here as the carrier to speed up the operations. Optical tree architecture (OTA) has been also utilized in the optical interconnection network. We have exploited the advantages of Savart plates, SLMs and OTA and proposed the SLM based high speed JK, D-type and T-type flip-flops in a trinary system.
López-Causapé, Carla; de Dios-Caballero, Juan; Cobo, Marta; Escribano, Amparo; Asensio, Óscar; Oliver, Antonio; Del Campo, Rosa; Cantón, Rafael; Solé, Amparó; Cortell, Isidoro; Asensio, Oscar; García, Gloria; Martínez, María Teresa; Cols, María; Salcedo, Antonio; Vázquez, Carlos; Baranda, Félix; Girón, Rosa; Quintana, Esther; Delgado, Isabel; de Miguel, María Ángeles; García, Marta; Oliva, Concepción; Prados, María Concepción; Barrio, María Isabel; Pastor, María Dolores; Olveira, Casilda; de Gracia, Javier; Álvarez, Antonio; Escribano, Amparo; Castillo, Silvia; Figuerola, Joan; Togores, Bernat; Oliver, Antonio; López, Carla; de Dios Caballero, Juan; Tato, Marta; Máiz, Luis; Suárez, Lucrecia; Cantón, Rafael
2017-09-01
The first Spanish multi-centre study on the microbiology of cystic fibrosis (CF) was conducted from 2013 to 2014. The study involved 24 CF units from 17 hospitals, and recruited 341 patients. The aim of this study was to characterise Pseudomonas aeruginosa isolates, 79 of which were recovered from 75 (22%) patients. The study determined the population structure, antibiotic susceptibility profile and genetic background of the strains. Fifty-five percent of the isolates were multi-drug-resistant, and 16% were extensively-drug-resistant. Defective mutS and mutL genes were observed in mutator isolates (15.2%). Considerable genetic diversity was observed by pulsed-field gel electrophoresis (70 patterns) and multi-locus sequence typing (72 sequence types). International epidemic clones were not detected. Fifty-one new and 14 previously described array tube (AT) genotypes were detected by AT technology. This study found a genetically unrelated and highly diverse CF P. aeruginosa population in Spain, not represented by the epidemic clones widely distributed across Europe, with multiple combinations of virulence factors and high antimicrobial resistance rates (except for colistin). Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Inouye, Michael; Ripatti, Samuli; Kettunen, Johannes; Lyytikäinen, Leo-Pekka; Oksala, Niku; Laurila, Pirkka-Pekka; Kangas, Antti J.; Soininen, Pasi; Savolainen, Markku J.; Viikari, Jorma; Kähönen, Mika; Perola, Markus; Salomaa, Veikko; Raitakari, Olli; Lehtimäki, Terho; Taskinen, Marja-Riitta; Järvelin, Marjo-Riitta; Ala-Korpela, Mika; Palotie, Aarno; de Bakker, Paul I. W.
2012-01-01
Association testing of multiple correlated phenotypes offers better power than univariate analysis of single traits. We analyzed 6,600 individuals from two population-based cohorts with both genome-wide SNP data and serum metabolomic profiles. From the observed correlation structure of 130 metabolites measured by nuclear magnetic resonance, we identified 11 metabolic networks and performed a multivariate genome-wide association analysis. We identified 34 genomic loci at genome-wide significance, of which 7 are novel. In comparison to univariate tests, multivariate association analysis identified nearly twice as many significant associations in total. Multi-tissue gene expression studies identified variants in our top loci, SERPINA1 and AQP9, as eQTLs and showed that SERPINA1 and AQP9 expression in human blood was associated with metabolites from their corresponding metabolic networks. Finally, liver expression of AQP9 was associated with atherosclerotic lesion area in mice, and in human arterial tissue both SERPINA1 and AQP9 were shown to be upregulated (6.3-fold and 4.6-fold, respectively) in atherosclerotic plaques. Our study illustrates the power of multi-phenotype GWAS and highlights candidate genes for atherosclerosis. PMID:22916037
Lin, Na; Chen, Hanning; Jing, Shikai; Liu, Fang; Liang, Xiaodan
2017-03-01
In recent years, symbiosis as a rich source of potential engineering applications and computational model has attracted more and more attentions in the adaptive complex systems and evolution computing domains. Inspired by different symbiotic coevolution forms in nature, this paper proposed a series of multi-swarm particle swarm optimizers called PS 2 Os, which extend the single population particle swarm optimization (PSO) algorithm to interacting multi-swarms model by constructing hierarchical interaction topologies and enhanced dynamical update equations. According to different symbiotic interrelationships, four versions of PS 2 O are initiated to mimic mutualism, commensalism, predation, and competition mechanism, respectively. In the experiments, with five benchmark problems, the proposed algorithms are proved to have considerable potential for solving complex optimization problems. The coevolutionary dynamics of symbiotic species in each PS 2 O version are also studied respectively to demonstrate the heterogeneity of different symbiotic interrelationships that effect on the algorithm's performance. Then PS 2 O is used for solving the radio frequency identification (RFID) network planning (RNP) problem with a mixture of discrete and continuous variables. Simulation results show that the proposed algorithm outperforms the reference algorithms for planning RFID networks, in terms of optimization accuracy and computation robustness.
NASA Astrophysics Data System (ADS)
Monsieurs, Elise; Jacobs, Liesbet; Kervyn, François; Kirschbaum, Dalia; d'Oreye, Nicolas; Derauw, Dominique; Kervyn, Matthieu; Nobile, Adriano; Trefois, Philippe; Dewitte, Olivier
2015-04-01
The East African rift valley is a major tectonic feature that shapes Central Africa and defines linear-shaped lowlands between highland ranges due to the action of geologic faults associated to earthquakes and volcanism. The region of interest, covering the Virunga Volcanic Province in eastern DRC, western Rwanda and Burundi, and southwest Uganda, is threatened by a rare combination of several types of geohazards, while it is also one of the most densely populated region of Africa. These geohazards can globally be classified as seismic, volcanic and landslide hazards. Landslides, include a wide range of ground movements, such as rock falls, deep failure of slopes and shallow debris flows. Landslides are possibly the most important geohazard in terms of recurring impact on the populations, causing fatalities every year and resulting in structural and functional damage to infrastructure and private properties, as well as serious disruptions of the organization of societies. Many landslides are observed each year in the whole region, and their occurrence is clearly linked to complex topographic, lithologic and vegetation signatures coupled with heavy rainfall events, which is the main triggering factor. The source mechanisms underlying landslide triggering and dynamics in the region of interest are still poorly understood, even though in recent years, some progress has been made towards appropriate data collection. Taking into account difficulties of field accessibility, we present a methodology to study landslide processes by multi-scale and multi-sensor remote sensing data from very high to low resolution (Pléiades, TRMM, CosmoSkyMed, Sentinel). The research will address the evolution over time of such data combined with other earth observations (seismic ground based networks, catalogues, rain gauge networks, GPS surveying, field observations) to detect and study landslide occurrence, dynamics and evolution. This research aims to get insights into the rainfall thresholds that trigger and control the different types of landslide in this region of the East African Rift. A specific attention will be given to the landslide processes in relation to volcanic activity and earthquakes.
2012-01-01
Background Tremendous progress has been made in the last ten years in reducing morbidity and mortality caused by malaria, in part because of increases in global funding for malaria control and elimination. Today, many countries are striving for malaria elimination. However, a major challenge is the neglect of cross-border and regional initiatives in malaria control and elimination. This paper seeks to better understand Global Fund support for multi-country initiatives. Methods Documents and proposals were extracted and reviewed from two main sources, the Global Fund website and Aidspan.org. Documents and reports from the Global Fund Technical Review Panel, Board, and Secretariat documents such as guidelines and proposal templates were reviewed to establish the type of policies enacted and guidance provided from the Global Fund on multi-country initiatives and applications. From reviewing this information, the researchers created 29 variables according to eight dimensions to use in a review of Round 10 applications. All Round 10 multi-country applications (for HIV, malaria and tuberculosis) and all malaria multi-country applications (6) from Rounds 1 – 10 were extracted from the Global Fund website. A blind review was conducted of Round 10 applications using the 29 variables as a framework, followed by a review of four of the six successful malaria multi-country grant applications from Rounds 1 – 10. Findings During Rounds 3 – 10 of the Global Fund, only 5.8% of grants submitted were for multi-country initiatives. Out of 83 multi-country proposals submitted, 25.3% were approved by the Technical Review Panel (TRP) for funding, compared to 44.9% of single-country applications. The majority of approved multi-country applications were for HIV (76.2%), followed by malaria (19.0%), then tuberculosis (4.8%). TRP recommendations resulted in improvements to application forms, although guidance was generally vague. The in-depth review of Round 10 multi-country proposals showed that applicants described their projects in one of two ways: a regional ‘network approach’ by which benefits are derived from economies of scale or from enhanced opportunities for mutual support and learning or the development of common policies and approaches; or a ‘cross-border’ approach for enabling activities to be more effectively delivered towards border-crossing populations or vectors. In Round 10, only those with a ‘network approach’ were recommended for funding. The Global Fund has only ever approved six malaria multi-country applications. Four approved applications stated strong arguments for a multi-country initiative, combining both ‘cross-border’ and ‘network’ approaches. Conclusion With the cancellation of Round 11 and the proposal that the Global Fund adopt a more targeted and strategic approach to funding, the time is opportune for the Global Fund to develop a clear consensus about the key factors and criteria for funding malaria specific multi-country initiatives. This study found that currently there was a lack of guidance on the key features that a successful multi-country proposal needs to be approved and that applications directed towards the ‘network’ approach were most successful in Round 10. This type of multi-country proposal may favour other diseases such as HIV, whereas the need for malaria control and elimination is different, focusing on cross-border coordination and delivery of interventions to specific groups. The Global Fund should seek to address these issues and give better guidance to countries and regions and investigate disease-specific calls for multi-country and regional applications. PMID:23057734
A review and guidance for pattern selection in spatiotemporal system
NASA Astrophysics Data System (ADS)
Wang, Chunni; Ma, Jun
2018-03-01
Pattern estimation and selection in media can give important clues to understand the collective response to external stimulus by detecting the observable variables. Both reaction-diffusion systems (RDs) and neuronal networks can be treated as multi-agent systems from molecular level, intrinsic cooperation, competition. An external stimulus or attack can cause collapse of spatial order and distribution, while appropriate noise can enhance the consensus in the spatiotemporal systems. Pattern formation and synchronization stability can bridge isolated oscillators and the network by coupling these nodes with appropriate connection types. As a result, the dynamical behaviors can be detected and discussed by developing different spatial patterns and realizing network synchronization. Indeed, the collective response of network and multi-agent system depends on the local kinetics of nodes and cells. It is better to know the standard bifurcation analysis and stability control schemes before dealing with network problems. In this review, dynamics discussion and synchronization control on low-dimensional systems, pattern formation and synchronization stability on network, wave stability in RDs and neuronal network are summarized. Finally, possible guidance is presented when some physical effects such as polarization field and electromagnetic induction are considered.
Scaling Properties of Dimensionality Reduction for Neural Populations and Network Models
Cowley, Benjamin R.; Doiron, Brent; Kohn, Adam
2016-01-01
Recent studies have applied dimensionality reduction methods to understand how the multi-dimensional structure of neural population activity gives rise to brain function. It is unclear, however, how the results obtained from dimensionality reduction generalize to recordings with larger numbers of neurons and trials or how these results relate to the underlying network structure. We address these questions by applying factor analysis to recordings in the visual cortex of non-human primates and to spiking network models that self-generate irregular activity through a balance of excitation and inhibition. We compared the scaling trends of two key outputs of dimensionality reduction—shared dimensionality and percent shared variance—with neuron and trial count. We found that the scaling properties of networks with non-clustered and clustered connectivity differed, and that the in vivo recordings were more consistent with the clustered network. Furthermore, recordings from tens of neurons were sufficient to identify the dominant modes of shared variability that generalize to larger portions of the network. These findings can help guide the interpretation of dimensionality reduction outputs in regimes of limited neuron and trial sampling and help relate these outputs to the underlying network structure. PMID:27926936
Interspecific social networks promote information transmission in wild songbirds.
Farine, Damien R; Aplin, Lucy M; Sheldon, Ben C; Hoppitt, William
2015-03-22
Understanding the functional links between social structure and population processes is a central aim of evolutionary ecology. Multiple types of interactions can be represented by networks drawn for the same population, such as kinship, dominance or affiliative networks, but the relative importance of alternative networks in modulating population processes may not be clear. We illustrate this problem, and a solution, by developing a framework for testing the importance of different types of association in facilitating the transmission of information. We apply this framework to experimental data from wild songbirds that form mixed-species flocks, recording the arrival (patch discovery) of individuals to novel foraging sites. We tested whether intraspecific and interspecific social networks predicted the spread of information about novel food sites, and found that both contributed to transmission. The likelihood of acquiring information per unit of connection to knowledgeable individuals increased 22-fold for conspecifics, and 12-fold for heterospecifics. We also found that species varied in how much information they produced, suggesting that some species play a keystone role in winter foraging flocks. More generally, these analyses demonstrate that this method provides a powerful approach, using social networks to quantify the relative transmission rates across different social relationships.
Resource Aware Intelligent Network Services (RAINS) Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehman, Tom; Yang, Xi
The Resource Aware Intelligent Network Services (RAINS) project conducted research and developed technologies in the area of cyber infrastructure resource modeling and computation. The goal of this work was to provide a foundation to enable intelligent, software defined services which spanned the network AND the resources which connect to the network. A Multi-Resource Service Plane (MRSP) was defined, which allows resource owners/managers to locate and place themselves from a topology and service availability perspective within the dynamic networked cyberinfrastructure ecosystem. The MRSP enables the presentation of integrated topology views and computation results which can include resources across the spectrum ofmore » compute, storage, and networks. The RAINS project developed MSRP includes the following key components: i) Multi-Resource Service (MRS) Ontology/Multi-Resource Markup Language (MRML), ii) Resource Computation Engine (RCE), iii) Modular Driver Framework (to allow integration of a variety of external resources). The MRS/MRML is a general and extensible modeling framework that allows for resource owners to model, or describe, a wide variety of resource types. All resources are described using three categories of elements: Resources, Services, and Relationships between the elements. This modeling framework defines a common method for the transformation of cyber infrastructure resources into data in the form of MRML models. In order to realize this infrastructure datification, the RAINS project developed a model based computation system, i.e. “RAINS Computation Engine (RCE)”. The RCE has the ability to ingest, process, integrate, and compute based on automatically generated MRML models. The RCE interacts with the resources thru system drivers which are specific to the type of external network or resource controller. The RAINS project developed a modular and pluggable driver system which facilities a variety of resource controllers to automatically generate, maintain, and distribute MRML based resource descriptions. Once all of the resource topologies are absorbed by the RCE, a connected graph of the full distributed system topology is constructed, which forms the basis for computation and workflow processing. The RCE includes a Modular Computation Element (MCE) framework which allows for tailoring of the computation process to the specific set of resources under control, and the services desired. The input and output of an MCE are both model data based on MRS/MRML ontology and schema. Some of the RAINS project accomplishments include: Development of general and extensible multi-resource modeling framework; Design of a Resource Computation Engine (RCE) system which includes the following key capabilities; Absorb a variety of multi-resource model types and build integrated models; Novel architecture which uses model based communications across the full stack for all Flexible provision of abstract or intent based user facing interfaces; Workflow processing based on model descriptions; Release of the RCE as an open source software; Deployment of RCE in the University of Maryland/Mid-Atlantic Crossroad ScienceDMZ in prototype mode with a plan under way to transition to production; Deployment at the Argonne National Laboratory DTN Facility in prototype mode; Selection of RCE by the DOE SENSE (SDN for End-to-end Networked Science at the Exascale) project as the basis for their orchestration service.« less
Williams, Tim D; Turan, Nil; Diab, Amer M; Wu, Huifeng; Mackenzie, Carolynn; Bartie, Katie L; Hrydziuszko, Olga; Lyons, Brett P; Stentiford, Grant D; Herbert, John M; Abraham, Joseph K; Katsiadaki, Ioanna; Leaver, Michael J; Taggart, John B; George, Stephen G; Viant, Mark R; Chipman, Kevin J; Falciani, Francesco
2011-08-01
The acquisition and analysis of datasets including multi-level omics and physiology from non-model species, sampled from field populations, is a formidable challenge, which so far has prevented the application of systems biology approaches. If successful, these could contribute enormously to improving our understanding of how populations of living organisms adapt to environmental stressors relating to, for example, pollution and climate. Here we describe the first application of a network inference approach integrating transcriptional, metabolic and phenotypic information representative of wild populations of the European flounder fish, sampled at seven estuarine locations in northern Europe with different degrees and profiles of chemical contaminants. We identified network modules, whose activity was predictive of environmental exposure and represented a link between molecular and morphometric indices. These sub-networks represented both known and candidate novel adverse outcome pathways representative of several aspects of human liver pathophysiology such as liver hyperplasia, fibrosis, and hepatocellular carcinoma. At the molecular level these pathways were linked to TNF alpha, TGF beta, PDGF, AGT and VEGF signalling. More generally, this pioneering study has important implications as it can be applied to model molecular mechanisms of compensatory adaptation to a wide range of scenarios in wild populations.
Williams, Tim D.; Turan, Nil; Diab, Amer M.; Wu, Huifeng; Mackenzie, Carolynn; Bartie, Katie L.; Hrydziuszko, Olga; Lyons, Brett P.; Stentiford, Grant D.; Herbert, John M.; Abraham, Joseph K.; Katsiadaki, Ioanna; Leaver, Michael J.; Taggart, John B.; George, Stephen G.; Viant, Mark R.; Chipman, Kevin J.; Falciani, Francesco
2011-01-01
The acquisition and analysis of datasets including multi-level omics and physiology from non-model species, sampled from field populations, is a formidable challenge, which so far has prevented the application of systems biology approaches. If successful, these could contribute enormously to improving our understanding of how populations of living organisms adapt to environmental stressors relating to, for example, pollution and climate. Here we describe the first application of a network inference approach integrating transcriptional, metabolic and phenotypic information representative of wild populations of the European flounder fish, sampled at seven estuarine locations in northern Europe with different degrees and profiles of chemical contaminants. We identified network modules, whose activity was predictive of environmental exposure and represented a link between molecular and morphometric indices. These sub-networks represented both known and candidate novel adverse outcome pathways representative of several aspects of human liver pathophysiology such as liver hyperplasia, fibrosis, and hepatocellular carcinoma. At the molecular level these pathways were linked to TNF alpha, TGF beta, PDGF, AGT and VEGF signalling. More generally, this pioneering study has important implications as it can be applied to model molecular mechanisms of compensatory adaptation to a wide range of scenarios in wild populations. PMID:21901081
Zheng, Zane Z.; Vicente-Grabovetsky, Alejandro; MacDonald, Ewen N.; Munhall, Kevin G.; Cusack, Rhodri; Johnsrude, Ingrid S.
2013-01-01
The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations within a multi-voxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was employed to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while human participants were vocalizing monosyllabic words, and to present the same auditory stimuli while participants were passively listening. Whole-brain analysis of neural-pattern similarity revealed three functional networks that were differentially sensitive to distorted auditory feedback during vocalization, compared to during passive listening. One network of regions appears to encode an ‘error signal’ irrespective of acoustic features of the error: this network, including right angular gyrus, right supplementary motor area, and bilateral cerebellum, yielded consistent neural patterns across acoustically different, distorted feedback types, only during articulation (not during passive listening). In contrast, a fronto-temporal network appears sensitive to the speech features of auditory stimuli during passive listening; this preference for speech features was diminished when the same stimuli were presented as auditory concomitants of vocalization. A third network, showing a distinct functional pattern from the other two, appears to capture aspects of both neural response profiles. Taken together, our findings suggest that auditory feedback processing during speech motor control may rely on multiple, interactive, functionally differentiated neural systems. PMID:23467350
2017-03-20
computation, Prime Implicates, Boolean Abstraction, real- time embedded software, software synthesis, correct by construction software design , model...types for time -dependent data-flow networks". J.-P. Talpin, P. Jouvelot, S. Shukla. ACM-IEEE Conference on Methods and Models for System Design ...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
Social Network Type and Subjective Well-being in a National Sample of Older Americans
Litwin, Howard; Shiovitz-Ezra, Sharon
2011-01-01
Purpose: The study considers the social networks of older Americans, a population for whom there have been few studies of social network type. It also examines associations between network types and well-being indicators: loneliness, anxiety, and happiness. Design and Methods: A subsample of persons aged 65 years and older from the first wave of the National Social Life, Health, and Aging Project was employed (N = 1,462). We applied K-means cluster analysis to derive social network types using 7 criterion variables. In the multivariate stage, the well-being outcomes were regressed on the network type construct and on background and health characteristics by means of logistic regression. Results: Five social network types were derived: “diverse,” “friend,” “congregant,” “family,” and “restricted.” Social network type was found to be associated with each of the well-being indicators after adjusting for demographic and health confounders. Respondents embedded in network types characterized by greater social capital tended to exhibit better well-being in terms of less loneliness, less anxiety, and greater happiness. Implications: Knowledge about differing network types should make gerontological practitioners more aware of the varying interpersonal milieus in which older people function. Adopting network type assessment as an integral part of intake procedures and tracing network shifts over time can serve as a basis for risk assessment as well as a means for determining the efficacy of interventions. PMID:21097553
NASA Astrophysics Data System (ADS)
Lin, Yi-Kuei; Huang, Cheng-Fu
2015-04-01
From a quality of service viewpoint, the transmission packet unreliability and transmission time are both critical performance indicators in a computer system when assessing the Internet quality for supervisors and customers. A computer system is usually modelled as a network topology where each branch denotes a transmission medium and each vertex represents a station of servers. Almost every branch has multiple capacities/states due to failure, partial failure, maintenance, etc. This type of network is known as a multi-state computer network (MSCN). This paper proposes an efficient algorithm that computes the system reliability, i.e., the probability that a specified amount of data can be sent through k (k ≥ 2) disjoint minimal paths within both the tolerable packet unreliability and time threshold. Furthermore, two routing schemes are established in advance to indicate the main and spare minimal paths to increase the system reliability (referred to as spare reliability). Thus, the spare reliability can be readily computed according to the routing scheme.
Chaos synchronization in networks of semiconductor superlattices
NASA Astrophysics Data System (ADS)
Li, Wen; Aviad, Yaara; Reidler, Igor; Song, Helun; Huang, Yuyang; Biermann, Klaus; Rosenbluh, Michael; Zhang, Yaohui; Grahn, Holger T.; Kanter, Ido
2015-11-01
Chaos synchronization has been demonstrated as a useful building block for various tasks in secure communications, including a source of all-electronic ultrafast physical random number generators based on room temperature spontaneous chaotic oscillations in a DC-biased weakly coupled GaAs/Al0.45Ga0.55As semiconductor superlattice (SSL). Here, we experimentally demonstrate the emergence of several types of chaos synchronization, e.g. leader-laggard, face-to-face and zero-lag synchronization in network motifs of coupled SSLs consisting of unidirectional and mutual coupling as well as self-feedback coupling. Each type of synchronization clearly reflects the symmetry of the topology of its network motif. The emergence of a chaotic SSL without external feedback and synchronization among different structured SSLs open up the possibility for advanced secure multi-user communication methods based on large networks of coupled SSLs.
Multi-ethnic genome-wide association study identifies novel locus for type 2 diabetes susceptibility
Cook, James P; Morris, Andrew P
2016-01-01
Genome-wide association studies (GWAS) have traditionally been undertaken in homogeneous populations from the same ancestry group. However, with the increasing availability of GWAS in large-scale multi-ethnic cohorts, we have evaluated a framework for detecting association of genetic variants with complex traits, allowing for population structure, and developed a powerful test of heterogeneity in allelic effects between ancestry groups. We have applied the methodology to identify and characterise loci associated with susceptibility to type 2 diabetes (T2D) using GWAS data from the Resource for Genetic Epidemiology on Adult Health and Aging, a large multi-ethnic population-based cohort, created for investigating the genetic and environmental basis of age-related diseases. We identified a novel locus for T2D susceptibility at genome-wide significance (P<5 × 10−8) that maps to TOMM40-APOE, a region previously implicated in lipid metabolism and Alzheimer's disease. We have also confirmed previous reports that single-nucleotide polymorphisms at the TCF7L2 locus demonstrate the greatest extent of heterogeneity in allelic effects between ethnic groups, with the lowest risk observed in populations of East Asian ancestry. PMID:27189021
Community partnerships in healthy eating and lifestyle promotion: A network analysis.
An, Ruopeng; Loehmer, Emily; Khan, Naiman; Scott, Marci K; Rindfleisch, Kimbirly; McCaffrey, Jennifer
2017-06-01
Promoting healthy eating and lifestyles among populations with limited resources is a complex undertaking that often requires strong partnerships between various agencies. In local communities, these agencies are typically located in different areas, serve diverse subgroups, and operate distinct programs, limiting their communication and interactions with each other. This study assessed the network of agencies in local communities that promote healthy eating and lifestyles among populations with limited resources. Network surveys were administered in 2016 among 89 agencies located in 4 rural counties in Michigan that served limited-resource audiences. The agencies were categorized into 8 types: K-12 schools, early childhood centers, emergency food providers, health-related agencies, social resource centers, low-income/subsidized housing complexes, continuing education organizations, and others. Network analysis was conducted to examine 4 network structures-communication, funding, cooperation, and collaboration networks between agencies within each county. Agencies had a moderate level of cooperation, but were only loosely connected in the other 3 networks, indicated by low network density. Agencies in a network were decentralized rather than centralized around a few influential agencies, indicated by low centralization. There was evidence regarding homophily in a network, indicated by some significant correlations within agencies of the same type. Agencies connected in any one network were considerably more likely to be connected in all the other networks as well. In conclusion, promoting healthy eating and lifestyles among populations with limited resources warrants strong partnership between agencies in communities. Network analysis serves as a useful tool to evaluate community partnerships and facilitate coalition building.
Iida, Shoko; Shimba, Kenta; Sakai, Koji; Kotani, Kiyoshi; Jimbo, Yasuhiko
2018-06-18
The balance between glutamate-mediated excitation and GABA-mediated inhibition is critical to cortical functioning. However, the contribution of network structure consisting of the both neurons to cortical functioning has not been elucidated. We aimed to evaluate the relationship between the network structure and functional activity patterns in vitro. We used mouse induced pluripotent stem cells (iPSCs) to construct three types of neuronal populations; excitatory-rich (Exc), inhibitory-rich (Inh), and control (Cont). Then, we analyzed the activity patterns of these neuronal populations using microelectrode arrays (MEAs). Inhibitory synaptic densities differed between the three types of iPSC-derived neuronal populations, and the neurons showed spontaneously synchronized bursting activity with functional maturation for one month. Moreover, different firing patterns were observed between the three populations; Exc demonstrated the highest firing rates, including frequent, long, and dominant bursts. In contrast, Inh demonstrated the lowest firing rates and the least dominant bursts. Synchronized bursts were enhanced by disinhibition via GABA A receptor blockade. The present study, using iPSC-derived neurons and MEAs, for the first time show that synchronized bursting of cortical networks in vitro depends on the network structure consisting of excitatory and inhibitory neurons. Copyright © 2018 Elsevier Inc. All rights reserved.
Hermans, Frans; Sartas, Murat; van Schagen, Boudy; van Asten, Piet
2017-01-01
Multi-stakeholder platforms (MSPs) are seen as a promising vehicle to achieve agricultural development impacts. By increasing collaboration, exchange of knowledge and influence mediation among farmers, researchers and other stakeholders, MSPs supposedly enhance their ‘capacity to innovate’ and contribute to the ‘scaling of innovations’. The objective of this paper is to explore the capacity to innovate and scaling potential of three MSPs in Burundi, Rwanda and the South Kivu province located in the eastern part of Democratic Republic of Congo (DRC). In order to do this, we apply Social Network Analysis and Exponential Random Graph Modelling (ERGM) to investigate the structural properties of the collaborative, knowledge exchange and influence networks of these MSPs and compared them against value propositions derived from the innovation network literature. Results demonstrate a number of mismatches between collaboration, knowledge exchange and influence networks for effective innovation and scaling processes in all three countries: NGOs and private sector are respectively over- and under-represented in the MSP networks. Linkages between local and higher levels are weak, and influential organisations (e.g., high-level government actors) are often not part of the MSP or are not actively linked to by other organisations. Organisations with a central position in the knowledge network are more sought out for collaboration. The scaling of innovations is primarily between the same type of organisations across different administrative levels, but not between different types of organisations. The results illustrate the potential of Social Network Analysis and ERGMs to identify the strengths and limitations of MSPs in terms of achieving development impacts. PMID:28166226
Living in the branches: population dynamics and ecological processes in dendritic networks
Grant, E.H.C.; Lowe, W.H.; Fagan, W.F.
2007-01-01
Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.
Multi-agent Simulations of Population Behavior: A Promising Tool for Systems Biology.
Colosimo, Alfredo
2018-01-01
This contribution reports on the simulation of some dynamical events observed in the collective behavior of different kinds of populations, ranging from shape-changing cells in a Petri dish to functionally correlated brain areas in vivo. The unifying methodological approach, based upon a Multi-Agent Simulation (MAS) paradigm as incorporated in the NetLogo™ interpreter, is a direct consequence of the cornerstone that simple, individual actions within a population of interacting agents often give rise to complex, collective behavior.The discussion will mainly focus on the emergence and spreading of synchronous activities within the population, as well as on the modulation of the collective behavior exerted by environmental force-fields. A relevant section of this contribution is dedicated to the extension of the MAS paradigm to Brain Network models. In such a general framework some recent applications taken from the direct experience of the author, and exploring the activation patterns characteristic of specific brain functional states, are described, and their impact on the Systems-Biology universe underlined.
Eslaminejad, Mohammadreza; Razak, Shukor Abd
2012-01-01
Wireless sensor networks basically consist of low cost sensor nodes which collect data from environment and relay them to a sink, where they will be subsequently processed. Since wireless nodes are severely power-constrained, the major concern is how to conserve the nodes' energy so that network lifetime can be extended significantly. Employing one static sink can rapidly exhaust the energy of sink neighbors. Furthermore, using a non-optimal single path together with a maximum transmission power level may quickly deplete the energy of individual nodes on the route. This all results in unbalanced energy consumption through the sensor field, and hence a negative effect on the network lifetime. In this paper, we present a comprehensive taxonomy of the various mechanisms applied for increasing the network lifetime. These techniques, whether in the routing or cross-layer area, fall within the following types: multi-sink, mobile sink, multi-path, power control and bio-inspired algorithms, depending on the protocol operation. In this taxonomy, special attention has been devoted to the multi-sink, power control and bio-inspired algorithms, which have not yet received much consideration in the literature. Moreover, each class covers a variety of the state-of-the-art protocols, which should provide ideas for potential future works. Finally, we compare these mechanisms and discuss open research issues. PMID:23202008
Eslaminejad, Mohammadreza; Razak, Shukor Abd
2012-10-09
Wireless sensor networks basically consist of low cost sensor nodes which collect data from environment and relay them to a sink, where they will be subsequently processed. Since wireless nodes are severely power-constrained, the major concern is how to conserve the nodes' energy so that network lifetime can be extended significantly. Employing one static sink can rapidly exhaust the energy of sink neighbors. Furthermore, using a non-optimal single path together with a maximum transmission power level may quickly deplete the energy of individual nodes on the route. This all results in unbalanced energy consumption through the sensor field, and hence a negative effect on the network lifetime. In this paper, we present a comprehensive taxonomy of the various mechanisms applied for increasing the network lifetime. These techniques, whether in the routing or cross-layer area, fall within the following types: multi-sink, mobile sink, multi-path, power control and bio-inspired algorithms, depending on the protocol operation. In this taxonomy, special attention has been devoted to the multi-sink, power control and bio-inspired algorithms, which have not yet received much consideration in the literature. Moreover, each class covers a variety of the state-of-the-art protocols, which should provide ideas for potential future works. Finally, we compare these mechanisms and discuss open research issues.
PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data.
Hernández-de-Diego, Rafael; Tarazona, Sonia; Martínez-Mira, Carlos; Balzano-Nogueira, Leandro; Furió-Tarí, Pedro; Pappas, Georgios J; Conesa, Ana
2018-05-25
The increasing availability of multi-omic platforms poses new challenges to data analysis. Joint visualization of multi-omics data is instrumental in better understanding interconnections across molecular layers and in fully utilizing the multi-omic resources available to make biological discoveries. We present here PaintOmics 3, a web-based resource for the integrated visualization of multiple omic data types onto KEGG pathway diagrams. PaintOmics 3 combines server-end capabilities for data analysis with the potential of modern web resources for data visualization, providing researchers with a powerful framework for interactive exploration of their multi-omics information. Unlike other visualization tools, PaintOmics 3 covers a comprehensive pathway analysis workflow, including automatic feature name/identifier conversion, multi-layered feature matching, pathway enrichment, network analysis, interactive heatmaps, trend charts, and more. It accepts a wide variety of omic types, including transcriptomics, proteomics and metabolomics, as well as region-based approaches such as ATAC-seq or ChIP-seq data. The tool is freely available at www.paintomics.org.
Spread of hospital-acquired infections: A comparison of healthcare networks
Astagneau, Pascal; Crépey, Pascal
2017-01-01
Hospital-acquired infections (HAIs), including emerging multi-drug resistant organisms, threaten healthcare systems worldwide. Efficient containment measures of HAIs must mobilize the entire healthcare network. Thus, to best understand how to reduce the potential scale of HAI epidemic spread, we explore patient transfer patterns in the French healthcare system. Using an exhaustive database of all hospital discharge summaries in France in 2014, we construct and analyze three patient networks based on the following: transfers of patients with HAI (HAI-specific network); patients with suspected HAI (suspected-HAI network); and all patients (general network). All three networks have heterogeneous patient flow and demonstrate small-world and scale-free characteristics. Patient populations that comprise these networks are also heterogeneous in their movement patterns. Ranking of hospitals by centrality measures and comparing community clustering using community detection algorithms shows that despite the differences in patient population, the HAI-specific and suspected-HAI networks rely on the same underlying structure as that of the general network. As a result, the general network may be more reliable in studying potential spread of HAIs. Finally, we identify transfer patterns at both the French regional and departmental (county) levels that are important in the identification of key hospital centers, patient flow trajectories, and regional clusters that may serve as a basis for novel wide-scale infection control strategies. PMID:28837555
Rosas, Scott R; Cope, Marie T; Villa, Christie; Motevalli, Mahnaz; Utech, Jill; Schouten, Jeffrey T
2014-04-01
Large-scale, multi-network clinical trials are seen as a means for efficient and effective utilization of resources with greater responsiveness to new discoveries. Formal structures instituted within the National Institutes of Health (NIH) HIV/AIDS Clinical Trials facilitate collaboration and coordination across networks and emphasize an integrated approach to HIV/AIDS vaccine, prevention and therapeutics clinical trials. This study examines the joint usage of clinical research sites as means of gaining efficiency, extending capacity, and adding scientific value to the networks. A semi-structured questionnaire covering eight clinical management domains was administered to 74 (62% of sites) clinical site coordinators at single- and multi-network sites to identify challenges and efficiencies related to clinical trials management activities and coordination with multi-network units. Overall, respondents at multi-network sites did not report more challenges than single-network sites, but did report unique challenges to overcome including in the areas of study prioritization, community engagement, staff education and training, and policies and procedures. The majority of multi-network sites reported that such affiliations do allow for the consolidation and cost-sharing of research functions. Suggestions for increasing the efficiency or performance of multi-network sites included streamlining standards and requirements, consolidating protocol activation methods, using a single cross-network coordinating centre, and creating common budget and payment mechanisms. The results of this assessment provide important information to consider in the design and management of multi-network configurations for the NIH HIV/AIDS Clinical Trials Networks, as well as others contemplating and promoting the concept of multi-network settings. © 2013 John Wiley & Sons Ltd.
Topology Control in Aerial Multi-Beam Directional Networks
2017-04-24
underlying challenges to topology control in multi -beam direction networks. Two topology control algorithms are developed: a centralized algorithm...main beam, the gain is negligible. Thus, for topology control in a multi -beam system, two nodes that are being simultaneously transmitted to or...the network. As the network size is larger than the communication range, even the original network will require some multi -hop traffic. The second two
Correlations of stock price fluctuations under multi-scale and multi-threshold scenarios
NASA Astrophysics Data System (ADS)
Sui, Guo; Li, Huajiao; Feng, Sida; Liu, Xueyong; Jiang, Meihui
2018-01-01
The multi-scale method is widely used in analyzing time series of financial markets and it can provide market information for different economic entities who focus on different periods. Through constructing multi-scale networks of price fluctuation correlation in the stock market, we can detect the topological relationship between each time series. Previous research has not addressed the problem that the original fluctuation correlation networks are fully connected networks and more information exists within these networks that is currently being utilized. Here we use listed coal companies as a case study. First, we decompose the original stock price fluctuation series into different time scales. Second, we construct the stock price fluctuation correlation networks at different time scales. Third, we delete the edges of the network based on thresholds and analyze the network indicators. Through combining the multi-scale method with the multi-threshold method, we bring to light the implicit information of fully connected networks.
Heggarty, Paul; Maguire, Warren; McMahon, April
2010-12-12
Linguists have traditionally represented patterns of divergence within a language family in terms of either a 'splits' model, corresponding to a branching family tree structure, or the wave model, resulting in a (dialect) continuum. Recent phylogenetic analyses, however, have tended to assume the former as a viable idealization also for the latter. But the contrast matters, for it typically reflects different processes in the real world: speaker populations either separated by migrations, or expanding over continuous territory. Since history often leaves a complex of both patterns within the same language family, ideally we need a single model to capture both, and tease apart the respective contributions of each. The 'network' type of phylogenetic method offers this, so we review recent applications to language data. Most have used lexical data, encoded as binary or multi-state characters. We look instead at continuous distance measures of divergence in phonetics. Our output networks combine branch- and continuum-like signals in ways that correspond well to known histories (illustrated for Germanic, and particularly English). We thus challenge the traditional insistence on shared innovations, setting out a new, principled explanation for why complex language histories can emerge correctly from distance measures, despite shared retentions and parallel innovations.
Financial Time Series Prediction Using Spiking Neural Networks
Reid, David; Hussain, Abir Jaafar; Tawfik, Hissam
2014-01-01
In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two “traditional”, rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments. PMID:25170618
Locating an imaging radar in Canada for identifying spaceborne objects
NASA Astrophysics Data System (ADS)
Schick, William G.
1992-12-01
This research presents a study of the maximal coverage p-median facility location problem as applied to the location of an imaging radar in Canada for imaging spaceborne objects. The classical mathematical formulation of the maximal coverage p-median problem is converted into network-flow with side constraint formulations that are developed using a scaled down version of the imaging radar location problem. Two types of network-flow with side constraint formulations are developed: a network using side constraints that simulates the gains in a generalized network; and a network resembling a multi-commodity flow problem that uses side constraints to force flow along identical arcs. These small formulations are expanded to encompass a case study using 12 candidate radar sites, and 48 satellites divided into three states. SAS/OR PROC NETFLOW was used to solve the network-flow with side constraint formulations. The case study show that potential for both formulations, although the simulated gains formulation encountered singular matrix computational difficulties as a result of the very organized nature of its side constraint matrix. The multi-commodity flow formulation, when combined with equi-distribution of flow constraints, provided solutions for various values of p, the number of facilities to be selected.
NASA Astrophysics Data System (ADS)
Nelson, B. R.; Prat, O. P.; Stevens, S. E.; Seo, D. J.; Zhang, J.; Howard, K.
2014-12-01
The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor QPE (NMQ/Q2) based on the WSR-88D Next-generation Radar (NEXRAD) network over Continental United States (CONUS) is nearly completed for the period covering from 2001 to 2012. Reanalysis data are available at 1-km and 5-minute resolution. An important step in generating the best possible precipitation data is to assess the bias in the radar-only product. In this work, we use data from a combination of rain gauge networks to assess the bias in the NMQ reanalysis. Rain gauge networks such as the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), the Climate Reference Network (CRN), and the Global Historical Climatology Network Daily (GHCN-D) are combined for use in the assessment. These rain gauge networks vary in spatial density and temporal resolution. The challenge hence is to optimally utilize them to assess the bias at the finest resolution possible. For initial assessment, we propose to subset the CONUS data in climatologically representative domains, and perform bias assessment using information in the Q2 dataset on precipitation type and phase.
Boxberger, Tobias; Fleming, Kevin; Pittore, Massimiliano; Parolai, Stefano; Pilz, Marco; Mikulla, Stefan
2017-10-20
The Multi-Parameter Wireless Sensing (MPwise) system is an innovative instrumental design that allows different sensor types to be combined with relatively high-performance computing and communications components. These units, which incorporate off-the-shelf components, can undertake complex information integration and processing tasks at the individual unit or node level (when used in a network), allowing the establishment of networks that are linked by advanced, robust and rapid communications routing and network topologies. The system (and its predecessors) was originally designed for earthquake risk mitigation, including earthquake early warning (EEW), rapid response actions, structural health monitoring, and site-effect characterization. For EEW, MPwise units are capable of on-site, decentralized, independent analysis of the recorded ground motion and based on this, may issue an appropriate warning, either by the unit itself or transmitted throughout a network by dedicated alarming procedures. The multi-sensor capabilities of the system allow it to be instrumented with standard strong- and weak-motion sensors, broadband sensors, MEMS (namely accelerometers), cameras, temperature and humidity sensors, and GNSS receivers. In this work, the MPwise hardware, software and communications schema are described, as well as an overview of its possible applications. While focusing on earthquake risk mitigation actions, the aim in the future is to expand its capabilities towards a more multi-hazard and risk mitigation role. Overall, MPwise offers considerable flexibility and has great potential in contributing to natural hazard risk mitigation.
Multi-GNSS PPP-RTK: From Large- to Small-Scale Networks
Nadarajah, Nandakumaran; Wang, Kan; Choudhury, Mazher
2018-01-01
Precise point positioning (PPP) and its integer ambiguity resolution-enabled variant, PPP-RTK (real-time kinematic), can benefit enormously from the integration of multiple global navigation satellite systems (GNSS). In such a multi-GNSS landscape, the positioning convergence time is expected to be reduced considerably as compared to the one obtained by a single-GNSS setup. It is therefore the goal of the present contribution to provide numerical insights into the role taken by the multi-GNSS integration in delivering fast and high-precision positioning solutions (sub-decimeter and centimeter levels) using PPP-RTK. To that end, we employ the Curtin PPP-RTK platform and process data-sets of GPS, BeiDou Navigation Satellite System (BDS) and Galileo in stand-alone and combined forms. The data-sets are collected by various receiver types, ranging from high-end multi-frequency geodetic receivers to low-cost single-frequency mass-market receivers. The corresponding stations form a large-scale (Australia-wide) network as well as a small-scale network with inter-station distances less than 30 km. In case of the Australia-wide GPS-only ambiguity-float setup, 90% of the horizontal positioning errors (kinematic mode) are shown to become less than five centimeters after 103 min. The stated required time is reduced to 66 min for the corresponding GPS + BDS + Galieo setup. The time is further reduced to 15 min by applying single-receiver ambiguity resolution. The outcomes are supported by the positioning results of the small-scale network. PMID:29614040
Multi-GNSS PPP-RTK: From Large- to Small-Scale Networks.
Nadarajah, Nandakumaran; Khodabandeh, Amir; Wang, Kan; Choudhury, Mazher; Teunissen, Peter J G
2018-04-03
Precise point positioning (PPP) and its integer ambiguity resolution-enabled variant, PPP-RTK (real-time kinematic), can benefit enormously from the integration of multiple global navigation satellite systems (GNSS). In such a multi-GNSS landscape, the positioning convergence time is expected to be reduced considerably as compared to the one obtained by a single-GNSS setup. It is therefore the goal of the present contribution to provide numerical insights into the role taken by the multi-GNSS integration in delivering fast and high-precision positioning solutions (sub-decimeter and centimeter levels) using PPP-RTK. To that end, we employ the Curtin PPP-RTK platform and process data-sets of GPS, BeiDou Navigation Satellite System (BDS) and Galileo in stand-alone and combined forms. The data-sets are collected by various receiver types, ranging from high-end multi-frequency geodetic receivers to low-cost single-frequency mass-market receivers. The corresponding stations form a large-scale (Australia-wide) network as well as a small-scale network with inter-station distances less than 30 km. In case of the Australia-wide GPS-only ambiguity-float setup, 90% of the horizontal positioning errors (kinematic mode) are shown to become less than five centimeters after 103 min. The stated required time is reduced to 66 min for the corresponding GPS + BDS + Galieo setup. The time is further reduced to 15 min by applying single-receiver ambiguity resolution. The outcomes are supported by the positioning results of the small-scale network.
Boxberger, Tobias; Fleming, Kevin; Pittore, Massimiliano; Parolai, Stefano; Pilz, Marco; Mikulla, Stefan
2017-01-01
The Multi-Parameter Wireless Sensing (MPwise) system is an innovative instrumental design that allows different sensor types to be combined with relatively high-performance computing and communications components. These units, which incorporate off-the-shelf components, can undertake complex information integration and processing tasks at the individual unit or node level (when used in a network), allowing the establishment of networks that are linked by advanced, robust and rapid communications routing and network topologies. The system (and its predecessors) was originally designed for earthquake risk mitigation, including earthquake early warning (EEW), rapid response actions, structural health monitoring, and site-effect characterization. For EEW, MPwise units are capable of on-site, decentralized, independent analysis of the recorded ground motion and based on this, may issue an appropriate warning, either by the unit itself or transmitted throughout a network by dedicated alarming procedures. The multi-sensor capabilities of the system allow it to be instrumented with standard strong- and weak-motion sensors, broadband sensors, MEMS (namely accelerometers), cameras, temperature and humidity sensors, and GNSS receivers. In this work, the MPwise hardware, software and communications schema are described, as well as an overview of its possible applications. While focusing on earthquake risk mitigation actions, the aim in the future is to expand its capabilities towards a more multi-hazard and risk mitigation role. Overall, MPwise offers considerable flexibility and has great potential in contributing to natural hazard risk mitigation. PMID:29053608
A network pharmacology study of Sendeng-4, a Mongolian medicine.
Zi, Tian; Yu, Dong
2015-02-01
We collected the data on the Sendeng-4 chemical composition corresponding targets through the literature and from DrugBank, SuperTarget, TTD (Therapeutic Targets Database) and other databases and the relevant signaling pathways from the KEGG (Kyoto Encyclopedia of Genes and Genomes) database and established models of the chemical composition-target network and chemical composition-target-disease network using Cytoscape software, the analysis indicated that the chemical composition had at least nine different types of targets that acted together to exert effects on the diseases, suggesting a "multi-component, multi-target" feature of the traditional Mongolian medicine. We also employed the rat model of rheumatoid arthritis induced by Collgen Type II to validate the key targets of the chemical components of Sendeng-4, and three of the key targets were validated through laboratory experiments, further confirming the anti-inflammatory effects of Sendeng-4. In all, this study predicted the active ingredients and targets of Sendeng-4, and explored its mechanism of action, which provided new strategies and methods for further research and development of Sendeng-4 and other traditional Mongolian medicines as well. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fan, Meng; Ye, Dan
2005-09-01
This paper studies the dynamics of a system of retarded functional differential equations (i.e., RF=Es), which generalize the Hopfield neural network models, the bidirectional associative memory neural networks, the hybrid network models of the cellular neural network type, and some population growth model. Sufficient criteria are established for the globally exponential stability and the existence and uniqueness of pseudo almost periodic solution. The approaches are based on constructing suitable Lyapunov functionals and the well-known Banach contraction mapping principle. The paper ends with some applications of the main results to some neural network models and population growth models and numerical simulations.
A novel method for 3D measurement of RFID multi-tag network based on matching vision and wavelet
NASA Astrophysics Data System (ADS)
Zhuang, Xiao; Yu, Xiaolei; Zhao, Zhimin; Wang, Donghua; Zhang, Wenjie; Liu, Zhenlu; Lu, Dongsheng; Dong, Dingbang
2018-07-01
In the field of radio frequency identification (RFID), the three-dimensional (3D) distribution of RFID multi-tag networks has a significant impact on their reading performance. At the same time, in order to realize the anti-collision of RFID multi-tag networks in practical engineering applications, the 3D distribution of RFID multi-tag networks must be measured. In this paper, a novel method for the 3D measurement of RFID multi-tag networks is proposed. A dual-CCD system (vertical and horizontal cameras) is used to obtain images of RFID multi-tag networks from different angles. Then, the wavelet threshold denoising method is used to remove noise in the obtained images. The template matching method is used to determine the two-dimensional coordinates and vertical coordinate of each tag. The 3D coordinates of each tag are obtained subsequently. Finally, a model of the nonlinear relation between the 3D coordinate distribution of the RFID multi-tag network and the corresponding reading distance is established using the wavelet neural network. The experiment results show that the average prediction relative error is 0.71% and the time cost is 2.17 s. The values of the average prediction relative error and time cost are smaller than those of the particle swarm optimization neural network and genetic algorithm–back propagation neural network. The time cost of the wavelet neural network is about 1% of that of the other two methods. The method proposed in this paper has a smaller relative error. The proposed method can improve the real-time performance of RFID multi-tag networks and the overall dynamic performance of multi-tag networks.
Good, Jean-Marc; Mahoney, Michael; Miyazaki, Taisuke; Tanaka, Kenji F; Sakimura, Kenji; Watanabe, Masahiko; Kitamura, Kazuo; Kano, Masanobu
2017-11-21
Neural circuits undergo massive refinements during postnatal development. In the developing cerebellum, the climbing fiber (CF) to Purkinje cell (PC) network is drastically reshaped by eliminating early-formed redundant CF to PC synapses. To investigate the impact of CF network refinement on PC population activity during postnatal development, we monitored spontaneous CF responses in neighboring PCs and the activity of populations of nearby CF terminals using in vivo two-photon calcium imaging. Population activity is highly synchronized in newborn mice, and the degree of synchrony gradually declines during the first postnatal week in PCs and, to a lesser extent, in CF terminals. Knockout mice lacking P/Q-type voltage-gated calcium channel or glutamate receptor δ2, in which CF network refinement is severely impaired, exhibit an abnormally high level of synchrony in PC population activity. These results suggest that CF network refinement is a structural basis for developmental desynchronization and maturation of PC population activity. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Wearable-Sensor-Based Classification Models of Faller Status in Older Adults.
Howcroft, Jennifer; Lemaire, Edward D; Kofman, Jonathan
2016-01-01
Wearable sensors have potential for quantitative, gait-based, point-of-care fall risk assessment that can be easily and quickly implemented in clinical-care and older-adult living environments. This investigation generated models for wearable-sensor based fall-risk classification in older adults and identified the optimal sensor type, location, combination, and modelling method; for walking with and without a cognitive load task. A convenience sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Participants also completed the Activities-specific Balance Confidence scale, Community Health Activities Model Program for Seniors questionnaire, six minute walk test, and ranked their fear of falling. Fall risk classification models were assessed for all sensor combinations and three model types: multi-layer perceptron neural network, naïve Bayesian, and support vector machine. The best performing model was a multi-layer perceptron neural network with input parameters from pressure-sensing insoles and head, pelvis, and left shank accelerometers (accuracy = 84%, F1 score = 0.600, MCC score = 0.521). Head sensor-based models had the best performance of the single-sensor models for single-task gait assessment. Single-task gait assessment models outperformed models based on dual-task walking or clinical assessment data. Support vector machines and neural networks were the best modelling technique for fall risk classification. Fall risk classification models developed for point-of-care environments should be developed using support vector machines and neural networks, with a multi-sensor single-task gait assessment.
Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata
Chen, Yangzhou; Guo, Yuqi; Wang, Ying
2017-01-01
In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research. PMID:28353664
Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata.
Chen, Yangzhou; Guo, Yuqi; Wang, Ying
2017-03-29
In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research.
Two-population dynamics in a growing network model
NASA Astrophysics Data System (ADS)
Ivanova, Kristinka; Iordanov, Ivan
2012-02-01
We introduce a growing network evolution model with nodal attributes. The model describes the interactions between potentially violent V and non-violent N agents who have different affinities in establishing connections within their own population versus between the populations. The model is able to generate all stable triads observed in real social systems. In the framework of rate equations theory, we employ the mean-field approximation to derive analytical expressions of the degree distribution and the local clustering coefficient for each type of nodes. Analytical derivations agree well with numerical simulation results. The assortativity of the potentially violent network qualitatively resembles the connectivity pattern in terrorist networks that was recently reported. The assortativity of the network driven by aggression shows clearly different behavior than the assortativity of the networks with connections of non-aggressive nature in agreement with recent empirical results of an online social system.
Inferring Single Neuron Properties in Conductance Based Balanced Networks
Pool, Román Rossi; Mato, Germán
2011-01-01
Balanced states in large networks are a usual hypothesis for explaining the variability of neural activity in cortical systems. In this regime the statistics of the inputs is characterized by static and dynamic fluctuations. The dynamic fluctuations have a Gaussian distribution. Such statistics allows to use reverse correlation methods, by recording synaptic inputs and the spike trains of ongoing spontaneous activity without any additional input. By using this method, properties of the single neuron dynamics that are masked by the balanced state can be quantified. To show the feasibility of this approach we apply it to large networks of conductance based neurons. The networks are classified as Type I or Type II according to the bifurcations which neurons of the different populations undergo near the firing onset. We also analyze mixed networks, in which each population has a mixture of different neuronal types. We determine under which conditions the intrinsic noise generated by the network can be used to apply reverse correlation methods. We find that under realistic conditions we can ascertain with low error the types of neurons present in the network. We also find that data from neurons with similar firing rates can be combined to perform covariance analysis. We compare the results of these methods (that do not requite any external input) to the standard procedure (that requires the injection of Gaussian noise into a single neuron). We find a good agreement between the two procedures. PMID:22016730
Multi-objective route planning for dangerous goods using compromise programming
NASA Astrophysics Data System (ADS)
Li, Rongrong; Leung, Yee
2011-09-01
The transportation of dangerous goods (DG) can significantly affect the human and natural environment if accidents occur during the transportation process. Hong Kong is a large city with high population density and narrow streets. Due to the land constraints, vehicles carrying DG inevitably have to pass through densely populated areas or their vicinities. Therefore, safe DG transportation is of paramount importance. There is thus an urgent need to review and improve the way trucks carrying DG are being routed on the road networks. Routing of such vehicles should consider not only the operating cost, but also the safety of travelers in the network, the population potentially exposed, and the possible damage inflicted to the surrounding properties and facilities in the event of a DG incident. This research develops a novel methodology for the determination of optimal routes for DG transportation under conflicting objectives by means of the compromise programming approach. With the support of geographical information system (GIS), a case study is carried out for the transportation of DG in the road network of Hong Kong. The experimental results confirm the effectiveness of the proposed approach.
Dorjee, S; Revie, C W; Poljak, Z; McNab, W B; Sanchez, J
2013-10-01
Understanding contact networks are important for modelling and managing the spread and control of communicable diseases in populations. This study characterizes the swine shipment network of a multi-site production system in southwestern Ontario, Canada. Data were extracted from a company's database listing swine shipments among 251 swine farms, including 20 sow, 69 nursery and 162 finishing farms, for the 2-year period of 2006 to 2007. Several network metrics were generated. The number of shipments per week between pairs of farms ranged from 1 to 6. The medians (and ranges) of out-degree were: sow 6 (1-21), nursery 8 (0-25), and finishing 0 (0-4), over the entire 2-year study period. Corresponding estimates for in-degree of nursery and finishing farms were 3 (0-9) and 3 (0-12) respectively. Outgoing and incoming infection chains (OIC and IIC), were also measured. The medians (ranges) of the monthly OIC and IIC were 0 (0-8) and 0 (0-6), respectively, with very similar measures observed for 2-week intervals. Nursery farms exhibited high measures of centrality. This indicates that they pose greater risks of disease spread in the network. Therefore, they should be given a high priority for disease prevention and control measures affecting all age groups alike. The network demonstrated scale-free and small-world topologies as observed in other livestock shipment studies. This heterogeneity in contacts among farm types and network topologies should be incorporated in simulation models to improve their validity. In conclusion, this study provided useful epidemiological information and parameters for the control and modelling of disease spread among swine farms, for the first time from Ontario, Canada. Copyright © 2013 Elsevier B.V. All rights reserved.
Secure and Cost-Effective Distributed Aggregation for Mobile Sensor Networks
Guo, Kehua; Zhang, Ping; Ma, Jianhua
2016-01-01
Secure data aggregation (SDA) schemes are widely used in distributed applications, such as mobile sensor networks, to reduce communication cost, prolong the network life cycle and provide security. However, most SDA are only suited for a single type of statistics (i.e., summation-based or comparison-based statistics) and are not applicable to obtaining multiple statistic results. Most SDA are also inefficient for dynamic networks. This paper presents multi-functional secure data aggregation (MFSDA), in which the mapping step and coding step are introduced to provide value-preserving and order-preserving and, later, to enable arbitrary statistics support in the same query. MFSDA is suited for dynamic networks because these active nodes can be counted directly from aggregation data. The proposed scheme is tolerant to many types of attacks. The network load of the proposed scheme is balanced, and no significant bottleneck exists. The MFSDA includes two versions: MFSDA-I and MFSDA-II. The first one can obtain accurate results, while the second one is a more generalized version that can significantly reduce network traffic at the expense of less accuracy loss. PMID:27120599
Thiyagarajan, Jotheeswaran A; Prince, Martin; Webber, Martin
2014-08-01
This study aims to assess the construct validity of the Wenger social support network typology in low and middle income countries. We hypothesize that, in comparison with the integrated network type, the non-integrated network type is associated with loneliness, depression, poor quality of life (less happiness), poor self-reported health, increased disability and higher care needs. Cross-sectional one-phase surveys were conducted of all residents aged 65 and over in catchment areas in eight low and middle income countries (India, China, Cuba, Dominican Republic, Venezuela, Mexico, Peru and Puerto Rico). Wenger's Practitioner Assessment of Network Type (PANT) was used to measure social network type. Family dependent, local self-contained, wider community-focused and private restricted network types were considered non-integrated, in comparison to the locally integrated network type. Overall, 17,031 participants were interviewed. Family dependent and locally integrated network types were the most prevalent. Adjusted pooled estimates across sites showed that loneliness, depression, less happiness, poor health, disability, and need for care were significantly associated with non-integrated network type. The findings of this study support the construct validity of Wenger's network typology in low and middle income countries. However, further research is required to test the criterion validity of Wenger typology using longitudinal data. Identifying older people who are vulnerable could inform the development of social care interventions to support older people and their families in the context of deteriorating health.
ERIC Educational Resources Information Center
Robinovitz, Stewart
1987-01-01
A strategy for integrated data and voice networks implemented at the University of Michigan is described. These networks often use multi-technologies, multi-vendors, and multi-transmission media that will be fused into a single integrated network. Transmission media include twisted-pair wire, coaxial cable, fiber optics, and microwave. (Author/MLW)
Santini, Ziggi Ivan; Koyanagi, Ai; Tyrovolas, Stefanos; Haro, Josep M; Fiori, Katherine L; Uwakwa, Richard; Thiyagarajan, Jotheeswaran A; Webber, Martin; Prince, Martin; Prina, A Matthew
2015-12-01
Restricted social networks have been associated with higher mortality in several developed countries but there are no studies on this topic from developing countries. This gap exists despite potentially greater dependence on social networks for support and survival due to various barriers to health care and social protection schemes in this setting. Thus, this study aims to examine how social network type at baseline predicts all-cause mortality among older adults in six Latin American countries, China, and India. Population-based surveys were conducted of all individuals aged 65+ years in eight countries (Cuba, Dominican Republic, Peru, Venezuela, Mexico, Puerto Rico, China, and India). Data on mortality were obtained at follow-up (mean 3.8 years after cohort inception). Follow-up data for 13,891 individuals were analysed. Social network types were assessed using Wenger's Practitioner Assessment of Network Type (PANT). Cox proportional hazard models were constructed to estimate the impact of social network type on mortality risk in each country, adjusting for socio-demographics, receipt of pension, disability, medical conditions, and depression. Meta-analysis was performed to obtain pooled estimates. The prevalence of private network type was 64.4% in urban China and 1.6% in rural China, while the prevalence of locally integrated type was 6.6% in urban China and 86.8% in rural China. The adjusted pooled estimates across (a) all countries and (b) Latin America showed that, compared to the locally integrated social network type, the locally self-contained [(b) HR = 1.24, 95% CI 1.01-1.51], family dependent [(a) HR = 1.13, 95% CI 1.01-1.26; (b) HR = 1.13, 95% CI 1.001-1.28], and private [(a) HR = 1.36, 95% CI 1.06-1.73; (b) HR = 1.45, 95% CI 1.20-1.75] social network types were significantly associated with higher mortality risk. Survival time is significantly reduced in individuals embedded in restricted social networks (i.e. locally self-contained, family dependent, and private network types). Social care interventions may be enhanced by addressing the needs of those most at risk of neglect and deteriorating health. Health policy makers in developing countries may use this information to plan efficient use of limited resources by targeting those embedded in restricted social networks. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
2012-03-01
responsible for self -organizing an appropriate network infrastructure with multi-hop connection between sensor nodes. The network is self - healing ...a self -destruct mechanism that will flood the casing with water in the event that the mine is separated from its mooring. Provided that this does...mechanically severed from its mooring cable, would then initiate its self -destruct sequence whereby the mine is flooded. Then, depending upon the type of
[On the extinction of populations with several types in a random environment].
Bacaër, Nicolas
2018-03-01
This study focuses on the extinction rate of a population that follows a continuous-time multi-type branching process in a random environment. Numerical computations in a particular example inspired by an epidemic model suggest an explicit formula for this extinction rate, but only for certain parameter values. Copyright © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Rowlands, David S; Page, Rachel A; Sukala, William R; Giri, Mamta; Ghimbovschi, Svetlana D; Hayat, Irum; Cheema, Birinder S; Lys, Isabelle; Leikis, Murray; Sheard, Phillip W; Wakefield, St John; Breier, Bernhard; Hathout, Yetrib; Brown, Kristy; Marathi, Ramya; Orkunoglu-Suer, Funda E; Devaney, Joseph M; Leiken, Benjamin; Many, Gina; Krebs, Jeremy; Hopkins, Will G; Hoffman, Eric P
2014-10-15
Epigenomic regulation of the transcriptome by DNA methylation and posttranscriptional gene silencing by miRNAs are potential environmental modulators of skeletal muscle plasticity to chronic exercise in healthy and diseased populations. We utilized transcriptome networks to connect exercise-induced differential methylation and miRNA with functional skeletal muscle plasticity. Biopsies of the vastus lateralis were collected from middle-aged Polynesian men and women with morbid obesity (44 kg/m(2) ± 10) and Type 2 diabetes before and following 16 wk of resistance (n = 9) or endurance training (n = 8). Longitudinal transcriptome, methylome, and microRNA (miRNA) responses were obtained via microarray, filtered by novel effect-size based false discovery rate probe selection preceding bioinformatic interrogation. Metabolic and microvascular transcriptome topology dominated the network landscape following endurance exercise. Lipid and glucose metabolism modules were connected to: microRNA (miR)-29a; promoter region hypomethylation of nuclear receptor factor (NRF1) and fatty acid transporter (SLC27A4), and hypermethylation of fatty acid synthase, and to exon hypomethylation of 6-phosphofructo-2-kinase and Ser/Thr protein kinase. Directional change in the endurance networks was validated by lower intramyocellular lipid, increased capillarity, GLUT4, hexokinase, and mitochondrial enzyme activity and proteome. Resistance training also lowered lipid and increased enzyme activity and caused GLUT4 promoter hypomethylation; however, training was inconsequential to GLUT4, capillarity, and metabolic transcriptome. miR-195 connected to negative regulation of vascular development. To conclude, integrated molecular network modelling revealed differential DNA methylation and miRNA expression changes occur in skeletal muscle in response to chronic exercise training that are most pronounced with endurance training and topographically associated with functional metabolic and microvascular plasticity relevant to diabetes rehabilitation. Copyright © 2014 the American Physiological Society.
Polguj, Michał; Wysiadecki, Grzegorz; Podgórski, Michał; Szymański, Jacek; Olbrych, Katarzyna; Olewnik, Łukasz; Topol, Mirosław
2015-10-15
Proper blood supply is necessary for the physiological function of every internal organ. The article offers the first classification of the bovine intra-testicular arteries. A corrosive study focused on the intra-testicular arterial vasculature was performed on 40 bovine testes. The vessels were analyzed accurately using MultiScanBase v.18.02 software. A corrosive study focused on the intra-testicular arteries was performed on 40 bovine testes. The vessels were analyzed accurately using MultiScanBase v.18.02 software. In bulls, the centripetal arteries tended to run straight to the mediastinal region, where they form knot-like vascular structures. Those structures are the origin for centrifugal recurrent branches, running peripherally. However, three basic types of intra-testicular arterial vasculature were noted. Type I had centrifugal, recurrent branches, running peripherally towards the surface of the testis but did not reach the tunica albuginea. Type II exhibited centrifugal, recurrent branches running more horizontally than type I. Type III is the most heterogeneous type, composed of other variform types of arteries not classified as type I or type II. Type II was most commonly observed as a vascular conglomerate of intra-testicular arteries within the arterial network of the mediastinum testis. In type III, artery diameter was significantly smaller than observed in types I and II (p < 0.01). Types I and II did not differ between each other regarding artery diameter (p > 0.05). Variations of the intra-testicular arterial vasculature in bovine testis may suggest that particular types of vessels play different physiological roles. The most common type of intra-testicular artery comprising the arterial network of the mediastinum testis was type II.
Dynamics of Competition between Subnetworks of Spiking Neuronal Networks in the Balanced State.
Lagzi, Fereshteh; Rotter, Stefan
2015-01-01
We explore and analyze the nonlinear switching dynamics of neuronal networks with non-homogeneous connectivity. The general significance of such transient dynamics for brain function is unclear; however, for instance decision-making processes in perception and cognition have been implicated with it. The network under study here is comprised of three subnetworks of either excitatory or inhibitory leaky integrate-and-fire neurons, of which two are of the same type. The synaptic weights are arranged to establish and maintain a balance between excitation and inhibition in case of a constant external drive. Each subnetwork is randomly connected, where all neurons belonging to a particular population have the same in-degree and the same out-degree. Neurons in different subnetworks are also randomly connected with the same probability; however, depending on the type of the pre-synaptic neuron, the synaptic weight is scaled by a factor. We observed that for a certain range of the "within" versus "between" connection weights (bifurcation parameter), the network activation spontaneously switches between the two sub-networks of the same type. This kind of dynamics has been termed "winnerless competition", which also has a random component here. In our model, this phenomenon is well described by a set of coupled stochastic differential equations of Lotka-Volterra type that imply a competition between the subnetworks. The associated mean-field model shows the same dynamical behavior as observed in simulations of large networks comprising thousands of spiking neurons. The deterministic phase portrait is characterized by two attractors and a saddle node, its stochastic component is essentially given by the multiplicative inherent noise of the system. We find that the dwell time distribution of the active states is exponential, indicating that the noise drives the system randomly from one attractor to the other. A similar model for a larger number of populations might suggest a general approach to study the dynamics of interacting populations of spiking networks.
Dynamics of Competition between Subnetworks of Spiking Neuronal Networks in the Balanced State
Lagzi, Fereshteh; Rotter, Stefan
2015-01-01
We explore and analyze the nonlinear switching dynamics of neuronal networks with non-homogeneous connectivity. The general significance of such transient dynamics for brain function is unclear; however, for instance decision-making processes in perception and cognition have been implicated with it. The network under study here is comprised of three subnetworks of either excitatory or inhibitory leaky integrate-and-fire neurons, of which two are of the same type. The synaptic weights are arranged to establish and maintain a balance between excitation and inhibition in case of a constant external drive. Each subnetwork is randomly connected, where all neurons belonging to a particular population have the same in-degree and the same out-degree. Neurons in different subnetworks are also randomly connected with the same probability; however, depending on the type of the pre-synaptic neuron, the synaptic weight is scaled by a factor. We observed that for a certain range of the “within” versus “between” connection weights (bifurcation parameter), the network activation spontaneously switches between the two sub-networks of the same type. This kind of dynamics has been termed “winnerless competition”, which also has a random component here. In our model, this phenomenon is well described by a set of coupled stochastic differential equations of Lotka-Volterra type that imply a competition between the subnetworks. The associated mean-field model shows the same dynamical behavior as observed in simulations of large networks comprising thousands of spiking neurons. The deterministic phase portrait is characterized by two attractors and a saddle node, its stochastic component is essentially given by the multiplicative inherent noise of the system. We find that the dwell time distribution of the active states is exponential, indicating that the noise drives the system randomly from one attractor to the other. A similar model for a larger number of populations might suggest a general approach to study the dynamics of interacting populations of spiking networks. PMID:26407178
Network Coding on Heterogeneous Multi-Core Processors for Wireless Sensor Networks
Kim, Deokho; Park, Karam; Ro, Won W.
2011-01-01
While network coding is well known for its efficiency and usefulness in wireless sensor networks, the excessive costs associated with decoding computation and complexity still hinder its adoption into practical use. On the other hand, high-performance microprocessors with heterogeneous multi-cores would be used as processing nodes of the wireless sensor networks in the near future. To this end, this paper introduces an efficient network coding algorithm developed for the heterogenous multi-core processors. The proposed idea is fully tested on one of the currently available heterogeneous multi-core processors referred to as the Cell Broadband Engine. PMID:22164053
Specific non-monotonous interactions increase persistence of ecological networks.
Yan, Chuan; Zhang, Zhibin
2014-03-22
The relationship between stability and biodiversity has long been debated in ecology due to opposing empirical observations and theoretical predictions. Species interaction strength is often assumed to be monotonically related to population density, but the effects on stability of ecological networks of non-monotonous interactions that change signs have not been investigated previously. We demonstrate that for four kinds of non-monotonous interactions, shifting signs to negative or neutral interactions at high population density increases persistence (a measure of stability) of ecological networks, while for the other two kinds of non-monotonous interactions shifting signs to positive interactions at high population density decreases persistence of networks. Our results reveal a novel mechanism of network stabilization caused by specific non-monotonous interaction types through either increasing stable equilibrium points or reducing unstable equilibrium points (or both). These specific non-monotonous interactions may be important in maintaining stable and complex ecological networks, as well as other networks such as genes, neurons, the internet and human societies.
Voluntary Vaccination through Self-organizing Behaviors on Locally-mixed Social Networks.
Shi, Benyun; Qiu, Hongjun; Niu, Wenfang; Ren, Yizhi; Ding, Hong; Chen, Dan
2017-06-01
Voluntary vaccination reflects how individuals weigh the risk of infection and the cost of vaccination against the spread of vaccine-preventable diseases, such as smallpox and measles. In a homogeneously mixing population, the infection risk of an individual depends largely on the proportion of vaccinated individuals due to the effects of herd immunity. While in a structured population, the infection risk can also be affected by the structure of individuals' social network. In this paper, we focus on studying individuals' self-organizing behaviors under the circumstance of voluntary vaccination in different types of social networks. Specifically, we assume that each individual together with his/her neighbors forms a local well-mixed environment, where individuals meet equally often as long as they have a common neighbor. We carry out simulations on four types of locally-mixed social networks to investigate the network effects on voluntary vaccination. Furthermore, we also evaluate individuals' vaccinating decisions through interacting with their "neighbors of neighbors". The results and findings of this paper provide a new perspective for vaccination policy-making by taking into consideration human responses in complex social networks.
Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent
NASA Astrophysics Data System (ADS)
Zhao, T. H.; Yin, Z.; Song, Y. Z.
2012-11-01
The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.
BioWar: A City-Scale Multi-Agent Network Model of Weaponized Biological Attacks
2004-01-01
Simplex Encephalitis Hypertensive Heart Disease Hypovolemic Shock Immune Deficiency Syndrome Acquired Aids Infectious Mononucleosis Malaria...mitigation and recovery strategies. Models developed for the spread of infectious diseases in human populations can be harnessed for the predicting the...Restaurant s Eating location University Post secondary education institutions Military Military bases Indiv infectious idual a ) agents each tick
Cardiac Arrhythmia Classification by Multi-Layer Perceptron and Convolution Neural Networks.
Savalia, Shalin; Emamian, Vahid
2018-05-04
The electrocardiogram (ECG) plays an imperative role in the medical field, as it records heart signal over time and is used to discover numerous cardiovascular diseases. If a documented ECG signal has a certain irregularity in its predefined features, this is called arrhythmia, the types of which include tachycardia, bradycardia, supraventricular arrhythmias, and ventricular, etc. This has encouraged us to do research that consists of distinguishing between several arrhythmias by using deep neural network algorithms such as multi-layer perceptron (MLP) and convolution neural network (CNN). The TensorFlow library that was established by Google for deep learning and machine learning is used in python to acquire the algorithms proposed here. The ECG databases accessible at PhysioBank.com and kaggle.com were used for training, testing, and validation of the MLP and CNN algorithms. The proposed algorithm consists of four hidden layers with weights, biases in MLP, and four-layer convolution neural networks which map ECG samples to the different classes of arrhythmia. The accuracy of the algorithm surpasses the performance of the current algorithms that have been developed by other cardiologists in both sensitivity and precision.
Multipoint to multipoint routing and wavelength assignment in multi-domain optical networks
NASA Astrophysics Data System (ADS)
Qin, Panke; Wu, Jingru; Li, Xudong; Tang, Yongli
2018-01-01
In multi-point to multi-point (MP2MP) routing and wavelength assignment (RWA) problems, researchers usually assume the optical networks to be a single domain. However, the optical networks develop toward to multi-domain and larger scale in practice. In this context, multi-core shared tree (MST)-based MP2MP RWA are introduced problems including optimal multicast domain sequence selection, core nodes belonging in which domains and so on. In this letter, we focus on MST-based MP2MP RWA problems in multi-domain optical networks, mixed integer linear programming (MILP) formulations to optimally construct MP2MP multicast trees is presented. A heuristic algorithm base on network virtualization and weighted clustering algorithm (NV-WCA) is proposed. Simulation results show that, under different traffic patterns, the proposed algorithm achieves significant improvement on network resources occupation and multicast trees setup latency in contrast with the conventional algorithms which were proposed base on a single domain network environment.
Chimeralike states in a network of oscillators under attractive and repulsive global coupling.
Mishra, Arindam; Hens, Chittaranjan; Bose, Mridul; Roy, Prodyot K; Dana, Syamal K
2015-12-01
We report chimeralike states in an ensemble of oscillators using a type of global coupling consisting of two components: attractive and repulsive mean-field feedback. We identify the existence of two types of chimeralike states in a bistable Liénard system; in one type, both the coherent and the incoherent populations are in chaotic states (which we refer to as chaos-chaos chimeralike states) and, in another type, the incoherent population is in periodic state while the coherent population has irregular small oscillation. We find a metastable state in a parameter regime of the Liénard system where the coherent and noncoherent states migrate in time from one to another subpopulation. The relative size of the incoherent subpopulation, in the chimeralike states, remains almost stable with increasing size of the network. The generality of the coupling configuration in the origin of the chimeralike states is tested, using a second example of bistable system, the van der Pol-Duffing oscillator where the chimeralike states emerge as weakly chaotic in the coherent subpopulation and chaotic in the incoherent subpopulation. Furthermore, we apply the coupling, in a simplified form, to form a network of the chaotic Rössler system where both the noncoherent and the coherent subpopulations show chaotic dynamics.
Moser, Aline; Schafroth, Karl; Meile, Leo; Egger, Lotti; Badertscher, René; Irmler, Stefan
2018-01-01
Lactobacillus helveticus , a ubiquitous bacterial species in natural whey cultures (NWCs) used for Swiss Gruyère cheese production, is considered to have crucial functions for cheese ripening such as enhancing proteolysis. We tracked the diversity and abundance of L. helveticus strains during 6 months of ripening in eight Swiss Gruyère-type cheeses using a culture-independent typing method. The study showed that the L. helveticus population present in NWCs persisted in cheese and demonstrated a stable multi-strain coexistence during cheese ripening. With regard to proteolysis, one of the eight L. helveticus populations exhibited less protein degradation during ripening.
NASA Astrophysics Data System (ADS)
Niu, Xiaoliang; Yuan, Fen; Huang, Shanguo; Guo, Bingli; Gu, Wanyi
2011-12-01
A Dynamic clustering scheme based on coordination of management and control is proposed to reduce network congestion rate and improve the blocking performance of hierarchical routing in Multi-layer and Multi-region intelligent optical network. Its implement relies on mobile agent (MA) technology, which has the advantages of efficiency, flexibility, functional and scalability. The paper's major contribution is to adjust dynamically domain when the performance of working network isn't in ideal status. And the incorporation of centralized NMS and distributed MA control technology migrate computing process to control plane node which releases the burden of NMS and improves process efficiently. Experiments are conducted on Multi-layer and multi-region Simulation Platform for Optical Network (MSPON) to assess the performance of the scheme.
Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network
Qu, Xiaobo; He, Yifan
2018-01-01
Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods. PMID:29509666
Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network.
Du, Xiaofeng; Qu, Xiaobo; He, Yifan; Guo, Di
2018-03-06
Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods.
GIANT 2.0: genome-scale integrated analysis of gene networks in tissues.
Wong, Aaron K; Krishnan, Arjun; Troyanskaya, Olga G
2018-05-25
GIANT2 (Genome-wide Integrated Analysis of gene Networks in Tissues) is an interactive web server that enables biomedical researchers to analyze their proteins and pathways of interest and generate hypotheses in the context of genome-scale functional maps of human tissues. The precise actions of genes are frequently dependent on their tissue context, yet direct assay of tissue-specific protein function and interactions remains infeasible in many normal human tissues and cell-types. With GIANT2, researchers can explore predicted tissue-specific functional roles of genes and reveal changes in those roles across tissues, all through interactive multi-network visualizations and analyses. Additionally, the NetWAS approach available through the server uses tissue-specific/cell-type networks predicted by GIANT2 to re-prioritize statistical associations from GWAS studies and identify disease-associated genes. GIANT2 predicts tissue-specific interactions by integrating diverse functional genomics data from now over 61 400 experiments for 283 diverse tissues and cell-types. GIANT2 does not require any registration or installation and is freely available for use at http://giant-v2.princeton.edu.
A Multi-Method Approach for Proteomic Network Inference in 11 Human Cancers.
Şenbabaoğlu, Yasin; Sümer, Selçuk Onur; Sánchez-Vega, Francisco; Bemis, Debra; Ciriello, Giovanni; Schultz, Nikolaus; Sander, Chris
2016-02-01
Protein expression and post-translational modification levels are tightly regulated in neoplastic cells to maintain cellular processes known as 'cancer hallmarks'. The first Pan-Cancer initiative of The Cancer Genome Atlas (TCGA) Research Network has aggregated protein expression profiles for 3,467 patient samples from 11 tumor types using the antibody based reverse phase protein array (RPPA) technology. The resultant proteomic data can be utilized to computationally infer protein-protein interaction (PPI) networks and to study the commonalities and differences across tumor types. In this study, we compare the performance of 13 established network inference methods in their capacity to retrieve the curated Pathway Commons interactions from RPPA data. We observe that no single method has the best performance in all tumor types, but a group of six methods, including diverse techniques such as correlation, mutual information, and regression, consistently rank highly among the tested methods. We utilize the high performing methods to obtain a consensus network; and identify four robust and densely connected modules that reveal biological processes as well as suggest antibody-related technical biases. Mapping the consensus network interactions to Reactome gene lists confirms the pan-cancer importance of signal transduction pathways, innate and adaptive immune signaling, cell cycle, metabolism, and DNA repair; and also suggests several biological processes that may be specific to a subset of tumor types. Our results illustrate the utility of the RPPA platform as a tool to study proteomic networks in cancer.
Chen, Bor-Sen; Yeh, Chin-Hsun
2017-12-01
We review current static and dynamic evolutionary game strategies of biological networks and discuss the lack of random genetic variations and stochastic environmental disturbances in these models. To include these factors, a population of evolving biological networks is modeled as a nonlinear stochastic biological system with Poisson-driven genetic variations and random environmental fluctuations (stimuli). To gain insight into the evolutionary game theory of stochastic biological networks under natural selection, the phenotypic robustness and network evolvability of noncooperative and cooperative evolutionary game strategies are discussed from a stochastic Nash game perspective. The noncooperative strategy can be transformed into an equivalent multi-objective optimization problem and is shown to display significantly improved network robustness to tolerate genetic variations and buffer environmental disturbances, maintaining phenotypic traits for longer than the cooperative strategy. However, the noncooperative case requires greater effort and more compromises between partly conflicting players. Global linearization is used to simplify the problem of solving nonlinear stochastic evolutionary games. Finally, a simple stochastic evolutionary model of a metabolic pathway is simulated to illustrate the procedure of solving for two evolutionary game strategies and to confirm and compare their respective characteristics in the evolutionary process. Copyright © 2017 Elsevier B.V. All rights reserved.
Collective Dynamics in Physical and Social Networks
NASA Astrophysics Data System (ADS)
Isakov, Alexander
We study four systems where individual units come together to display a range of collective behavior. First, we consider a physical system of phase oscillators on a network that expands the Kuramoto model to include oscillator-network interactions and the presence of noise: using a Hebbian-like learning rule, oscillators that synchronize in turn strengthen their connections to each other. We find that the average degree of connectivity strongly affects rates of flipping between aligned and anti-aligned states, and that this result persists to the case of complex networks. Turning to a fully multi-player, multi-strategy evolutionary dynamics model of cooperating bacteria that change who they give resources to and take resources from, we find several regimes that give rise to high levels of collective structure in the resulting networks. In this setting, we also explore the conditions in which an intervention that affects cooperation itself (e.g. "seeding the network with defectors") can lead to wiping out an infection. We find a non-monotonic connection between the percent of disabled cooperation and cure rate, suggesting that in some regimes a limited perturbation can lead to total population collapse. At a larger scale, we study how the locomotor system recovers after amputation in fruit flies. Through experiment and a theoretical model of multi-legged motion controlled by neural oscillators, we find that proprioception plays a role in the ability of flies to control leg forces appropriately to recover from a large initial turning bias induced by the injury. Finally, at the human scale, we consider a social network in a traditional society in Africa to understand how social ties lead to group formation for collective action (stealth raids). We identify critical and distinct roles for both leadership (important for catalyzing a group) and friendship (important for final composition). We conclude with prospects for future work.
Li, Qian; Li, Xudong; Li, Canghai; Chen, Lirong; Song, Jun; Tang, Yalin; Xu, Xiaojie
2011-03-22
Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. This article proposes a network-based multi-target computational estimation method for anticoagulant activities of compounds by combining network efficiency analysis with scoring function from molecular docking.
Li, Canghai; Chen, Lirong; Song, Jun; Tang, Yalin; Xu, Xiaojie
2011-01-01
Background Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. Methodology We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. Conclusions This article proposes a network-based multi-target computational estimation method for anticoagulant activities of compounds by combining network efficiency analysis with scoring function from molecular docking. PMID:21445339
Population Fluctuation Promotes Cooperation in Networks
Miller, Steve; Knowles, Joshua
2015-01-01
We consider the problem of explaining the emergence and evolution of cooperation in dynamic network-structured populations. Building on seminal work by Poncela et al., which shows how cooperation (in one-shot prisoner’s dilemma) is supported in growing populations by an evolutionary preferential attachment (EPA) model, we investigate the effect of fluctuations in the population size. We find that a fluctuating model – based on repeated population growth and truncation – is more robust than Poncela et al.’s in that cooperation flourishes for a wider variety of initial conditions. In terms of both the temptation to defect, and the types of strategies present in the founder network, the fluctuating population is found to lead more securely to cooperation. Further, we find that this model will also support the emergence of cooperation from pre-existing non-cooperative random networks. This model, like Poncela et al.’s, does not require agents to have memory, recognition of other agents, or other cognitive abilities, and so may suggest a more general explanation of the emergence of cooperation in early evolutionary transitions, than mechanisms such as kin selection, direct and indirect reciprocity. PMID:26061705
A New Method for Setting Calculation Sequence of Directional Relay Protection in Multi-Loop Networks
NASA Astrophysics Data System (ADS)
Haijun, Xiong; Qi, Zhang
2016-08-01
Workload of relay protection setting calculation in multi-loop networks may be reduced effectively by optimization setting calculation sequences. A new method of setting calculation sequences of directional distance relay protection in multi-loop networks based on minimum broken nodes cost vector (MBNCV) was proposed to solve the problem experienced in current methods. Existing methods based on minimum breakpoint set (MBPS) lead to more break edges when untying the loops in dependent relationships of relays leading to possibly more iterative calculation workloads in setting calculations. A model driven approach based on behavior trees (BT) was presented to improve adaptability of similar problems. After extending the BT model by adding real-time system characters, timed BT was derived and the dependency relationship in multi-loop networks was then modeled. The model was translated into communication sequence process (CSP) models and an optimization setting calculation sequence in multi-loop networks was finally calculated by tools. A 5-nodes multi-loop network was applied as an example to demonstrate effectiveness of the modeling and calculation method. Several examples were then calculated with results indicating the method effectively reduces the number of forced broken edges for protection setting calculation in multi-loop networks.
Multi-focus and multi-level techniques for visualization and analysis of networks with thematic data
NASA Astrophysics Data System (ADS)
Cossalter, Michele; Mengshoel, Ole J.; Selker, Ted
2013-01-01
Information-rich data sets bring several challenges in the areas of visualization and analysis, even when associated with node-link network visualizations. This paper presents an integration of multi-focus and multi-level techniques that enable interactive, multi-step comparisons in node-link networks. We describe NetEx, a visualization tool that enables users to simultaneously explore different parts of a network and its thematic data, such as time series or conditional probability tables. NetEx, implemented as a Cytoscape plug-in, has been applied to the analysis of electrical power networks, Bayesian networks, and the Enron e-mail repository. In this paper we briefly discuss visualization and analysis of the Enron social network, but focus on data from an electrical power network. Specifically, we demonstrate how NetEx supports the analytical task of electrical power system fault diagnosis. Results from a user study with 25 subjects suggest that NetEx enables more accurate isolation of complex faults compared to an especially designed software tool.
NASA Astrophysics Data System (ADS)
Li, D.; Fang, N. Z.
2017-12-01
Dallas-Fort Worth Metroplex (DFW) has a population of over 7 million depending on many water supply reservoirs. The reservoir inflow plays a vital role in water supply decision making process and long-term strategic planning for the region. This paper demonstrates a method of utilizing deep learning algorithms and multi-general circulation model (GCM) platform to forecast reservoir inflow for three reservoirs within the DFW: Eagle Mountain Lake, Lake Benbrook and Lake Arlington. Ensemble empirical mode decomposition was firstly employed to extract the features, which were then represented by the deep belief networks (DBNs). The first 75 years of the historical data (1940 -2015) were used to train the model, while the last 2 years of the data (2016-2017) were used for the model validation. The weights of each DBN gained from the training process were then applied to establish a neural network (NN) that was able to forecast reservoir inflow. Feature predictors used for the forecasting model were generated from weather forecast results of the downscaled multi-GCM platform for the North Texas region. By comparing root mean square error (RMSE) and mean bias error (MBE) with the observed data, the authors found that the deep learning with downscaled multi-GCM platform is an effective approach in the reservoir inflow forecasting.
Optimized planning methodologies of ASON implementation
NASA Astrophysics Data System (ADS)
Zhou, Michael M.; Tamil, Lakshman S.
2005-02-01
Advanced network planning concerns effective network-resource allocation for dynamic and open business environment. Planning methodologies of ASON implementation based on qualitative analysis and mathematical modeling are presented in this paper. The methodology includes method of rationalizing technology and architecture, building network and nodal models, and developing dynamic programming for multi-period deployment. The multi-layered nodal architecture proposed here can accommodate various nodal configurations for a multi-plane optical network and the network modeling presented here computes the required network elements for optimizing resource allocation.
The “NetBoard”: Network Monitoring Tools Integration for INFN Tier-1 Data Center
NASA Astrophysics Data System (ADS)
De Girolamo, D.; dell'Agnello and, L.; Zani, S.
2012-12-01
The monitoring and alert system is fundamental for the management and the operation of the network in a large data center such as an LHC Tier-1. The network of the INFN Tier-1 at CNAF is a multi-vendor environment: for its management and monitoring several tools have been adopted and different sensors have been developed. In this paper, after an overview on the different aspects to be monitored and the tools used for them (i.e. MRTG, Nagios, Arpwatch, NetFlow, Syslog, etc), we will describe the “NetBoard”, a monitoring toolkit developed at the INFN Tier-1. NetBoard, developed for a multi-vendor network, is able to install and auto-configure all tools needed for its monitoring, either via network devices discovery mechanism or via configuration file or via wizard. In this way, we are also able to activate different types of sensors and Nagios checks according to the equipment vendor specifications. Moreover, when a new device is connected in the LAN, NetBoard can detect where it is plugged. Finally the NetBoard web interface allows to have the overall status of the entire network “at a glance”, both the local and the geographical (including the LHCOPN and the LHCONE) link utilization, health status of network devices (with active alerts) and flow analysis.
NASA Astrophysics Data System (ADS)
Sochi, Taha
2016-09-01
Several deterministic and stochastic multi-variable global optimization algorithms (Conjugate Gradient, Nelder-Mead, Quasi-Newton and global) are investigated in conjunction with energy minimization principle to resolve the pressure and volumetric flow rate fields in single ducts and networks of interconnected ducts. The algorithms are tested with seven types of fluid: Newtonian, power law, Bingham, Herschel-Bulkley, Ellis, Ree-Eyring and Casson. The results obtained from all those algorithms for all these types of fluid agree very well with the analytically derived solutions as obtained from the traditional methods which are based on the conservation principles and fluid constitutive relations. The results confirm and generalize the findings of our previous investigations that the energy minimization principle is at the heart of the flow dynamics systems. The investigation also enriches the methods of computational fluid dynamics for solving the flow fields in tubes and networks for various types of Newtonian and non-Newtonian fluids.
Calvez, Ségolène; Fournel, Catherine; Douet, Diane-Gaëlle; Daniel, Patrick
2015-06-23
Yersinia ruckeri is a pathogen that has an impact on aquaculture worldwide. The disease caused by this bacterial species, yersiniosis or redmouth disease, generates substantial economic losses due to the associated mortality and veterinary costs. For predicting outbreaks and improving control strategies, it is important to characterize the population structure of the bacteria. The phenotypic and genetic homogeneities described previously indicate a clonal population structure as observed in other fish bacteria. In this study, the pulsed-field gel electrophoresis (PFGE) and multi locus sequence typing (MLST) methods were used to describe a population of isolates from outbreaks on French fish farms. For the PFGE analysis, two enzymes (NotI and AscI) were used separately and together. Results from combining the enzymes showed the great homogeneity of the outbreak population with a similarity > 80.0% but a high variability within the cluster (cut-off value = 80.0%) with a total of 43 pulsotypes described and an index of diversity = 0.93. The dominant pulsotypes described with NotI (PtN4 and PtN7) have already been described in other European countries (Finland, Germany, Denmark, Spain and Italy). The MLST approach showed two dominant sequence types (ST31 and ST36), an epidemic structure of the French Y. ruckeri population and a preferentially clonal evolution for rainbow trout isolates. Our results point to multiple types of selection pressure on the Y. ruckeri population attributable to geographical origin, ecological niche specialization and movements of farmed fish.
Sampling Approaches for Multi-Domain Internet Performance Measurement Infrastructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calyam, Prasad
2014-09-15
The next-generation of high-performance networks being developed in DOE communities are critical for supporting current and emerging data-intensive science applications. The goal of this project is to investigate multi-domain network status sampling techniques and tools to measure/analyze performance, and thereby provide “network awareness” to end-users and network operators in DOE communities. We leverage the infrastructure and datasets available through perfSONAR, which is a multi-domain measurement framework that has been widely deployed in high-performance computing and networking communities; the DOE community is a core developer and the largest adopter of perfSONAR. Our investigations include development of semantic scheduling algorithms, measurement federationmore » policies, and tools to sample multi-domain and multi-layer network status within perfSONAR deployments. We validate our algorithms and policies with end-to-end measurement analysis tools for various monitoring objectives such as network weather forecasting, anomaly detection, and fault-diagnosis. In addition, we develop a multi-domain architecture for an enterprise-specific perfSONAR deployment that can implement monitoring-objective based sampling and that adheres to any domain-specific measurement policies.« less
Multiple network alignment via multiMAGNA+.
Vijayan, Vipin; Milenkovic, Tijana
2017-08-21
Network alignment (NA) aims to find a node mapping that identifies topologically or functionally similar network regions between molecular networks of different species. Analogous to genomic sequence alignment, NA can be used to transfer biological knowledge from well- to poorly-studied species between aligned network regions. Pairwise NA (PNA) finds similar regions between two networks while multiple NA (MNA) can align more than two networks. We focus on MNA. Existing MNA methods aim to maximize total similarity over all aligned nodes (node conservation). Then, they evaluate alignment quality by measuring the amount of conserved edges, but only after the alignment is constructed. Directly optimizing edge conservation during alignment construction in addition to node conservation may result in superior alignments. Thus, we present a novel MNA method called multiMAGNA++ that can achieve this. Indeed, multiMAGNA++ outperforms or is on par with existing MNA methods, while often completing faster than existing methods. That is, multiMAGNA++ scales well to larger network data and can be parallelized effectively. During method evaluation, we also introduce new MNA quality measures to allow for more fair MNA method comparison compared to the existing alignment quality measures. MultiMAGNA++ code is available on the method's web page at http://nd.edu/~cone/multiMAGNA++/.
OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space.
Zhou, Guangyan; Xia, Jianguo
2018-06-07
Biological networks play increasingly important roles in omics data integration and systems biology. Over the past decade, many excellent tools have been developed to support creation, analysis and visualization of biological networks. However, important limitations remain: most tools are standalone programs, the majority of them focus on protein-protein interaction (PPI) or metabolic networks, and visualizations often suffer from 'hairball' effects when networks become large. To help address these limitations, we developed OmicsNet - a novel web-based tool that allows users to easily create different types of molecular interaction networks and visually explore them in a three-dimensional (3D) space. Users can upload one or multiple lists of molecules of interest (genes/proteins, microRNAs, transcription factors or metabolites) to create and merge different types of biological networks. The 3D network visualization system was implemented using the powerful Web Graphics Library (WebGL) technology that works natively in most major browsers. OmicsNet supports force-directed layout, multi-layered perspective layout, as well as spherical layout to help visualize and navigate complex networks. A rich set of functions have been implemented to allow users to perform coloring, shading, topology analysis, and enrichment analysis. OmicsNet is freely available at http://www.omicsnet.ca.
Vickers, T. Winston; Ernest, Holly B.; Boyce, Walter M.
2017-01-01
The importance of examining multiple hierarchical levels when modeling resource use for wildlife has been acknowledged for decades. Multi-level resource selection functions have recently been promoted as a method to synthesize resource use across nested organizational levels into a single predictive surface. Analyzing multiple scales of selection within each hierarchical level further strengthens multi-level resource selection functions. We extend this multi-level, multi-scale framework to modeling resistance for wildlife by combining multi-scale resistance surfaces from two data types, genetic and movement. Resistance estimation has typically been conducted with one of these data types, or compared between the two. However, we contend it is not an either/or issue and that resistance may be better-modeled using a combination of resistance surfaces that represent processes at different hierarchical levels. Resistance surfaces estimated from genetic data characterize temporally broad-scale dispersal and successful breeding over generations, whereas resistance surfaces estimated from movement data represent fine-scale travel and contextualized movement decisions. We used telemetry and genetic data from a long-term study on pumas (Puma concolor) in a highly developed landscape in southern California to develop a multi-level, multi-scale resource selection function and a multi-level, multi-scale resistance surface. We used these multi-level, multi-scale surfaces to identify resource use patches and resistant kernel corridors. Across levels, we found puma avoided urban, agricultural areas, and roads and preferred riparian areas and more rugged terrain. For other landscape features, selection differed among levels, as did the scales of selection for each feature. With these results, we developed a conservation plan for one of the most isolated puma populations in the U.S. Our approach captured a wide spectrum of ecological relationships for a population, resulted in effective conservation planning, and can be readily applied to other wildlife species. PMID:28609466
Zeller, Katherine A; Vickers, T Winston; Ernest, Holly B; Boyce, Walter M
2017-01-01
The importance of examining multiple hierarchical levels when modeling resource use for wildlife has been acknowledged for decades. Multi-level resource selection functions have recently been promoted as a method to synthesize resource use across nested organizational levels into a single predictive surface. Analyzing multiple scales of selection within each hierarchical level further strengthens multi-level resource selection functions. We extend this multi-level, multi-scale framework to modeling resistance for wildlife by combining multi-scale resistance surfaces from two data types, genetic and movement. Resistance estimation has typically been conducted with one of these data types, or compared between the two. However, we contend it is not an either/or issue and that resistance may be better-modeled using a combination of resistance surfaces that represent processes at different hierarchical levels. Resistance surfaces estimated from genetic data characterize temporally broad-scale dispersal and successful breeding over generations, whereas resistance surfaces estimated from movement data represent fine-scale travel and contextualized movement decisions. We used telemetry and genetic data from a long-term study on pumas (Puma concolor) in a highly developed landscape in southern California to develop a multi-level, multi-scale resource selection function and a multi-level, multi-scale resistance surface. We used these multi-level, multi-scale surfaces to identify resource use patches and resistant kernel corridors. Across levels, we found puma avoided urban, agricultural areas, and roads and preferred riparian areas and more rugged terrain. For other landscape features, selection differed among levels, as did the scales of selection for each feature. With these results, we developed a conservation plan for one of the most isolated puma populations in the U.S. Our approach captured a wide spectrum of ecological relationships for a population, resulted in effective conservation planning, and can be readily applied to other wildlife species.
ZoroufchiBenis, Khaled; Fatehifar, Esmaeil; Ahmadi, Javad; Rouhi, Alireza
2015-01-01
Industrial air pollution is a growing challenge to humane health, especially in developing countries, where there is no systematic monitoring of air pollution. Given the importance of the availability of valid information on population exposure to air pollutants, it is important to design an optimal Air Quality Monitoring Network (AQMN) for assessing population exposure to air pollution and predicting the magnitude of the health risks to the population. A multi-pollutant method (implemented as a MATLAB program) was explored for configur-ing an AQMN to detect the highest level of pollution around an oil refinery plant. The method ranks potential monitoring sites (grids) according to their ability to represent the ambient concentration. The term of cluster of contiguous grids that exceed a threshold value was used to calculate the Station Dosage. Selection of the best configuration of AQMN was done based on the ratio of a sta-tion's dosage to the total dosage in the network. Six monitoring stations were needed to detect the pollutants concentrations around the study area for estimating the level and distribution of exposure in the population with total network efficiency of about 99%. An analysis of the design procedure showed that wind regimes have greatest effect on the location of monitoring stations. The optimal AQMN enables authorities to implement an effective program of air quality management for protecting human health.
ZoroufchiBenis, Khaled; Fatehifar, Esmaeil; Ahmadi, Javad; Rouhi, Alireza
2015-01-01
Background: Industrial air pollution is a growing challenge to humane health, especially in developing countries, where there is no systematic monitoring of air pollution. Given the importance of the availability of valid information on population exposure to air pollutants, it is important to design an optimal Air Quality Monitoring Network (AQMN) for assessing population exposure to air pollution and predicting the magnitude of the health risks to the population. Methods: A multi-pollutant method (implemented as a MATLAB program) was explored for configuring an AQMN to detect the highest level of pollution around an oil refinery plant. The method ranks potential monitoring sites (grids) according to their ability to represent the ambient concentration. The term of cluster of contiguous grids that exceed a threshold value was used to calculate the Station Dosage. Selection of the best configuration of AQMN was done based on the ratio of a station’s dosage to the total dosage in the network. Results: Six monitoring stations were needed to detect the pollutants concentrations around the study area for estimating the level and distribution of exposure in the population with total network efficiency of about 99%. An analysis of the design procedure showed that wind regimes have greatest effect on the location of monitoring stations. Conclusion: The optimal AQMN enables authorities to implement an effective program of air quality management for protecting human health. PMID:26933646
Todd, Robert G.; van der Zee, Lucas
2016-01-01
Abstract The eukaryotic cell cycle is robustly designed, with interacting molecules organized within a definite topology that ensures temporal precision of its phase transitions. Its underlying dynamics are regulated by molecular switches, for which remarkable insights have been provided by genetic and molecular biology efforts. In a number of cases, this information has been made predictive, through computational models. These models have allowed for the identification of novel molecular mechanisms, later validated experimentally. Logical modeling represents one of the youngest approaches to address cell cycle regulation. We summarize the advances that this type of modeling has achieved to reproduce and predict cell cycle dynamics. Furthermore, we present the challenge that this type of modeling is now ready to tackle: its integration with intracellular networks, and its formalisms, to understand crosstalks underlying systems level properties, ultimate aim of multi-scale models. Specifically, we discuss and illustrate how such an integration may be realized, by integrating a minimal logical model of the cell cycle with a metabolic network. PMID:27993914
Real-Time Analysis of a Sensor's Data for Automated Decision Making in an IoT-Based Smart Home.
Khan, Nida Saddaf; Ghani, Sayeed; Haider, Sajjad
2018-05-25
IoT devices frequently generate large volumes of streaming data and in order to take advantage of this data, their temporal patterns must be learned and identified. Streaming data analysis has become popular after being successfully used in many applications including forecasting electricity load, stock market prices, weather conditions, etc. Artificial Neural Networks (ANNs) have been successfully utilized in understanding the embedded interesting patterns/behaviors in the data and forecasting the future values based on it. One such pattern is modelled and learned in the present study to identify the occurrence of a specific pattern in a Water Management System (WMS). This prediction aids in making an automatic decision support system, to switch OFF a hydraulic suction pump at the appropriate time. Three types of ANN, namely Multi-Input Multi-Output (MIMO), Multi-Input Single-Output (MISO), and Recurrent Neural Network (RNN) have been compared, for multi-step-ahead forecasting, on a sensor's streaming data. Experiments have shown that RNN has the best performance among three models and based on its prediction, a system can be implemented to make the best decision with 86% accuracy.
Multi-level Hierarchical Poly Tree computer architectures
NASA Technical Reports Server (NTRS)
Padovan, Joe; Gute, Doug
1990-01-01
Based on the concept of hierarchical substructuring, this paper develops an optimal multi-level Hierarchical Poly Tree (HPT) parallel computer architecture scheme which is applicable to the solution of finite element and difference simulations. Emphasis is given to minimizing computational effort, in-core/out-of-core memory requirements, and the data transfer between processors. In addition, a simplified communications network that reduces the number of I/O channels between processors is presented. HPT configurations that yield optimal superlinearities are also demonstrated. Moreover, to generalize the scope of applicability, special attention is given to developing: (1) multi-level reduction trees which provide an orderly/optimal procedure by which model densification/simplification can be achieved, as well as (2) methodologies enabling processor grading that yields architectures with varying types of multi-level granularity.
Moser, Aline; Schafroth, Karl; Meile, Leo; Egger, Lotti; Badertscher, René; Irmler, Stefan
2018-01-01
Lactobacillus helveticus, a ubiquitous bacterial species in natural whey cultures (NWCs) used for Swiss Gruyère cheese production, is considered to have crucial functions for cheese ripening such as enhancing proteolysis. We tracked the diversity and abundance of L. helveticus strains during 6 months of ripening in eight Swiss Gruyère-type cheeses using a culture-independent typing method. The study showed that the L. helveticus population present in NWCs persisted in cheese and demonstrated a stable multi-strain coexistence during cheese ripening. With regard to proteolysis, one of the eight L. helveticus populations exhibited less protein degradation during ripening. PMID:29670601
Pham, Tuyen Danh; Lee, Dong Eun; Park, Kang Ryoung
2017-07-08
Automatic recognition of banknotes is applied in payment facilities, such as automated teller machines (ATMs) and banknote counters. Besides the popular approaches that focus on studying the methods applied to various individual types of currencies, there have been studies conducted on simultaneous classification of banknotes from multiple countries. However, their methods were conducted with limited numbers of banknote images, national currencies, and denominations. To address this issue, we propose a multi-national banknote classification method based on visible-light banknote images captured by a one-dimensional line sensor and classified by a convolutional neural network (CNN) considering the size information of each denomination. Experiments conducted on the combined banknote image database of six countries with 62 denominations gave a classification accuracy of 100%, and results show that our proposed algorithm outperforms previous methods.
Pham, Tuyen Danh; Lee, Dong Eun; Park, Kang Ryoung
2017-01-01
Automatic recognition of banknotes is applied in payment facilities, such as automated teller machines (ATMs) and banknote counters. Besides the popular approaches that focus on studying the methods applied to various individual types of currencies, there have been studies conducted on simultaneous classification of banknotes from multiple countries. However, their methods were conducted with limited numbers of banknote images, national currencies, and denominations. To address this issue, we propose a multi-national banknote classification method based on visible-light banknote images captured by a one-dimensional line sensor and classified by a convolutional neural network (CNN) considering the size information of each denomination. Experiments conducted on the combined banknote image database of six countries with 62 denominations gave a classification accuracy of 100%, and results show that our proposed algorithm outperforms previous methods. PMID:28698466
Construct Validation of Wenger's Support Network Typology.
Szabo, Agnes; Stephens, Christine; Allen, Joanne; Alpass, Fiona
2016-10-07
The study aimed to validate Wenger's empirically derived support network typology of responses to the Practitioner Assessment of Network Type (PANT) in an older New Zealander population. The configuration of network types was tested across ethnic groups and in the total sample. Data (N = 872, Mage = 67 years, SDage = 1.56 years) from the 2006 wave of the New Zealand Health, Work and Retirement study were analyzed using latent profile analysis. In addition, demographic differences among the emerging profiles were tested. Competing models were evaluated based on a range of fit criteria, which supported a five-profile solution. The "locally integrated," "community-focused," "local self-contained," "private-restricted," and "friend- and family-dependent" network types were identified as latent profiles underlying the data. There were no differences between Māori and non-Māori in final profile configurations. However, Māori were more likely to report integrated network types. Findings confirm the validity of Wenger's network types. However, the level to which participants endorse accessibility of family, frequency of interactions, and community engagement can be influenced by sample and contextual characteristics. Future research using the PANT items should empirically verify and derive the social support network types, rather than use a predefined scoring system. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Optimal multi-community network modularity for information diffusion
NASA Astrophysics Data System (ADS)
Wu, Jiaocan; Du, Ruping; Zheng, Yingying; Liu, Dong
2016-02-01
Studies demonstrate that community structure plays an important role in information spreading recently. In this paper, we investigate the impact of multi-community structure on information diffusion with linear threshold model. We utilize extended GN network that contains four communities and analyze dynamic behaviors of information that spreads on it. And we discover the optimal multi-community network modularity for information diffusion based on the social reinforcement. Results show that, within the appropriate range, multi-community structure will facilitate information diffusion instead of hindering it, which accords with the results derived from two-community network.
Estimation of the proteomic cancer co-expression sub networks by using association estimators.
Erdoğan, Cihat; Kurt, Zeyneb; Diri, Banu
2017-01-01
In this study, the association estimators, which have significant influences on the gene network inference methods and used for determining the molecular interactions, were examined within the co-expression network inference concept. By using the proteomic data from five different cancer types, the hub genes/proteins within the disease-associated gene-gene/protein-protein interaction sub networks were identified. Proteomic data from various cancer types is collected from The Cancer Proteome Atlas (TCPA). Correlation and mutual information (MI) based nine association estimators that are commonly used in the literature, were compared in this study. As the gold standard to measure the association estimators' performance, a multi-layer data integration platform on gene-disease associations (DisGeNET) and the Molecular Signatures Database (MSigDB) was used. Fisher's exact test was used to evaluate the performance of the association estimators by comparing the created co-expression networks with the disease-associated pathways. It was observed that the MI based estimators provided more successful results than the Pearson and Spearman correlation approaches, which are used in the estimation of biological networks in the weighted correlation network analysis (WGCNA) package. In correlation-based methods, the best average success rate for five cancer types was 60%, while in MI-based methods the average success ratio was 71% for James-Stein Shrinkage (Shrink) and 64% for Schurmann-Grassberger (SG) association estimator, respectively. Moreover, the hub genes and the inferred sub networks are presented for the consideration of researchers and experimentalists.
Estimation of the proteomic cancer co-expression sub networks by using association estimators
Kurt, Zeyneb; Diri, Banu
2017-01-01
In this study, the association estimators, which have significant influences on the gene network inference methods and used for determining the molecular interactions, were examined within the co-expression network inference concept. By using the proteomic data from five different cancer types, the hub genes/proteins within the disease-associated gene-gene/protein-protein interaction sub networks were identified. Proteomic data from various cancer types is collected from The Cancer Proteome Atlas (TCPA). Correlation and mutual information (MI) based nine association estimators that are commonly used in the literature, were compared in this study. As the gold standard to measure the association estimators’ performance, a multi-layer data integration platform on gene-disease associations (DisGeNET) and the Molecular Signatures Database (MSigDB) was used. Fisher's exact test was used to evaluate the performance of the association estimators by comparing the created co-expression networks with the disease-associated pathways. It was observed that the MI based estimators provided more successful results than the Pearson and Spearman correlation approaches, which are used in the estimation of biological networks in the weighted correlation network analysis (WGCNA) package. In correlation-based methods, the best average success rate for five cancer types was 60%, while in MI-based methods the average success ratio was 71% for James-Stein Shrinkage (Shrink) and 64% for Schurmann-Grassberger (SG) association estimator, respectively. Moreover, the hub genes and the inferred sub networks are presented for the consideration of researchers and experimentalists. PMID:29145449
Deducing the multi-trader population driving a financial market
NASA Astrophysics Data System (ADS)
Gupta, Nachi; Hauser, Raphael; Johnson, Neil
2005-12-01
We have previously laid out a basic framework for predicting financial movements and pockets of predictability by tracking the distribution of a multi-trader population playing on an artificial financial market model. This work explores extensions to this basic framework. We allow for more intelligent agents with a richer strategy set, and we no longer constrain the distribution over these agents to a probability space. We then introduce a fusion scheme which accounts for multiple runs of randomly chosen sets of possible agent types. We also discuss a mechanism for bias removal on the estimates.
Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks.
Huang, Tao; Yan, Siyu; Yang, Fan; Liu, Jiang
2016-11-06
Wireless sensor networks (WSNs) have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs) have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs). However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture.
Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks
Huang, Tao; Yan, Siyu; Yang, Fan; Liu, Jiang
2016-01-01
Wireless sensor networks (WSNs) have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs) have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs). However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture. PMID:27827971
Efficient selection of tagging single-nucleotide polymorphisms in multiple populations.
Howie, Bryan N; Carlson, Christopher S; Rieder, Mark J; Nickerson, Deborah A
2006-08-01
Common genetic polymorphism may explain a portion of the heritable risk for common diseases, so considerable effort has been devoted to finding and typing common single-nucleotide polymorphisms (SNPs) in the human genome. Many SNPs show correlated genotypes, or linkage disequilibrium (LD), suggesting that only a subset of all SNPs (known as tagging SNPs, or tagSNPs) need to be genotyped for disease association studies. Based on the genetic differences that exist among human populations, most tagSNP sets are defined in a single population and applied only in populations that are closely related. To improve the efficiency of multi-population analyses, we have developed an algorithm called MultiPop-TagSelect that finds a near-minimal union of population-specific tagSNP sets across an arbitrary number of populations. We present this approach as an extension of LD-select, a tagSNP selection method that uses a greedy algorithm to group SNPs into bins based on their pairwise association patterns, although the MultiPop-TagSelect algorithm could be used with any SNP tagging approach that allows choices between nearly equivalent SNPs. We evaluate the algorithm by considering tagSNP selection in candidate-gene resequencing data and lower density whole-chromosome data. Our analysis reveals that an exhaustive search is often intractable, while the developed algorithm can quickly and reliably find near-optimal solutions even for difficult tagSNP selection problems. Using populations of African, Asian, and European ancestry, we also show that an optimal multi-population set of tagSNPs can be substantially smaller (up to 44%) than a typical set obtained through independent or sequential selection.
Jing, Luyang; Wang, Taiyong; Zhao, Ming; Wang, Peng
2017-01-01
A fault diagnosis approach based on multi-sensor data fusion is a promising tool to deal with complicated damage detection problems of mechanical systems. Nevertheless, this approach suffers from two challenges, which are (1) the feature extraction from various types of sensory data and (2) the selection of a suitable fusion level. It is usually difficult to choose an optimal feature or fusion level for a specific fault diagnosis task, and extensive domain expertise and human labor are also highly required during these selections. To address these two challenges, we propose an adaptive multi-sensor data fusion method based on deep convolutional neural networks (DCNN) for fault diagnosis. The proposed method can learn features from raw data and optimize a combination of different fusion levels adaptively to satisfy the requirements of any fault diagnosis task. The proposed method is tested through a planetary gearbox test rig. Handcraft features, manual-selected fusion levels, single sensory data, and two traditional intelligent models, back-propagation neural networks (BPNN) and a support vector machine (SVM), are used as comparisons in the experiment. The results demonstrate that the proposed method is able to detect the conditions of the planetary gearbox effectively with the best diagnosis accuracy among all comparative methods in the experiment. PMID:28230767
Ray, Nicolas; Ebener, Steeve
2008-01-01
Background Access to health care can be described along four dimensions: geographic accessibility, availability, financial accessibility and acceptability. Geographic accessibility measures how physically accessible resources are for the population, while availability reflects what resources are available and in what amount. Combining these two types of measure into a single index provides a measure of geographic (or spatial) coverage, which is an important measure for assessing the degree of accessibility of a health care network. Results This paper describes the latest version of AccessMod, an extension to the Geographical Information System ArcView 3.×, and provides an example of application of this tool. AccessMod 3 allows one to compute geographic coverage to health care using terrain information and population distribution. Four major types of analysis are available in AccessMod: (1) modeling the coverage of catchment areas linked to an existing health facility network based on travel time, to provide a measure of physical accessibility to health care; (2) modeling geographic coverage according to the availability of services; (3) projecting the coverage of a scaling-up of an existing network; (4) providing information for cost effectiveness analysis when little information about the existing network is available. In addition to integrating travelling time, population distribution and the population coverage capacity specific to each health facility in the network, AccessMod can incorporate the influence of landscape components (e.g. topography, river and road networks, vegetation) that impact travelling time to and from facilities. Topographical constraints can be taken into account through an anisotropic analysis that considers the direction of movement. We provide an example of the application of AccessMod in the southern part of Malawi that shows the influences of the landscape constraints and of the modes of transportation on geographic coverage. Conclusion By incorporating the demand (population) and the supply (capacities of heath care centers), AccessMod provides a unifying tool to efficiently assess the geographic coverage of a network of health care facilities. This tool should be of particular interest to developing countries that have a relatively good geographic information on population distribution, terrain, and health facility locations. PMID:19087277
The physics of complex systems in information and biology
NASA Astrophysics Data System (ADS)
Walker, Dylan
Citation networks have re-emerged as a topic intense interest in the complex networks community with the recent availability of large-scale data sets. The ranking of citation networks is a necessary practice as a means to improve information navigability and search. Unlike many information networks, the aging characteristics of citation networks require the development of new ranking methods. To account for strong aging characteristics of citation networks, we modify the PageRank algorithm by initially distributing random surfers exponentially with age, in favor of more recent publications. The output of this algorithm, which we call CiteRank, is interpreted as approximate traffic to individual publications in a simple model of how researchers find new information. We optimize parameters of our algorithm to achieve the best performance. The results are compared for two rather different citation networks: all American Physical Society publications between 1893-2003 and the set of high-energy physics theory (hep-th) preprints. Despite major differences between these two networks, we find that their optimal parameters for the CiteRank algorithm are remarkably similar. The advantages and performance of CiteRank over more conventional methods of ranking publications are discussed. Collaborative voting systems have emerged as an abundant form of real-world, complex information systems that exist in a variety of online applications. These systems are comprised of large populations of users that collectively submit and vote on objects. While the specific properties of these systems vary widely, many of them share a core set of features and dynamical behaviors that govern their evolution. We study a subset of these systems that involve material of a time-critical nature as in the popular example of news items. We consider a general model system in which articles are introduced, voted on by a population of users, and subsequently expire after a proscribed period of time. To study the interaction between popularity and quality, we introduce simple stochastic models of user behavior that approximate differing user quality and susceptibility to the common notion of popularity. We define a metric to quantify user reputation in a manner that is self-consistent, adaptable and content-blind and shows good correlation with the probability that a user behaves in an optimal fashion. We further construct a mechanism for ranking documents that take into account user reputation and provides substantial improvement in the time-critical performance of the system. The structure of complex systems have been well studied in the context of both information and biological systems. More recently, dynamics in complex systems that occur over the background of the underlying network has received a great deal of attention. In particular, the study of fluctuations in complex systems has emerged as an issue central to understanding dynamical behavior. We approach the problem of collective effects of the underlying network on dynamical fluctuations by considering the protein-protein interaction networks for the system of the living cell. We consider two types of fluctuations in the mass-action equilibrium in protein binding networks. The first type is driven by relatively slow changes in total concentrations (copy numbers) of interacting proteins. The second type, to which we refer to as spontaneous, is caused by quickly decaying thermodynamic deviations away from the mass-action equilibrium of the system. As such they are amenable to methods of equilibrium statistical mechanics used in our study. We investigate the effects of network connectivity on these fluctuations by comparing them to different scenarios in which the interacting pair is isolated form the rest of the network. Such comparison allows us to analytically derive upper and lower bounds on network fluctuations. The collective effects are shown to sometimes lead to relatively large amplification of spontaneous fluctuations as compared to the expectation for isolated dimers. As a consequence of this, the strength of both types of fluctuations is positively correlated with the overall network connectivity of proteins forming the complex. On the other hand, the relative amplitude of fluctuations is negatively correlated with the equilibrium concentration of the complex. Our general findings are illustrated using a curated network of protein-protein interactions and multi-protein complexes in bakers yeast with experimentally determined protein concentrations.
Neural network for interpretation of multi-meaning Chinese words
NASA Astrophysics Data System (ADS)
He, Qianhua; Xu, Bingzheng
1994-03-01
We proposed a neural network that can interpret multi-meaning Chinese words correctly by using context information. The self-organized network, designed for translating Chinese to English, builds a context according to key words of the processed text and utilizes it to interpret multi-meaning words correctly. The network is generated automatically basing on a Chinese-English dictionary and a knowledge-base of weights, and can adapt to the change of contexts. Simulation experiments have proved that the network worked as expected.
NASA Astrophysics Data System (ADS)
Satake, Toshiaki; Nagasawa, Shinji; Hughes, Mike; Lutz, Sharon
2011-01-01
The electrical communication laboratory of NTT started the research of MT (Mechanically Transferable) connector in early 1980s. The initial goal was to realize a multi-fiber connector which can repeat low loss, stable, reliable and low-cost connections of subscriber optical fiber cable networks for more than 20 years period in the field. We review the multi-fiber alignment design with two guide pins, and following several technical improvements toward the final MT connector used in the commercial telecommunication networks. And then, we review development histories to reach to the low-loss, high-return-loss and reliable APC-MPO (Angled Physical Contact Multi-fiber Push On) connectors introduced in NTT COs and in Verizon's FTTH (Fiber To The Home) networks. In the latter half, we propose the low-loss intermateability design for connectors made by different suppliers in order to enable mass introductions into large scale systems. In addition we also describe an accurate connector loss presumption method for different lots' ferrules based on the MT ferrule dimension data before assembling the connectors. We believe with a wide intermateability of APC-MPO connector will increase its use in the fields. The APC-MPO connector manufactured based on the proposed design had low insertion losses of less than 0.25 dB at the same level of simplex connectors and the higher level of return losses higher than 65 dB.
Low Power Multi-Hop Networking Analysis in Intelligent Environments.
Etxaniz, Josu; Aranguren, Gerardo
2017-05-19
Intelligent systems are driven by the latest technological advances in many different areas such as sensing, embedded systems, wireless communications or context recognition. This paper focuses on some of those areas. Concretely, the paper deals with wireless communications issues in embedded systems. More precisely, the paper combines the multi-hop networking with Bluetooth technology and a quality of service (QoS) metric, the latency. Bluetooth is a radio license-free worldwide communication standard that makes low power multi-hop wireless networking available. It establishes piconets (point-to-point and point-to-multipoint links) and scatternets (multi-hop networks). As a result, many Bluetooth nodes can be interconnected to set up ambient intelligent networks. Then, this paper presents the results of the investigation on multi-hop latency with park and sniff Bluetooth low power modes conducted over the hardware test bench previously implemented. In addition, the empirical models to estimate the latency of multi-hop communications over Bluetooth Asynchronous Connectionless Links (ACL) in park and sniff mode are given. The designers of devices and networks for intelligent systems will benefit from the estimation of the latency in Bluetooth multi-hop communications that the models provide.
Low Power Multi-Hop Networking Analysis in Intelligent Environments
Etxaniz, Josu; Aranguren, Gerardo
2017-01-01
Intelligent systems are driven by the latest technological advances in many different areas such as sensing, embedded systems, wireless communications or context recognition. This paper focuses on some of those areas. Concretely, the paper deals with wireless communications issues in embedded systems. More precisely, the paper combines the multi-hop networking with Bluetooth technology and a quality of service (QoS) metric, the latency. Bluetooth is a radio license-free worldwide communication standard that makes low power multi-hop wireless networking available. It establishes piconets (point-to-point and point-to-multipoint links) and scatternets (multi-hop networks). As a result, many Bluetooth nodes can be interconnected to set up ambient intelligent networks. Then, this paper presents the results of the investigation on multi-hop latency with park and sniff Bluetooth low power modes conducted over the hardware test bench previously implemented. In addition, the empirical models to estimate the latency of multi-hop communications over Bluetooth Asynchronous Connectionless Links (ACL) in park and sniff mode are given. The designers of devices and networks for intelligent systems will benefit from the estimation of the latency in Bluetooth multi-hop communications that the models provide. PMID:28534847
Mihaljević, Bojan; Bielza, Concha; Benavides-Piccione, Ruth; DeFelipe, Javier; Larrañaga, Pedro
2014-01-01
Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists' classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features.
Epidemic spreading on hierarchical geographical networks with mobile agents
NASA Astrophysics Data System (ADS)
Han, Xiao-Pu; Zhao, Zhi-Dan; Hadzibeganovic, Tarik; Wang, Bing-Hong
2014-05-01
Hierarchical geographical traffic networks are critical for our understanding of scaling laws in human trajectories. Here, we investigate the susceptible-infected epidemic process evolving on hierarchical networks in which agents randomly walk along the edges and establish contacts in network nodes. We employ a metapopulation modeling framework that allows us to explore the contagion spread patterns in relation to multi-scale mobility behaviors. A series of computer simulations revealed that a shifted power-law-like negative relationship between the peak timing of epidemics τ0 and population density, and a logarithmic positive relationship between τ0 and the network size, can both be explained by the gradual enlargement of fluctuations in the spreading process. We employ a semi-analytical method to better understand the nature of these relationships and the role of pertinent demographic factors. Additionally, we provide a quantitative discussion of the efficiency of a border screening procedure in delaying epidemic outbreaks on hierarchical networks, yielding a rather limited feasibility of this mitigation strategy but also its non-trivial dependence on population density, infector detectability, and the diversity of the susceptible region. Our results suggest that the interplay between the human spatial dynamics, network topology, and demographic factors can have important consequences for the global spreading and control of infectious diseases. These findings provide novel insights into the combined effects of human mobility and the organization of geographical networks on spreading processes, with important implications for both epidemiological research and health policy.
LinkedOmics: analyzing multi-omics data within and across 32 cancer types.
Vasaikar, Suhas V; Straub, Peter; Wang, Jing; Zhang, Bing
2018-01-04
The LinkedOmics database contains multi-omics data and clinical data for 32 cancer types and a total of 11 158 patients from The Cancer Genome Atlas (TCGA) project. It is also the first multi-omics database that integrates mass spectrometry (MS)-based global proteomics data generated by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) on selected TCGA tumor samples. In total, LinkedOmics has more than a billion data points. To allow comprehensive analysis of these data, we developed three analysis modules in the LinkedOmics web application. The LinkFinder module allows flexible exploration of associations between a molecular or clinical attribute of interest and all other attributes, providing the opportunity to analyze and visualize associations between billions of attribute pairs for each cancer cohort. The LinkCompare module enables easy comparison of the associations identified by LinkFinder, which is particularly useful in multi-omics and pan-cancer analyses. The LinkInterpreter module transforms identified associations into biological understanding through pathway and network analysis. Using five case studies, we demonstrate that LinkedOmics provides a unique platform for biologists and clinicians to access, analyze and compare cancer multi-omics data within and across tumor types. LinkedOmics is freely available at http://www.linkedomics.org. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Static and dynamic factors in an information-based multi-asset artificial stock market
NASA Astrophysics Data System (ADS)
Ponta, Linda; Pastore, Stefano; Cincotti, Silvano
2018-02-01
An information-based multi-asset artificial stock market characterized by different types of stocks and populated by heterogeneous agents is presented. In the market, agents trade risky assets in exchange for cash. Beside the amount of cash and of stocks owned, each agent is characterized by sentiments and agents share their sentiments by means of interactions that are determined by sparsely connected networks. A central market maker (clearing house mechanism) determines the price processes for each stock at the intersection of the demand and the supply curves. Single stock price processes exhibit volatility clustering and fat-tailed distribution of returns whereas multivariate price process exhibits both static and dynamic stylized facts, i.e., the presence of static factors and common trends. Static factors are studied making reference to the cross-correlation of returns of different stocks. The common trends are investigated considering the variance-covariance matrix of prices. Results point out that the probability distribution of eigenvalues of the cross-correlation matrix of returns shows the presence of sectors, similar to those observed on real empirical data. As regarding the dynamic factors, the variance-covariance matrix of prices point out a limited number of assets prices series that are independent integrated processes, in close agreement with the empirical evidence of asset price time series of real stock markets. These results remarks the crucial dependence of statistical properties of multi-assets stock market on the agents' interaction structure.
Social Support Systems and Social Network Characteristics of Older Adults with HIV.
Brennan-Ing, Mark; Seidel, Liz; Karpiak, Stephen E
Social networks of older adults with HIV have been characterized as fragile, with a greater reliance on friends as compared to family. However, we know little about the subgroup differences in the social network constellations of this population, how such characteristics are related to social support resources, and their relationship with psychosocial well-being. We developed a typology of social networks of older HIV-positive adults and examined if they would be related to receipt of informal assistance, perceptions of support sufficiency, and psychosocial well-being. Data were obtained from Research on Older Adults with HIV (n = 914). Participants were 50 years and older, HIV positive, and diverse in terms of race/ethnicity, gender, and sexual orientation. Cluster analysis identified Isolated, Friend-centered, and Integrated social network types. The Isolated reported significantly lower levels of assistance, lower perceptions of support availability and adequacy, greater stigma and psychological distress, and lower well-being compared to their peers. While friends dominate many social networks in this population, a more nuanced interpretation is needed; many have no friends and a substantial proportion receive significant family support. Those with Isolated network types will likely need to access a high volume of community-based services as they age as they lack informal support resources. © 2017 S. Karger AG, Basel.
Modeling Disjunct Gray Wolf Populations in Semi-Wild Landscapes
Robert G. Haight; David J. Mladenoff; Adrian P. Wydeven
1998-01-01
Gray wolves (Canis lupus) in parts of the United States and Europe live in networks of disjunct populations, many of which are close to human settlement. Because wolf management goals include sustaining disjunct populations, it is important to ask what types of areas and protections are needed for population survival. To predict the effects of different levels of human...
A model of metastable dynamics during ongoing and evoked cortical activity
NASA Astrophysics Data System (ADS)
La Camera, Giancarlo
The dynamics of simultaneously recorded spike trains in alert animals often evolve through temporal sequences of metastable states. Little is known about the network mechanisms responsible for the genesis of such sequences, or their potential role in neural coding. In the gustatory cortex of alert rates, state sequences can be observed also in the absence of overt sensory stimulation, and thus form the basis of the so-called `ongoing activity'. This activity is characterized by a partial degree of coordination among neurons, sharp transitions among states, and multi-stability of single neurons' firing rates. A recurrent spiking network model with clustered topology can account for both the spontaneous generation of state sequences and the (network-generated) multi-stability. In the model, each network state results from the activation of specific neural clusters with potentiated intra-cluster connections. A mean field solution of the model shows a large number of stable states, each characterized by a subset of simultaneously active clusters. The firing rate in each cluster during ongoing activity depends on the number of active clusters, so that the same neuron can have different firing rates depending on the state of the network. Because of dense intra-cluster connectivity and recurrent inhibition, in finite networks the stable states lose stability due to finite size effects. Simulations of the dynamics show that the model ensemble activity continuously hops among the different states, reproducing the ongoing dynamics observed in the data. Moreover, when probed with external stimuli, the model correctly predicts the quenching of single neuron multi-stability into bi-stability, the reduction of dimensionality of the population activity, the reduction of trial-to-trial variability, and a potential role for metastable states in the anticipation of expected events. Altogether, these results provide a unified mechanistic model of ongoing and evoked cortical dynamics. NSF IIS-1161852, NIDCD K25-DC013557, NIDCD R01-DC010389.
DOT National Transportation Integrated Search
2012-01-01
This study examines the factors underlying transit demand in the multi-destination, integrated bus and rail transit network for Atlanta, Georgia. Atlanta provides an opportunity to explore the consequences of a multi-destination transit network for b...
Lin, Huifa; Shin, Won-Yong
2017-01-01
We study secondary random access in multi-input multi-output cognitive radio networks, where a slotted ALOHA-type protocol and successive interference cancellation are used. We first introduce three types of transmit beamforming performed by secondary users, where multiple antennas are used to suppress the interference at the primary base station and/or to increase the received signal power at the secondary base station. Then, we show a simple decentralized power allocation along with the equivalent single-antenna conversion. To exploit the multiuser diversity gain, an opportunistic transmission protocol is proposed, where the secondary users generating less interference are opportunistically selected, resulting in a further reduction of the interference temperature. The proposed methods are validated via computer simulations. Numerical results show that increasing the number of transmit antennas can greatly reduce the interference temperature, while increasing the number of receive antennas leads to a reduction of the total transmit power. Optimal parameter values of the opportunistic transmission protocol are examined according to three types of beamforming and different antenna configurations, in terms of maximizing the cognitive transmission capacity. All the beamforming, decentralized power allocation, and opportunistic transmission protocol are performed by the secondary users in a decentralized manner, thus resulting in an easy implementation in practice. PMID:28076402
Lin, Huifa; Shin, Won-Yong
2017-01-01
We study secondary random access in multi-input multi-output cognitive radio networks, where a slotted ALOHA-type protocol and successive interference cancellation are used. We first introduce three types of transmit beamforming performed by secondary users, where multiple antennas are used to suppress the interference at the primary base station and/or to increase the received signal power at the secondary base station. Then, we show a simple decentralized power allocation along with the equivalent single-antenna conversion. To exploit the multiuser diversity gain, an opportunistic transmission protocol is proposed, where the secondary users generating less interference are opportunistically selected, resulting in a further reduction of the interference temperature. The proposed methods are validated via computer simulations. Numerical results show that increasing the number of transmit antennas can greatly reduce the interference temperature, while increasing the number of receive antennas leads to a reduction of the total transmit power. Optimal parameter values of the opportunistic transmission protocol are examined according to three types of beamforming and different antenna configurations, in terms of maximizing the cognitive transmission capacity. All the beamforming, decentralized power allocation, and opportunistic transmission protocol are performed by the secondary users in a decentralized manner, thus resulting in an easy implementation in practice.
CellNet: Network Biology Applied to Stem Cell Engineering
Cahan, Patrick; Li, Hu; Morris, Samantha A.; da Rocha, Edroaldo Lummertz; Daley, George Q.; Collins, James J.
2014-01-01
SUMMARY Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population, and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. PMID:25126793
Correlations in star networks: from Bell inequalities to network inequalities
NASA Astrophysics Data System (ADS)
Tavakoli, Armin; Olivier Renou, Marc; Gisin, Nicolas; Brunner, Nicolas
2017-07-01
The problem of characterizing classical and quantum correlations in networks is considered. Contrary to the usual Bell scenario, where distant observers share a physical system emitted by one common source, a network features several independent sources, each distributing a physical system to a subset of observers. In the quantum setting, the observers can perform joint measurements on initially independent systems, which may lead to strong correlations across the whole network. In this work, we introduce a technique to systematically map a Bell inequality to a family of Bell-type inequalities bounding classical correlations on networks in a star-configuration. Also, we show that whenever a given Bell inequality can be violated by some entangled state ρ, then all the corresponding network inequalities can be violated by considering many copies of ρ distributed in the star network. The relevance of these ideas is illustrated by applying our method to a specific multi-setting Bell inequality. We derive the corresponding network inequalities, and study their quantum violations.
Korcsmaros, Tamas; Dunai, Zsuzsanna A; Vellai, Tibor; Csermely, Peter
2013-09-01
The number of bioinformatics tools and resources that support molecular and cell biology approaches is continuously expanding. Moreover, systems and network biology analyses are accompanied more and more by integrated bioinformatics methods. Traditional information-centered university teaching methods often fail, as (1) it is impossible to cover all existing approaches in the frame of a single course, and (2) a large segment of the current bioinformation can become obsolete in a few years. Signaling network offers an excellent example for teaching bioinformatics resources and tools, as it is both focused and complex at the same time. Here, we present an outline of a university bioinformatics course with four sample practices to demonstrate how signaling network studies can integrate biochemistry, genetics, cell biology and network sciences. We show that several bioinformatics resources and tools, as well as important concepts and current trends, can also be integrated to signaling network studies. The research-type hands-on experiences we show enable the students to improve key competences such as teamworking, creative and critical thinking and problem solving. Our classroom course curriculum can be re-formulated as an e-learning material or applied as a part of a specific training course. The multi-disciplinary approach and the mosaic setup of the course have the additional benefit to support the advanced teaching of talented students.
Guaranteeing Spoof-Resilient Multi-Robot Networks
2015-05-12
particularly challenging attack on this assumption is the so-called “Sybil attack.” In a Sybil attack a malicious agent can generate (or spoof) a large...cybersecurity in general multi-node networks (e.g. a wired LAN), the same is not true for multi- robot networks [14, 28], leaving them largely vulnerable...key passing or cryptographic authen- tication is difficult to maintain due to the highly dynamic and distributed nature of multi-robot teams where
3D multi-view convolutional neural networks for lung nodule classification
Kang, Guixia; Hou, Beibei; Zhang, Ningbo
2017-01-01
The 3D convolutional neural network (CNN) is able to make full use of the spatial 3D context information of lung nodules, and the multi-view strategy has been shown to be useful for improving the performance of 2D CNN in classifying lung nodules. In this paper, we explore the classification of lung nodules using the 3D multi-view convolutional neural networks (MV-CNN) with both chain architecture and directed acyclic graph architecture, including 3D Inception and 3D Inception-ResNet. All networks employ the multi-view-one-network strategy. We conduct a binary classification (benign and malignant) and a ternary classification (benign, primary malignant and metastatic malignant) on Computed Tomography (CT) images from Lung Image Database Consortium and Image Database Resource Initiative database (LIDC-IDRI). All results are obtained via 10-fold cross validation. As regards the MV-CNN with chain architecture, results show that the performance of 3D MV-CNN surpasses that of 2D MV-CNN by a significant margin. Finally, a 3D Inception network achieved an error rate of 4.59% for the binary classification and 7.70% for the ternary classification, both of which represent superior results for the corresponding task. We compare the multi-view-one-network strategy with the one-view-one-network strategy. The results reveal that the multi-view-one-network strategy can achieve a lower error rate than the one-view-one-network strategy. PMID:29145492
Stephens, Christine; Alpass, Fiona; Towers, Andy; Stevenson, Brendan
2011-09-01
To use an ecological model of ageing (Berkman, Glass, Brissette, & Seeman, 2000) which includes upstream social context factors and downstream social support factors to examine the effects of social networks on health. Postal survey responses from a representative population sample of New Zealanders aged 55 to 70 years (N = 6,662). Correlations and multiple regression analyses provided support for a model in which social context contributes to social network type, which affects perceived social support and loneliness, and consequent mental and physical health. Ethnicity was related to social networks and health but this was largely accounted for by other contextual variables measuring socioeconomic status. Gender and age were also significant variables in the model. Social network type is a useful way to assess social integration within this model of cascading effects. More detailed information could be gained through the development of our network assessment instruments for older people.
Cellular therapies for heart disease: unveiling the ethical and public policy challenges.
Raval, Amish N; Kamp, Timothy J; Hogle, Linda F
2008-10-01
Cellular therapies have emerged as a potential revolutionary treatment for cardiovascular disease. Promising preclinical results have resulted in a flurry of basic research activity and spawned multiple clinical trials worldwide. However, the optimal cell type and delivery mode have not been determined for target patient populations. Nor have the mechanisms of benefit for the range of cellular interventions been clearly defined. Experiences to date have unveiled a myriad of ethical and public policy challenges which will affect the way researchers and clinicians make decisions for both basic and clinical research. Stem cells derived from embryos are at the forefront of the ethical and political debate, raising issues of which derivation methods are morally and socially permissible to pursue, as much as which are technically feasible. Adult stem cells are less controversial; however, important challenges exist in determining study design, cell processing, delivery mode, and target patient population. Pathways to successful commercialization and hence broad accessibility of cellular therapies for heart disease are only beginning to be explored. Comprehensive, multi-disciplinary and collaborative networks involving basic researchers, clinicians, regulatory officials and policymakers are required to share information, develop research, regulatory and policy standards and enable rational and ethical cell-based treatment approaches.
HexSim Networks: Spatial IBMs are no longer just for the birds
Legally protected animal populations are exposed to pesticides, the type and concentration of which vary extensively across space and time. Individuals from these populations are also simultaneously subjected to multiple other human-caused disturbance regimes such as landscape c...
Network characteristics for server selection in online games
NASA Astrophysics Data System (ADS)
Claypool, Mark
2008-01-01
Online gameplay is impacted by the network characteristics of players connected to the same server. Unfortunately, the network characteristics of online game servers are not well-understood, particularly for groups that wish to play together on the same server. As a step towards a remedy, this paper presents analysis of an extensive set of measurements of game servers on the Internet. Over the course of many months, actual Internet game servers were queried simultaneously by twenty-five emulated game clients, with both servers and clients spread out on the Internet. The data provides statistics on the uptime and populations of game servers over a month long period an an in-depth look at the suitability for game servers for multi-player server selection, concentrating on characteristics critical to playability--latency and fairness. Analysis finds most game servers have latencies suitable for third-person and omnipresent games, such as real-time strategy, sports and role-playing games, providing numerous server choices for game players. However, far fewer game servers have the low latencies required for first-person games, such as shooters or race games. In all cases, groups that wish to play together have a greatly reduced set of servers from which to choose because of inherent unfairness in server latencies and server selection is particularly limited as the group size increases. These results hold across different game types and even across different generations of games. The data should be useful for game developers and network researchers that seek to improve game server selection, whether for single or multiple players.
Ribeiro, Haroldo V; Hanley, Quentin S; Lewis, Dan
2018-01-01
Scale-adjusted metrics (SAMs) are a significant achievement of the urban scaling hypothesis. SAMs remove the inherent biases of per capita measures computed in the absence of isometric allometries. However, this approach is limited to urban areas, while a large portion of the world's population still lives outside cities and rural areas dominate land use worldwide. Here, we extend the concept of SAMs to population density scale-adjusted metrics (DSAMs) to reveal relationships among different types of crime and property metrics. Our approach allows all human environments to be considered, avoids problems in the definition of urban areas, and accounts for the heterogeneity of population distributions within urban regions. By combining DSAMs, cross-correlation, and complex network analysis, we find that crime and property types have intricate and hierarchically organized relationships leading to some striking conclusions. Drugs and burglary had uncorrelated DSAMs and, to the extent property transaction values are indicators of affluence, twelve out of fourteen crime metrics showed no evidence of specifically targeting affluence. Burglary and robbery were the most connected in our network analysis and the modular structures suggest an alternative to "zero-tolerance" policies by unveiling the crime and/or property types most likely to affect each other.
Hanley, Quentin S.; Lewis, Dan
2018-01-01
Scale-adjusted metrics (SAMs) are a significant achievement of the urban scaling hypothesis. SAMs remove the inherent biases of per capita measures computed in the absence of isometric allometries. However, this approach is limited to urban areas, while a large portion of the world’s population still lives outside cities and rural areas dominate land use worldwide. Here, we extend the concept of SAMs to population density scale-adjusted metrics (DSAMs) to reveal relationships among different types of crime and property metrics. Our approach allows all human environments to be considered, avoids problems in the definition of urban areas, and accounts for the heterogeneity of population distributions within urban regions. By combining DSAMs, cross-correlation, and complex network analysis, we find that crime and property types have intricate and hierarchically organized relationships leading to some striking conclusions. Drugs and burglary had uncorrelated DSAMs and, to the extent property transaction values are indicators of affluence, twelve out of fourteen crime metrics showed no evidence of specifically targeting affluence. Burglary and robbery were the most connected in our network analysis and the modular structures suggest an alternative to “zero-tolerance” policies by unveiling the crime and/or property types most likely to affect each other. PMID:29470499
NASA Astrophysics Data System (ADS)
Chumakova, Olga
2017-10-01
The paper shows the management aspects of ensuring the safety of residential buildings. The article presents an analytical review of the state of the existing heat supply systems in the Russian Federation, assesses their energy security, highlights the results of research into the causes of accidents in engineering systems in water-bearing communications, and provides methods and comparative calculations of failures of these systems. It is indicated that according to the results of the All-Russian Census of 2010, the total population of the Russian Federation at the time of the survey was 142 million 857 thousand people living in more than 1100 settlements that have the status of the city (subject to their identification by population, administrative and national economic significance and the nature of the building), as well as in almost 160,000 rural settlements. It should be noted that in accordance with the classification of settlements in the Russian Federation, there are five main categories, namely: The above classification of settlements has formed the basis for the analysis of the existing processes of functioning of the heat supply systems of the Russian Federation at the objects of housing, social and industrial development from the point of view of energy security. Thus, for example, it turned out that in large cities with multi-storey buildings the centralized heat supply system is dominated by a system consisting of one or several sources of heat, heat networks having different diameter of pipelines, their number and length, and also serving various types of heat consumers) from cogeneration plants (CHP) of public use, or industrial enterprises. As for the welterweight and small towns, including urban-type settlements with a multi-storey building of the post-war period, they, as a rule, have the majority of IGFs, fed from the city or district boiler houses.
Automated identification of functional dynamic networks from X-ray crystallography
van den Bedem, Henry; Bhabha, Gira; Yang, Kun; Wright, Peter E.; Fraser, James S.
2013-01-01
Protein function often depends on the exchange between conformational substates. Allosteric ligand binding or distal mutations can stabilize specific active site conformations and consequently alter protein function. In addition to comparing independently determined X-ray crystal structures, alternative conformations observed at low levels of electron density have the potential to provide mechanistic insights into conformational dynamics. Here, we report a new multi-conformer contact network algorithm (CONTACT) that identifies networks of conformationally heterogeneous residues directly from high-resolution X-ray crystallography data. Contact networks in Escherichia coli dihydrofolate reductase (ecDHFR) predict the long-range pattern of NMR chemical shift perturbations of an allosteric mutation. A comparison of contact networks in wild type and mutant ecDHFR suggests how mutations that alter optimized networks of coordinated motions can impair catalytic function. Thus, CONTACT-guided mutagenesis will allow the structure-dynamics-function relationship to be exploited in protein engineering and design. PMID:23913260
Comparison of universal approximators incorporating partial monotonicity by structure.
Minin, Alexey; Velikova, Marina; Lang, Bernhard; Daniels, Hennie
2010-05-01
Neural networks applied in control loops and safety-critical domains have to meet more requirements than just the overall best function approximation. On the one hand, a small approximation error is required; on the other hand, the smoothness and the monotonicity of selected input-output relations have to be guaranteed. Otherwise, the stability of most of the control laws is lost. In this article we compare two neural network-based approaches incorporating partial monotonicity by structure, namely the Monotonic Multi-Layer Perceptron (MONMLP) network and the Monotonic MIN-MAX (MONMM) network. We show the universal approximation capabilities of both types of network for partially monotone functions. On a number of datasets, we investigate the advantages and disadvantages of these approaches related to approximation performance, training of the model and convergence. 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tohidnia, S.; Tohidi, G.
2018-02-01
The current paper develops three different ways to measure the multi-period global cost efficiency for homogeneous networks of processes when the prices of exogenous inputs are known at all time periods. A multi-period network data envelopment analysis model is presented to measure the minimum cost of the network system based on the global production possibility set. We show that there is a relationship between the multi-period global cost efficiency of network system and its subsystems, and also its processes. The proposed model is applied to compute the global cost Malmquist productivity index for measuring the productivity changes of network system and each of its process between two time periods. This index is circular. Furthermore, we show that the productivity changes of network system can be defined as a weighted average of the process productivity changes. Finally, a numerical example will be presented to illustrate the proposed approach.
Colclough, Giles L; Woolrich, Mark W; Harrison, Samuel J; Rojas López, Pedro A; Valdes-Sosa, Pedro A; Smith, Stephen M
2018-05-07
A Bayesian model for sparse, hierarchical, inver-covariance estimation is presented, and applied to multi-subject functional connectivity estimation in the human brain. It enables simultaneous inference of the strength of connectivity between brain regions at both subject and population level, and is applicable to fMRI, MEG and EEG data. Two versions of the model can encourage sparse connectivity, either using continuous priors to suppress irrelevant connections, or using an explicit description of the network structure to estimate the connection probability between each pair of regions. A large evaluation of this model, and thirteen methods that represent the state of the art of inverse covariance modelling, is conducted using both simulated and resting-state functional imaging datasets. Our novel Bayesian approach has similar performance to the best extant alternative, Ng et al.'s Sparse Group Gaussian Graphical Model algorithm, which also is based on a hierarchical structure. Using data from the Human Connectome Project, we show that these hierarchical models are able to reduce the measurement error in MEG beta-band functional networks by 10%, producing concomitant increases in estimates of the genetic influence on functional connectivity. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Bashiri, Mahdi; Farshbaf-Geranmayeh, Amir; Mogouie, Hamed
2013-11-01
In this paper, a new method is proposed to optimize a multi-response optimization problem based on the Taguchi method for the processes where controllable factors are the smaller-the-better (STB)-type variables and the analyzer desires to find an optimal solution with smaller amount of controllable factors. In such processes, the overall output quality of the product should be maximized while the usage of the process inputs, the controllable factors, should be minimized. Since all possible combinations of factors' levels, are not considered in the Taguchi method, the response values of the possible unpracticed treatments are estimated using the artificial neural network (ANN). The neural network is tuned by the central composite design (CCD) and the genetic algorithm (GA). Then data envelopment analysis (DEA) is applied for determining the efficiency of each treatment. Although the important issue for implementation of DEA is its philosophy, which is maximization of outputs versus minimization of inputs, this important issue has been neglected in previous similar studies in multi-response problems. Finally, the most efficient treatment is determined using the maximin weight model approach. The performance of the proposed method is verified in a plastic molding process. Moreover a sensitivity analysis has been done by an efficiency estimator neural network. The results show efficiency of the proposed approach.
Pareto frontier analyses based decision making tool for transportation of hazardous waste.
Das, Arup; Mazumder, T N; Gupta, A K
2012-08-15
Transportation of hazardous wastes through a region poses immense threat on the development along its road network. The risk to the population, exposed to such activities, has been documented in the past. However, a comprehensive framework for routing hazardous wastes has often been overlooked. A regional Hazardous Waste Management scheme should incorporate a comprehensive framework for hazardous waste transportation. This framework would incorporate the various stakeholders involved in decision making. Hence, a multi-objective approach is required to safeguard the interest of all the concerned stakeholders. The objective of this study is to design a methodology for routing of hazardous wastes between the generating units and the disposal facilities through a capacity constrained network. The proposed methodology uses posteriori method with multi-objective approach to find non-dominated solutions for the system consisting of multiple origins and destinations. A case study of transportation of hazardous wastes in Kolkata Metropolitan Area has also been provided to elucidate the methodology. Copyright © 2012 Elsevier B.V. All rights reserved.
Social networks and health-related quality of life: a population based study among older adults.
Gallegos-Carrillo, Katia; Mudgal, Jyoti; Sánchez-García, Sergio; Wagner, Fernando A; Gallo, Joseph J; Salmerón, Jorge; García-Peña, Carmen
2009-01-01
To examine the relationship between components of social networks and health-related quality of life (HRQL) in older adults with and without depressive symptoms. Comparative cross-sectional study with data from the cohort study 'Integral Study of Depression', carried out in Mexico City during 2004. The sample was selected through a multi-stage probability design. HRQL was measured with the SF-36. Geriatric Depression Scale (GDS) and the Short Anxiety Screening Test (SAST) determined depressive symptoms and anxiety. T-test and multiple linear regressions were conducted. Older adults with depressive symptoms had the lowest scores in all HRQL scales. A larger network of close relatives and friends was associated with better HRQL on several scales. Living alone did not significantly affect HRQL level, in either the study or comparison group. A positive association between some components of social networks and good HRQL exists even in older adults with depressive symptoms.
Shaibi, Gabriel Q.; Boehm-Smith, Edna
2009-01-01
Diabetes is the sixth leading cause of death in the United States and it is now cited along with obesity as a global epidemic. Significant racial/ethnic disparities exist in the prevalence of diabetes within the US, with racial and ethnic minorities disproportionately affected by type 2 diabetes and its complications. Racial/ethnic and socioeconomic factors influence the development and course of diabetes at multiple levels, including genetic, individual, familial, community and national. From an ecodevelopmental perspective, cultural variables assessed at one level (e.g., family level dietary practices) may interact with other types of variables examined at other levels (e.g., the availability of healthy foods within a low-income neighborhood), thus prompting the need for a clear analysis of these systemic relationships as they may increase risks for disease. Therefore, the need exists for models that aid in “mapping out” these relationships. A more explicit conceptualization of such multi-level relationships would aid in the design of culturally relevant interventions that aim to maximize effectiveness when applied with Latinos and other racial/ethnic minority groups. This paper presents an expanded ecodevelopmental model intended to serve as a tool to aid in the design of multi-level diabetes prevention interventions for application with racial/ethnic minority populations. This discussion focuses primarily on risk factors and prevention intervention in Latino populations, although with implications for other racial/ethnic minority populations that are also at high risk for type 2 diabetes. PMID:19101788
Lin, Jingxia; Wang, Xiuna; Deng, Xianbo; Feng, Youjun
2016-01-01
The emergence of the mobilized colistin resistance gene, representing a novel mechanism for bacterial drug resistance, challenges the last resort against the severe infections by Gram-negative bacteria with multi-drug resistances. Very recently, we showed the diversity in the mcr-1-carrying plasmid reservoirs from the gut microbiota. Here, we reported that a similar but more complex scenario is present in the healthy swine populations, Southern China, 2016. Amongst the 1026 pieces of Escherichia coli isolates from 3 different pig farms, 302 E. coli isolates were determined to be positive for the mcr-1 gene (30%, 302/1026). Multi-locus sequence typing assigned no less than 11 kinds of sequence types including one novel Sequence Type to these mcr-1-positive strains. PCR analyses combined with the direct DNA sequencing revealed unexpected complexity of the mcr-1-harbouring plasmids whose backbones are at least grouped into 6 types four of which are new. Transcriptional analyses showed that the mcr-1 promoter of different origins exhibits similar activity. It seems likely that complex dissemination of the diversified mcr-1-bearing plasmids occurs amongst the various ST E. coli inhabiting the healthy swine populations, in Southern China. PMID:27741523
Intrinsic Neuronal Properties Switch the Mode of Information Transmission in Networks
Gjorgjieva, Julijana; Mease, Rebecca A.; Moody, William J.; Fairhall, Adrienne L.
2014-01-01
Diverse ion channels and their dynamics endow single neurons with complex biophysical properties. These properties determine the heterogeneity of cell types that make up the brain, as constituents of neural circuits tuned to perform highly specific computations. How do biophysical properties of single neurons impact network function? We study a set of biophysical properties that emerge in cortical neurons during the first week of development, eventually allowing these neurons to adaptively scale the gain of their response to the amplitude of the fluctuations they encounter. During the same time period, these same neurons participate in large-scale waves of spontaneously generated electrical activity. We investigate the potential role of experimentally observed changes in intrinsic neuronal properties in determining the ability of cortical networks to propagate waves of activity. We show that such changes can strongly affect the ability of multi-layered feedforward networks to represent and transmit information on multiple timescales. With properties modeled on those observed at early stages of development, neurons are relatively insensitive to rapid fluctuations and tend to fire synchronously in response to wave-like events of large amplitude. Following developmental changes in voltage-dependent conductances, these same neurons become efficient encoders of fast input fluctuations over few layers, but lose the ability to transmit slower, population-wide input variations across many layers. Depending on the neurons' intrinsic properties, noise plays different roles in modulating neuronal input-output curves, which can dramatically impact network transmission. The developmental change in intrinsic properties supports a transformation of a networks function from the propagation of network-wide information to one in which computations are scaled to local activity. This work underscores the significance of simple changes in conductance parameters in governing how neurons represent and propagate information, and suggests a role for background synaptic noise in switching the mode of information transmission. PMID:25474701
Dynamics and control of infections on social networks of population types.
Williams, Brian G; Dye, Christopher
2018-06-01
Random mixing in host populations has been a convenient simplifying assumption in the study of epidemics, but neglects important differences in contact rates within and between population groups. For HIV/AIDS, the assumption of random mixing is inappropriate for epidemics that are concentrated in groups of people at high risk, including female sex workers (FSW) and their male clients (MCF), injecting drug users (IDU) and men who have sex with men (MSM). To find out who transmits infection to whom and how that affects the spread and containment of infection remains a major empirical challenge in the epidemiology of HIV/AIDS. Here we develop a technique, based on the routine sampling of infection in linked population groups (a social network of population types), which shows how an HIV/AIDS epidemic in Can Tho Province of Vietnam began in FSW, was propagated mainly by IDU, and ultimately generated most cases among the female partners of MCF (FPM). Calculation of the case reproduction numbers within and between groups, and for the whole network, provides insights into control that cannot be deduced simply from observations on the prevalence of infection. Specifically, the per capita rate of HIV transmission was highest from FSW to MCF, and most HIV infections occurred in FPM, but the number of infections in the whole network is best reduced by interrupting transmission to and from IDU. This analysis can be used to guide HIV/AIDS interventions using needle and syringe exchange, condom distribution and antiretroviral therapy. The method requires only routine data and could be applied to infections in other populations. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm
Sun, Baoliang; Jiang, Chunlan; Li, Ming
2016-01-01
An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN) to solve the multi-node target tracking problem of wireless sensor networks (WSNs). Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs. PMID:27809271
Effects of behavioral patterns and network topology structures on Parrondo’s paradox
Ye, Ye; Cheong, Kang Hao; Cen, Yu-wan; Xie, Neng-gang
2016-01-01
A multi-agent Parrondo’s model based on complex networks is used in the current study. For Parrondo’s game A, the individual interaction can be categorized into five types of behavioral patterns: the Matthew effect, harmony, cooperation, poor-competition-rich-cooperation and a random mode. The parameter space of Parrondo’s paradox pertaining to each behavioral pattern, and the gradual change of the parameter space from a two-dimensional lattice to a random network and from a random network to a scale-free network was analyzed. The simulation results suggest that the size of the region of the parameter space that elicits Parrondo’s paradox is positively correlated with the heterogeneity of the degree distribution of the network. For two distinct sets of probability parameters, the microcosmic reasons underlying the occurrence of the paradox under the scale-free network are elaborated. Common interaction mechanisms of the asymmetric structure of game B, behavioral patterns and network topology are also revealed. PMID:27845430
Effects of behavioral patterns and network topology structures on Parrondo’s paradox
NASA Astrophysics Data System (ADS)
Ye, Ye; Cheong, Kang Hao; Cen, Yu-Wan; Xie, Neng-Gang
2016-11-01
A multi-agent Parrondo’s model based on complex networks is used in the current study. For Parrondo’s game A, the individual interaction can be categorized into five types of behavioral patterns: the Matthew effect, harmony, cooperation, poor-competition-rich-cooperation and a random mode. The parameter space of Parrondo’s paradox pertaining to each behavioral pattern, and the gradual change of the parameter space from a two-dimensional lattice to a random network and from a random network to a scale-free network was analyzed. The simulation results suggest that the size of the region of the parameter space that elicits Parrondo’s paradox is positively correlated with the heterogeneity of the degree distribution of the network. For two distinct sets of probability parameters, the microcosmic reasons underlying the occurrence of the paradox under the scale-free network are elaborated. Common interaction mechanisms of the asymmetric structure of game B, behavioral patterns and network topology are also revealed.
Identifying the Community Structure of the Food-Trade International Multi-Network
NASA Technical Reports Server (NTRS)
Torreggiani, S.; Mangioni, G.
2018-01-01
Achieving international food security requires improved understanding of how international trade networks connect countries around the world through the import-export flows of food commodities. The properties of international food trade networks are still poorly documented, especially from a multi-network perspective. In particular, nothing is known about the multi-network's community structure. Here we find that the individual crop-specific layers of the multi-network have densely connected trading groups, a consistent characteristic over the period 2001-2011. Further, the multi-network is characterized by low variability over this period but with substantial heterogeneity across layers in each year. In particular, the layers are mostly assortative: more-intensively connected countries tend to import from and export to countries that are themselves more connected. We also fit econometric models to identify social, economic and geographic factors explaining the probability that any two countries are co-present in the same community. Our estimates indicate that the probability of country pairs belonging to the same food trade community depends more on geopolitical and economic factors-such as geographical proximity and trade-agreement co-membership-than on country economic size and/or income. These community-structure findings of the multi-network are especially valuable for efforts to understand past and emerging dynamics in the global food system, especially those that examine potential 'shocks' to global food trade.
Finite-time consensus for controlled dynamical systems in network
NASA Astrophysics Data System (ADS)
Zoghlami, Naim; Mlayeh, Rhouma; Beji, Lotfi; Abichou, Azgal
2018-04-01
The key challenges in networked dynamical systems are the component heterogeneities, nonlinearities, and the high dimension of the formulated vector of state variables. In this paper, the emphasise is put on two classes of systems in network include most controlled driftless systems as well as systems with drift. For each model structure that defines homogeneous and heterogeneous multi-system behaviour, we derive protocols leading to finite-time consensus. For each model evolving in networks forming a homogeneous or heterogeneous multi-system, protocols integrating sufficient conditions are derived leading to finite-time consensus. Likewise, for the networking topology, we make use of fixed directed and undirected graphs. To prove our approaches, finite-time stability theory and Lyapunov methods are considered. As illustrative examples, the homogeneous multi-unicycle kinematics and the homogeneous/heterogeneous multi-second order dynamics in networks are studied.
Detection of gene communities in multi-networks reveals cancer drivers
NASA Astrophysics Data System (ADS)
Cantini, Laura; Medico, Enzo; Fortunato, Santo; Caselle, Michele
2015-12-01
We propose a new multi-network-based strategy to integrate different layers of genomic information and use them in a coordinate way to identify driving cancer genes. The multi-networks that we consider combine transcription factor co-targeting, microRNA co-targeting, protein-protein interaction and gene co-expression networks. The rationale behind this choice is that gene co-expression and protein-protein interactions require a tight coregulation of the partners and that such a fine tuned regulation can be obtained only combining both the transcriptional and post-transcriptional layers of regulation. To extract the relevant biological information from the multi-network we studied its partition into communities. To this end we applied a consensus clustering algorithm based on state of art community detection methods. Even if our procedure is valid in principle for any pathology in this work we concentrate on gastric, lung, pancreas and colorectal cancer and identified from the enrichment analysis of the multi-network communities a set of candidate driver cancer genes. Some of them were already known oncogenes while a few are new. The combination of the different layers of information allowed us to extract from the multi-network indications on the regulatory pattern and functional role of both the already known and the new candidate driver genes.
Bluetooth Low Power Modes Applied to the Data Transportation Network in Home Automation Systems.
Etxaniz, Josu; Aranguren, Gerardo
2017-04-30
Even though home automation is a well-known research and development area, recent technological improvements in different areas such as context recognition, sensing, wireless communications or embedded systems have boosted wireless smart homes. This paper focuses on some of those areas related to home automation. The paper draws attention to wireless communications issues on embedded systems. Specifically, the paper discusses the multi-hop networking together with Bluetooth technology and latency, as a quality of service (QoS) metric. Bluetooth is a worldwide standard that provides low power multi-hop networking. It is a radio license free technology and establishes point-to-point and point-to-multipoint links, known as piconets, or multi-hop networks, known as scatternets. This way, many Bluetooth nodes can be interconnected to deploy ambient intelligent networks. This paper introduces the research on multi-hop latency done with park and sniff low power modes of Bluetooth over the test platform developed. Besides, an empirical model is obtained to calculate the latency of Bluetooth multi-hop communications over asynchronous links when links in scatternets are always in sniff or the park mode. Smart home devices and networks designers would take advantage of the models and the estimation of the delay they provide in communications along Bluetooth multi-hop networks.
Bluetooth Low Power Modes Applied to the Data Transportation Network in Home Automation Systems
Etxaniz, Josu; Aranguren, Gerardo
2017-01-01
Even though home automation is a well-known research and development area, recent technological improvements in different areas such as context recognition, sensing, wireless communications or embedded systems have boosted wireless smart homes. This paper focuses on some of those areas related to home automation. The paper draws attention to wireless communications issues on embedded systems. Specifically, the paper discusses the multi-hop networking together with Bluetooth technology and latency, as a quality of service (QoS) metric. Bluetooth is a worldwide standard that provides low power multi-hop networking. It is a radio license free technology and establishes point-to-point and point-to-multipoint links, known as piconets, or multi-hop networks, known as scatternets. This way, many Bluetooth nodes can be interconnected to deploy ambient intelligent networks. This paper introduces the research on multi-hop latency done with park and sniff low power modes of Bluetooth over the test platform developed. Besides, an empirical model is obtained to calculate the latency of Bluetooth multi-hop communications over asynchronous links when links in scatternets are always in sniff or the park mode. Smart home devices and networks designers would take advantage of the models and the estimation of the delay they provide in communications along Bluetooth multi-hop networks. PMID:28468294
Feng, Jie; Li, Bing; Jiang, Xiaotao; Yang, Ying; Wells, George F; Zhang, Tong; Li, Xiaoyan
2018-01-01
The human gut microbiota is an important reservoir of antibiotic resistance genes (ARGs). A metagenomic approach and network analysis were used to establish a comprehensive antibiotic resistome catalog and to obtain co-occurrence patterns between ARGs and microbial taxa in fecal samples from 180 healthy individuals from 11 different countries. In total, 507 ARG subtypes belonging to 20 ARG types were detected with abundances ranging from 7.12 × 10 -7 to 2.72 × 10 -1 copy of ARG/copy of 16S-rRNA gene. Tetracycline, multidrug, macrolide-lincosamide-streptogramin, bacitracin, vancomycin, beta-lactam and aminoglycoside resistance genes were the top seven most abundant ARG types. The multidrug ABC transporter, aadE, bacA, acrB, tetM, tetW, vanR and vanS were shared by all 180 individuals, suggesting their common occurrence in the human gut. Compared to populations from the other 10 countries, the Chinese population harboured the most abundant ARGs. Moreover, LEfSe analysis suggested that the MLS resistance type and its subtype 'ermF' were representative ARGs of the Chinese population. Antibiotic inactivation, antibiotic target alteration and antibiotic efflux were the dominant resistance mechanism categories in all populations. Procrustes analysis revealed that microbial phylogeny structured the antibiotic resistome. Co-occurrence patterns obtained via network analysis implied that 12 species might be potential hosts of 58 ARG subtypes. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Multi-Hop Link Capacity of Multi-Route Multi-Hop MRC Diversity for a Virtual Cellular Network
NASA Astrophysics Data System (ADS)
Daou, Imane; Kudoh, Eisuke; Adachi, Fumiyuki
In virtual cellular network (VCN), proposed for high-speed mobile communications, the signal transmitted from a mobile terminal is received by some wireless ports distributed in each virtual cell and relayed to the central port that acts as a gateway to the core network. In this paper, we apply the multi-route MHMRC diversity in order to decrease the transmit power and increase the multi-hop link capacity. The transmit power, the interference power and the link capacity are evaluated for DS-CDMA multi-hop VCN by computer simulation. The multi-route MHMRC diversity can be applied to not only DS-CDMA but also other access schemes (i. e. MC-CDMA, OFDM, etc.).
A neural network approach for enhancing information extraction from multispectral image data
Liu, J.; Shao, G.; Zhu, H.; Liu, S.
2005-01-01
A back-propagation artificial neural network (ANN) was applied to classify multispectral remote sensing imagery data. The classification procedure included four steps: (i) noisy training that adds minor random variations to the sampling data to make the data more representative and to reduce the training sample size; (ii) iterative or multi-tier classification that reclassifies the unclassified pixels by making a subset of training samples from the original training set, which means the neural model can focus on fewer classes; (iii) spectral channel selection based on neural network weights that can distinguish the relative importance of each channel in the classification process to simplify the ANN model; and (iv) voting rules that adjust the accuracy of classification and produce outputs of different confidence levels. The Purdue Forest, located west of Purdue University, West Lafayette, Indiana, was chosen as the test site. The 1992 Landsat thematic mapper imagery was used as the input data. High-quality airborne photographs of the same Lime period were used for the ground truth. A total of 11 land use and land cover classes were defined, including water, broadleaved forest, coniferous forest, young forest, urban and road, and six types of cropland-grassland. The experiment, indicated that the back-propagation neural network application was satisfactory in distinguishing different land cover types at US Geological Survey levels II-III. The single-tier classification reached an overall accuracy of 85%. and the multi-tier classification an overall accuracy of 95%. For the whole test, region, the final output of this study reached an overall accuracy of 87%. ?? 2005 CASI.
Indiveri, Giacomo
2008-01-01
Biological organisms perform complex selective attention operations continuously and effortlessly. These operations allow them to quickly determine the motor actions to take in response to combinations of external stimuli and internal states, and to pay attention to subsets of sensory inputs suppressing non salient ones. Selective attention strategies are extremely effective in both natural and artificial systems which have to cope with large amounts of input data and have limited computational resources. One of the main computational primitives used to perform these selection operations is the Winner-Take-All (WTA) network. These types of networks are formed by arrays of coupled computational nodes that selectively amplify the strongest input signals, and suppress the weaker ones. Neuromorphic circuits are an optimal medium for constructing WTA networks and for implementing efficient hardware models of selective attention systems. In this paper we present an overview of selective attention systems based on neuromorphic WTA circuits ranging from single-chip vision sensors for selecting and tracking the position of salient features, to multi-chip systems implement saliency-map based models of selective attention. PMID:27873818
Indiveri, Giacomo
2008-09-03
Biological organisms perform complex selective attention operations continuously and effortlessly. These operations allow them to quickly determine the motor actions to take in response to combinations of external stimuli and internal states, and to pay attention to subsets of sensory inputs suppressing non salient ones. Selective attention strategies are extremely effective in both natural and artificial systems which have to cope with large amounts of input data and have limited computational resources. One of the main computational primitives used to perform these selection operations is the Winner-Take-All (WTA) network. These types of networks are formed by arrays of coupled computational nodes that selectively amplify the strongest input signals, and suppress the weaker ones. Neuromorphic circuits are an optimal medium for constructing WTA networks and for implementing efficient hardware models of selective attention systems. In this paper we present an overview of selective attention systems based on neuromorphic WTA circuits ranging from single-chip vision sensors for selecting and tracking the position of salient features, to multi-chip systems implement saliency-map based models of selective attention.
DCMDN: Deep Convolutional Mixture Density Network
NASA Astrophysics Data System (ADS)
D'Isanto, Antonio; Polsterer, Kai Lars
2017-09-01
Deep Convolutional Mixture Density Network (DCMDN) estimates probabilistic photometric redshift directly from multi-band imaging data by combining a version of a deep convolutional network with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) are applied as performance criteria. DCMDN is able to predict redshift PDFs independently from the type of source, e.g. galaxies, quasars or stars and renders pre-classification of objects and feature extraction unnecessary; the method is extremely general and allows the solving of any kind of probabilistic regression problems based on imaging data, such as estimating metallicity or star formation rate in galaxies.
Antibiotic resistance shaping multi-level population biology of bacteria
Baquero, Fernando; Tedim, Ana P.; Coque, Teresa M.
2013-01-01
Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent “population biologies.” Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of “clinical” antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi-level population biology of bacteria. PMID:23508522
Antibiotic resistance shaping multi-level population biology of bacteria.
Baquero, Fernando; Tedim, Ana P; Coque, Teresa M
2013-01-01
Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent "population biologies." Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of "clinical" antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi-level population biology of bacteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldin, Ilya; Huang, Shu; Gopidi, Rajesh
This final project report describes the accomplishments, products and publications from the award. It includes the overview of the project goals to devise a framework for managing resources in multi-domain, multi-layer networks, as well the details of the mathematical problem formulation and the description of the prototype built to prove the concept.
The role of weak selection and high mutation rates in nearly neutral evolution.
Lawson, Daniel John; Jensen, Henrik Jeldtoft
2009-04-21
Neutral dynamics occur in evolution if all types are 'effectively equal' in their reproductive success, where the definition of 'effectively equal' depends on the population size and the details of mutations. Empirically observed neutral genetic evolution in extremely large clonal populations can only be explained under current models if selection is completely absent. Such models typically consider the case where population dynamics occurs on a different timescale to evolution. However, this assumption is invalid when mutations are not rare in a whole population. We show that this has important consequences for the occurrence of neutral evolution in clonal populations. In highly connected type spaces, neutral dynamics can occur for all population sizes despite significant selective differences, via the forming of effectively neutral networks connecting rare neutral types. Biological implications include an explanation for the high diversity of rare types that survive in large clonal populations, and a theoretical justification for the use of neutral null models.
Uddin, Shahadat
2016-02-04
A patient-centric care network can be defined as a network among a group of healthcare professionals who provide treatments to common patients. Various multi-level attributes of the members of this network have substantial influence to its perceived level of performance. In order to assess the impact different multi-level attributes of patient-centric care networks on healthcare outcomes, this study first captured patient-centric care networks for 85 hospitals using health insurance claim dataset. From these networks, this study then constructed physician collaboration networks based on the concept of patient-sharing network among physicians. A multi-level regression model was then developed to explore the impact of different attributes that are organised at two levels on hospitalisation cost and hospital length of stay. For Level-1 model, the average visit per physician significantly predicted both hospitalisation cost and hospital length of stay. The number of different physicians significantly predicted only the hospitalisation cost, which has significantly been moderated by age, gender and Comorbidity score of patients. All Level-1 findings showed significance variance across physician collaboration networks having different community structure and density. These findings could be utilised as a reflective measure by healthcare decision makers. Moreover, healthcare managers could consider them in developing effective healthcare environments.
A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies
Tang, Li
2014-01-01
Summary An important goal in fMRI studies is to decompose the observed series of brain images to identify and characterize underlying brain functional networks. Independent component analysis (ICA) has been shown to be a powerful computational tool for this purpose. Classic ICA has been successfully applied to single-subject fMRI data. The extension of ICA to group inferences in neuroimaging studies, however, is challenging due to the unavailability of a pre-specified group design matrix. Existing group ICA methods generally concatenate observed fMRI data across subjects on the temporal domain and then decompose multi-subject data in a similar manner to single-subject ICA. The major limitation of existing methods is that they ignore between-subject variability in spatial distributions of brain functional networks in group ICA. In this paper, we propose a new hierarchical probabilistic group ICA method to formally model subject-specific effects in both temporal and spatial domains when decomposing multi-subject fMRI data. The proposed method provides model-based estimation of brain functional networks at both the population and subject level. An important advantage of the hierarchical model is that it provides a formal statistical framework to investigate similarities and differences in brain functional networks across subjects, e.g., subjects with mental disorders or neurodegenerative diseases such as Parkinson’s as compared to normal subjects. We develop an EM algorithm for model estimation where both the E-step and M-step have explicit forms. We compare the performance of the proposed hierarchical model with that of two popular group ICA methods via simulation studies. We illustrate our method with application to an fMRI study of Zen meditation. PMID:24033125
Cheon, Gyeongwoo; Shin, Il Hyung; Jung, Min Yang; Kim, Hee Chan
2009-01-01
We developed a gateway server to support various types of bio-signal monitoring devices for ubiquitous emergency healthcare in a reliable, effective, and scalable way. The server provides multiple channels supporting real-time N-to-N client connections. We applied our system to four types of health monitoring devices including a 12-channel electrocardiograph (ECG), oxygen saturation (SpO(2)), and medical imaging devices (a ultrasonograph and a digital skin microscope). Different types of telecommunication networks were tested: WIBRO, CDMA, wireless LAN, and wired internet. We measured the performance of our system in terms of the transmission rate and the number of simultaneous connections. The results show that the proposed network communication strategy can be successfully applied to the ubiquitous emergency healthcare service by providing a fast rate enough for real-time video transmission and multiple connections among patients and medical personnel.
Gazda, Stefanie; Iyer, Swami; Killingback, Timothy; Connor, Richard; Brault, Solange
2015-03-01
Network analysis has proved to be a valuable tool for studying the behavioural patterns of complex social animals. Often such studies either do not distinguish between different behavioural states of the organisms or simply focus attention on a single behavioural state to the exclusion of all others. In either of these approaches it is impossible to ascertain how the behavioural patterns of individuals depend on the type of activity they are engaged in. Here we report on a network-based analysis of the behavioural associations in a population of bottlenose dolphins (Tursiops truncatus) in Cedar Key, Florida. We consider three distinct behavioural states-socializing, travelling and foraging-and analyse the association networks corresponding to each activity. Moreover, in constructing the different activity networks we do not simply record a spatial association between two individuals as being either present or absent, but rather quantify the degree of any association, thus allowing us to construct weighted networks describing each activity. The results of these weighted activity networks indicate that networks can reveal detailed patterns of bottlenose dolphins at the population level; dolphins socialize in large groups with preferential associations; travel in small groups with preferential associates; and spread out to forage in very small, weakly connected groups. There is some overlap in the socialize and travel networks but little overlap between the forage and other networks. This indicates that the social bonds maintained in other activities are less important as they forage on dispersed, solitary prey. The overall network, not sorted by activity, does not accurately represent any of these patterns.
Gazda, Stefanie; Iyer, Swami; Killingback, Timothy; Connor, Richard; Brault, Solange
2015-01-01
Network analysis has proved to be a valuable tool for studying the behavioural patterns of complex social animals. Often such studies either do not distinguish between different behavioural states of the organisms or simply focus attention on a single behavioural state to the exclusion of all others. In either of these approaches it is impossible to ascertain how the behavioural patterns of individuals depend on the type of activity they are engaged in. Here we report on a network-based analysis of the behavioural associations in a population of bottlenose dolphins (Tursiops truncatus) in Cedar Key, Florida. We consider three distinct behavioural states—socializing, travelling and foraging—and analyse the association networks corresponding to each activity. Moreover, in constructing the different activity networks we do not simply record a spatial association between two individuals as being either present or absent, but rather quantify the degree of any association, thus allowing us to construct weighted networks describing each activity. The results of these weighted activity networks indicate that networks can reveal detailed patterns of bottlenose dolphins at the population level; dolphins socialize in large groups with preferential associations; travel in small groups with preferential associates; and spread out to forage in very small, weakly connected groups. There is some overlap in the socialize and travel networks but little overlap between the forage and other networks. This indicates that the social bonds maintained in other activities are less important as they forage on dispersed, solitary prey. The overall network, not sorted by activity, does not accurately represent any of these patterns. PMID:26064611
Determining the Impact of Personal Mobility Carbon Allowance Schemes in Transportation Networks
Aziz, H. M. Abdul; Ukkusuri, Satish V.; Zhan, Xianyuan
2016-10-17
We know that personal mobility carbon allowance (PMCA) schemes are designed to reduce carbon consumption from transportation networks. PMCA schemes influence the travel decision process of users and accordingly impact the system metrics including travel time and greenhouse gas (GHG) emissions. Here, we develop a multi-user class dynamic user equilibrium model to evaluate the transportation system performance when PMCA scheme is implemented. The results using Sioux-Falls test network indicate that PMCA schemes can achieve the emissions reduction goals for transportation networks. Further, users characterized by high value of travel time are found to be less sensitive to carbon budget inmore » the context of work trips. Results also show that PMCA scheme can lead to higher emissions for a path compared with the case without PMCA because of flow redistribution. The developed network equilibrium model allows us to examine the change in system states at different carbon allocation levels and to design parameters of PMCA schemes accounting for population heterogeneity.« less
Determining the Impact of Personal Mobility Carbon Allowance Schemes in Transportation Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aziz, H. M. Abdul; Ukkusuri, Satish V.; Zhan, Xianyuan
We know that personal mobility carbon allowance (PMCA) schemes are designed to reduce carbon consumption from transportation networks. PMCA schemes influence the travel decision process of users and accordingly impact the system metrics including travel time and greenhouse gas (GHG) emissions. Here, we develop a multi-user class dynamic user equilibrium model to evaluate the transportation system performance when PMCA scheme is implemented. The results using Sioux-Falls test network indicate that PMCA schemes can achieve the emissions reduction goals for transportation networks. Further, users characterized by high value of travel time are found to be less sensitive to carbon budget inmore » the context of work trips. Results also show that PMCA scheme can lead to higher emissions for a path compared with the case without PMCA because of flow redistribution. The developed network equilibrium model allows us to examine the change in system states at different carbon allocation levels and to design parameters of PMCA schemes accounting for population heterogeneity.« less
St Clair, James J. H.; Burns, Zackory T.; Bettaney, Elaine M.; Morrissey, Michael B.; Otis, Brian; Ryder, Thomas B.; Fleischer, Robert C.; James, Richard; Rutz, Christian
2015-01-01
Social-network dynamics have profound consequences for biological processes such as information flow, but are notoriously difficult to measure in the wild. We used novel transceiver technology to chart association patterns across 19 days in a wild population of the New Caledonian crow—a tool-using species that may socially learn, and culturally accumulate, tool-related information. To examine the causes and consequences of changing network topology, we manipulated the environmental availability of the crows' preferred tool-extracted prey, and simulated, in silico, the diffusion of information across field-recorded time-ordered networks. Here we show that network structure responds quickly to environmental change and that novel information can potentially spread rapidly within multi-family communities, especially when tool-use opportunities are plentiful. At the same time, we report surprisingly limited social contact between neighbouring crow communities. Such scale dependence in information-flow dynamics is likely to influence the evolution and maintenance of material cultures. PMID:26529116
NASA Astrophysics Data System (ADS)
Tian, Chunlei; Yin, Yawei; Wu, Jian; Lin, Jintong
2008-11-01
The interworking network of Generalized Multi-Protocol Label Switching (GMPLS) and Optical Burst Switching (OBS) is attractive network architecture for the future IP/DWDM network nowadays. In this paper, OSPF-TE extensions for multi-domain Optical Burst Switching networks connected by GMPLS controlled WDM network are proposed, the corresponding experimental results such as the advertising latency are also presented by using an OBS network testbed. The experimental results show that it works effectively on the OBS/GMPLS networks.
NASA Astrophysics Data System (ADS)
Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng
2014-08-01
Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.
A general modeling framework for describing spatially structured population dynamics
Sample, Christine; Fryxell, John; Bieri, Joanna; Federico, Paula; Earl, Julia; Wiederholt, Ruscena; Mattsson, Brady; Flockhart, Tyler; Nicol, Sam; Diffendorfer, James E.; Thogmartin, Wayne E.; Erickson, Richard A.; Norris, D. Ryan
2017-01-01
Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance that comparative analyses are colored by model details rather than general principles
Li, Jun-Ying; Hu, Yuan-Man; Chen, Wei; Liu, Miao; Hu, Jian-Bo; Zhong, Qiao-Lin; Lu, Ning
2012-06-01
Population is the most active factor affecting city development. To understand the distribution characteristics of urban population is of significance for making city policy decisions and for optimizing the layout of various urban infrastructures. In this paper, the information of the residential buildings in Shenyang urban area was extracted from the QuickBird remote sensing images, and the spatial distribution characteristics of the population within the Third-Ring Road of the City were analyzed, according to the social and economic statistics data. In 2010, the population density in different types of residential buildings within the Third-Ring Road of the City decreased in the order of high-storey block, mixed block, mixed garden, old multi-storey building, high-storey garden, multi-storey block, multi-storey garden, villa block, shanty, and villa garden. The vacancy rate of the buildings within the Third-Ring Road was more than 30%, meaning that the real estate market was seriously overstocked. Among the five Districts of Shenyang City, Shenhe District had the highest potential population density, while Tiexi District and Dadong District had a lower one. The gravity center of the City and its five Districts was also analyzed, which could provide basic information for locating commercial facilities and planning city infrastructure.
Aberrant functional connectivity of default-mode network in type 2 diabetes patients.
Cui, Ying; Jiao, Yun; Chen, Hua-Jun; Ding, Jie; Luo, Bing; Peng, Cheng-Yu; Ju, Sheng-Hong; Teng, Gao-Jun
2015-11-01
Type 2 diabetes mellitus is associated with increased risk for dementia. Patients with impaired cognition often show default-mode network disruption. We aimed to investigate the integrity of a default-mode network in diabetic patients by using independent component analysis, and to explore the relationship between network abnormalities, neurocognitive performance and diabetic variables. Forty-two patients with type 2 diabetes and 42 well-matched healthy controls were included and underwent resting-state functional MRI in a 3 Tesla unit. Independent component analysis was adopted to extract the default-mode network, including its anterior and posterior components. Z-maps of both sub-networks were compared between the two groups and correlated with each clinical variable. Patients showed increased connectivity around the medial prefrontal cortex in the anterior sub-network, but decreased connectivity around the posterior cingulate cortex in the posterior sub-network. The decreased connectivity in the posterior part was significantly correlated with the score on Complex Figure Test-delay recall test (r = 0.359, p = 0.020), the time spent on Trail-Making Test-part B (r = -0.346, p = 0.025) and the insulin resistance level (r = -0.404, p = 0.024). Dissociation pattern in the default-mode network was found in diabetic patients, which might provide powerful new insights into the neural mechanisms that underlie the diabetes-related cognitive decline. • Type 2 diabetes mellitus is associated with impaired cognition • Default- mode network plays a central role in maintaining normal cognition • Network connectivity within the default mode was disrupted in type 2 diabetes patients • Decreased network connectivity was correlated with cognitive performance and insulin resistance level • Disrupted default-mode network might explain the impaired cognition in diabetic population.
NASA Astrophysics Data System (ADS)
Rossi, V.; Dubois, M.; Ser-Giacomi, E.; Monroy, P.; Lopez, C.; Hernandez-Garcia, E.
2016-02-01
Assessing the spatial structure and dynamics of marine populations is still a major challenge for ecologists. The necessity to manage marine resources from a large-scale perspective and considering the whole ecosystem is now recognized but the absence of appropriate tools to address these objectives limits the implementation of globally pertinent conservation planning. Inspired from Network Theory, we present a new methodological framework called Lagrangian Flow Network which allows a systematic characterization of multi-scale dispersal and connectivity of early life history stages of marine organisms. The network is constructed by subdividing the basin into an ensemble of equal-area subregions which are interconnected through the transport of propagules by ocean currents. The present version allows the identification of hydrodynamical provinces and the computation of various connectivity proxies measuring retention and exchange of larvae. Due to our spatial discretization and subsequent network representation, as well as our Lagrangian approach, further methodological improvements are handily accessible. These future developments include a parametrization of habitat patchiness, the implementation of realistic larval traits and the consideration of abiotic variables (e.g. temperature, salinity, planktonic resources...) and their effects on larval production and survival. While the model is potentially tunable to any species whose biological traits and ecological preferences are precisely known, it can also be used in a more generic configuration by efficient computing and analysis of a large number of experiments with relevant ecological parameters. It permits a better characterization of population connectivity at multiple scales and it informs its ecological and managerial interpretations.
Heggarty, Paul; Maguire, Warren; McMahon, April
2010-01-01
Linguists have traditionally represented patterns of divergence within a language family in terms of either a ‘splits’ model, corresponding to a branching family tree structure, or the wave model, resulting in a (dialect) continuum. Recent phylogenetic analyses, however, have tended to assume the former as a viable idealization also for the latter. But the contrast matters, for it typically reflects different processes in the real world: speaker populations either separated by migrations, or expanding over continuous territory. Since history often leaves a complex of both patterns within the same language family, ideally we need a single model to capture both, and tease apart the respective contributions of each. The ‘network’ type of phylogenetic method offers this, so we review recent applications to language data. Most have used lexical data, encoded as binary or multi-state characters. We look instead at continuous distance measures of divergence in phonetics. Our output networks combine branch- and continuum-like signals in ways that correspond well to known histories (illustrated for Germanic, and particularly English). We thus challenge the traditional insistence on shared innovations, setting out a new, principled explanation for why complex language histories can emerge correctly from distance measures, despite shared retentions and parallel innovations. PMID:21041208
Ruiz-Fons, Francisco; Sánchez-Matamoros, Almudena; Gortázar, Christian; Sánchez-Vizcaíno, José Manuel
2014-03-01
Bluetongue (BT) is a re-emergent vector-borne viral disease of domestic and wild ruminants caused by bluetongue virus (BTV), a member of the genus Orbivirus. A complex multi-host, multi-vector and multi-pathogen (26 serotypes) transmission and maintenance network has recently emerged in Europe, and wild ruminants are regarded as an important node in this network. This review analyses the reservoir role of wild ruminants in Europe, identifying gaps in knowledge and proposing actions. Wild ruminant species are indicators of BTV circulation. Excepting the mouflon (Ovis aries musimon), European wild ungulates do not develop clinical disease. Diagnostic techniques used in wildlife do not differ from those used in domestic ruminants provided they are validated. Demographic, behavioural and physiological traits of wild hosts modulate their relationship with BTV vectors and with the virus itself. While BTV has been eradicated from central and northern Europe, it is still circulating in the Mediterranean Basin. We propose that currently two BTV cycles coexist in certain regions of the Mediterranean Basin, a wild one largely driven by deer of the subfamily Cervinae and a domestic one. These are probably linked through shared Culicoides vectors of several species. We suggest that wildlife might be contributing to this situation through vector maintenance and virus maintenance. Additionally, differences in temperature and other environmental factors add complexity to the Mediterranean habitats as compared to central and northern European ones. Intervention options in wildlife populations are limited. There is a need to know the role of wildlife in maintaining Culicoides populations, and to know which Culicoides species mediate the wildlife-livestock-BTV transmission events. There is also a clear need to study more in depth the links between Cervinae deer densities, environmental factors and BTV maintenance. Regarding disease control, we suggest that research efforts should be focused on wildlife population and wildlife disease monitoring. Copyright © 2014 Elsevier B.V. All rights reserved.
An optimization method of VON mapping for energy efficiency and routing in elastic optical networks
NASA Astrophysics Data System (ADS)
Liu, Huanlin; Xiong, Cuilian; Chen, Yong; Li, Changping; Chen, Derun
2018-03-01
To improve resources utilization efficiency, network virtualization in elastic optical networks has been developed by sharing the same physical network for difference users and applications. In the process of virtual nodes mapping, longer paths between physical nodes will consume more spectrum resources and energy. To address the problem, we propose a virtual optical network mapping algorithm called genetic multi-objective optimize virtual optical network mapping algorithm (GM-OVONM-AL), which jointly optimizes the energy consumption and spectrum resources consumption in the process of virtual optical network mapping. Firstly, a vector function is proposed to balance the energy consumption and spectrum resources by optimizing population classification and crowding distance sorting. Then, an adaptive crossover operator based on hierarchical comparison is proposed to improve search ability and convergence speed. In addition, the principle of the survival of the fittest is introduced to select better individual according to the relationship of domination rank. Compared with the spectrum consecutiveness-opaque virtual optical network mapping-algorithm and baseline-opaque virtual optical network mapping algorithm, simulation results show the proposed GM-OVONM-AL can achieve the lowest bandwidth blocking probability and save the energy consumption.
MONGKIE: an integrated tool for network analysis and visualization for multi-omics data.
Jang, Yeongjun; Yu, Namhee; Seo, Jihae; Kim, Sun; Lee, Sanghyuk
2016-03-18
Network-based integrative analysis is a powerful technique for extracting biological insights from multilayered omics data such as somatic mutations, copy number variations, and gene expression data. However, integrated analysis of multi-omics data is quite complicated and can hardly be done in an automated way. Thus, a powerful interactive visual mining tool supporting diverse analysis algorithms for identification of driver genes and regulatory modules is much needed. Here, we present a software platform that integrates network visualization with omics data analysis tools seamlessly. The visualization unit supports various options for displaying multi-omics data as well as unique network models for describing sophisticated biological networks such as complex biomolecular reactions. In addition, we implemented diverse in-house algorithms for network analysis including network clustering and over-representation analysis. Novel functions include facile definition and optimized visualization of subgroups, comparison of a series of data sets in an identical network by data-to-visual mapping and subsequent overlaying function, and management of custom interaction networks. Utility of MONGKIE for network-based visual data mining of multi-omics data was demonstrated by analysis of the TCGA glioblastoma data. MONGKIE was developed in Java based on the NetBeans plugin architecture, thus being OS-independent with intrinsic support of module extension by third-party developers. We believe that MONGKIE would be a valuable addition to network analysis software by supporting many unique features and visualization options, especially for analysing multi-omics data sets in cancer and other diseases. .
Borchani, Hanen; Bielza, Concha; Toro, Carlos; Larrañaga, Pedro
2013-03-01
Our aim is to use multi-dimensional Bayesian network classifiers in order to predict the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors given an input set of respective resistance mutations that an HIV patient carries. Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models especially designed to solve multi-dimensional classification problems, where each input instance in the data set has to be assigned simultaneously to multiple output class variables that are not necessarily binary. In this paper, we introduce a new method, named MB-MBC, for learning MBCs from data by determining the Markov blanket around each class variable using the HITON algorithm. Our method is applied to both reverse transcriptase and protease data sets obtained from the Stanford HIV-1 database. Regarding the prediction of antiretroviral combination therapies, the experimental study shows promising results in terms of classification accuracy compared with state-of-the-art MBC learning algorithms. For reverse transcriptase inhibitors, we get 71% and 11% in mean and global accuracy, respectively; while for protease inhibitors, we get more than 84% and 31% in mean and global accuracy, respectively. In addition, the analysis of MBC graphical structures lets us gain insight into both known and novel interactions between reverse transcriptase and protease inhibitors and their respective resistance mutations. MB-MBC algorithm is a valuable tool to analyze the HIV-1 reverse transcriptase and protease inhibitors prediction problem and to discover interactions within and between these two classes of inhibitors. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Hyunjin; Ansong, Charles; McDermott, Jason E.
Background: Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity. Results: In this study we present a systems biology approach in which sample-matched multi-omic measurements of fourteen virulence-essential regulator mutants were coupled with computational network analysis to efficiently identify Salmonella virulence factors. Immunoblot experiments verified network-predicted virulence factors and a subset was determined to be secreted into the host cytoplasm, suggesting that they are virulence factors directly interacting with host cellular components. Two ofmore » these, SrfN and PagK2, were required for full mouse virulence and were shown to be translocated independent of either of the type III secretion systems in Salmonella or the type III injectisome-related flagellar mechanism. Conclusions: Integrating multi-omic datasets from Salmonella mutants lacking virulence regulators not only identified novel virulence factors but also defined a new class of translocated effectors involved in pathogenesis. The success of this strategy at discovery of known and novel virulence factors suggests that the approach may have applicability for other bacterial pathogens.« less
Skelton, D A; Becker, C; Lamb, S E; Close, J C T; Zijlstra, W; Yardley, L; Todd, C J
2004-12-01
The Prevention of Falls Network Europe (ProFaNE) aims to improve quality of life of the ageing population by focussing on a major cause of disability and distress: falls. The thematic network is funded by the European Commission and brings together scientists, clinicians and other health professionals from around Europe to focus on four main themes: taxonomy and coordination of trials, clinical assessment and management of falls, assessment of balance function, and psychological aspects of falling. There are 24 members across Europe as well as network associates who contribute expertise at workshops and meetings. ProFaNE, a 4-year project which started in January 2003, aims to improve and standardise health care processes, introducing and promoting good practice widely across Europe. ProFaNE undertakes workshops that bring together experts and observers around specific topics to exchange knowledge, expertise and resources on interventions that reduce falls. A key document for policy makers around Europe, written by ProFaNE members, was published by the World Health Organisation in March 2004. ProFaNE's website has both public and private areas with resources (web links to falls prevention, useful documents for policy makers, researchers and practitioners) and a discussion board to encourage informal networking between members and the public. The ultimate aim of ProFaNE is to submit a collaborative bid to undertake a multi-centre, randomised controlled trial of a multi-factorial fall prevention intervention with peripheral fracture as the primary outcome. The success of the networking and relationship building in the first year and a half of ProFaNE's work makes this an achievable goal.
NASA Astrophysics Data System (ADS)
Lin, Yi-Kuei; Yeh, Cheng-Ta
2013-05-01
From the perspective of supply chain management, the selected carrier plays an important role in freight delivery. This article proposes a new criterion of multi-commodity reliability and optimises the carrier selection based on such a criterion for logistics networks with routes and nodes, over which multiple commodities are delivered. Carrier selection concerns the selection of exactly one carrier to deliver freight on each route. The capacity of each carrier has several available values associated with a probability distribution, since some of a carrier's capacity may be reserved for various orders. Therefore, the logistics network, given any carrier selection, is a multi-commodity multi-state logistics network. Multi-commodity reliability is defined as a probability that the logistics network can satisfy a customer's demand for various commodities, and is a performance indicator for freight delivery. To solve this problem, this study proposes an optimisation algorithm that integrates genetic algorithm, minimal paths and Recursive Sum of Disjoint Products. A practical example in which multi-sized LCD monitors are delivered from China to Germany is considered to illustrate the solution procedure.
NASA Astrophysics Data System (ADS)
Yang, Hong-Yong; Lu, Lan; Cao, Ke-Cai; Zhang, Si-Ying
2010-04-01
In this paper, the relations of the network topology and the moving consensus of multi-agent systems are studied. A consensus-prestissimo scale-free network model with the static preferential-consensus attachment is presented on the rewired link of the regular network. The effects of the static preferential-consensus BA network on the algebraic connectivity of the topology graph are compared with the regular network. The robustness gain to delay is analyzed for variable network topology with the same scale. The time to reach the consensus is studied for the dynamic network with and without communication delays. By applying the computer simulations, it is validated that the speed of the convergence of multi-agent systems can be greatly improved in the preferential-consensus BA network model with different configuration.
Fair and efficient network congestion control based on minority game
NASA Astrophysics Data System (ADS)
Wang, Zuxi; Wang, Wen; Hu, Hanping; Deng, Zhaozhang
2011-12-01
Low link utility, RTT unfairness and unfairness of Multi-Bottleneck network are the existing problems in the present network congestion control algorithms at large. Through the analogy of network congestion control with the "El Farol Bar" problem, we establish a congestion control model based on minority game(MG), and then present a novel network congestion control algorithm based on the model. The result of simulations indicates that the proposed algorithm can make the achievements of link utility closing to 100%, zero packet lose rate, and small of queue size. Besides, the RTT unfairness and the unfairness of Multi-Bottleneck network can be solved, to achieve the max-min fairness in Multi-Bottleneck network, while efficiently weaken the "ping-pong" oscillation caused by the overall synchronization.
Research of negotiation in network trade system based on multi-agent
NASA Astrophysics Data System (ADS)
Cai, Jun; Wang, Guozheng; Wu, Haiyan
2009-07-01
A construction and implementation technology of network trade based on multi-agent is described in this paper. First, we researched the technology of multi-agent, then we discussed the consumer's behaviors and the negotiation between purchaser and bargainer which emerges in the traditional business mode and analysed the key technology to implement the network trade system. Finally, we implement the system.
Clustering Single-Cell Expression Data Using Random Forest Graphs.
Pouyan, Maziyar Baran; Nourani, Mehrdad
2017-07-01
Complex tissues such as brain and bone marrow are made up of multiple cell types. As the study of biological tissue structure progresses, the role of cell-type-specific research becomes increasingly important. Novel sequencing technology such as single-cell cytometry provides researchers access to valuable biological data. Applying machine-learning techniques to these high-throughput datasets provides deep insights into the cellular landscape of the tissue where those cells are a part of. In this paper, we propose the use of random-forest-based single-cell profiling, a new machine-learning-based technique, to profile different cell types of intricate tissues using single-cell cytometry data. Our technique utilizes random forests to capture cell marker dependences and model the cellular populations using the cell network concept. This cellular network helps us discover what cell types are in the tissue. Our experimental results on public-domain datasets indicate promising performance and accuracy of our technique in extracting cell populations of complex tissues.
NASA Astrophysics Data System (ADS)
Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.
2017-02-01
An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.
A Climate Trend Analysis of Niger
Funk, Christopher C.; Rowland, Jim; Eilerts, Gary; Adoum, Alkhalil; White, Libby
2012-01-01
This brief report, drawing from a multi-year effort by the U.S. Agency for International Development (USAID) Famine Early Warning Systems Network (FEWS NET), identifies a substantial recovery of rainfall in Niger, accompanied by increases in air temperatures. These analyses are based on quality-controlled station observations. Conclusions: * Summer rains have increased during the past 20 years and have almost returned to 1960-89 levels. * Temperatures have increased by 0.6° Celsius since 1975, amplifying the effect of droughts. * Crop yields are very low and stagnant, and the population is growing very rapidly. * Niger has offset very rapid population growth with a large expansion of cultivated land. * If the expansion of farmland slows down, stagnant yields and population growth could lead to increased food insecurity.
Ultrasensitive response motifs: basic amplifiers in molecular signalling networks
Zhang, Qiang; Bhattacharya, Sudin; Andersen, Melvin E.
2013-01-01
Multi-component signal transduction pathways and gene regulatory circuits underpin integrated cellular responses to perturbations. A recurring set of network motifs serve as the basic building blocks of these molecular signalling networks. This review focuses on ultrasensitive response motifs (URMs) that amplify small percentage changes in the input signal into larger percentage changes in the output response. URMs generally possess a sigmoid input–output relationship that is steeper than the Michaelis–Menten type of response and is often approximated by the Hill function. Six types of URMs can be commonly found in intracellular molecular networks and each has a distinct kinetic mechanism for signal amplification. These URMs are: (i) positive cooperative binding, (ii) homo-multimerization, (iii) multistep signalling, (iv) molecular titration, (v) zero-order covalent modification cycle and (vi) positive feedback. Multiple URMs can be combined to generate highly switch-like responses. Serving as basic signal amplifiers, these URMs are essential for molecular circuits to produce complex nonlinear dynamics, including multistability, robust adaptation and oscillation. These dynamic properties are in turn responsible for higher-level cellular behaviours, such as cell fate determination, homeostasis and biological rhythm. PMID:23615029
Application of artificial neural networks to identify equilibration in computer simulations
NASA Astrophysics Data System (ADS)
Leibowitz, Mitchell H.; Miller, Evan D.; Henry, Michael M.; Jankowski, Eric
2017-11-01
Determining which microstates generated by a thermodynamic simulation are representative of the ensemble for which sampling is desired is a ubiquitous, underspecified problem. Artificial neural networks are one type of machine learning algorithm that can provide a reproducible way to apply pattern recognition heuristics to underspecified problems. Here we use the open-source TensorFlow machine learning library and apply it to the problem of identifying which hypothetical observation sequences from a computer simulation are “equilibrated” and which are not. We generate training populations and test populations of observation sequences with embedded linear and exponential correlations. We train a two-neuron artificial network to distinguish the correlated and uncorrelated sequences. We find that this simple network is good enough for > 98% accuracy in identifying exponentially-decaying energy trajectories from molecular simulations.
Inns, Thomas; Jombart, Thibaut; Ashton, Philip; Loman, Nicolas; Chatt, Carol; Messelhaeusser, Ute; Rabsch, Wolfgang; Simon, Sandra; Nikisins, Sergejs; Bernard, Helen; le Hello, Simon; Jourdan da-Silva, Nathalie; Kornschober, Christian; Mossong, Joel; Hawkey, Peter; de Pinna, Elizabeth; Grant, Kathie; Cleary, Paul
2016-01-01
Outbreaks of Salmonella Enteritidis have long been associated with contaminated poultry and eggs. In the summer of 2014 a large multi-national outbreak of Salmonella Enteritidis phage type 14b occurred with over 350 cases reported in the United Kingdom, Germany, Austria, France and Luxembourg. Egg supply network investigation and microbiological sampling identified the source to be a Bavarian egg producer. As part of the international investigation into the outbreak, over 400 isolates were sequenced including isolates from cases, implicated UK premises and eggs from the suspected source producer. We were able to show a clear statistical correlation between the topology of the UK egg distribution network and the phylogenetic network of outbreak isolates. This correlation can most plausibly be explained by different parts of the egg distribution network being supplied by eggs solely from independent premises of the Bavarian egg producer (Company X). Microbiological sampling from the source premises, traceback information and information on the interventions carried out at the egg production premises all supported this conclusion. The level of insight into the outbreak epidemiology provided by whole-genome sequencing (WGS) would not have been possible using traditional microbial typing methods. PMID:28348865
Ambipolar behavior and thermoelectric properties of WS2 nanotubes
NASA Astrophysics Data System (ADS)
Yomogida, Yohei; Kawai, Hideki; Sugahara, Mitsunari; Okada, Ryotaro; Yanagi, Kazuhiro
WS2 nanotubes are rolled multi-walled nanotubes made by a layered material, tungsten disulfides Since the discovery by Tenne et al in 1992, various physical properties have been revealed. Theoretical studies have suggested their distinct electronic properties from those of two dimensional sheet, such as one-dimensional electronic strucutures with sharp van Hove singularities and chiralitiy depended electronic structures. Their fibril structures enable us to make their random network films, however, the films are not conducting, and thus have not been used for electronic applications. Here we demonstrate that carrier injections on the WS2 networks by an electrolyte gating approach could make the networks as a semiconducting channel. We clarified the Raman characteristics of WS2 nanotubes networks under electrolyte gating, and confirmed capability of electron and hole injections. We revealed ambipolar behaviors of the WS2 nanotube networks in field effect transistor setups with electrolyte gating. In additio, we demosntrate N-type and P-type control of thermoelectric properties of WS2 nanotubes by electrolyte gating.The power factor of the WS2 nanotubes almost approached to that of the single crystalline WS2 flakes, suggesting good potential for thermoelectric applications..
Dallman, Tim; Inns, Thomas; Jombart, Thibaut; Ashton, Philip; Loman, Nicolas; Chatt, Carol; Messelhaeusser, Ute; Rabsch, Wolfgang; Simon, Sandra; Nikisins, Sergejs; Bernard, Helen; le Hello, Simon; Jourdan da-Silva, Nathalie; Kornschober, Christian; Mossong, Joel; Hawkey, Peter; de Pinna, Elizabeth; Grant, Kathie; Cleary, Paul
2016-08-01
Outbreaks of Salmonella Enteritidis have long been associated with contaminated poultry and eggs. In the summer of 2014 a large multi-national outbreak of Salmonella Enteritidis phage type 14b occurred with over 350 cases reported in the United Kingdom, Germany, Austria, France and Luxembourg. Egg supply network investigation and microbiological sampling identified the source to be a Bavarian egg producer. As part of the international investigation into the outbreak, over 400 isolates were sequenced including isolates from cases, implicated UK premises and eggs from the suspected source producer. We were able to show a clear statistical correlation between the topology of the UK egg distribution network and the phylogenetic network of outbreak isolates. This correlation can most plausibly be explained by different parts of the egg distribution network being supplied by eggs solely from independent premises of the Bavarian egg producer (Company X). Microbiological sampling from the source premises, traceback information and information on the interventions carried out at the egg production premises all supported this conclusion. The level of insight into the outbreak epidemiology provided by whole-genome sequencing (WGS) would not have been possible using traditional microbial typing methods.
NASA Astrophysics Data System (ADS)
Nordal Petersen, Martin; Nuijts, Roeland; Lange Bjørn, Lars
2014-05-01
This article presents an advanced optical model for simulation of alien wavelengths in multi-domain and multi-vendor dense wavelength-division multiplexing networks. The model aids optical network planners with a better understanding of the non-linear effects present in dense wavelength-division multiplexing systems and better utilization of alien wavelengths in future applications. The limiting physical effects for alien wavelengths are investigated in relation to power levels, channel spacing, and other factors. The simulation results are verified through experimental setup in live multi-domain dense wavelength-division multiplexing systems between two national research networks: SURFnet in Holland and NORDUnet in Denmark.
NASA Astrophysics Data System (ADS)
Prat, Olivier; Nelson, Brian; Stevens, Scott; Seo, Dong-Jun; Kim, Beomgeun
2015-04-01
The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor Quantitative (NMQ/Q2) based on the WSR-88D Next-generation Radar (NEXRAD) network over Continental United States (CONUS) is completed for the period covering from 2001 to 2012. This important milestone constitutes a unique opportunity to study precipitation processes at a 1-km spatial resolution for a 5-min temporal resolution. However, in order to be suitable for hydrological, meteorological and climatological applications, the radar-only product needs to be bias-adjusted and merged with in-situ rain gauge information. Several in-situ datasets are available to assess the biases of the radar-only product and to adjust for those biases to provide a multi-sensor QPE. The rain gauge networks that are used such as the Global Historical Climatology Network-Daily (GHCN-D), the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), and the Climate Reference Network (CRN), have different spatial density and temporal resolution. The challenges related to incorporating non-homogeneous networks over a vast area and for a long-term record are enormous. Among the challenges we are facing are the difficulties incorporating differing resolution and quality surface measurements to adjust gridded estimates of precipitation. Another challenge is the type of adjustment technique. The objective of this work is threefold. First, we investigate how the different in-situ networks can impact the precipitation estimates as a function of the spatial density, sensor type, and temporal resolution. Second, we assess conditional and un-conditional biases of the radar-only QPE for various time scales (daily, hourly, 5-min) using in-situ precipitation observations. Finally, after assessing the bias and applying reduction or elimination techniques, we are using a unique in-situ dataset merging the different RG networks (CRN, ASOS, HADS, GHCN-D) to adjust the radar-only QPE product via an Inverse Distance Weighting (IDW) approach. In addition, we also investigate alternate adjustment techniques such as the kriging method and its variants (Simple Kriging: SK; Ordinary Kriging: OK; Conditional Bias-Penalized Kriging: CBPK). From this approach, we also hope to generate estimates of uncertainty for the gridded bias-adjusted QPE. Further comparison with a suite of lower resolution QPEs derived from ground based radar measurements (Stage IV) and satellite products (TMPA, CMORPH, PERSIANN) is also provided in order to give a detailed picture of the improvements and remaining challenges.
Heterogeneous flow in multi-layer joint networks and its influence on incipient karst generation
NASA Astrophysics Data System (ADS)
Wang, X.; Jourde, H.
2017-12-01
Various dissolution types (e.g. pipe, stripe and sheet karstic features) have been observed in fractured layered limestones. Yet, due to a large range of structural and hydraulic parameters play a role in the karstification process, the dissolution mechanism, occurring either along fractures or bedding planes, is difficult to quantify. In this study, we use numerical models to investigate the influence of these parameters on the generation of different types of incipient karst. Specifically, we focus on two parameters: the fracture intensity contrast between adjacent layers and the aperture ratio between bedding planes and joints (abed/ajoint). The DFN models were generated using a pseudo-genetic code that considers the stress shadow zone. Flow simulations were performed using a combined finite-volume finite-element simulator under practical boundary conditions. The flow channeling within the fracture networks was characterized by applying a multi-fractal technique. The rock block equivalent permeability (keff) was also calculated to quantify the change in bulk hydraulic properties when changing the selected structural and hydraulic parameters. The flow simulation results show that the abed/ajoint ratio has a first-order control on the heterogeneous distribution of flow in the multi-layer system and on the magnitude of equivalent permeability. When abed/ajoint < 0.1, flow in the system is highly localized and controlled by joints, and the keff is low; while, when abed/ajoint > 0.1, the bedding plane has more control and flow becomes more pervasive and uniform, and the keff is accordingly high. A simple model, accounting for the calculation of the heterogeneous distributions of Damköhler number associated with different aperture ratios, is proposed to predict what type of incipient karst tends to develop under the studied flow conditions.
Identifying the community structure of the food-trade international multi-network
NASA Astrophysics Data System (ADS)
Torreggiani, S.; Mangioni, G.; Puma, M. J.; Fagiolo, G.
2018-05-01
Achieving international food security requires improved understanding of how international trade networks connect countries around the world through the import-export flows of food commodities. The properties of international food trade networks are still poorly documented, especially from a multi-network perspective. In particular, nothing is known about the multi-network’s community structure. Here we find that the individual crop-specific layers of the multi-network have densely connected trading groups, a consistent characteristic over the period 2001–2011. Further, the multi-network is characterized by low variability over this period but with substantial heterogeneity across layers in each year. In particular, the layers are mostly assortative: more-intensively connected countries tend to import from and export to countries that are themselves more connected. We also fit econometric models to identify social, economic and geographic factors explaining the probability that any two countries are co-present in the same community. Our estimates indicate that the probability of country pairs belonging to the same food trade community depends more on geopolitical and economic factors—such as geographical proximity and trade-agreement co-membership—than on country economic size and/or income. These community-structure findings of the multi-network are especially valuable for efforts to understand past and emerging dynamics in the global food system, especially those that examine potential ‘shocks’ to global food trade.
Deep multi-scale convolutional neural network for hyperspectral image classification
NASA Astrophysics Data System (ADS)
Zhang, Feng-zhe; Yang, Xia
2018-04-01
In this paper, we proposed a multi-scale convolutional neural network for hyperspectral image classification task. Firstly, compared with conventional convolution, we utilize multi-scale convolutions, which possess larger respective fields, to extract spectral features of hyperspectral image. We design a deep neural network with a multi-scale convolution layer which contains 3 different convolution kernel sizes. Secondly, to avoid overfitting of deep neural network, dropout is utilized, which randomly sleeps neurons, contributing to improve the classification accuracy a bit. In addition, new skills like ReLU in deep learning is utilized in this paper. We conduct experiments on University of Pavia and Salinas datasets, and obtained better classification accuracy compared with other methods.
A climate trend analysis of Mali
Funk, Christopher C.; Rowland, Jim; Adoum, Alkhalil; Eilerts, Gary; White, Libby
2012-01-01
This brief report, drawing from a multi-year effort by the U.S. Agency for International Development (USAID) Famine Early Warning Systems Network (FEWS NET), identifies modest declines in rainfall, accompanied by increases in air temperatures. These analyses are based on quality-controlled station observations. Conclusions: * Summer rains have remained relatively steady for the past 20 years, but are 12 percent below the 1920-1969 average. * Temperatures have increased by 0.8° Celsius since 1975, amplifying the effect of droughts. * Cereal yields are low but have been improving. * Current population and agricultural trends indicate that increased yields have offset population expansion, keeping per capita cereal production steady.
ICan: an integrated co-alteration network to identify ovarian cancer-related genes.
Zhou, Yuanshuai; Liu, Yongjing; Li, Kening; Zhang, Rui; Qiu, Fujun; Zhao, Ning; Xu, Yan
2015-01-01
Over the last decade, an increasing number of integrative studies on cancer-related genes have been published. Integrative analyses aim to overcome the limitation of a single data type, and provide a more complete view of carcinogenesis. The vast majority of these studies used sample-matched data of gene expression and copy number to investigate the impact of copy number alteration on gene expression, and to predict and prioritize candidate oncogenes and tumor suppressor genes. However, correlations between genes were neglected in these studies. Our work aimed to evaluate the co-alteration of copy number, methylation and expression, allowing us to identify cancer-related genes and essential functional modules in cancer. We built the Integrated Co-alteration network (ICan) based on multi-omics data, and analyzed the network to uncover cancer-related genes. After comparison with random networks, we identified 155 ovarian cancer-related genes, including well-known (TP53, BRCA1, RB1 and PTEN) and also novel cancer-related genes, such as PDPN and EphA2. We compared the results with a conventional method: CNAmet, and obtained a significantly better area under the curve value (ICan: 0.8179, CNAmet: 0.5183). In this paper, we describe a framework to find cancer-related genes based on an Integrated Co-alteration network. Our results proved that ICan could precisely identify candidate cancer genes and provide increased mechanistic understanding of carcinogenesis. This work suggested a new research direction for biological network analyses involving multi-omics data.
ICan: An Integrated Co-Alteration Network to Identify Ovarian Cancer-Related Genes
Zhou, Yuanshuai; Liu, Yongjing; Li, Kening; Zhang, Rui; Qiu, Fujun; Zhao, Ning; Xu, Yan
2015-01-01
Background Over the last decade, an increasing number of integrative studies on cancer-related genes have been published. Integrative analyses aim to overcome the limitation of a single data type, and provide a more complete view of carcinogenesis. The vast majority of these studies used sample-matched data of gene expression and copy number to investigate the impact of copy number alteration on gene expression, and to predict and prioritize candidate oncogenes and tumor suppressor genes. However, correlations between genes were neglected in these studies. Our work aimed to evaluate the co-alteration of copy number, methylation and expression, allowing us to identify cancer-related genes and essential functional modules in cancer. Results We built the Integrated Co-alteration network (ICan) based on multi-omics data, and analyzed the network to uncover cancer-related genes. After comparison with random networks, we identified 155 ovarian cancer-related genes, including well-known (TP53, BRCA1, RB1 and PTEN) and also novel cancer-related genes, such as PDPN and EphA2. We compared the results with a conventional method: CNAmet, and obtained a significantly better area under the curve value (ICan: 0.8179, CNAmet: 0.5183). Conclusion In this paper, we describe a framework to find cancer-related genes based on an Integrated Co-alteration network. Our results proved that ICan could precisely identify candidate cancer genes and provide increased mechanistic understanding of carcinogenesis. This work suggested a new research direction for biological network analyses involving multi-omics data. PMID:25803614
Multi-channel distributed coordinated function over single radio in wireless sensor networks.
Campbell, Carlene E-A; Loo, Kok-Keong Jonathan; Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay
2011-01-01
Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band.
Multi-Channel Distributed Coordinated Function over Single Radio in Wireless Sensor Networks
Campbell, Carlene E.-A.; Loo, Kok-Keong (Jonathan); Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay
2011-01-01
Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band. PMID:22346614
Transition from amplitude to oscillation death in a network of oscillators
NASA Astrophysics Data System (ADS)
Nandan, Mauparna; Hens, C. R.; Pal, Pinaki; Dana, Syamal K.
2014-12-01
We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.
Transition from amplitude to oscillation death in a network of oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandan, Mauparna; Department of Mathematics, National Institute of Technology, Durgapur 713209; Hens, C. R.
2014-12-01
We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determinemore » the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.« less
2018-01-01
As an intrinsic part of the Internet of Things (IoT) ecosystem, machine-to-machine (M2M) communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave (mmWave) communication is another promising technology for the future communication systems to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider multi-hop M2M communications, where a machine-type communication (MTC) device with the limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs) with directional antenna arrays in mmWave for M2M communications. Different from microwave systems, in mmWave communications, wireless channel suffers from blockage by obstacles that heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs. We consider two routing strategies aiming at different types of applications and derive the probability distributions of their hop distances. Moreover, we provide their baseline statistics assuming the blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis, we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count, and transmit energy) of the mmWave MWNs, which provides important insights into mmWave MWN design without time-consuming and repetitive end-to-end simulation. PMID:29329248
NASA Astrophysics Data System (ADS)
Xu, Z.; Guan, K.; Peng, B.; Casler, N. P.; Wang, S. W.
2017-12-01
Landscape has complex three-dimensional features. These 3D features are difficult to extract using conventional methods. Small-footprint LiDAR provides an ideal way for capturing these features. Existing approaches, however, have been relegated to raster or metric-based (two-dimensional) feature extraction from the upper or bottom layer, and thus are not suitable for resolving morphological and intensity features that could be important to fine-scale land cover mapping. Therefore, this research combines airborne LiDAR and multi-temporal Landsat imagery to classify land cover types of Williamson County, Illinois that has diverse and mixed landscape features. Specifically, we applied a 3D convolutional neural network (CNN) method to extract features from LiDAR point clouds by (1) creating occupancy grid, intensity grid at 1-meter resolution, and then (2) normalizing and incorporating data into a 3D CNN feature extractor for many epochs of learning. The learned features (e.g., morphological features, intensity features, etc) were combined with multi-temporal spectral data to enhance the performance of land cover classification based on a Support Vector Machine classifier. We used photo interpretation for training and testing data generation. The classification results show that our approach outperforms traditional methods using LiDAR derived feature maps, and promises to serve as an effective methodology for creating high-quality land cover maps through fusion of complementary types of remote sensing data.
Jung, Haejoon; Lee, In-Ho
2018-01-12
As an intrinsic part of the Internet of Things (IoT) ecosystem, machine-to-machine (M2M) communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave (mmWave) communication is another promising technology for the future communication systems to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider multi-hop M2M communications, where a machine-type communication (MTC) device with the limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs) with directional antenna arrays in mmWave for M2M communications. Different from microwave systems, in mmWave communications, wireless channel suffers from blockage by obstacles that heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs. We consider two routing strategies aiming at different types of applications and derive the probability distributions of their hop distances. Moreover, we provide their baseline statistics assuming the blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis, we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count, and transmit energy) of the mmWave MWNs, which provides important insights into mmWave MWN design without time-consuming and repetitive end-to-end simulation.
Experiments with a Parallel Multi-Objective Evolutionary Algorithm for Scheduling
NASA Technical Reports Server (NTRS)
Brown, Matthew; Johnston, Mark D.
2013-01-01
Evolutionary multi-objective algorithms have great potential for scheduling in those situations where tradeoffs among competing objectives represent a key requirement. One challenge, however, is runtime performance, as a consequence of evolving not just a single schedule, but an entire population, while attempting to sample the Pareto frontier as accurately and uniformly as possible. The growing availability of multi-core processors in end user workstations, and even laptops, has raised the question of the extent to which such hardware can be used to speed up evolutionary algorithms. In this paper we report on early experiments in parallelizing a Generalized Differential Evolution (GDE) algorithm for scheduling long-range activities on NASA's Deep Space Network. Initial results show that significant speedups can be achieved, but that performance does not necessarily improve as more cores are utilized. We describe our preliminary results and some initial suggestions from parallelizing the GDE algorithm. Directions for future work are outlined.
Approximation abilities of neuro-fuzzy networks
NASA Astrophysics Data System (ADS)
Mrówczyńska, Maria
2010-01-01
The paper presents the operation of two neuro-fuzzy systems of an adaptive type, intended for solving problems of the approximation of multi-variable functions in the domain of real numbers. Neuro-fuzzy systems being a combination of the methodology of artificial neural networks and fuzzy sets operate on the basis of a set of fuzzy rules "if-then", generated by means of the self-organization of data grouping and the estimation of relations between fuzzy experiment results. The article includes a description of neuro-fuzzy systems by Takaga-Sugeno-Kang (TSK) and Wang-Mendel (WM), and in order to complement the problem in question, a hierarchical structural self-organizing method of teaching a fuzzy network. A multi-layer structure of the systems is a structure analogous to the structure of "classic" neural networks. In its final part the article presents selected areas of application of neuro-fuzzy systems in the field of geodesy and surveying engineering. Numerical examples showing how the systems work concerned: the approximation of functions of several variables to be used as algorithms in the Geographic Information Systems (the approximation of a terrain model), the transformation of coordinates, and the prediction of a time series. The accuracy characteristics of the results obtained have been taken into consideration.
Xiao, Xiaolin; Moreno-Moral, Aida; Rotival, Maxime; Bottolo, Leonardo; Petretto, Enrico
2014-01-01
Recent high-throughput efforts such as ENCODE have generated a large body of genome-scale transcriptional data in multiple conditions (e.g., cell-types and disease states). Leveraging these data is especially important for network-based approaches to human disease, for instance to identify coherent transcriptional modules (subnetworks) that can inform functional disease mechanisms and pathological pathways. Yet, genome-scale network analysis across conditions is significantly hampered by the paucity of robust and computationally-efficient methods. Building on the Higher-Order Generalized Singular Value Decomposition, we introduce a new algorithmic approach for efficient, parameter-free and reproducible identification of network-modules simultaneously across multiple conditions. Our method can accommodate weighted (and unweighted) networks of any size and can similarly use co-expression or raw gene expression input data, without hinging upon the definition and stability of the correlation used to assess gene co-expression. In simulation studies, we demonstrated distinctive advantages of our method over existing methods, which was able to recover accurately both common and condition-specific network-modules without entailing ad-hoc input parameters as required by other approaches. We applied our method to genome-scale and multi-tissue transcriptomic datasets from rats (microarray-based) and humans (mRNA-sequencing-based) and identified several common and tissue-specific subnetworks with functional significance, which were not detected by other methods. In humans we recapitulated the crosstalk between cell-cycle progression and cell-extracellular matrix interactions processes in ventricular zones during neocortex expansion and further, we uncovered pathways related to development of later cognitive functions in the cortical plate of the developing brain which were previously unappreciated. Analyses of seven rat tissues identified a multi-tissue subnetwork of co-expressed heat shock protein (Hsp) and cardiomyopathy genes (Bag3, Cryab, Kras, Emd, Plec), which was significantly replicated using separate failing heart and liver gene expression datasets in humans, thus revealing a conserved functional role for Hsp genes in cardiovascular disease.
Cambon, Jesse; Cordier, Tristan; Munnich, Elizabeth L.; Renda, Andrew; Kapur, Bobby; Hoxhaj, Shkelzen; Williams, Meredith
2018-01-01
Background The impact of messaging campaigns on influencing urgent care– and emergent care–seeking behaviors, including the use of in-network providers, is not well-understood. Although out-of-network healthcare utilization can have negative financial consequences for patients in narrow network Affordable Care Act plans, individuals with time-sensitive medical conditions, and especially patients visiting the emergency department, may not think about out-of-network issues. Inappropriate or avoidable emergency department visits can also create unnecessary costs for patients. Objective To evaluate the impact of 5 messaging strategies to educate individuals about the use of in-network providers and when care should be sought in the emergency department, urgent care center, or other sites of care. Methods Using a retrospective analysis, individuals aged ≥18 years who were enrolled in an individually purchased Affordable Care Act–compliant Humana plan as of July 1, 2015, were randomized to 1 of 5 messaging arms (e-mail, magnet mailer with or without e-mail, and key-tag mailer with or without e-mail) or to a control group. The outreach was implemented and evaluated in 2 distinct, geographically defined populations of Orlando, Palm Beach, and Tampa, Florida (Population 1); and Atlanta, Georgia, and San Antonio and Austin, Texas (Population 2). The relative number of each emergency department, urgent care, and out-of-network visits during follow-up was modeled using negative binomial regression. Cox proportional hazard models were used to calculate the risk for ≥1 of each visit type (assessed separately) and high emergency department utilization (defined as ≥3 visits during follow-up) relative to the control, while accounting for variable follow-up time. Results The relative numbers of each visit type assessed were not significantly different for any message group compared with the control in either population. The risk for an emergency department visit was 4% lower in the e-mail arm of Population 2 (hazard ratio [HR], 0.96; 95% confidence interval [CI], 0.94–0.99; P = .005) and 7% lower in the e-mail/key-tag arm of Population 1 (HR, 0.93; 95% CI, 0.89–0.97; P = .001). The risk for high emergency department utilization was significantly reduced by the key-tag, magnet, and e-mail/key-tag strategies in Population 1, but no impact was found in Population 2. Conclusion Despite the mixed results, the study provides new insights into how different messaging strategies could be used to educate patients and influence healthcare utilization decisions by people with health insurance. PMID:29915641
An integrated multi-electrode-optrode array for in vitro optogenetics
Welkenhuysen, Marleen; Hoffman, Luis; Luo, Zhengxiang; De Proft, Anabel; Van den Haute, Chris; Baekelandt, Veerle; Debyser, Zeger; Gielen, Georges; Puers, Robert; Braeken, Dries
2016-01-01
Modulation of a group of cells or tissue needs to be very precise in order to exercise effective control over the cell population under investigation. Optogenetic tools have already demonstrated to be of great value in the study of neuronal circuits and in neuromodulation. Ideally, they should permit very accurate resolution, preferably down to the single cell level. Further, to address a spatially distributed sample, independently addressable multiple optical outputs should be present. In current techniques, at least one of these requirements is not fulfilled. In addition to this, it is interesting to directly monitor feedback of the modulation by electrical registration of the activity of the stimulated cells. Here, we present the fabrication and characterization of a fully integrated silicon-based multi-electrode-optrode array (MEOA) for in vitro optogenetics. We demonstrate that this device allows for artifact-free electrical recording. Moreover, the MEOA was used to reliably elicit spiking activity from ChR2-transduced neurons. Thanks to the single cell resolution stimulation capability, we could determine spatial and temporal activation patterns and spike latencies of the neuronal network. This integrated approach to multi-site combined optical stimulation and electrical recording significantly advances today’s tool set for neuroscientists in their search to unravel neuronal network dynamics. PMID:26832455
Huang, X N; Ren, H P
2016-05-13
Robust adaptation is a critical ability of gene regulatory network (GRN) to survive in a fluctuating environment, which represents the system responding to an input stimulus rapidly and then returning to its pre-stimulus steady state timely. In this paper, the GRN is modeled using the Michaelis-Menten rate equations, which are highly nonlinear differential equations containing 12 undetermined parameters. The robust adaption is quantitatively described by two conflicting indices. To identify the parameter sets in order to confer the GRNs with robust adaptation is a multi-variable, multi-objective, and multi-peak optimization problem, which is difficult to acquire satisfactory solutions especially high-quality solutions. A new best-neighbor particle swarm optimization algorithm is proposed to implement this task. The proposed algorithm employs a Latin hypercube sampling method to generate the initial population. The particle crossover operation and elitist preservation strategy are also used in the proposed algorithm. The simulation results revealed that the proposed algorithm could identify multiple solutions in one time running. Moreover, it demonstrated a superior performance as compared to the previous methods in the sense of detecting more high-quality solutions within an acceptable time. The proposed methodology, owing to its universality and simplicity, is useful for providing the guidance to design GRN with superior robust adaptation.
Sanchez, Karla R; Mersha, Mahlet D; Dhillon, Harbinder S; Temburni, Murali K
2018-04-26
Bis-phenols, such as bis-phenol A (BPA) and bis-phenol-S (BPS), are polymerizing agents widely used in the production of plastics and numerous everyday products. They are classified as endocrine disrupting compounds (EDC) with estradiol-like properties. Long-term exposure to EDCs, even at low doses, has been linked with various health defects including cancer, behavioral disorders, and infertility, with greater vulnerability during early developmental periods. To study the effects of BPA on the development of neuronal function, we used an in vitro neuronal network derived from the early chick embryonic brain as a model. We found that exposure to BPA affected the development of network activity, specifically spiking activity and synchronization. A change in network activity is the crucial link between the molecular target of a drug or compound and its effect on behavioral outcome. Multi-electrode arrays are increasingly becoming useful tools to study the effects of drugs on network activity in vitro. There are several systems available in the market and, although there are variations in the number of electrodes, the type and quality of the electrode array and the analysis software, the basic underlying principles, and the data obtained is the same across the different systems. Although currently limited to analysis of two-dimensional in vitro cultures, these MEA systems are being improved to enable in vivo network activity in brain slices. Here, we provide a detailed protocol for embryonic exposure and recording neuronal network activity and synchrony, along with representative results.
NASA Astrophysics Data System (ADS)
Singh, Puja; Prakash, Shashi
2017-07-01
Hybrid wireless-optical broadband access network (WOBAN) or Fiber-Wireless (FiWi) is the integration of wireless access network and optical network. This hybrid multi-domain network adopts the advantages of wireless and optical domains and serves the demand of technology savvy users. FiWi exhibits the properties of cost effectiveness, robustness, flexibility, high capacity, reliability and is self organized. Optical Network Unit (ONU) placement problem in FiWi contributes in simplifying the network design and enhances the performance in terms of cost efficiency and increased throughput. Several individual-based algorithms, such as Simulated Annealing (SA), Tabu Search, etc. have been suggested for ONU placement, but these algorithms suffer from premature convergence (trapping in a local optima). The present research work undertakes the deployment of FiWi and proposes a novel nature-inspired heuristic paradigm called Moth-Flame optimization (MFO) algorithm for multiple optical network units' placement. MFO is a population based algorithm. Population-based algorithms are better in handling local optima avoidance. The simulation results are compared with the existing Greedy and Simulated Annealing algorithms to optimize the position of ONUs. To the best of our knowledge, MFO algorithm has been used for the first time in this domain, moreover it has been able to provide very promising and competitive results. The performance of MFO algorithm has been analyzed by varying the 'b' parameter. MFO algorithm results in faster convergence than the existing strategies of Greedy and SA and returns a lower value of overall cost function. The results exhibit the dependence of the objective function on the distribution of wireless users also.
CellNet: network biology applied to stem cell engineering.
Cahan, Patrick; Li, Hu; Morris, Samantha A; Lummertz da Rocha, Edroaldo; Daley, George Q; Collins, James J
2014-08-14
Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. Copyright © 2014 Elsevier Inc. All rights reserved.
Topology of molecular interaction networks.
Winterbach, Wynand; Van Mieghem, Piet; Reinders, Marcel; Wang, Huijuan; de Ridder, Dick
2013-09-16
Molecular interactions are often represented as network models which have become the common language of many areas of biology. Graphs serve as convenient mathematical representations of network models and have themselves become objects of study. Their topology has been intensively researched over the last decade after evidence was found that they share underlying design principles with many other types of networks.Initial studies suggested that molecular interaction network topology is related to biological function and evolution. However, further whole-network analyses did not lead to a unified view on what this relation may look like, with conclusions highly dependent on the type of molecular interactions considered and the metrics used to study them. It is unclear whether global network topology drives function, as suggested by some researchers, or whether it is simply a byproduct of evolution or even an artefact of representing complex molecular interaction networks as graphs.Nevertheless, network biology has progressed significantly over the last years. We review the literature, focusing on two major developments. First, realizing that molecular interaction networks can be naturally decomposed into subsystems (such as modules and pathways), topology is increasingly studied locally rather than globally. Second, there is a move from a descriptive approach to a predictive one: rather than correlating biological network topology to generic properties such as robustness, it is used to predict specific functions or phenotypes.Taken together, this change in focus from globally descriptive to locally predictive points to new avenues of research. In particular, multi-scale approaches are developments promising to drive the study of molecular interaction networks further.
Topology of molecular interaction networks
2013-01-01
Molecular interactions are often represented as network models which have become the common language of many areas of biology. Graphs serve as convenient mathematical representations of network models and have themselves become objects of study. Their topology has been intensively researched over the last decade after evidence was found that they share underlying design principles with many other types of networks. Initial studies suggested that molecular interaction network topology is related to biological function and evolution. However, further whole-network analyses did not lead to a unified view on what this relation may look like, with conclusions highly dependent on the type of molecular interactions considered and the metrics used to study them. It is unclear whether global network topology drives function, as suggested by some researchers, or whether it is simply a byproduct of evolution or even an artefact of representing complex molecular interaction networks as graphs. Nevertheless, network biology has progressed significantly over the last years. We review the literature, focusing on two major developments. First, realizing that molecular interaction networks can be naturally decomposed into subsystems (such as modules and pathways), topology is increasingly studied locally rather than globally. Second, there is a move from a descriptive approach to a predictive one: rather than correlating biological network topology to generic properties such as robustness, it is used to predict specific functions or phenotypes. Taken together, this change in focus from globally descriptive to locally predictive points to new avenues of research. In particular, multi-scale approaches are developments promising to drive the study of molecular interaction networks further. PMID:24041013
Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network
Lin, Kai; Wang, Di; Hu, Long
2016-01-01
With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC). The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S) evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods. PMID:27376302
Schut, Marc; Hermans, Frans; van Asten, Piet; Leeuwis, Cees
2018-01-01
Multi-stakeholder platforms (MSPs) have been playing an increasing role in interventions aiming to generate and scale innovations in agricultural systems. However, the contribution of MSPs in achieving innovations and scaling has been varied, and many factors have been reported to be important for their performance. This paper aims to provide evidence on the contribution of MSPs to innovation and scaling by focusing on three developing country cases in Burundi, Democratic Republic of Congo, and Rwanda. Through social network analysis and logistic models, the paper studies the changes in the characteristics of multi-stakeholder innovation networks targeted by MSPs and identifies factors that play significant roles in triggering these changes. The results demonstrate that MSPs do not necessarily expand and decentralize innovation networks but can lead to contraction and centralization in the initial years of implementation. They show that some of the intended next users of interventions with MSPs–local-level actors–left the innovation networks, whereas the lead organization controlling resource allocation in the MSPs substantially increased its centrality. They also indicate that not all the factors of change in innovation networks are country specific. Initial conditions of innovation networks and funding provided by the MSPs are common factors explaining changes in innovation networks across countries and across different network functions. The study argues that investigating multi-stakeholder innovation network characteristics targeted by the MSP using a network approach in early implementation can contribute to better performance in generating and scaling innovations, and that funding can be an effective implementation tool in developing country contexts. PMID:29870559
Sartas, Murat; Schut, Marc; Hermans, Frans; Asten, Piet van; Leeuwis, Cees
2018-01-01
Multi-stakeholder platforms (MSPs) have been playing an increasing role in interventions aiming to generate and scale innovations in agricultural systems. However, the contribution of MSPs in achieving innovations and scaling has been varied, and many factors have been reported to be important for their performance. This paper aims to provide evidence on the contribution of MSPs to innovation and scaling by focusing on three developing country cases in Burundi, Democratic Republic of Congo, and Rwanda. Through social network analysis and logistic models, the paper studies the changes in the characteristics of multi-stakeholder innovation networks targeted by MSPs and identifies factors that play significant roles in triggering these changes. The results demonstrate that MSPs do not necessarily expand and decentralize innovation networks but can lead to contraction and centralization in the initial years of implementation. They show that some of the intended next users of interventions with MSPs-local-level actors-left the innovation networks, whereas the lead organization controlling resource allocation in the MSPs substantially increased its centrality. They also indicate that not all the factors of change in innovation networks are country specific. Initial conditions of innovation networks and funding provided by the MSPs are common factors explaining changes in innovation networks across countries and across different network functions. The study argues that investigating multi-stakeholder innovation network characteristics targeted by the MSP using a network approach in early implementation can contribute to better performance in generating and scaling innovations, and that funding can be an effective implementation tool in developing country contexts.
Learning discriminative functional network features of schizophrenia
NASA Astrophysics Data System (ADS)
Gheiratmand, Mina; Rish, Irina; Cecchi, Guillermo; Brown, Matthew; Greiner, Russell; Bashivan, Pouya; Polosecki, Pablo; Dursun, Serdar
2017-03-01
Associating schizophrenia with disrupted functional connectivity is a central idea in schizophrenia research. However, identifying neuroimaging-based features that can serve as reliable "statistical biomarkers" of the disease remains a challenging open problem. We argue that generalization accuracy and stability of candidate features ("biomarkers") must be used as additional criteria on top of standard significance tests in order to discover more robust biomarkers. Generalization accuracy refers to the utility of biomarkers for making predictions about individuals, for example discriminating between patients and controls, in novel datasets. Feature stability refers to the reproducibility of the candidate features across different datasets. Here, we extracted functional connectivity network features from fMRI data at both high-resolution (voxel-level) and a spatially down-sampled lower-resolution ("supervoxel" level). At the supervoxel level, we used whole-brain network links, while at the voxel level, due to the intractably large number of features, we sampled a subset of them. We compared statistical significance, stability and discriminative utility of both feature types in a multi-site fMRI dataset, composed of schizophrenia patients and healthy controls. For both feature types, a considerable fraction of features showed significant differences between the two groups. Also, both feature types were similarly stable across multiple data subsets. However, the whole-brain supervoxel functional connectivity features showed a higher cross-validation classification accuracy of 78.7% vs. 72.4% for the voxel-level features. Cross-site variability and heterogeneity in the patient samples in the multi-site FBIRN dataset made the task more challenging compared to single-site studies. The use of the above methodology in combination with the fully data-driven approach using the whole brain information have the potential to shed light on "biomarker discovery" in schizophrenia.
Pargett, Michael; Rundell, Ann E.; Buzzard, Gregery T.; Umulis, David M.
2014-01-01
Discovery in developmental biology is often driven by intuition that relies on the integration of multiple types of data such as fluorescent images, phenotypes, and the outcomes of biochemical assays. Mathematical modeling helps elucidate the biological mechanisms at play as the networks become increasingly large and complex. However, the available data is frequently under-utilized due to incompatibility with quantitative model tuning techniques. This is the case for stem cell regulation mechanisms explored in the Drosophila germarium through fluorescent immunohistochemistry. To enable better integration of biological data with modeling in this and similar situations, we have developed a general parameter estimation process to quantitatively optimize models with qualitative data. The process employs a modified version of the Optimal Scaling method from social and behavioral sciences, and multi-objective optimization to evaluate the trade-off between fitting different datasets (e.g. wild type vs. mutant). Using only published imaging data in the germarium, we first evaluated support for a published intracellular regulatory network by considering alternative connections of the same regulatory players. Simply screening networks against wild type data identified hundreds of feasible alternatives. Of these, five parsimonious variants were found and compared by multi-objective analysis including mutant data and dynamic constraints. With these data, the current model is supported over the alternatives, but support for a biochemically observed feedback element is weak (i.e. these data do not measure the feedback effect well). When also comparing new hypothetical models, the available data do not discriminate. To begin addressing the limitations in data, we performed a model-based experiment design and provide recommendations for experiments to refine model parameters and discriminate increasingly complex hypotheses. PMID:24626201
Convolutional Neural Network for Multi-Source Deep Learning Crop Classification in Ukraine
NASA Astrophysics Data System (ADS)
Lavreniuk, M. S.
2016-12-01
Land cover and crop type maps are one of the most essential inputs when dealing with environmental and agriculture monitoring tasks [1]. During long time neural network (NN) approach was one of the most efficient and popular approach for most applications, including crop classification using remote sensing data, with high an overall accuracy (OA) [2]. In the last years the most popular and efficient method for multi-sensor and multi-temporal land cover classification is convolution neural networks (CNNs). Taking into account presence clouds in optical data, self-organizing Kohonen maps (SOMs) are used to restore missing pixel values in a time series of optical imagery from Landsat-8 satellite. After missing data restoration, optical data from Landsat-8 was merged with Sentinel-1A radar data for better crop types discrimination [3]. An ensemble of CNNs is proposed for multi-temporal satellite images supervised classification. Each CNN in the corresponding ensemble is a 1-d CNN with 4 layers implemented using the Google's library TensorFlow. The efficiency of the proposed approach was tested on a time-series of Landsat-8 and Sentinel-1A images over the JECAM test site (Kyiv region) in Ukraine in 2015. Overall classification accuracy for ensemble of CNNs was 93.5% that outperformed an ensemble of multi-layer perceptrons (MLPs) by +0.8% and allowed us to better discriminate summer crops, in particular maize and soybeans. For 2016 we would like to validate this method using Sentinel-1 and Sentinel-2 data for Ukraine territory within ESA project on country level demonstration Sen2Agri. 1. A. Kolotii et al., "Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine," The Int. Arch. of Photogram., Rem. Sens. and Spatial Inform. Scie., vol. 40, no. 7, pp. 39-44, 2015. 2. F. Waldner et al., "Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity," Int. Journal of Rem. Sens. vol. 37, no. 14, pp 3196-3231, 2016. 3. S. Skakun et al., "Efficiency assessment of multitemporal C-band Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in Ukraine," IEEE Journal of Selected Topics in Applied Earth Observ. and Rem. Sens., 2015, DOI: 10.1109/JSTARS.2015.2454297.
de Vargas Roditi, Laura; Claassen, Manfred
2015-08-01
Novel technological developments enable single cell population profiling with respect to their spatial and molecular setup. These include single cell sequencing, flow cytometry and multiparametric imaging approaches and open unprecedented possibilities to learn about the heterogeneity, dynamics and interplay of the different cell types which constitute tissues and multicellular organisms. Statistical and dynamic systems theory approaches have been applied to quantitatively describe a variety of cellular processes, such as transcription and cell signaling. Machine learning approaches have been developed to define cell types, their mutual relationships, and differentiation hierarchies shaping heterogeneous cell populations, yielding insights into topics such as, for example, immune cell differentiation and tumor cell type composition. This combination of experimental and computational advances has opened perspectives towards learning predictive multi-scale models of heterogeneous cell populations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Moran model as a dynamical process on networks and its implications for neutral speciation.
de Aguiar, Marcus A M; Bar-Yam, Yaneer
2011-09-01
In population genetics, the Moran model describes the neutral evolution of a biallelic gene in a population of haploid individuals subjected to mutations. We show in this paper that this model can be mapped into an influence dynamical process on networks subjected to external influences. The panmictic case considered by Moran corresponds to fully connected networks and can be completely solved in terms of hypergeometric functions. Other types of networks correspond to structured populations, for which approximate solutions are also available. This approach to the classic Moran model leads to a relation between regular networks based on spatial grids and the mechanism of isolation by distance. We discuss the consequences of this connection for topopatric speciation and the theory of neutral speciation and biodiversity. We show that the effect of mutations in structured populations, where individuals can mate only with neighbors, is greatly enhanced with respect to the panmictic case. If mating is further constrained by genetic proximity between individuals, a balance of opposing tendencies takes place: increasing diversity promoted by enhanced effective mutations versus decreasing diversity promoted by similarity between mates. Resolution of large enough opposing tendencies occurs through speciation via pattern formation. We derive an explicit expression that indicates when speciation is possible involving the parameters characterizing the population. We also show that the time to speciation is greatly reduced in comparison with the panmictic case.
Moran model as a dynamical process on networks and its implications for neutral speciation
NASA Astrophysics Data System (ADS)
de Aguiar, Marcus A. M.; Bar-Yam, Yaneer
2011-03-01
In population genetics, the Moran model describes the neutral evolution of a biallelic gene in a population of haploid individuals subjected to mutations. We show in this paper that this model can be mapped into an influence dynamical process on networks subjected to external influences. The panmictic case considered by Moran corresponds to fully connected networks and can be completely solved in terms of hypergeometric functions. Other types of networks correspond to structured populations, for which approximate solutions are also available. This approach to the classic Moran model leads to a relation between regular networks based on spatial grids and the mechanism of isolation by distance. We discuss the consequences of this connection for topopatric speciation and the theory of neutral speciation and biodiversity. We show that the effect of mutations in structured populations, where individuals can mate only with neighbors, is greatly enhanced with respect to the panmictic case. If mating is further constrained by genetic proximity between individuals, a balance of opposing tendencies takes place: increasing diversity promoted by enhanced effective mutations versus decreasing diversity promoted by similarity between mates. Resolution of large enough opposing tendencies occurs through speciation via pattern formation. We derive an explicit expression that indicates when speciation is possible involving the parameters characterizing the population. We also show that the time to speciation is greatly reduced in comparison with the panmictic case.
The Erector Set Computer: Building a Virtual Workstation over a Large Multi-Vendor Network.
ERIC Educational Resources Information Center
Farago, John M.
1989-01-01
Describes a computer network developed at the City University of New York Law School that uses device sharing and local area networking to create a simulated law office. Topics discussed include working within a multi-vendor environment, and the communication, information, and database access services available through the network. (CLB)
Modeling and optimization of Quality of Service routing in Mobile Ad hoc Networks
NASA Astrophysics Data System (ADS)
Rafsanjani, Marjan Kuchaki; Fatemidokht, Hamideh; Balas, Valentina Emilia
2016-01-01
Mobile ad hoc networks (MANETs) are a group of mobile nodes that are connected without using a fixed infrastructure. In these networks, nodes communicate with each other by forming a single-hop or multi-hop network. To design effective mobile ad hoc networks, it is important to evaluate the performance of multi-hop paths. In this paper, we present a mathematical model for a routing protocol under energy consumption and packet delivery ratio of multi-hop paths. In this model, we use geometric random graphs rather than random graphs. Our proposed model finds effective paths that minimize the energy consumption and maximizes the packet delivery ratio of the network. Validation of the mathematical model is performed through simulation.
NASA Astrophysics Data System (ADS)
Purwanto, P., Jr.; Mangubhai, S.; Muhajir, M.; Hidayat, N. I.; Rumetna, L.; Awaludinnoer, A.; Thebu, K.
2016-02-01
The Raja Ampat government and local communities established 6 Marine Protected Areas (MPAs) in 2007 to protect the unique marine biodiversity and ensure sustainable fisheries in West Papua, Indonesia. Increasing human populations resulting in overfishing and the use of destructive fishing practices are the main threats and challenges the region faces. Biophysical, socioeconomic and climate change criteria and factors were developed for zoning the Raja Ampat MPA network. Resilience principles such as replication, habitat representation, protection of critical habitat and connectivity were applied to the final zoning design. Reef resilience data using global monitoring protocols were collected to provide insights into the resilience of different reefs to further guide zoning. Resilience rankings showed that fishing pressure on reef fish communities especially on piscivores, herbivores and excavators was the main factor lowering resilience in MPAs. In addition data were collected on `sasi' areas throughout the MPAs. Sasi is a type of traditional resource management practice used by local communities to open and close areas to fishing single or multiple fisheries species. Once the fishery recovers local communities then harvest the species for food or sale. Raja Ampat MPAs network managed as multi-objective zoning system. The current zoning system explicitly recognizes community sasi within Traditional Use Zones, which often are adjacent or close to No-Take Zones. The explicit inclusion of sasi areas within zoning plans for the MPAs will likely lead to good compliance by local communities, and the increase fish biomass. Improving the management of fisheries through the incorporation of traditional fisheries management will therefore increase the overall resilience of coral reefs in the Raja Ampat MPA network.
NASA Astrophysics Data System (ADS)
Pope, Ronald L.
Air pollution is a serious problem in most urban areas around the world, which has a number of negative ecological and human health impacts. As a result, it's vitally important to detect and characterize air pollutants to protect the health of the urban environment and our citizens. An important early step in this process is ensuring that the air pollution monitoring network is properly designed to capture the patterns of pollution and that all social demographics in the urban population are represented. An important aspect in characterizing air pollution patterns is scale in space and time which, along with pattern and process relationships, is a key subject in the field of landscape ecology. Thus, using multiple landscape ecological methods, this dissertation research begins by characterizing and quantifying the multi-scalar patterns of ozone (O3) and particulate matter (PM10) in the Phoenix, Arizona, metropolitan region. Results showed that pollution patterns are scale-dependent, O3 is a regionally-scaled pollutant at longer temporal scales, and PM10 is a locally-scaled pollutant with patterns sensitive to season. Next, this dissertation examines the monitoring network within Maricopa County. Using a novel multiscale indicator-based approach, the adequacy of the network was quantified by integrating inputs from various academic and government stakeholders. Furthermore, deficiencies were spatially defined and recommendations were made on how to strengthen the design of the network. A sustainability ranking system also provided new insight into the strengths and weaknesses of the network. Lastly, the study addresses the question of whether distinct social groups were experiencing inequitable exposure to pollutants - a key issue of distributive environmental injustice. A novel interdisciplinary method using multi-scalar ambient pollution data and hierarchical multiple regression models revealed environmental inequities between air pollutants and race, ethnicity, age, and socioeconomic classes. The results indicate that changing the scale of the analysis can change the equitable relationship between pollution and demographics. The scientific findings of the scale-dependent relationships among air pollution patterns, network design, and population demographics, brought to light through this study, can help policymakers make informed decisions for protecting the human health and the urban environment in the Phoenix metropolitan region and beyond.
Ren, Hongwei; Deng, Feiqi
2017-11-01
This paper investigates the mean square consensus problem of dynamical networks of leader-following multi-agent systems with measurement noises and time-varying delays. We consider that the fixed undirected communication topologies are connected. A neighbor-based tracking algorithm together with distributed estimators are presented. Using tools of algebraic graph theory and the Gronwall-Bellman-Halanay type inequality, we establish sufficient conditions to reach consensus in mean square sense via the proposed consensus protocols. Finally, a numerical simulation is provided to demonstrate the effectiveness of the obtained theoretical result. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Network-based drug discovery by integrating systems biology and computational technologies
Leung, Elaine L.; Cao, Zhi-Wei; Jiang, Zhi-Hong; Zhou, Hua
2013-01-01
Network-based intervention has been a trend of curing systemic diseases, but it relies on regimen optimization and valid multi-target actions of the drugs. The complex multi-component nature of medicinal herbs may serve as valuable resources for network-based multi-target drug discovery due to its potential treatment effects by synergy. Recently, robustness of multiple systems biology platforms shows powerful to uncover molecular mechanisms and connections between the drugs and their targeting dynamic network. However, optimization methods of drug combination are insufficient, owning to lacking of tighter integration across multiple ‘-omics’ databases. The newly developed algorithm- or network-based computational models can tightly integrate ‘-omics’ databases and optimize combinational regimens of drug development, which encourage using medicinal herbs to develop into new wave of network-based multi-target drugs. However, challenges on further integration across the databases of medicinal herbs with multiple system biology platforms for multi-target drug optimization remain to the uncertain reliability of individual data sets, width and depth and degree of standardization of herbal medicine. Standardization of the methodology and terminology of multiple system biology and herbal database would facilitate the integration. Enhance public accessible databases and the number of research using system biology platform on herbal medicine would be helpful. Further integration across various ‘-omics’ platforms and computational tools would accelerate development of network-based drug discovery and network medicine. PMID:22877768
Organizing phenological data resources to inform natural resource conservation
Rosemartin, Alyssa H.; Crimmins, Theresa M.; Enquist, Carolyn A.F.; Gerst, Katharine L.; Kellermann, Jherime L.; Posthumus, Erin E.; Denny, Ellen G.; Guertin, Patricia; Marsh, Lee; Weltzin, Jake F.
2014-01-01
Changes in the timing of plant and animal life cycle events, in response to climate change, are already happening across the globe. The impacts of these changes may affect biodiversity via disruption to mutualisms, trophic mismatches, invasions and population declines. To understand the nature, causes and consequences of changed, varied or static phenologies, new data resources and tools are being developed across the globe. The USA National Phenology Network is developing a long-term, multi-taxa phenological database, together with a customizable infrastructure, to support conservation and management needs. We present current and potential applications of the infrastructure, across scales and user groups. The approaches described here are congruent with recent trends towards multi-agency, large-scale research and action.
Forecasting the mortality rates of Indonesian population by using neural network
NASA Astrophysics Data System (ADS)
Safitri, Lutfiani; Mardiyati, Sri; Rahim, Hendrisman
2018-03-01
A model that can represent a problem is required in conducting a forecasting. One of the models that has been acknowledged by the actuary community in forecasting mortality rate is the Lee-Certer model. Lee Carter model supported by Neural Network will be used to calculate mortality forecasting in Indonesia. The type of Neural Network used is feedforward neural network aligned with backpropagation algorithm in python programming language. And the final result of this study is mortality rate in forecasting Indonesia for the next few years
Campbell, Carlene E-A; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong
2011-01-01
The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives.
Multi-Channel Multi-Radio Using 802.11 Based Media Access for Sink Nodes in Wireless Sensor Networks
Campbell, Carlene E.-A.; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong
2011-01-01
The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives. PMID:22163883
UMDR: Multi-Path Routing Protocol for Underwater Ad Hoc Networks with Directional Antenna
NASA Astrophysics Data System (ADS)
Yang, Jianmin; Liu, Songzuo; Liu, Qipei; Qiao, Gang
2018-01-01
This paper presents a new routing scheme for underwater ad hoc networks based on directional antennas. Ad hoc networks with directional antennas have become a hot research topic because of space reuse may increase networks capacity. At present, researchers have applied traditional self-organizing routing protocols (such as DSR, AODV) [1] [2] on this type of networks, and the routing scheme is based on the shortest path metric. However, such routing schemes often suffer from long transmission delays and frequent link fragmentation along the intermediate nodes of the selected route. This is caused by a unique feature of directional transmission, often called as “deafness”. In this paper, we take a different approach to explore the advantages of space reuse through multipath routing. This paper introduces the validity of the conventional routing scheme in underwater ad hoc networks with directional antennas, and presents a special design of multipath routing algorithm for directional transmission. The experimental results show a significant performance improvement in throughput and latency.
Network Analysis of Rodent Transcriptomes in Spaceflight
NASA Technical Reports Server (NTRS)
Ramachandran, Maya; Fogle, Homer; Costes, Sylvain
2017-01-01
Network analysis methods leverage prior knowledge of cellular systems and the statistical and conceptual relationships between analyte measurements to determine gene connectivity. Correlation and conditional metrics are used to infer a network topology and provide a systems-level context for cellular responses. Integration across multiple experimental conditions and omics domains can reveal the regulatory mechanisms that underlie gene expression. GeneLab has assembled rich multi-omic (transcriptomics, proteomics, epigenomics, and epitranscriptomics) datasets for multiple murine tissues from the Rodent Research 1 (RR-1) experiment. RR-1 assesses the impact of 37 days of spaceflight on gene expression across a variety of tissue types, such as adrenal glands, quadriceps, gastrocnemius, tibalius anterior, extensor digitorum longus, soleus, eye, and kidney. Network analysis is particularly useful for RR-1 -omics datasets because it reinforces subtle relationships that may be overlooked in isolated analyses and subdues confounding factors. Our objective is to use network analysis to determine potential target nodes for therapeutic intervention and identify similarities with existing disease models. Multiple network algorithms are used for a higher confidence consensus.
Komatsu, Misako; Namikawa, Jun; Chao, Zenas C; Nagasaka, Yasuo; Fujii, Naotaka; Nakamura, Kiyohiko; Tani, Jun
2014-01-01
Many previous studies have proposed methods for quantifying neuronal interactions. However, these methods evaluated the interactions between recorded signals in an isolated network. In this study, we present a novel approach for estimating interactions between observed neuronal signals by theorizing that those signals are observed from only a part of the network that also includes unobserved structures. We propose a variant of the recurrent network model that consists of both observable and unobservable units. The observable units represent recorded neuronal activity, and the unobservable units are introduced to represent activity from unobserved structures in the network. The network structures are characterized by connective weights, i.e., the interaction intensities between individual units, which are estimated from recorded signals. We applied this model to multi-channel brain signals recorded from monkeys, and obtained robust network structures with physiological relevance. Furthermore, the network exhibited common features that portrayed cortical dynamics as inversely correlated interactions between excitatory and inhibitory populations of neurons, which are consistent with the previous view of cortical local circuits. Our results suggest that the novel concept of incorporating an unobserved structure into network estimations has theoretical advantages and could provide insights into brain dynamics beyond what can be directly observed. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Predator-prey-subsidy population dynamics on stepping-stone domains.
Shen, Lulan; Van Gorder, Robert A
2017-05-07
Predator-prey-subsidy dynamics on stepping-stone domains are examined using a variety of network configurations. Our problem is motivated by the interactions between arctic foxes (predator) and lemmings (prey) in the presence of seal carrion (subsidy) provided by polar bears. We use the n-Patch Model, which considers space explicitly as a "Stepping Stone" system. We consider the role that the carrying capacity, predator migration rate, input subsidy rate, predator mortality rate, and proportion of predators surviving migration play in the predator-prey-subsidy population dynamics. We find that for certain types of networks, added mobility will help predator populations, allowing them to survive or coexist when they would otherwise go extinct if confined to one location, while in other situations (such as when sparsely distributed nodes in the network have few resources available) the added mobility will hurt the predator population. We also find that a combination of favourable conditions for the prey and subsidy can lead to the formation of limit cycles (boom and bust dynamic) from stable equilibrium states. These modifications to the dynamics vary depending on the specific network structure employed, highlighting the fact that network structure can strongly influence the predator-prey-subsidy dynamics in stepping-stone domains. Copyright © 2017 Elsevier Ltd. All rights reserved.
A source-controlled data center network model.
Yu, Yang; Liang, Mangui; Wang, Zhe
2017-01-01
The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS.
A source-controlled data center network model
Yu, Yang; Liang, Mangui; Wang, Zhe
2017-01-01
The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS. PMID:28328925
Playback system designed for X-Band SAR
NASA Astrophysics Data System (ADS)
Yuquan, Liu; Changyong, Dou
2014-03-01
SAR(Synthetic Aperture Radar) has extensive application because it is daylight and weather independent. In particular, X-Band SAR strip map, designed by Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, provides high ground resolution images, at the same time it has a large spatial coverage and a short acquisition time, so it is promising in multi-applications. When sudden disaster comes, the emergency situation acquires radar signal data and image as soon as possible, in order to take action to reduce loss and save lives in the first time. This paper summarizes a type of X-Band SAR playback processing system designed for disaster response and scientific needs. It describes SAR data workflow includes the payload data transmission and reception process. Playback processing system completes signal analysis on the original data, providing SAR level 0 products and quick image. Gigabit network promises radar signal transmission efficiency from recorder to calculation unit. Multi-thread parallel computing and ping pong operation can ensure computation speed. Through gigabit network, multi-thread parallel computing and ping pong operation, high speed data transmission and processing meet the SAR radar data playback real time requirement.
NASA Astrophysics Data System (ADS)
Crutcher, Richard I.; Jones, R. W.; Moore, Michael R.; Smith, S. F.; Tolley, Alan L.; Rochelle, Robert W.
1997-02-01
A prototype 'smart' repeater that provides interoperability capabilities for radio communication systems in multi-agency and multi-user scenarios is being developed by the Oak Ridge National Laboratory. The smart repeater functions as a deployable communications platform that can be dynamically reconfigured to cross-link the radios of participating federal, state, and local government agencies. This interconnection capability improves the coordination and execution of multi-agency operations, including coordinated law enforcement activities and general emergency or disaster response scenarios. The repeater provides multiple channels of operation in the 30-50, 118-136, 138-174, and 403-512 MHz land mobile communications and aircraft bands while providing the ability to cross-connect among multiple frequencies, bands, modulation types, and encryption formats. Additionally, two telephone interconnects provide links to the fixed and cellular telephone networks. The 800- and 900-MHz bands are not supported by the prototype, but the modular design of the system accommodates future retrofits to extend frequency capabilities with minimal impact to the system. Configuration of the repeater is through a portable personal computer with a Windows-based graphical interface control screen that provides dynamic reconfiguration of network interconnections and formats.
Linking macroscopic with microscopic neuroanatomy using synthetic neuronal populations.
Schneider, Calvin J; Cuntz, Hermann; Soltesz, Ivan
2014-10-01
Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models.
Linking Macroscopic with Microscopic Neuroanatomy Using Synthetic Neuronal Populations
Schneider, Calvin J.; Cuntz, Hermann; Soltesz, Ivan
2014-01-01
Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models. PMID:25340814
A Multi-level Fuzzy Evaluation Method for Smart Distribution Network Based on Entropy Weight
NASA Astrophysics Data System (ADS)
Li, Jianfang; Song, Xiaohui; Gao, Fei; Zhang, Yu
2017-05-01
Smart distribution network is considered as the future trend of distribution network. In order to comprehensive evaluate smart distribution construction level and give guidance to the practice of smart distribution construction, a multi-level fuzzy evaluation method based on entropy weight is proposed. Firstly, focus on both the conventional characteristics of distribution network and new characteristics of smart distribution network such as self-healing and interaction, a multi-level evaluation index system which contains power supply capability, power quality, economy, reliability and interaction is established. Then, a combination weighting method based on Delphi method and entropy weight method is put forward, which take into account not only the importance of the evaluation index in the experts’ subjective view, but also the objective and different information from the index values. Thirdly, a multi-level evaluation method based on fuzzy theory is put forward. Lastly, an example is conducted based on the statistical data of some cites’ distribution network and the evaluation method is proved effective and rational.
Mechanistic Representation of Soil C Dynamics: for Arctic Ecosystem
NASA Astrophysics Data System (ADS)
Dwivedi, D.; Riley, W. J.; Bisht, G.
2013-12-01
Arctic and sub-Arctic soils store vast amounts of carbon, approximately 1700 billion metric tones of frozen organic carbon. This carbon is susceptible to release to the atmosphere due to environmental changes (e.g., rapidly evolving landscape, warming); however, the mechanisms responsible for this susceptibility of soil organic matter (SOM) are not well understood, and uncertainties exist in terms of their representation in Earth System models. The representation of SOM dynamics in Earth System Models is critical for future climate prediction. To investigate the impacts of various physical (e.g., multi-phase transport, sorption, desorption, temperature), chemical (e.g., pH), and biological (e.g., microbial activity, enzyme dynamics) factors on SOM stability, we have developed CENTURY-like (describing labile and recalcitrant pools) and complex (describing multiple archetypal polymers and monomers C substrate groups) reaction networks. These reaction networks are integrated in a three-dimensional, multi-phase reactive transport solver (PFLOTRAN) and include representations of bacterial and fungal activity as well as population dynamics, gaseous and aqueous advection, and adsorption and desorption. We test and compare these reaction networks in PFLOTRAN to accurately predict depth-resolved soil organic matter (SOM) in the subsurface. We present results showing impacts of abiotic controls (e.g., surface interactions and temperature) on the long-term stabilization of SOM under permafrost conditions.
Efficient Transmission of Subthreshold Signals in Complex Networks of Spiking Neurons
Torres, Joaquin J.; Elices, Irene; Marro, J.
2015-01-01
We investigate the efficient transmission and processing of weak, subthreshold signals in a realistic neural medium in the presence of different levels of the underlying noise. Assuming Hebbian weights for maximal synaptic conductances—that naturally balances the network with excitatory and inhibitory synapses—and considering short-term synaptic plasticity affecting such conductances, we found different dynamic phases in the system. This includes a memory phase where population of neurons remain synchronized, an oscillatory phase where transitions between different synchronized populations of neurons appears and an asynchronous or noisy phase. When a weak stimulus input is applied to each neuron, increasing the level of noise in the medium we found an efficient transmission of such stimuli around the transition and critical points separating different phases for well-defined different levels of stochasticity in the system. We proved that this intriguing phenomenon is quite robust, as it occurs in different situations including several types of synaptic plasticity, different type and number of stored patterns and diverse network topologies, namely, diluted networks and complex topologies such as scale-free and small-world networks. We conclude that the robustness of the phenomenon in different realistic scenarios, including spiking neurons, short-term synaptic plasticity and complex networks topologies, make very likely that it could also occur in actual neural systems as recent psycho-physical experiments suggest. PMID:25799449
Dynamic Task Allocation in Multi-Hop Multimedia Wireless Sensor Networks with Low Mobility
Jin, Yichao; Vural, Serdar; Gluhak, Alexander; Moessner, Klaus
2013-01-01
This paper presents a task allocation-oriented framework to enable efficient in-network processing and cost-effective multi-hop resource sharing for dynamic multi-hop multimedia wireless sensor networks with low node mobility, e.g., pedestrian speeds. The proposed system incorporates a fast task reallocation algorithm to quickly recover from possible network service disruptions, such as node or link failures. An evolutional self-learning mechanism based on a genetic algorithm continuously adapts the system parameters in order to meet the desired application delay requirements, while also achieving a sufficiently long network lifetime. Since the algorithm runtime incurs considerable time delay while updating task assignments, we introduce an adaptive window size to limit the delay periods and ensure an up-to-date solution based on node mobility patterns and device processing capabilities. To the best of our knowledge, this is the first study that yields multi-objective task allocation in a mobile multi-hop wireless environment under dynamic conditions. Simulations are performed in various settings, and the results show considerable performance improvement in extending network lifetime compared to heuristic mechanisms. Furthermore, the proposed framework provides noticeable reduction in the frequency of missing application deadlines. PMID:24135992
NASA Astrophysics Data System (ADS)
Prat, O. P.; Nelson, B. R.; Stevens, S. E.; Seo, D. J.; Kim, B.
2014-12-01
The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor Quantitative (NMQ/Q2) based on the WSR-88D Next-generation Radar (Nexrad) network over Continental United States (CONUS) is nearly completed for the period covering from 2000 to 2012. This important milestone constitutes a unique opportunity to study precipitation processes at a 1-km spatial resolution for a 5-min temporal resolution. However, in order to be suitable for hydrological, meteorological and climatological applications, the radar-only product needs to be bias-adjusted and merged with in-situ rain gauge information. Rain gauge networks such as the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), the Climate Reference Network (CRN), and the Global Historical Climatology Network - Daily (GHCN-D) are used to adjust for those biases and to merge with the radar only product to provide a multi-sensor estimate. The challenges related to incorporating non-homogeneous networks over a vast area and for a long-term record are enormous. Among the challenges we are facing are the difficulties incorporating differing resolution and quality surface measurements to adjust gridded estimates of precipitation. Another challenge is the type of adjustment technique. After assessing the bias and applying reduction or elimination techniques, we are investigating the kriging method and its variants such as simple kriging (SK), ordinary kriging (OK), and conditional bias-penalized Kriging (CBPK) among others. In addition we hope to generate estimates of uncertainty for the gridded estimate. In this work the methodology is presented as well as a comparison between the radar-only product and the final multi-sensor QPE product. The comparison is performed at various time scales from the sub-hourly, to annual. In addition, comparisons over the same period with a suite of lower resolution QPEs derived from ground based radar measurements (Stage IV) and satellite products (TMPA, CMORPH, PERSIANN) are provided in order to give a detailed picture of the improvements and remaining challenges.
Cánovas, Angela; Reverter, Antonio; DeAtley, Kasey L.; Ashley, Ryan L.; Colgrave, Michelle L.; Fortes, Marina R. S.; Islas-Trejo, Alma; Lehnert, Sigrid; Porto-Neto, Laercio; Rincón, Gonzalo; Silver, Gail A.; Snelling, Warren M.; Medrano, Juan F.; Thomas, Milton G.
2014-01-01
Puberty is a complex physiological event by which animals mature into an adult capable of sexual reproduction. In order to enhance our understanding of the genes and regulatory pathways and networks involved in puberty, we characterized the transcriptome of five reproductive tissues (i.e. hypothalamus, pituitary gland, ovary, uterus, and endometrium) as well as tissues known to be relevant to growth and metabolism needed to achieve puberty (i.e., longissimus dorsi muscle, adipose, and liver). These tissues were collected from pre- and post-pubertal Brangus heifers (3/8 Brahman; Bos indicus x 5/8 Angus; Bos taurus) derived from a population of cattle used to identify quantitative trait loci associated with fertility traits (i.e., age of first observed corpus luteum (ACL), first service conception (FSC), and heifer pregnancy (HPG)). In order to exploit the power of complementary omics analyses, pre- and post-puberty co-expression gene networks were constructed by combining the results from genome-wide association studies (GWAS), RNA-Seq, and bovine transcription factors. Eight tissues among pre-pubertal and post-pubertal Brangus heifers revealed 1,515 differentially expressed and 943 tissue-specific genes within the 17,832 genes confirmed by RNA-Seq analysis. The hypothalamus experienced the most notable up-regulation of genes via puberty (i.e., 204 out of 275 genes). Combining the results of GWAS and RNA-Seq, we identified 25 loci containing a single nucleotide polymorphism (SNP) associated with ACL, FSC, and (or) HPG. Seventeen of these SNP were within a gene and 13 of the genes were expressed in uterus or endometrium. Multi-tissue omics analyses revealed 2,450 co-expressed genes relative to puberty. The pre-pubertal network had 372,861 connections whereas the post-pubertal network had 328,357 connections. A sub-network from this process revealed key transcriptional regulators (i.e., PITX2, FOXA1, DACH2, PROP1, SIX6, etc.). Results from these multi-tissue omics analyses improve understanding of the number of genes and their complex interactions for puberty in cattle. PMID:25048735
Cinner, Joshua E; Bodin, Orjan
2010-08-11
Diverse livelihood portfolios are frequently viewed as a critical component of household economies in developing countries. Within the context of natural resources governance in particular, the capacity of individual households to engage in multiple occupations has been shown to influence important issues such as whether fishers would exit a declining fishery, how people react to policy, the types of resource management systems that may be applicable, and other decisions about natural resource use. This paper uses network analysis to provide a novel methodological framework for detailed systemic analysis of household livelihood portfolios. Paying particular attention to the role of natural resource-based occupations such as fisheries, we use network analyses to map occupations and their interrelationships- what we refer to as 'livelihood landscapes'. This network approach allows for the visualization of complex information about dependence on natural resources that can be aggregated at different scales. We then examine how the role of natural resource-based occupations changes along spectra of socioeconomic development and population density in 27 communities in 5 western Indian Ocean countries. Network statistics, including in- and out-degree centrality, the density of the network, and the level of network centralization are compared along a multivariate index of community-level socioeconomic development and a gradient of human population density. The combination of network analyses suggests an increase in household-level specialization with development for most occupational sectors, including fishing and farming, but that at the community-level, economies remained diversified. The novel modeling approach introduced here provides for various types of livelihood portfolio analyses at different scales of social aggregation. Our livelihood landscapes approach provides insights into communities' dependencies and usages of natural resources, and shows how patterns of occupational interrelationships relate to socioeconomic development and population density. A key question for future analysis is how the reduction of household occupational diversity, but maintenance of community diversity we see with increasing socioeconomic development influences key aspects of societies' vulnerability to environmental change or disasters.
Van Valen, David A; Kudo, Takamasa; Lane, Keara M; Macklin, Derek N; Quach, Nicolas T; DeFelice, Mialy M; Maayan, Inbal; Tanouchi, Yu; Ashley, Euan A; Covert, Markus W
2016-11-01
Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domains of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems.
Van Valen, David A.; Kudo, Takamasa; Lane, Keara M.; ...
2016-11-04
Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domainsmore » of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Valen, David A.; Kudo, Takamasa; Lane, Keara M.
Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domainsmore » of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems.« less
Van Valen, David A.; Lane, Keara M.; Quach, Nicolas T.; Maayan, Inbal
2016-01-01
Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domains of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems. PMID:27814364
Mapping the ecological networks of microbial communities.
Xiao, Yandong; Angulo, Marco Tulio; Friedman, Jonathan; Waldor, Matthew K; Weiss, Scott T; Liu, Yang-Yu
2017-12-11
Mapping the ecological networks of microbial communities is a necessary step toward understanding their assembly rules and predicting their temporal behavior. However, existing methods require assuming a particular population dynamics model, which is not known a priori. Moreover, those methods require fitting longitudinal abundance data, which are often not informative enough for reliable inference. To overcome these limitations, here we develop a new method based on steady-state abundance data. Our method can infer the network topology and inter-taxa interaction types without assuming any particular population dynamics model. Additionally, when the population dynamics is assumed to follow the classic Generalized Lotka-Volterra model, our method can infer the inter-taxa interaction strengths and intrinsic growth rates. We systematically validate our method using simulated data, and then apply it to four experimental data sets. Our method represents a key step towards reliable modeling of complex, real-world microbial communities, such as the human gut microbiota.
Campbell Grant, Evan H.
2011-01-01
Spatial complexity in metacommunities can be separated into 3 main components: size (i.e., number of habitat patches), spatial arrangement of habitat patches (network topology), and diversity of habitat patch types. Much attention has been paid to lattice-type networks, such as patch-based metapopulations, but interest in understanding ecological networks of alternative geometries is building. Dendritic ecological networks (DENs) include some increasingly threatened ecological systems, such as caves and streams. The restrictive architecture of dendritic ecological networks might have overriding implications for species persistence. I used a modeling approach to investigate how number and spatial arrangement of habitat patches influence metapopulation extinction risk in 2 DENs of different size and topology. Metapopulation persistence was higher in larger networks, but this relationship was mediated by network topology and the dispersal pathways used to navigate the network. Larger networks, especially those with greater topological complexity, generally had lower extinction risk than smaller and less-complex networks, but dispersal bias and magnitude affected the shape of this relationship. Applying these general results to real systems will require empirical data on the movement behavior of organisms and will improve our understanding of the implications of network complexity on population and community patterns and processes.
Naming Game with Multiple Hearers
NASA Astrophysics Data System (ADS)
Li, Bing; Chen, Guanrong; Chow, Tommy W. S.
2013-05-01
A new model called Naming Game with Multiple Hearers (NGMH) is proposed in this paper. A naming game over a population of individuals aims to reach consensus on the name of an object through pair-wise local interactions among all the individuals. The proposed NGMH model describes the learning process of a new word, in a population with one speaker and multiple hearers, at each interaction towards convergence. The characteristics of NGMH are examined on three types of network topologies, namely ER random-graph network, WS small-world network, and BA scale-free network. Comparative analysis on the convergence time is performed, revealing that the topology with a larger average (node) degree can reach consensus faster than the others over the same population. It is found that, for a homogeneous network, the average degree is the limiting value of the number of hearers, which reduces the individual ability of learning new words, consequently decreasing the convergence time; for a scale-free network, this limiting value is the deviation of the average degree. It is also found that a network with a larger clustering coefficient takes longer time to converge; especially a small-word network with smallest rewiring possibility takes longest time to reach convergence. As more new nodes are being added to scale-free networks with different degree distributions, their convergence time appears to be robust against the network-size variation. Most new findings reported in this paper are different from that of the single-speaker/single-hearer naming games documented in the literature.
McDonald, Julie; Jayasuriya, Rohan; Harris, Mark Fort
2011-01-01
Adults with type 2 diabetes or with behavioural risk factors require comprehensive and well coordinated responses from a range of health care providers who often work in different organisational settings. This study examines three types of collaborative links between organisations involved in a rural setting. Social network methods were employed using survey data on three types of links, and data was collected from a purposive sample of 17 organisations representing the major provider types. The analysis included a mix of unconfirmed and confirmed links, and network measures. General practices were the most influential provider group in initiating referrals, and they referred to the broadest range of organisations in the network. Team care arrangements formed a small part of the general practice referral network. They were used more for access to private sector allied health care providers and less for sharing care with public sector health services. Involvement in joint programs/activities was limited to public and non-government sector services, with no participation from the private sector. The patterns of interactions suggest that informal referral networks provide access to services and coordination of care for individual patients with diabetes. Two population subgroups would benefit from more proactive approaches to ensure equitable access to services and coordination of care across organisational boundaries: people with more complex health care needs and people at risk of developing diabetes.
Yang, Liu; Lu, Yinzhi; Zhong, Yuanchang; Wu, Xuegang; Yang, Simon X
2015-12-26
Energy resource limitation is a severe problem in traditional wireless sensor networks (WSNs) because it restricts the lifetime of network. Recently, the emergence of energy harvesting techniques has brought with them the expectation to overcome this problem. In particular, it is possible for a sensor node with energy harvesting abilities to work perpetually in an Energy Neutral state. In this paper, a Multi-hop Energy Neutral Clustering (MENC) algorithm is proposed to construct the optimal multi-hop clustering architecture in energy harvesting WSNs, with the goal of achieving perpetual network operation. All cluster heads (CHs) in the network act as routers to transmit data to base station (BS) cooperatively by a multi-hop communication method. In addition, by analyzing the energy consumption of intra- and inter-cluster data transmission, we give the energy neutrality constraints. Under these constraints, every sensor node can work in an energy neutral state, which in turn provides perpetual network operation. Furthermore, the minimum network data transmission cycle is mathematically derived using convex optimization techniques while the network information gathering is maximal. Simulation results show that our protocol can achieve perpetual network operation, so that the consistent data delivery is guaranteed. In addition, substantial improvements on the performance of network throughput are also achieved as compared to the famous traditional clustering protocol LEACH and recent energy harvesting aware clustering protocols.
Yang, Liu; Lu, Yinzhi; Zhong, Yuanchang; Wu, Xuegang; Yang, Simon X.
2015-01-01
Energy resource limitation is a severe problem in traditional wireless sensor networks (WSNs) because it restricts the lifetime of network. Recently, the emergence of energy harvesting techniques has brought with them the expectation to overcome this problem. In particular, it is possible for a sensor node with energy harvesting abilities to work perpetually in an Energy Neutral state. In this paper, a Multi-hop Energy Neutral Clustering (MENC) algorithm is proposed to construct the optimal multi-hop clustering architecture in energy harvesting WSNs, with the goal of achieving perpetual network operation. All cluster heads (CHs) in the network act as routers to transmit data to base station (BS) cooperatively by a multi-hop communication method. In addition, by analyzing the energy consumption of intra- and inter-cluster data transmission, we give the energy neutrality constraints. Under these constraints, every sensor node can work in an energy neutral state, which in turn provides perpetual network operation. Furthermore, the minimum network data transmission cycle is mathematically derived using convex optimization techniques while the network information gathering is maximal. Simulation results show that our protocol can achieve perpetual network operation, so that the consistent data delivery is guaranteed. In addition, substantial improvements on the performance of network throughput are also achieved as compared to the famous traditional clustering protocol LEACH and recent energy harvesting aware clustering protocols. PMID:26712764
Tinghög, Petter; Al-Saffar, Suad; Carstensen, John; Nordenfelt, Lennart
2010-01-01
It has often been shown that immigrants are particularly at risk for mental ill health. The aim of the study was to investigate the association of immigrant- and non-immigrant-specific factors with mental ill health within a diverse immigrant population. An extensive questionnaire was sent out to a stratified random sample of three immigrant populations from Finland, Iraq and Iran. The 720 respondents completed a Swedish, Arabic or Farsi (Persian) version of the questionnaire including the WHO (10) Well-Being Index and the HSCL-25. The results indicate that mental ill health among immigrants is independently associated with non-immigrant-specific factors (i.e. high number of types of traumatic episodes, divorced/widowed, poor social network, economic insecurity and being female) and immigrant-specific factors (i.e. low level of sociocultural adaptation). These results were obtained regardless of whether mental ill health was operationalized as low subjective well-being or a high symptom level of anxiety/depression. These findings support the notion that mental ill health among immigrants is a multi-faceted phenomenon that needs to be tackled within a wide range of sectors - e.g. the healthcare system, the social service sector and, of course, the political arena.
Dynamic social networks facilitate cooperation in the N-player Prisoner’s Dilemma
NASA Astrophysics Data System (ADS)
Rezaei, Golriz; Kirley, Michael
2012-12-01
Understanding how cooperative behaviour evolves in network communities, where the individual members interact via social dilemma games, is an on-going challenge. In this paper, we introduce a social network based model to investigate the evolution of cooperation in the N-player Prisoner’s Dilemma game. As such, this work complements previous studies focused on multi-player social dilemma games and endogenous networks. Agents in our model, employ different game-playing strategies reflecting varying cognitive capacities. When an agent plays cooperatively, a social link is formed with each of the other N-1 group members. Subsequent cooperative actions reinforce this link. However, when an agent defects, the links in the social network are broken. Computational simulations across a range of parameter settings are used to examine different scenarios: varying population and group sizes; the group formation process (or partner selection); and agent decision-making strategies under varying dilemma constraints (cost-to-benefit ratios), including a “discriminator” strategy where the action is based on a function of the weighted links within an agent’s social network. The simulation results show that the proposed social network model is able to evolve and maintain cooperation. As expected, as the value of N increases the equilibrium proportion of cooperators in the population decreases. In addition, this outcome is dependent on the dilemma constraint (cost-to-benefit ratio). However, in some circumstances the dynamic social network plays an increasingly important role in promoting and sustaining cooperation, especially when the agents adopt the discriminator strategy. The adjustment of social links results in the formation of communities of “like-minded” agents. Subsequently, this local optimal behaviour promotes the evolution of cooperative behaviour at the system level.
Detection of multiple perturbations in multi-omics biological networks.
Griffin, Paula J; Zhang, Yuqing; Johnson, William Evan; Kolaczyk, Eric D
2018-05-17
Cellular mechanism-of-action is of fundamental concern in many biological studies. It is of particular interest for identifying the cause of disease and learning the way in which treatments act against disease. However, pinpointing such mechanisms is difficult, due to the fact that small perturbations to the cell can have wide-ranging downstream effects. Given a snapshot of cellular activity, it can be challenging to tell where a disturbance originated. The presence of an ever-greater variety of high-throughput biological data offers an opportunity to examine cellular behavior from multiple angles, but also presents the statistical challenge of how to effectively analyze data from multiple sources. In this setting, we propose a method for mechanism-of-action inference by extending network filtering to multi-attribute data. We first estimate a joint Gaussian graphical model across multiple data types using penalized regression and filter for network effects. We then apply a set of likelihood ratio tests to identify the most likely site of the original perturbation. In addition, we propose a conditional testing procedure to allow for detection of multiple perturbations. We demonstrate this methodology on paired gene expression and methylation data from The Cancer Genome Atlas (TCGA). © 2018, The International Biometric Society.
Understanding auditory distance estimation by humpback whales: a computational approach.
Mercado, E; Green, S R; Schneider, J N
2008-02-01
Ranging, the ability to judge the distance to a sound source, depends on the presence of predictable patterns of attenuation. We measured long-range sound propagation in coastal waters to assess whether humpback whales might use frequency degradation cues to range singing whales. Two types of neural networks, a multi-layer and a single-layer perceptron, were trained to classify recorded sounds by distance traveled based on their frequency content. The multi-layer network successfully classified received sounds, demonstrating that the distorting effects of underwater propagation on frequency content provide sufficient cues to estimate source distance. Normalizing received sounds with respect to ambient noise levels increased the accuracy of distance estimates by single-layer perceptrons, indicating that familiarity with background noise can potentially improve a listening whale's ability to range. To assess whether frequency patterns predictive of source distance were likely to be perceived by whales, recordings were pre-processed using a computational model of the humpback whale's peripheral auditory system. Although signals processed with this model contained less information than the original recordings, neural networks trained with these physiologically based representations estimated source distance more accurately, suggesting that listening whales should be able to range singers using distance-dependent changes in frequency content.
Filipello, Virginia; Amato, Ettore; Gori, Maria; Huedo, Pol; Ciceri, Giulia; Lomonaco, Sara; Pontello, Mirella
2017-01-01
In developed countries, pregnancy-related listeriosis accounts for 20-43% of total invasive listeriosis. This work describes the first pregnancy-related listeriosis survey in Italy based on two data sources, that is, mandatory notification system and regional laboratory-based network. Out of 610 listeriosis cases reported over a 10-year period, 40 were pregnancy-related (6.6%). Among these, 29 pregnancy-related isolates were available and have been analysed with serotyping, Pulsed-Field Gel Electrophoresis, and Multi-Virulence-Locus Sequence Typing. No maternal fatality was recorded, but 11 (29.7%) pregnancies resulted in a foetal death, a miscarriage, or a birth of a foetus dying immediately after birth. The average incidence of pregnancy-related listeriosis was 4.3 cases per 100000 births, and the proportion of pregnancy-associated listeriosis among ethnic minorities was significantly higher compared to the general population (30.0% versus 3.5%, P < 0.01). L. monocytogenes isolates belonged to serotypes 1/2a, 1/2b, and 4b, with the latter significantly more prevalent among pregnancy-related isolates. Twenty different pulsotypes were distinguished and 16 out of the 29 isolates were classified into seven clusters. A total of 16 virulence types (VTs) were identified. Five VTs accounted for 45% of the total cases and coincided with those of previously described Epidemic Clones (ECs) of L. monocytogenes .
Filipello, Virginia; Amato, Ettore; Gori, Maria; Huedo, Pol; Ciceri, Giulia; Lomonaco, Sara
2017-01-01
In developed countries, pregnancy-related listeriosis accounts for 20–43% of total invasive listeriosis. This work describes the first pregnancy-related listeriosis survey in Italy based on two data sources, that is, mandatory notification system and regional laboratory-based network. Out of 610 listeriosis cases reported over a 10-year period, 40 were pregnancy-related (6.6%). Among these, 29 pregnancy-related isolates were available and have been analysed with serotyping, Pulsed-Field Gel Electrophoresis, and Multi-Virulence-Locus Sequence Typing. No maternal fatality was recorded, but 11 (29.7%) pregnancies resulted in a foetal death, a miscarriage, or a birth of a foetus dying immediately after birth. The average incidence of pregnancy-related listeriosis was 4.3 cases per 100000 births, and the proportion of pregnancy-associated listeriosis among ethnic minorities was significantly higher compared to the general population (30.0% versus 3.5%, P < 0.01). L. monocytogenes isolates belonged to serotypes 1/2a, 1/2b, and 4b, with the latter significantly more prevalent among pregnancy-related isolates. Twenty different pulsotypes were distinguished and 16 out of the 29 isolates were classified into seven clusters. A total of 16 virulence types (VTs) were identified. Five VTs accounted for 45% of the total cases and coincided with those of previously described Epidemic Clones (ECs) of L. monocytogenes. PMID:28408795
Bergroth, T; Ekici, H; Gisslén, M; Hagberg, L; Sönnerborg, A
2009-02-01
The aim of the study was to determine to what extent unique drug resistance patterns appear in minor and major HIV-1 quasispecies in cerebrospinal fluid (CSF) as compared with blood. Forty-four plasma and CSF samples from 13 multi-treatment-experienced patients, seven of whom provided longitudinal samples, were included in the study. The subjects had failed antiretroviral therapy including lamivudine. The reverse transcriptase (RT) gene was examined by selective real-time polymerase chain reaction (SPCR), which can detect M184I/V mutants down to 0.2% of the viral population. SPCR revealed differences at amino acid position 184 in the plasma/CSF populations in 12 paired samples from eight patients. One plasma sample was positive by SPCR where direct sequencing showed wild-type M184. The other 11 paired samples showed quantitative differences in the mixed populations of the mutant or wild-type M184 quasispecies. Differences in other resistance-associated mutations between plasma and CSF viruses were also found by direct sequencing. In multi-treatment-experienced patients with therapy failure, differences in drug resistance patterns were found frequently between plasma and CSF in both minor and major viral populations. To what extent this was a true biological phenomenon remains to be established, and the clinical relevance of these findings is yet to be determined.
Zhang, Xuejun; Lei, Jiaxing
2015-01-01
Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA) problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology. PMID:26180840
McMahon, B H; Manore, C A; Hyman, J M; LaBute, M X; Fair, J M
2014-01-01
We present and characterize a multi-host epidemic model of Rift Valley fever (RVF) virus in East Africa with geographic spread on a network, rule-based mitigation measures, and mosquito infection and population dynamics. Susceptible populations are depleted by disease and vaccination and are replenished with the birth of new animals. We observe that the severity of the epidemics is strongly correlated with the duration of the rainy season and that even severe epidemics are abruptly terminated when the rain stops. Because naturally acquired herd immunity is established, total mortality across 25 years is relatively insensitive to many mitigation approaches. Strong reductions in cattle mortality are expected, however, with sufficient reduction in population densities of either vectors or susceptible (ie. unvaccinated) hosts. A better understanding of RVF epidemiology would result from serology surveys to quantify the importance of herd immunity in epidemic control, and sequencing of virus from representative animals to quantify the realative importance of transportation and local reservoirs in nucleating yearly epidemics. Our results suggest that an effective multi-layered mitigation strategy would include vector control, movement control, and vaccination of young animals yearly, even in the absence of expected rainfall.
NASA Astrophysics Data System (ADS)
Xu, Chuanpei; Niu, Junhao; Ling, Jing; Wang, Suyan
2018-03-01
In this paper, we present a parallel test strategy for bandwidth division multiplexing under the test access mechanism bandwidth constraint. The Pareto solution set is combined with a cloud evolutionary algorithm to optimize the test time and power consumption of a three-dimensional network-on-chip (3D NoC). In the proposed method, all individuals in the population are sorted in non-dominated order and allocated to the corresponding level. Individuals with extreme and similar characteristics are then removed. To increase the diversity of the population and prevent the algorithm from becoming stuck around local optima, a competition strategy is designed for the individuals. Finally, we adopt an elite reservation strategy and update the individuals according to the cloud model. Experimental results show that the proposed algorithm converges to the optimal Pareto solution set rapidly and accurately. This not only obtains the shortest test time, but also optimizes the power consumption of the 3D NoC.
Michalek, Anne Kathryn; Kan, David; Prochaska, Judith
2015-06-01
Recruiting and retaining clients in health interventions can be challenging especially when targeting multiple behavior change in high-risk populations. To inform the methods of trials working with similarly complex clinical populations, we describe multi-pronged efforts to recruit and retain a representative sample. In a two-group RCT, veterans were recruited from a Veteran Affairs Medical Center. The goal was to enroll 200 participants over a 25-month period, and to exceed 70 % follow-up for all treatment arms. To meet these goals, a four-pronged strategy was developed: branding, outreach/networking, onsite presence, and incentives. In month 1, 32 % of the proposed sample size was met (n = 64), and by month 2, 45 % (n = 90); the recruitment goal (n = 200) was achieved 13 months ahead of schedule. Retention exceeds 90 % at all time points out to 18 months. The multipronged recruitment and retention plan was efficient, cost effective, and may generalize to other health promotion initiatives.
Network cyberinfrastructure as a shared platform to support multi-site research
USDA-ARS?s Scientific Manuscript database
Multi-site research across the Long-term Agroecosystem Research (LTAR) network requires access to data and information. We present some existing examples where you can get data from across the network and summarize the rich inventory of measurements taken across LTAR sites. But data management suppo...
Lee, Dong-Hun
2017-01-01
To determine the genetic and epidemiological relationship of infectious bronchitis virus (IBV) isolates from commercial poultry to attenuated live IBV vaccines we conducted a phylogenetic network analysis on the full-length S1 sequence for Arkansas (Ark), Massachusetts (Mass) and Delmarva/1639 (DMV/1639) type viruses isolated in 2015 from clinical cases by 3 different diagnostic laboratories. Phylogenetic network analysis of Ark isolates showed two predominant groups linked by 2 mutations, consistent with subpopulations found in commercial vaccines for this IBV type. In addition, a number of satellite groups surrounding the two predominant populations were observed for the Ark type virus, which is likely due to mutations associated with the nature of this vaccine to persist in flocks. The phylogenetic network analysis of Mass-type viruses shows two groupings corresponding to different manufacturers vaccine sequences. No satellite groups were observed for Mass-type viruses, which is consistent with no persistence of this vaccine type in the field. At the time of collection, no vaccine was being used for the DMV/1639 type viruses and phylogenetic network analysis showed a dispersed network suggesting no clear change in genetic distribution. Selection pressure analysis showed that the DMV/1639 and Mass-type strains were evolving under negative selection, whereas the Ark type viruses had evolved under positive selection. This data supports the hypothesis that live attenuated vaccine usage does play a role in the genetic profile of similar IB viruses in the field and phylogenetic network analysis can be used to identify vaccine and vaccine origin isolates, which is important for our understanding of the role live vaccines play in the evolutionary trajectory of those viruses. PMID:28472110
Systems for the Intermodal Routing of Spent Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Steven K; Liu, Cheng
The safe and secure movement of spent nuclear fuel from shutdown and active reactor facilities to intermediate or long term storage sites may, in some instances, require the use of several modes of transportation to accomplish the move. To that end, a fully operable multi-modal routing system is being developed within Oak Ridge National Laboratory s (ORNL) WebTRAGIS (Transportation Routing Analysis Geographic Information System). This study aims to provide an overview of multi-modal routing, the existing state of the TRAGIS networks, the source data needs, and the requirements for developing structural relationships between various modes to create a suitable systemmore » for modeling the transport of spent nuclear fuel via a multimodal network. Modern transportation systems are comprised of interconnected, yet separate, modal networks. Efficient transportation networks rely upon the smooth transfer of cargoes at junction points that serve as connectors between modes. A key logistical impediment to the shipment of spent nuclear fuel is the absence of identified or designated transfer locations between transport modes. Understanding the potential network impacts on intermodal transportation of spent nuclear fuel is vital for planning transportation routes from origin to destination. By identifying key locations where modes intersect, routing decisions can be made to prioritize cost savings, optimize transport times and minimize potential risks to the population and environment. In order to facilitate such a process, ORNL began the development of a base intermodal network and associated routing code. The network was developed using previous intermodal networks and information from publicly available data sources to construct a database of potential intermodal transfer locations with likely capability to handle spent nuclear fuel casks. The coding development focused on modifying the existing WebTRAGIS routing code to accommodate intermodal transfers and the selection of prioritization constraints and modifiers to determine route selection. The limitations of the current model and future directions for development are discussed, including the current state of information on possible intermodal transfer locations for spent fuel.« less
Fractal multi-level organisation of human groups in a virtual world.
Fuchs, Benedikt; Sornette, Didier; Thurner, Stefan
2014-10-06
Humans are fundamentally social. They form societies which consist of hierarchically layered nested groups of various quality, size, and structure. The anthropologic literature has classified these groups as support cliques, sympathy groups, bands, cognitive groups, tribes, linguistic groups, and so on. Anthropologic data show that, on average, each group consists of approximately three subgroups. However, a general understanding of the structural dependence of groups at different layers is largely missing. We extend these early findings to a very large high-precision large-scale internet-based social network data. We analyse the organisational structure of a complete, multi-relational, large social multiplex network of a human society consisting of about 400,000 odd players of an open-ended massive multiplayer online game for which we know all about their various group memberships at different layers. Remarkably, the online players' society exhibits the same type of structured hierarchical layers as found in hunter-gatherer societies. Our findings suggest that the hierarchical organisation of human society is deeply nested in human psychology.
NASA Astrophysics Data System (ADS)
Shishebori, Davood; Babadi, Abolghasem Yousefi
2018-03-01
This study investigates the reliable multi-configuration capacitated logistics network design problem (RMCLNDP) under system disturbances, which relates to locating facilities, establishing transportation links, and also allocating their limited capacities to the customers conducive to provide their demand on the minimum expected total cost (including locating costs, link constructing costs, and also expected costs in normal and disturbance conditions). In addition, two types of risks are considered; (I) uncertain environment, (II) system disturbances. A two-level mathematical model is proposed for formulating of the mentioned problem. Also, because of the uncertain parameters of the model, an efficacious possibilistic robust optimization approach is utilized. To evaluate the model, a drug supply chain design (SCN) is studied. Finally, an extensive sensitivity analysis was done on the critical parameters. The obtained results show that the efficiency of the proposed approach is suitable and is worthwhile for analyzing the real practical problems.
Fractal multi-level organisation of human groups in a virtual world
Fuchs, Benedikt; Sornette, Didier; Thurner, Stefan
2014-01-01
Humans are fundamentally social. They form societies which consist of hierarchically layered nested groups of various quality, size, and structure. The anthropologic literature has classified these groups as support cliques, sympathy groups, bands, cognitive groups, tribes, linguistic groups, and so on. Anthropologic data show that, on average, each group consists of approximately three subgroups. However, a general understanding of the structural dependence of groups at different layers is largely missing. We extend these early findings to a very large high-precision large-scale internet-based social network data. We analyse the organisational structure of a complete, multi-relational, large social multiplex network of a human society consisting of about 400,000 odd players of an open-ended massive multiplayer online game for which we know all about their various group memberships at different layers. Remarkably, the online players' society exhibits the same type of structured hierarchical layers as found in hunter-gatherer societies. Our findings suggest that the hierarchical organisation of human society is deeply nested in human psychology. PMID:25283998
NASA Astrophysics Data System (ADS)
Quednau, Philipp; Trommer, Ralph; Schmidt, Lorenz-Peter
2016-03-01
Wireless transmission systems in smart metering networks share the advantage of lower installation costs due to the expandability of separate infrastructure but suffer from transmission problems. In this paper the issue of interference of wireless transmitted smart meter data with third party systems and data from other meters is investigated and an approach for solving the problem is presented. A multi-channel wireless m-bus receiver was developed to separate the desired data from unwanted interferers by spatial filtering. The according algorithms are presented and the influence of different antenna types on the spatial filtering is investigated. The performance of the spatial filtering is evaluated by extensive measurements in a realistic surrounding with several hundreds of active wireless m-bus transponders. These measurements correspond to the future environment for data-collectors as they took place in rural and urban areas with smart gas meters equipped with wireless m-bus transponders installed in almost all surrounding buildings.
Programming self-organizing multicellular structures with synthetic cell-cell signaling.
Toda, Satoshi; Blauch, Lucas R; Tang, Sindy K Y; Morsut, Leonardo; Lim, Wendell A
2018-05-31
A common theme in the self-organization of multicellular tissues is the use of cell-cell signaling networks to induce morphological changes. We used the modular synNotch juxtacrine signaling platform to engineer artificial genetic programs in which specific cell-cell contacts induced changes in cadherin cell adhesion. Despite their simplicity, these minimal intercellular programs were sufficient to yield assemblies with hallmarks of natural developmental systems: robust self-organization into multi-domain structures, well-choreographed sequential assembly, cell type divergence, symmetry breaking, and the capacity for regeneration upon injury. The ability of these networks to drive complex structure formation illustrates the power of interlinking cell signaling with cell sorting: signal-induced spatial reorganization alters the local signals received by each cell, resulting in iterative cycles of cell fate branching. These results provide insights into the evolution of multi-cellularity and demonstrate the potential to engineer customized self-organizing tissues or materials. Copyright © 2018, American Association for the Advancement of Science.
Fractal multi-level organisation of human groups in a virtual world
NASA Astrophysics Data System (ADS)
Fuchs, Benedikt; Sornette, Didier; Thurner, Stefan
2014-10-01
Humans are fundamentally social. They form societies which consist of hierarchically layered nested groups of various quality, size, and structure. The anthropologic literature has classified these groups as support cliques, sympathy groups, bands, cognitive groups, tribes, linguistic groups, and so on. Anthropologic data show that, on average, each group consists of approximately three subgroups. However, a general understanding of the structural dependence of groups at different layers is largely missing. We extend these early findings to a very large high-precision large-scale internet-based social network data. We analyse the organisational structure of a complete, multi-relational, large social multiplex network of a human society consisting of about 400,000 odd players of an open-ended massive multiplayer online game for which we know all about their various group memberships at different layers. Remarkably, the online players' society exhibits the same type of structured hierarchical layers as found in hunter-gatherer societies. Our findings suggest that the hierarchical organisation of human society is deeply nested in human psychology.
Problems With Deployment of Multi-Domained, Multi-Homed Mobile Networks
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2008-01-01
This document describes numerous problems associated with deployment of multi-homed mobile platforms consisting of multiple networks and traversing large geographical areas. The purpose of this document is to provide insight to real-world deployment issues and provide information to groups that are addressing many issues related to multi-homing, policy-base routing, route optimization and mobile security - particularly those groups within the Internet Engineering Task Force.
NASA Astrophysics Data System (ADS)
Vaiana, Michael; Muldoon, Sarah Feldt
2018-01-01
The field of neuroscience is facing an unprecedented expanse in the volume and diversity of available data. Traditionally, network models have provided key insights into the structure and function of the brain. With the advent of big data in neuroscience, both more sophisticated models capable of characterizing the increasing complexity of the data and novel methods of quantitative analysis are needed. Recently, multilayer networks, a mathematical extension of traditional networks, have gained increasing popularity in neuroscience due to their ability to capture the full information of multi-model, multi-scale, spatiotemporal data sets. Here, we review multilayer networks and their applications in neuroscience, showing how incorporating the multilayer framework into network neuroscience analysis has uncovered previously hidden features of brain networks. We specifically highlight the use of multilayer networks to model disease, structure-function relationships, network evolution, and link multi-scale data. Finally, we close with a discussion of promising new directions of multilayer network neuroscience research and propose a modified definition of multilayer networks designed to unite and clarify the use of the multilayer formalism in describing real-world systems.
Exponential stability of stochastic complex networks with multi-weights based on graph theory
NASA Astrophysics Data System (ADS)
Zhang, Chunmei; Chen, Tianrui
2018-04-01
In this paper, a novel approach to exponential stability of stochastic complex networks with multi-weights is investigated by means of the graph-theoretical method. New sufficient conditions are provided to ascertain the moment exponential stability and almost surely exponential stability of stochastic complex networks with multiple weights. It is noted that our stability results are closely related with multi-weights and the intensity of stochastic disturbance. Numerical simulations are also presented to substantiate the theoretical results.
Research on public logistics centers of Zhenzhou city based on GIS
NASA Astrophysics Data System (ADS)
Zeng, Yuhuai; Chen, Shuisen; Tian, Zhihui; Miao, Quansheng
2008-10-01
The regional public logistics center (PLC) is the intermedium that transports goods or commodity from producer to wholesaler, retailer and end consumer through whole supply chains. According to the Central Place Theory, the PLC should be multi-centric and of more kinds of graded degrees. From the road network planning discipline, an unique index---Importance Degree, is presented to measure the capacity of a PLC. The Importance Degree selects three township criteria: total population, gross industry product and budget income as weights to calculate the weighted vectors by principle component analysis method. Finally, through the clustering analysis, we can get the graded degrees of PLCs. It proves that that this research method is very effective for the road network planning of Zhengzhou City.
Organization of the secure distributed computing based on multi-agent system
NASA Astrophysics Data System (ADS)
Khovanskov, Sergey; Rumyantsev, Konstantin; Khovanskova, Vera
2018-04-01
Nowadays developing methods for distributed computing is received much attention. One of the methods of distributed computing is using of multi-agent systems. The organization of distributed computing based on the conventional network computers can experience security threats performed by computational processes. Authors have developed the unified agent algorithm of control system of computing network nodes operation. Network PCs is used as computing nodes. The proposed multi-agent control system for the implementation of distributed computing allows in a short time to organize using of the processing power of computers any existing network to solve large-task by creating a distributed computing. Agents based on a computer network can: configure a distributed computing system; to distribute the computational load among computers operated agents; perform optimization distributed computing system according to the computing power of computers on the network. The number of computers connected to the network can be increased by connecting computers to the new computer system, which leads to an increase in overall processing power. Adding multi-agent system in the central agent increases the security of distributed computing. This organization of the distributed computing system reduces the problem solving time and increase fault tolerance (vitality) of computing processes in a changing computing environment (dynamic change of the number of computers on the network). Developed a multi-agent system detects cases of falsification of the results of a distributed system, which may lead to wrong decisions. In addition, the system checks and corrects wrong results.
FastGCN: A GPU Accelerated Tool for Fast Gene Co-Expression Networks
Liang, Meimei; Zhang, Futao; Jin, Gulei; Zhu, Jun
2015-01-01
Gene co-expression networks comprise one type of valuable biological networks. Many methods and tools have been published to construct gene co-expression networks; however, most of these tools and methods are inconvenient and time consuming for large datasets. We have developed a user-friendly, accelerated and optimized tool for constructing gene co-expression networks that can fully harness the parallel nature of GPU (Graphic Processing Unit) architectures. Genetic entropies were exploited to filter out genes with no or small expression changes in the raw data preprocessing step. Pearson correlation coefficients were then calculated. After that, we normalized these coefficients and employed the False Discovery Rate to control the multiple tests. At last, modules identification was conducted to construct the co-expression networks. All of these calculations were implemented on a GPU. We also compressed the coefficient matrix to save space. We compared the performance of the GPU implementation with those of multi-core CPU implementations with 16 CPU threads, single-thread C/C++ implementation and single-thread R implementation. Our results show that GPU implementation largely outperforms single-thread C/C++ implementation and single-thread R implementation, and GPU implementation outperforms multi-core CPU implementation when the number of genes increases. With the test dataset containing 16,000 genes and 590 individuals, we can achieve greater than 63 times the speed using a GPU implementation compared with a single-thread R implementation when 50 percent of genes were filtered out and about 80 times the speed when no genes were filtered out. PMID:25602758
FastGCN: a GPU accelerated tool for fast gene co-expression networks.
Liang, Meimei; Zhang, Futao; Jin, Gulei; Zhu, Jun
2015-01-01
Gene co-expression networks comprise one type of valuable biological networks. Many methods and tools have been published to construct gene co-expression networks; however, most of these tools and methods are inconvenient and time consuming for large datasets. We have developed a user-friendly, accelerated and optimized tool for constructing gene co-expression networks that can fully harness the parallel nature of GPU (Graphic Processing Unit) architectures. Genetic entropies were exploited to filter out genes with no or small expression changes in the raw data preprocessing step. Pearson correlation coefficients were then calculated. After that, we normalized these coefficients and employed the False Discovery Rate to control the multiple tests. At last, modules identification was conducted to construct the co-expression networks. All of these calculations were implemented on a GPU. We also compressed the coefficient matrix to save space. We compared the performance of the GPU implementation with those of multi-core CPU implementations with 16 CPU threads, single-thread C/C++ implementation and single-thread R implementation. Our results show that GPU implementation largely outperforms single-thread C/C++ implementation and single-thread R implementation, and GPU implementation outperforms multi-core CPU implementation when the number of genes increases. With the test dataset containing 16,000 genes and 590 individuals, we can achieve greater than 63 times the speed using a GPU implementation compared with a single-thread R implementation when 50 percent of genes were filtered out and about 80 times the speed when no genes were filtered out.
Development of a decentralized multi-axis synchronous control approach for real-time networks.
Xu, Xiong; Gu, Guo-Ying; Xiong, Zhenhua; Sheng, Xinjun; Zhu, Xiangyang
2017-05-01
The message scheduling and the network-induced delays of real-time networks, together with the different inertias and disturbances in different axes, make the synchronous control of the real-time network-based systems quite challenging. To address this challenge, a decentralized multi-axis synchronous control approach is developed in this paper. Due to the limitations of message scheduling and network bandwidth, error of the position synchronization is firstly defined in the proposed control approach as a subset of preceding-axis pairs. Then, a motion message estimator is designed to reduce the effect of network delays. It is proven that position and synchronization errors asymptotically converge to zero in the proposed controller with the delay compensation. Finally, simulation and experimental results show that the developed control approach can achieve the good position synchronization performance for the multi-axis motion over the real-time network. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido
2016-11-08
The increasing number of recording electrodes enhances the capability of capturing the network's cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity.
NASA Astrophysics Data System (ADS)
Kostyuchenko, Yuriy; Movchan, Dmytro; Kopachevsky, Ivan; Yuschenko, Maxim
2016-04-01
Modern world based on relations more than on causalities, so communicative, socio-economic, and socio-cultural issues are important to understand nature of risks and to make correct, ethical decisions. Today major part of risk analysts declared new nature of modern risks. We faced coherent or systemic risks, realization of which leads to domino effect, unexpected growing of losses and fatalities. This type of risks originated by complicated nature of heterogeneous environment, close interconnection of engineering networks, and changing structure of society. Heterogeneous multi-agent environment generates systemic risks, which requires analyze multi-source data with sophisticated tools. Formal basis for analysis of this type of risks is developed during last 5-7 years. But issues of social fairness, ethics, and education require further development. One aspect of analysis of social issues of risk management is studied in this paper. Formal algorithm for quantitative analysis of multi-source data analysis is proposed. As it was demonstrated, using proposed methodological base and the algorithm, it is possible to obtain regularized spatial-temporal distribution of investigated parameters over whole observation period with rectified reliability and controlled uncertainty. The result of disaster data analysis demonstrates that about half of direct disaster damage might be caused by social factors: education, experience and social behaviour. Using data presented also possible to estimate quantitative parameters of the losses distributions: a relation between education, age, experience, and losses; as well as vulnerability (in terms of probable damage) toward financial status in current social density. It is demonstrated that on wide-scale range an education determines risk perception and so vulnerability of societies. But on the local level there are important heterogeneities. Land-use and urbanization structure influencing to vulnerability essentially. The way to calculate a distribution of losses connected with decision making in land-use is demonstrated. Rural community's vulnerability determines by water availability, quality of soils, effectiveness of land use (including climate change adaptation), intensity of pollutions, crop productivity variations during the period of crop rotation, annual national distribution of crops output, and distance to city centres. It should noted here that "distance to city centres" is not comprehensive indicator of market accessibility in general case: quality and availability of transport infrastructure should be described more detailed on the next stages of analysis. Urban population vulnerability determines by distribution of urban fractures and quality urban environment: density, quality and availability of infrastructure, balance between industrial, residential and recreational zones, effectiveness of urban land use and landscape management, and social policy, particularly, employment. Population density is closely connected with social density, with communications and decision making. Social learning, as the function of social communications, is the way to increase sustainability. Also it possible to say that social sustainability is a function of intensity and efficiency of communications between interlinked and interacted networks in the heterogeneous environment. Therefore the results of study demonstrated that risk management study should includes issues of risk and threats perception, which should be described in framework of appropriate tools and approaches connected with ethical dimension of vulnerability. For instance, problems of accessibility and availability of safety resources in view of social fairness and socio-economic dynamics should be included into future studies in field of risk analysis.
JOE, GEORGE W.; KNIGHT, KEVIN; SIMPSON, D. DWAYNE; FLYNN, PATRICK M.; MOREY, JANIS T.; BARTHOLOMEW, NORMA G.; TINDALL, MICHELE STATON; BURDON, WILLIAM M.; HALL, ELIZABETH A.; MARTIN, STEVE S.; O’CONNELL, DANIEL J.
2012-01-01
Finding brief effective treatments for criminal justice populations is a major public need. The CJ-DATS Targeted Intervention for Corrections (TIC), which consists of six brief interventions (Communication, Anger, Motivation, Criminal Thinking, Social Networks, and HIV/Sexual Health), were tested in separate federally-funded randomized control studies. In total, 1,573 criminal justice-involved individuals from 20 correction facilities participated (78% males; 54% white). Multi-level repeated measures analyses found significant gains in knowledge, attitudes, and psychosocial functioning (criteria basic to Knowledge, Attitude, and Practices (KAP) and TCU Treatment Process Models). While improvements were less consistent in criminal thinking, overall evidence supported efficacy for the TIC interventions. PMID:22547911
An ACOR-Based Multi-Objective WSN Deployment Example for Lunar Surveying.
López-Matencio, Pablo
2016-02-06
Wireless sensor networks (WSNs) can gather in situ real data measurements and work unattended for long periods, even in remote, rough places. A critical aspect of WSN design is node placement, as this determines sensing capacities, network connectivity, network lifetime and, in short, the whole operational capabilities of the WSN. This paper proposes and studies a new node placement algorithm that focus on these aspects. As a motivating example, we consider a network designed to describe the distribution of helium-3 (³He), a potential enabling element for fusion reactors, on the Moon. ³He is abundant on the Moon's surface, and knowledge of its distribution is essential for future harvesting purposes. Previous data are inconclusive, and there is general agreement that on-site measurements, obtained over a long time period, are necessary to better understand the mechanisms involved in the distribution of this element on the Moon. Although a mission of this type is extremely complex, it allows us to illustrate the main challenges involved in a multi-objective WSN placement problem, i.e., selection of optimal observation sites and maximization of the lifetime of the network. To tackle optimization, we use a recent adaptation of the ant colony optimization (ACOR) metaheuristic, extended to continuous domains. Solutions are provided in the form of a Pareto frontier that shows the optimal equilibria. Moreover, we compared our scheme with the four-directional placement (FDP) heuristic, which was outperformed in all cases.
NASA Astrophysics Data System (ADS)
Baumann, Erwin W.; Williams, David L.
1993-08-01
Artificial neural networks capable of learning and recalling stochastic associations between non-deterministic quantities have received relatively little attention to date. One potential application of such stochastic associative networks is the generation of sensory 'expectations' based on arbitrary subsets of sensor inputs to support anticipatory and investigate behavior in sensor-based robots. Another application of this type of associative memory is the prediction of how a scene will look in one spectral band, including noise, based upon its appearance in several other wavebands. This paper describes a semi-supervised neural network architecture composed of self-organizing maps associated through stochastic inter-layer connections. This 'Stochastic Associative Memory' (SAM) can learn and recall non-deterministic associations between multi-dimensional probability density functions. The stochastic nature of the network also enables it to represent noise distributions that are inherent in any true sensing process. The SAM architecture, training process, and initial application to sensor image prediction are described. Relationships to Fuzzy Associative Memory (FAM) are discussed.
MAC layer security issues in wireless mesh networks
NASA Astrophysics Data System (ADS)
Reddy, K. Ganesh; Thilagam, P. Santhi
2016-03-01
Wireless Mesh Networks (WMNs) have emerged as a promising technology for a broad range of applications due to their self-organizing, self-configuring and self-healing capability, in addition to their low cost and easy maintenance. Securing WMNs is more challenging and complex issue due to their inherent characteristics such as shared wireless medium, multi-hop and inter-network communication, highly dynamic network topology and decentralized architecture. These vulnerable features expose the WMNs to several types of attacks in MAC layer. The existing MAC layer standards and implementations are inadequate to secure these features and fail to provide comprehensive security solutions to protect both backbone and client mesh. Hence, there is a need for developing efficient, scalable and integrated security solutions for WMNs. In this paper, we classify the MAC layer attacks and analyze the existing countermeasures. Based on attacks classification and countermeasures analysis, we derive the research directions to enhance the MAC layer security for WMNs.
An elementary quantum network using robust nuclear spin qubits in diamond
NASA Astrophysics Data System (ADS)
Kalb, Norbert; Reiserer, Andreas; Humphreys, Peter; Blok, Machiel; van Bemmelen, Koen; Twitchen, Daniel; Markham, Matthew; Taminiau, Tim; Hanson, Ronald
Quantum registers containing multiple robust qubits can form the nodes of future quantum networks for computation and communication. Information storage within such nodes must be resilient to any type of local operation. Here we demonstrate multiple robust memories by employing five nuclear spins adjacent to a nitrogen-vacancy defect centre in diamond. We characterize the storage of quantum superpositions and their resilience to entangling attempts with the electron spin of the defect centre. The storage fidelity is found to be limited by the probabilistic electron spin reset after failed entangling attempts. Control over multiple memories is then utilized to encode states in decoherence protected subspaces with increased robustness. Furthermore we demonstrate memory control in two optically linked network nodes and characterize the storage capabilities of both memories in terms of the process fidelity with the identity. These results pave the way towards multi-qubit quantum algorithms in a remote network setting.
The multilocus sequence typing network: mlst.net.
Aanensen, David M; Spratt, Brian G
2005-07-01
The unambiguous characterization of strains of a pathogen is crucial for addressing questions relating to its epidemiology, population and evolutionary biology. Multilocus sequence typing (MLST), which defines strains from the sequences at seven house-keeping loci, has become the method of choice for molecular typing of many bacterial and fungal pathogens (and non-pathogens), and MLST schemes and strain databases are available for a growing number of prokaryotic and eukaryotic organisms. Sequence data are ideal for strain characterization as they are unambiguous, meaning strains can readily be compared between laboratories via the Internet. Laboratories undertaking MLST can quickly progress from sequencing the seven gene fragments to characterizing their strains and relating them to those submitted by others and to the population as a whole. We provide the gateway to a number of MLST schemes, each of which contain a set of tools for the initial characterization of strains, and methods for relating query strains to other strains of the species, including clustering based on differences in allelic profiles, phylogenetic trees based on concatenated sequences, and a recently developed method (eBURST) for identifying clonal complexes within a species and displaying the overall structure of the population. This network of MLST websites is available at http://www.mlst.net.
NASA Astrophysics Data System (ADS)
Abesamis, Rene A.; Saenz-Agudelo, Pablo; Berumen, Michael L.; Bode, Michael; Jadloc, Claro Renato L.; Solera, Leilani A.; Villanoy, Cesar L.; Bernardo, Lawrence Patrick C.; Alcala, Angel C.; Russ, Garry R.
2017-09-01
Networks of no-take marine reserves (NTMRs) are a widely advocated strategy for managing coral reefs. However, uncertainty about the strength of population connectivity between individual reefs and NTMRs through larval dispersal remains a major obstacle to effective network design. In this study, larval dispersal among NTMRs and fishing grounds in the Philippines was inferred by conducting genetic parentage analysis on a coral-reef fish ( Chaetodon vagabundus). Adult and juvenile fish were sampled intensively in an area encompassing approximately 90 km of coastline. Thirty-seven true parent-offspring pairs were accepted after screening 1978 juveniles against 1387 adults. The data showed all types of dispersal connections that may occur in NTMR networks, with assignments suggesting connectivity among NTMRs and fishing grounds ( n = 35) far outnumbering those indicating self-recruitment ( n = 2). Critically, half (51%) of the inferred occurrences of larval dispersal linked reefs managed by separate, independent municipalities and constituent villages, emphasising the need for nested collaborative management arrangements across management units to sustain NTMR networks. Larval dispersal appeared to be influenced by wind-driven seasonal reversals in the direction of surface currents. The best-fit larval dispersal kernel estimated from the parentage data predicted that 50% of larvae originating from a population would attempt to settle within 33 km, and 95% within 83 km. Mean larval dispersal distance was estimated to be 36.5 km. These results suggest that creating a network of closely spaced (less than a few tens of km apart) NTMRs can enhance recruitment for protected and fished populations throughout the NTMR network. The findings underscore major challenges for regional coral-reef management initiatives that must be addressed with priority: (1) strengthening management of NTMR networks across political or customary boundaries; and (2) achieving adequate population connectivity via larval dispersal to sustain reef-fish populations within these networks.
NASA Astrophysics Data System (ADS)
Bromis, K.; Kakkos, I.; Gkiatis, K.; Karanasiou, I. S.; Matsopoulos, G. K.
2017-11-01
Previous neurocognitive assessments in Small Cell Lung Cancer (SCLC) population, highlight the presence of neurocognitive impairments (mainly in attention processing and executive functioning) in this type of cancer. The majority of these studies, associate these deficits with the Prophylactic Cranial Irradiation (PCI) that patients undergo in order to avoid brain metastasis. However, there is not much evidence exploring cognitive impairments induced by chemotherapy in SCLC patients. For this reason, we aimed to investigate the underlying processes that may potentially affect cognition by examining brain functional connectivity in nineteen SCLC patients after chemotherapy treatment, while additionally including fourteen healthy participants as control group. Independent Component Analysis (ICA) is a functional connectivity measure aiming to unravel the temporal correlation between brain regions, which are called brain networks. We focused on two brain networks related to the aforementioned cognitive functions, the Default Mode Network (DMN) and the Task-Positive Network (TPN). Permutation tests were performed between the two groups to assess the differences and control for familywise errors in the statistical parametric maps. ICA analysis showed functional connectivity disruptions within both of the investigated networks. These results, propose a detrimental effect of chemotherapy on brain functioning in the SCLC population.
Multi-type Childhood Abuse, Strategies of Coping, and Psychological Adaptations in Young Adults
Sesar, Kristina; Šimić, Nataša; Barišić, Marijana
2010-01-01
Aim To retrospectively analyze the rate of multi-type abuse in childhood and the effects of childhood abuse and type of coping strategies on the psychological adaptation of young adults in a sample form the student population of the University of Mostar. Methods The study was conducted on a convenience sample of 233 students from the University of Mostar (196 female and 37 male), with a median age of 20 (interquartile range, 2). Exposure to abuse was determined using the Child Maltreatment Scales for Adults, which assesses emotional, physical, and sexual abuse, neglect, and witnessing family violence. Psychological adaptation was explored by the Trauma Symptom Checklist, which assesses anxiety/depression, sexual problems, trauma symptoms, and somatic symptoms. Strategies of coping with stress were explored by the Coping Inventory for Stressful Situations. Results Multi-type abuse in childhood was experienced by 172 participants (74%) and all types of abuse by 11 (5%) participants. Emotional and physical maltreatment were the most frequent types of abuse and mostly occurred together with other types of abuse. Significant association was found between all types of abuse (r = 0.436-0.778, P < 0.050). Exposure to sexual abuse in childhood and coping strategies were significant predictors of anxiety/depression (R2 = 0.3553), traumatic symptoms (R2 = 0.2299), somatic symptoms (R2 = 0.2173), and sexual problems (R2 = 0.1550, P < 0.001). Conclusion Exposure to multi-type abuse in childhood is a traumatic experience with long-term negative effects. Problem-oriented coping strategies ensure a better psychosocial adaptation than emotion-oriented strategies. PMID:20960590
Zeller, Katherine A; Wattles, David W; DeStefano, Stephen
2018-05-09
Wildlife-vehicle collisions are a human safety issue and may negatively impact wildlife populations. Most wildlife-vehicle collision studies predict high-risk road segments using only collision data. However, these data lack biologically relevant information such as wildlife population densities and successful road-crossing locations. We overcome this shortcoming with a new method that combines successful road crossings with vehicle collision data, to identify road segments that have both high biological relevance and high risk. We used moose (Alces americanus) road-crossing locations from 20 moose collared with Global Positioning Systems as well as moose-vehicle collision (MVC) data in the state of Massachusetts, USA, to create multi-scale resource selection functions. We predicted the probability of moose road crossings and MVCs across the road network and combined these surfaces to identify road segments that met the dual criteria of having high biological relevance and high risk for MVCs. These road segments occurred mostly on larger roadways in natural areas and were surrounded by forests, wetlands, and a heterogenous mix of land cover types. We found MVCs resulted in the mortality of 3% of the moose population in Massachusetts annually. Although there have been only three human fatalities related to MVCs in Massachusetts since 2003, the human fatality rate was one of the highest reported in the literature. The rate of MVCs relative to the size of the moose population and the risk to human safety suggest a need for road mitigation measures, such as fencing, animal detection systems, and large mammal-crossing structures on roadways in Massachusetts.
Sloane, Elliot; Gehlot, Vijay
2005-01-01
Hospitals and manufacturers are designing and deploying the IEEE 802.x wireless technologies in medical devices to promote patient mobility and flexible facility use. There is little information, however, on the reliability or ultimate safety of connecting multiple wireless life-critical medical devices from multiple vendors using commercial 802.11a, 802.11b, 802.11g or pre-802.11n devices. It is believed that 802.11-type devices can introduce unintended life-threatening risks unless delivery of critical patient alarms to central monitoring systems and/or clinical personnel is assured by proper use of 802.11e Quality of Service (QoS) methods. Petri net tools can be used to simulate all possible states and transitions between devices and/or systems in a wireless device network, and can identify failure modes in advance. Colored Petri Net (CPN) tools are ideal, in fact, as they allow tracking and controlling each message in a network based on pre-selected criteria. This paper describes a research project using CPN to simulate and validate alarm integrity in a small multi-modality wireless patient monitoring system. A 20-monitor wireless patient monitoring network is created in two versions: one with non-prioritized 802.x CSM protocols and the second with simulated Quality of Service (QoS) capabilities similar to 802.11e (i.e., the second network allows message priority management.) In the standard 802.x network, dangerous heart arrhythmia and pulse oximetry alarms could not be reliably and rapidly communicated, but the second network's QoS priority management reduced that risk significantly.
Service-Oriented Node Scheduling Scheme for Wireless Sensor Networks Using Markov Random Field Model
Cheng, Hongju; Su, Zhihuang; Lloret, Jaime; Chen, Guolong
2014-01-01
Future wireless sensor networks are expected to provide various sensing services and energy efficiency is one of the most important criterions. The node scheduling strategy aims to increase network lifetime by selecting a set of sensor nodes to provide the required sensing services in a periodic manner. In this paper, we are concerned with the service-oriented node scheduling problem to provide multiple sensing services while maximizing the network lifetime. We firstly introduce how to model the data correlation for different services by using Markov Random Field (MRF) model. Secondly, we formulate the service-oriented node scheduling issue into three different problems, namely, the multi-service data denoising problem which aims at minimizing the noise level of sensed data, the representative node selection problem concerning with selecting a number of active nodes while determining the services they provide, and the multi-service node scheduling problem which aims at maximizing the network lifetime. Thirdly, we propose a Multi-service Data Denoising (MDD) algorithm, a novel multi-service Representative node Selection and service Determination (RSD) algorithm, and a novel MRF-based Multi-service Node Scheduling (MMNS) scheme to solve the above three problems respectively. Finally, extensive experiments demonstrate that the proposed scheme efficiently extends the network lifetime. PMID:25384005
Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs.
Ledoux, Erwan; Brunel, Nicolas
2011-01-01
We investigate the dynamics of recurrent networks of excitatory (E) and inhibitory (I) neurons in the presence of time-dependent inputs. The dynamics is characterized by the network dynamical transfer function, i.e., how the population firing rate is modulated by sinusoidal inputs at arbitrary frequencies. Two types of networks are studied and compared: (i) a Wilson-Cowan type firing rate model; and (ii) a fully connected network of leaky integrate-and-fire (LIF) neurons, in a strong noise regime. We first characterize the region of stability of the "asynchronous state" (a state in which population activity is constant in time when external inputs are constant) in the space of parameters characterizing the connectivity of the network. We then systematically characterize the qualitative behaviors of the dynamical transfer function, as a function of the connectivity. We find that the transfer function can be either low-pass, or with a single or double resonance, depending on the connection strengths and synaptic time constants. Resonances appear when the system is close to Hopf bifurcations, that can be induced by two separate mechanisms: the I-I connectivity and the E-I connectivity. Double resonances can appear when excitatory delays are larger than inhibitory delays, due to the fact that two distinct instabilities exist with a finite gap between the corresponding frequencies. In networks of LIF neurons, changes in external inputs and external noise are shown to be able to change qualitatively the network transfer function. Firing rate models are shown to exhibit the same diversity of transfer functions as the LIF network, provided delays are present. They can also exhibit input-dependent changes of the transfer function, provided a suitable static non-linearity is incorporated.
Software-Defined Architectures for Spectrally Efficient Cognitive Networking in Extreme Environments
NASA Astrophysics Data System (ADS)
Sklivanitis, Georgios
The objective of this dissertation is the design, development, and experimental evaluation of novel algorithms and reconfigurable radio architectures for spectrally efficient cognitive networking in terrestrial, airborne, and underwater environments. Next-generation wireless communication architectures and networking protocols that maximize spectrum utilization efficiency in congested/contested or low-spectral availability (extreme) communication environments can enable a rich body of applications with unprecedented societal impact. In recent years, underwater wireless networks have attracted significant attention for military and commercial applications including oceanographic data collection, disaster prevention, tactical surveillance, offshore exploration, and pollution monitoring. Unmanned aerial systems that are autonomously networked and fully mobile can assist humans in extreme or difficult-to-reach environments and provide cost-effective wireless connectivity for devices without infrastructure coverage. Cognitive radio (CR) has emerged as a promising technology to maximize spectral efficiency in dynamically changing communication environments by adaptively reconfiguring radio communication parameters. At the same time, the fast developing technology of software-defined radio (SDR) platforms has enabled hardware realization of cognitive radio algorithms for opportunistic spectrum access. However, existing algorithmic designs and protocols for shared spectrum access do not effectively capture the interdependencies between radio parameters at the physical (PHY), medium-access control (MAC), and network (NET) layers of the network protocol stack. In addition, existing off-the-shelf radio platforms and SDR programmable architectures are far from fulfilling runtime adaptation and reconfiguration across PHY, MAC, and NET layers. Spectrum allocation in cognitive networks with multi-hop communication requirements depends on the location, network traffic load, and interference profile at each network node. As a result, the development and implementation of algorithms and cross-layer reconfigurable radio platforms that can jointly treat space, time, and frequency as a unified resource to be dynamically optimized according to inter- and intra-network interference constraints is of fundamental importance. In the next chapters, we present novel algorithmic and software/hardware implementation developments toward the deployment of spectrally efficient terrestrial, airborne, and underwater wireless networks. In Chapter 1 we review the state-of-art in commercially available SDR platforms, describe their software and hardware capabilities, and classify them based on their ability to enable rapid prototyping and advance experimental research in wireless networks. Chapter 2 discusses system design and implementation details toward real-time evaluation of a software-radio platform for all-spectrum cognitive channelization in the presence of narrowband or wideband primary stations. All-spectrum channelization is achieved by designing maximum signal-to-interference-plus-noise ratio (SINR) waveforms that span the whole continuum of the device-accessible spectrum, while satisfying peak power and interference temperature (IT) constraints for the secondary and primary users, respectively. In Chapter 3, we introduce the concept of all-spectrum channelization based on max-SINR optimized sparse-binary waveforms, we propose optimal and suboptimal waveform design algorithms, and evaluate their SINR and bit-error-rate (BER) performance in an SDR testbed. Chapter 4 considers the problem of channel estimation with minimal pilot signaling in multi-cell multi-user multi-input multi-output (MIMO) systems with very large antenna arrays at the base station, and proposes a least-squares (LS)-type algorithm that iteratively extracts channel and data estimates from a short record of data measurements. Our algorithmic developments toward spectrally-efficient cognitive networking through joint optimization of channel access code-waveforms and routes in a multi-hop network are described in Chapter 5. Algorithmic designs are software optimized on heterogeneous multi-core general-purpose processor (GPP)-based SDR architectures by leveraging a novel software-radio framework that offers self-optimization and real-time adaptation capabilities at the PHY, MAC, and NET layers of the network protocol stack. Our system design approach is experimentally validated under realistic conditions in a large-scale hybrid ground-air testbed deployment. Chapter 6 reviews the state-of-art in software and hardware platforms for underwater wireless networking and proposes a software-defined acoustic modem prototype that enables (i) cognitive reconfiguration of PHY/MAC parameters, and (ii) cross-technology communication adaptation. The proposed modem design is evaluated in terms of effective communication data rate in both water tank and lake testbed setups. In Chapter 7, we present a novel receiver configuration for code-waveform-based multiple-access underwater communications. The proposed receiver is fully reconfigurable and executes (i) all-spectrum cognitive channelization, and (ii) combined synchronization, channel estimation, and demodulation. Experimental evaluation in terms of SINR and BER show that all-spectrum channelization is a powerful proposition for underwater communications. At the same time, the proposed receiver design can significantly enhance bandwidth utilization. Finally, in Chapter 8, we focus on challenging practical issues that arise in underwater acoustic sensor network setups where co-located multi-antenna sensor deployment is not feasible due to power, computation, and hardware limitations, and design, implement, and evaluate an underwater receiver structure that accounts for multiple carrier frequency and timing offsets in virtual (distributed) MIMO underwater systems.
Inferring Epidemic Contact Structure from Phylogenetic Trees
Leventhal, Gabriel E.; Kouyos, Roger; Stadler, Tanja; von Wyl, Viktor; Yerly, Sabine; Böni, Jürg; Cellerai, Cristina; Klimkait, Thomas; Günthard, Huldrych F.; Bonhoeffer, Sebastian
2012-01-01
Contact structure is believed to have a large impact on epidemic spreading and consequently using networks to model such contact structure continues to gain interest in epidemiology. However, detailed knowledge of the exact contact structure underlying real epidemics is limited. Here we address the question whether the structure of the contact network leaves a detectable genetic fingerprint in the pathogen population. To this end we compare phylogenies generated by disease outbreaks in simulated populations with different types of contact networks. We find that the shape of these phylogenies strongly depends on contact structure. In particular, measures of tree imbalance allow us to quantify to what extent the contact structure underlying an epidemic deviates from a null model contact network and illustrate this in the case of random mixing. Using a phylogeny from the Swiss HIV epidemic, we show that this epidemic has a significantly more unbalanced tree than would be expected from random mixing. PMID:22412361
Self-organization in Balanced State Networks by STDP and Homeostatic Plasticity
Effenberger, Felix; Jost, Jürgen; Levina, Anna
2015-01-01
Structural inhomogeneities in synaptic efficacies have a strong impact on population response dynamics of cortical networks and are believed to play an important role in their functioning. However, little is known about how such inhomogeneities could evolve by means of synaptic plasticity. Here we present an adaptive model of a balanced neuronal network that combines two different types of plasticity, STDP and synaptic scaling. The plasticity rules yield both long-tailed distributions of synaptic weights and firing rates. Simultaneously, a highly connected subnetwork of driver neurons with strong synapses emerges. Coincident spiking activity of several driver cells can evoke population bursts and driver cells have similar dynamical properties as leader neurons found experimentally. Our model allows us to observe the delicate interplay between structural and dynamical properties of the emergent inhomogeneities. It is simple, robust to parameter changes and able to explain a multitude of different experimental findings in one basic network. PMID:26335425
Decoding the spatial signatures of multi-scale climate variability - a climate network perspective
NASA Astrophysics Data System (ADS)
Donner, R. V.; Jajcay, N.; Wiedermann, M.; Ekhtiari, N.; Palus, M.
2017-12-01
During the last years, the application of complex networks as a versatile tool for analyzing complex spatio-temporal data has gained increasing interest. Establishing this approach as a new paradigm in climatology has already provided valuable insights into key spatio-temporal climate variability patterns across scales, including novel perspectives on the dynamics of the El Nino Southern Oscillation or the emergence of extreme precipitation patterns in monsoonal regions. In this work, we report first attempts to employ network analysis for disentangling multi-scale climate variability. Specifically, we introduce the concept of scale-specific climate networks, which comprises a sequence of networks representing the statistical association structure between variations at distinct time scales. For this purpose, we consider global surface air temperature reanalysis data and subject the corresponding time series at each grid point to a complex-valued continuous wavelet transform. From this time-scale decomposition, we obtain three types of signals per grid point and scale - amplitude, phase and reconstructed signal, the statistical similarity of which is then represented by three complex networks associated with each scale. We provide a detailed analysis of the resulting connectivity patterns reflecting the spatial organization of climate variability at each chosen time-scale. Global network characteristics like transitivity or network entropy are shown to provide a new view on the (global average) relevance of different time scales in climate dynamics. Beyond expected trends originating from the increasing smoothness of fluctuations at longer scales, network-based statistics reveal different degrees of fragmentation of spatial co-variability patterns at different scales and zonal shifts among the key players of climate variability from tropically to extra-tropically dominated patterns when moving from inter-annual to decadal scales and beyond. The obtained results demonstrate the potential usefulness of systematically exploiting scale-specific climate networks, whose general patterns are in line with existing climatological knowledge, but provide vast opportunities for further quantifications at local, regional and global scales that are yet to be explored.
NASA Astrophysics Data System (ADS)
Rich, Scott; Zochowski, Michal; Booth, Victoria
2018-01-01
Acetylcholine (ACh), one of the brain's most potent neuromodulators, can affect intrinsic neuron properties through blockade of an M-type potassium current. The effect of ACh on excitatory and inhibitory cells with this potassium channel modulates their membrane excitability, which in turn affects their tendency to synchronize in networks. Here, we study the resulting changes in dynamics in networks with inter-connected excitatory and inhibitory populations (E-I networks), which are ubiquitous in the brain. Utilizing biophysical models of E-I networks, we analyze how the network connectivity structure in terms of synaptic connectivity alters the influence of ACh on the generation of synchronous excitatory bursting. We investigate networks containing all combinations of excitatory and inhibitory cells with high (Type I properties) or low (Type II properties) modulatory tone. To vary network connectivity structure, we focus on the effects of the strengths of inter-connections between excitatory and inhibitory cells (E-I synapses and I-E synapses), and the strengths of intra-connections among excitatory cells (E-E synapses) and among inhibitory cells (I-I synapses). We show that the presence of ACh may or may not affect the generation of network synchrony depending on the network connectivity. Specifically, strong network inter-connectivity induces synchronous excitatory bursting regardless of the cellular propensity for synchronization, which aligns with predictions of the PING model. However, when a network's intra-connectivity dominates its inter-connectivity, the propensity for synchrony of either inhibitory or excitatory cells can determine the generation of network-wide bursting.
SSL: Signal Similarity-Based Localization for Ocean Sensor Networks.
Chen, Pengpeng; Ma, Honglu; Gao, Shouwan; Huang, Yan
2015-11-24
Nowadays, wireless sensor networks are often deployed on the sea surface for ocean scientific monitoring. One of the important challenges is to localize the nodes' positions. Existing localization schemes can be roughly divided into two types: range-based and range-free. The range-based localization approaches heavily depend on extra hardware capabilities, while range-free ones often suffer from poor accuracy and low scalability, far from the practical ocean monitoring applications. In response to the above limitations, this paper proposes a novel signal similarity-based localization (SSL) technology, which localizes the nodes' positions by fully utilizing the similarity of received signal strength and the open-air characteristics of the sea surface. In the localization process, we first estimate the relative distance between neighboring nodes through comparing the similarity of received signal strength and then calculate the relative distance for non-neighboring nodes with the shortest path algorithm. After that, the nodes' relative relation map of the whole network can be obtained. Given at least three anchors, the physical locations of nodes can be finally determined based on the multi-dimensional scaling (MDS) technology. The design is evaluated by two types of ocean experiments: a zonal network and a non-regular network using 28 nodes. Results show that the proposed design improves the localization accuracy compared to typical connectivity-based approaches and also confirm its effectiveness for large-scale ocean sensor networks.
Securing Information with Complex Optical Encryption Networks
2015-08-11
Network Security, Network Vulnerability , Multi-dimentional Processing, optoelectronic devices 16. SECURITY CLASSIFICATION OF: 17. LIMITATION... optoelectronic devices and systems should be analyzed before the retrieval, any hostile hacker will need to possess multi-disciplinary scientific...sophisticated optoelectronic principles and systems where he/she needs to process the information. However, in the military applications, most military
Hybrid WDM/OCDMA for next generation access network
NASA Astrophysics Data System (ADS)
Wang, Xu; Wada, Naoya; Miyazaki, T.; Cincotti, G.; Kitayama, Ken-ichi
2007-11-01
Hybrid wavelength division multiplexing/optical code division multiple access (WDM/OCDMA) passive optical network (PON), where asynchronous OCDMA traffic transmits over WDM network, can be one potential candidate for gigabit-symmetric fiber-to-the-home (FTTH) services. In a cost-effective WDM/OCDMA network, a large scale multi-port encoder/decoder can be employed in the central office, and a low cost encoder/decoder will be used in optical network unit (ONU). The WDM/OCDMA system could be one promising solution to the symmetric high capacity access network with high spectral efficiency, cost effective, good flexibility and enhanced security. Asynchronous WDM/OCDMA systems have been experimentally demonstrated using superstructured fiber Bragg gratings (SSFBG) and muti-port OCDMA en/decoders. The total throughput has reached above Tera-bit/s with spectral efficiency of about 0.41. The key enabling techniques include ultra-long SSFBG, multi-port E/D with high power contrast ratio, optical thresholding, differential phase shift keying modulation with balanced detection, forward error correction, and etc. Using multi-level modulation formats to carry multi-bit information with single pulse, the total capacity and spectral efficiency could be further enhanced.
NASA Astrophysics Data System (ADS)
Knox, S. H.; Sturtevant, C. S.; Oikawa, P. Y.; Matthes, J. H.; Koteen, L. E.; Anderson, F. E.; Verfaillie, J. G.; Baldocchi, D. D.
2014-12-01
The new generation of open-path, low power, laser spectrometers has allowed us to measure methane (CH4) fluxes continuously in remote regions and answer new and exciting questions on the spatial and temporal variability of greenhouse gas (GHG) fluxes using networks of eddy covariance (EC) towers. Our research is focused in the Sacramento-San Joaquin Delta where we have installed a regional network of flux towers to assess the impacts of land-use change and ecological restoration on CH4 and CO2 fluxes. The Delta was drained for agriculture over a century ago and has since has experienced high rates of subsidence. It is recognized that agriculture on drained peat soils in the Delta is unsustainable in the long-term, and to help reverse subsidence and capture carbon (C) there is an interest in restoring drained land-use types to flooded conditions. However, flooding increases CH4 emissions. We conducted multiple years of simultaneous EC measurements at drained agricultural peatlands (a pasture, a corn field and an alfalfa field) and flooded land-use types (a rice paddy and 3 restored wetlands) to assess the impact of drained to flooded land-use change on CO2 and CH4 fluxes. Since these sites are all within 20 km of each other, they share the same basic meteorology, enabling a direct comparison of differences in the C and GHG budgets between sites. Using a multi-tower approach we found that converting drained agricultural peatlands to flooded land-use types can help reverse soil subsidence and reduce GHG emissions from the Delta. Furthermore, there is a growing interest in wetland restoration in California to generate C credits for both the voluntary C market and the state's cap-and-trade program. However, information on GHG fluxes from restored wetlands is lacking. Using multi-year measurements of GHG fluxes from restored wetlands of varying ages, our research also aims to understand how CO2 and CH4 fluxes from restored wetlands vary during ecosystem development, determine the daily and seasonal forcings controlling these fluxes, and assess management strategies that can help minimize CH4 fluxes and maximize C uptake in restored wetlands. Our multi-year multi-site research program is beginning to answer these questions and bridge understanding between biometeorology, biogeochemistry and climate policy.
Constructing Robust Cooperative Networks using a Multi-Objective Evolutionary Algorithm
Wang, Shuai; Liu, Jing
2017-01-01
The design and construction of network structures oriented towards different applications has attracted much attention recently. The existing studies indicated that structural heterogeneity plays different roles in promoting cooperation and robustness. Compared with rewiring a predefined network, it is more flexible and practical to construct new networks that satisfy the desired properties. Therefore, in this paper, we study a method for constructing robust cooperative networks where the only constraint is that the number of nodes and links is predefined. We model this network construction problem as a multi-objective optimization problem and propose a multi-objective evolutionary algorithm, named MOEA-Netrc, to generate the desired networks from arbitrary initializations. The performance of MOEA-Netrc is validated on several synthetic and real-world networks. The results show that MOEA-Netrc can construct balanced candidates and is insensitive to the initializations. MOEA-Netrc can find the Pareto fronts for networks with different levels of cooperation and robustness. In addition, further investigation of the robustness of the constructed networks revealed the impact on other aspects of robustness during the construction process. PMID:28134314
Marini, Simone; Trifoglio, Emanuele; Barbarini, Nicola; Sambo, Francesco; Di Camillo, Barbara; Malovini, Alberto; Manfrini, Marco; Cobelli, Claudio; Bellazzi, Riccardo
2015-10-01
The increasing prevalence of diabetes and its related complications is raising the need for effective methods to predict patient evolution and for stratifying cohorts in terms of risk of developing diabetes-related complications. In this paper, we present a novel approach to the simulation of a type 1 diabetes population, based on Dynamic Bayesian Networks, which combines literature knowledge with data mining of a rich longitudinal cohort of type 1 diabetes patients, the DCCT/EDIC study. In particular, in our approach we simulate the patient health state and complications through discretized variables. Two types of models are presented, one entirely learned from the data and the other partially driven by literature derived knowledge. The whole cohort is simulated for fifteen years, and the simulation error (i.e. for each variable, the percentage of patients predicted in the wrong state) is calculated every year on independent test data. For each variable, the population predicted in the wrong state is below 10% on both models over time. Furthermore, the distributions of real vs. simulated patients greatly overlap. Thus, the proposed models are viable tools to support decision making in type 1 diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.
Coexistence of the social types: genetic population structure in the ant Formica exsecta.
Seppä, Perttu; Gyllenstrand, Niclas; Corander, Jukka; Pamilo, Pekka
2004-11-01
The ant Formica exsecta has two types of colonies that exist in sympatry but usually as separate subpopulations: colonies with simple social organization and single queens (M type) or colonial networks with multiple queens (P type). We used both nuclear (DNA microsatellites) and mitochondrial markers to study the transition between the social types, and the contribution of males and females in gene flow within and between the types. Our results showed that the social types had different spatial genetic structures. The M subpopulations formed a fairly uniform population, whereas the P subpopulations were, on average, more differentiated from each other than from the nearby M subpopulations and could have been locally established from the M-type colonies, followed by philopatric behavior and restricted emigration of females. Thus, the relationship between the two social types resembles that of source (M type) and sink (P type) populations. The comparison of mitochondrial (phiST) and nuclear (FST) differentiation indicates that the dispersal rate of males is four to five times larger than that of females both among the P-type subpopulations and between the social types. Our results suggest that evolution toward complex social organization can have an important effect on genetic population structure through changes in dispersal behavior associated with different sociogenetic organizations.
Multi-Scale Multi-Physics Modeling of Matrix Transport Properties in Fractured Shale Reservoirs
NASA Astrophysics Data System (ADS)
Mehmani, A.; Prodanovic, M.
2014-12-01
Understanding the shale matrix flow behavior is imperative in successful reservoir development for hydrocarbon production and carbon storage. Without a predictive model, significant uncertainties in flowback from the formation, the communication between the fracture and matrix as well as proper fracturing practice will ensue. Informed by SEM images, we develop deterministic network models that couple pores from multiple scales and their respective fluid physics. The models are used to investigate sorption hysteresis as an affordable way of inferring the nanoscale pore structure in core scale. In addition, restricted diffusion as a function of pore shape, pore-throat size ratios and network connectivity is computed to make correct interpretation of the 2D NMR maps possible. Our novel pore network models have the ability to match sorption hysteresis measurements without any tuning parameters. The results clarify a common misconception of linking type 3 nitrogen hysteresis curves to only the shale pore shape and show promising sensitivty for nanopore structre inference in core scale. The results on restricted diffusion shed light on the importance of including shape factors in 2D NMR interpretations. A priori "weighting factors" as a function of pore-throat and throat-length ratio are presented and the effect of network connectivity on diffusion is quantitatively assessed. We are currently working on verifying our models with experimental data gathered from the Eagleford formation.
Ma, Junjie; Meng, Fansheng; Zhou, Yuexi; Wang, Yeyao; Shi, Ping
2018-02-16
Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.
Zhou, Yuexi; Wang, Yeyao; Shi, Ping
2018-01-01
Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths. PMID:29462929
Salient object detection based on multi-scale contrast.
Wang, Hai; Dai, Lei; Cai, Yingfeng; Sun, Xiaoqiang; Chen, Long
2018-05-01
Due to the development of deep learning networks, a salient object detection based on deep learning networks, which are used to extract the features, has made a great breakthrough compared to the traditional methods. At present, the salient object detection mainly relies on very deep convolutional network, which is used to extract the features. In deep learning networks, an dramatic increase of network depth may cause more training errors instead. In this paper, we use the residual network to increase network depth and to mitigate the errors caused by depth increase simultaneously. Inspired by image simplification, we use color and texture features to obtain simplified image with multiple scales by means of region assimilation on the basis of super-pixels in order to reduce the complexity of images and to improve the accuracy of salient target detection. We refine the feature on pixel level by the multi-scale feature correction method to avoid the feature error when the image is simplified at the above-mentioned region level. The final full connection layer not only integrates features of multi-scale and multi-level but also works as classifier of salient targets. The experimental results show that proposed model achieves better results than other salient object detection models based on original deep learning networks. Copyright © 2018 Elsevier Ltd. All rights reserved.
Spatio-Temporal Evolution and Scaling Properties of Human Settlements (Invited)
NASA Astrophysics Data System (ADS)
Small, C.; Milesi, C.; Elvidge, C.; Baugh, K.; Henebry, G. M.; Nghiem, S. V.
2013-12-01
Growth and evolution of cities and smaller settlements is usually studied in the context of population and other socioeconomic variables. While this is logical in the sense that settlements are groups of humans engaged in socioeconomic processes, our means of collecting information about spatio-temporal distributions of population and socioeconomic variables often lack the spatial and temporal resolution to represent the processes at scales which they are known to occur. Furthermore, metrics and definitions often vary with country and through time. However, remote sensing provides globally consistent, synoptic observations of several proxies for human settlement at spatial and temporal resolutions sufficient to represent the evolution of settlements over the past 40 years. We use several independent but complementary proxies for anthropogenic land cover to quantify spatio-temporal (ST) evolution and scaling properties of human settlements globally. In this study we begin by comparing land cover and night lights in 8 diverse settings - each spanning gradients of population density and degree of land surface modification. Stable anthropogenic night light is derived from multi-temporal composites of emitted luminance measured by the VIIRS and DMSP-OLS sensors. Land cover is represented as mixtures of sub-pixel fractions of rock, soil and impervious Substrates, Vegetation and Dark surfaces (shadow, water and absorptive materials) estimated from Landsat imagery with > 94% accuracy. Multi-season stability and variability of land cover fractions effectively distinguishes between spectrally similar land covers that corrupt thematic classifications based on single images. We find that temporal stability of impervious substrates combined with persistent shadow cast between buildings results in temporally stable aggregate reflectance across seasons at the 30 m scale of a Landsat pixel. Comparison of night light brightness with land cover composition, stability and variability yields several consistent relationships that persist across a variety of settlement types and physical environments. We use the multiple threshold method of Small et al (2011) to represent a continuum of settlement density by segmenting both night light brightness and multi-season land cover characteristics. Rank-size distributions of spatially contiguous segments quantify scaling and connectivity of land cover. Spatial and temporal evolution of rank-size distributions is consistent with power laws as suggested by Zipf's Law for city size based on population. However, unlike Zipf's Law, the observed distributions persist to global scales in which the larger agglomerations are much larger than individual cities. The scaling relations observed extend from the scale of cities and smaller settlements up to vast spatial networks of interconnected settlements.
Hop Optimization and Relay Node Selection in Multi-hop Wireless Ad-Hoc Networks
NASA Astrophysics Data System (ADS)
Li, Xiaohua(Edward)
In this paper we propose an efficient approach to determine the optimal hops for multi-hop ad hoc wireless networks. Based on the assumption that nodes use successive interference cancellation (SIC) and maximal ratio combining (MRC) to deal with mutual interference and to utilize all the received signal energy, we show that the signal-to-interference-plus-noise ratio (SINR) of a node is determined only by the nodes before it, not the nodes after it, along a packet forwarding path. Based on this observation, we propose an iterative procedure to select the relay nodes and to calculate the path SINR as well as capacity of an arbitrary multi-hop packet forwarding path. The complexity of the algorithm is extremely low, and scaling well with network size. The algorithm is applicable in arbitrarily large networks. Its performance is demonstrated as desirable by simulations. The algorithm can be helpful in analyzing the performance of multi-hop wireless networks.
Solà-Ginés, Marc; Cameron-Veas, Karla; Badiola, Ignacio; Dolz, Roser; Majó, Natalia; Dahbi, Ghizlane; Viso, Susana; Mora, Azucena; Blanco, Jorge; Piedra-Carrasco, Nuria; González-López, Juan José; Migura-Garcia, Lourdes
2015-01-01
Avian pathogenic Escherichia coli (APEC) are the major cause of colibacillosis in poultry production. In this study, a total of 22 E. coli isolated from colibacillosis field cases and 10 avian faecal E. coli (AFEC) were analysed. All strains were characterised phenotypically by susceptibility testing and molecular typing methods such as pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The presence of 29 virulence genes associated to APEC and human extraintestinal pathogenic E. coli (ExPEC) was also evaluated. For cephalosporin resistant isolates, cephalosporin resistance genes, plasmid location and replicon typing was assessed. Avian isolates belonged to 26 O:H serotypes and 24 sequence types. Out of 22 APEC isolates, 91% contained the virulence genes predictors of APEC; iutA, hlyF, iss, iroN and ompT. Of all strains, 34% were considered ExPEC. PFGE analysis demonstrated a high degree of genetic polymorphism. All strains were multi-resistant, including those isolated from healthy animals. Eleven strains were resistant to cephalosporins; six contained blaCTX-M-14, two blaSHV-12, two blaCMY-2 and one blaSHV-2. Two strains harboured qnrA, and two qnrA together with aac(6')-Ib-cr. Additionally, the emergent clone O25b:H4-B2-ST131 was isolated from a healthy animal which harboured blaCMY-2 and qnrS genes. Cephalosporin resistant genes were mainly associated to the presence of IncK replicons. This study demonstrates a very diverse population of multi-drug resistant E. coli containing a high number of virulent genes. The E. coli population among broilers is a reservoir of resistance and virulence-associated genes that could be transmitted into the community through the food chain. More epidemiological studies are necessary to identify clonal groups and resistance mechanisms with potential relevance to public health.
Solà-Ginés, Marc; Cameron-Veas, Karla; Badiola, Ignacio; Dolz, Roser; Majó, Natalia; Dahbi, Ghizlane; Viso, Susana; Mora, Azucena; Blanco, Jorge; Piedra-Carrasco, Nuria; González-López, Juan José; Migura-Garcia, Lourdes
2015-01-01
Avian pathogenic Escherichia coli (APEC) are the major cause of colibacillosis in poultry production. In this study, a total of 22 E. coli isolated from colibacillosis field cases and 10 avian faecal E. coli (AFEC) were analysed. All strains were characterised phenotypically by susceptibility testing and molecular typing methods such as pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The presence of 29 virulence genes associated to APEC and human extraintestinal pathogenic E. coli (ExPEC) was also evaluated. For cephalosporin resistant isolates, cephalosporin resistance genes, plasmid location and replicon typing was assessed. Avian isolates belonged to 26 O:H serotypes and 24 sequence types. Out of 22 APEC isolates, 91% contained the virulence genes predictors of APEC; iutA, hlyF, iss, iroN and ompT. Of all strains, 34% were considered ExPEC. PFGE analysis demonstrated a high degree of genetic polymorphism. All strains were multi-resistant, including those isolated from healthy animals. Eleven strains were resistant to cephalosporins; six contained bla CTX-M-14, two bla SHV-12, two bla CMY-2 and one bla SHV-2. Two strains harboured qnrA, and two qnrA together with aac(6’)-Ib-cr. Additionally, the emergent clone O25b:H4-B2-ST131 was isolated from a healthy animal which harboured bla CMY-2 and qnrS genes. Cephalosporin resistant genes were mainly associated to the presence of IncK replicons. This study demonstrates a very diverse population of multi-drug resistant E. coli containing a high number of virulent genes. The E. coli population among broilers is a reservoir of resistance and virulence-associated genes that could be transmitted into the community through the food chain. More epidemiological studies are necessary to identify clonal groups and resistance mechanisms with potential relevance to public health. PMID:26600205
Qiu, Jingya; Darabos, Christian
2016-01-01
ABSTRACT Genome‐wide association studies (GWAS) have led to the discovery of over 200 single nucleotide polymorphisms (SNPs) associated with type 2 diabetes mellitus (T2DM). Additionally, East Asians develop T2DM at a higher rate, younger age, and lower body mass index than their European ancestry counterparts. The reason behind this occurrence remains elusive. With comprehensive searches through the National Human Genome Research Institute (NHGRI) GWAS catalog literature, we compiled a database of 2,800 ancestry‐specific SNPs associated with T2DM and 70 other related traits. Manual data extraction was necessary because the GWAS catalog reports statistics such as odds ratio and P‐value, but does not consistently include ancestry information. Currently, many statistics are derived by combining initial and replication samples from study populations of mixed ancestry. Analysis of all‐inclusive data can be misleading, as not all SNPs are transferable across diverse populations. We used ancestry data to construct ancestry‐specific human phenotype networks (HPN) centered on T2DM. Quantitative and visual analysis of network models reveal the genetic disparities between ancestry groups. Of the 27 phenotypes in the East Asian HPN, six phenotypes were unique to the network, revealing the underlying ancestry‐specific nature of some SNPs associated with T2DM. We studied the relationship between T2DM and five phenotypes unique to the East Asian HPN to generate new interaction hypotheses in a clinical context. The genetic differences found in our ancestry‐specific HPNs suggest different pathways are involved in the pathogenesis of T2DM among different populations. Our study underlines the importance of ancestry in the development of T2DM and its implications in pharmocogenetics and personalized medicine. PMID:27061195
Modeling the Pre-Industrial Roots of Modern Super-Exponential Population Growth
Stutz, Aaron Jonas
2014-01-01
To Malthus, rapid human population growth—so evident in 18th Century Europe—was obviously unsustainable. In his Essay on the Principle of Population, Malthus cogently argued that environmental and socioeconomic constraints on population rise were inevitable. Yet, he penned his essay on the eve of the global census size reaching one billion, as nearly two centuries of super-exponential increase were taking off. Introducing a novel extension of J. E. Cohen's hallmark coupled difference equation model of human population dynamics and carrying capacity, this article examines just how elastic population growth limits may be in response to demographic change. The revised model involves a simple formalization of how consumption costs influence carrying capacity elasticity over time. Recognizing that complex social resource-extraction networks support ongoing consumption-based investment in family formation and intergenerational resource transfers, it is important to consider how consumption has impacted the human environment and demography—especially as global population has become very large. Sensitivity analysis of the consumption-cost model's fit to historical population estimates, modern census data, and 21st Century demographic projections supports a critical conclusion. The recent population explosion was systemically determined by long-term, distinctly pre-industrial cultural evolution. It is suggested that modern globalizing transitions in technology, susceptibility to infectious disease, information flows and accumulation, and economic complexity were endogenous products of much earlier biocultural evolution of family formation's embeddedness in larger, hierarchically self-organizing cultural systems, which could potentially support high population elasticity of carrying capacity. Modern super-exponential population growth cannot be considered separately from long-term change in the multi-scalar political economy that connects family formation and intergenerational resource transfers to wider institutions and social networks. PMID:25141019
Xiao, Zhu; Liu, Hongjing; Havyarimana, Vincent; Li, Tong; Wang, Dong
2016-11-04
In this paper, we investigate the coverage performance and energy efficiency of multi-tier heterogeneous cellular networks (HetNets) which are composed of macrocells and different types of small cells, i.e., picocells and femtocells. By virtue of stochastic geometry tools, we model the multi-tier HetNets based on a Poisson point process (PPP) and analyze the Signal to Interference Ratio (SIR) via studying the cumulative interference from pico-tier and femto-tier. We then derive the analytical expressions of coverage probabilities in order to evaluate coverage performance in different tiers and investigate how it varies with the small cells' deployment density. By taking the fairness and user experience into consideration, we propose a disjoint channel allocation scheme and derive the system channel throughput for various tiers. Further, we formulate the energy efficiency optimization problem for multi-tier HetNets in terms of throughput performance and resource allocation fairness. To solve this problem, we devise a linear programming based approach to obtain the available area of the feasible solutions. System-level simulations demonstrate that the small cells' deployment density has a significant effect on the coverage performance and energy efficiency. Simulation results also reveal that there exits an optimal small cell base station (SBS) density ratio between pico-tier and femto-tier which can be applied to maximize the energy efficiency and at the same time enhance the system performance. Our findings provide guidance for the design of multi-tier HetNets for improving the coverage performance as well as the energy efficiency.
Xiao, Zhu; Liu, Hongjing; Havyarimana, Vincent; Li, Tong; Wang, Dong
2016-01-01
In this paper, we investigate the coverage performance and energy efficiency of multi-tier heterogeneous cellular networks (HetNets) which are composed of macrocells and different types of small cells, i.e., picocells and femtocells. By virtue of stochastic geometry tools, we model the multi-tier HetNets based on a Poisson point process (PPP) and analyze the Signal to Interference Ratio (SIR) via studying the cumulative interference from pico-tier and femto-tier. We then derive the analytical expressions of coverage probabilities in order to evaluate coverage performance in different tiers and investigate how it varies with the small cells’ deployment density. By taking the fairness and user experience into consideration, we propose a disjoint channel allocation scheme and derive the system channel throughput for various tiers. Further, we formulate the energy efficiency optimization problem for multi-tier HetNets in terms of throughput performance and resource allocation fairness. To solve this problem, we devise a linear programming based approach to obtain the available area of the feasible solutions. System-level simulations demonstrate that the small cells’ deployment density has a significant effect on the coverage performance and energy efficiency. Simulation results also reveal that there exits an optimal small cell base station (SBS) density ratio between pico-tier and femto-tier which can be applied to maximize the energy efficiency and at the same time enhance the system performance. Our findings provide guidance for the design of multi-tier HetNets for improving the coverage performance as well as the energy efficiency. PMID:27827917
Multi-service terminal adapter based on IP technology applications in rural area
NASA Astrophysics Data System (ADS)
Gao, Li; Li, Xiaobo; Yan, Juntao; Ren, Xupeng
Take advantage of ample modern existing telecom network resources to rural areas may achieve it's information society gradually. This includes the establishment of integrated rural information service platform, modern remote education center and electronic administration management platform for rural areas. The geographical and economic constraints must be overcome for structuring the rural service support system, in order to provide technical support, information products and information services to modern rural information service system. It is important that development an access platform based IP technology, which supports multi-service access in order to implement a variety of types of mobile terminal equipment adapter access and to reduce restrictions on mobile terminal equipment.
Wang, Gang; Zhao, Zhikai; Ning, Yongjie
2018-05-28
As the application of a coal mine Internet of Things (IoT), mobile measurement devices, such as intelligent mine lamps, cause moving measurement data to be increased. How to transmit these large amounts of mobile measurement data effectively has become an urgent problem. This paper presents a compressed sensing algorithm for the large amount of coal mine IoT moving measurement data based on a multi-hop network and total variation. By taking gas data in mobile measurement data as an example, two network models for the transmission of gas data flow, namely single-hop and multi-hop transmission modes, are investigated in depth, and a gas data compressed sensing collection model is built based on a multi-hop network. To utilize the sparse characteristics of gas data, the concept of total variation is introduced and a high-efficiency gas data compression and reconstruction method based on Total Variation Sparsity based on Multi-Hop (TVS-MH) is proposed. According to the simulation results, by using the proposed method, the moving measurement data flow from an underground distributed mobile network can be acquired and transmitted efficiently.
Multicellular Computing Using Conjugation for Wiring
Goñi-Moreno, Angel; Amos, Martyn; de la Cruz, Fernando
2013-01-01
Recent efforts in synthetic biology have focussed on the implementation of logical functions within living cells. One aim is to facilitate both internal “re-programming” and external control of cells, with potential applications in a wide range of domains. However, fundamental limitations on the degree to which single cells may be re-engineered have led to a growth of interest in multicellular systems, in which a “computation” is distributed over a number of different cell types, in a manner analogous to modern computer networks. Within this model, individual cell type perform specific sub-tasks, the results of which are then communicated to other cell types for further processing. The manner in which outputs are communicated is therefore of great significance to the overall success of such a scheme. Previous experiments in distributed cellular computation have used global communication schemes, such as quorum sensing (QS), to implement the “wiring” between cell types. While useful, this method lacks specificity, and limits the amount of information that may be transferred at any one time. We propose an alternative scheme, based on specific cell-cell conjugation. This mechanism allows for the direct transfer of genetic information between bacteria, via circular DNA strands known as plasmids. We design a multi-cellular population that is able to compute, in a distributed fashion, a Boolean XOR function. Through this, we describe a general scheme for distributed logic that works by mixing different strains in a single population; this constitutes an important advantage of our novel approach. Importantly, the amount of genetic information exchanged through conjugation is significantly higher than the amount possible through QS-based communication. We provide full computational modelling and simulation results, using deterministic, stochastic and spatially-explicit methods. These simulations explore the behaviour of one possible conjugation-wired cellular computing system under different conditions, and provide baseline information for future laboratory implementations. PMID:23840385
Impact of degree truncation on the spread of a contagious process on networks.
Harling, Guy; Onnela, Jukka-Pekka
2018-03-01
Understanding how person-to-person contagious processes spread through a population requires accurate information on connections between population members. However, such connectivity data, when collected via interview, is often incomplete due to partial recall, respondent fatigue or study design, e.g., fixed choice designs (FCD) truncate out-degree by limiting the number of contacts each respondent can report. Past research has shown how FCD truncation affects network properties, but its implications for predicted speed and size of spreading processes remain largely unexplored. To study the impact of degree truncation on predictions of spreading process outcomes, we generated collections of synthetic networks containing specific properties (degree distribution, degree-assortativity, clustering), and also used empirical social network data from 75 villages in Karnataka, India. We simulated FCD using various truncation thresholds and ran a susceptible-infectious-recovered (SIR) process on each network. We found that spreading processes propagated on truncated networks resulted in slower and smaller epidemics, with a sudden decrease in prediction accuracy at a level of truncation that varied by network type. Our results have implications beyond FCD to truncation due to any limited sampling from a larger network. We conclude that knowledge of network structure is important for understanding the accuracy of predictions of process spread on degree truncated networks.
NASA Astrophysics Data System (ADS)
Ghezavati, V. R.; Beigi, M.
2016-12-01
During the last decade, the stringent pressures from environmental and social requirements have spurred an interest in designing a reverse logistics (RL) network. The success of a logistics system may depend on the decisions of the facilities locations and vehicle routings. The location-routing problem (LRP) simultaneously locates the facilities and designs the travel routes for vehicles among established facilities and existing demand points. In this paper, the location-routing problem with time window (LRPTW) and homogeneous fleet type and designing a multi-echelon, and capacitated reverse logistics network, are considered which may arise in many real-life situations in logistics management. Our proposed RL network consists of hybrid collection/inspection centers, recovery centers and disposal centers. Here, we present a new bi-objective mathematical programming (BOMP) for LRPTW in reverse logistic. Since this type of problem is NP-hard, the non-dominated sorting genetic algorithm II (NSGA-II) is proposed to obtain the Pareto frontier for the given problem. Several numerical examples are presented to illustrate the effectiveness of the proposed model and algorithm. Also, the present work is an effort to effectively implement the ɛ-constraint method in GAMS software for producing the Pareto-optimal solutions in a BOMP. The results of the proposed algorithm have been compared with the ɛ-constraint method. The computational results show that the ɛ-constraint method is able to solve small-size instances to optimality within reasonable computing times, and for medium-to-large-sized problems, the proposed NSGA-II works better than the ɛ-constraint.
Cloud Detection by Fusing Multi-Scale Convolutional Features
NASA Astrophysics Data System (ADS)
Li, Zhiwei; Shen, Huanfeng; Wei, Yancong; Cheng, Qing; Yuan, Qiangqiang
2018-04-01
Clouds detection is an important pre-processing step for accurate application of optical satellite imagery. Recent studies indicate that deep learning achieves best performance in image segmentation tasks. Aiming at boosting the accuracy of cloud detection for multispectral imagery, especially for those that contain only visible and near infrared bands, in this paper, we proposed a deep learning based cloud detection method termed MSCN (multi-scale cloud net), which segments cloud by fusing multi-scale convolutional features. MSCN was trained on a global cloud cover validation collection, and was tested in more than ten types of optical images with different resolution. Experiment results show that MSCN has obvious advantages over the traditional multi-feature combined cloud detection method in accuracy, especially when in snow and other areas covered by bright non-cloud objects. Besides, MSCN produced more detailed cloud masks than the compared deep cloud detection convolution network. The effectiveness of MSCN make it promising for practical application in multiple kinds of optical imagery.
Dombrowski, Kirk; Sittner, Kelley; Crawford, Devan; Welch-Lazoritz, Melissa; Habecker, Patrick; Khan, Bilal
2016-01-01
During the United States economic recession of 2008–2011, the number of homeless and unstably housed people in the United States increased considerably. Homeless adult women and unaccompanied homeless youth make up the most marginal segments of this population. Because homeless individuals are a hard to reach population, research into these marginal groups has traditionally been a challenge for researchers interested in substance abuse and mental health. Network analysis techniques and research strategies offer means for dealing with traditional challenges such as missing sampling frames, variation in definitions of homelessness and study inclusion criteria, and enumeration/population estimation procedures. This review focuses on the need for, and recent steps toward, solutions to these problems that involve network science strategies for data collection and analysis. Research from a range of fields is reviewed and organized according to a new stress process framework aimed at understanding how homeless status interacts with issues related to substance abuse and mental health. Three types of network innovation are discussed: network scale-up methods, a network ecology approach to social resources, and the integration of network variables into the proposed stress process model of homeless substance abuse and mental health. By employing network methods and integrating these methods into existing models, research on homeless and unstably housed women and unaccompanied young people can address existing research challenges and promote more effective intervention and care programs. PMID:28042394
Dombrowski, Kirk; Sittner, Kelley; Crawford, Devan; Welch-Lazoritz, Melissa; Habecker, Patrick; Khan, Bilal
2016-09-01
During the United States economic recession of 2008-2011, the number of homeless and unstably housed people in the United States increased considerably. Homeless adult women and unaccompanied homeless youth make up the most marginal segments of this population. Because homeless individuals are a hard to reach population, research into these marginal groups has traditionally been a challenge for researchers interested in substance abuse and mental health. Network analysis techniques and research strategies offer means for dealing with traditional challenges such as missing sampling frames, variation in definitions of homelessness and study inclusion criteria, and enumeration/population estimation procedures. This review focuses on the need for, and recent steps toward, solutions to these problems that involve network science strategies for data collection and analysis. Research from a range of fields is reviewed and organized according to a new stress process framework aimed at understanding how homeless status interacts with issues related to substance abuse and mental health. Three types of network innovation are discussed: network scale-up methods, a network ecology approach to social resources, and the integration of network variables into the proposed stress process model of homeless substance abuse and mental health. By employing network methods and integrating these methods into existing models, research on homeless and unstably housed women and unaccompanied young people can address existing research challenges and promote more effective intervention and care programs.
Vandenberghe, G; Bloemenkamp, K; Berlage, S; Colmorn, L; Deneux-Tharaux, C; Gissler, M; Knight, M; Langhoff-Roos, J; Lindqvist, P G; Oberaigner, W; Van Roosmalen, J; Zwart, J; Roelens, K
2018-05-04
International comparison of complete uterine rupture. Descriptive multi-country population-based study. International. International Network of Obstetric Survey Systems (INOSS). We merged individual data, collected prospectively in nine population-based studies, of women with complete uterine rupture, defined as complete disruption of the uterine muscle and the uterine serosa, regardless of symptoms and rupture of fetal membranes. Prevalence of complete uterine rupture, regional variation and correlation with rates of caesarean section (CS) and trial of labour after CS (TOLAC). Severe maternal and perinatal morbidity and mortality. We identified 864 complete uterine ruptures in 2 625 017 deliveries. Overall prevalence was 3.3 (95% CI 3.1-3.5) per 10 000 deliveries, 22 (95% CI 21-24) in women with and 0.6 (95% CI 0.5-0.7) in women without previous CS. Prevalence in women with previous CS was negatively correlated with previous CS rate (ρ = -0.917) and positively correlated with TOLAC rate of the background population (ρ = 0.600). Uterine rupture resulted in peripartum hysterectomy in 87 of 864 women (10%, 95% CI 8-12%) and in a perinatal death in 116 of 874 infants (13.3%, 95% CI 11.2-15.7) whose mother had uterine rupture. Overall rate of neonatal asphyxia was 28% in neonates who survived. Higher prevalence of complete uterine ruptures per TOLAC was observed in countries with low previous CS and high TOLAC rates. Rates of hysterectomy and perinatal death are about 10% following complete uterine rupture, but in women undergoing TOLAC the rates are extremely low (only 2.2 and 3.2 per 10 000 TOLACs, respectively.) TWEETABLE ABSTRACT: Prevalence of complete uterine rupture is higher in countries with low previous CS and high TOLAC rates. © 2018 Royal College of Obstetricians and Gynaecologists.
Du, Qingzhang; Tian, Jiaxing; Yang, Xiaohui; Pan, Wei; Xu, Baohua; Li, Bailian; Ingvarsson, Pär K.; Zhang, Deqiang
2015-01-01
Economically important traits in many species generally show polygenic, quantitative inheritance. The components of genetic variation (additive, dominant and epistatic effects) of these traits conferred by multiple genes in shared biological pathways remain to be defined. Here, we investigated 11 full-length genes in cellulose biosynthesis, on 10 growth and wood-property traits, within a population of 460 unrelated Populus tomentosa individuals, via multi-gene association. To validate positive associations, we conducted single-marker analysis in a linkage population of 1,200 individuals. We identified 118, 121, and 43 associations (P< 0.01) corresponding to additive, dominant, and epistatic effects, respectively, with low to moderate proportions of phenotypic variance (R2). Epistatic interaction models uncovered a combination of three non-synonymous sites from three unique genes, representing a significant epistasis for diameter at breast height and stem volume. Single-marker analysis validated 61 associations (false discovery rate, Q ≤ 0.10), representing 38 SNPs from nine genes, and its average effect (R2 = 3.8%) nearly 2-fold higher than that identified with multi-gene association, suggesting that multi-gene association can capture smaller individual variants. Moreover, a structural gene–gene network based on tissue-specific transcript abundances provides a better understanding of the multi-gene pathway affecting tree growth and lignocellulose biosynthesis. Our study highlights the importance of pathway-based multiple gene associations to uncover the nature of genetic variance for quantitative traits and may drive novel progress in molecular breeding. PMID:25428896
The effect of hubs and shortcuts on fixation time in evolutionary graphs
NASA Astrophysics Data System (ADS)
Askari, Marziyeh; Moradi Miraghaei, Zeinab; Aghababaei Samani, Keivan
2017-07-01
How can a new species (like a gene, an idea, or a strategy) take over the whole of a population? This process, which is called fixation, is considerably affected by the structure of the population. There are two key quantities to quantify the fixation process, namely fixation probability and fixation time. Fixation probability has been vastly studied in recent years, but fixation time has not been completely explored, yet. This is because the discovery of a relationship between fixation time and network structure is quite challenging. In this paper we investigate this relationship for a number of well-known complex networks. We show that the existence of a few high-degree nodes (hubs) in the network results in a longer fixation time, while the existence of a few short-cuts decreases the fixation time. Furthermore we investigate the effect of network parameters, such as connection probability, on fixation time. We show that by increasing the density of edges, fixation time decreases for all types of studied networks. Finally, we survey the effect of rewiring probability in a Watts-Strogatz network on fixation time.
NASA Astrophysics Data System (ADS)
Li, Yajie; Zhao, Yongli; Zhang, Jie; Yu, Xiaosong; Chen, Haoran; Zhu, Ruijie; Zhou, Quanwei; Yu, Chenbei; Cui, Rui
2017-01-01
A Virtual Network Operator (VNO) is a provider and reseller of network services from other telecommunications suppliers. These network providers are categorized as virtual because they do not own the underlying telecommunication infrastructure. In terms of business operation, VNO can provide customers with personalized services by leasing network infrastructure from traditional network providers. The unique business modes of VNO lead to the emergence of network on demand (NoD) services. The conventional network provisioning involves a series of manual operation and configuration, which leads to high cost in time. Considering the advantages of Software Defined Networking (SDN), this paper proposes a novel NoD service provisioning solution to satisfy the private network need of VNOs. The solution is first verified in the real software defined multi-domain optical networks with multi-vendor OTN equipment. With the proposed solution, NoD service can be deployed via online web portals in near-real time. It reinvents the customer experience and redefines how network services are delivered to customers via an online self-service portal. Ultimately, this means a customer will be able to simply go online, click a few buttons and have new services almost instantaneously.
Network Performance Evaluation Model for assessing the impacts of high-occupancy vehicle facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janson, B.N.; Zozaya-Gorostiza, C.; Southworth, F.
1986-09-01
A model to assess the impacts of major high-occupancy vehicle (HOV) facilities on regional levels of energy consumption and vehicle air pollution emissions in urban aeas is developed and applied. This model can be used to forecast and compare the impacts of alternative HOV facility design and operation plans on traffic patterns, travel costs, model choice, travel demand, energy consumption and vehicle emissions. The model is designed to show differences in the overall impacts of alternative HOV facility types, locations and operation plans rather than to serve as a tool for detailed engineering design and traffic planning studies. The Networkmore » Performance Evaluation Model (NETPEM) combines several urban transportation planning models within a multi-modal network equilibrium framework including modules with which to define the type, location and use policy of the HOV facility to be tested, and to assess the impacts of this facility.« less
GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments
NASA Astrophysics Data System (ADS)
McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.
2014-12-01
The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.
Labiran, Clare; Rowen, David; Clarke, Ian Nicholas; Marsh, Peter
2017-01-01
Chlamydia trachomatis is the most common sexually transmitted infection (STI) in England. Our objective was to perform a detailed survey of the molecular epidemiology of C. trachomatis in the population of Southampton UK attending the genitourinary medicine clinic (GUM) to seek evidence of sexual network activity. Our hypothesis was that certain genotypes can be associated with specific demographic determinants. 380 positive samples were collected from 375 C. trachomatis positive GUM attendees out of the 3118 who consented to be part of the survey. 302 of the positive samples were fully genotyped. All six of the predominant genotypes possessed ompA locus type E. One ward of Southampton known to contain a large proportion of students had a different profile of genotypes compared to other areas of the city. Some genotypes appeared embedded in the city population whilst others appeared transient. Predominant circulating genotypes remain stable within a city population whereas others are sporadic. Sexual networks could be inferred but not conclusively identified using the data from this survey.
Santos, Guido; Lai, Xin; Eberhardt, Martin; Vera, Julio
2018-01-01
Pneumococcal infection is the most frequent cause of pneumonia, and one of the most prevalent diseases worldwide. The population groups at high risk of death from bacterial pneumonia are infants, elderly and immunosuppressed people. These groups are more vulnerable because they have immature or impaired immune systems, the efficacy of their response to vaccines is lower, and antibiotic treatment often does not take place until the inflammatory response triggered is already overwhelming. The immune response to bacterial lung infections involves dynamic interactions between several types of cells whose activation is driven by intracellular molecular networks. A feasible approach to the integration of knowledge and data linking tissue, cellular and intracellular events and the construction of hypotheses in this area is the use of mathematical modeling. For this paper, we used a multi-level computational model to analyse the role of cellular and molecular interactions during the first 10 h after alveolar invasion of Streptococcus pneumoniae bacteria. By “multi-level” we mean that we simulated the interplay between different temporal and spatial scales in a single computational model. In this instance, we included the intracellular scale of processes driving lung epithelial cell activation together with the scale of cell-to-cell interactions at the alveolar tissue. In our analysis, we combined systematic model simulations with logistic regression analysis and decision trees to find genotypic-phenotypic signatures that explain differences in bacteria strain infectivity. According to our simulations, pneumococci benefit from a high dwelling probability and a high proliferation rate during the first stages of infection. In addition to this, the model predicts that during the very early phases of infection the bacterial capsule could be an impediment to the establishment of the alveolar infection because it impairs bacterial colonization. PMID:29868515
Santos, Guido; Lai, Xin; Eberhardt, Martin; Vera, Julio
2018-01-01
Pneumococcal infection is the most frequent cause of pneumonia, and one of the most prevalent diseases worldwide. The population groups at high risk of death from bacterial pneumonia are infants, elderly and immunosuppressed people. These groups are more vulnerable because they have immature or impaired immune systems, the efficacy of their response to vaccines is lower, and antibiotic treatment often does not take place until the inflammatory response triggered is already overwhelming. The immune response to bacterial lung infections involves dynamic interactions between several types of cells whose activation is driven by intracellular molecular networks. A feasible approach to the integration of knowledge and data linking tissue, cellular and intracellular events and the construction of hypotheses in this area is the use of mathematical modeling. For this paper, we used a multi-level computational model to analyse the role of cellular and molecular interactions during the first 10 h after alveolar invasion of Streptococcus pneumoniae bacteria. By "multi-level" we mean that we simulated the interplay between different temporal and spatial scales in a single computational model. In this instance, we included the intracellular scale of processes driving lung epithelial cell activation together with the scale of cell-to-cell interactions at the alveolar tissue. In our analysis, we combined systematic model simulations with logistic regression analysis and decision trees to find genotypic-phenotypic signatures that explain differences in bacteria strain infectivity. According to our simulations, pneumococci benefit from a high dwelling probability and a high proliferation rate during the first stages of infection. In addition to this, the model predicts that during the very early phases of infection the bacterial capsule could be an impediment to the establishment of the alveolar infection because it impairs bacterial colonization.
NASA Astrophysics Data System (ADS)
San Roman, I.; Cenarro, A. J.; Díaz-García, L. A.; López-Sanjuan, C.; Varela, J.; González Delgado, R. M.; Sánchez-Blázquez, P.; Alfaro, E. J.; Ascaso, B.; Bonoli, S.; Borlaff, A.; Castander, F. J.; Cerviño, M.; Fernández-Soto, A.; Márquez, I.; Masegosa, J.; Muniesa, D.; Pović, M.; Viironen, K.; Aguerri, J. A. L.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Cepa, J.; Cristóbal-Hornillos, D.; Infante, L.; Martínez, V. J.; Moles, M.; del Olmo, A.; Perea, J.; Prada, F.; Quintana, J. M.
2018-01-01
We present a technique that permits the analysis of stellar population gradients in a relatively low-cost way compared to integral field unit (IFU) surveys. We developed a technique to analyze unresolved stellar populations of spatially resolved galaxies based on photometric multi-filter surveys. This technique allows the analysis of vastly larger samples and out to larger galactic radii. We derived spatially resolved stellar population properties and radial gradients by applying a centroidal Voronoi tessellation and performing a multicolor photometry spectral energy distribution fitting. This technique has been successfully applied to a sample of 29 massive (M⋆ > 1010.5M⊙) early-type galaxies at z < 0.3 from the ALHAMBRA survey. We produced detailed 2D maps of stellar population properties (age, metallicity, and extinction), which allow us to identify galactic features. Radial structures were studied, and luminosity-weighted and mass-weighted gradients were derived out to 2-3.5 Reff. We find that the spatially resolved stellar population mass, age, and metallicity are well represented by their integrated values. We find the gradients of early-type galaxies to be on average flat in age (∇log AgeL = 0.02 ± 0.06 dex/Reff) and negative in metallicity (∇[Fe/H]L = -0.09 ± 0.06 dex/Reff). Overall,the extinction gradients are flat (∇Av = -0.03 ± 0.09 mag/Reff ) with a wide spread. These results are in agreement with previous studies that used standard long-slit spectroscopy, and with the most recent IFU studies. According to recent simulations, these results are consistent with a scenario where early-type galaxies were formed through major mergers and where their final gradients are driven by the older ages and higher metallicity of the accreted systems. We demonstrate the scientific potential of multi-filter photometry to explore the spatially resolved stellar populations of local galaxies and confirm previous spectroscopic trends from a complementary technique. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie (MPIA) at Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC).
Network module detection: Affinity search technique with the multi-node topological overlap measure
Li, Ai; Horvath, Steve
2009-01-01
Background Many clustering procedures only allow the user to input a pairwise dissimilarity or distance measure between objects. We propose a clustering method that can input a multi-point dissimilarity measure d(i1, i2, ..., iP) where the number of points P can be larger than 2. The work is motivated by gene network analysis where clusters correspond to modules of highly interconnected nodes. Here, we define modules as clusters of network nodes with high multi-node topological overlap. The topological overlap measure is a robust measure of interconnectedness which is based on shared network neighbors. In previous work, we have shown that the multi-node topological overlap measure yields biologically meaningful results when used as input of network neighborhood analysis. Findings We adapt network neighborhood analysis for the use of module detection. We propose the Module Affinity Search Technique (MAST), which is a generalized version of the Cluster Affinity Search Technique (CAST). MAST can accommodate a multi-node dissimilarity measure. Clusters grow around user-defined or automatically chosen seeds (e.g. hub nodes). We propose both local and global cluster growth stopping rules. We use several simulations and a gene co-expression network application to argue that the MAST approach leads to biologically meaningful results. We compare MAST with hierarchical clustering and partitioning around medoid clustering. Conclusion Our flexible module detection method is implemented in the MTOM software which can be downloaded from the following webpage: PMID:19619323
Network module detection: Affinity search technique with the multi-node topological overlap measure.
Li, Ai; Horvath, Steve
2009-07-20
Many clustering procedures only allow the user to input a pairwise dissimilarity or distance measure between objects. We propose a clustering method that can input a multi-point dissimilarity measure d(i1, i2, ..., iP) where the number of points P can be larger than 2. The work is motivated by gene network analysis where clusters correspond to modules of highly interconnected nodes. Here, we define modules as clusters of network nodes with high multi-node topological overlap. The topological overlap measure is a robust measure of interconnectedness which is based on shared network neighbors. In previous work, we have shown that the multi-node topological overlap measure yields biologically meaningful results when used as input of network neighborhood analysis. We adapt network neighborhood analysis for the use of module detection. We propose the Module Affinity Search Technique (MAST), which is a generalized version of the Cluster Affinity Search Technique (CAST). MAST can accommodate a multi-node dissimilarity measure. Clusters grow around user-defined or automatically chosen seeds (e.g. hub nodes). We propose both local and global cluster growth stopping rules. We use several simulations and a gene co-expression network application to argue that the MAST approach leads to biologically meaningful results. We compare MAST with hierarchical clustering and partitioning around medoid clustering. Our flexible module detection method is implemented in the MTOM software which can be downloaded from the following webpage: http://www.genetics.ucla.edu/labs/horvath/MTOM/